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Motivation

My complete answer to the late 19th century question "what is electrody-
namics trying to tell us?” would simply be this: Fields in empty space have
physical reality; the medium that supports them does not.

Having thus removed the mystery from electrodynamics, let me im-
mediately do the same for quantum mechanics: Correlations have physical
reality; that which they correlate, does not. [1|]

N. David Mermin

Modern telecommunications technologies rely heavily on optical data transmission. In
accordance with the steadily growing demand for broadband internet bandwidths for
everyday usage like high definition internet streaming and emerging services like cloud
computing, there has been and will be a rapid increase in network traffic. Keeping pace
with this expected rise in data transmission volumes in the following years will require
faster optical networks able to cope with larger amounts of data. State-of-the-art de-
vices allow data transfer rates as fast as 10 Gbps, but advancements are fast-paced. In
these premises the Institute of Electrical and Electronic Engineers already promotes
100 Gigabit Ethernet as a standard for Ethernet that can transmit at speeds of 100
Gbps. Accordingly, there is a need for laser sources with low power consumption and
fast modulation rates, which are stable under changes of external conditions like vari-
ations in temperature. Additionally, efficient interfaces of these optoelectronic devices
to common electronics are heavily sought after, requiring a semiconductor-based ap-
proach.

Especially attractive are solutions based on systems with reduced dimensionality. This
reduction is reflected in a severe modification of the carrier density of states. As the
free propagation of carriers is suppressed by introducing confinement in one or more
dimensions, the density of carrier states changes accordingly, becoming discrete in the
ultimate limit of zero-dimensional structures where no free carrier motion occurs at
all. These structures showing full confinement are termed quantum dots and some-
times referred to as artificial atoms. However, in contrast to real atoms, their optical
properties can be tailored on demand by changing the material system, quantum dot
size and other parameters, which makes them very promising candidates for appli-
cations. Their discrete density of states makes them especially attractive for building
efficient cavity-based light sources as any state not coupling to the cavity mode of inter-
est represents a loss channel. Therefore, usage of quantum dots combined with cavity



resonators with low mode volume allows one to build efficient light sources approaching
the so-called thresholdless laser, which does not have any loss channels corresponding
to spontaneous emission into other modes than the cavity mode of interest.

This thesis characterizes several industrially practicable solutions close to thresholdless
lasing and compares their properties in terms of an appropriate experimental technique:
ultrafast intensity correlation measurements. General theoretical considerations show
that a proper characterization of such very efficient lasers requires complex experimen-
tal techniques to perform quantum optical analysis of photon statistics [2]. In chapter
a brief theoretical introduction into the basic principles of light-matter coupling in
semiconductor nanostructures is given and the idea how to distinguish several possible
states of a light field in terms of their photon statistics and correlations between photon
emission events is introduced. Unfortunately, applying this techniques to semiconduc-
tor lasers requires detectors offering a temporal resolution on the order of picoseconds
and either good efficiency or a very low dark count rate at the same time. Avalanche
photo diodes, which are the commonly chosen detectors to perform these experimental
techniques for atom-based lasers, where the need for high temporal resolution is lifted,
can only fulfill one of these requirements at the same time. A different experimental
approach to this problem is presented and discussed in detail in chapter 2] The basic
idea of measuring photon statistics using a streak camera instead of avalanche photo
diodes is introduced and benefits and drawbacks of using this method are discussed.
Special emphasis is put on the effects of experimental imperfections like dark count
rates, detector dead times and timing jitter issues. The following chapters deal with
the application of the streak camera approach to several promising semiconductor light
emitter concepts. Chapter [3| focuses on the coherence properties of quantum dot en-
sembles coupled to high-quality micropillar cavities, for which recently data transfer
rates as high as 25 Gbps have been achieved [3]. These lasers offer stable output char-
acteristics over a wide range of temperatures, thus removing the necessity to adjust
the driving current to account for temperature-induced changes of the emission. This
improvement results in more compact and efficient laser designs compared to earlier
ones. For comparison, coherence properties of planar quantum well lasers are examined
in chapter [4 Though in these structures carriers are only confined in one dimension
and quantum well lasers are therefore less efficient than quantum dot lasers, they still
find widespread application. Further advantages of using quantum well structures are
designs allowing to tune the emission wavelength and offering large emission intensities.
A refined approach to create efficient light sources based on quantum wells is described
and investigated in chapter[5] When the carriers in quantum wells are strongly coupled
to the photons inside the cavity mode, mixed quasiparticles of light and matter called
polaritons become the eigenmodes of the coupled carrier-cavity system. The bosonic
nature of these particles allows to achieve a large population of these quasiparticles
in the ground state of the system without the need to achieve inversion conditions
necessary in common semiconductor lasers. This process shares some similarities with
Bose-Einstein condensation well known from diluted atomic gases and is therefore
sometimes called a polariton Bose-Einstein condensate. However, there are also strong
differences. Cavity polaritons are subject to dissipation and decay and therefore real
equilibrium as realized in atomic condensates cannot be reached. Instead polaritons



need to be inserted into the system constantly to replace the polaritons leaking from
the cavity by their photonic content. This non-equilibrium nature of the condensed
state gives rise to very rich physics and makes polaritonic condensates one of the most
heavily investigated systems of the last few years and offers various possibilities to
tailor the properties of the system in terms of the relative photonic content or spatial
extent of the condensed state. Nevertheless, coherence properties of this system and
its excitation spectrum are still not well known and understood. Therefore, systematic
studies of these properties, which are in fact the quantities defining whether polariton
condensates can really be considered on equal footing with their atomic counterparts,
are presented and compared to several theoretical predictions.






Chapter 1

Theoretical Background

The efficient usage of semiconductors structures as light sources requires detailed con-
trol of the emission dynamics. As the name suggests, there are three main strategies to
control light-matter coupling in semiconductors: Modifications of the photonic density
of states, modifications of the carrier density of states and modifications of the coupling
strength between them.

1.1 Low-dimensional Semiconductor Structures

This chapter summarizes basic theoretical concepts of tailoring the carrier density of
states in terms of low-dimensional semiconductor structures and explains their optical
properties.

1.1.1 Carrier Eigenstates under reduced Dimensionality

An analytical description of electronic motion inside a crystal must take Coulomb
interactions with all electrons and all lattice ions into account. As the numberN of
carriers in a crystal is on the order of 10%® in macroscopic structures, the corresponding
set of coupled one-particle Schroedinger equations

Hipy(7) = Expi(7)  (i=1...N) (1.1)
with
N ) N Nion R N .
0= Z Hi), + Z Hew _ion) + Z Hoo_ew (1.2)
i=1 i=1 j=1 i,k=1;i#k

represents a problem unsolvable by computational means unless further assumptions
are made. It is possible to decouple those equations by treating the collective effects of
carriers and nuclei in terms of a mean average crystal potential Uyeqn (7). This leads to
a set of Schroedinger equations using an individual carrier single-particle Hamiltonian:

{_;_mV2 + Unean(i) Y () = E(7). (1.3)
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Considering the periodicity of the crystal lattice allows for further simplification. The
mean average crystal potential will share the periodicity of the crystal. Therefore

Umean(F) = Umean(F—i—ﬁ) (14>

where @ is a basic translation between lattice sites. The Eigenstates will then take the
form of Bloch waves

—

V() = up(Fe™” (1.5)

which are composed of a periodic envelope function and a plane wave. The finite crystal
size leads to a discretization of k in all dimensions:

k; AN 5 <n; <+ 5 (1==x,y,2), (1.6)

where n; is an integer number. For bulk crystals the large number of elemental lattice
cells creates a quasi-continuum of allowed Bloch wavevectors.

