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Abstract

Antiferromagnetic spin—% ladders have been studied in theoretical and experimental
physics for several years. The spin ladder is a good model to bridge between theory and
experiment, because it is realized in the copper oxide family Sry4_,(La,Ca),Cuy40y;.
These copper oxides consist of alternating layers of edge-sharing chains and ladders.
The insulating mother compound Sry4Cuy40y; is hole doped in the chains as well as
slightly in the ladders. The hole content in the Sry4,Cus4Oy4; ladders is reduced, if
La®" is substituted for Sr** resulting in a pure antiferromagnetic spin ladder given by
LasSr1gCugsOy;.

In this thesis such spin ladders are studied by an amalgamated approach of theoretical
work and experiments. For the La,Sr;oCuy40,4; ladder the temperature development is
investigated using scattering techniques as well as computer modelling. At zero tem-
perature the spin ladder has already been well described by effective models computed
via perturbative continuous unitary transformations (PCUTs). These PCUT results are
now combined with a mean field approach allowing for incorporation of temperature
induced conditional excitations via vertex corrections. The vertex correction results in a
decreasing one-triplon spectral weight upon increasing temperature. This effect is stud-
ied by inelastic neutron scattering (INS) on La,Sr1Cus40y4; crystals by measuring the
scattering amplitude at various temperatures. Convincing agreement is found within the
experimental and theoretical error bars. Additionally the coupling constants found in
Ref. [1] could be confirmed.

The importance of an inter-ladder coupling Jiy.; between isolated ladders in the plane is
investigated by combination of the PCUT with a mean field approach. This calculation
is undertaken for the square and the trellis lattice. The difference to the existing calcula-

tions [2], [3] and [4] is the partial inclusion of the hardcore interaction for neighbouring

9
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ladders. At zero temperature we reveal the effect of quantum fluctuations on the spin
gap. In the case of the square lattice we find the closure of the spin gap at a critical
inter-ladder coupling enlarged by 3 — 4%. In the case of the trellis lattice, the spin gap
decreases also as a function of inter-ladder coupling. In this case we find an enlarged
critical inter-ladder coupling up to 21%. In additon, the theoretically predicted shift of
the spectral weight by Uhrig and Schmidt could experimentally be confirmed.

Substituting Ca?* for Sr?* results in hole doped ladders, such as Sry 5Ca;; 5Cus,Oy;
and SrgCagCus, 04, where the hole doping depends on the substituted Ca®>* content.
The magnetic spectra of these two doped ladders are measured by INS and compared
with the undoped ladder La,Sr;yCuy40,4;. The comparison reveals new features tracing
back to the presence of holes. At low temperature in both compounds scattering below
the gap of the undoped ladder is found resulting in a subgap' state at about 8meV. The
subgap broadens at high temperature so much that the closing of the subgap results.
Additionally for both dopings and at low and high temperature a hole-pair captured by
triplons is found with a fixed energy gap at 23meV. The new features are qualitatively
explained in terms of resonant valence bond theory (RVB) as well as stripe ordering
theory.

I'The term subgap is commonly used by experimentalists.



Chapter 1

Introduction to high T,
superconductors

In 1911 Heike Kamerlingh Onnes discovered the superconducting phase in Mercury
cooled to the temperature of liquid Helium. Two years later, in 1913 he received the
Nobel prize for his

investigations on the properties of matter at low temperatures which led, inter alia, to

the production of liquid helium [5].

The key features of superconductivity are the sudden disappearing resistence of electric
current below a critical temperature and the Meissner-Ochsenfeld effect. Conventional
low temperature superconductors are rather conventional metals at high temperatures.
The superconducting phase in metals is well understood by the BCS-theory developed
by John Bardeen, Leon N. Cooper und John R. Schrieffer in 1957. Within BCS theory
the superconducting phase is induced by an attractive electron-electron interaction me-
diated by a phonon between states of opposite spin and momentum £ resulting in the
formation of a so called Cooper pair. The Cooper pairs are spin-zero bound states of

two electrons. A fluid of delocalized Cooper pairs forms the basis of superconductivity

[6].

The mechanism behind high-temperature superconductivity in cuprates is still a chal-

lenging open question. In 1986 Bednorz and Miiller discovered a superconducting

11



12 CHAPTER 1. INTRODUCTION TO HIGH T¢e SUPERCONDUCTORS

phase in Las_,Ba,Cu;05(3_,) [7]. A few month later it was found that doping with
Sr instead of Ba raised the superconducting critical temperature [8]. The high T, ma-
terials were in striking contrast to conventional superconductors as they were derived
from the hole doping of insulators and were relatively bad conductors above the su-
perconducting temperature with anomalous thermal properties. For cuprates a maximal
critical temperature of up to 145K occurs upon hole doping [6], making the cuprates

interesting for technical applications.

1.1 Key features of high T, superconductors

The characteristic structural element of high T, superconducting cuprates are layers of
CuO, [9]. These layers are believed to play an important role for the understanding of
superconductivity in two dimensional high T, superconductors.

The crystal structure suggests that the Cu®" atoms are in S = % states, that strongly
hybridize with the surrounding p-levels of the oxygen atoms. The configuration of Cu-
O-Cu bonds determines the structure of the cuprate [9]. In high T, superconducting
cuprates the Cu-O-Cu bonds possess an angle of 180°. These bonds are mutually or-
thogonal forming a square lattice layer as sketched in Fig. 1.1.1. The insulating parent
compound of two dimensional high T, superconducting cuprates is La;CuOy, [9]. It is
an example of a planar spin-% Heisenberg antiferromagnet with isotropic and predomi-
nantly nearest neighbor coupling [8] with very high exchange energy [10]. This model
predicts a constant but finite spin-spin correlation with increasing spin distance. The non
zero spin-spin correlation indicates the established antiferromagnetic long ranged order
in this spin system [11]. In contrast to band theory calculations experimental investiga-
tions show that the parent compound La;CuQy is insulating, though the Cu atoms pos-
sess a single electron in the d-shell. Such insulating materials are called Mott-insulators.
Hole doping causes the compound to become superconducting. It is believed, that the
additional charges introduced upon doping pair with the single d-electrons to supercon-

ducting cooper pairs.

1.2 Phase diagram for a doped high 7 .-superconductor

When La;CuOy is doped for example with Sr a rich phase diagram is found [8]. Such
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Figure 1.1.1: Bond configuration in a single CuOs layer of two dimensional high-temperature
superconducting cuprates such as LasCuQy4. The 180° Cu-O-Cu bond configurations are mutu-
ally orthogonal resulting in a square lattice layer.

a phase diagram of a hole doped high 7.-superconductor is presented in Fig. 1.2.1.
The phases are sketched as a function of temperature 7" and doping level 6. At very
low doping the antiferromagnetic (AF) phase is dominant from low to high tempera-
tures. The superconducting phase (SC) is found for dopings 0.05 < ¢ < 0.25 at low
temperature. Optimal doping d,, is given when the critical temperature becomes max-
imal. The regimes below d,, is the underdoped and above d,, the overdoped regime.
At low temperatures the AF and SC regimes are bridged by the spin glass regime (SG),
where magnetism survives locally and superconductivity is not established yet. Further-
more there are the pseudogap PG, the non-Fermi-liquid NFL and the Fermi-liquid FL
regimes, that are not separated from each another by phase transitions but by crossovers
indicated by the dotted lines in Fig. 1.2.1.

1.3 Theoretical descriptions

A full theoretical description of high T, superconductors is not achieved, yet. However,

there are two candidates of theoretical description that allow for identifying some fea-
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Figure 1.2.1: Schematic phase diagram showing the typical phases of a hole-doped T.-
superconductor in dependence of temperature 7" and doping level §. The true phases showing
a phase transition are the antiferromagnetic phase AF and the superconducting dome (SC). At
low temperatures both are bridged by the spin glass regime (SG) representing a phase with local
magnetism and a not yet established superconductivity. Optimal doping d,, is reached at the
maximum critical temperature 7,.. The system is underdoped below ¢,, and overdoped above
dop- The dotted lines indicate the crossover (not the phase transitions) between the other regimes,

that are the pseudogap PG, the non-Fermi-liquid NFL and the Fermi-liquid FL regime.

tures of high T, materials measured in experiments.

In 1973 Anderson introduced the so called resonating valence bond (RVB) state based
upon the idea that pairs of electrons, occupying bonds between adjacent lattice sites 7
in a crystal are able to carry out (partially) unsynchronized resonances. The RVB state
is a mixture of singlet pairings of electrons in a specific way [12]. It is a precise singlet
without long range order [12]. The ground state is given by the product of such RVB
states, which is a fluid in that it has quantum transport of spin excitation [12]. Doping
of La,CuO, in the RVB state results in boson hole exciations [12], where the holes in
the RVB state are almost free.

A realistic theoretical approach was undertaken by Kotliar et al. They combined the
local density approximation with the dynamical mean-field theory (LDA+DMFT) to
study intermediate energy properties of Las_,Sr,CuO, [13]. Kotliar et al. find convinc-
ing quantitative agreement with optical conductivity measurements supporting the view

that the hole doped cuprates are above but not very far from the metal charge-transfer
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insulator transition [13].

In another approach the holes are believed to self-organize into stripes that alternate
with antiferromagnetic (insulating) regions within copper oxide planes [14, 3]. This
situtation is described by the so called Luther - Emery [15] model which describes one-
dimensional fermions with gapless charge and gapped spin degrees of freedom [16].
This model applies to one-dimensional Mott insulators or superconductors because they
are characterized by such a gapless and a gapped degree of freedom [16]. For exam-
ple Vojta and Ulbricht computed spin excitation spectra in a bond centered stripe state
with long range magnetic order using a two dimensional spin-only model [17]. They
employed a bond operator formalism, that captures dimerization and broken spin sym-
metry. Their results on stripe ordering describe well the neutron scattering data on
La; g75510.125Cu0O, measured by Tranquada et al. [18].

1.4 Relation to ladder systems

In the stripe model the coupling between the two antiferromagnetic regions in a hole
doped CuO, layer is weakened by the stripes of holes in-between. Thus the two dimen-
sional hole doped high T, superconductors are related to the one dimensional two-leg
ladder systems.

Many members of the lanthanum cuprate family of high-temperature superconduc-

tors exhibit strong singularities in the doping dependence of various interesting low-
1
8
anomaly [14]. For example, in La, ,Ba,CuO, and La; g2_,Nd( 4Sr,CuQy, there is a

temperature properties at § = %; together, these phenomena are referred to as the

deep minimum in 7..(6); further common properties are summarized in Ref. [14]. Fol-
lowing the discovery of stripe order in La; g5 ,Ndg 4Sr,CuO, by Tranquada et al. [18]
this % anomaly is associated with stripe ordering [14].

A two-leg spin ladder is antiferromagnetic because of the superexchange .J between
neighbouring spins [18]. However, there is no static order at any temperature. This fluc-
tuating, correlated state is said to be quantum disordered [18]. Furthermore, the spin
ladder exhibits an energy gap from the ground state to the first excited state, which is of
the order of the coupling .J. The dispersion of this excitation is mainly directed along
the ladder, making it possible to regard the spin ladder as one dimensional. Besides the
possible theoretical derivation of the 1D two-leg spin ladder from the 2D CuO, layer

by stripe order considerations, spin ladders are realized in some cuprates as described
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Figure 1.5.1: The structure (left) of the cuprate family Sri4_,(La,Ca),Cu2404; (taken from
[19]). These cuprates consist of alternating layers of edge-sharing chains (middle) and ladders
(right). The intra-chain and intra-ladder couplings are presented by the black solid lines. Layers
of the constituents (Sr’*, La3t, Ca?*) alternate with the chain and the ladder layers.

below.

1.5 Ladder cuprates

The parent compound of the ladder copper oxide family investigated within this work
is Sr14Cuy,Oy;. It is an insulator. Substitution of Sr** for La** or Ca®* enlarges the
family members to (La,Ca),Sri4_,Cug4Oy;.

A schematic view of the structure of these cuprates (also called the telephone number
compounds because of their stoichiometry) is depicted in Fig. 1.5.1 (taken from Ref.
[19]). The ladder cuprates are composed of alternating planes of edge-sharing CuO,
chains and planes of weakly coupled Cu;O3 spin ladders, where the copper Cu and
oxygen O atoms form a square lattice. Both substructures are orientated along the crys-
tallographic c-axis. The planes are separated from each other by the constituents (Sr?™,
La3t, Ca?").

In these cuprates the spins 1

2
3d,2_,» orbitals of the Cu atoms. Hybridisation of the 2p, or 2p, oxygen orbitals with

are again given by the unpaired electrons in the planar
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the 3d,2_,2» Cu orbitals allows for the superexchange [20]. While the coupling within
the ladder is strong due to the angle of 180°, the coupling between two ladders is much
weaker because the superexchange via the Cu-O-Cu path is significantly decreased for
an angle of 90° [20, 21]. Furthermore, the inter-ladder coupling in the plane is highly
frustrated, because neighbouring ladders are displaced by 5, so that each spin on a rung
of a ladder is coupled to both adjacent spins of the left or the right neighboring ladder
equally, which in turn are coupled antiferromagnetically with the second spin on the left
and right rung respectively. This fact causes the system to be more or less one dimen-
sional along the ladder direction and justifies the treatment of isolated spin ladders in

these cuprates [4].

The parent compound Sry,Cus4Qy; is intrinsically hole doped in both the chains and the
ladders with six holes per unit cell in total. Data from X-ray absorption spectroscopy
show, however, that the holes are mainly located in the chains (on average 5.2 holes per
unit cell) resulting in an only very slightly doped ladder (on average 0.6 holes per unit
cell) [22, 23]. This result is explained by the higher electronegativity in the chains [24].
Substituting La3* for Sr?* reduces the total number of holes in the system, so that
La,Sr;pCuy,04; represents a spin ladder with nearly no holes. The remaining holes re-
side in the chains. The compound LagSrgCuy404; has no holes at all. In the compounds
La,Sry4 ,Cus04 with x > 1 the holes reside exclusively on chains [25]. A substi-
tution with an equivalent constituent such as Ca?" leaves the number of holes in the
system constant, but it results in the transfer of holes from the chains to the ladders due
to the smaller ionic radius of Ca®" [26, 24]. Compounds containing hole doped ladders
can exhibit a superconducting phase below a critical temperature and when pressurized.
This is the case for Sry 5Cay; 5CuyyOyy [27].

1.6 Purpose of this work

The purpose of this work is to study the ladder substructure within the ladder cuprates
both theoretically and experimentally. Spin ladder calculations have been done using
different methods, among them are the method of continuous unitary transformation
[28, 29, 30] and mean field theory [31, 32]. These calculations concentrate on zero
temperature. However, the phase diagram discussed suggests an interesting tempera-

ture dependence of magnetic excitations of hole doped superconductors and therefore
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on the chains and ladders. Further, experimental validations require an appropriate con-
sideration of temperature effects. Hence, for the undoped spin ladder La,Sr;(Cuy40y4; a
theory at finite temperature is developed.

On the theoretical side an efficient Hamiltonian for the ladder is determined from per-
turbated continuous unitary transformations (PCUT) [33, 34]. As usual in this theory,
the obtained transformations allow physical quantities to be determined in an effective
fashion such as the dynamical structure factor. In this thesis the PCUT method is com-
bined with a mean field approach, that considers the hardcore feature of the excitations.
From that, the contribution of the conditional one-triplon excitation due to thermal fluc-
tuations to the one-triplon weight for finite temperatures is deduced. It is shown, that
the one triplon spectral weight diminishes with increasing temperature affecting directly
the dynamical structure factor.

On the experimental side, neutron scattering experiments have been undertaken on dif-
ferent members of the ladder cuprate family described above. INS experiments were
performed at different temperatures revealing the intensity decrease of the dynami-
cal structure factor with increasing temperature. Convincing agreement is found for

La,Sr;pCuy404; between theory and experiment.

Though the interladder coupling is weak its influence has to be accounted for within a
certain level of accuracy. Several methods have been used for investigation of the inter-
ladder coupling of such systems [35, 36, 37, 38]. Calculations using PCUTS have been
done in Refs. [2, 3, 4], where the hardcore constraint along the neighboring ladders is
neglected. Within this work the significance of the inter-ladder coupling for the square
and the trellis lattice is studied including the hardcore feature partially in the calcula-
tions. As for the temperature treatment for the isolated ladder, the inter-ladder coupling
is also carried out on the mean field level. At zero temperature we find that the closing
of the gap is only slightly affected by quantum fluctuations for the square lattice. For
the trellis lattice the closing of the spin gap is stronger affected resulting in an enlarged
critical inter-ladder coupling. For the trellis lattice, which is relevant for the compounds
employed in the experiments, the shift in the dispersion along ¢; reported in Ref. [4] is
compared with the experimental results.

Finally we investigate the influence of hole doping at different temperatures on the
magnetic spectrum for the doped ladders SrgCagCus404; and Sry 5Caqq 5CugsOyq. The
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spectrum of the undoped ladder La;Sr19Cus4O4; is used as a reference in order to con-
clude, which features arise from the presence of holes. The features of the hole doped
ladders can be qualitatively explained with resonating valence bond theory RVB [39]
or with stripe formation [15, 16]. Similarities to ARPES [40, 41] measurements on

Sry 5Cayq1 5Cugs0y4; and to an INS measurement [42] are found.

1.7 Set-up of this work

Profiting from synergies of both theoretical and experimental work this thesis is orga-
nized as follows: In Chapter 2 the experimental set-up for inelastic neutron scattering
(INS) is described. To this end the most important quantities concerning scattering the-
ory such as the partial differential scattering cross section are introduced in Chapter 2.
This quantity is measured directly in an inelastic neutron scattering experiment. The
complete set-up of such an experiment is also presented in Chapter 2, starting from the
production of neutrons up to the detection of the scattered neutrons.

To build a bridge between notions predominantly employed by theorists and experi-
mentalists, a brief introduction to the different terms for magnetic excitations is given
in Chapter 3 explaining the differences of notions such as magnons and triplons.

Then the theoretical methods, such as PCUT and mean field theory, used within this
thesis to calculate the physical quantities of interest are introduced briefly in Chapter 4.
The temperature influence on the dynamical structure factor for the isolated spin ladder
is presented in Chapter 5 as well as the comparison to an INS experiment.

The coupling of such isolated spin ladders is the topic of investigation in Chapter 6,
where both the square lattice and the trellis lattice, which are realistic to cuprates, are
taken into account. The zero temperature limit of the inter-ladder coupling is discussed,
as well as the finite temperature behavior.

Chapter 7 contains purely experimental results giving new insight in the magnetic spec-
tra of doped spin ladders Srs 5Ca1; 5Cu240y4; and SrgCagCussOyq. A comparison to the
spectrum of the undoped ladder La,Sr;(Cuy404; shows new features that trace back to
the presence of holes.

Conclusions of this thesis and an outlook to future work are given in Chapter 8.



20

CHAPTER 1. INTRODUCTION TO HIGH T¢e SUPERCONDUCTORS



Chapter 2
Introduction to neutron scattering

Neutron scattering is a powerful and versatile technique for investigations in condensed
matter science. The de Broglie wavelength of thermal neutrons is comparable to the
interatomic length in solids, and therefore neutrons will be diffracted by crystals. The
two most important features of the neutron are the zero net charge and its magnetic
moment.

Due to its zero net charge there is no Coulomb potential to overcome, and hence, it
interacts only weakly with matter permitting a deep penetration into the sample. This
particularily allows for a direct interaction with the nucleus of an atom. The interaction,
however, of a neutron and a nucleus is known to be of very short range (~ 10™3c¢m =
1fm). Since this length is much smaller than the neutrons’ de Broglie wavelength the
interaction between a neutron and a nucleus can be considered nearly pointlike.

The neutrons’ second feature, its magnetic moment, facilitates an interaction with the
unpaired electron spins in magnetic atoms and offers therefore to gain information on
distributions of magnetic moments. The energy of thermal neutrons is of the same order
as the excitation energies in magnetic systems.

Hence the neutron is a powerful probe to investigate both the nuclear and magnetic

structure and the dynamics of the solid state systems.

2.1 The scattering cross-section

In this section the most important properties and formulas concerning neutron scattering

will briefly be summarized. Neutron scattering is elaborated in detail by many authors

21



22 CHAPTER 2. INTRODUCTION TO NEUTRON SCATTERING

including Squires [43], Lovesey [44] and Shirane et al. [45].

In a neutron scattering experiment incident neutrons with wave vector k and energy £
are scattered by the sample at an angle 6 with a wave vector K’ and energy E’ as it is
illustrated in Fig. 2.1.1. The scattered neutrons are collected with angular resolution in
a distance d by the detector.

If energy is transferred by the scattering process, whether from the neutron to the

Detector

AQ

k, E 20}
sample g Q
2 \
k

Figure 2.1.1: a) Sketch of a scattering process. An incoming neutron with wave vector k and

energy F is scattered by the sample at an angle 26 resulting in a neutron with wave vector k’
and energy E’. The scattered neutrons k’ are detected at an angle of 26 by the detector at a
distance d. b) The scattering triangle reveals the meaning of the wave vector transfer Q. It is the

difference between the incomming k and the scattered k’ wave vector.

sample or from the sample to the neutron, the neutron energy is changed by

h? (k2 _ k,2)

2m

hw=FE-—-FE = , (2.1.1)
where m is the neutron mass, w the angular frequency and 7 the Planck constant divided
by 27. If energy is absorbed by the the sample, Aiw will be positive, and if energy is
absorbed by the neutron, Aw will be negative. The change in momentum is given by
the wave vector transfer Q, illustrated in the scattering triangle in Fig. 2.1.1(b). It is
calculated by

Q=k-k’ (2.1.2)
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In the case of elastic scattering, there is no energy transfer, so that iw = 0 holds,
yielding |k| = |k’|. However the direction between k and kK’ can be changed resulting
in a wave vector transfer Q only dependent on the scattering angle 6. In the case of
inelastic scattering, there is energy transfer with iw # 0.

Considering a monoenergetic beam of neutrons with the wave vector dependent flux
o(k;) hitting a target, the rate at which the neutrons are scattered is defined by the
product of the initial neutron flux ¢(k;) times a quantity known as the cross section o.
The cross section itself gives the total number of neutrons scattered per second divided
by the neutron flux ¢(k;). The intensity I of neutrons scattered at a certain solid angle
AS) with a final energy between F’ and £’ + AFE’ is related to the neutron flux ¢(k;) by

20

the partial differential cross section ﬁ according to

d’c

I = o(k;) (deE,> AQAE. (2.1.3)

The partial differential cross section is a measure of the number of neutrons scattered

per second into a solid angle A() with a final energy between E’ and £’ + AE’ divided
by the flux, the range of scattered energy and the solid angle. The partial differential
cross section is the quantity measured directly in an inelastic neutron scattering experi-

ment. Therefore it will be derived in detail.

2.1.1 Partial differential cross section

The neutron interacts with condensed matter either by scattering via the nuclear force
or via its magnetic moment interacting with other magnetic moments present in the
material. As mentioned in the introduction this is a consequence of its zero net charge.
Scattering via the nuclear force is called nuclear scattering and will be presented first.

The magnetic scattering due to its spin will be introduced thereafter.

2.1.2 Nuclear scattering

In a scattering process with condensed matter a neutron acts as a weak perturbation of
the scattering system. As a consequence the partial differential cross section can be
derived from Fermi’s Golden Rule leading to

d’c B K| ( my,

2
LN T T ks VKA (hw + E; — Ey), 2.14
a0,am o = i () WOVIRAIES (o B B 214)
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where the \;, \; represent the initial and the final state with energies E;, Ey, K;, and K¢
the respective momenta and m,, the neutron mass. The potential describing the single
neutron-nucleus interaction as required for Fermi’s Golden Rule is realized by the so
called Fermi pseudopotential

21 h2b
T m

V(r) d(r), (2.1.5)

that is short range and proportional to the nuclear scattering length b. A derivation of
this potential can be found for example in Ref. [43].

