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Abstract

Many types of duration data suffer both from left-truncation and right-

censoring. We show how these deficiencies can be overcome at the same

time when estimating the hazard rate nonparametrically by kernel smooth-

ing with the nearest neighbor method. We infer the uniform consistency of

the estimate from the Hoeffding inequality, applied to a generalized empirical

distribution function. Finally, we apply our estimator to rating transitions

of corporate loans in Germany.

∗Keywords. kernel smoothing, hazard rate, left-truncation, right-censoring

address for correspondence: Prof. Dr. Rafael Weißbach, Lehrstuhl Statistik, Institut

für Volkswirtschaftslehre, Fakultät für Wirtschafts- und Sozialwissenschaften, Univer-

sität Rostock, 18051 Rostock, Germany, email: rafael.weissbach@uni-rostock.de, Phone:

+49/381/4984428, Fax: +49/381/4984401.

JEL numbers; C14, C13, C24, C41, G24, G12

Financial support by Deutsche Forschungsgemeinschaft is gratefully acknowledged (SFB

823)

1



1 Introduction and Summary

Nonparametric estimation of the distribution of left-truncated duration data

has a long history, see e.g. Turnbull (1976), Woodroofe (1985), Stute (1993)

or Goto (1996). Cao et al. (2005) derive implications for the smooth estima-

tion of the hazard rate and propose a kernel estimator for the relative hazard

rate. In finance, hazard rates are important for estimating rating transitions,

and left-truncation is a major concern, see Weißbach et al. (2009). Allowing

for right-censoring only reduces the data set to observations originating after

the start of the study. Weißbach et al. (2009) loose 50% of their data that

way. Explicitly allowing for left-truncation therefore retains all observations

and improves the efficiency of parameter estimates. In addition, for smooth-

ing methods, a data-adaptive bandwidth improves the bias-variance trade-off

and reduces the boundary bias near the origin (Weißbach et al. 2008). This is

especially important for the analysis of durations of the types which concern

us here which have the time origin as left boundary.

The current standard for kernel density estimation (with independent

and identically distributed data) with data-dependent - and hence stochastic

- bandwidth is strong uniform consistency (Einmahl and Mason 2005; Wied

and Weißbach 2010). The present paper presents a nearest-neighbor kernel

estimator of the hazard function for left-truncated durations and proves its

uniform consistency. In doing so, we use the Hoeffding inequality in order to

study the local oscillation behavior of the empirical distribution, similar to

Schäfer (1986).

In our application we restrict ourselves to rating transitions into adjacent

classes. This can be justified from any continuous model for the underlying

asset. Also, in a proper rating system the rating transition intensities should

not be class-specific, so we employ only one rating transition hazard and esti-

mate it on the basis of existing selectors for the nearest neighbor bandwidth
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(Weißbach et al. 2008). We find that ignoring left-truncated data increases

the variability of the estimated hazard rates, in particular as regards to older

debt.

2 Estimating and smoothing the cumulative

hazard rate

Let Ti, i = 1, . . . , n∗ be independent, nonnegative survival times. The Ti are

observed only when Li ≤ Ti ≤ Ci, where Li denotes truncation on the left

and Ci ≥ 0 denotes censoring on the right; we condition on Li ≤ Ci. One

therefore observes only Xi := min(Ti, Ci) and δi = 1{Ti<Ci}, or nothing at

all (which happens whenever Li ≥ Ti). Without loss of generally, we assume

this to happen for observations i = n + 1, . . . , n∗ where n ≤ n∗. Figure 1

illustrates all possible scenarios.
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Figure 1: Possible scenarios when survival data are truncated on the left and

censored on the right.
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We impose the following assumptions:

(A1) (Ti ∈ R+
0 )i∈N, (Ci ∈ R+

0 )i∈N and (Li ∈ R)i∈N are i.i.d. and independent

from each other.

(A2) The respective distribution functions F , FC , FL und FX are Lipschitz-

continuous and strictly monotonic.

(A3) There exist constants 0 < A < B such that FL(A) > 0 and

FX(B) < 1.