The effective-mass approximation allows further simplification by treating the carriers
as quasi-free particles. The effective mass of electrons and holes in most general form
is an anisotropic tensor with components given by the shape of the conduction and
valence bands, respectively:

1 10E.(k)
M am 02 Okiky,

e,h;l,m

(I,m=ux,y,2). (1.7)

For carriers near the center of the first Brillouin zone the dispersions for both conduc-
tion and valence bands approach an isotropic and parabolic shape. In the parabolic
band approximation the effective masses of electrons and holes therefore become con-
stant numbers, yielding carrier eigenenergies in formal analogy to the free carrier case:

(1.8)

The carrier eigenstates change drastically if their motion is constrained in one or more
dimensions on the order of the De Broglie wavelength

2wh

A/ 3m:vthT7

where kp denotes the Boltzmann constant and 1" the temperature. In this case quan-
tization effects become prominent, which manifest e.g. in the density of states giving
the number of available carrier eigenstates within an interval dE around energy E. For
electrons in the conduction band this dependency is given by (see Fig:

A = (1.9)
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Dsp(E) = L(ﬁ)m (1.10)

272
Dop(E) = 7:’;;2Z@(E—Emg—AEi) (1.11)
Dip(E) = =y/==¢ 1.12
10(E) mV h? Z( VE — Ecp — AE; ) (1.12)
Dop(E) = Y nid(E — Ecp — AE), (1.13)

where AF; gives the difference between the conduction band minimum and the i-th
energy level in the conduction band and n; gives the degeneracy of that energy level.
It is apparent that increasing carrier confinement results in quantization of the energy
levels in the confined direction.

Up to now the properties of individual carriers have been considered. In optical experi-

v

Density of States

oD

w

E,. E Energy E

CB

Figure 1.1: Comparison of the semiconductor individual carrier density of states for
different dimensionalities. The reduction of the degrees of freedom manifests in a
discretization of the states.
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ments the excitation of an electron from the valence to the conduction band also creates
a hole in the valence band. However, due to the strong confinement in low-dimensional
heterostructures like quantum wells (2D), quantum wires (1D) and quantum dots (0D)
the Coulomb interaction between them becomes important, resulting in bound electron-
hole pair states called excitons. The binding energy of this quasiparticle depends on
the material and the dimensionality of the semiconductor structure, but is usually in
the meV or eV range.

1.1.2 Light-Matter Coupling in Semiconductor Nanostruc-
tures

The electron and hole constituting an exciton form a dipole which interacts with the
electromagnetic light field. In the simplifying picture of one photon mode interacting
with one excitonic mode in a two-coupled-oscillator model [4] the complex frequency
eigenvalues wy 1, of the coupled system are expressed as follows:

+ we
2

wyp = = —ﬂf;% i\/Mui(wm—wc—@(%—%))z, (1.14)
where w, and w, are the bare exciton and photon frequencies and ~, and 7. are the
exciton and photon mode damping rates, respectively. M is the corresponding coupling
matrix element of the two oscillators. In the case of vanishing coupling M — 0 the
eigenfrequencies of the exciton and photon modes are recovered as expected. Special-
izing to the resonant case w, = w., however, two different kinds of behaviour can be
seen for nonvanishing coupling of the oscillator modes. In the so-called weak coupling
regime 2M < |v, — 7.| the square root is completely imaginary. Accordingly the real
parts of the coupled oscillator solution still give the eigenfrequencies of the bare ex-
citon and photon modes, but the decay rates are altered significantly, resulting in an
enhancement of the exciton decay rate. In the strong coupling regime 2M > |y, — 7|

the square root becomes entirely real and a Rabi splitting Qp = 2\/|M|2 — (Ve — V2)?
between the eigenfrequencies of the coupled system occurs. The crossover from weak
to strong coupling is illustrated in Fig[l.2] as a function of the dipole interaction ma-
trix element. The splitting occurs in the imaginary part of the frequency in the weak
coupling and in the real part of the frequency in the strong coupling regime. Obviously
both the splitting in the strong coupling regime and the enhanced decay rate in the
weak coupling regime are of interest for applications in photonics and for manifactur-
ing tailored light sources. However, in order to reach these regimes the strength of
the interaction between exciton and photon modes needs to be increased significantly
compared to the bulk case. Semiconductor nanostructures offer two possibilities to
address this issue: Confining the light field by introducing a microcavity, which will
be discussed in the next chapter, and increasing the exciton oscillator strength by de-
creasing the exciton Bohr radius.

Modifications of the exciton Bohr radius rely on the interaction matrix element M
dependence on the overlap integral of the electron and hole envelope functions y inte-
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Figure 1.2: Transition from weak to strong coupling with increasing interaction matrix
element. The red dashed line indicates the boundary between both regimes. The
upper panel shows the splitting of the eigenmodes in the strong coupling regime. The
lower panel shows the enhanced decay rate of the excitonic mode in the weak coupling
regime.

grated over the whole volume [5]:
Mo [ a7 (1.15)
v

For free electron and holes without any confinement potential the envelope functions
are plane waves,

Xk, = exp(ik.r) (1.16)
Xogn = exp(ikpr). (1.17)
In this case the overlap integral reduces to the momentum conservation condition

) (k_; — k:_;;) For an exciton the envelop function consists of a plane wave for the center of
mass motion with momentum K and the bound relative motion. Here the momentum
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conservation condition becomes K = 0 and the overlap integral is enhanced by aKb?’

[6] as long as the volume of interest allows coherent addition of the dipoles which is
usually the case if the size of the volume is comparable to the wavelength of the em
field interacting resonantly with the exciton. Unlike free electrons and holes moving
independently through the volume V', the electron and hole move together with an
average separation a, depending on the confinement, increasing the probability of an
optical transition. Still, this relation also opens up another problem. The total oscilla-
tor strength also depends on the total volume. Especially for quantum dots with sizes
in the range of 100 nm, microcavitites are additionally used to increase the light-matter
coupling.

1.2 Semiconductor Microcavities

1.2.1 Planar Microcavities

While the possibility of changing the electronic density of states has already been
discussed, another strategy to modify the light-matter interaction lies in tailoring the
photonic density of states. A convenient way to realize this lies in using an optical
resonator. The resonant optical modes will be confined while other modes will be
suppressed inside the cavity. The frequency width of the resonant enhancement is
characterized by the quality factor

Wm

Q=" (1.18)

- OWm

which is the ratio of a resonant cavity mode frequency to the linewidth of the mode.
Equivalently, the lifetime of a photon in a cavity is given by 7, = % One of the
main problems of enhancing the exciton-photon interaction rate in nanostructures is
the small volume of the nanostructure, in which the interaction can take place. To
increase the efficiency of the coupling it is necessary to keep the ratio of the interaction
volume to the total volume of the cavity as large as possible. This is achieved by using
microcavities: cavities with a length close to the dimension of the wavelength of light.
The small volume of the semiconductor nanostructure leads to a need for extremely
high reflectivities beyond 99 % in order to achieve efficient exciton-photon coupling [7].
Metallic mirrors are in most cases not sufficient to reach such high reflectivities. A
common choice to realize better confinement of the photons are distributed Bragg re-
flectors. These structures consist of many pairs of multilayers of materials with different
refraction index surrounding a central cavity. For most of the structures examined in
this thesis the chosen materials and refractive indices will be GaAs (ngeas = 2.95) and
AlAs (najas = 3.65). These materials have almost identical lattice constants allowing
growth of heterostructures by means of molecular beam epitaxy (MBE). The thickness
of each of the layers is chosen such that the optical path length in each of the layers
is a quarter of the designed central wavelength A\ of the cavity mode and each of the
double layers shows a reflectivity determined by Zi—‘;ﬁ ~ 0.808. The central cavity is
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usually chosen as a A-cavity with a length of Ly = nGA . The electromagnetic field

inside the cavity can be described as a standing wave with antinodes at the center of
the cavity and at the interfaces of the cavity to the DBR-structures. Accordingly the
em-field will penetrate into the mirrors [§], resulting in an effective penetration length
of

A NGaAsTVALAs

Lppr = (1.19)

2NnGaAs NAIAs — NGaAs
and a total effective cavity length of L.sf = Lr + Lpggr [9]. The total reflectivity of
the structures is given by a broad spectral region of high reflectivity centered around
A which is called stop band. In the stop band the total reflectivity depends on the
number N of pairs of mirror layers as [10]:

1 n 2N
R=1-4 ( G“AS) . (1.20)
NGaAs NAlAs

Under imperfect growth conditions the center frequency of the stop band w, and
the frequency corresponding to the length of the cavity w,. are not necessarily identical.
In this case the cavity mode frequency is given by [11]:

_ Lrwe.+ Lpprws

(1.21)

m

Legs

As the penetration depth into the mirrors is usually larger than the cavity length
this means that the central mode frequency is mostly determined by the center of the
stop band and not by the cavity length.