A crystal represents an assembly of nuclei with positions R;. To take lattice vibrations
into account, R; has to be considered as a function of time. The nuclear interaction of a

neutron with such an ensemble is therefore given by the superposition

2w h?
m

V(r) = > bis(r —Ry), (2.1.6)
J
where r is the neutron’s position and b; the nuclear scattering length of the jth nucleus
in the assembly, that can vary even for monoatomic samples, because isotopes of the
same element have different scattering lengths. In a scattering experiment a statistical
distribution of initial states P(\;) of the magnetic moments is given and summation over
all final states of the magnetic moments is required. Representing the J-distribution by
a Fourier-integral one finally obtains the partial differential cross section as a sum of

coherent and incoherent parts

d’c B d’o . d’c
dQ,dE; — \dQdE; /), dQdE, )
kg N

= ’kl‘ E (O’COhS(Q,W) + UincSi(Qaw)) :

(2.1.7)

The quantities o, and o;,. are the coherent and the incoherent cross sections respec-
tively. The coherent scattering cross sections o, results from scattering processes com-
mon to all atoms in the sample. Thus, o ., only depends on one averaged nuclear scat-
tering length (b)2. In contrast, the incoherent scattering cross sections i, depends on
the deviation from this average (b*) — (b)2. Further, N is the number of nuclei.

The two function S(Q, w) and S;(Q, w) are the correlation and the self-correlation func-

tion respectively given by

1 o0 . ) .
— —iQR;/(0) oiQR; (0)\ o —iwt
S(Q,w) = SR Ejj, /Oo<e ' QR () eIty (2.1.8)
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and

) —iQR;(0) 1QR-(0) —iwt
Si(Quw) = o hNZ/ ) 1O et (2.1.9)

Both functions only depend on the momentum and energy transfer from a neutron to the

sample.

As a consequence of translational invariance the incoherent scattering given by S;(Q, w)
results in an isotropic background in wave vector for the neutron experiments under-
taken within this thesis.

In general, the coherent part provides information about the collective effects among
different atoms such as elastic Bragg scattering or inelastic scattering by phonons or
triplons and magnons, whereas the incoherent part provides information about the time
correlation of an atom with itself as well as information about individual particle motion
such as diffusion [45].

2.1.3 Magnetic scattering

Due to its magnetic dipole moment the neutron interacts with the magnetic moments of

the ions in a crystal. A neutron’s magnetic moment equals to

—pNe, (2.1.10)

where uy = 5 h

and the electron charge e. The gyromagnetic ratio is v = 1.913 and o is the Pauli spin
operator for the neutron with eigenvalues 1. In general each electron of an atom, at
position R; that has a spin and an orbital angular momentum, creates a magnetic field
B; given by the Biot-Savart law

Ho SZXRZ LZXRZ
Bi:—%uB<VX< 0 )+ - ) 2.1.11)

7

The operators S; and L; are the spin and orbital angular momenta of the ith electron.
. The total field

created by an ion is given by the sum over all electrons, where S; and L; are replaced

The Bohr magneton is defined by g = ;h

by the total spin S and the total angular momentum L of the ion.
For the cuprate compounds, La,Sr19Cus404; and Srp5Cai; 5Cus0yq, studied within

this thesis the total angular momentum is zero (L = 0) due to orbital quenching and
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the total spin equals S = % This means, that for the magnetic partial differential cross
section only the spin has to be considered.

Eq. 2.1.4 has now to be modified such that the change of the spin state from o to ¢’ due
to an interaction of the neutron with the ion is also taken into account. The magnetic

interaction potential of the jth ion is given by
V = —yuno - B, (2.1.12)

where B is the total magnetic field created by the total spin S; (and in the general case

including the total L;) of the jth ion. Inserting this potential into Eq. 2.1.4 results in

a partial differential cross section for a compound with only one type of magnetic ion
(within this thesis it is Cu?*)

d*o L

= N2

a0,ag; ~ TN

(2FQ) exp (-27Q) 3 (hus — Qu25) 5 (@),
" (2.1.13)

where (yro) = 5.29fm is constant, g is the Landé factor for the magnetic ion and F'(Q)
its magnetic form factor. The magnetic form factor is the Fourier transform of the
normalized unpaired spin density on a single magnetic atom and is rapidly falling off
with |Q|. The Debye-Waller factor exp (—2W Q) is neglected in most cases, because
it falls off slower with |Q| than the form factor. The term (0,5 — QuQs) S*° (Q,w)
results from the magnetic interaction potential. Only the component of S perpendicular
to Q contributes to the scattering amplitude. The quantity S’ (Q,w) is the Fourier
transform of the dynamical spin correlation function, which is given by

[e.e]

5= e Q- (R~ R,) / expliot) (S2(0)S7())dt,  (2.1.14)

where Sjﬂ (t) is the time dependent spin component of the jth magnetic ion.
The magnetism of the materials treated within this thesis can be well described by the

Heisenberg Hamiltonian, that will be introduced in detail in Chapter 4. Within the
Heisenberg Hamiltonian the total z component of the spin is conserved resulting in

S (Q,w) =0, (2.1.15)

if « # [ and only
S (Q,w) #0 (2.1.16)
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with & = {0 £ 1}. At zero temperature and zero external magnetic field the dynamical

spin correlation function is given by

S°(Quw) = Y [(As]SGIA) P (hw — By + ) (2.1.17)
Aidy

where the Fourier transform of the spin operator is
« 1 (o3 :
S§ = i Z S exp (iQR;) (2.1.18)
J

and \; and \; are the initial and the final state respectively. The quantity in the absolute
value in Eq. 2.1.17 is defined as the spectral weight. The one-particle spectral weight
in particular will be of interest for the temperature dependency investigated within this

work.

2.2 Experimental setup

In this section the typical experimental setup for neutron scattering experiments is pre-
sented. Though focus is laid on the particular setup related to this thesis, some possible

variations are also briefly discussed.

A complete arrangement of an inelastic neutron scattering experiment is sketched in
Fig. 2.2.1. The setup can be divided into three parts: i) the production of high energy
neutrons, ii) moderation of the neutrons to the thermal level and iii1) the scattering ex-
periment itself.
At the very beginning electrons are produced by thermal emission and they are acceler-
ated by a voltage device towards hydrogen gas. By the collision of the electrons with the
gas molecules free protons H ™ are produced, because the valence electrons are removed
from the hydrogen atoms during the collision. The free protons then are accelerated by
further voltage devices up to 70MeV and guided by magnets towards the synchroton,
where the protons are finally accelerated up to 800MeV. In Fig. 2.2.1 a color code is
applied as will be described in what follows. All blue lines indicate that hydrogen is
involved.

By the use of kicker magnets bunches of high energy protons are removed from the
synchroton and guided towards a target, where spallation takes place. The target con-
sists of a heavy metal such as for example Pb, U, Hg or Ta. The fast protons hitting the
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spallation at detector banks
Kicker Ta - target
oanet 15-20 n per H'
magnet moderator ;
n chopper Jan;I sample
- ]~=-o =
. A
high energy background
neutrons
chopper
accelerator: scattered neutrons
800MeV
synchrotron
H [ J
spallation L
® ® ¢ ® intra-nuclear cascade
%
target nuclei inter-nuclear cascade
~800MeV
) o ® -
® [}
@ nheutron [ ] [ ]
@ proton
]
[
® o
. highly excited nucleus evaporation
M heating

Figure 2.2.1: Experimental setup as used for example at the ISIS facility. Using an accelerator
high energy protons are produced, that are guided to a heavy target of Tantalum for example. At
the Ta-target the spallation process takes place, which releases high energy neutrons with a wide
range of energies. These high energy neutrons are cooled down in the moderator resulting in
thermal neutrons with a wide range of lower energies. The thermal neutrons are monochromized
by chopper devices towards the sample. The scattered neutrons then are detected with angular
and position resolution by huge detector banks composed of Helium tubes.

target interact with the heavy nuclei of the target, which in turn release free high energy
neutrons (dark green line) by spallation. Spallation will be explained in more detail in
the Section 2.3.

To make the released neutrons usable for neutron scattering experiments, they are decel-
erated in the moderator to the thermal level in order to increase the scattering probability
and hence the cross section. To study magnetic excitations, water is the best choice as

will be explained in detail in Section 2.3.1. The thermalized neutrons (light green line)
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leaving the moderator possess a wide energy distribution in the meV range. With the
use of a chopper device monochromatic neutrons with a sharp well defined energy dis-
tribution are selected and directed towards the sample under study.

The neutrons scattered (olive green) at the sample are measured with angular and po-
sition resolution by huge helium detector banks. A data aquisition device generates an
intensity map in reciprocal space, that allows for investigation of the magnetic features

of the sample in dependence of momentum and energy transfer.

In the following the various stages building the core of scattering experiments will be
explained step by step in more detail. They can be skipped by the experienced reader.
Starting with neutron sources, where spallation and fission are compared, aspects of the
moderation will be discussed thereafter. Two types of instrumental setups will be dis-
cussed in more detail. Finally the calibration of neutron intensities, the sample growth
and its preparation are debated.

2.3 Neutron sources

High energy neutrons are produced either by fission or by spallation. These two different

ways of neutron production will be explained next.

e Reactor Source
When neutrons are produced in a nuclear reactor, they arise from fission of *>U

according to
n+ 25°U — 230U — 1*Ba + 50Kr + 3n + 177MeV. (2.3.1)

The process is illustrated in Fig. 2.3.1. A slow neutron hits a 23°U atom and it
is absorbed by it resulting in 23U. The absorption of the neutron excites the ura-
nium nucleus, which in turn decays into t3*Ba and 53Kr, where three neutrons and
v rays are additionally released. These highly energetic neutrons then collide with
other nuclei, that decay analogously.

In this chain reaction the neutrons are produced continuously in time with a typi-
cal flux of about ~ 10'°neutrons / cm? s. The neutron flux in the core of a reactor

obeys a Maxwellian distribution in neutron velocities.
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Figure 2.3.1: In reactors the fission process of uranium leading to a chain reaction is used to

produce a continuous beam of neutrons.

e Spallation Source

At a spallation source neutrons are produced by bombarding high energy protons
from a synchroton on a heavy target such as U, W, Ta, Pb or Hg. The spallation
process 1is illustrated in Fig. 2.3.2 An internuclear cascade is activated by the
collision of the protons with the heavy nuclei of the target. Individual nuclei
are promoted into a highly excited state. These excited nuclei in turn evaporate
protons and mainly neutrons in order to release energy. Some of the free neutrons
and protons then trigger new reactions while others leave the target. On average
each proton hitting the target produces about 15-20 neutrons [46].

In this reaction the produced neutron flux appears in bursts of about 104 neutrons
with an initial pulse width of 1us at frequencies between 10 and 50 Hz depending
on the proton accelerator. The energy spectrum of the spallation source differs
slightly from that of a reactor.

However, in both cases the produced neutrons possess too high energies making them

inefficient for inelastic scattering experiments. Therefore the neutrons have to be mod-

erated as will be explained in the following.
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Figure 2.3.2: In the spallation process neutrons are produced by bombarding high energy protons
on a heavy target. The collision of a heavy nucleus in the target with the proton excites the

nucleus leading to evaporation of neutrons and protons.

2.3.1 Moderation of neutrons

Typically magnetic excitations in solids lie in the meV range. In order to use neutrons
for magnetic excitation studies, the scattering neutrons have to possess a kinetic energy
of the order of the magnetic excitation energy which lies between 5-1000 meV.

Before the produced high energy neutrons (MeV) from the spallation can be used for
such neutron scattering experiments on crystals, the neutrons have to be decelerated to
the thermal energy range (meV). This is done in the moderator already introduced in
Fig. 2.2.1. The moderator consists of a medium that has an atomic mass of the same
order as the neutron mass allowing for an efficient moderation. The chosen moderator
medium determines the moderator temperature, which in turn determines the spectral
energy distributions of the produced neutrons.

Various media are in use, among them are liquid hydrogen H, operating at 20K, liquid
methane operating at 100K and water HoO operating at 316K. The latter is used in all
experiments carried out in this thesis. The resulting spectral energy distributions of the
moderated neutrons using the diverse media is schematically sketched in Fig. 2.3.3.

For the studies on the cuprates within this thesis water was used to moderate the neu-
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trons, because only water as moderator allows for selecting neutrons up to an energy
of 100 — 1000meV (see Fig. 2.3.3), though the neutron flux is highly reduced at these
energies.

moderator temperature:
316K

20K

Intensity [a.u.]

0 30 100 1000
Energy [meV]

Figure 2.3.3: To moderate high energy neutrons down to the thermal level various moderators
such as liquid hydrogen Hs (20K), liquid methane CH4 (100K) or water HoO (316K) can be
used. The temperature of the chosen moderator determines the energy distribution of the ther-

malized neutrons. The figure shown here is purely schematic and is not based on measurements.

2.4 Neutron detection and measurement

To gain information about magnetic excitations in the sample, both the energy and the
momentum of the scattered neutrons have to be measured. Therefore several devices to
determine the neutron rates and energies are employed such as, e.g., the neutron spin-
echo spectrometer, the backscattering spectrometer, the triple axis spectrometer and the
time-of-flight spectrometer.

In this thesis, a time-of-flight (TOF) spectrometer is employed to measure the distri-
bution of the scattered neutrons. Neutron detection itself is carried out by a Helium-3
detector bank, which allows for an angular resolved detection of the incoming scattered
neutrons. From the time-of-flight and from the scattering angle of a scattered neutron

both energy and momentum transfer can be deduced.



2.4. NEUTRON DETECTION AND MEASUREMENT 33

2.4.1 Helium-3 detector

Because of the zero net charge of the neutron, it cannot produce ionisation in a detector
directly. It has to interact with a nucleus to produce a secondary charged particle before,
which then in turn can be detected. The most common reaction for the detection of

thermal neutrons as utilized in Helium-3 tubes is given by
n+ *He — p* +*H" + 765keV, (2.4.1)

where the proton and the triton are detected both by a gas filled proportional counter

using 3He fill gas. Quench gas is added to control the ionisation process [47].

2.4.2 Calibrating neutron intensities

As mentioned in the preceding section, Helium-3 tubes only measure secondary ionisa-
tion. Hence, measured data have to be related to the intensity of the incoming flux of
scattered neutrons. To this end, all Helium-3 tubes have to be calibrated before and/or
after the scattering experiment. Calibration is carried out by means of the so called
white beam. This white beam offers an isotropic well-defined intensity distribution of
scattered neutrons. It is produced by a cylindrical vanadium standard, that is placed in
the sample position. With this vanadium standard a measurement is undertaken at the
neutron energy and the chopper frequency that are used for the proper experiment. The
vanadium scatters the neutrons isotropically due to its large and dominant incoherent
scattering [45], allowing for calibrating all helium tubes consistently.

2.4.3 Time-of-flight spectrometer

The main principle of the time-of-fight spectrometer (TOF) is to measure the time, the
scattered neutrons need to reach the detector, gaining information on the velocities and
thus on the energies of the scattered and detected neutrons. Using large arrays of po-
sition sensitive detectors facilitates to measure a large range of energy transfers fw as
well as momentum transfers () at the same time.

However, there are two slightly different setups for the time-of-flight method. The first
one employs the so called direct geometry and the second one the so called indirect
geometry.
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Figure 2.4.1: A sketch of a time-of-flight spectrometer with a direct geometry. The incom-
ing neutrons possess a fixed energy and after the scattering process all scattered neutrons are

measured with angular resolution. The choice of the chopper determines the energy resolution.

Direct geometry

In the setup of direct geometry sketched in Fig. 2.4.1 the incoming neutrons are mono-
chromatic, which means that they possess the same kinetic energy before they are
scattered at the sample. The scattered neutrons are detected by tall position sensitive
Helium-3 detectors. The energy resolution is determined by the choice of the monochro-
mating chopper.

The neutrons are monochromized by a so called Fermi chopper. The Fermi chopper
consists of a rotating disc with slits in a cylinder, which is about 10 cm in diameter. To

avoid friction a magnetic rotor bearing is used.

Indirect geometry

In the setup of indirect geometry sketched in Fig. 2.4.2 the incoming neutrons are
polychromatic. Only neutrons with one fixed energy are detected after the scattering
process by means of an analyser crystal. Hence, only neutrons whose wave length
fulfill the Bragg condition will be detected.
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Figure 2.4.2: A sketch of a time-of-flight spectrometer with an indirect geometry. The incoming
neutrons possess a broad range of energy and after the scatter process only scattered neutrons
with a certain final energy are measured. The selection of one final energy is done by means of

an analyser crystal fulfilling Bragg’s condition.

2.5 Sample growth and preparation

The compounds studied within this thesis are in particular the cuprates La;Sr19Cus4O41,
Sty 5Cay 5Cug4 041 and SrgCagCusy Oy . For each compound single crystals were grown
by the travelling solvent floating zone method (TSFZ). This method is used because of
the peritectic melting point of the parent compound Sry4,Cus40Oy4; [48]. It allows to grow
a monocrystalline sample from a polycrystalline rod of up to 7cm centimeters in length
[48]. The grown crystals are elliptical in cross section ( 5mm x 4mm) [49]. X-ray
studies determined that the shorter axis of the ellipse is along the b-axis and the longer
along the a-axis [49].

For the neutron experiment several crystals of each compound were mounted as shown
for Sry 5Cayq 5Cus40y; in figure 2.5.1. The sample consists of a four Sry 5Cay1 5CugyOy1-
crystal array (see also Fig. 2.5.1 for more details). The crystals are aligned on an
aluminium gadget parallel to each other, but different in height. The alignment was
performed on the four-circle-diffractometer ES with better than 2 degrees accuracy at
the HZB (Helmholtz Zentrum Berlin). For the experiment on Sry 5Ca;q 5Cus404; and
La,Sr;pCuy,041, aclosed cycle cryostat was used, allowing cooling for the sample with-

out being in danger of an additional scattering background due to ice building on the
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9.5cm

Figure 2.5.1: Four Sry 5Caj; 5Cus404;-crystal array, whose crystals are parallel to each other,
but arranged at different heights.

sample.
Throughout this thesis the MAPS (Multiple Angle Position Sensitive) spectrometer at

ISIS, Rutherford Appelton Laboratory, U.K. was used representing a spectrometer with

direct geometry. The neutron source at ISIS is a spallation source using a Ta target.



Chapter 3

Magnetic excitations and
quasi-particles

During the last years, theoretical studies have led to a classification of different types of
magnetic excitations in spin systems. While intensity plots only indicate the presence
of some kind of magnetic excitation, depending on the underlying theoretical model the
kind of magnetic excitation is different. Thus one has to distinguish between spinons,

magnons and triplons. All terms will be explained in the following.

3.1 Quasi-particle

In many-body systems the low lying excited states above the system’s ground state are
the elementary excitations of the system. Quantized energy excitations are attributed to
quasi-particles. The term quasi-particle corresponds to a single particle, whose motion
is influenced by its surroundings and other particles, respectively. These particles are no
real particles, as for example a neutron, though they exhibit typical particle features of
definite momentum and energy and therefore they are called quasi-particles. However,

also a quasi-particle is often just called particle for abbreviation.

3.2 Spinon and holon

Spin and charge are inseparable traits of an electron, but in one-dimensional solids,

theory predicts their separation into collective modes as independent excitation quanta

37
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Figure 3.2.1: a) The Néel state of an antiferromagnet. A spin flip results in a magnon excitation

with spin AS = 41 excitation in b) and c).

(or particles) called spinons and holons [50]. Thus the spinon presents a quasi-particle
with zero charge and spin % whereas the holon presents a quasi-particle with zero spin

and charge e.

3.2.1 Magnon

A magnon is a magnetic boson with usually S = 1 [10]. The ground state of an .S = %—

antiferromagnet is given by the Néel state consisting of alternating directions of spins.
This is sketched in Fig. 3.2.1. Spin waves in an antiferromagnet are magnons which
are semi-classical spin waves, oscillations in the ordered state [10]. The term magnon,
however, has also been applied to distinctly spin one magnetic bosons in dimerized
systems with a singlet ground state, e.g. TICuCls or CuGeOs [10] until recently. To
more clearly differentiate from spin waves, this class of excitation is now generally
termed triplon coming from the triplet nature due to the SU(2) symmetry [10]. For the
purpose of this thesis we restrict ourselves to the terms triplet and triplon.
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3.2.2 Triplet and triplon

To introduce the terms triplet and triplon in more detail, the underlying model within
this thesis - the antiferromagnetic spin-% two leg ladder - will briefly be presented first.

AFL single spins —» dimers

Figure 3.2.2: Schematic drawing of a dimer: On the left side an antiferromagnetic spin ladder
(AFL) is sketched, whose spins indicated by orange arrows are aligned in an antiparallel fashion.
Each pair of spins sitting on a rung form a dimer (grey ellipse on the right side) when coupled.
The dotted centerline in each ladder indicates its continuation.

Dimer as basic building block

A spin—% two leg ladder is presented in Fig. 3.2.2. On each rung two spin—% are located
antiparallely (left side of Fig. 3.2.2). Assuming the coupling along each rung .J, to be
much stronger than along the ladder .J; and much stronger than the cyclic exchange Jey.
(that decribes the interaction of four spins on a plaquette), each pair of spins on one rung
form one unit, the dimer (grey ellipse at the bottom of Fig. 3.2.2). The spins on each
dimer pair into a valence bond singlet, leading to a paramagnetic state which preserves
spin rotation invariance and all lattice symmetries [32]. Each pair of spins on a rung

pairs into a S = 0 state, the dimer’s ground state |s) which is given by

1

V2

This dimer can be excited, resulting in a triplet. If a non-zero coupling along the lad-

|s) (T =14m)-

der is assumed (.J; # 0) the triplet becomes a triplon. Both the triplet and the triplon
preserve all symmetries of the SU(2). The nature of the excitation depends on the un-

derlying Hamiltonian. Therefore two parameters x and .y are introduced and defined
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by the ratio of the coupling constants.

J Teye
T = 7 and Ty i= Ji . (3.2.1)
Triplet
triplet = =0

x =0
cyc

Figure 3.2.3: In the case of zero coupling (z = 0 and xy. = 0) among the dimers the excitation
of a dimer results in a triplet (orange ellipse), that is spatially restricted to its rung. As the word
triplet indicates, this excitation has a degeneracy of three. The dotted centerline indicates the

continuation.

In the case x = 0 and x.,. = 0 the ladder consists of a set of decoupled dimers. When a
dimer is excited by breaking a valence bond, this leads to a threefold degenerated energy
state with a total spin S = 1 represented by
) = {| == (111 +1 115 u>}
- ) \/i I .
This energy state is called triplet, when it is confined to its rung. Since in the case of
decoupled dimers the triplet does not affect the surrounding dimers by exciting them, it

is a confined excitation. We can consider it as a quasi-particle. In terms of spinons the

triplet can be interpreted as a bound spinon pair.

Triplon

In the case # # 0 and 7., # 0 with J; > J the ladder consists of weakly coupled
dimers. Then an excited dimer is no longer confined to its rung, but it can hop locally
to its neigbouring dimers as it is indicated by the three orange colored ellipses in Fig.
3.2.4. The triplon can be regarded as a kind of a dispersive triplet, which we take

as the elementary excitation. The origin of the name triplon is therefore obvious. The
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correlation between different dimers decays exponentially with distance along the ladder
direction, because we assumed only weakly interacting dimers.The correlation length of
a triplon is short due to its finite spin gap [9]. The triplon is not specific to the ladder
model, but it is specific to the pairing of two spins to a S = 1 excitation.

triplon <= x>0 or x<O0

- o o .-......---.--....-.---->

X =0 or x_ <0
cyc cy

C

Figure 3.2.4: If the coupling among dimers is non-zero z # 0 and/or xy. # 0, the excitation
of one dimer is not restricted to its rung, but it can evolve spatially, as it is indicated by the five
orange colored ellipses.