Given an estimate Λn(·) of the cumulative hazard rate Λ(·), one can

estimate the hazard rate λ(·) via a kernel function K(·) such as

λn(t) :=

∫
R+

0

1

Rn(s)
K

(
t− s
Rn(s)

)
dΛn(s). (1)

By defining a - possibly stochastic - monotonous function Ψ̃n(·) and

Rn(t) := inf
{
r > 0 :

∣∣∣Ψ̃n (t− r/2)− Ψ̃n (t+ r/2)
∣∣∣ ≥ pn

}
we allow here both for a fixed bandwidth Rn(t) ≡ b, but also for a variable de-

terministic bandwidth Rn(t) = R(t). Li and Li (2010) suggest the k-nearest

neighbor bandwidth in various econometric contexts, extenting Gefeller and

Dette (1992). The k-nearest neighbor bandwidth is a special case of Rn(t)

when Ψ̃n(·) estimates the cumulative distribution function and pn is equal

to k/n. Throughout we require that the bandwidth parameter obeys the

restrictions 0 < pn < 1, pn −→ 0 and log(n)/(npn) −→ 0.

Under assumptions (A1)-(A3), λn(·) is uniformly consistent on the closed

interval [A,B]. More precisely we have:

Lemma 1. There exists a constant 0 ≤ D <∞ such that

P

{
lim sup

n−→∞

supt∈[a,b] |λn(t)− λ(t)|√
log(n)/(npn) + pn

= D

}
= 1 ∀ [a, b] ∈ (A,B).
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The proof is an application of Theorem 3.1 in Weißbach (2006). It is based

on integration by parts: One decomposes the error into the total variation

of the kernel and the local proximity of the stochastic processes Λn(·) to its

limit Λ(·). The total variation is calculated in an elementary fashion. The

contribution of the variability of the bandwidth to the error can be taken

into account by adapting the proof in Schäfer (1986).

The crucial assumption in Weißbach (2006) requires the following local

asymptotic behavior of the right-continuous and monotonous cumulative haz-

ard rate estimator Λn(·): For some finite 0 ≤ D <∞,

P

{
lim sup

n−→∞

supI⊂[A,B],Λ(I)≤pn
|Λn(I)− Λ(I)|√

log(n)pn/n
= D

}
= 1. (2)

We now show that the Cao et al. (2005) estimator of the cumulative

hazard rate under left-truncation obeys equation (2). This is done in two

steps. First, we construct a general estimator and show that it converges

with the rate specified in (2), and then we establish the estimator of Cao

et al. (2005) as a special case.

In the classical case of right-censored durations, one starts with the bi-

variate sample of events and censoring times. For additional left-truncation

a third dimension is needed. Let (Si)i=1,...,n be a sample of independent iden-

tically distributed random vectors Si : Ω→ R3. The hazard function can be

represented by the ratio of density and survival function. We now generalize

the survival function and drop the monotonicity assumption. We assume

a function G : R+
0 → R+

0 to be continuous, accompanied by an estimator

Gn : R+
0 × (R3)n → R+

0 , (t, s1, . . . , sn) 7→ Gn(t)(s1, . . . , sn) being symmetric

for each fixed t ∈ R+
0 and s1, . . . , sn ∈ R3. In addition, we use the simplified

notation Gn(t, ω) for Gn(t)(S1(ω), . . . ,Sn(ω)).

With respect to the handling of censoring, it will in addition prove useful
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to define a weight function by the mapping ∆ : R+
0 ×R3 → R+

0 , (t, s) 7→ ∆t(s)

with simplified notation ∆t
i(ω) for ∆t(Si(ω)). All ∆t

i(ω) are assumed to be

bounded (from above) by a ∆max on the interval [A,B].

Let the function Ψ : R→ R+
0 be continuous, positive and strictly mono-

tonically increasing on the interval [A,B]. We now propose to estimate Ψ(·)

by

Ψn(t) :=
1

n

n∑
i=1

1{S1
i≤t} ·∆

t
i

Gn(S1
i )

, (3)

where S1
i is the first element of the vector Si.

The local consistency of the estimate (3) requires some assumptions on

the target function, on the observed random variables and on the rate of

convergence of Gn(·) to G(·). Our result is as follows:

Theorem 2. Under regularity conditions (A1)-(A3) and additional condi-

tions (B1)-(B4) specified below, there exists a constant

0 ≤ D ≤ 2(
√

2 · (2∆maxM + Ψ(B)) +DGM)

such that

P

{
lim sup
n→∞

supI⊆[A,B],Ψ(I)≤pn
|Ψn(I)−Ψ(I)|√

log (n)pn/n
= D

}
= 1.