The planar microcavities described up to now rely on axial confinement causing a fixed
axial wavevector k, = 2—7; There is no confinement perpendicular to the growth axis,
so the cavity photon will have an in-plane dispersion leading to a cavity photon energy
of approximately

he

NGaAs

E():

k2 + kﬁ (1.22)
For small k| this is a parabolic dispersion and can be described by the cavity photon

gaining some effective mass

hnGaAs

CLR ’

Meay = (1.23)

The resulting effective cavity photon mass is very small. Usually it is about five orders
of magnitude smaller than the electron mass [12]. It should be noted that the calcula-
tions above work very well for empty cavities. More complicated structures containing
emitters are handled in terms of transfer matrix theory.

1.2.2 Micropillars

Further reduction of the mode volume can be achieved by confining the em field inside a
cavity in all three dimensions. This is realized by combining electron beam lithography
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with plasma etching to create cylindrical pillars of varying diameter from a planar
microcavity. In the simplifying case of perfectly reflecting sidewalls the cavity modes
are then given by: [13]

h2c?
Erpm, = | E; + 5— (K2, + k2,..), (1.24)
. nG’aAs

where the lateral wavenumbers are given by k;,, = m(n; +1)/Lra, Lra is the lateral
size of the cavity, ¢ = x,y and n; are integer quantum numbers starting from 0.For the
most common case of a cylindrical pillar the mode spectrum is given by:

h2¢2 %n
E:\/Eg+ ¢ Tnomr. (1.25)

2 2
NGaAs Rca'u

Here R defines the radius of the pillar and 7y, ,, is the n,th zero of the Bessel func-
tion Jy, (1, .n,7/R). Obviously the mode energies become blueshifted with decreasing
pillar diameter due to stronger confinement. It becomes possible to tune the funda-
mental mode energy by choosing an appropriate pillar diameter during growth of the
structure. Further, the free spectral range between two non-degenerate modes of a mi-
cropillar which is of importance for the efficiency of micropillar lasers, increases with
decreased diameter. However, also the losses due to scattering at the micropillar side-
walls and intrinsic losses increase for small pillar diameters [14], resulting in a reduced
Q factor. Therefore it is not feasible to reduce the pillar diameter far below 1 pm.
Taking applications into account it should also be noted that the fundamental mode
of a circular micropillar is twofold polarization degenerate.

1.3 Quantum mechanical description of strong cou-
pling

Although strong coupling has also been reported for quantum dots in a microcavity
[15] this section will focus on quantum wells in planar microcavities. A naive classical
picture of the strong coupling regime of two oscillators has been given in section [1.1.2
Nevertheless, a thorough description of strong light-matter coupling requires a fully
quantum-mechanical picture. This section will follow the approach given in [16]. Ne-
glecting off-resonant terms the Hamiltonian for a coupled system of light and excitons
becomes

H = hweata 4+ hwxb'b + hg(abt + a'd). (1.26)
The detuning of the eigenenergies is given by
hA = h(wc - wx). (127)

Mode a describes cavity photons as introduced in and is a pure Bose operator
which obeys the commutation relation

[aa'] = 1. (1.28)
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Mode b describes the excitation in the material and can be anything from a pure Bose
to a pure Fermi operator depending on the kind of excitation considered. For excitons
b becomes approximately bosonic in the low-density limit and the Hamiltonian
represents two linear oscillators coupled with interaction strength g. This problem
can be described in the basis |7, j)pare With ¢ being the number of excitations in the
material and j being the number of photons. These states are called bare states and
this description gives an intuitive picture of the excitation and loss processes as in a
microcavity usually the losses are bare photons escaping through the DBR mirrors and
the matter excitations are directly created by external pumping.

In the Heisenberg picture the time dependence is given by

d(t) o . COS % — z% sin % _22'% sin % d(O)
[E(t)] = exp (—iwt) { —2i% sin &t cos &t +i% sin &t b(0) ]’ (1.29)

where w = (wx + we)/2 and G = y/4g? + A?. Obtaining observables is now straight-
forward. The population for a state with initial condition [1)) = k|1, 0)pare + C|0, L)pare
is given by
2
4

(@ta)(t) = |#]? cos? (%H'A’”G—fcg' sin? (%) —%(FJC*)E‘Q cos (%) sin (%). (1.30)
The oscillatory terms in the population and the off-diagonal terms in [1.29| already
show that a system prepared in a bare state will not stay in this state, but evolve. The
evolution is plotted in figure for a state with ( = 0 and k = 1. The population
oscillates back and forth between the bare states at the generalized Rabi frequency G,
resulting in the so-called Rabi oscillations.
Another approach is to diagonalize the Hamiltonian [1.26|in a basis of dressed states .
In the Schrodinger picture the most general substitution is given by

p = aa+ b (1.31a)
q = ~a+ db. (1.31D)
a, 3,7, 6 are complex quantities. p and ¢ shall remain bosonic operators, therefore
6.5 = (3,4 = |af* + 18] = y[* + o] =1 (1.32)
and
6,4 = [p,4'] = ay* + 86" =0 (1.33)
The bare states can be expressed in this new basis as
X op — Bq
- e 1.34
a PR (1.34a)
; —p+aq
= —, 1.34b
ad — By ( )
Substituting those into yields
(ad = py)*H = p'p [ho(l6]° + [7[*) — hgS(67y)] (1.35a)
+ §'q [hw(B° + [af’) — hgS(Ba) (1.35D)

+ p'q [hw(=B0* —v*a) + hg(ad* + By*)] + h.c. (1.35¢)
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Figure 1.3: Population (a'a)(t) for a state prepared with initial condition [¢y) =
|1,0)pare as a function of time for different detunings. The population undergoes Rabi
oscillations. Detuning increases the transition rate, but lowers the conversion efficiency.

Diagonalizing the Hamiltonian requires the terms in line to be zero. This condi-
tion is fulfilled if

ad” 4 By = 0. (1.36)
All the requirements are met when choosing o = cos (6), f = sin (#), v = —sin (#) and
d = cos (f). The final form of p and ¢ is given by
p = cos(#)a+sin (0)b (1.37a)
¢ = —sin(0)a+ cos (6)b, (1.37h)
where AL
cos (0) il (1.38)

V202 1 8¢ + 20G
6 is the so-called mixing angle. The Hamiltonian is now diagonalized:

H = hw,p'p + hwyi'q. (1.39)
The eigenfrequencies of the eigenmodes are given by
G
Wpjg = W £ — (1.40)

2
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and plotted in figure [I.4 This diagonalization approach is basically what is known as

1.70 — . , . , : , . ,

1.68

1.66

1.64

1.62

1.60

1.58

Energy (eV)

1.56

1.54

Figure 1.4: Eigenenergies (red lines) of the system given by as a function of
the detuning § given in multiples of the interaction strength g. At zero detuning an
anticrossing is observed. For large detunings the bare modes (black lines) are recovered.

Bogoliubov transformation.

In the following dressed states will be denoted as |n,m) with n dressed particles of
energy hw, and m particles of energy hw,. It is now straightforward to define sets of
states with fixed total number of excitations N. These read

Hy ={|n,m),n+m =N}, (1.41)

where n and m are non-negative integers. Any excitation escaping the system by
photon leakage out of the cavity or nonradiative exciton recombination can be seen
as a transition from Hy to Hy_;. These processes remove one excitation from one of
the oscillators and only transitions from |n,m) to [n — 1,m) or |n,m — 1) are allowed,
carrying away energy amounts of hw, and hw,, respectively. It is a bit surprising
that the emission of a photon carries away the energy of a dressed particle instead
of the energy of a bare photon. This behavior shows that the quantum mechanical
system is in full analogy to the classical case where the coupled system behaves like
two independent oscillators with frequencies w,/w,. To clarify what this means it is
instructive to examine the experimentally most relevant case of vacuum Rabi splitting
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and neglect the experimentally also observable higher rungs [17]. Here H; is coupled
to the single vacuum mode, resulting in a doublet of transitions. One can calculate the
amplitudes of these transitions in terms of the bare state annihilation operators as:

M, = (0,0/al1,0) = a(A/g) (1.42a)
M, = (0,0]a0,1) =y = —a(—=A/qg) (1.42b)
My = (0,00]1,0) = 8 = a(—A/g) (1.42¢)
M, = (0,00]0,1) =6 = a(A/g). (1.42d)

Those amplitudes are shown in figure [I.5] The physical quantitity of interest is the
square of theses amplitudes:

IX[P = Ja(A/g) (1.432)
IC1* = Ja(=A/g)". (1.43b)

These are the so-called Hopfield coefficients [I8]. They can be considered as the rel-
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Figure 1.5: Transition amplitudes between the vacuum and dressed states with one
excitation (left) and corresponding intensities (right) as a function of the detuning.

ative weight of the bare states in the dressed states. Accordingly one can interpret
the dressed states as quasiparticles composed of excitons and photons with relative
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photonic and excitonic content depending on the detuning. In the quasiparticle pic-
ture the mode with energy fw, is called lower polariton. Its excitonic fraction |X|°
gets larger with increased detuning, while its photonic fraction |C |2 gets smaller. Due
to the antisymmetry of the transition amplitudes with respect to the detuning, the
mode with energy hw, behaves the other way around and is called upper polariton. Its
excitonic fraction is given by |C ]2 and gets smaller with increased detuning, as shown
in figure [1.5] Accordingly it is possible to precisely adjust the excitonic and photonic
contents of polaritons by changing the detuning.