Within this thesis we consider triplets as the elementary excitations. We call these quasi-
particles triplons. In the next chapter the theoretical description of the antiferromagnetic

spin—% two leg ladder will be presented in more detail.
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Chapter 4

Introduction to the theory of spin
ladders

The theoretical methods employed in this thesis are a combination of continuous unitary
transformation in its perturbative fashion and mean-field theory. In this context the evo-
lution of the single-mode, i.e., one-triplon, contribution of a two-leg S = % spin-ladder
to the dynamical structure factor at finite temperature is treated. Furthermore the influ-
ence of the coupling exchange for weakly coupled ladders is investigated. Therefore
each method will briefly be summarized in the following. Then the combination of both
methods will be presented in Chapters 5 and 6 applying them to the problems consid-
ered. This combination is favored by the fact that both methods rely on a quasi-particle

description of the excitations.

4.1 Continuous unitary transformation - CUT

Diagonalizing a Hamiltonian is a main concern in the study of many particle systems in
quantum mechanics. Besides several other methods, such as, e.g., exact diagonalization
(ED) [51, 52] or density matrix renormalization group (DMRG) techniques [52, 53, 54,
55] the method of continuous unitary transformation (CUT) is a promising technique to
extract the physical properties of a many particle system.

A Hamiltonian can be diagonalized in general by the use of an appropriate unitary trans-
formation. However, for complex systems it is often difficult to find such an appropriate

unitary transformation. Thus, instead of applying successively a sequence of unitary
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transformations to the Hamiltonian under study, a family U(() of continuously varying
unitary transformations depending on the so called flow parameter | € R can be applied.
This method is called continuous unitary transformation (CUT) [56]. The CUT method
was invented independently by Wegner [57] and Gtazek and Wilson [58, 59] in 1994. It
is briefly summarized in the following.
The Hamiltonian under study is interpreted as a function of the so called flow parameter
[ € R. The original Hamiltonian, that has to be transformed into a diagonal Hamil-
tonian in the optimal case, is defined by H(l = 0) = H,. In the next step a unitary
transformation

H(l) =U0)HO)U(I) 4.1.1)

with U(l) dependent on [ is introduced, so that H(l = oo) is a diagonal operator. The
unitary transformation can be stopped at any arbitrary value of the flow parameter [ [60].
The anti-Hermitian generator 7(l) of the transformation U (/) is defined by
oU(l
n(l) = outl) )UT(Z), (4.12)
ol

which has to be anti-Hermitian, so that U is unitary. The derivative of H with respect to
the flow parameter [ is now given by the so-called flow equation

O H(l) = [n(l), H(1)] (4.1.3)

defining the CUT method. The transformation stops automatically when the commuta-
tor [H (1), n(l)] vanishes, which is generically the case for [ — oo [60]. The final form
of the effective Hamiltonian H. = H(l = co) depends on the form of the infinitesimal
generator 7)(1), which in turn determines the transformation U (1). This will be discussed
in the following section.

Other operators, e.g., observables O, that have to be considered in order to gain informa-
tion on the spectral properties of the system under study such as the dynamical structure
factor Sr(k,w), have to be transformed by the same CUT as the Hamiltonian. Hence
the same generator 7(1) as in Eq. (4.2.1) is used

9,0(1) = [n(1), 0(D)] - (4.1.4)
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4.2 Choice of generators

As mentioned before the form of the generator 7(l) influences the resulting form of the

effective Hamiltonian. Wegner originally proposed the generator

n(l) = [Hq(l), H(1)], (4.2.1)

where H,(l) denotes the diagonal part of the Hamiltonian H (1) under study with respect
to a particular basis [57]. For [ = 0 the commutator 4.2.1 does not vanish. During the
flow H(l) changes its appearance. The flow is stopped when the commutator 4.2.1
vanishes, this is when H has reached a block diagonal form [61].

However, the construction of the generator is not unique. Finding an appropriate gener-
ator is an intuitive task [61]. The construction of the generator depends on the physics
of the system under study. Criteria for the choice of a generator can be, e.g., the conser-
vation of a band structure in the original Hamiltonian during the flow (e.g. Ref. [62])
or the creation of (quasi)particle number conserving effective many-body Hamiltonians
(Refs. [33, 34]) as achieved by Knetter and Uhrig. If, e.g, quasiparticles with a finite
lifetime are studied, a generator leading to ground states with finite lifetime may be
advantageous. This was the starting point for the construction of new generators by Fis-
cher et al. [63]. Further, in Ref. [63] a detailed discussion of construction principles for
various generators as well as of their advantages and disadvantages is presented. Other
examples are considered in Ref. [60].

4.3 Perturbative CUT

In order to apply the CUTs in their perturbative version the Hamiltonian /7 has to consist

of at least two parts according to
H=Hy+ xV, (4.3.1)

where the unperturbed part is given by H, and the perturbed part by xV'. The expansion
parameter is z, that has to be small representing a small perturbation of the unperturbed
system.

Furthermore we assume, that the energy spectrum of the unperturbed part H is equidis-
tant with a lower boundary meaning that the eigenenergies are proportional to the num-

ber of elementary excitations and hence to the particle number [56, 34]. Secondly we
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assume, that the perturbation term decomposes into a sum of operators 7;,
V=> T, NEeN, (4.3.2)

each of which changes the number of particles by n. The Hamiltonian can now be
written as
N
H=Hy+z Y T, (4.3.3)
n=—N
To this Hamiltonian the flow equation is applied. Hence, the flow parameter is intro-

duced in the Hamiltonian according to
N
H(l)=Hy+xz Y Tu(). (4.3.4)
n=—N

The transformation only acts on the perturbative part of the Hamiltonian, because the
unperturbed Hamiltonian H is chosen to be already diagonal. Since (quasi-) particle
conserving CUTs (for a detailed description see Refs. [62, 33, 34, 63]) are applied, the
generator required creates particle number conserving effective Hamiltonians. Such a

generator is defined by
iy (1) = sgn(q; — q;) Hij (1), (4.3.5)

in an eigenbasis |¢;) of the particle-number operator ) with eigenvalues ¢ € Ny. The
index ¢ in the eigenvectors is an additional index necessary due to the degeneracy of the
eigenvalues. The term H;; denotes the transition from state j to state ¢. This choice of
the generator results in the effective Hamiltonian H. being block-diagonal. Due to the
perturbative treatment H.g is obtained as a high-order series expansion in the parameter
x.

Because the perturbative treatment is realized based on an expansion about z = 0, the
results for x > 0 deteriorate rapidly. However applying extrapolation schemes such as

Padé approximation [64], permit to determine a small range of = with reliable results.

Further detailed information on the PCUT method can be found in the literature. In [29],
[28] the PCUT based on the particle conserving generator 7)P¢ is presented in detail.
For zero temperature it is often sufficient just to treat the lowest lying excitation to

describe the physics of the system properly. However, for finite temperatures the higher
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lying excitations need to be included, which typically results in operator terms with
more than two operators leading to a more difficult situation. In this case a mean field
approach may help as introduced in the following.

4.4 Mean-field decoupling - MFD

Many-particle systems are usually difficult to treat exactly. Here, mean-field theory of-
fers a viable method based on a suitable approximation. Instead of dealing with the
original n-particle system, the problem is reduced to treating only a one-particle system
in an effective field. This external field is given by the possible interactions with the
other (n — 1)-particles. This method allows for gaining insight into some physical prop-
erties of the system relatively quickly. However, a correct consideration of the possible
interactions is challenging such as for instance the correct calculation of a system’s par-
tition function.

In the realm of quantum mechanics a mean field approach means to replace operators ¢
by their mean values (¢), which in turn results in neglecting quantum fluctuations, which

may be important in some cases.

A mean field approach is well suited to describe averaged quantities in statistical pro-
cesses, such as, e.g., thermal effects. Being interested in the statistics of populated states
it is appropriate to introduce the hardcore constraint on the level of averaged quantities
rather than on the level of individual excitations itself. Furthermore, this offers a sim-
plified approach.

Within this thesis we restrict ourselves to the lowest lying excitation and thus the system
under study is based locally on a four dimensional Hilbert space. This space is spanned
by four states building a basis for it. These states are produced by applying the creation
operators s, til, tg], til to the vacuum state |0). The creation operators fulfill the so

called hardcore constraint

1=sls +> tht,, ae{-1,01} (4.4.1)

for hardcore bosons, which implies particle-number conservation in terms of singlets

and triplets. This constraint builds the fundamental equation for the mean field treat-



48 CHAPTER 4. INTRODUCTION TO THE THEORY OF SPIN LADDERS

ment. Replacing the operators by their averages gives
1= (s's) +3(tt), (4.4.2)

where the factor three arises from the fact, that the average (t't) is independent of
«. This is the case because we do not apply an external field so that no spontaneous
symmetry breaking appears. For the theory at finite temperature excitations have to
be included that are proportional to multi-operator terms. These are difficult to treat
and therefore the mean field approach is applied. Here, Wick’s theorem will play an

important role allowing for the approximative simplified representation
bty ~ th(thts) + th(tlt,). (4.4.3)

The averages (t't ) are computed and inserted into Eq. 4.4.2 in order to solve this equa-
tion self-consistently for the mean field parameter s. Detailed information is presented
in Chapter 5. A similar approach is applied to the inter-ladder coupling as well presented

in more detail in Chapter 6.



Chapter 5

Temperature evolution in the isolated
spin ladder

In this chapter we combine the results of perturbative continuous unitary transforma-
tions with a mean-field calculation to determine the evolution of the single-mode, i.e.,
one-triplon, contribution to the dynamical structure factor of a two-leg S = 1/2 ladder
on increasing temperature from zero to a finite value. The temperature dependence is
induced by two effects: (i) no triplon can be excited on a rung where a thermally ac-
tivated triplon is present; (i) conditional excitation processes take place if a thermally
activated triplon is present. Both effects diminish the one-triplon spectral weight upon
heating. It is shown that the second effect causes an important vertex correction in the
calculation of the dynamic structure factor. The matrix elements describing the condi-
tional triplon excitation in the two-leg Heisenberg ladder with additional four-spin ring
exchange are calculated up to order 9 in perturbation theory. The calculated results are
compared to those of an inelastic neutron scattering experiment on the cuprate-ladder
compound La,Sr;yCuy404; showing convincing agreement for established values of the

exchange constants.

5.1 Model of the isolated ladder

The system we are investigating in particular is a single two-leg ladder with localized
S = 1/2 ateach vertex as it is depicted in Fig. 5.1.1, see Ref.[65] and references therein.

The ground state has zero spin and the elementary excitations are of triplet character (see

49
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Section 3.2.2), i.e., S = 1. Thus we dub them triplons [66] in order to distinguish them
from the elementary spin wave excitations of systems with magnetic long-range order
(see Chapter 3). The centers of the triplons can be seen to sit on the rungs of the ladder.
The model is characterized by Heisenberg exchange couplings on the rungs ./, and on

BBE

Figure 5.1.1: Sketch of the two-leg spin ladder. Circles indicate spins with S = 1/2. Solid lines

represent the two-spin exchange couplings on the rungs ./, and on the legs J. The four-spin

cyclic exchange is denoted by Jyc.

the legs .J| of the ladder as well as by a four-spin cyclic exchange J.,.. The correspond-

ing Hamiltonian in units of J, reads

H J| J
— = H —H Y Heoe
J1 LG T e
= E ‘S_;i,l : gi,r + 2 E S_;i,T : 5:2#1,7— + xcycHCycu (511)

where i denotes the rungs and 7 € {l,r} the left and right leg of the ladder (see Fig.
5.1.1). The quantities = and xy. are defined by

xr = J”/JJ_ (5.1.28.)
Teye = Jeye)J1, (5.1.2b)

which will be the small expansion parameters for the PCUT. The four-spin ring ex-
change is given by

Heye = Z [(5;1 : §i+1,l> (S;T : _;+1,r> + (gzl : S;T) (S;‘H,z : §z‘+1,r>

i
- (Si,l . 5¢+1,r> <Si+1,l ' Si,rﬂ -
These four-spin terms constitute the most important correction to the commonly con-

sidered nearest neighbor Heisenberg exchange. By now, this is established for planes
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[67, 68, 69, 70] and ladders [71, 72,73, 74, 65]. The size of J.y. in cuprate ladders was
found to be of the order 0.2-0.25 J, [75, 76, 77]. Further corrections like the two-spin
interaction over the diagonal are almost one order of magnitude smaller [72] so that they
are neglected in the following.

The physics of spin ladders is well understood in the limit of isolated rungs {x =
0, Zeye = 0}. In this limit the ground state is the product state of singlets and the ex-
citations are completely local triplets. The elementary excitations at finite values x and
Ty are dressed triplets which are called triplons [66]. Triplon excitations are gapped
and have a total spin one. In the following we will consider triplets on the rungs as local
triplons.

It is natural to represent the rung states in terms of bond operators [78, 79, 80], because it
has the advantage of making the connection to the lattice degree of freedom most direct
[81]. In addition, the bond operator approach yields already a ground state and excita-
tions with the correct quantum numbers using mean field theory [81], which allows to
neglect strong fluctuation to capture the proper physics. Within this representation, the

four-dimensional Hilbert space of each rung ¢ of the ladder is given by the singlet

sH10)i= Ishi= = (111) = |11} (5.14)
and the three triplet states
L0 = s = 5 (D =1L (5.15)
Bk =ltoh =5 (11D +1L1) (5.1.6)
a0 = Itk = —= (111) + 1)), (5.1.7)

V2
The state |0) = [], |0); represents the completely empty system. This is actually an
unphysical state which is needed here only for formal reasons.

The physically most important state is the ground state at {x = 0,2, = 0} which
will be used as a reference state |ref) for our calculation. It is given by the product of

singlets on all rungs

ref) == ] ]1s)s. (5.1.8)

One can also interpret |ref) as a singlet condensate, i.e. singlet operators can be replaced
by unity s = 1 = sf. Physically, |ref) is the triplon vacuum, i.e., the state without any

excitation.
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T

a,l

The operator t! ., with « € {0,£1} creates an elementary excitation with S* = «
(flavor) when applied to a singlet state on rung ¢. Each rung is either occupied by a

singlet or by a triplon, resulting in the so called hardcore constraint on all rungs %

I =sls, +> thit,, ae{-101} (5.1.9)

for hardcore bosons, which implies particle-number conservation in terms of singlets

and triplons.

In previous work [3, 2] the unitary transform of the spin operator components 5; , and
SZ{Q is deduced from the PCUT method resulting in

(5.1.10)

where the dots indicate that the normal-ordered quadratic and higher terms in bosonic
operators have been neglected. Moreover only for this linear level in bosonic ¢-operators,
the antisymmetry ng;l = —S;flﬁr holds because the triplet represents an odd excitation

relative to the rung singlet with respect to reflection around the centerline of the ladder.

The Hamiltonian (5.1.1) can be reformulated in terms of the above bond operators. One
finds

H=H, +Ty+T o+ 15 (5.1.11)

where the index n in 7,, indicates the change of the total triplon number, e.g., T\
tTtss are pair creation processes and 75 o< tts's’ are pair annihilation processes. In
contrast, 7; does not change the number of triplons in the system. This term includes
triplon hopping processes t'ts's and two-triplon interactions ¢'ttt. Note that we have
omitted the spatial and flavor index here in order to keep the notation light. Finally, the
operator H | counts the total number of triplons in the system.

The low-energy spectrum of spin ladders has been studied intensively [82, 38, 83, 84,
85, 86, 87, 88, 89, 90, 65]. All excitations can be classified by the parity with respect
to reflections about the centerline of the spin ladder: an odd number of triplons has odd

parity and an even number of triplons has even parity.
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5.1.1 (P)CUTs

As already mentioned in Chapter 4 we apply the CUT in its perturbative version using
the particle conserving generator 7P from equation (4.3.5), i.e., the effective Hamil-
tonian for the two-leg ladder is obtained as a high-order series expansion in the small
parameters x and Zcyc.

For the two-leg ladder we choose () = % giving an effective Hamiltonian which con-
serves the number of triplons, i.e., [H , Het] = 0. Consequently, the effective Hamilto-

nian H.; decomposes into a sum of irreducible n-triplon operators H,
Hyr = H,, (5.1.12)
n=0

and each n-triplon block can be treated separately (see Ref.[28] for details).

The essential one-triplon dispersion w(k) has already been determined earlier [65, 28].
The one-triplon hopping amplitudes v,,, have been calculated up to order 11 in both per-
turbative parameters. Various extrapolation schemes can be applied successfully [91].
Especially the low-energy part of the dispersion including the one-triplon gap can be

determined very reliably up to realistic values x ~ 1.25 — 1.5 and xy. ~ 0.2 — 0.25.

In order to calculate spectral properties of the system such as the dynamical structure
factor St (k,w) one has to transform observables O by the same CUT as the Hamilto-

nian. Hence the same generator n*° in (4.3.5) is used in the flow equation
0,0(1) = [n*°(1), O(1)] . (5.1.13)

The relevant observable O(r) with odd parity for the dynamical structure factor [65] is

given locally on rung r by
O(r) = 87y — 52y =t} 80, + o, 50, (5.1.14)

The bare observable creates or destroys a single triplon with flavor 0 on rung r. Af-
ter the CUT, the effective observable O°(r) comprises many channels reflecting the

complicated nature of the interacting triplon problem. One finds

n,m

O (r) =UO(MU =>_ O (r) (5.1.15)
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where O;{fm(r) stands for a process where m triplons are annihilated and n are created.
Thus n, m € Ny with the constraint that the difference 7 —m is an odd number reflecting
the odd parity of the observable. At zero temperature, no triplons are present so that only
the terms O,, , with n odd are relevant.

In first approximation we need the most relevant one-triplon contribution O; y which is
defined by the one-triplon spectral weights a?(k). The corresponding real space ampli-
tudes have been calculated earlier up to order 10 [65]. Extrapolations of the low-energy
part close to & = 7 are reliable up to realistic values of = and xy.. The contributions
O, 0 with n > 3 are significantly smaller in weight than O, .

At finite temperatures, also contributions O,, ,, with m > 0 matter. These contribu-
tions give rise to vertex corrections. We will argue below that the most relevant vertex
correction for the finite temperature physics at low energies of the spin ladder is the
contribution Oy ;. It comprises processes where a second triplon is created assuming
another triplon is already present in the system due to thermal fluctuations. Thus we
refer to these processes as conditional excitation processes.

We have determined this contribution up to order 9 in the perturbative parameters. For
extrapolation, we used the method of internal variables [64]. Unfortunately, no reli-
able Padé or DlogPadé resummation on top of this extrapolation scheme succeeded, in
contrast to the extrapolation of the one-triplon dispersion and the one-triplon spectral
weights. Certainly, this fact reflects the more complicated nature of conditional excita-
tions. Nevertheless, the extrapolation still yields reasonable quantitative values for the

physical processes up to realistic values of x and ..

The most relevant low-energy excitation has odd parity corresponding to a single triplon.
It is completely characterized by the one-triplon dispersion

w(k) = l/o—i-ZZumcos(mk), (5.1.16)

m=1
where £ is the momentum along the ladder and the v, are the one-triplon hopping am-
plitudes, that have been determined via the PCUT. The dispersion takes a minimum at
k = m defining the one-triplon gap A. For the temperature evolution we are solely inter-
ested in one-triplon energies. Therefore, we do not discuss channels with more triplons.
But we note that there are interesting interaction effects present in two-leg ladders lead-
ing to two-triplon bound and anti-bound states as well as pronounced continua in their

response functions, for details see Ref.[65] and references therein.
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The dynamical structure factor Srf,’f’ﬂ (k,w) is the quantity of interest for inelastic neutron
scattering experiments as already presented in Chapter 2. It is given by

1
SgP(k,w) = ———5 ImxF’ (k,w) | (5.1.17)
1—e"1
where -
Ny w) = i / et 3 e (52 (1), SE0)])0() (5.1.18)

denotes the retarded dynamical susceptibility and the superscripts «, 3 € {£1,0} cor-
respond to the components of the spin. Since our model is SU(2) invariant, the only
finite components of the dynamical structure factor are the diagonal ones (o« = 3). We
define

Sp(k,w) = SX(k,w). (5.1.19)

The dynamical structure factor at zero temperature is dominated by the one-triplon con-
tribution [90, 65]. Theoretically, the general form of the one-triplon contribution (or

more generically of any single mode (SM) approximation) reads
Sio(k,w) = a®(k)d(w — w(k)), (5.1.20)

where the prefactor a?(k) defines the one-triplon spectral weight as already introduced

in Chapter 2 and which is known to be strongly peaked at the gap momentum k£ = 7

[3].

5.2 Finite temperature approach

The effects of thermal fluctuations on the one-triplon contribution to the dynamical
structure factor of the spin ladder are investigated. Physically, one expects that the
triplon acquires a finite life-time upon heating. Then the J-functions at zero temperature
are replaced by resonances which are found to show asymmetric line-shapes [92].

Our approach is complementary. We do not describe the decay of triplons due to scat-
tering with other thermally excited triplons, but we develop an effective single-mode
approximation. That means that the one-triplon contribution to the dynamical structure
factor is still given by a d-function, but with temperature-dependent spectral weight. On
the level of the triplon dynamics, this is less sophisticated than the approach by Essler

and collaborators [93, 92, 94]. In contrast, we are able to efficiently incorporate vertex
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corrections which are also relevant at finite temperatures. This leads to a temperature-
dependent one-triplon spectral weight in our theory.

Now we concentrate on the vertex corrections which are relevant for the single-mode
description of the finite-temperature dynamical structure factor. They give access to
the effective temperature-dependent description of the dynamical structure factor at low

energies.

5.2.1 Effective single-mode approximation

Our temperature-dependent theory results in an effective single-mode approximation.
A single-mode contribution to the dynamical structure factor (see Eq. (5.1.20)) depends
solely on the dispersion and on the spectral weight. The general expression reads

1
First, we discuss the temperature effects in the effective dispersion wy(k). Second, we

incorporate vertex corrections in the spectral weights a%(k).

5.2.2 Effective dispersion

The one-triplon contribution is characterized at zero temperature by w(k). In the PCUT
calculation the fully-condensed singlet state |ref) with (s's) = 1 is used as the reference
state. Hence no parameter s < 1 for the singlet occupation needs to be introduced as
it was used previously to take the hardcore constraint into account [80, 38]. The CUT
takes the hardcore constraint into account.

At finite temperatures, however, the situation is different. Even after applying the CUT
there will be a finite occupation of triplons which lowers the singlet occupation. In
analogy to the previous studies at zero temperature, we take this effect into account by
introducing the mean-field parameter s(7T") defined as the condensate value (s') = s
with s € [0, 1]. We stress the difference to previous studies [80, 38] where s < 1 was
used to consider quantum fluctuations while we use this concept to consider thermal
fluctuations. More complex expressions such as s}si are reduced to s> which only takes
their c-number part into account. Any operator effects are neglected.

Then the s-dependent effective one-triplon dispersion reads

wr(k,s) = vy + s*(T)2 Z U, cos(mk) (5.2.2)
m=1
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because each non-local hopping ¢ with j # ¢ implies the transfer of a singlet sZT S ;-

T
a,jta,i

The local processes t; ;ta,; do not require such a renormalization.
To determine the temperature-dependent mean field parameter s(7') it is inserted in the

hardcore constraint Eq. (5.1.9) yielding
1=s*(T) + 3(t't) (D). (5.2.3)

Due to the spin symmetry the expectation values (t/,¢,) (T) with a € {-1,0,1} are
independent of « resulting in the factor 3. So the average triplon occupation <tTt> (T)
determines s(7).

The average triplon occupation can be calculated by summing over all modes <t£tk> in

momentum space. At finite temperatures one has

(tt) = %Tr (thte ) = g—i (5.2.4)

where £ is the triplon momentum. The free energy F' is defined via the partition function
Z by
F=-Th(Z2) (5.2.5)

where the Boltzmann constant kg is set to unity. Integration over the whole Brillouin

zone yields the wanted local triplon density

(t't)(T) = / ' @dk. (5.2.6)

2

-7

If the triplons were bosons without constraint <tztk> would be given by the standard
bosonic occupation (exp(w(k)/T)—1)~!. Unfortunately, there is no equivalent rigorous
expression for hardcore bosons. For an approximate treatment we follow the arguments

of Troyer et al. [95] to reweight the partition function Z yielding

_ N
Z = 7}
3 [T _wrpks

Zy, = 1+ — e” 1T dk
2 ) .

where N is the number of rungs. Consequently, the free energy becomes

F—=—NT <1 n 23 / eI dk:) . (5.2.8)

(e
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Combining Eqgs. (5.2.8, 5.2.6, 5.2.3) yields

3 1 T wr(k,s)
2 _
TY=1— —— dk. 5.2
(T) 2mZy ) _n © (529)
Due to the dependence of the dispersion wr(k, s) on s the above equation defines s only
implicitly. Hence, it has to be evaluated self-consistently. A study of the limits of s(7)

is given in Section 5.2.3.