The additional regularity conditions are:

(B1) There exists a finite constant M := supt∈[A,B][G(t)]−1.

(B2) [1{t≤a}∆
a
i − 1{t≤b}∆

b
i ][G(t)−Gn(t)] = 0 for all t 6∈ [a, b] ⊆ [A,B].

(B3) For each fixed t ∈ [A,B], 1{S1
i≤t}∆

t
i/G(S1

i ) is an unbiased estimator for

Ψ(t) . In case (Si)i=1,...,n are only observable under a condition, the

estimator is conditionally unbiased.
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(B4) For G(t) and Gn(t) let a constant 0 ≤ D ≤ DG <∞ exist, such that

P

{
lim sup
n→∞

supt∈[A,B] |Gn(t)−G(t)|√
log (n)/n

= DG

}
= 1.

The proof of Theorem 2 relies on the following preliminary estimator with

known G(·):

Ψ∗n(t) :=
1

n

n∑
i=1

1{S1
i≤t} ·∆

t
i

G(S1
i )

.

The aim is to split the difference |Ψn(I) − Ψ(I)| into two parts using the

measure Ψ∗n(I) := Ψ∗n(b)− Ψ∗n(a) for I = [a, b] and to prove the almost sure

convergence for each term separately. The complete proof of Theorem 2 is

in Appendix A.

Using Theorem 2 we show next that the cumulative hazard rate estimator

of Cao et al. (2005) has the required local convergence rate
√

log(n)pn/n.

We let F (·) be the distribution function and f(·) the density function from

Assumption (A2) of T , which we assume to exist. It is easily seen that

Λ(t) :=

∫ t

0

λ(s)ds =

∫ t

0

dFX∗(s)

G(s)
, (4)

where FX∗(t) := P (Xi ≤ t, δi = 1|Li ≤ Xi) and G(t) = P (Li ≤ t ≤ Xi|Li ≤

Xi).

Cao et al. (2005) propose to estimate the cumulative hazard rate by

Λn(t) :=
n∑
i=1

1{Xi≤t,δi=1}

nGn(Xi)
=

∑
i:X(i)≤t

δi
]{j : Lj ≤ X(i) ≤ Xj}

, (5)

where summation occurs only over cases where Li ≤ Xi, and where Gn(t) =

n−1
∑n

i=1 1{Li≤t≤Xi} is the consistent estimate of G(·). This is the Nelson-

Aalen estimator for right-censored observations, additionally allowing for

“late entry into the under-risk set”.

7



Corollary 3. Given (A1)-(A3) and a positive zero sequence (pn) with

npn/ log(n) → ∞, there exists a constant D ≤ 2(
√

2 · (2M + Λ(B)) + 2M),

such that

P

{
lim sup
n→∞

supI⊆[A,B],Λ(I)≤pn
|Λn(I)− Λ(I)|√

log (n)pn/n
= D

}
= 1

with finite M := supt∈[A,B][P (Li ≤ t ≤ Xi|Li ≤ Xi)]
−1.

To prove local convergence of Λn(·) defined in (5) we check the conditions

(B1)-(B4) and denote its components as follows:

∆t
i := 1{δi=1} ≤ 1 =: ∆max for i = 1, . . . , n and for each fixed t ∈ [A,B],

Ψ(t) := Λ(t), G(t) := P (Li ≤ t ≤ Xi | Li ≤ Xi) > 0 on [A,B], Gn(t) :=

1
n

∑n
i=1 1{Li≤t≤Xi} and DG := 2. The remainder of the proof is in Appendix

B.

To estimate the hazard rate λ(t), we apply (1) to obtain

λn(t) :=
n∑
i=1

1

Rn(X(i))
K

(
t−X(i)

Rn(X(i))

)
δi

]{j : Lj ≤ X(i) ≤ Xj}
(6)

from Λn(·), where Rn(·) is the nearest-neighbor bandwidth.

One of the main conditions for the kernel estimation of λn(·) is the

Lipschitz-continuity of λ(·) and Λ(·), which follows from the Lipschitz-continuity

of G(·) and FX∗(·).

By assumption (A2) for FX(·), is FX∗(·) likewise Lipschitz-continuous.