In order to fully describe microcavity polaritons, it is now necessary to take the micro-
cavity dispersion into account. The energy of cavity photons depends on their in-plane
wavevector kj. Accordingly also the corresponding polariton energies will show a dis-
persion depending on k. This dispersion will depend on the energy mismatch

Ar = Ec(ky) — Ex (k) (1.44)

between the bare cavity photon dispersion E¢x (equation [1.22)) and the bare exciton
dispersion which is given by

EY% = Egap + Ec(k)) + En(k)) + E,. (1.45)

Here gy, is the band gap energy of the material, £, and Ej, are the electron and hole
dispersions given by equation [1.§and E,, is the binding energy of the bound state with
quantum number n, treated in analogy to the hydrogen atom. The dispersions for the
upper and lower polariton branches are then given by

By (k) = %(Ex(kn) + Ec(ky)) £ %\/Ai + 4h2g(ky), (1.46)

respectively. Also the Hopfield coefficients become dependent on kj:
Ay

1
o = Z(1— ——8 1.47a
|Ck| 2( AerZWQQ) ( )
1 A,
X = -+ —— 1.47b
| Xk | 2( AszWg,) ( )

and therefore also the excitonic and photonic fractions of polaritons will depend on
k. Accordingly also the lifetime 7, p/p of polaritons is composed of the excitonic and
photonic lifetimes 7x and 7 and will show a detuning-dependent variation on kj[19)]

1 Col> 1 X0|?
:| k:| +| k| (1.48)

TLP(]{JH) TC X

The lower polariton becomes most photonic and the lower polariton lifetime therefore
becomes close to the cavity photon lifetime at small k)|, especially for negative detuning
as shown in figure . For large k| the lower polariton becomes almost completely
excitonic. For comparison equation is plotted in figure for positive, negative
and no detuning. The exciton-photon interaction results in an avoided crossing of the



18 Theoretical Background

1.0

0.8} IX(ku)|2 1

06l 100}

0.4}

0.2} 2]

[Clk)I 10}
0.0 - s - . . .
10 5 0 5 10 -10 5 0 5 10
1.0

0.8}

0.6

0.4}

0.2}

0.0

1.0

Hopfield coefficients

0.8}
06l 100}
0.4}

0.2}

104
0.0 L N L s s
-10 -5 0 5 10 -10 -5 0 5 10

K, (um)”

Figure 1.6: Left panel: Hopfield coefficients as a function of k|| for 2hg = 14.4 meV. The
coefficients are displayed for detunings of +5meV (top), 0 meV (middle) and —5meV
(bottom). Right panel: Corresponding lower polariton lifetimes for the same detunings
assuming a cavity lifetime of 5 ps and an exciton lifetime of 500 ps.

polariton dispersion. In this simple treatment the appearance of this anticrossing is
independent of the strength of the interaction. A more realistic model is given by
taking also the broadening of exciton and photon resonances into account by adding
imaginary components to the bare exciton and cavity photon dispersions and
in a similar manner as in the classical treatment of equation [I.I4] The broadening
terms are given by —iyx and —ive, respectively. ~yx is the broadening induced by
exciton interactions with phonons or other particles and ¢ reflects the finite linewidth
caused by the finite reflectivity of the microcavity. This linewidth depends inversely
proportional on the microcavity quality factor. For zero detuning the photon and
exciton states are exchanging energy at the Rabi frequency 2z and equation then
becomes

Ey (k) = %(Ex(kl) + Ec(k)) —ivx —ive) £ %\/4712% —(ix =) (1.49)

Obviously this expression will depend strongly on the sign of the expression below
the square root hQdp = \/4h2Q% — (vx — o) If 2hQr > |vx — el By exhibits a
Rabi splitting of the system eigenmodes in analogy to the classical treatment. This




1.3 Quantum mechanical description of strong coupling 19

Energy (eV)

Figure 1.7: Exciton-polariton energies at detunings of —5meV (left), 0meV (middle)
and +5meV (right). Solid black and red lines correspond to the lower and upper
polariton dispersion, respectively. Dashed blue lines give the eigenmodes of the bare
system.

behavior is a sign of the strong coupling regime. It should be mentioned that this
splitting is a purely theoretical quantity and does not necessarily coincide with the
splittings measured in experiments. In particular, there will be different splittings seen
in transmission, absorption, reflectivity and photoluminescence measurements [20]. In
the high-reflectivity limit these are given by

"y = 2\/ VRG22 (7x + 7o) — 12 (1.50a)
1

2
Wp = 2\/\/h4G4(1 + X2 4 op2G2e2 (1 4+ X —2m2G2 X 42 (1.50¢)
e Yc Yc

p, = \/ZHQL\/?’LQQ% + (vx +70)? — B2Q2 — (vx +70)2 (1.50d)

Those splittings and hQ;, are plotted in figure [[.8] Obviously none of the experi-
mentally obtainable splittings corresponds to h€2y. It is therefore not trivial to show
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Figure 1.8: The splittings as seen in the five different quantities mentioned in the text
for 2h2r=14.4meV as a function of the exciton broadening. The left panel corresponds
to a bad cavity with a cavity mode line width of 5meV. The right panel shows the
results for a better cavity with a line width of 0.5 meV.

unambiguously that a system is indeed in the strong coupling regime as a splitting seen
in the experiment is not necessarily proportional to A{2;. However, it can be shown
that the following relation holds [21]:

hQr > hQp > K, (1.51)

and also €2, > Q4. The splitting in absorption is always a sufficient condition to ensure
that the system is in the strong coupling regime. In the good cavity limit the splitting
in photoluminescence can be a good approximation of A{2;, but should not be taken
as a proof of the strong coupling regime.

If AQr < |vx — ¢ the square root becomes imaginary and the energy splitting dis-
appears. Such behavior marks the weak-coupling regime where a description in terms
of weakly interacting bare cavity photons and excitons is appropriate and the energies
of the bare modes can become degenerate at some k|| as already seen in the classical
description given in section (1.1.2
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1.4 Classification of Light Fields

Besides obvious parameters like frequency, polarization or intensity there are also fur-
ther characteristics of light fields which manifest in their coherence properties, which
can be described by a hierarchy of correlation functions stating with the field-field
correlation function

(B~ (11, 1) BT (7, ) ‘
VB, 0) P (B, o))

E~ and E* denote the negative and positive frequency parts of a mode of the light field,
respectively. ¢! is a measure of phase correlations of a light field and reflects in the
contrast of interference patterns of the em field. The two common quantities deduced
from ¢(!) are the coherence time 7., and the correlation length [.,, which give the
time and distance over which phase correlations are maintained, respectively. Still, a
complete characterization of em fields which is also able to identify nonclassical states
requires consideration of correlation functions of at least second order. Neglecting
any spatial dependencies the normal-ordered second-order photon number correlation
function is given by

g(l)(FlathF?th) == (152)