For completeness, we mention another effect which implies a renormalization of the
effective dispersion due to a finite concentration of thermally excited triplons. Triplon-
triplon interactions of the type t§t£t3t4 are known to exist. For instance, they lead to
the occurrence of bound states [96, 90]. They also yield some renormalization of the
dispersion upon mean-field decoupling

tJ{t;tBtZL ~ <t1t3>t§t4 + <t;t3>ﬂt4
+ (0t )bty + (5t Vel t, + const., (5.2.10)

which is proportional to the triplon densities <tTt> (T'). The inclusion of the above terms
will renormalize the effective dispersion wy (k) slightly. We do not consider the effect
of the terms in Eq. (5.2.10) here quantitatively for two reasons.

First, an estimate of the quantitative effect of these corrections indicates that they are not
very significant. For instance, they are of the same order as the effect of the inclusion
of the factor s*(T") in Eq. (5.2.2). If this term is omitted no qualitative changes of our
results will occur because they are dominated by the renormalization of matrix elements,
not by the renormalization of the energies as we will show in the following. Second,
their systematic treatment is very tedious because a quantitative determination of all

interaction elements would be required.

5.2.3 Temperature limits of the mean field parameter

Before we present the self-consistent numerical solutions of (5.2.9) we present an ana-
lytical estimate of the temperature limits of the mean field parameter s*(7T').Therefore
we estimate w(k, s) to find an upper boundary. We know cos(z) is a bounded contin-

uous function. Since w(k, s) is a finite sum of bounded continuous functions, w(k, )
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itself is bounded and continuous leading to

m<oo

| w(k, s) |<|to | +572 ) | vim [=: g(s), (5.2.11)

m=1

where we have used the triangle inequality repeatedly. Evaluating g(s) yields a real
number R such that |g(s)| < R for all s € [0, 1], since the sum in Egs. 5.1.16 or 5.2.2
is finite due to the finite extension of the included hopping amplitudes. For the high

temperature limit and the zero temperature limit we obtain respectively

3 [Te T
li 1——

. 3 1 (5.2.12)
T4 4
and
3 [Te T

where Z in each case is given by replacing wr(k, s) in equation (5.2.7) by R. This
estimate holds true as long as the dispersion satisfies w(k, s) > 0, which is the physically
reasonable case. In summary, we get for 7" — 0 a limit of 1 and for 7" — oo a limit
of i independent of the choice of s. Physically this means, that we obtain a uniform
distribution of all four states for infinite temperature and a full occupation by the singlet

state at zero temperature as it is to be expected.

5.2.4 Vertex corrections and effective spectral weights

The second building block for the one-triplon contribution to the dynamical structure
factor is the one-triplon spectral weight. Its unconditional part, active also at zero tem-
perature, is contained in Offg after the CUT. It is illustrated diagrammatically in panel
a) of Fig. 5.2.1. Contributions Offfm with m > 0 are only active at finite temperatures;
they represent conditional excitations. Our idea is to include such contributions as ver-
tex corrections in an effective manner. We identify O as most important contribution

because it requires only a single triplon to be present. It is illustrated diagrammatically
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in panel b) of Fig. 5.2.1. Hence its quantitative contribution will be proportional to the
triplon density. In second quantization OS5 contains operators of the form tgtgtv.

In contrast, any term of O

m+1m

with m > 1 requires the existence of m triplons so
that its quantitative contribution will be proportional to the m-th power of the triplon
density. In the regime of low temperatures not significantly larger than the spin gap
each additional power in the triplon density stands for another additional exponentially
small factor.

Restricting ourselves to the two parts O°ff

m+1m

with m € {0, 1}, the effective observable

is given by

O (r) Uto(r)u

~ 05 + O} (0
=Y (aptf),T L+ h.c.) +y ) (a,‘.’ff]ﬁtfy,r bty T h.c.) .
p ,Byy i<j:p
The ordering of operators in the above equation is not unique. To avoid double counting,
the convention ¢ < j is used. A few excitation processes appearing in Ogﬁ in low order
in the small parameters are illustrated in Fig. 5.2.2.
Symmetries of the system imply further constraints. The conservation of the total S*

component for processes of the type 75&152257 leads to
O=a+p0—7 a, 3,7 € {0, £1}, (5.2.14)
where it is understood that the bare observable is given by Eq. (5.1.14).
a)

n > H

Figure 5.2.1: Propagation of the excitation included in the calculation. Diagram a) shows the
one triplon excitation; diagram b) shows the conditional triplon excitation which requires the

existence of a triplon.
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v X

x
®

Figure 5.2.2: Some conditional excitation processes are sketched which are of linear order in

. X
O ®
v

O ®

x, as obtained from the results of the series expansions. The arrows indicate the rung on which
the observable Ogtfl (r) acts, whereas the cross x denotes the rung which is occupied by the
one-triplon before the conditional excitation. Black filled circles denote the rungs occupied by
triplons after the conditional excitation process. Open circles are in their singlet state after the

excitation; the cyan part is shown for completeness.

For scattering experiments we are interested in the Fourier transform of O°f(r) in
Eq. (5.2.14). For the unconditional contribution Off, we find

e 1 ikr Nz,€
Ofo(k) = TN > et orei(r)

1 ik T ik
- VN Z <e "apto ey tE raptO,Ter)
T’p

(5.2.15)
1 ik(r—p) 41 ik(r—
- 7% zp: a, (e rPf 4 ekl ”)to,r>
= a(k) (tg,—k + to,k)
where we use
a(k) =Y e *a, (5.2.16)
p

Note that the coefficients a, are real. For the symmetric spin ladder studied here they
are also symmetric a, = a_,, so that a(k) is also real. The operators t(T),k and 1, are
defined by

1 .
ty), = \/—NZel’"tw (5.2.17a)

1 .
th, = \/—Nze—l’%g’r. (5.2.17b)
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The complete treatment of the conditional excitation is complicated since it involves
several sums and the resulting terms are not diagonal in momentum space. But we do
not aim at the exhaustive description of the multi-particle response, but at the renor-
malization of the single-mode response. Therefore, we use a mean-field decoupling for
O;ffl (k) to identify the processes belonging to the creation of a single triplon.

The mean-field decoupling is motivated by Wick’s theorem, but represents an approxi-
mation here because the triplons are hardcore bosons. For concentrations of the triplons
tending to zero, i.e., for 7' — 0, the hardcore constraint becomes less and less effective
and the use of Wick’s theorem is justified

thath b, mth (ot )+ttt ). (5.2.18)

Due to the symmetry constraint Eq. (5.2.14) only for the cases

(tht,,)#0 if B=~ and a=0

; (5.2.19)
(thit,p) #0 if a=v and =0

the expectation values do not vanish. In all other cases the expectation values are zero.
We define the hopping expectation values by

(G —p) = (thts,). (5.2.20)

Due to spin rotation symmetry this definition is independent of 3, but depends on the
relative distance of the two rungs j and p as depicted in Fig. 5.2.3. Consequently, we
perform an index shift (j — p) — j yielding 7r(j) which is used in the following.

e o = ofJc o o o o o o o o @ e o o o d | o e @ o afle = = = = e o o o B

Figure 5.2.3: Illustration of the hopping expectation value 77 (j — p) as defined in Eq. (5.2.20).
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Employing the mean-field decoupling (5.2.18) renders the operator structure of ngfl the

same as for O‘{fg. Therefore, Fourier transformation makes it concise

ff _ NeR ikr ot T ik T
Og,l(k) - \/— Z Z ?] p'y < ' rta r+ztﬂ r+]t7 r+p +el Tta,r—&—itﬁ,r—f—jtv,r-i-p)

7,6,5,0 o, B,y
0 i .
~ VN Z Zal Jﬁpﬁ ( lkrtg L VA UL +elkrt0,r+z‘TT(] _p)éﬂﬁ>
Mjp B
07 1 i .
Z Z Za] pa < krtg 7”"1‘] (/L - p>5a,7 +e krt07T+JTT(Z - p)ix,'y) .
7“ i,p o

Shifting the indices 7 — r — ¢ and 7 — j + p in the first sum as well as r — r — j and

t — ¢ + p in the second sum leads to

0 —iki nikr —ikinikr .
ngfl(k) \FZrz]pZﬂ z]ﬁJrip( kektg,r +e kekto,r> TT(])

o Sy L €, (M9 H, e ey ) 7 (i) (5.221)

i+p,J,p
(5217) 0.6.8 i
pr ZB Uﬁﬂo, (tg,fk + tO,k> e " 7r(J)
+ Y ip 2a Gt (té,_,c - to,,f) e iy (i) (5.2.22)

0,a,c a,0,a —iki .
= Zzyp Z ( ] i+p, az‘-l—p,j,p) (tg),—k + tO,k) € k]TT(Z)'
Finally the full effective observable O°(k) in momentum space is given by

O (k) = O (k) + O (k)

= [a(k) + Ar(K)] (tg_k + t07k> , (5.2.23)
where we used the definitions
Ar(k) = ) Ai(k)rr(i) (5.2.24a)
Ai(k) = ) Aje™ (5.2.24b)
Aig =) (afys +ai0s,) (5.2.24c)
p,x

Clearly, (5.2.23) shows that the conditional excitations imply a renormalization of the
spectral weight of the triplons which are the single-mode excitations for the spin ladder.

The temperature dependence of A (k) stems from the temperature dependence of the
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hopping expectation values (7). Similar to the calculation of the triplon occupation in
(5.2.6), the hopping expectation values result from the suitably weighted averages over

the Brillouin zone

1 T W
Tr(j) = 57 / e’%k) cos(jk)dk. (5.2.25)

The expressions (5.2.24) for the effective spectral weights hold for all momenta &. But
the main effect in the spectral weight is measured at the lowest excitation energy w(7),
i.e., at the momentum k£ = 7. Hence we restrict ourselves to £ = 7 in the following.

For A;(7) we obtain explicitly

i (,0,0,0 0,0,0 0,1,1 1,0,1
Ai(m) = Z(_l)] (aj,ier,p T itpjp T 2 (aj,iﬂo,p + ai+p,j,p)) , (5:2.26)

D.J

0,1,1 0,—1,—
= Q.

1,0,1 —1,0,—1
J,i+Dp,p J,i+Dp,p j

Land a =a
Jit+pp T g

where the factor 2 comes from the fact that a Gitpp
respectively.
Adding the unconditional and the conditional excitation processes yields the total effec-

tive temperature-dependent one-triplon spectral weight at k = 7
2
ar(m) = [a(m) + Ap(m)]"s*(T). (5.2.27)

The factor s?(T') stands for the reduced availability of rungs for the creation of triplons
if there are already some thermally excited. Putting all pieces together we gain the
expression (5.1.20) for the single-mode approximation of the dynamical structure factor
at finite temperatures

SM(k,w) = a2 (k) (w — wp(k)), (5.2.28)

which we use in the present work for £ = 7 only. This is the dynamic structure factor
in single-mode approximation of the dynamical structure factor including the vertex
corrections relevant at finite temperatures. The physical content of Eq. (5.2.28) will be

exploited in the next section.

5.3 Theoretical results

Next we present our theoretical results obtained by extending the PCUT result to finite
temperature using the MF approach. We demonstrate that the intensity decrease in the
dynamical structure factor mainly arises from the contribution of the conditional exci-

tations. The basic energy unit in this theory section is chosen to be the rung coupling
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Figure 5.3.1: Effective mean-field dispersion for z.yc = 0.2 and z = 1.5 in dependence on

temperature and momentum.

constant J, allowing for direct comparison for different parameter sets {x, Z¢yc }.

In Ref. [77] the parameters x = 1.5 and 2y = 0.2—0.25 were determined to describe a
generic cuprate spin ladder best. Thus we chose these parameters to compute the depen-
dence of the self-consistent MF dispersions shown in Fig. 5.3.1 with temperature 7" and
wave-vector k. This provides information on how the shape of the effective dispersion
changes upon increasing temperature and momentum. The dispersion becomes flatter

on increasing temperature implying a larger energy gap A(T) := w(m, T).

Figure 5.3.2 shows the gap as a function of temperature in units of J; for various
x = {0.75,1,1.25, 1.5} and a different . in each panel. The red dots in each panel in-
dicate a characteristic temperature 7, above which the energy gap shows a significant
dependency on temperature in form of a steep gap function A(7") for all z and xy.. The

value of Ty, scales with the spin gap A(T" = 0); hence it decreases with increasing ..

Three further striking points are to be mentioned. First, with increasing . the curves
for z = {0.75,1,1.25,1.5} approach one another until they lie almost on top of one
another for z.y. = 0.15 — 0.2. For zy. = 0.25 they start to spread again. Second, with
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Figure 5.3.2: Excitation gap vs. temperature 1" for x = {0.75,1,1.25,1.5} and a different zy.
in each panel. The red dots indicate the position of the characteristic temperature 7¢py,.

increasing .. the sequence of the curves in each panel changes from 0.75,1,1.25,1.5
to 1.5,1.25,1,0.75 from top to bottom. Third, the energy gap A decreases on increasing

Teye-

Furthermore, it is interesting how much the average singlet state occupation number
s?(T) changes with temperature. Its behaviour is illustrated in Fig. 5.3.3. Below the
characteristic temperature Ty, the occupation number s?(7) is almost independent on
temperature for all z.y. resulting from the almost constant gap energy A(7’). Clearly,
Tenar scales with the energy gap A(0). Above Ty, the occupation number s?(7') falls

off the steeper the smaller x for a given value of Zye.

The generic behaviour of the MF triplon hopping expectation values 7(j) is depicted in
Fig. 5.3.4 (upper panel) for j = {0, --- ,6} vs. temperature for z = 1.5 and zy = 0.2.
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Figure 5.3.3: The dependence of the average singlet state occupation number s2(7") with tem-

perature for various = {0.75, 1, 1.25,1.5} with a different xy. in each panel.

For all other pairs of x and z.y. the hopping expectation values look very similar. The
associated conditional MF spectral weight A(m,T') is shown in the bottom panel of
Fig. 5.3.4. Thus, the shape of A,(7") is dominated by 7(j) with j > 1 explaining the
minimum in A, (T) at about 7" = 0.514.J, which is about twice the spin gap A(0) . !
The zero temperature one-triplon spectral weight a?(7) at the spin gap energy vs. x for
Teyge = {0,0.05,0.1,0.15,0.2,025} is shown in Fig. 5.3.5. With increasing = the one-
triplon spectral weight at m grows. This increasing weight on increasing x confirms the
conclusion, that the most important contribution to the one triplon weight and to the
conditional triplon excitation weight is found at k£ = 7. This is the dominant feature in
the dynamic structure factor.

Fig. 5.3.6 depicts the conditional MF triplon spectral weight A(m, T") obtained for var-
ious z = {0.75,1,1.25,1.5} and different values x.y. vs. temperature. The conditional

I'This value corresponds to about 630K for J L= 105.5meV in order to provide a first quantitative
link to experiment. This temperature corresponds to about twice the spin gap found in Ref. [77].
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Figure 5.3.4: The upper panel shows the MF triplon hopping expectation value 7(j) for j =
{0,...,6} with z = 1.5 and 2y = 0.2. The lower panel depicts the associated conditional MF
spectral weight A(m,T').

MF triplon weight for various = shows the expected almost constant behaviour below
the characteristic temperature 7¢p,. where all curves lie indistinguishably on top of one
another. Above 7, a steep fall-off is found. The steepness is affected by the values of
x and xy.. The fall-off is the larger the larger x and xy. are. For fixed zy. the fall-off
becomes stronger on increasing .

The calculated conditional MF amplitude A(7,7T") displays a minimum at about ./, /2
which corresponds to about twice the spin gap A(0). We do not see any physical reason
why the weight should increase again. Furthermore, the justification for the approxima-
tions involved is less sound beyond temperatures of about 2A(0). Life time effects of
the modes are expected to become more and more important [93, 92, 94] so that we do
not expect the the calculated data to be reliable for temperatures beyond .J, /2.

The negative conditional MF amplitude A(m,T") diminishes the one-triplon spectral

weight ar(k)? according to Eq. (5.2.27) yielding the normalized momentum-integrated
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Figure 5.3.5: One-triplon spectral weight at & = 7 where the the spin gap A(0) occurs for 7' = 0
vs. x for various z.y.. The one-triplon spectral weight at k& = 7 increases on increasing x for

fixed cyc. For fixed x the one-triplon spectral weight increases also on increasing Zcye.
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Figure 5.3.6: Conditional MF spectral weight vs. temperature 7" for z = {0.75,1,1.25,1.5} and

different .y in each panel.
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structure factor %? presented in Fig. 5.3.7. This is the experimentally relevant quantity.
The shape of the normalized momentum-integrated structure factor % in Fig. 5.3.7 is
very similar to the one of the conditional MF spectral weight in in Fig. 5.3.6 confirming
that the conditional excitation process is the dominating effect on increasing tempera-
ture. This fact demonstrates the importance of vertex corrections in strongly correlated

systems.

0 [ 1 1 1 1 1 L 1 1 1 L
0 0102030405 0102030405
Temperature [Jl]
Figure 5.3.7: The momentum integrated dynamic structure factor I(T") = [ S(k,T)dk for z =
{0.75,1,1.2,1.5} with a different x¢y. in each panel is presented. It is plotted vs. temperature,

normalized to the momentum integrated dynamic structure factor Iy = [ S(k,0)dk at zero

temperature.

5.4 Comparison to experiment

In an inelastic neutron scattering experiment the dynamical structure factor is measured
by the intensity of the scattered neutrons. In order to compare with theory a series of
measurements were made on a cuprate spin ladder at different temperatures 7". These

measurements reveal the temperature development of the structure factor.
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So far we discussed the theoretical results relative to the energy scale given by the
coupling constant .J, . In order to compare to experimental data, we have to determine
this energy scale. For each pair {z, z.y.} the coupling constant .J, is determined from
the experimental spin gap A(T = 0) = 27.6meV [97, 77]. The obtained values of J

are shown in Fig. 5.4.1 as functions of x (left panel) and of x.y. (right panel). A striking

150 4 -
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Figure 5.4.1: Rung coupling constants .J| vs. x (left panel) and vs. zy (right panel) determined
from the experimental energy gap A(0) = 26.4meV found in Ref. [77].

point is found in the right panel of Fig. 5.4.1 where the for z.y. = 0.15 the value of J|
is nearly the same for all z. The sequence of the curves for various values of x changes
at 7oy = 0.19, i.e., for lower .y the curves rise on rising = while they fall for larger

Zeye- Thus the curve for z.y. = 0.15 in the left panel of Fig. 5.4.1 is almost flat.

5.4.1 Sample and INS experiments

Single crystals of LaySri(Cuy40O4; were grown using the ‘traveling solvent floating
zone’ method [98] at 9 bar oxygen pressure. INS measurements were performed on the
undoped ladder, La;Sr1)Cus40,4; using the MAPS time-of-flight spectrometer at ISIS,
Rutherford Appleton Laboratory, U.K. The sample consisted of three co-aligned single
crystals with a total mass of 23g (see Ref.[77] for details). The crystals were mounted

in a closed cycle cryostat with the (0kl) reciprocal lattice plane horizontal and the ¢
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axis perpendicular to the incident neutron beam k;. A Fermi chopper was used to select
an incident neutron energy of 100meV and 50meV and was rotated at a speed of 300
Hz to give an energy resolution at the elastic line of 4.1meV and 1.6meV, respectively.
Close to the gap, at an energy transfer of 30meV the energy resolution is 3.06meV and
0.93meV at an incident neutron energy of 100meV and 50meV, respectively. Data were
collected at temperatures of 15K, 50K, 100K, and 150K, and of 15K, 50K, and 150K
with an incident energy of 100meV and 50meV, respectively. Incoherent nuclear scat-
tering from a vanadium standard was used to normalize the magnetic cross-section. In
the following text wave vectors (). and (), represent the direction along the ladder and

along the rung respectively.

5.4.2 Background subtraction and data analysis

The ladder signal was extracted by taking a constant-() cut at ). = 0.5 and @), = 1.2
(wave vector ranges 0.45 < (). < 0.55 and 0.9 < @), < 1.5) where (). and @), are
given in units of 27 /c and 27 /a, respectively. The wave vector (). = 0.5 corresponds
to the position of the gap and the (), range is chosen to maximise the ratio of magnetic
intensity to background due to the rung modulation which goes as ~ (1 — cos(Qdrung))-
where dyy, is the rung distance. The background was determined from a constant-¢) cut
for the wave vector range —0.2 < @, < 0.2, and 0.9 < @, < 1.5. This range is
appropriate for the determination of the background, because it contains no magnetic
scattering due to the ladder structure factor. Each temperature run was treated in exactly
the same way, yielding the data shown in Fig. 5.4.2.

The highest intensity was measured for the coldest run at 15K. The experiment does not
reveal any temperature dependence between 15K and 50K. A slight decrease in intensity
is observed for 100K and a significant decrease for 150K. The spin gap is found to be
at A = (30 = 0.5)meV, which lies a little lower than that found in Refs. [99] and [100]
and a little higher than found in Ref. [77]. Here we define the gap as the energy below
the intensity maximum where scattering strength is half of its maximum value.

The FWHM of the observed peak was extracted by fitting a Gaussian to the data. Be-
cause the real shape of the measured curve deviates from the ideal Gaussian, the fit
is adjusted such that the Gaussian and the data points with an energy below the en-

ergy of the maximum intensity match each another. The FWHM values are found to be
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Figure 5.4.2: Background subtracted ladder signals measured at various temperatures extracted
from INS measurements on LasSr1gCug404;. The lower panel represents a zoom of the top
panel.

5.3£0.5meV for 15K, 5.14+0.5meV for 50K, 5.3 +£0.5meV for 100K and (8+0.5)meV
for 150K for an incident energy of 100meV and 3.3+0.5meV for 15K, 3.54+0.5meV for
50K and (5.8 £+ 0.5)meV for 150K for an incident energy of 50meV.Different FWHM
values obtained for data collected at the same temperature but different incident energies
was due to changes in the energy resolution.

A broadening effect due to damping could therefore only be observed at 150K. This
result confirms that the broadening with increasing temperature is small in comparison
to the intensity decrease with increasing temperature, which in turn validates the MF
approach presented here. Strikingly the experimental intensity curves in Fig. 5.4.2 lie
exactly on top of each other above 40meV for all measured temperatures, indicating
there is a temperature independent contribution that results presumably from the wave
vector resolution.

The data is compared to the theoretical spectral weight of the dynamical structure factor
S(A(T)) with increasing temperature described previously. To determine the relative
changes we exclusively used the intensity signal in the range 28 < w < 40meV and
calculated the integrated intensities normalized by the area obtained from the 15K run.

Fig. 5.4.3 shows the comparison between theory and experiment for the temperature
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Figure 5.4.3: Temperature dependence of normalized dynamic structure factor gg((:)) atk=m

for various pairs of (:c, xcyc). The energy scale is set by J| given in Tab. 5.1. The black and red
(gray) dots with error bars depict the experimental result obtained from INS for 100meV and

50meV, respectively.

dependent changes of the normalized integrated intensities. The temperature scale is
restricted to the temperature region that has been probed experimentally. Possible pairs
of (2, z.y.) matching the INS data are

{(0.75,0.1), (1,0.15) , (1.25,0.15) , (1.5,0.2) } .

However, previous INS measurements [77] and optical conductivity measurements [101,
65] showed, that values of x ~ 1.25 — 1.5 and zy. ~ 0.20 — 0.27 are realistic. To be
consistent with previous experimental results we argue that the best agreement within
the experimental error bars is found for z = 1.5 and .y, = 0.2 (black solid curve).