Next we rewrite G(·) as follows to prove its Lipschitz-continuity:

G(t) = α−1FL(t)(1− F (t))(1− FC(t))

=

∫ t

−∞
α−1(1− F (t))(1− FC(t))fL(s)ds,

where α := P (Li ≤ Xi). One can see that the Lipschitz-continuity of FL(·)

implies the Lipschitz-continuity of G(·).
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3 An empirical application

Next we apply the techniques described above to data from WestLB AG,

Düsseldorf, which provided us with rating transitions from an internal rating

system with 8 non-default classes and 1 default class observed over seven

years from January 1, 1997 to December 31, 2003. The time origin is the

event of entering into WestLB’s credit portfolio. The history contains about

600 transitions for 359 borrowers.

A constant hazard, a common assumption in business practice (see Bluhm

et al., 2002), has been questioned by Kiefer and Larson (2007) and Weißbach

et al. (2009). As an alternative, Weißbach and Walter (2010) propose a para-

metric piecewise constant model. The asset value model of Merton (1974)

allows only transitions to adjacent classes. Other events like borrowers repay-

ing their debt without having changed rating class or the end of the study

are considered as right-censoring events. There is evidence that changing

rating classes is not class-specific, i.e. does not depend on the class h from

where the rating change starts, neither does it depend on the target class of

a transition. Hence our model for rating transitions is

λhj(t) ≡ λ(t) for h = 1, . . . , 8, j = 1, . . . , 9, |h− j| = 1, (7)

where λhj(t) = 0 for |h − j| > 1. Next we estimate λ(t) using (1). Good

results for the bandwidth Rn(t) are to be expected for the nearest-neighbor

method. The kernel function is known to have little impact; we use the

bi-square kernel K(t) = 15/16(1− t2)21{|t|≤1}.

We start by considering first transitions only. The first transition of each

borrower are the events, their time since start are the durations Ti. If a

borrower remains in its rating class for the entire study, Ti is unobservable

and the maintenance time Ci is recorded (right-censoring). The potential

second transition must be ruled out at that stage because the borrower is

not constantly under risk to migrate up to the transition from the origin.
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We observe the transitions of our data and 359 survivals, of which 60% are

right-censored. We estimate the cumulative hazard rate by the Nelson-Aalen

estimator

Λn(t) =
∑

i:X(i)≤t

δi
]{j : X(i) ≤ Xj}

.

The bandwidth parameter is crucial. We use three selectors. First a fast

solution, adapting the rule of thumb of Silverman (1986), from Weißbach

et al. (2008). For our 359 observations, the rule-of-thumb bandwidth results

in k = 123 nearest neighbors. Second, the idea of cross-validation for the

hazard rate under right-censored data and for the nearest-neighbor band-

width. This is described in Gefeller et al. (1996) and results in k = 78

nearest neighbors. Third, a plug-in rule from Weißbach (2006) which yields

k = 38. Results are displayed in Figure 2. Unfortunately, Bayes rules as

in Zhang et al. (2009) are not available for censored survival times and the

nearest neighbor bandwidth.

First of all, it is reassuring that all bandwidth selectors result in similarly

shaped hazard rates. On the left edge, near the origin and up to one year, the

hazard rate is small for all bandwidth selectors. It appears unlikely that the

well-known boundary effect is the only reason because the nearest-neighbor

bandwidth reduces the boundary bias, see Weißbach et al. (2008). And it

is remarkable that Weißbach and Walter (2010) find the first year’s transi-

tion intensities to be too low for the stationarity assumption. Hence, the

nonparametric descriptive statistics reinforces previous parametric evidence.

The mode at the one year duration seems to be an artifact of an increased

rating activity after one year. Note that transitions to rating classes beyond

the adjacent one are censored and do not even enter this analysis. As of now

we cannot explain the second mode at three-and-a-half years. The plug-in

seems to be under-smoothing.

Considering only the first transition for each rating history results in a loss
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Figure 2: Estimated transition hazard λn(t) from 359 right-censored rat-

ing transitions: Bandwidth selection by rule-of-thumb (thick-black), cross-

validation (thick-grey), and plug-in (thin-black)

of 18% of the data (see Weißbach et al., 2009). This loss can be avoided by

allowing for additional transitions later on. In particular, second transitions

are now incorporated by means of left-truncation. In detail, for borrowers

with more than one transition, the second transitions can be interpreted as

an additional Ti subject to left-truncation Li, where Li is the first transition

time. The object is not at risk to leave the rating under study until then.