(af(tr)a(t))(at(t2)a(tz))’
where a' and @ are the photon creation and destruction operators for the photon
mode of interest, respectively. The normal-ordering assures that the change of the
state of the em field introduced by the detection of a photon is taken into account.
For stationary light sources ¢® will only depend on the relative delay 7 between two
photon detections:
@, {al()al(t +7)a(t)a(t + 7))
9-7(7) = NV :
(X)) (At + 7))
where the averages are time averages and n denotes the photon number of the mode
of interest. ¢ can be considered as the conditional probability to detect a photon
at a delay 7 after the detection of a first photon, normalized to the probability of
a second detection for photons which are emitted statistically independent of each
other. For very large delays 7 — oo the photon emission events are uncorrelated
in any state of the light field, so ¢ (r — o0o) = 1. It is possible to distinguish
three basic kinds of states of the light field, namely thermal, coherent and nonclassical
light, by comparing ¢ (7 = 0) to ¢ (7 — o) depending on whether the probability
for simultaneous detection of two photons is increased, unaltered or decreased. The
enhanced or decreased photon pair detection probability relaxes back towards 1 on a
timescale depending on the coherence time of the light as shown in Fig[T.9] Accordingly
the value of the equal time second-order correlation function

g2(0) = PWn®=1)

(1.54)

(1.55)
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Figure 1.9: Second order correlation function g‘®(7) for thermal, coherent and non-
classical light. 7 is measured in multiples of the coherence time 7., of the light field.

is a good characterization of the state of the light field. It is composed of three terms:
The first term is a unity valued constant. The negative second term describes the
change of the state of the light field induced by the detection of the first photon.
The positive third term takes the intrinsic noise of the photon emission process into
account in terms of the relative photon number variance. Correlation functions can be
generalized up to arbitrary order to describe the probability of n-photon detections.
The most general definition of a nth order correlation function is given by

g™ty ) = (1.56)

The double stops denote normal ordering of the underlying photon creation and an-
nihilation operators. The statistical properties of coherent, thermal and nonclassical
light will be discussed in more detail in the following sections.
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1.4.1 Coherent States

In a classical picture both amplitude and phase of a wave are well defined. Any quantum
approach to a description of the light field must, however, be in accordance with the
Heisenberg time-energy uncertainty relation

AEAt > h (1.57)
or equivalently the uncertainty relation for photon number n and phase ¢
AnAg¢ > 1. (1.58)

Coherent states are one realization of minimum uncertainty states (AnA¢ = 1) with
the uncertainties distributed equally among the two quadratures

a+al
- 1.59
NG (1.59)

b — af
p = 28 (1.60)

V/2i

of the field and the closest approach to a classical wave picture without any uncertain-
ties. Another similarity of coherent states to the classical description is found in their
immunity to loss. Considering only single modes, coherent states |«) are eigenstates
of the annihilation operator a:

ala) = ala) (1.61)

with complex eigenvalues a = |a| exp (i¢). The statistical properties of coherent states
can be calculated by using the photon number states |n) as a basis and expressing
coherent states as a superposition of photon number states

0) = Y In)nla)
= Yew(—zloP) S5l (1.62)

n

It is now possible to calculate the photon number probability distribution in this basis
as

Poon(n) = |<n|a>y2

(1.63)

which corresponds to a Poisson distribution with mean photon number (n)e, = |of?
as shown in the upper panel of For this distribution the most probable photon
number coincides with the mean photon number. The Poisson distribution describes
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statistically independent events which is another characteristic similar to the classical
description. This behavior also reflects in the equal time correlation function as defined
in equation [1.55] The variance of a Poissonian process is given by ((Anen)?) = (n).
Accordingly the third term in equation |1.55 becomes equal to % and exactly cancels
out the effect of the second term describing the effect the detection of the first photon
had on the light field. Only the constant factor

gen(0) = 1. (1.64)

is left, indicating that the photon emission and detection events are indeed statistically
independent for coherent states regardless of the intensity of the mode. This result
remains unaltered for correlations up to arbitrary order:

gem (0) = 1. (1.65)

Any state of the light field can be decomposed into a superposion of coherent states.
However, coherent states are in general not orthogonal [22]. Therefore they form an
overcomplete basis.

1.4.2 Thermal States

The concept of thermal or chaotic radiation refers to a radiation field which is in
thermal equilibrium with a black body acting as an emitter. This means that emission
and absorption of the black body cancel out. Accordingly the corresponding quantized
radiation field can be considered to have an effective temperature T matching that of
the black body. The spectrum of thermal radiation follows an universal form given by
Planck’s law with temperature acting as the only parameter. For thermal radiation
the spectral energy density per unit volume is given by

h w3dw
m2c3 exp (hw/kgT) — 1

u(w)dw = (1.66)

where kp is the Boltzmann constant. At a fixed temperature the photon number
distribution for a single mode of the light field is given by a Bose-Einstein distribution
of known mean photon number:

(n)"

BT RS

(1.67)

This distribution is shown for several mean photon numbers in figure[I.11] Independent
of the mean photon number the most probable photon number is always 0 which is a
striking feature of the Bose-Einstein distribution. Accordingly thermal states of the
light field show larger photon number fluctuations compared to coherent states which
manifest in the variance and the higher order moments of the Boltzmann distribution.
The variance is given by ((Ang)?) = (n)? + (n). Inserting this result into equation
[1.55|shows that similar to the coherent case all photon number dependent contributions
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cancel out and a constant result remains. However, due to increased photon number
fluctuations the result is twice as high as in the coherent case:

g (0) = 2. (1.68)

The resulting photon bunching is a signature of thermal states. In a classical pictures
this effect is caused by strong fluctuations of the momentary photon number around
the mean photon number. Detection of a photon means that it is very probable that
the momentary intensity is much larger than the mean intensity. Accordingly the prob-
ability to detect another photon is increased. Calculation of higher order correlation
functions can be performed by evaluating the higher order factorial moments of the
Boltzmann distribution. It turns out that the simultaneous detection probability shows
a factorial dependence on the number of photons simultaneously detected:

g (0) =n!. (1.69)

Explaining this effect in a quantum mechanical picture is more difficult, but can be
done in terms of interference of indistinguishable probability amplitudes [23]. This

: :
b :

Figure 1.10: Schematic picture of interfering two-photon probability amplitudes.

explanation is illustrated in figure [I.10, There are two particle sources a and b and
two detectors A and B. Assuming that each source can only emit one particle at a
time, there are two possibilities to realize simultaneous detections at A and B. Either
a particle is emitted at a and detected at A and another particle is emitted at b and
detected at B (red arrows) or vice versa (green arrows). The corresponding probability
amplitudes describing the processes of particle emission at one source and registration
at one detector are termed D, 4, Dy g, D, g and Dy 4, respectively. The probability of
a simultaneous detection event in terms of these probability amplitudes is given by

Pist = |Da,ADb,B|2 + |Db,ADa,B|2 (1.70)

if the two possible events leading to the simultaneous detection are distinguishable. If
those events are indistinguishable the situation changes as the probability amplitudes
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must now be added causing a different probability of a simultaneous detection:

Pindgist = |DaaDy+ DyaDqpl|”
Prist + Do aDy 4Dy 5Dy 5 + Dy aDy 4Dy 5D, - (1.71)

The magnitude of the additional interference term is exactly as large as Py, and can
be brought into the same form by exchanging particles, but its sign depends on the
symmetry of the wavefunction of the particle considered. For bosonic particles the
wavefunction does not change under exchange of particles resulting in the interference
term being equal to Py, while for fermionic particle the wavefunction will change sign
and the interference term will exactly cancel out Pyg. As a result this quantum me-
chanical approach can explain bosonic bunching and fermionic antibunching behavior
in the same framework. Further, the factorial dependence of photon bunching can be
considered as a consequence of the number of possible permutations of indistinguishable
probability amplitudes.