In Ref. [77] x = 1.5 and x.y. = 0.25 with J; = 124meV were fitted to the one-
triplon dispersion extracted from experiment. This little discrepancy in x.y. does not
really matter because of the experimental errors and the approximation necessary for
computing A(w,T'). Furthermore, if slightly different energy gaps are assumed, such
as A = 35meV (found in Refs. [99] and [100]), A = 30meV (present work) and
A = 27.6meV (resulting from a theoretical re-analysis of the data from Ref. [77] ?),

2This agrees with the published value of 26.4meV within the experimental resolution.
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(x, eye) | J1L[meV]
(0.75,0) 54.2
(1.5,0) 66.8
(0.75,0.1) | 764
(1,0.15) 08.4
(1.25,0.15) | 99.1
(1.25,02) | 118
(1.5,0.2) 115
(0.75,0.25) | 166.8
(1.5,0.25) | 135

75

Table 5.1: Values of the coupling constant .J | based on a spin gap of A = 30meV for the various

pairs of (2, Zcyc) for which data is presented in Fig. 5.4.3

0.75F

0.7k

Jl=13f-1me\f

g— b

[ e/ = 105 MEY

Jl=1 S7mey’

___Jl=135me\f’
F = S 124MEY
Y ExperimentEfSDmeV
. ExperimentEi=1DDme\r’

Temperature [K]

Figure 5.4.4: Normalized spectral weight based on different spin gaps (A = 35meV (cyan
lines), A = 30meV (dark grey lines), and A = 27.6meV (blue lines)) is shown. Dashed lines
rely on (z,Zeye) = (1.5,0.25) and solid lines on (z, zeye) = (1.5,0.2). The black and red
dots with error bars depict the experimental result obtained from INS for 100meV and 50meV,

respectively.
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slightly different results are implied as presented in Fig. 5.4.4. Both a gap of 30meV and
of 27.6meV match the data for realistic parameters (z, Zcy). In fact, using the spin gap
27.6meV consistent with the data from Ref. [77] leads to convincing agreement with
the values for (z, zy.) found in Ref. [77] to fit the INS data. Hence our findings in this

work are fully consistent with previous results.

At about half the spin gap energy A(0) our MF theory of vertex corrections predicts a
decrease of the spectral weight by 25% for z = 1.5 and 2.y, = 0.2 with J; = 115meV
which agrees very nicely with experiment, see Fig. 5.4.4. We stress that a decrease of

25% is well in the regime where we consider our approach valid and reliable.

Note, however, that we omitted the line broadening due to thermal fluctuations in the
present analysis which play a more and more important role on increasing temperature.
In particular, the unique experimental determination of the weight becomes increasingly

difficult at higher temperatures.

5.5 Conclusions

We derived vertex corrections in the dynamic structure factor for a quantum antiferro-
magnet without long range order. The model system investigated is the two-leg spin
ladder. The vertex corrections are linked to thermal fluctuations; they are relevant only
at finite temperatures. We computed them in the framework of continuous unitary trans-
formations which lead to an effective description of the system in terms of hardcore

triplons as elementary excitations.

The vertex corrections are evaluated on the mean-field level, i.e., on the level of a single-
model approximation. We found that they induce conditional excitation process which
reduce the unconditional, zero-temperature excitation amplitude. Thereby, the spectral
weight of the low-lying excitations is diminished because its temperature dependence
is indeed found to be dominated by the vertex corrections. The vertex corrections stem
eventually from the hardcore character of the triplons. Yet we emphasize that they go
beyond the obvious mechanism that no triplon can be excited if its site is already excited
by another triplon.
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We compared the calculated spectral weight quantitatively with the one measured in
the undoped ladder La;Sr1oCus4O,4; using inelastic neutron scattering for a range of
temperatures up to 150K, equivalent to half the spin gap energy. The theory should
still apply to considerably higher temperatures as long as these stay below twice the
spin gap energy. Experiments at higher temperatures for undoped ladders could test this

framework further.
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Chapter 6

Two-dimensionality of coupled spin-%

ladders

In this Chapter the coupling of isolated antiferromagnetic (AF) spin—% ladders is dis-
cussed. Several methods have been applied to study the influence of a non zero coupling
between isolated ladders and lattices, which were mainly performed at zero temperature.
Two geometries are of special interest - the square lattice and the trellis lattice, because

both of them are realized in cuprates.

For example Matsuda et al. [37] studied the S = % two-dimensional quantum Heisen-
berg antiferromagnet on the anisotropic dimerized square lattice using the quantum
Monte Carlo method. Their findings include a closing of the spin gap for an inter-ladder
coupling of Zjye; = 0.314, where Ziyer = % denotes the ratio of inter-ladder coupling
strength and the strength of the coupling along the rungs. Dagotto et al. [35] discussed
an electronic model consisting of two chains or planes, each described by a t — J model,
coupled by ¢ — J' interaction between them [35]. Their investigations also include the
spin gap for the undoped coupled planes. Using Lanczos techniques they suggested that
the spin gap opens for J, = J) [35]. The ¢ — J model was also investigated on coupled
ladders in the presence of frustration by Riera an Dalosto [36] using various numerical
techniques like quantum Monte Carlo (QMC) and exact diagonalization. They com-
puted dynamical properties for the undoped and the doped case. Their findings include
incommensurate peaks in the magnetic structure factor at low temperature [36] in the

undoped case and a destruction of hole pairs with increasing inter-ladder coupling for

79
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the doped case [36].

A mean field treatment with self-energy corrections of double ladders and of a periodic
array of ladders by Gopalan et al. [38] results in a vanishing spin gap for an inter-ladder
coupling of T ~ 0.25 in the square lattice case. For the trellis lattice they find an

enhancement of the spin gap with increasing inter-ladder coupling iy,

Uhrig et al. [2] presented results for the coupling in the single layer and bilayer ladder
plane. In Refs. [3] and [4] Uhrig and Schmidt treated the square lattice and the trel-
lis lattice respectively. They stressed, that the hardcore property of the triplons is only
taken into account along the ladders [4].

Starting from the well understood isolated Heisenberg spin—% ladder the inter-ladder
coupling of isolated ladders is in the following treated using the PCUT method com-
bined with a mean field approach. This approach is performed analogously to our inves-
tigation of the temperature dependence in Chapter 5, except that conditional excitations
are not taken into account. This time, however, the mean field approach is performed
in two dimensions. We will discuss the effect of an inter-ladder coupling at zero and
finite temperatures. As in Refs. [3] and [4] the calculations are performed for different
underlying lattice geometries - the square lattice and the trellis lattice. The latter one
is of special interest, because the trellis lattice reflects the real nature of the cuprate

compounds A1,Cuy,0y4; [4] investigated in this thesis.

6.1 Model of coupled ladders

The approach employed in the following for both kinds of underlying lattice couplings
starts from the effective model that has been derived for the isolated ladder in Refs. [90]
and [65] and that has been already applied in Chapter 5. The two situations treated in
the following are sketched in Fig. 6.1.1, where the square lattice coupling with only
one lattice constant a represents an in-line coupling (left side) and the trellis lattice cou-
pling a 5-shifted coupling (right side). In the latter case c is the second lattice constant
along the ladder direction and a represents the lattice constant along the rungs. The

Hamiltonian describing such couplings is given by

H = Hisol + Hinter; (611)
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cyc J

C cyc

I |
[ (

a

Figure 6.1.1: The coupling of isolated spin-% Heisenberg ladders is sketched, where the left
panel represents an in-line coupling (referred to as the square lattice coupling) and the right
panel a §-shifted coupling (referred to as the trellis lattice coupling). The constant a reflects the
lattice spacing along the rungs and c along the ladder direction. For the square lattice a = c is
valid.

where H;y, is the isolated ladder Hamiltonian and H;,. describes the inter-ladder Hamil-
tonian. The well known isolated Hamiltonian, also introduced in Chapter 5 and dis-
cussed in detail in the literature, e.g., in Refs. [29] and [28], reads

Hisol J| chc

|
= H, + g+ 6.1.2
JJ_ + JJ_ I JJ_ 4 ( )

The corresponding inter-ladder Hamiltonian Hj,, reads in general
Hinter = Jinter Z »S_ZR : S{L-I_]_(;, (613)
i€l

where the index ¢ counts the rungs and 0 represents the distance to the neighboring
ladder. The capitals L and R stand for left and right spin, respectively, on the particular
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rung. The distance § is determined by the underlying lattice geometry. Therefore the
exact form of Hjy, is determined by the particular lattice, and will be discussed in the
next sections for the square and the trellis lattice coupling.

6.1.1 Ladders with a square lattice coupling

First we will derive the effective one-triplon dispersion for the square lattice. We do not
present the derivation of the one-triplon dispersion of Hj,, here, because it is described
in detail in the literature [90, 65, 29, 28]. Instead, we start with the final result

Hisol = Z Wﬂ(k)t;otho (614)

h,k;a

obtained after applying the PCUT method and a Bogoliubov transformation. The one-
triplon dispersion wy (k) is of the same form as in Eq. 5.2.2. We restrict ourselves to the

inter-ladder Hamiltonian. In the case of a square lattice coupling it reads

Hinter = Jinter Z 'S_”ZR ’ i+2a7 (615)

where Jiyr represents the coupling parameter between two neighboring ladders. The
distance ¢ between the two neighboring ladders is given by § = (2a,0). Inserting the
effective spin operators (5.1.10) into the inter-ladder Hamiltonian gives

Hinter<r> = Jinter Z ‘S_;ZR : gﬁrga

i
= —J o Sitma S ot
- inter AmOm/ \ Uiy oSitma T Sitmablitm

i,m,m’

i 4 T 6.1.6
<ti+m’+2a,a51+m/+2@va + Si+m’+2a,o¢ti+m’+2a ( )

_ i E 2 (41 T T
- _Jlnter Am Ay S (ti+m,ati+m’+2a,o¢ + ti+m,ati+m/+2a,a

i,m,m/’

t

.I.
+ti+m+2ati+m’+2a + ti-l—m,oz i+m/+2a,a ) 7

where we introduce singlet annihilation/creation operator s, s! where a triplet it

1“1 R

is created/annihilated. These introduced singlet operators sl s, are replaced by their

17 %

average (s!) = s = (s;) in the latter step, because we consider the singlet bosons as
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condensed. The minus sign results from the coupling of a right spin on rung ¢ with the

left spin on rung 7 4+ 2a. A Fourier transformation of the triplet operators

Z teha exp (271 (kripm + Arivma2q))

. (6.1.7)
tio = Z tho €XD (=271 (kripm + Arizma2q))
kh
results in the Fourier transformed Hamiltonian
Hinter(k) = — Jinter Z Cl2(]€)82 |:t27h7at2,h7ae2m(kri+m+hri+m)CQWi(kri+m+h”+m+2“)

k,h,a

_|_ tL h atk A aezﬂ-l(kri+'m+hri+7n)e_Qﬂl(kri+7n+hri+7n+2a)

+ tk_ h tz h e—27‘(‘i(k}'f‘i+m+h7‘i+m)eQWi(kTi+m+hTi+m+2a)
(0% (03

_'_tk B, tk B, efzﬂi(kri+m+h7'i+m)e*27ri(k7'i+m+hri+m+2a):|
« «

— Jinter Z a®(k)s® cos(4mh) <t,t7h7a + t—k,—h,oc) (tk:,h,a + tT_k,_hﬂ) :
k,h,a

(6.1.8)

In the last step the lattice constant a in the cosine is set to unity and the relation

1 ) .
=3 (elmh) 4 e(itmh) (6.1.9)

is used. Here, a?(k) is the one-triplon spectral weight and is given by the Fourier trans-

cos(4mh)

form of the coefficients a,,, according to

— Z elizrkm) g (6.1.10)

Because of a,, = a_,, the spectral weight a(k) is real. We define
dpx(8) := cos(4mh)a®(k)s?, (6.1.11)

where h is measured in reciprocal lattice units (rlu). The cosine captures the shift from
one ladder to the neighboring one.
The total Hamiltonian H describing the coupling of two isolated ladders with a square

lattice coupling after the CUT and after neglecting multi-triplon contributions reads

Hisol+Hinter = Z wo(k', S)tLotk,o_Jinterdh,k(s) (t;[g,h,a + t-k,-h,g) (tk,h,a + H—k,—h,a) ’

h,k;a
(6.1.12)
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In order to diagonalize this Hamiltonian a standard Bogoliubov transformation is ap-

plied allowing for rewriting the Hamiltonian in new bosonic creation/annihilation oper-

ators fy,i’ hoot Vhho E1VEND DY

b =Ukh Vi, T Uk,h’yik,fh
T T

b =Wk WYV, T Vkh Y — g —
ol ol h T " (6.1.13)

tgmh =Wk Y—k -, T Vkh Vi

tik7,h :Ukz,h'}/ik,,h + Uk, n Vi hs
where uy p,, v, € R. Inserting the new representation into the Hamiltonian (6.1.22)

gives

2 2
H = Z wo(k, s) (uk,h7li,h7k,h + Uk,hfyfk,fhfyik,fh
k,h,a

+ U h Uk, b (”f”z,h“/’ik,fh + ALk,#ﬂk,h))

— Jinter@,n () [(uih + ’Ui,h) <711,h7k,h + ’Y—k,—h”YT—k,—h> (6.1.14)
+2Up, p Uk <”/;1,h,”/ik7,h + “/71{,7;17’1@711)

+ (Uih + Ui,n) (A/'/Ii,hﬁ//ik,sh, + 7714,7/1’\/k,,h)

+2U Uk (ﬂ,h%,h + 'Y—k,—h'Yik,—hﬂ :

The red colored terms represent the off-diagonal terms. The new bosonic operators ~y

and ~' fulfill the bosonic commutator relation. This is reflected by the constraint
upp — Ve =1 (6.1.15)
for all &, h. To get rid of the off-diagonal terms we have to solve
wolk, 8) = 2imern i (5)] wrn0rn — Jintern i (5) (i, + 07t p) = 0. (6.1.16)

Together with Eq. 6.1.15 we obtain a system of equations to determine the coefficients
Uk h, Vk,n, Which in turn allows for determining the effective one-triplon dispersion in-
cluding the effect of inter-ladder coupling. The dispersion relation due to the diagonal-

ized Hamiltonian for a square lattice coupling in reciprocal lattice units is finally given
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by

Wk, by 5, Te) = @0k, 8) = 2 ($)? = (2 ()’
- \/w(] k S + 4J1?1terdi2z,k( ) 4J1%1terdi2z,k(s) - 4&)0(]{7, S)Jimerdh,k<s)

= \/Wo (k,s) — 4Jiners?a?(k)wo(k, s) cos(4mh).

(6.1.17)
Since we deal with a non-diagonal Hamiltonian in Eq. 6.1.22 the Bogoliubov transfor-
mation has to be also applied to the hardcore constraint Eq. 5.2.3, that has to be Fourier

transformed first. We obtain

0=s"—1+ Z <t};,h,atk,h,a>
a,k,h

—s2-143 Z <<uk,h711,h + Uk,h’Y_k,_h> (Uk,h%,h + Uk,h’YT_k,—h)>
k,h

=s'—1+3 Z <uz,h7};,h7k,h + Ulz,h”YT—k,—h'V—k,—h + U’z’h>
k,h

+3 Z <uk,hvk,h711,h71k,—h> + <Uk,hvk,h7_k,—h7k,h>
k.h . ~ / ~ ~ 7
=0 =0

=s"—1+3 Z ( ’Y/i Rk, h> + 27}]%,h<7]i,h7k,h> + <Ul%h>>

(6.1.18)

w(k h,s)

=51 + — / ————dkdh
1BZ
w(k,h,s)

CUO k S 2Jznterdk h( ) e E
47T //NBZ < w(k, h, 5) 1 Z -
/ / ( w(k, h, s) (wolk, s) — 2Jmt6rdk,h(s))) dedh
1BZ 2w(k, h,s)

w(k,h,s)

WO 2Jznterdk h( )) e B
=s5>—1 —|— — / ( dkdh
1StBZ k h 5) 7

WO( 78 2Jznterdk h( ) 1)
— | dkdh .
//18132 ( w(k, h, s) 2

By the use of the dispersion 6.1.17 we solve Eq. 6.1.18 self-consistently for the mean

field parameter s at a given Jiy; and £ = kgT'. While for zero inter-ladder coupling
Jiner = 0 Eq. 6.1.18 results in Eq. 5.2.14, for zero temperature Eq. 6.1.18 represents
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the quantum fluctuations, that will be focused on below. Above, Z denotes the partition
function as defined in Chapter 5, where the dispersion is replaced by the dispersion
given in Eq. 6.1.17. The resulting $(Jiyer, 7') then introduces the effect of the inter-
ladder coupling for the square lattice case when it is inserted into physical quantities
such as the dispersion w(k, h, s, Jiner), the effective one-triplon spectral weight a?(k),
and hence the dynamical structure factor S(k, h,w).

The numerical results for x = % = {1;1.5} with x, = {0;0.2} respectively and
Tinter = % will be presented in Section 6.2. First, the effective one-triplon dispersion

1
for a trellis lattice coupling will be derived.

6.1.2 The trellis lattice model

The trellis lattice is sketched in Fig. 6.1.2. The coupling between the ladders is strongly
frustrated [4] due to the shifted positions of the single ladders by 5 to each another. The
same procedure as before is now applied to the inter-ladder Hamiltonian for a trellis lat-

tice coupling. In the case of the $-shifted coupling the inter-ladder Hamiltonian changes

|0

—(O— —()—
(O
- P
a a2

Figure 6.1.2: Schematic view of the inter-ladder coupling in a trellis lattice. The orange circles
denote the coupling of two spins on the same rung centered in the middle of the rung. The lattice
spacing between two spins on one rung is denoted by a, and between the centers of two rungs

on neighboring ladders by as. Along the ladder the spacing is given by c.
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to

Hinter(r) = Jinterz <§ZR SL + SR SL

1+aso + c 1— ag—i— c>

_ E : T
- lmef A Ay ( i+m,o + ti+m> <tz+m 'taz+3,a + ti+m’+a2+§,a

'me

i T
+ (tz—l—m o + ti—i—m,a) ' <ti+m’—a2+%,a + tH—m —a2+ oc>

— g E 2 T
= —Jinter UG S < i+m, Oéterm 'taz+3,a + tH-m a”i+m/+as+ 3,0
i,m,m’

it ettt

i+mi+m/+az+3 i+m,a”i+m/+az+35,a i+m,a”i+m’—as+35,a

]
+t2+m Oztz-i—m '—az+3,a + tH-th-m '—az+3 + tz+m,ati+m’—a2+%,o¢)
(6.1.19)

where the singlet operators s, s are directly replaced by their average for convenience.
Here, the index ¢ + m/ + as + g means, that on rung i + m’ an excitation is cre-
ated/annihilated interacting with the spin being (:I:aQ, %) away. The global minus sign
arises again from the coupling of a right spin with a left spin. Fourier transformation of

the triplet operators Eq. 6.1.7 gives

- E { 2 2 [ 47 T 27i (k7 m +hr; 27i( kg e FATiEmta
Himer(k') = _Jinter a (k‘)s (tk,h,atk,h,ae (kTitm 1+m)e ( +m+5 2)

k,h,a

+t2 h atk B a62ﬂ'i(k‘7‘i+m +h”+m)672ﬂ‘l (kTi+m+% +hri+m+a2)

+tk n tk n 727ri(kn+m+hri+m)627ri<k7’i+m+% +h7"i+m+a2)
a a®

—27ri(kr- +h7" ) 727ri(k‘r7;+m+g+h7'i+m+a2>
+tk§ h, t € itm itm c 2
a’k,h,a

+ tk h, tk h 27ri(k7°i+m+hm+m)e27ri(kri.;_m_;,_%+hn+m_a2)
o a

+tk N tk; N e27ri(kri+m+hn+m)e—27ri(kri+m+% +hri+m—a2)
K 70{ K 7a

i t; h 6_2”1(’97‘@-+m+hri+m)62“i(kri+m+% +h”+mfaz)
9 ’a b 7a

+tk N tk N e*ZWi(kTierJrh?"iij)e_Qﬂ'i (kri+m+% +h7'i+ma2))
b 7a b 7a

— Jinter Z 2a*(k)s? cos(mk) cos(mh) < Lh’a + tfk’fha)
k,h,o (6.1.20)

T
’ <tk,h,a + tfk,fh,a> :
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In the latter step the lattice constants 2a, and c are set to unity. We define
dpx(8) := cos(mk) cos(mh)a®(k)s?, (6.1.21)

so that the total Hamiltonian H for a trellis lattice coupling after the CUT and after

neglecting multi-triplon contributions reads

Hisol‘l'Hinter = Z WO(ka S)t};,otk’o_Jimeerh,kz(S) (t;h,a + t—k,fh,a> (tk,h,a + tik,fh,a> .
h,k;a
(6.1.22)

This Hamiltonian is diagonalized by a standard Bogoliubov transformation (see Eq.

6.1.13) yielding an analogue to Eq. 6.1.14. To get rid of the off-diagonal terms
wo(k, s) — AJinern i (5)] wenVen — 2Jimerdni(s) (uj, + viy) =0 (6.1.23)

has to be solved under the constraint defined by Eq. 6.1.15. The dispersion relation
according to the diagonalized Hamiltonian for a trellis lattice coupling in reciprocal

lattice units is finally given by

w(k, h,s) = \/wg(k:, s) — 8Jiners?a?(k)wo(k, s) cos(mh) cos(mk). (6.1.24)

Since we represent the momenta £, k by their components along the ladder ¢ and perpen-
dicular to the ladder a5, they are measured in units of 27” and 227’; respectively. Hence,
the dispersion shows a periodicity of 2 both with respect to k and h. However, shifting
k — k4 1and h — h + 1 together reproduces the spectrum as it has to be [4]. The
skewed unit cell as shown in Fig. 6.1.2 is simpler in spite of the unusual periodicities
because it contains only one dimer so that it is a Bravais lattice with one (threefold de-
generated) triplon mode per unit cell [4]. If one insisted on using unit vectors along
and perpendicular to the ladders the unit cell would comprise two dimers so that two
modes per unit cell have to be considered. They correspond to the modes at 4 and h + 1
[4]. Again the Bogoliubov transformation has to be applied to the hardcore constraint in
order to obtain the analogue to Eq. 6.1.18 — now with the effective one-triplon disper-
sion in the case of a trellis lattice coupling employed — which is solved self-consistently
at zero and finite temperature for the mean field parameter s assuring the hardcore-

constraint at a given Jiye, and £ = kgT.
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6.2 Theoretical results

Next some considerations concerning the temperature dependent term of Eq. 6.1.18 in
general will be presented. After that the theoretical results at zero and finite temperature
for both kinds of coupling will be discussed and compared to the zero temperature
results in Ref. [2] and Ref. [4].

6.2.1 Remarks on the zero temperature limit in two dimensions

The preceding considerations are next applied to the one-triplon dispersion includ-
ing the trellis lattice coupling. This is the lattice structure relevant for the cuprate
La,Sr;pCuy,04;, which serves for experimental validity in this work. However, the
following argument can immediately be transferred to the square lattice. We argue, that
the temperature dependent term of Eq. 6.1.18 yields zero for all inter-ladder coupling
Tiner 1f T" — 0. This simplifies Eq. 6.1.18 for zero temperature.
The one-triplon dispersion wy as employed in Eq. 6.1.24 is real, positive and bounded
away from zero, as has been discussed in Chapter 5. This means that there is a constant
m > 0 such that

wo(k,s) >m >0 (6.2.1)

for all k£ holds. The above relation states nothing else than the existence of an energy
gap. According to Eq. 6.1.24 the effective one-triplon dispersion w(k, h, s) for a trellis

lattice coupling can be represented by

w(k, h,s) = wy(k, s)\/l - % cos(mh) cos(mk). (6.2.2)

If we now assume that i, is chosen in such a way that

8Jintera2<k)52
WO(kv S)

¢ := max

1 cos(mh) COS(ﬂ'k)‘} <1 (6.2.3)

holds, then w(k, h, s) is also bounded away from zero, i.e., it possesses an energy gap.
This is the case for a weak coupling between neighboring ladders. Inserting Ineq. 6.2.1
and Eq. 6.2.3 into Eq. 6.2.2 leads to the quantitative statement

w(k,h,s) >my/1—&>0 (6.2.4)
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for all k, h. Since f(x) = e™* is a decreasing function, Ineq. 6.2.4 implies
_ w(k,h,s) ~ my/1=¢

e B <e  E (6.2.5)

for all £, h. A direct calculation yields

™ 4 w(k,h,s) 4 4 w(k,h,s)
lim / / e £ dkdh= / / lime " & dkdh = 0. (6.2.6)
E—0 - J -7 -7 J -7 E—0

Next, we study the case of critical inter-ladder coupling. This means, we choose the

minimal coupling | Jiper|, such that w(k, h, s) = 0 possesses a zero and the energy gap is
closed. From the particular shape of wy(k, s) and a*(k) employed in this work, we de-
duce that the critical w(k, h, s) assumes the value 0 at a finite number of points (k;, ;).