The second transition is again potentially right-censored by a Ci. There are

some very rare third and further transitions which are treated similarly.

We now use estimator (6). Although the Markov property implies that

the first transition and the second transition are independent, this in turn

does not imply assumption (A1). Still we proceed by estimating the Markov

process intensity with (7) for a sample of now 542 identically distributed
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univariate durations. We use the three bandwidths calculated above for the

right-censored data set. We do this because we are interested in the improve-

ment of the estimation that can be attributed to the additional observations.

The implementation of the estimator is only available for the fixed band-

width yet. However, the fixed bandwidth can be derived from the nearest

neighbor bandwidth as in Weißbach et al. (2008). It is simply the number

of nearest neighbors divided by the sample size (of the right-censored data)

times twice the median (of the left-truncated and right-censored data set).

Here, the sample size is 359 and the median is taken from the cumulative

hazard rate estimate (5). A fixed bandwidth of 1.95 is optimal by the rule

of thumb, in cross-validation 1.24 is optimal, and 0.60 is the optimal plug-in

bandwidth. Figure 3 gives the results.

Figure 3: Estimating rating transition hazard for right-censored and left-

truncated data: Bandwidth selection rule-of-thumb (thick-black), cross-

validation (thick-grey), and plug-in (thin-black)
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Allowing for left-truncated rating transition favors second (and third)

transitions, which naturally occur later than the first. Therefore the addi-

tional 183 observations result in a more stable estimate of the hazard rate,

especially from year 5 onwards. The second mode is not pronounced any-

more in the rule-of-thumb smoothing. Allowing for left-truncation enables

risk quantification of older debt. And overall the variability decreases, which

results from using the same bandwidth as in the analysis with only right-

censored data. The additional observations result in more nearest neighbors

in the windows. The steep increase near the origin is confirmed, however,

again only few observations are added for estimation in that region.
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A Proof of Theorem 2

The proof of Theorem 2 is in four steps. First, for an interval I := [a, b] ⊆

[A,B] we establish an exponential bound for the distribution of the difference

|Ψ∗n(I)−Ψ(I)|:

P (|Ψ∗n(I)−Ψ(I)| > ε) < 2 exp

(
−nε2

2(2∆maxM + Ψ(B))(p+ ε)

)
(8)

for all p > 0, ε > 0, n ∈ N>0 and for each fixed I ⊆ [A,B] with Ψ(I) ≤ p.

Because of definition (3) and the boundedness of 0 ≤ ∆x
i ≤ ∆max <∞

Ψ∗n(I)−Ψ(I) =
1

n

n∑
i=1

(
1{S1

i≤b} ·∆
b
i

G(S1
i )

−
1{S1

i≤a} ·∆
a
i

G(S1
i )

−Ψ(I)

)
(9)

is the arithmetic mean of the n independent and bounded random variables

for each fixed I ⊆ [A,B], distributed as

TI :=
1{S1

1≤b} ·∆
b
1

G(S1
1)

−
1{S1

1≤a} ·∆
a
1

G(S1
1)

−Ψ(I).

The expectation, the variance and the bound of TI can then be calculated

for fixed I ⊆ [A,B] with Ψ(I) ≤ p.
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The expectation of TI follows from assumption (B3):

E(TI) = E

(
1{S1

1≤b} ·∆
b
1

G(S1
1)

)
− E

(
1{S1

1≤a} ·∆
a
1

G(S1
1)

)
−Ψ(b) + Ψ(a) = 0. (10)

From assumption (B1), we get the following bound of |TI | on [A,B]:

|TI | =

∣∣∣∣∣1{S1
1≤b} ·∆

b
1

G(S1
1)

−
1{S1

1≤a} ·∆
a
1

G(S1
1)

−Ψ(I)

∣∣∣∣∣
< 2∆maxM + Ψ(B)−Ψ(A) < 2∆maxM + Ψ(B) =: g.