1.4.3 Fock States

Fock states are eigenstates of the photon number operator n and form a complete set
of orthogonal states. The photon number distribution for a Fock state shows sub-
Poissonian character: For a k-photon Fock state Proer(n = 1) is exactly 1 for [ = k and
0 for [ # k as depicted in figure . This reflects in a vanishing variance (Anpoe)? = 0

and a photon number dependent

1
Giaer(0) = 1= I3 (1.72)
(2)

For a single-photon Fock state g, . (0) reduces to 0 indicating the quantized nature of
light. In fact, any ¢ (0) smaller than one cannot be explained by a classical probability
distribution and characterizes non-classical states of the light field. As a consequence
of the uncertainty principle photon number eigenstates must also reveal a completely
undefined phase.
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Figure 1.11: Photon number distributions for coherent, thermal and Fock states for

different mean photon numbers.
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Chapter 2

Experimental Methods

Intensity correlation spectroscopy is a well known technique which has been used in dif-
ferent disciplines from astronomy to biology to perform diverse tasks like determination
of the angular diameters of stars [24] and diffusion coefficients of particles undergoing
Brownian motion [25], identification of soft matter surface fluctuations [26], optical
coherence tomography [27] and classification of photon sources [28]. The main idea
of this technique lies in gathering information about a photon number distribution
without measuring the absolute photon number distribution. As no detector shows
perfect efficiency, direct measurements of these distributions are almost impossible.
For most practical purposes, it is sufficient to know relative characteristic quantities
of the photon number distribution like the relative value of the detected photon num-
ber fluctuation to the mean photon number given by equation [I.55 These quantities
are easier to access experimentally. Common techniques aiming at measuring these
fluctuations rely on measuring the correlations between the intensities of two beams
of light and their temporal and spatial variations. These are directly linked to the
variance of the photon number distribution and allow to draw further conclusions on
the underlying photon number distributions.

Below, several experimental realizations of this approach are presented and compared.
Especially the conditions under which the different approaches give accurate results
are discussed in detail.

2.1 Time resolved Correlation Spectroscopy

Time resolved correlation spectroscopy and time-correlated single photon counting
(TCSPC) are techniques for measuring low-level signals at high repetition frequency
with high temporal resolution. Although they can be applied to continuous wave sig-
nals, this section will focus on pulsed emission. The basic idea is to measure the
distribution of single photon arrival times inside the signal period and build up a his-
togram of the photon arrival times relative to the beginning of the signal period. By
doing so, the time resolution is given by the transit time spread in the detector and not
by the width of the single-photon pulses. Usually single-photon avalanche photodiodes



30 Experimental Methods

(SPADs) are used as detectors. They are subject to a deadtime after the detection of
a photon during which no additional photon detections are possible. Accordingly, the
number of photons detected per signal period should be very low, usually on the order
of 0.01 to 0.1 per pulse. Otherwise the so-called pile-up effect occurs: The photon
detection probability at late times inside the signal will be reduced by the frequent
detections of photons at early times in the pulse which block the detector until the end
of the pulse period. In its simplest form, this technique can be used to reconstruct a

signal pulse

detector signal:
period 1

period 2
period 3
period 4
period 5
period 6
period 7
period 8
period 9
peric?d 10

period N

detected
photon
distribution

i

Arrival time

Figure 2.1: Principle of a time-correlated single photon counting experiment. Inside
each pulse there is either no detection or a single detection of a photon. After N re-
peated detections of signal periods the distribution of arrival times follows the waveform
of the signal for low detection probability.

waveform with high temporal resolution. A schematic of this method is shown in figure
2.1l However, determination of photon statistics as discussed in section [1.4] is difficult



2.1 Time resolved Correlation Spectroscopy 31

using just a single SPAD because the crucial information are photon pairs. These can
only be accessed if both the dead time and the SPAD time resolution are much shorter
than the coherence time. The dead time limitation can be overcome by performing a
measurement in Hanbury-Brown-Twiss (HBT) configuration [29]. Here the incoming
beam is split into two beams and each is detected by a SPAD. The signals are fed to
a time-to-amplitude converter, which creates a histogram of the delay times between
two photon detection events. If pile-up effects are avoided, the number of coincidence
counts for delays inside one period compared to the number of coincidence counts for
delays, where the photons stem from different periods and are therefore uncorrelated,
is a measure of ¢?(0). Still two problems remain: If the signal coherence time is
shorter than the SPAD time resolution or if the presence of multiple photons at the
detector is very probable, the measured ¢®(0) will be distorted. The HBT setup is
most commonly used for characterization of single photon sources in terms of photon
antibunching. Here these two drawbacks are not significant. As only one photon is
expected to be present in each period, multiphoton processes and coherence time issues
are not crucial. As long as the signal count rates are large compared to the background
noise count rates, the HBT-approach will measure ¢‘®(0) correctly for single photon
sources. For thermal light the situation is more difficult. Usually there are many pho-
tons present and for thermal emission from semiconductor structures the coherence
time lies usually in the range of tens of picoseconds, while the temporal resolution of
efficient SPADs is on the order of 400 ps. Additionally the photon number emitted per
pulse is fluctuating strongly, so that even when the detected photon number per pulse
is small, the pile-up effect can occur during the periods where large photon numbers
are present. In fact, even for ideal detectors and no background noise, the inability
of SPADs to distinguish between single photon detections and multiphoton detections
causes the measured ¢? (0) to differ from the real one for thermal light [30]. The follow-
ing sections will describe a different approach aimed at measuring correlation functions
of semiconductor light sources especially in the thermal regime and the optical setup
used to realize it.
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2.2 Optical Setup

The optical setup used for the streak camera intensity correlation measurements and
the momentum-space dispersion measurements is shown in Fig. [2.2 The optical ex-

T [(} e
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Figure 2.2: Overview of the experimental setup used for the streak camera intensity
correlation and momentum-space dispersion measurements. A detailed description
of the single components grouped into several functional units is given in the text
below and in the figure captions of figures to The functional units discussed
are the laser system consisting of the CW pump laser and the tunable Ti:sapphire
laser, the optics in the excitation beam path consisting of a Glan-Taylor-prism, a A/2
retarder waveplate, a \/4 retarder waveplate and the streak camera trigger diode, the
helium-flow cryostat, the microscope objective, the optics in the detection beam path
consisting of a \/4 retarder waveplate, a A/2 retarder waveplate, a Glan-Taylor-prism
and an interference filter, the monochromator and the streak camera. Alternative
components for different experimental situations and optional additional elements are
described in the text.

citation of the studied samples is provided by laser pulses with a duration of either
1.5ps or approximately 100fs at a pulse repetition rate of 75.39 MHz. These pulses
were created with a mode-locked Ti:sapphire laser (Coherent Mira 900-D, see figure
pumped by a 10 W Nd:YVO, CW pump laser (Coherent Verdi V-10) emitting at
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Figure 2.3: Mode-locked Coherent Mira 900-D Ti:sapphire laser system, pumped by
a 10 W Nd:YVO, CW pump laser. The emission is wavelength-tunable between 700
and 980nm. It is possible to create pulse durations in the femtosecond or picosecond
range at a pulse repetition rate of 75.39 MHz. The minimum spectral full width at
half maximum of the pulses achievable for picosecond pulses is on the order of 2meV.
At 9W pumping power the highest reachable Mira output power is roughly 1.4 W at
an emission wavelength of 800nm. At a wavelength of 900 nm the available output
intensity reduces to approximately 1 W.

532nm. The mode-locked laser emission is tunable in a wavelength range from 700 to
980 nm. Optionally, a frequency doubling unit based on second harmonic generation
can be used to realize pulses in the wavelength range of 400 - 500nm. The mode-
locked laser can be configured to emit pulses with a duration of approximately 2 ps
or 100fs. The excitation beam optics set is shown in figure 2.4 A small fraction of
the laser emission is detected by a fast photo diode to create a trigger signal for the
streak camera. Well-defined control of the excitation power density is achieved by
using variable neutral density attenuators. A Glan-Taylor-prism is used to polarize
the beam. The extinction ratio of the prism is on the order of 10°. A A\/2 and \/4
waveplate allow to create any linear, circular or elliptical polarization. The excitation
laser light is focused onto the sample surface either using a lens with a focal length
of f = 65mm under a freely chosen incidence angle. Alternatively, excitation under
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Figure 2.4: Optics in the excitation beam path. A beam splitter directs a small fraction
of the laser pulse to the fast streak camera trigger diode. The excitation laser intensity
at the sample position can be adjusted by two neutral density gradient filters. In
order to minimize aberrations caused by moving the neutral density gradient filters,
they are aligned in reverse orientation to each other. A Glan-Taylor-prism is used to
create a horizontal beam polarization with an extinction ratio on the order of 10°.
An achromatic A/2 and an achromatic A/4 retarder waveplate allow one to create any
linear, circular or elliptical polarization.