In all other points it is still positive. Hence, we obtain for the integrand

_w(k;h,s)

e B —0 (E—0) (6.2.7)

in all points (k, h) except of the zeroes (k;, h;), where e~ S equals 1 for all values

. . . w(k.h,s) o
of ¥ > 0 and, hence, also in the limit. This means, that e~ &  tends pointwise to 0
for £ — 0 on the square [—, 7]* except of a set of Lebesgue measure zero (see, e.g.,

w(k,h,s)

Ref. [102]). As |e= # | < 1is true on [—, 7|2, the integrand is dominated by an

integrable function. Consequently, the dominated convergence theorem from Lebesgue
integration theory [102] applies, yielding again the relation presented in Eq. 6.2.6.
Hence, Eq. 6.1.18 is finally reduced to

19 ) 3 Wo(k', 3) — 2Jinterdy h(s)
=g — -+ ’ dkdh 6.2.8
O 5 2 + 472 //IS‘BZ ( 20«)(1{?, h7 S) ( )

for 7" = 0 and all values of physical meaningful values of Jiy, i.€., for all values of the
inter-ladder coupling that only yield real values for w(k, h, s) (see below). The last Eq.

6.2.8 gives information on the influence of quantum fluctuation.

From a purely numerical interest, we now analyze the case that

8Jintera2 (k)52

ool s) cos(mh) cos(mk)| > 1. (6.2.9)

for some values of k£ and h. In this case the dispersion w(k,h,s) assumes complex

values. Note that a complex dispersion has no physical relevance and is therefore only
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of mathematical interest. However, the following argument will give an easy numerical
criterion, whether the solution of Eq. 6.1.18 leads to complex values of w(k, h, s) as a
consequence of a strong inter-ladder coupling. For simplicity, we consider the case

8 Jinera? (k) s

ool 5) cos(mh) cos(mk)| > 1 (6.2.10)
for all values of i and k before we turn to the general case. Then
- a2(k)s?
w(k, h,s) =iwg(k,s)y/|1— 8 mert? (k) 5* cos(mh) cos(mk) (6.2.11)
w0<k7 S)

is purely imaginary. This affects the integral in equation (6.1.18), resulting in

T T ekl
//e "V E  dkdh (6.2.12)

for the integral in the defining equation for s. Since p = % tends to infinity for £ — 0
the Riemann-Lebesgue Lemma applies yielding
lim / / e Hletbn)l dldh = 0 (6.2.13)
=00 ) _xd—x

for all sufficiently large values of Jiy;.

Turning now to the general case, we assume that w(k, h, s) assumes both real and imag-
inary values including zero. However, we have to restrict the set on which w(k, h, s)
is zero to be a subset of [—,7]? of Lebesgue measure zero. Then the integrand of
the integrals can be split according to the cases that w(k, h, s) is real (including zero)
or imaginary. The two preceding different arguments for the purely imaginary and for
the purely real case (including zeros) can be applied to the resulting individual terms.
Consequently, the integral in Eq. 6.2.6 is zero for all values of the inter-ladder coupling
Jinter» and hence Eq. 6.2.8 1s valid for 7' = 0 even if its solution s is imaginary. This
is of particular importance for numerical issues, since it makes clear that an imaginary
solution of the simplified equation 6.2.8 is also an imaginary solution of the full equa-
tion 6.1.18 and thus indicates that a too large coupling constant J,,; has been employed

without the need of solving the more complicated Eq. 6.1.18.

6.2.2 Square lattice inter-ladder coupling at zero temperature

The main purpose of the mean field treatment is to investigate the influence of quan-
tum fluctuations on the closure of the spin gap. Thus, Eq. 6.2.8 is now solved self-

consistently for the coupling of ladders in the square lattice geometry. We only present
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results for z = 1 and x = 1.5 because of growing evidence, that these are the relevant
parameters for cuprate ladders [96, 1, 101, 103]. More precise, z = 1 allows for com-
parison with [3], while evidence is found that x = 1.5 is realized in La;Sr1oCus4Oy4; [1].

The spin gap in the case of the square lattice coupling is presented in Fig. 6.2.1 as a func-
tion of inter-ladder coupling ;. The black curves in the panels of Fig. 6.2.1 present
the spin gap with a constant singlet occupation number of s*> = 1 and the cyan curves
with the self-consistently solved mean singlet occupation number 312\4F = 32(ximer, T =
0) according to Eq. 6.2.8. Each panel of Fig. 6.2.1 presents results for a different pair
of (z, Zyc) (for details see the panels).

As the black curves show the spin gap with a constant singlet occupation number of
s2 = 1 -1i.e., to no mean field treatment - these curves show the closure of the spin

gap neglecting zero temperature quantum fluctuations. Here the critical inter-ladder

crit
nter?

coupling x at which the spin gap closes, is strongest for the isotropic case without

cyclic exchange, hence for x = 1 and 2, = 0. With an increasing x the critical inter-
ladder coupling decreases. Including a non zero cyclic exchange results in a further
crit

reduction of the value of the critical inter-ladder coupling z{},....

Including at zero temperature the quantum fluctuations (cyan colored curves in Fig.
6.2.1) results in a slightly increased critical value of the critical inter-ladder coupling

2t for each pair of (z, xey.). These critical values are summarized in Table 6.1.

(7, Teye) | Tihier(s = 1) | afiiee(smr) | Afi

(1,0) 0.196 0.204 | 0.008
(1,0.2) 0.0725 0.0748 | 0.0023
(1.5,0) 0.141 0.145 | 0.004
(1.5,0.2) | 0.0648 0.0676 | 0.0028

Table 6.1: Values of the critical inter-ladder coupling z{. , at which the spin gap closes in the

case of a square lattice coupling.

The change in the value of the critical inter-ladder coupling <"t is of the order of 3—4%
only. This traces back to the self consistently solved mean field singlet occupation
number syr = S(Tiner, I = 0). This quantity is presented as a function of the inter-
ladder coupling Zine, in Fig. 6.2.2 for all pairs (x, cy.) shown in Fig. 6.2.1.

During the calculation the self-consistent solution s(Zyer, 7') becomes complex. Com-
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Figure 6.2.1: Spin gap at zero temperature as a function of the inter-ladder coupling Zjn for a
constant singlet occupation number of s?> = 1 (black solid curve) and for the self-consistently
solved singlet occupation number syp (cyan solid curve) according to Eq. 6.2.8. The values of

Tinter presented in the panels give the inter-ladder coupling at which the spin gap closes.

plex solutions of $(xjyer, 1') are, however, physical not meaningful. They arise when
the dispersion becomes complex because of a too large inter-ladder coupling. Hence,
the parameter range for z. and iy leading to real solutions s(Ziner, I') is of particular
significance. More precisely for each x and each z,. a different validity range for Zner
is given. Thus, in Fig. 6.2.2 the self-consistently solved mean field singlet occupation
number is only plotted for these validity ranges. The largest range of real solutions is
yielded for z.,. = 0 and both x = 1 and x = 1.5, where the range for the isotropic case

with z = 1 is a little larger as compared to that for z = 1.5. From Fig. 6.2.2 we realize
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Figure 6.2.2: Singlet occupation number for the square lattice at zero temperature for r =

{1,1.5} and z¢yc = {0,0.2} as a function of the inter-ladder coupling Zinter.

that a real mean field singlet occupation number can maximally deviate from 1 down to
sur = 0.988, i.e., by 1.2% for z = 1 and zy = 0. This fact explains the small change
in the critical inter-ladder coupling z¢"it

inter*

Gopalan et al. [38] studied the coupling of two ladders in the case of the square lat-
tice geometry as well as for a periodic array of such ladders. For the latter case they
suggested a closing of the spin gap for an inter-ladder coupling of zjy, = 0.25 in
the isotropic case and argued that the decrease in the spin gap with increasing Tiper
occurs due to delocalization of the singlets across the ladders. For the mean field treat-
ment presented here we find a closing of the spin gap for an inter-ladder coupling of
Zineer = 0.204 in the isotropic case. This value of zj, = 0.204 lies below all values
that can be found in the literature, such as the QMC computation by Matsuda [37], that
gave Tiner = 0.314. In conclusion, including the effect of quantum fluctuation on the
mean field level leads to results that do not agree with the findings about the closure of
the spin gap in the literature.
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As the influence of the quantum fluctuation on the closure of the spin gap reveals to be
only a small effect of about 3 — 4%, we relinquish to present the dispersion as a function
of the wave vector, since no new physical insights will be obtained. We turn to the case

of a trellis lattice coupling instead.

6.2.3 Trellis lattice inter-ladder coupling at zero temperature

In the following we investigate the influence of quantum fluctuations in the case of an
underlying trellis-lattice geometry. For this purpose we evaluate Eq. 6.2.8 analogously
to the previous section replacing the dispersion in Eq. 6.2.8 by the dispersion including
the trellis lattice coupling as presented in Eq. 6.1.24. As in the previous section we
restrict ourselves to the numerical results for x = {1, 1.5} and =z, = {0,0.2}.

The spin gap as a function of the inter-ladder coupling iy, for various pairs of (z, Zcy.)
is presented in Fig. 6.2.3. The black solid lines present the spin gap evaluated with a
constant mean field singlet occupation number of s* = 1. With increasing x the critical

inter-ladder coupling ¢ (s = 1) increases. Including a non zero cyclic exchange

diminishes the critical inter-ladder coupling z¢t (s = 1).

The cyan solid curves show the results obtained with the self-consistently solved mean
field singlet occupation number s3;; by the use of Eq. 6.2.8. On the mean field level
the spin gap closes at an enlarged value of the inter-ladder coupling ;... The critical

inter-ladder couplings <" are summarized in Table 6.2 for s> = 1 and s} including

. t
the relative change Ax{ .

(7, Teye) | (s = 1) | i (smr) | Az,
(1,0) 1.21 1.42 0.21
(1,0.2) 0.8 0.97 0.17
(1.5,0) 1.32 - -
(1.5,0.2) 0.9 0.97 0.07

crit
nter’

case of a trellis lattice coupling. Due to numerical problems the closing of the spin gap cannot

Table 6.2: Values of the critical inter-ladder coupling z at which the spin gap closes in the

presented for x = 1.5 and w¢ye = 0.

The spin gap does not close for x = 1.5 and xy. = 0 due to numerical problems. The
root finding algorithm to solve Eq. 6.2.8 turned out to depend highly sensitively on the
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Figure 6.2.3: Spin gap with a trellis lattice coupling at zero temperature for x = {1,1.5} and
Zeye = {0,0.2} as a function of the inter-ladder coupling Ziner. Solid black curves present the
spin gap evaluated with a constant mean field singlet occupation number of s> = 1. The cyan
solid curves present the spin gap evaluated with the self-consistently solved mean field singlet

occupation number s3p.

initial value for certain parameters. This is particulary the case for x = 1.5 and x¢y. = 0,
where the algorithm terminated at a complex solution of Eq. 6.2.8 for the chosen initial

values. However, it is believed that there is a real solution despite the numerical findings.

Again the range of validity of the inter-ladder coupling iy, for each pair of (x, 2y ) is
terminated by the set of real solutions of the self-consistently solved mean filed singlet

occupation number syg. This quantity is presented in Fig. 6.2.4 as a function of the
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inter-ladder coupling iy, for various pairs of (z, 2.y ). In the case of the trellis lattice

0.92
0 02 04 06 08 1 12 14 16

Xinter

Figure 6.2.4: Singlet occupation number for the trellis lattice coupling at zero temperature for

x = {1,1.5} and z¢yc = {0,0.2} as a function of the inter-ladder coupling Zinter-

the mean field singlet occupation number deviates maximally from one by 8% down to
sﬁ,m = 0.925 for x = 1 and .y = 0. In contrast to the square lattice, the quantum

fluctuations influence the closure of the spin gap in a much stronger way.

The findings in the case of a trellis lattice coupling agree with the findings of Schmidt
and Uhrig in Ref. [4]. Here the gap is decreasing as a function of inter-ladder coupling
Tiner- Gopalan et al [38] applied also a mean field treatment to the trellis lattice and
found, that the excitation spectrum of such a frustrated double ladder consists of two
degenerate branches at the minimum position of the spectrum [38]. Gopalan et al [38]
argued that the spin gap should not change much from the spin gap of the isolated lad-
der, because due to the frustrated ladder coupling the singlets on two successive rungs
of each ladder are completely out of phase [38]. Hence, they are not able to delocalize
across the ladder through the trellis lattice coupling [38].

This is in contrast to the findings of this work. In our case, where quantum fluctuations
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are included on the mean field level, we find that the spin gap closes. This allows for

the argumentation that such fluctuations are not necessarily confined to the ladder.

6.2.4 Trellis and square lattice results at finite temperature

In the following we focus on the influence of the inter-ladder coupling if temperature is

switched on. The effect can best be seen in the mean field singlet occupation number,

inter
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Figure 6.2.5: Square lattice coupling of ladders: Singlet occupation number for x = 1 and
Zeye = 0 as a function of temperature in units of the rung coupling J . The dark blue solid line
presents the result of the isolated ladder jye; = O and the red dashed line for xjyer = 0.2. The

cyan colored area represents the result for 0 < Tjper < 0.2.

which is shown as a function of temperature 7" in the Figs. 6.2.5 and 6.2.6. The result
for the square lattice coupling is shown in Fig. 6.2.5 for z = 1 and z., = 0 and for
the trellis lattice coupling in Fig. 6.2.6 for z = 1.5 and z,. = 0.2. The dark blue
solid line in both figures presents the result of the isolated ladder (e, = 0) with the
corresponding pairs (z, Zcy.) mentioned before. The red dashed lines show the result for
an inter-ladder coupling of x;,., = 0.2 for the square lattice coupling and of xjy, = 0.4
for the trellis lattice coupling. Curves for sQ(ximer, T) as a function of 7" obtained for

values of the inter-ladder coupling iy between 0 < Ziyer < 0.2 in the square-lattice
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case and between 0 < ;e < 0.4 in the trellis lattice case proceed in the cyan colored
area of Figs. 6.2.5 and 6.2.6, respectively.

— Mty
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inter
__.x =04
inter
08 ' ' ' ' '
0 0.1 0.2 0.3 04 05
T[]
Figure 6.2.6: Trellis lattice coupling of ladders: Singlet occupation number for z = 1 and

Zeye = 0 as a function of temperature in units of the rung coupling J, . The dark blue solid line
presents the result for the isolated ladder xjne; = 0 and the red dashed line for xjye = 0.4. The
cyan colored area presents the result for 0 < Tipeer < 0.4.

In the case of an isolated ladder the mean field occupation number considered as a func-
tion of the temperature 7" always equals the value 1 below the characteristic temperature
Tenar (see Chapter 5). In case of an inter-ladder coupling x;,., > 0 the mean field occu-
pation number still remains constant upon increasing temperature below 7¢y,., but this
constant is now smaller than one with its value depending on the inter-ladder coupling
strength x;,e, > 0 both in the square lattice case and in the situation of a trellis lattice.

The possible range of values that 32(ximer, T') may assume for 0 < T < Ty, can be
deduced from the width of the left part of the cyan colored area in Figs. 6.2.5 and 6.2.6,
respectively. For 0 < T' < T, the largest range of values for the mean field occupation
number is obtained. Above the characteristic temperature 7y, the width of the cyan
colored areas shrinks with increasing temperature. For high temperature it converges

against the curve for the case of the isolated ladder (blue curve).
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Figure 6.2.7: Singlet occupation number as a function of inter-ladder coupling Zine, at constant
energies for the square lattice coupling for x = 1 with z¢ye = 0 (upper panel) and the trellis
lattice coupling for z = 1.5 with zcy. = 0.2 (lower panel). The slope of each curve becomes the

less the larger the energy is.

Comparing both cases to each other shows that, at finite temperature the effect of inter-
ladder coupling for a certain value of z;,., influences the spin gap stronger in the square
lattice case than in the trellis lattice case. However, for the trellis lattice only a small
range of possible .., is presented at finite temperature. The possible scale for values of
Zineer 10 the trellis lattice case reaches up to the order of xjy. ~ 1 and larger. We present

such a small range of x;,, for the trellis lattice, in order to point out that the underlying
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lattice geometry plays an important role on the scale of the inter-ladder coupling Ziye;-

In Fig. 6.2.7 the mean field occupation number is presented as a function of the inter-
ladder coupling x;,. at various constant energies. The upper panel of Fig. 6.2.7 shows
the result for the square lattice coupling of ladders and the lower panel for the trellis lat-
tice coupling of ladders. The slope of the curves becomes the less the larger the energy

is indicating the convergence torwards the case of the isolated ladder.

Comparing the width of the cyan colored areas of Fig. 6.2.5 and 6.2.6 as well as the
slope of the curves in the panels of Fig. 6.2.7 reflects that the inter-ladder coupling of
ladders in the square lattice case at a certain value of ;.. affects the physical properties

of the system stronger than in the trellis lattice case even at finite temperature.

6.3 A comparison to experiment

In Ref. [4] an interesting effect of the one-triplon spectral weight due to a frustrated
trellis lattice inter-ladder coupling was introduced. Schmidt and Uhrig derived in Ref.

[4] the two dimensional one-triplon spectral weight according to

a2y (k, h) = 2sin’ (mi) a2 () ) (6.3.1)
2a9
where the sine factor stems from the interference of the excitation processes from the left
and the right spin on each rung [4]. The sine reflects the odd parity on the isolated ladder
with respect to reflections about the centerline. Note, this one-triplon spectral weight
does not contain the conditional excitations treated in Chapter 5. It only accounts for the
first excited states - the first triplon. In order to employ this one-triplon spectral weight
for our treatment the formula has to be modified. Due to the inclusion of the hardcore

constraint on the mean field level we obtain

wo(’ﬁ 5)
(ka h> S, Jinter) ‘

(k. h) = 2sin? (mi) P (R)5(T, i)~

2662

(6.3.2)

The approximated ratio of the two lattice constants in the sine factor is ay = 1.5a [4]

giving a factor of sin*(%).
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Schmidt and Uhrig [4] found in their mean field treatment that a change from anti-
ferromagnetic to ferromagnetic inter-ladder coupling |Ziner| — —|Tiner| leads to the
same curves where the momentum A is changed to h + 1 [4]. Thus, with increasing
Zinter the shifting of the maximum position of a%U(k, h) away from k = 0.5 increases.
Here the sign of xi,., plays an important role, because for a negative iy, the spectral
weight is shifted to the left from &£ = 0.5 at h = 1. At h = 2 it is shifted to the right
away from £ = 0.5. In the case of zjy, > 0 the shifting direction appears vice versa.
As the strength of this shift depends on the size of the inter-ladder coupling, this ef-
fect serves for determining the inter-ladder coupling constant in real materials such as
LasSrigCugsOy;.

In Chapter 5 we compared the temperature dependent self-consistent mean field solution
for the isolated spin ladder to INS data measured for the undoped ladder La,Sr(Cuy4Oy;.
We found that the coupling for z = 1.5 and x,. = 0.2 fits the data very well.

Hence, we present the spectral weight for = 1.5 and z.. = 0.2 computed by Eq.
6.3.2 in Fig. 6.3.1 at two different temperatures. The left panel of Fig. 6.3.1 shows the
result for zero temperature, where the right panel shows the result at a temperature of
T = 0.2J, which is about 150K. Thus, the selected temperatures agree with the ones,
that were measured. With increasing temperature the amplitude of the spectral weight
decreases only slightly because conditional excitations are not considered in Eq. 6.3.2.

Effects due to quantum fluctuations are not observed.

In the following we clarify the sign and the size of the two-dimensional inter-ladder
coupling by studying the INS spectra of LaySrigCuy4Oy; at g5 = 1 and g, = 2 as
proposed in [4].

Hence, constant g;,-cuts from the INS data introduced in Chapter 5 with an initial energy
of 50meV are made for 0.7 < ¢;, < 1.3277r and 1.7 < g3, < 2.3%7r at temperatures of 15K
and 150K.

The result is presented in Fig. 6.3.2. Gaussians are fitted to the data providing infor-
mation on the positions of the peaks. These peak positions as well as the relative shift
Ak to each other are summarized in Table 6.3. The blue vertical dashed lines are a
guidance for the eyes in order to help in revealing the shift. Along the k-component

that corresponds to the ¢;! component in the experimental data, a shift of the maximum

! According to standard notation in neutron spectroscopy we will now use ¢; to indicate the momentum
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Figure 6.3.1: One-triplon spectral weight at zero temperature (left panel) and at about 150K

(right panel) for z =

1.5 and z¢ye = 0.2 computed with Eq. 6.3.2. The width between

the red dashed vertical lines represent the shift along k = ¢; extracted from the INS data of

La4Sr10Cu24O41 .

peak position is observed. At a temperature of 15K (left panels) the maximum along
the ¢;-component is shifted by Ag, = 0.01 — 0.015277r and at 150K (right panels) by
Ag = ().()2277r (for more details see Table 6.3).

g (2], 15K | ge® [22], 15K | gme® [22], 150K | ¢f"e® [22], 150K
h=1% | —0.485+0.001 | 0.475+0.001 | —0.48 +0.002 | 0.475 4 0.003
h=22 | —0.5+0.005 | 0.485+0.003 | —0.540.004 | 0.475 =+ 0.004
Ag® | 0.015£0.005 | 0.0140.003 | 0.02=+0.004 0

Table 6.3: Positions of the peak maxima and the resulting shift presented in Fig. 6.3.2.

As the peak maximum for ¢, = 1 lies at a smaller ¢; ;. as for g, = 2, the shift indicates

a ferromagnetic coupling and thus x;,e, < 0.

component along the ladder instead of k.
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Figure 6.3.2: Extracted data of La;Sr19Cug40y4;. Left panels show data at a temperature of 15K
and right panels of 150K. Gaussians are fitted to the data providing information on the positions
of the peaks. These peak positions are summarized in Table 6.3. A shift of the maxima along
momentum component k = ¢; results when shifting from h = 1 to h = 2.The blue vertical
dashed lines at g = £0.5 are a guidance for the eyes in order to help in revealing the shift. Ata
temperature of 15K (left panels) the maximum is shifted by Ag; = 0.01 — 0.015277r and of 150K
(right panels) by Ag; = 0.0227”.

For comparison with theory, the extracted shifts obtained from the fitting of a Gaussian
to the data at 15K and 150K of hAg, = 0.0125 + 0.005277T and Ag; = 0.02 £ 0.00427”,
respectively, are indicated in Fig. 6.3.1 by the spacing between the two dashed verti-
cal red lines in each panel. This spacing is overlaid with the curves obtained for the
confirmed parameter set of x = 1.5 and &, = 0.2 presented in Chapter 5. This shift in-
dicated by the spacing between the red dashed vertical lines is positioned equally around
k = 0.5. At 15K the red lines intersect with the maximum positions of the curves for
hziyer = —0.2 £ 0.05, whereas for 150K the slightly larger shift intersects with the
curves for hzjer = —0.3 = 0.05.
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In summary, from the maximum peak positions of the cuts at ¢, = 1 and ¢, = 2 we
find a ferromagnetic coupling, when compared to the theoretical peak positions derived
in Ref [4]. From the width of the shift Ag; we conclude that this ferromagnetic inter-
ladder coupling is of the order of hxi,e, = —0.2 £ 0.05 at 15K and of the order of
hiper = —0.3 £ 0.05 at 150K both for parameters x = 1.5 and xy. = 0.2. In Chapter 5
we determined J, = 115meV and therefore we obtain a ferromagnetic inter-ladder cou-
pling of hJiyer = (—23 £ 6)meV at 15K and of hJiye; = (—36 £ 6)meV at 150K, which
agrees with the findings for inter-ladder coupling of hJiyer = (—36 4+ 6)meV found
for La,Sr1pCuy404; by Notbohm [1]. Notbohm extracted the dispersion from the data.
By fitting the theoretical curve to the data the ferromagnetic inter-ladder coupling was
determined. Furthermore, based on a quantum chemistry calculation it is argued that a
ferromagnetic inter-ladder coupling iy, ~ —0.2 is present in the compound SrCu,O3
[104].