(11)

The variance of TI can be obtained from the expectation (10) and the

bound (11) as follows:

σ2
I :=V ar(TI) = E

(1{S1
1≤b} ·∆

b
1

G(S1
1)

−
1{S1

1≤a} ·∆
a
1

G(S1
1)

−Ψ(I)

)2


< 2∆maxM · E

(
1{S1

1≤b} ·∆
b
1

G(S1
1)

−
1{S1

1≤a} ·∆
a
1

G(S1
1)

)
= 2∆maxM ·Ψ(I) < g · p.

(12)

From equations (9), (10), (11), (12) and the inequality from Hoeffding

(1963) results the following right bound:

P (|Ψ∗n(I)−Ψ(I)| > ε) < 2 exp

(
−nε2

2(σ2
I + gε/3)

)
< 2 exp

(
−nε2

2g(p+ ε)

)
for each fixed interval I ⊆ [A,B] with Ψ(I) ≤ p.

In the second step we derive the inequality

sup
I⊆[A,B],Ψ(I)≤pn

|Ψ∗n(I)−Ψ(I)| ≤ C
√

log(n)pn/n (13)

almost surely for a constant C >
√

2(2∆maxM + Ψ(B)) and large n.

On the right hand side of the inequality (8), p and ε can be substituted

with pn and εn := C
√

log (n)pn/n for C > 0 and n > 1 altering the upper

bound to

< 2 · exp

(
− log(n)

C2

2g

pn
(pn + εn)

)
= 2n−

C2

2g
pn

(pn+εn) =: An.
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The series (An) is then summable starting from some large n < ∞

only if the exponent βn := (C2pn)/(2g(pn + εn)) > 1. From εn/pn =

C
√

log(n)/(npn) and the assumptions for pn follow εn/pn → 0 and pn/(pn +

εn) → 1 for large n. The condition βn > 1 can be then achieved with

C2/2g > 1 or C >
√

2g.

As a consequence, the series (An) is summable from some large n < ∞

and only for C >
√

2g. For each I ⊆ [A,B] with Ψ(I) ≤ pn we get then

∃C >
√

2g ∃m < ∞,m ∈ N :
∑∞

n=m P (|Ψ∗n(I) − Ψ(I)| > εn) <
∑∞

n=mAn <

∞ and ∀m <∞,m ∈ N :
∑m

n=1 P (|Ψ∗n(I)−Ψ(I)| > εn) ≤ m <∞.

Because of the summability of P (|Ψ∗n(I)−Ψ(I)| > εn),

P

(
lim sup
n→∞

|Ψ∗n(I)−Ψ(I)| > εn

)
= 0

results from the Borel-Cantelli lemma for C >
√

2g, i.e. |Ψ∗n(I)−Ψ(I)| does

not exceed εn for most of the n. For large n and for all I ⊆ [A,B] with

Ψ(I) ≤ pn, we derive almost surely that |Ψ∗n(I)−Ψ(I))| ≤ C
√

log (n)pn/n.

The same inequality holds for the supremum of |Ψ∗n(I)−Ψ(I)| on [A,B]:

supI⊆[A,B],Ψ(I)≤pn
|Ψ∗n(I)−Ψ(I)| ≤ C

√
log (n)pn/n for C >

√
2g and large n

almost surely.

Using the results above we prove the following inequality in a third step:

sup
I⊆[A,B],Ψ(I)≤pn

|Ψ∗n(I)−Ψ(I)| ≤ C · pn
√

log (n)/n

almost surely for some C > DG ·M and large n.

From the assumption (B4) and the limes superior formulation of Hewitt

and Savage (1955) we get the right bound Gn(x)−G(x) ≤ |Gn(x)−G(x)| ≤

supx∈[A,B] |Gn(x)−G(x)| ≤ C ′1 ·
√

log (n)/n almost surely for C ′1 > DG, large

n and all x ∈ [A,B]. These bounds can be rewritten for Gn(x) as follows:

Gn(x) ≥ G(x)− C ′1
√

log (n)/n ≥ inft∈[A,B] G(t)− C ′1 ·
√

log (n)/n.

From assumption (B4) we have inft∈[A,B] G(t) > 0. Because of

18



√
log (n)/n→ 0, the following inequalities hold for x ∈ [A,B] and large n:

inf
t∈[A,B]

G(t)− C ′1 ·
√

log (n)/n > 0,

1

Gn(x)
≤ 1

inf
t∈[A,B]

G(t)− C ′1 ·
√

log (n)/n

and

|Gn(x)−G(x)|
Gn(x)

≤
C ′1 ·

√
log (n)/n

inf
t∈[A,B]

G(t)− C ′1 ·
√

log (n)/n
.