normal incidence is possible using a 92 %/8 % beam splitter and a microscope objec-
tive. In this case, the transmitted 92 % of the excitation power are dumped, while the
8 % reflected intensity are directed towards the sample. This configuration allows for
very small spot diameters on the sample. Microscope objectives as shown in figure
ﬂ with different magnification rates and numerical apertures of 0.26 (10x objective),
0.42 (50x objective) and 0.5 (100x objective) are used. The position of the microscope
objective can be precisely adjusted by piezo-based actuators. Spot sizes on the sample
are on the order of few pum for normal incidence excitation and about 20 pm using the
lens. The samples are mounted on a cold finger in a helium-flow cryostat depicted in
figure The temperature can be set in a range of 7' = 6 — 300 K by controlling
the helium-flow rate and using external heating. The Cryostat and therefore also the
sample position can be course-adjusted by three micrometer-screw operated translation
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Figure 2.5: The microscope objective used to collect the emitted light from a wide
range of emission angles. Microscope objectives with numerical apertures of 0.26 (10x
objective), 0.42 (50x objective) and 0.5 (100x objective) have been used. Depending
on the emission wavelength either microscope objectives with minimized chromatic
aberration and focus distance in the near infrared or visible part of the spectrum were
used. All microscope objectives are infinity-corrected.

stages.. For both excitation schemes the microscope objectives are used to collect the
photoluminescence from the sample. In the case of pumpng under normal incidence,
the transmitted 92 % are guided towards the detection equipment. The reflected 8 %
are not used. It is possible to place another lens behind the microscope objective to
perform momentum-space dispersion measurements. For this experiment, the lens is
placed a focus distance away from the Fourier plane of the emitted light. The emission
is then again going through a set of polarization optics shown in figure consisting
of an achromatic \/4 retarder waveplate, an achromatic \/2 retarder waveplate and a
Glan-Taylor-prism. This assembly allows to single out a freely chosen linear or circular
polarization component of the emitted light. Additionally the emission passes through
a narrow bandwidth interference filter with a spectral FWHM of approximately 1nm,
allowing to select a single spectral emission mode if necessary. The interference filter
transmission wavelength can be tuned in a range of roughly 5nm by turning the filter.
For recording momentum space dispersion spectra an additional lens can be placed
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Figure 2.6: The helium-flow cryostat. The sample is mounted on a cold finger inside
the cryostat which is in constant contact with helium flowing through the cryostat. The
temperature at the sample position can be varied in a range between 6 and 300 K by
adjustments of the helium flow rate and by electrical heating. The cryostat is mounted
on three micrometer-screw driven translation stages allowing for a course-positioning
of the sample location in all three dimensions.

behind the microscope objective. It is used to collimate the Fourier plane image of
the emission which carries information about the photon momentum. The emission is
then either directed towards the streak camera for time resolved measurements or to-
wards a monochromator (Acton SP-2500i) for spectrally resolved measurements of the
real or Fourier plane. The monochromator is shown in figure Lenses with a focal
length of 150 mm or 200 mm were used to focus the real or Fourier space signal on the
entrance slit of the monochromator. It has a focal length of 500 mm and is equipped
with a triple grating turret. The mounted gratings exhibit groove densities of 300, 600
or 1200 grooves per millimeter, respectively. All of the gratings are blazed in order to
optimize performance for a certain wavelength range. The 300 grooves per mm and the
1200 grooves per millimeter gratings are blazed at 1000 nm. The 600 grooves per mm
grating is blazed at 500nm. The dispersed light shines on a CCD camera mounted in
one of the two monochromator exit ports. In order to minimize readout noise and dark
counts, the CCD camera is cooled using liquid nitrogen and operated at approximately
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Figure 2.7: The optics in the detection beam path. They consist of an achromatic A\/4
retarder waveplate, an achromatic \/2 retarder waveplate, a Glan-Taylor-prism and an
interference filter. The polarization optics allow to perform measurements on a freely
chosen polarization component of the emission. The interference filter has a spectral
FWHM of approximately 1nm. Its transmission wavelength can be tuned in a range
of approximately 5nm by turning it.

180 K. The CCD consists of 1340x400 pixels with a pixel size of 20 pm. Under ideal
conditions, the best possible wavelength resolution using this setup is roughly 0.09 nm.
The other monochromator exit port can in principle be used to guide the dispersed
emission to the streak camera to have a time-resolved and spectrally resolved signal
at the same time. However, doing so decreases the achievable temporal resolution
to 20 ps, which is not sufficient to perform correlation measurements in the thermal
regime. The streak camera is depicted in figure A lens with a short focal length
of 50 mm is used to focus the signal on the entrance slit. The streak camera is used in
synchroscan mode and is synchronized with the mode-locked laser using the signal of
the fast trigger diode. Details on the streak camera measurements will be presented in
the following section.
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Figure 2.8: The monochromator. It is equipped with a liquid-nitrogen cooled CCD
camera operated at approximately 180 K. The monochromator has a focal length of
500 mm and is equipped with a triple grating turret. The mounted gratings exhibit
groove densities of 300, 600 or 1200 grooves per millimeter, respectively. All of the
gratings are blazed in order to optimize performance for a certain wavelength range.
The 300 grooves per mm and the 1200 grooves per millimeter gratings are blazed at
1000nm. The 600 grooves per mm grating is blazed at 500nm. The CCD camera
consists of 1340x400 pixels with a pixel size of 20 um. Under ideal conditions, the best
possible wavelength resolution using this setup is roughly 0.09 nm.

2.2.1 The correlation streak camera technique

In a standard streak camera the light pulse to be investigated is projected onto a slit
and then focused on the streak tube photocathode. There the photons are converted
into an intensity-dependent number of photoelectrons. These are then accelerated to-
wards a micro-channel plate (MCP) using an electrode. On this way they are subject
to another pair of sweep electrodes. A high voltage is applied to these, resulting in
a fast vertical sweep of the photoelectrons. Electrons passing the sweep electrons at
different times are deflected at different angles and then conducted to the MCP. As the
electrons pass the MCP, they are multiplied and hit a phosphor screen. The brightness
of the phosphorescence is proportional to the intensity of the incident light and the
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1.

Figure 2.9: The streak camera. A lens with short focal length of 50 mm is used to focus
the signal on the entrance slit. The streak camera is synchronized with the mode-locked
laser using the signal of the fast trigger diode.

screen positions in horizontal and vertical directions correspond to the position of the
incident light pulses in the horizontal direction and their arrival time, respectively [31].
This phosphorescence image is recorded by a CCD camera.

Using a streak camera for correlation measurements requires further customization.
Usually the streak image is recorded by integrating over many repeated streak cycles.
However, information about correlations is only present in single pictures and gets
washed out by this integration. It is therefore necessary to record images of single
signal pulses. This prerequisite significantly reduces the possible data acquisition rate
due to the limited readout rates achievable for CCDs. State of the art CCDs with
sufficient quantum efficiency for recording single streak pictures can usually be oper-
ated at 100 Hz at best. Comparing this value to the excitation laser repetition rate
of 75.39 MHz shows that this approach is rather inefficient, using approximately only
1 out of 10° pulses. The efficiency can be increasing by utilizing the final degree of
freedom left in the streak camera picture: the horizontal position. In common streak
camera experiments the horizontal position is used to achieve spectral resolution by
placing a monochromator in front of the streak camera. The horizontal position then
becomes an indicator for the photon wavelength. For the photon correlation measure-
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ments performed in this work only the correlations of a single mode of interest are
considered. Therefore it is sufficient to single out this mode. Further spectral reso-
lution is not needed. A sensible approach allowing higher effective readout rates can
be realized by placing consecutive signal pulses at several horizontal positions of the
screen. Technically this is achieved by adding a pair of horizontal sweep electrodes and
applying a second time-dependent voltage to them. The horizontal deflection sweep
speed is much slower than the vertical one, which is on the order of the whole screen
corresponding to a time-window of 140 ps. A slower sweep speed increases the num-
ber of consecutive pulses that can be positioned on one screen. The lower bound of
the sweep speed is given by the spatial width of the individual pulses on the screen
and the prerequisite that these pulses need to be distinguishable. A reasonable choice
of the horizontal sweep speed is given by setting the whole horizontal time-window to
600 ns, allowing one to record 30 to 40 pulses on a single screen. Although the resulting
data acquisition rate of approximately 3 kHz is still small compared to the laser rep-
etition rate, it already allows performing measurements in sensible integration times.
For reasonable photon count rates taking 10° of these single pictures suffices. This
corresponds to an acquisition time of 20 to 25 minutes. Advanced CCDs which can be
operated at higher frame rates at comparable quantum efficiency might be available
within the next few years. In order to take advantage of the improved data acquisition
rate those CCDs would offer, it is necessary to customize also the phosphor readout
screen. The phosphor afterglow time should not be much shorter than the time re-
quired to acquire a single picture, but should be significantly shorter than the waiting
time between two pictures to avoid accumulation of afterglow from previous images.
The most common phosphor used for streak cameras is P 43 (GdyO2S : Th), which is
characterized by a 90% — 10% afterglow decay time of 1ms. Although that timescale
is still short enough for usage with modern CCDs, it is desirable to have faster decay
times. We implemented P 46 phosphor (Y3Al50:5 : Ce), which has a characteristic
90% — 10% afterglow decay time of only 300ns. This shortened decay time comes at
the drawback of reduced efficiency. We compensate this effect by adding a second MCP
stage, which allows to increase the maximum achievable gain in the streak tube. The
final requirement is single photon sensitivity. This has already been demonstrated in
single photon counting mode [32].