The discrepancy of the inter-ladder coupling for 15K and 150K might indeed be a phys-
ical effect. Though the ladder La;Sr1jCus4O,4; represents an example of an undoped
ladder, the compound contains holes, which reside on the chains. However, experimen-
tal studies on the doping level reveal, that the hole distribution in such compounds is a
function of temperature [9]. Thus, at higher temperatures holes might also reside in the
ladders, which in turn affects the inter-ladder coupling z;,.,. However, because of the
error of h0.05x;,, we cannot clearly conclude whether there is a temperature effect on

the inter-ladder coupling or not.

6.4 Conclusions

Starting from the PCUT result for the effective one-triplon dispersion a mean field ap-
proach including the hardcore interaction is performed in order to investigate the sig-
nificance and the strength of inter-ladder coupling. This approach is implemented both
in the zero temperature case and at finite temperature for both the square and the trellis

lattice coupling.

For zero temperature we showed that the temperature dependent integral assumes the
value zero for each inter-ladder coupling ..., so that only the term describing the pure

quantum fluctuations remains. At 7" = OK we find that the singlet occupation number
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for the square lattice only slightly deviates from one with minimum value s? = 0.988.
For the square lattice, this results in a closure of the spin gap at an only slightly in-
creased inter-ladder coupling by 3 — 4%. These findings concerning the closure of the
spin gap are below all values found in the literature [37, 38].

For the trellis lattice coupling we find that the spin gap as a function of inter-ladder cou-
pling Zie 18 also decreasing, which is in agreement with Ref. [4]. However, in contrast
to the square lattice the quantum fluctuations influence the closure of the spin gap in
a much stronger way. We find an enlarged critical value of inter-ladder coupling up to
21%. These findings do not agree with the the results presented by Gopalan et al. [38]
who argued that the spin gap in the trellis lattice remains open.

In addition, we find that the effect of inter-ladder coupling decreases with increasing
temperature. It converges towards the case of isolated ladders in the high temperature
limit. Furthermore, the effect of an inter-ladder coupling is not affected by temperature
from zero up to the characteristic temperature 7., introduced in Chapter 5. The mean
field singlet occupation number depends more sensitively on the inter-ladder coupling
strength iy in case of the square lattice. However, the scale of possible inter-ladder

couplings is found to be larger for the trellis lattice than for the square lattice.

Finally for an inter-ladder coupling of hzjy, = —0.2 £ 0.05 at 15K and of hzjye, =
—0.3 £ 0.05 at 150K for x = 1.5 and x, = 0.2 a ferromagnetic inter-ladder coupling
of hJiyer = —23 - 6meV and hJy.; = —36 1+ 6meV could be determined from INS data
for La,Sr19Cus40y4; in the way proposed in Ref. [4]. These findings agree with the value
of the inter-ladder coupling found in Ref. [1]. It is argued that the different inter-ladder
couplings for the two different temperatures could be an effect of hole redistribution at
high temperature [9]. However, hthe error bars leave the question unanswered whether

the temperature effect is real or not.



Chapter 7
Features of hole doped ladders

Doping spin liquids is a major goal for condensed matter physics as rich new physics
is expected to arise from charge and spin pairing effects. However, to-date, the study
of doped spin liquids has been hampered by difficulties in obtaining suitable systems
and also in making sense of the complex physics of spin and charge involved. Here, we
revisit the most promising systems to date, the cuprate spin ladders.We investigate the
influence of hole doping on the magnetic scattering amplitude in cuprate spin ladders
using inelastic neutron scattering.

Three samples each with a different estimated doping level 6 = 0;0.03; 0.06 are studied
below and above the charge ordering temperature of about 60K of Sry 5Ca;; 5Cug4Oy.
The spectra of the doped ladders are compared with the undoped ladder spectrum with
0 = 0. The spin gap is characteristic for all two-leg ladders [105]. In our experi-
ment, however, we observe further spectral features besides the triplon gap, that are
only present in the doped ladders. Therefore these two features are proposed to origi-
nate from the presence of holes.

At low temperatures, where a Wigner Hole Crystal (WHC) state forms, the dynamics
show a highly dispersive and gapped excitation spectrum of triplons which closely re-
semble the undoped case but modified by a new lifetime broadening. In addition to the
gapped triplons, subgap states extending down to 8meV appear. When the material is
heated to the conducting state the triplons damp out strongly and the 8meV gap disap-
pears leaving a gapless excitation spectrum. These phenomena are discussed in terms
of both resonating valence bond [39] physics and charge segregation into hole-rich and
hole-poor ladders due to Coulomb effects, which leads to the stripe ordering theory [14].

107
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However, quantitative theoretical results for comparison with the measured data are not

available, therefore the explanation of the results will remain qualitatively.

7.1 Materials

As already mentioned in Chapter 1 the parent material of the cuprate spin ladder is
Sr14Cus4047, which is intrinsically hole doped with nearly all holes located in the chain
[23]. Hole doping of the ladder is achieved by substitution of Ca?* for Sr>*. Because of
the smaller ionic radius of Ca?* [26, 24] the holes are transferred from the chain into the
ladder. The amount of transferred holes depends on the amount of Ca®* substitution. In
contrast, a substitution with La®*" ions tremendously reduces the total number of holes
according to its stoichiometry to

41-2-24-2-10-2-4-3=2

holes, which are mainly in the chains, so that the ladder La,Sr;(Cus404; can be regarded
as without holes.

The undoped ladder La,Sr1yCus40,4; represents a Mott-insulator, whereas the doped
ladders resides in a regime between insulator and metal. For Sry 5Ca;q 5Cus40y; resis-
tivity measurements showed a phase in the ladder direction with an almost linear tem-
perature dependence above 130K representing the metallic phase and a sharp resistivity
increase below 60K representing the insulating phase. The insulating phase implies the
localization of holes [27, 106, 107].

The interaction between the Cu-spins and the charge mobility of the conduction elec-
trons is believed to play an important role for the mechanism of high temperature super-

conductivity in cuprates [108].

To study the influence of holes doped into the ladder on the magnetic spectrum, ladders
with different doping levels 6 are measured by inelastic neutron scattering. In order
to conclude which effects result from the presence of holes, a measurement for the
undoped ladder La;Sr;yCus,0y; is carried out giving the zero doping = 0 reference
spectrum. Two doped ladders are studied, Sry 5Ca;q 5Cus404; With an estimated doping
of 6 = 0.06 [109] holes per ladder site and SrgCagCus,O,4; with an estimated doping of
0 = 0.03 holes per ladder site.



7.2. SAMPLES AND EXPERIMENTAL DETAILS 109

7.2 Samples and experimental details

In the case of the undoped ladder La,Sr1iCus4Oy4; the array of crystals already intro-
duced in Chapter 5 was used with a total mass of 23g. For the doped spin-ladder
Sry5Cay1 5Cuy40y4; an array of four crystals of total mass 25g was used. Both samples,
La,Sr;pCuy404; and Sry 5Cajq 5Cusy0y41, were measured at the MAPS spectrometer at
ISIS (for details on the spectrometer see Chapter 2) by Gibson et al. [110] and Not-
bohm et al. [111] respectively. During each measurement the crystals were mounted in
a closed cycle cryostat with the (0kl) reciprocal lattice plane horizontal and the c-axis
perpendicular to the incident neutron beam k;. The third ladder SrsCagCuy,04; was
measured at MERLIN at ISIS by Mihalik [112]. In this case the sample was an array of
two crystals with a total mass of 7.6g. The sample measured on MERLIN was stored in
vacuum, and it was connected to the cold head of a closed cycle refrigerator. A Fermi
chopper was used to select an incident neutron energy of 50meV and was rotated at a
speed of 300 Hz to give an energy resolution at the elastic line of 4.17meV. Data were
collected at temperatures of 15K (insulating phase) and 150K (metallic phase). Inco-
herent nuclear scattering from a vanadium standard was used to normalize the magnetic
cross-section (see also Chapter 2). In the following text wavevectors ¢; and gy, represent
the direction along the ladder and along the rungs, respectively. The lattice spacing on

arung is given by a and along the ladder by c.

7.3 Raw data and background correction

We begin by presenting the measured raw data for all three samples at both temperatures
in order to introduce the main properties of the spin ladder cuprates investigated within
this work. It should be noticed, that the black areas in the plots arise due to missing
detector coverage. As the incoherent scattering strength is very strong for energies
between 0 — 4meV, the data are presented from 5meV upwards.

The raw data are given in Figs. 7.3.1 for La;Sr1Cus40y4;, 7.3.2 for Sry 5Cayq 5CugsOyyg
and 7.3.3 for SrgCagCuy,0O4;. They are all divided into two scattering regions. The one
with energies between 5meV to 20meV shows the scattering from the chain structure
and the one from about 25meV upwards shows the scattering from the ladder structure.
We are mainly interested in the second region, corresponding to the ladder. To gain
information on the ladder, the background scattering has to be handled properly.
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Figure 7.3.1: Raw data measured for LasSr;9Cuz404; at two different temperatures and aver-
aged over two different narrow regions for the momentum ¢, at MAPS by Gibson et al. [110].

Black areas represent regions without detector coverage.
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However, the raw data already show that background correction is a challenging task at
least for the doped ladders, Sry5Ca;; 5Cuy4Oy; and SrgCagCusy Oy, because the back-
ground has considerable structure in wavevector and energy from single and multiple
phonon scattering in a complicated way. In order to obtain only the magnetic scatter-
ing amplitude corresponding to the chain and ladder structure in the materials, we need
to correct the data for the background scattering and the scattering due to phonon ex-
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Figure 7.3.2: Raw data measured for Sry 5Caj; 5Cug404; at two different temperatures and
averaged over two different narrow regions for the momentum g, at MAPS by Notbohm et al.

[111]. Black areas represent regions without detector coverage.
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citations. The phonon scattering is present in all measurements and is located in the
energy range between 20meV and 30meV giving the arc-like shaped intensity along ¢
in Figs. 7.3.1,7.3.2 and 7.3.3. It is clear that the corresponding scattering traces back to
a phonon excitation because it shows no pronounced g-dependence. Cuts in momentum
space at various energies (not shown) document an intensity dispersing out of a nuclear
position, which is typical of a phonon [113].
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Figure 7.3.3: Raw data measured for SrgCagCug40y4; at two different temperatures and averaged
over two different narrow regions for the momentum ¢; at MERLIN by Mihalik et al. [112].
Black areas represent regions without detector coverage.
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In order to account for the total background scattering including phonon scattering var-
ious constant g-cuts are performed and interpolated piecewise. The regions where the
phonon (between 20meV and 30meV) occurs and no magnetic scattering is present are
modeled by fitting polynomials to the data. In the region where magnetic scattering
occurs the background was fitted by linear regression. Since the measured intensities in
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Figs. 7.3.1,7.3.2 and 7.3.3 are given in a m X n-intensity-matrix (where m denotes the
number of different energy values considered and n the number of different values for
the momentum component ¢;), in a second step the extracted constant g-cuts are interpo-
lated along ¢; by polynomials in order to obtain an intensity mapping of the background
including the phonon scattering, that has the same grid as the original m X n-intensity-
matrix.

The resulting interpolated background is displayed in Fig. 7.3.4 for each temperature
and each compound. The phonon scattering is clearly captured as it can be seen in
the panels between 20meV and 30meV by the arc-shaped intensity. From the color
scale of the intensity plots, one realizes, that the background scattering increases with
temperature in a non-linear way. Therefore a background correction has to be done for
each intensity map. Removing these backgrounds (Fig. 7.3.4) from the raw data as
shown previously in Figs 7.3.1, 7.3.2 and 7.3.3 by subtraction reveals the pure magnetic

scattering amplitudes in all three compounds at both temperatures of 15K and 150K.
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Figure 7.3.4: Interpolated background for LasSr1gCu2404; (top), Sra 5Caj1.5Cu240y4; (middle)
and SrgCagCu2404; (bottom) at 15K (left panels) and 150K (right panels).
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7.4 Data analysis

7.4.1 Background corrected data

The background corrected data for LasSr1oCus4Oy4; are presented in Fig. 7.4.1 at 15K
(upper panels) and 150K (lower panels) averaged over the momentum ranges 0.9 <
qn < 1.5%7r (left panels) and 1.5 < ¢ < 2%” (right panels). The corrected data show
the two different areas of magnetic scattering related to ladder and chain substructure,

respectively.

The scattering occuring between 4meV and 20meV and along —0.5 < ¢ < 0.5277r
traces back to the chain structure of La,;Sr;oCus40,4;. From the two dimensional color-
plot in Fig. 7.4.1 one sees, that the scattering strength of the chain is a little larger at
0.9 < g, < 1.5%% than at 1.5 < ¢, < 227, This already shows the ¢-dependence of
the chain signal. At 15K the chain dispersion along ¢; is clearly visible with its mini-
mum at ¢g = 0. This observation is in accordance with the findings presented earlier
in [109]. An interesting feature of the chain dispersion is its intensity dip at 15meV
possibly originating from the presence of ordered holes in the chain in La;Sr19Cus4Oy1,
which locally destroy the magnetic order of the chains. At high temperature (lower pan-
els of Fig. 7.4.1) the chain dispersion loses its shape resulting in a broadened feature
as a function of energy from 20meV downwards at ¢; = —().415277r and ¢ = 0.425277r

respectively.

A constant g-cut along this region is presented in Fig. 7.4.2 for 15K (left panel) and
150K (right panel), where the red lines are polynomial fits. Both plots have a peak be-
tween 15meV and 20meV in common. At high temperature (150K) there is at least one
further peak between 8 — 14meV and a trend towards increasing intensity at even lower
energies. In the 15K measurement this second peak and the intensity increase with de-
creasing energy is not present. Here, the dispersion is arc-shaped with its minimum at
q: = 0 (see Fig. 7.4.1). We only see a continuously decreasing intensity with decreasing
energy. In conclusion, the magnetic spectrum of the chains is influenced by the holes.
Thermally activated the ordered holes might delocalize at high temperature influencing
the magnetic order. For the time being, it cannot be excluded that the extracted feature
of the chain scattering at 150K is an artifact resulting from the background correction.

Further investigations are required to judge, if the rise of the magnetic scattering inten-
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Figure 7.4.1: Background corrected data for LasSr;9Cus404; at two different temperatures and
two different momenta ¢; showing the magnetic ladder and chain scattering only. Due to the
strong incoherent scattering between OmeV and 4meV the magnetic scattering can only be ex-
tracted for £ > bmeV.
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sities with decreasing energies and increasing temperature is a real physical effect or not.

The chain scattering is clearly distinguished from the ladder scattering, that arises as a
function of energy as a strong intensive stripe located at ¢; = iO.E)%’r from 30meV up-
wards. The ladder scattering of La,Sr;yCuy,0,4; has a much stronger scattering strength
than the chain scattering as can directly be seen from the intensity scale of Fig. 7.4.1.
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Figure 7.4.2: Chain scattering extracted from the background corrected data of LaySr1gCu4041
from Fig. 7.4.1 for 15K (left panel) and 150K (right panel) with 0.9 < ¢, < 2%”. Along q;
two ranges, —0.43 < ¢ < —0.40277r and 041 < ¢ < 0.46277r are summed over. The red lines

represent polynomial fits revealing a multi peak-dip structure at high temperature.

That ladder scattering and chain scattering are separating apart is obvious in Fig. 7.4.1
because of the intensity decrease between 20 < F < 30meV in the data. A constant

g-cut for the ladder scattering with a detailed analysis will be presented later.

Now we turn to the background corrected data of Sry 5Cai; 5Cus4Oy; that are presented
in Fig. 7.4.3 showing the ladder and the chain scattering. Comparing the two intensity
maps for 15K, we see, that the chain signal in the energy range from 4 —20meV changes
tremendously with ¢. In comparison to La;Sr;yCus404; there is no sharp chain disper-
sion, but two strong drop shaped intensity patches.

The scattering amplitude of the ladder is characterized by a strongly g-dependent (lo-
cated at q; = i0.527”) intensity stripe starting from 30meV upwards. Additionally we
see ladder intensity from 30meV extending down towards the region of chain scatter-
ing located at lower energies. The intensity found at 1.5 < ¢, < 227” (right panel) is
stronger than at 0.9 < ¢, < 1.5277r (left panel). At 1.5 < ¢, < 2%” one might think of
hybridisation of the ladder with the chain because the ladder intensity enters the energy
region of chain scattering. Thus for the ladder intensity an additional energy gap, the
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Figure 7.4.3: Background corrected data for Sry 5Caj; 5Cus404; at two different temperatures

and two different momenta ¢; showing the magnetic ladder and chain scattering only.
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subgap, results. However, in Fig. 7.4.3 this subgap cannot be seen because of the chain
scattering lying on top. The same is true for the high temperature experiment presented
in the panels at the bottom of Fig. 7.4.3. Here, the intensity shift towards the chain is
even more pronounced. Additionally, the second energy gap of the ladder closes, which
can be clearly seen at 0.9 < ¢, < 1.5%” (left panel at the bottom).

In order to get rid of the chain scattering and to focus on the ladder intensity, the
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Figure 7.4.4: Background and chain scattering corrected data for Sry 5Cajq.5Cu2404; at two

different temperatures and two different momenta g;, showing the ladder scattering only.
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chain scattering was interpolated at each constant energy by a polynomial and sub-
tracted off. The chain corrected result is shown in Fig. 7.4.4. Averaging over data at
09 < qn < 1.5%7T the pure ladder intensity now shows the second energy gap around
8meV at 15K (upper left panel) and the closing of this gap at 150K (lower left panel). In
the right panels of Fig. 7.4.4 presenting the result at 1.5 < ¢, < 2%” the closing of the
energy gap at high temperature is found as well. At low temperature a modulation along

q; in the low energy region between 5 — 15meV appears showing a possible connection
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Figure 7.4.5: Background corrected data for SrgCagCug40y4; at two different temperatures and

CHAPTER 7. FEATURES OF HOLE DOPED LADDERS

two different momenta g;, showing the magnetic ladder and chain scattering only.
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between ladder and chain intensities. However, one should notice the change in the in-

. . . 271"
tensity scale. Nevertheless, the modulation along ¢; is only present at 1.5 < g, < 2=*.

Next we present the background corrected data of SrgCagCusyOy4; in Fig. 7.4.5 show-
ing the chain and ladder scattering. The intensity maps show similarities to the one

of Sry 5Cayy 5Cug40y; in Fig 7.4.3. The chains appear as highly intensive drop shaped
patches, that change their shape with changing ¢. The ladders are represented by highly
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Figure 7.4.6: Background corrected data for SrgCagCug40y4; at two different temperatures and
two different g;, showing the ladder only.
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intensive stripes around ¢; = :|:0.5277r from 30meV upwards. A feature, that seems to
be different from Sry 5Ca;q 5Cuy4Oy1, is the additional intensity maximum in the energy
region of 24 — 29meV at ¢; = :I:O.E)%Tr representing the closing of the ladder gap.

As the ladder scattering lies on top of the chain scattering between 10 — 20meV, cor-
responding to the vertical intensity stripe extending downwards, we remove the chain
scattering. To this end, the chain scattering is fitted by a polynomial at each constant

energy exactly as it has been done for Sry 5Ca;; 5Cuz4 Oy before. The pure ladder signal
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of SrgCagCuy40y; is given in Fig. 7.4.6. The intensity of the ladder clearly shows the
downward shift of the ladder down to about 8meV at 15K (upper panels) and a closing
of the ladder gap at 150meV (lower panels).

7.4.2 Cuts along energy

Constant g-cuts along energy allow for comparisons of the spectra and reveal simi-
larities and differences in the magnetic spectra of the three ladders La;Sr19Cus4Oy1,
Sty 5Cayy 5Cug4 0y and SrgCagCuyyOy;. As already mentioned we compare the spec-
tra of the doped ladders Sry5Ca;; 5Cuy40y; and SrgCagCuygyOy4y with the spectrum of
La,Sr;pCuy40y41, because LaySryoCuz4Oy4q shows the magnetic spectrum of the undoped
ladder.

Such g-cuts are shown in Figs. 7.4.7 and 7.4.8, where the panels on the left show the re-
sults at 15K and those on the right for 150K. Fig. 7.4.7 shows cuts for 0.9 < ¢;, < 1.5277r
and Fig. 7.4.8 for 1.5 < ¢; < 2%". The compound presented is indicated in each panel.
The full width half maxima (FWHM) of the peaks, that will be presented in the follow-
ing, are determined by fitting a Gaussian to each peak of the data. The resolution of
the spectrometer is not taken into account, because we are only interested in the relative
changes of the FWHM compared to the peak of the undoped ladder (see the discussion
below). Here the energy gaps are defined as the energy below the maximum of intensity
where the scattering strength is half of its maximum value.
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Figure 7.4.7: Constant g-cuts (0.47 < ¢ < 0.482F, —0.52 < ¢, < —0.51%F, and 0.9 <
qn < 1.5%”) showing the magnetic scattering amplitudes only related to the ladder structure in
LaySr19Cuz404; (top), SrgCagCu2404; (middle) and Sra 5Caiq.5Cu2404; (bottom) at 15K (left
panels) and 150K (right panels). These cuts are taken along energy from the left panels of Figs.
7.4.1,7.4.4 and 7.4.6.
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Figure 7.4.8: Constant g-cuts (0.47 < ¢ < 048, —0.52 < ¢ < —0.51, and 1.5 <
qn < 227“) showing the magnetic scattering amplitudes only related to the ladder structure in
LaySr19Cuz404; (top), SrgCagCu2404; (middle) and Sra 5Cagp.5Cu2404; (bottom) at 15K (left
panels) and 150K (right panels). These cuts are taken along energy from the right panels of Figs.
7.4.1,7.4.4 and 7.4.6.
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7.4.3 La4Sr10 Cll24041

The upper panels of Figs 7.4.7 and 7.4.8 present the spectrum of La,Sr19Cus404;, where
the chain response has been removed from the spectrum. Since La,Sr;yCuy40O4; has
no holes on the ladder, the peak with its maximum at 30.8meV represents the triplon
excitation (see discussion). We find the energy gap of the triplon excitation to be At =
(29.1 £ 0.5)meV with a FWHMr of 3.3meV at 15K and Ar = (27.9 £+ 0.5)meV at
150K with a FWHMr of 5.8meV. The decrease of the maximum intensity is discussed
in Chapter 5.

7.4.4 SrSCa6Cu24O41

The doped ladder SrgCagCus40Oy4; is presented in the middle panels of Figs. 7.4.7 and
7.4.8. In this case three peaks are present for 15K as well as for 150K. Eye catching is,
that the triplon peak at 30 — 40meV has a higher maximum intensity than the peak at
20 — 30meV for 0.9 < g5 < 1.5%7T at 15K. The peak at 20 — 30meV is referred to as the
quasiparticle-hole charge (HC) peak as will be explained in the discussion. The third
peak is located at lower energies between 7 — 15meV and is referred to as the subgap
(SG) peak and will be also explained in the discussion.

In the data of the undoped ladder La,Sr;yCuy40O4; there is only one sharp peak giv-
ing one single energy gap. Thus, any additional properties in the spectra of the doped

ladders are intrinsically connected with their content of holes.