The following bounds for Ψ∗n(I)− Ψ(I) and Ψ∗n(I) result from the equa-

tion (13) almost surely for I ⊆ [A,B] with Ψ(I) ≤ pn, large n and C ′2 >√
2 · (2∆maxM + Ψ(B)):

Ψ∗n(I)−Ψ(I) ≤ |Ψ∗n(I)−Ψ(I)|

≤ sup
I⊆[A,B],Ψ(I)≤pn

|Ψ∗n(I)−Ψ(I)| ≤ C ′2
√

log (n)pn/n

and consequently Ψ∗n(I) ≤ Ψ(I) + C ′2
√

log (n)pn/n ≤ pn + C ′2
√

log (n)pn/n.

We then obtain the following equation from assumption (B2) almost

surely for each I ⊆ [A,B] with Ψ(I) ≤ pn and large n:

|Ψ∗n(I)−Ψ(I)| = 1

n

n∑
i=1

∣∣∣∣ 1

Gn(S1
i )
− 1

G(S1
i )

∣∣∣∣(1{S1
i≤b} ·∆

b
i − 1{S1

i≤a} ·∆
a
i )

≤ 1

n

n∑
i=1

∣∣∣∣Gn(S1
i )−G(S1

i )

Gn(S1
i )

∣∣∣∣1{S1
i≤b} ·∆

b
i − 1{S1

i≤a} ·∆
a
i

G(S1
i )

≤
C ′1
√

log (n)/n ·Ψ∗n(I)

inf
t∈[A,B]

G(t)− C ′1
√

log (n)/n
≤
C ′1
√

log (n)/n ·
(
pn + C ′2

√
log (n)pn/n

)
inf

t∈[A,B]
G(t)− C ′1

√
log (n)/n

.

By pn + C ′2
√

log (n)pn/n = pn[1 + C ′2
√

log (n)/(pnn)] it is evident, that

C ′2
√

log (n)/(pnn) can be neglected for large n because of the assumptions for

pn. For large n, we can also neglect the term
√

log (n)/n in the numerator.

For all I ⊆ [A,B] with Ψ(I) ≤ pn and for large n, we derive the inequality
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|Ψ∗n(I) − Ψ(I)| ≤ C′1
inft∈[A,B] G(t)

pn
√

log (n)/n = C ′1 ·M · pn
√

log (n)/n almost

surely.

The right bound supI⊆[A,B],Ψ(I)≤pn
|Ψ∗n(I) − Ψ(I)| ≤ C · pn

√
log (n)/n

results for some C > DG ·M and large n almost surely.

In a final step we examine the expression supI⊆[A,B],Ψ(I)≤pn
|Ψn(I)−Ψ(I)|.

This overall difference can be represented by the sum of the deviations of the

empirical and theoretical measures Ψn(I) and Ψ(I) from the preliminary

measure Ψ∗n(I) as follows: supI⊆[A,B],Ψ(I)≤pn
|Ψn(I)−Ψ(I)|

≤ supI⊆[A,B],Ψ(I)≤pn
|Ψn(I)−Ψ∗n(I)|+ supI⊆[A,B],Ψ(I)≤pn

|Ψ∗n(I)−Ψ(I)|.

Because pn
√

log(n)/n/
√

log(n)pn/n =
√
pn approaches zero, i.e.

pn
√

log(n)/n ≤
√

log(n)pn/n holds for large n.

The previously mentioned right bounds of |Ψn(I)−Ψ∗n(I)| and |Ψ∗n(I)−

Ψ(I)| imply the existence of a constant C >
√

2 · (2∆maxM + Ψ(B)) +DG ·

M , such that almost surely for large n

sup
I⊆[A,B],Ψ(I)≤pn

|Ψn(I)−Ψ(I)| ≤ C(
√

log (n)pn/n+ pn
√

log (n)/n)

≤ 2C
√

log (n)pn/n.

Due to the symmetry of Ψn(I) the limes superior formulation of the conver-

gence follows from Hewitt and Savage (1955).

B Proof of Corollary 3

The boundedness of the ∆x
i for each x ∈ [A,B] and conditions (B1) and (B2)

follow from the definition of ∆x
i . This is so because the variables ∆x

i do not

change over the x for each i = 1, . . . , n.

From condition (B4), the consistency of the estimator Gn(·)

P

{
lim sup
n→∞

supx∈[A,B] |Gn(x)−G(x)|√
log (n)/n

= D

}
= 1,

with a constant 0 ≤ D ≤ DG can be easily shown.
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The assumption (A2) for F (·) implies that the cumulative hazard rate

Λ(·) grows strictly monotonously and the hazard rate λ(·) is obviously strictly

positive on [A,B].

Now only the condition (B3) needs to be shown. We note that the vec-

tors (Li, Xi, δi)i=1,...,n are observable under Li ≤ Xi. Hence, we derive the

following conditional expectation from (L6):

E

(
1{Xi≤x} ·∆x

i

G(Xi)
| Li ≤ Xi

)
= E

(
1{Xi≤x,δi=1}

G(Xi)
| Li ≤ Xi

)
=

1∑
δ1=0

∫ ∞
−∞

1{x1≤x,δ1=1}

G(x1)
dFX,δ(x1, δ1) =

∫ x

−∞

dFX,δ(x1, 1)

G(x1)
,

(14)

where FX,δ(x, y) = P (X ≤ x, δ ≤ y | L ≤ X) is the conditional distribution

function of (X, δ).

The integral
∫
x1∈I dF

X,δ(x1, 1) for the intervals I := [a, b] ⊆ [A,B] can

now be calculated. First we express the probability P (Xi ∈ I, δi = 1 | Li ≤

Xi) in the terms of the non-observable vector (Ti, Li, Ci) as follows:

P (Xi ∈ I, δi = 1 | Li ≤ Xi) = α−1P (Xi ∈ I, δi = 1, Li ≤ Xi)

=α−1[P (Ti ∈ I, Ti ≤ Ci, Li ≤ Ti, Ti ≤ Ci)

+P (Ci ∈ I, Ti ≤ Ci, Li ≤ Ci, Ci < Ti)] = α−1P (Ti ∈ I, Li ≤ Ti ≤ Ci),

(15)

where α = P (Li ≤ Xi). Hence, we write the probabilities P (Xi ∈ I, δi = 1 |

Li ≤ Xi) and P (Ti ∈ I, Li ≤ Ti ≤ Ci) as the following expectations of the

Bernoulli-variables:

P (Xi ∈ I, δi = 1 | Li ≤ Xi) = E(1{Xi∈I,δi=1} | Li ≤ Xi)

=
1∑

δ1=0

∫ ∞
−∞

1{x1∈I,δ1=1}dF
X,δ(x1, δ1) =

∫
x1∈I

dFX,δ(x1, 1)
(16)

and

α−1P (Ti ∈ I, Li ≤ Ti ≤ Ci) = α−1E(1{Ti∈I,Li≤Ti≤Ci})

=

∫
t∈R

∫
c∈R

∫
l∈R

α−11{t∈I}1{l≤t}1{t≤c}dF (t)dFC(c)dFL(l)

=

∫
t∈I

α−1FL(t)(1− FC(t))dF (t).

(17)
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One can see that dFX,δ(x, 1) = α−1FL(j)(1− FC(j))dF (x) follows from

the expressions (15), (16) and (17). Consequently the expectation (14) can

be written as follows:

E

(
1{Xi≤x} ·∆x

i

G(Xi)
| Li ≤ Xi

)
=

∫ x

−∞

dFX,δ(x1, 1)

G(x1)

=

∫ x

−∞

α−1FL(x1)(1− FC(x1))dF (x1)

G(x1)

=

∫ x

−∞

α−1FL(x1)(1− FC(x1))dF (x1)

α−1FL(x1)(1− FC(x1))(1− F (x1))
=

∫ x

−∞

dF (x1)

1− F (x1)
= Λ(x) = Ψ(x).

Obviously the conditions (B1)-(B4) are fulfilled and the local convergence

P

{
lim sup
n→∞

supI⊆[A,B],Λ(I)≤pn
|Λn(I)− Λ(I)|√

log (n)pn/n
= D

}
= 1

follows for a constant D ≤ 2(
√

2 · (2M + Λ(B)) + 2M).
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