Asg [meV] | Ayc [meV] | At [meV]
09 <gq, <152 at15K | 7.3+£0.5 | 229+0.5 |31.7£0.5
15 <gq,<2%at15K | 104405 | 23.3+£0.5 | 31.24+05
0.9 < g, <152 at150K | 83+£05 | 229+0.5 | 30.14+05
15 < g, <22 at150K | 11.7+0.5 | 23.3£0.5 | 30£05

Table 7.1: Values of the energy gaps in the spectrum of SrgCagCu2404;. The indices are short-
cuts for triplon (T), hole-charge (HC) and subgap (SG).

The energy gaps of all peaks are determined by fitting a Gaussian to the data. The
results for the energy gaps and their FWHM of the spectrum for SrgCagCus,Oy4; are

summarized in Tables 7.1 and 7.2, respectively. The position of the subgap varies a bit
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FWHMgg [meV] | FWHMyc [meV]| | FWHM7 [meV]
0.9 < g, < 1.52% at 15K 7.5 5.8 8.3
1.5 < gy < 22% at 15K 4.2 7.5 8.3
0.9 < g, < 1.5% at 150K 8.3 5.8 11.7
1.5 < gp < 2% at 150K 6.7 7.5 10

Table 7.2: Values of the FWHM in the spectrum of SrgCagCu2404;. The indices are shortcuts
for triplon (T), hole-charge (HC) and subgap (SG).

with g, (compare with Table 7.1), where the position of the charge-hole peaks and the
triplon peaks remain nearly constant.

It is clear that the peak with a gap at 30meV originates from the triplon excitation,
because it is located at the same energy as the La,Sr;(Cuy40O4; peak. Due to the broad-
ening of this peak in comparison to the La,Sr;oCuy,0,4; peak the gap moves to a slightly
higher energy. The broadening of the peak traces back to the presence of holes. The
holes might collide with the triplons, resulting in a lifetime broadening even at a low
temperature of 15K.

7.4.5 SI’2_5C311_5 Cll24041

If we turn to the doped ladder Sry;Ca;q 5Cuy404; (bottom panels of Figs. 7.4.7 and
7.4.8 ), we see again three peaks. The energy gaps and their FWHM are summarized in
Tables 7.3 and 7.4, respectively.

Agg [meV] | Agc [meV] | At [meV]

0.9 <gn <152 at15K | 6.9+05 | 229+0.5 | 27.9+0.5

15<gq,<2%at15K | 7.94£05 | 23.3+£0.5 | 283405
0.9 < gn < 1.5%% at 150K — 22.9+0.5 ——
1.5 < g, < 227 at 150K — 23.3+0.5 —

Table 7.3: Values of the energy gaps in the spectrum of Sry 5Caj; 5Cu2404;. The indices are
shortcuts for triplon (T), hole-charge (HC) and subgap (SG).

In this case the hole-charge peak between 20 — 30meV is not that obvious, because
firstly it has only one third of the intensity of the triplon peak and secondly it is overlaid
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FWHMgg [meV] | FWHMyc [meV] | FWHM7 [meV]
0.9 < g, < 1.52 at 15K 3.3 5.8 5.8
1.5 < gy, < 2% at 15K 3.3 5.8 5
0.9 < g, < 1.52% at 150K — 5.8 ——
1.5 < g, < 2% at 150K —— 5.8 ——

Table 7.4: Values of the FWHM in the spectrum of Sry 5Ca;; 5Cug404;. The indices are short-
cuts for triplon (T), hole-charge (HC) and subgap (SG).

by the triplon peak. However, it is still visible.

The peak of the subgap state is clearly seen at low energies. The situation at 150K looks
different. At 0.9 < ¢, < 1.5%7r (Fig. 7.4.7) the hole charge peak has clearly survived.
In contrast, the triplon excitation has nearly vanished in the energy range captured here.
However, it might be possible that it has moved up to higher energies with a surely
tremendously decreased scattering amplitude. This possible shifted triplon response
cannot be extracted from the data presented here, because the edges of detection are
about 35meV. The subgap state peak (Asg = 7 — 8meV at 15K) broadens that much,
that it results in a constant intensity distribution of one third to one half of the maximum
intensity values down to the lowest energy of 4meV.

7.5 Discussion

In the following we propose a possible explanation for the experimental findings de-
scribed in the preceding section. Similarities with angle resolved photo emission spec-
troscopy [40, 41] and a further INS study [42] are pointed out.

7.5.1 Undoped ladder - triplon excitation

The formation of the gapped spin liquid state in the undoped ladder is readily understood
in terms of the formation of pairs of spin singlets patterned over the lattice - a resonating
valence bond type state. Energy is required to break such a singlet and form a triplon -
an SU(2) rotational triplet excited state carrying spin S = 1. The magnetic dispersion
is characterised by an energy gap to the highly dispersive triplon [109].

The energy gap appearing in the undoped ladder is at 29meV which results from such an
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excitation of a singlet to a S = 1 triplet on a rung during the neutron scattering process.
For La,Sr;(Cuy404; the wave vector broadening at 150K in comparison to 15K traces
back to collisions among the triplons, which in turn result in finite lifetimes of the exci-
tations. This effect was described theoretically by Essler et al. [92].

7.5.2 Considerations on hole doping

Doping holes into the ladder is expected to result in the formation of charge-pairs due to
the magnetic spin pairing pushing the holes together. The paired holes can then coop-
eratively form s- or d-wave charge-density-wave (s-CDW or d-CDW), superconducting
(SC), or Wiger hole crystal (WHC), states depending on the balance of magnetic and
Coulomb interaction strengths. The consensus for the doped cuprates at low doping is
that they will either form WHC or superconducting states and that these will compete
with each other in an analogous way to how stripes and superconductivity are thought to
compete in high-T, cuprates [10]. Indeed, in the materials Sry4_,Ca,Cuy404; (SCCO)
which have hole-doped ladders Raman [114, 115], electrical conductivity [116, 114],
and x-ray diffraction measurements [117, 118] have shown that a WHC forms. Further,

for Ca substitutions z = 11 — 13 superconductivity is observed [119] under pressure.

Whilst the CDW states form at the wavevector 2kg, the instability for the formation of
the Wigner hole crystal is 4kp = 2kg + 2kff = (1 — 6)= [120] where c is the Cu-Cu
distance along the legs and kp
hole concentration ¢ on the ladders in Sr;4_,Ca,Cuy,04; (SCCO) for different Ca sub-

stitution = has been controversial. Measurements using soft x-ray resonant diffraction

, k& the bonding and antibonding Fermi wavevectors. The

(SXRD) [117, 118] have reported Bragg peaks at small wave-vectors along the ladder
direction [0, 0, ¢.] where ¢. = %—: for the Calcium concentration x = 11 and ¢q. = ?TZ
for x = 0, corresponding to repeat distances along the ladders of A = 3 and A = 5
respectively for the charge modulation. While these distances were interpreted as hole
concentrations of § = % and 0 = % (using the 4k relation above), any staggering of the
order between ladders was ignored in the analysis. In fact holes on neighbouring ladders
in close proximity are expected to repel each other due to an electrostatic repulsion of
order 0.2eV [121]. This should result in staggered ordering on neighbouring ladders as
shown in Fig. 7.5.1. For a simple on-axis Bragg peak, such as the [0, 0, L] observed

by Abbamonte and coworkers [117], the staggering will result in modified relationships
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Figure 7.5.1: Staggered ordering on different ladders (taken from Ref. [10]): The Bragg peak
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0,0, %] is in absence for this structure (left panel). The hole patterning shown would produce a

clear Bragg peak at [0, 0, %} but has a filling of % rather than % (right panel).

o= % where Z = 1,2, 3, .... Due to the short wavevector 0.47A~" for the CuL% edge
SXRD reaches only a very limited region of reciprocal space and so variations in the
hole ordering could in fact result in the inability of SXRD to observe Bragg peaks de-
spite a Wigner hole crystal forming (e.g. causing off-axis Bragg peaks). Indeed, other
techniques indicate Wigner hole ordering for all = in apparent contradiction to quantum
hole melting claimed on the basis of the SXRD showing disappearance of on-axis Bragg
peaks.

ARPES' measurements give an indication of antibonding and bonding Fermi wave-
vectors, kft and kS in the ladder plane. In the case of coupled gapped ladders the
hole density can be estimated from the putative Fermi surface using Luttingers theo-
rem [124]. Whilst Koitzsch et al. obtain a hole content on the ladders of between 0.15
and 0.2 for SCCO with z = 11.5, their analysis depends on a large shifting of the
bonding and antibonding bands between z = 0 and x = 11.5. A re-evaluation of this
approximation by Tennant [10] estimated a lower number of holes of 0.02 hole doping
per ladder copper. Niicker [125] has estimated the number of holes to be 0.08 per ladder
Cu which would match with Z = 4.

! Angle resolved photo-emission spectroscopy (ARPES) measures in principal the dispersion upon
removing an electron (equally to injecting a hole) [122, 123], allowing for a direct study of the momentum
dependence of electronic properties [6]. Therefore, in the case of the doped ladder ARPES measures a
large Fermi surface although the material is an insulator [123].
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7.5.3 Doped ladders - triplon and subgap states

The most interesting new feature presented in this work is the appearance of a new mode
extending well below the triplon gap of 29meV, down to 8meV, the ”subgap” scattering.
The subgap states are weak in intensity and are directly linked to the presence of holes.
They are observed to appear in both of the doped samples studied, Sry 5Ca;q 5Cug4Oyy
and SrgCagCusysOy;.

The subgap states are similar in both cases, with wave-vector broadened intensity ex-
tending below the damped triplons to an energy gap of 8meV. The triplons in the doped
ladders are, however, no longer resolution limited as in the undoped ladder but show
lifetime broadening, which traces back to collisions of triplons and holes. In the case of
SrgCagCus4 0y, the triplon peak is split into two peaks.

On heating to above the charge ordering temperature of about 60K for Srs 5Ca;; 5Cu24041,
the subgap states collapse and the spectrum becomes gapless. In addition intensity is
rapidly lost from the triplon mode at 30meV. This is much more distinct than for the
undoped ladder where changes only occur on the temperature scale of the gap of about
300K (see Capter 5). The same collapse in spectrum is evident in the SrgCagCus4Oy4q

measurements on heating to 150K.

To understand more about the behaviour of the magnetic dynamics and nature of the
excitations we consider the dynamics of the electronic degrees of freedom and quasi-
particles. The electronic quasiparticles form two ’bands”, an antibonding band (A) and
a bonding band (B). These have been observed in Sr14Cus404; and Sry 5Cagq 5Cug4Oyg
using angle resolved photoemission spectroscopy (ARPES) by Yoshida et al. [40] and
Koitzsch et al. [41]. The quasiparticle hole-charge dispersions show an energy gap in
SCCO for z = 0 of Ayc ~ 70meV and Ayc ~ 12meV for x = 11 [40] as expected for
the charge ordering. LDA band structure calculations for the Cu,O3 planes have been
undertaken by Arai [126] (for SCCO with z = 0 and x = 14) and Miiller et al. [127]
(for SrCuy03) which give similar results and are in “remarkable agreement” [41] with
the ARPES spectra.

The appearance of a gap at Agg ~ 8meV in the subgap states is consistent with charge
pairing occuring in SCCO z = 6 and x = 11.5 and a singlet magnetic ground state. In
addition the quasi-particles are also gapped consistent with a resonating valence bond
state with quasiparticle pairing proposed by Rice and collaborators [123]. It is interest-
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ing to this end to note that the quasiparticle-hole charge gap, 2Ayc ~ 24meV is similar
to the triplon gap At ~ 28meV. Quantum field theories [128, 129] predict dynamical
symmetry enlargement in doped ladders with small gaps compared to their bandwidths
(here we have 30meV compared to 300meV [109]) as applicable here. A key signature
of this is that the energy gaps of magnetic and charged dynamics become the same and

the similarity of 2Ayc and Ar is therefore noteworthy. The excitations are split into a

D 1 1 1 1 1 1 1 1 1
1] nz 04 086 ns 1 1:2 1.4 16 18 2

ladder wavevectar (n'c)

Figure 7.5.2: Quasiparticle-hole spectra for Sr14Cus4O4; and Sty 5Cay; 5Cug4 Oy over-
laid with the one-triplon dispersion (r = 1.5 and .y, = 0.2) at low temperature (below

the charge ordering temperature of Sry 5Ca;; 5Cu94047).

limited number of (paired) quasi-particles carrying charge e and spin %, and the triplon
mode with S = 1 [130]. At half filling (zero doping) the quasi particles disappear and
the triplon mode continuously deforms to the undoped dispersion. In Figs. 7.5.2 and
7.5.3 we show the quasiparticle-hole spectra overlaid on the one-triplon mode below
and above the charge ordering temperature, respectively. Both spectra overlap and so
providing the channel for triplon decay and therefore lifetime broadening down to the
lower boundary of the quasiparticle-hole continuum. It has been pointed out by Roux
et al. [52] that hole pairs can capture a triplon and form a bound mode as sketched
in Fig. 7.5.4, and this may explain the origin of the subgap state. On increasing the
temperature above the charge ordering temperature the quasiparticle gap is expected to
close and so the quasiparticle-hole continuum extends to zero energy as shown in Fig.
7.5.3. The observed collapse of the subgap states to gapless and the sudden loss of
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Figure 7.5.3: Quasiparticle-hole spectra for Sry4Cus404; and Sry 5Ca; 5Cuz4Oy4; oOver-
laid with the one-triplon dispersion (x = 1.5 and z,. = 0.2) at high temperature (above
the charge ordering temperature of Sry 5Ca;; 5Cu94047).

[T

Figure 7.5.4: Hole pair captured by triplons. Holes are indicated by the solid grey circles
and the spins % by the orange arrows.

intensity of the triplons as they decay more strongly in both x=6 and x=11.5 SCCO is
entirely consistent with this (compare with Figs. 7.4.7 and 7.4.8). Indeed, recent INS
measurements on x=0 [42] also show decay and melting behaviour that is consistent
with the interpretation here. An interesting point is that the triplon gap in x=6 (and x=0
[42]) is split. A possible explanation for this is that the Coulombic energy at low doping
favours the formation of charge rich and charge poor ladders as shown in Fig. 7.5.3.
The gaps would then be from the two different effective dopings in the system. Further
high resolution soft x-ray and ARPES measurements would be useful in these cases.
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C

Figure 7.5.5: Formation of charge (hole) rich and charge (hole) poor ladders at low
doping induced by Coulombic interaction: Charges (holes) are indicated by the solid
1

grey circles. The antiferromagnetically coupled spins 5 are indicated by the orange

arrows.

7.6 Conclusions

We measured the magnetic spectra of the doped cuprate spin—% ladders Srs 5Caq1 5Cugs Oy
and SrgCagCus4 04 and compared them with the spectrum of the undoped ladder
La,Sr;pCuy,04; for temperatures below and above the charge ordering temperature of
about 60K for Sry 5Caq1 5Cug4041.

The undoped ladder La,Sr;(Cus40y; is characterized by a gap between spin and charge
spectrum. Its triplon (spin) gap is located at 29—30meV and 28meV at 15K and 150K re-
spectively. The triplon gaps in the doped ladders Srs 5Ca;; 5Cus4041 and SrgCagCussOyq
are determined to be 28meV and 31.5meV respectively and 23meV at a temperature of
15K. At a temperature of 150K only for SrgCagCus4O4; the triplon gap could be deter-
mined to lie a little lower at 30meV.
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While the triplons in the undoped ladder are resolution limited [109], the triplons in the
doped cases are damped out due to possible collisions of holes and triplons. Addition-
ally the triplon peak in SrgCagCuy,Oy; is split into two peaks with the gap of the second
peak at 23meV. This is in remarkably agreement with the quasiparticle hole-charge gap
of 2Apc ~ 24meV measured by ARPES [40]. A possible explanation for the splitting
is that the Coulombic energy at low doping favours the formation of charge rich and
charge poor ladders. The gaps would then be from the two different effective dopings
in the system. In conclusion, a key signature of the results is that the energy gaps of

magnetic and charged dynamics become the same.

We could identify subgap states extending well below the triplon excitation down to
~ 8meV, which is consistent with charge pairing occurring in SrgCagCus,04; and

Srs 5Cay; 5Cu240y4; and a singlet magnetic ground state. On heating to above the charge
ordering temperature these subgap states collapse resulting in gapless spectra for both
doped ladders. In addition the triplon mode decreases in intensity stronger than for the
undoped ladder.



Chapter 8
Conclusion and outlook

This thesis contributes to three current issues related to the theoretical and experimental
study of the antiferromagnetic spin—% ladder. First, a theory at finite temperature for
the isolated ladder is developed and experimentally validated. Next, the influence of a
neighboring ladder is incorporated gaining information on zero temperature quantum
fluctuations. These findings are compared both with further theoretical and with ex-
perimental results. Finally, the effect of doping holes into the ladder is measured and
the gained data are evaluated. The experimental results thus obtained are qualitatively
related to theory. In the following the results obtained in each of these three areas are
summed up and interpreted. In addition, in each of these cases, further investigations
are proposed.

In this thesis, a theory at finite temperature for the antiferromagnetic spin-% ladder has
been developed and experimentally validated. Such an antiferromagnetic spin—% lad-
der is realized by the cuprate La,;Sr1oCuy,04;. The derivation of the model is based
on the effective one-triplon dispersion as determined by the PCUT method by Uhrig,
Knetter and Schmidt [29, 28, 90, 65]. By a mean field approach the hardcore property
of the magnetic excitations is partially incorporated in the model. In this setting the
contribution of the conditional excitation due to thermal fluctuations to the one-triplon
spectral weight at finite temperature is deduced. It can be incorporated in the theoret-
ical description by vertex corrections. Finally, quantities such as, e.g., the dynamical
structure factor are derived from the correspondingly modified spectral weight.

135
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On the theoretical side it could be shown that the modified one-triplon spectral weight
including the effect of conditional excitations diminishes for a single ladder with in-
creasing temperature affecting the dynamical structure factor in the expected way.

We compared the calculated spectral weight quantitatively with measured data for the
undoped ladder La,Sr;(Cuy40O4; using inelastic neutron scattering up to temperatures
of 150K. This is equivalent to half the spin gap energy. Both theory and experiment
exhibit only a weak overall intensity decrease below 150K, but at 150K a significant
decrease of about 25% occurs. Within the experimental and theoretical error very good
agreement between theory and experiment is found. The effective mean field one-triplon
spectral weight is presented for various values r = % and xy. = % showing that the
best agreement between data and theory at a finite temperature is given for the coupling

parameters determined previously from INS data for the dispersion in Ref. [1].

Measurements at temperatures above 150K remain for future work. They will pro-
vide further tests for the validity of the developed theory at finite temperature. Fur-
ther research, both theoretical and experimental, on vertex corrections for other low-
dimensional quantum antiferromagnets is eligible, such as for the doped spin lad-
der Sry5Cay; 5Cuy40y4;, where the effect of hole doping on the one-triplon dispersion
has to be included. In particular, a challenging project consists in the combination
of approaches studying the combined effect of line broadening of the single modes
[93, 92, 94] and of the vertex corrections.

While this combined PCUT-mean field approach was applied to the isolated ladder first,
it has also been transferred into the case of coupled ladders in a second step. Again
preceding computations due to Uhrig and Schmidt [3, 2, 4] have been extended by the
partial consideration of the hardcore feature on the mean field level. This has been
done for the square lattice as well as for the trellis lattice, which represents the relevant
geometry for the copper oxide La,Sr;yCus404; studied in this work.

For the square lattice we find that the quantum fluctuations at zero temperature only have
a small influence on the critical inter-ladder coupling strength defining the closure of the
spin gap. Using the mean field approach the critical inter-ladder coupling is enlarged by
only 3 — 4%. Thus, we conclude that incorporating quantum fluctuation does not reveal
new physical insight for the square lattice.

In the case of the trellis lattice the same approach was applied considering the different



137

lattice geometry. On the mean field level we find that the spin gap diminishes as a
function of inter-ladder coupling .., Which agrees with the findings in Ref. [4]. For
the closure of the gap we find critical inter-ladder couplings enlarged up to 21%.
Extending this approach to finite temperature, we find that the influence of quantum
fluctuations diminishes for both lattices. In general, for the same range of values T, we
find that the variability of the corresponding values for the mean field singlet occupation
number is larger in case of the square lattice than in the trellis lattice situation. However,
the scale for the inter-ladder coupling xi,, is larger for the trellis lattice than for the
square lattice. At high temperature the result for the isolated ladder is obtained, i.e., for
Tinter = 0.

Finally at a temperature of 15K and 150K respectively a ferromagnetic inter-ladder cou-
pling of hJ/jyer = (—23 + 6)meV and hJiyer = (—36 £ 6)meV respectively could be
determined from INS data of La;Sr;yCug,04; for z = 1.5 and xyc = 0.2 in the way
proposed in Ref. [4]. However, hthe error of the interladder coupling iy, is of the order
of up to 25%, thus it can only give an indication of the order of the real” inter-ladder
coupling strength.

From the convincing agreement between theory and experiment for the temperature evo-
lution of the isolated ladder one can further conclude that the coupling between neigh-
boring ladders is of lower order, because it has not been incorporated in the temperature
theory discussed in the beginning of the conclusions. However, a shift of the energy
gap in momentum space as exhibited in the case of the trellis lattice is not captured by
the temperature theory. To validate the significance of this effect, however, the inter-
ladder coupling has to be considered. Further, depending on the level of precision, on
which the theory shall be validated, the inter-ladder coupling may become important.
Combining the two-dimensional inter-ladder coupling with the temperature theory for
the isolated ladder remains for future works. In the case of improved experimental res-

olution this approach might be important to capture the physics sufficiently accurately.

Realizations of hole-doped antiferromagnetic spin—% ladders can be obtained by substi-
tution of Sr** by Ca?" as has been done, e.g., in the compounds Sry 5Ca;; 5CugyOy
and SrgCagCus40Oy4;. For these compounds INS experiments have been carried out.
While for the Sry 5Cajq 5CussOy41 sample a doping of 6 = 0.06 has been measured, the
SrgCagCusy 04y sample exhibited a doping of 6 = 0.03. For these two compounds the
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influence of holes in the ladder on magnetic excitation spectra has been experimentally
studied with INS. The results have been compared with the findings for the spectrum of
the undoped ladder La;Sr19Cus4Oy;.

While in the spectrum of the undoped ladder La,Sr19Cus404; only one peak located at
an energy of about 29 — 30meV can be found, three of them arise in the doped ladders
of Sry5Cayqq 5Cusy0y4; and Srp 5Cayqq 5Cug40yq at the same momentum. The two addi-
tional peaks are situated at lower energies than the first one. The corresponding energy
amounts in each case approximately to 23meV and to S8meV. Thus they are referred to as
the subgap states. The latter subgap state was already reported by Notbohm [1]. Com-
parison with the spectrum of the undoped ladder as a reference reveals that the peak
at about 29 — 30meV common to all samples traces back to triplon excitations of the
ladder. The corresponding features have been discussed above. Comparison with the
undoped ladder La,Sr;yCuy,0,4; suggests that the additional peaks are a consequence of
the presence of holes. In the doped ladders an addtional peak broadening is measured
and explained by lifetime effects due to collision of holes and triplons. This is qualita-
tively supported by the so called resonant valence bond (RVB) theory as well as by the
stripe ordering theory. While the peak close to the triplon peak can be explained by a
hole-pair captured by triplons, the low-energy peak is found to be consistent with charge
pairing and a singlet magnetic ground state. Above the charge ordering temperature of
Sty 5Cay; 5Cug4 Oy the subgap states collapse and the spectra become gapless with an

additional intensity loss in the triplon peak.

However, to gain a more detailed picture about the interactions of magnetic excita-
tions and holes more experiments at different doping levels are required. Finally, the
significance of an extension of the theory at finite temperature to doped ladders such
as Sry5Cagg 5Cuy40y; or SrgCagCusyOyy has already been mentioned before. Such
a theory, describing quantitatively the relevant interactions of holes and triplons and
maybe even of phonons might also be able to contribute to the understanding of high-
temperature superconducting phenomena that arise for certain members of the cuprate

family under suitable conditions.
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