In order to determine the photon correlation function as defined by equation [1.56] it
is necessary to measure the numerator and denominator separately. The numerator
corresponds to the detected number of photon pairs. The denominator equals the ex-
pected number of photon pairs for the same mean photon count rates, but statistically
independent emission. While the first quantity can be evaluated by counting the num-
ber of photon pairs in all the recorded single images, the latter quantity is available
in the integrated picture, where all correlations have vanished. These two images are
compared in figure [2.10, The upper panel shows the integrated picture. This image
contains information about the mean photon count per image and pixel. It is also used
to evaluate the position of the single streaks on the screen. The lower panel shows a
single image. Each detected photon is sorted to a streak corresponding to its horizontal
position and to a time bin depending on its vertical position. These time bins define
the vertical span of pixels which are considered to have arrived simultaneously. Their
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Figure 2.10: Comparison of an integrated and a single streak camera image with vertical
and horizontal time windows of 716 ps and 600 ns, respectively. The upper panel shows
an integrated picture consisting of 100000 single pictures. 36 consecutive pulses are
shown. This image contains information about the mean photon count rates at each
pixel. The lower panel shows one single streak camera image. White dots correspond
to photon detections. Insets show enlarged examples of two-, three- and four-photon
coincidences.

size defines the effective temporal resolution, which can be chosen after the experimen-
tal data has already been taken. Now all photon pairs inside the pulses are counted
and also sorted to bins depending on the arrival time of the first photon and the delay
between the two photons. Now ¢ (¢,7) can be determined by counting all the pho-
ton pairs in bins corresponding to times ¢ and ¢ + 7 and dividing this number by the
product of the mean photon count rates at the corresponding times and averaging this
value over all streaks. An averaged ¢®(7) without t-dependence can be evaluated by
calculating the weighted average of all g (¢, 7) for a certain 7:
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This approach can be generalized to arbitrary higher orders n by analyzing n-photon
coincidences instead of two-photon coincidences.

2.2.2 Characterization of Streak camera performance: time-
integrated measurements

Whether the measured g® represents the real correlation function or is distorted by the
measurement apparatus is mainly determined by two figures of merit characterizing the
detector used: temporal resolution and dark count rate. When considering the equal
time correlation function ¢ (7 = 0) the length of the time window during which
detections are considered to be simultaneous is determined by the temporal resolution
t, of the experimental setup. If the dynamics of ¢ (7) varies strongly within ¢,, the
measured value of g (0) will be the averaged value of ¢/®(7) within this time window.
As ¢g@(7) usually decays towards unity, the measured value of ¢g®(0) will also be
shifted towards unity compared to the real value. The timescale of this decay is given
by the coherence time 7.. Therefore the ratio of these two characteristic timescales gives
a good impression whether a detector is suitable to measure the correlation function
of a signal with known coherence time or not. In detail the measured ¢ will be
given by the convolution of the real expression with a Gaussian function of width
20 = trrr [33] representing the instrument response function. For thermal light of an
inhomogeneously broadened PL spectrum the real ¢®(7) is given by [34]

C

gP(r) =1+ exp (t—f) (2.2)

and the convolution reads

i 2
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As can bee seen in figure the measured and the real correlation functions are in
good agreement when t;zp is much shorter than 7.. If the timescales become compa-
rable, the measured values start to differ from the real ones, leading to underestimates
of 3% if 7. is twice as large as t;zrr and 10 % if both are equal. Decreasing the tempo-
ral resolution further, the underestimation becomes critical, causing drastic deviations
already if t;gp is twice as large as 7.. Therefore the real temporal resolution of the
streak camera setup is of major interest. The theoretical limit is given by the number
of pixels on the readout CCD. Using the smallest time window present a whole screen
length consisting of 480 pixels corresponds to a time window of 136 ps. Accordingly,
the optimal t;grr possible is 283.3 fs. However, the real t;gr is caused by several jitter
sources, of which timing jitter of the trigger pulse, emission jitter of the photocathode
and and broadening caused by the MCPs are the most important. Typically ¢;zp is
on the order of 2ps. More exact measurements of the jitter are possible, but require
background noise to be considered, too.
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Figure 2.11: Expected measured correlation function gﬁ% #(0) as a function of the ratio

“T% of the detector temporal resolution and the signal coherence time for thermal light
with ¢ (0) = 2.

The effect of background noise is comparable to the presence of a second mode, which
is uncorrelated with the first one. The equal time correlation function for two nonin-
terfering modes A and B with mean intensities /4 and /g then depends on the relative

count rates Ry = IAIfIB and Rg = IAIfIB:
@ (0) = R2¢P(0) + R2¢'P(0) + 2R4R 2.4
gn() AgA()+ BgB<>+ ANB- ()

In the following A is considered to be a thermal mode with g(AQ)(O) = 2 and B represents

Poissonian noise with gg)(()) = 1. The addition of noise will also cause an underestima-
tion of ¢g(®(0) below the real value as shown in figure . As expected, without noise
the measured value reaches the real value of two, while large noise fractions reduce the
measured value towards unity. For a noise value of 15% the measured value of g
is approximately 15 % smaller than the real value. For smaller Rp this dependence is
approximately linear. For larger values of Rg the underestimation becomes severe, so
it is of importance to reach a high signal-to-noise ratio.

Another considerable source of deviations are systematically erroneous photon detec-
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Figure 2.12: Expected measured correlation function g2(0) for a thermal mode as a
function of the relative noise intensity Rp.

tion events. The most prominent reason for such events lies in the built-in streak
camera photon reconstruction algorithm. Any detected photon will not fill exactly
one pixel, but will have a size of several pixels. The photon reconstruction algorithm
reconstructs the photon position on the screen by finding the center of gravity of the in-
tensity measured at adjacent pixels. Local inhomogeneities of the streak camera screen
can fool the photon reconstruction routine to consider one single photon as two or vice
versa. However, this problem can easily be detected by analysis of the distribution of
pixel distances between two identified photons. Incorrect photon reconstruction will
result in a distribution with very high pair count rates for pixel distances shorter than
the radius Rpnoton 0Of the photon size on the screen, which abruptly falls off steplike at
distances, which are larger than R,pet0n. To fix this problem, it is possible to introduce
artificial dead pixels. If all photons detected within a distance of R of another photon
are disregarded, any erroneous photon counts due to reconstruction problems are elimi-
nated. However in this way also real photon detections are disregarded. Effectively, the
detector size for detecting another photon after the first one went down, which simply
modifies the normalization by a factor of w’i{'ed where A is the size of a bin on the screen,
A,eq is the reduced size after introducing artificial dead pixels and w is a weighting
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factor, which is needed, if the mean number of photon counts is not distributed equally
along the width of a bin. If artificial dead pixels are used in measurements of higher
order correlation functions, it is necessary to consider the decreasing effective detector
size inside a time bin after each photon detection, accordingly. However, determining
this weighting factor for spatially inhomogeneous signals is nontrivial and the artificial
dead detector area usually corresponds to a time span of 1.5 ps at worst and can be
reconstructed if enough data points at larger delay are known. An example will be
given in the following section.

Both t;rr and Rp can be determined by measuring a signal of well known g(2) and
short duration. If the signal duration becomes comparable to the jitter width, a sig-
nificant distortion of the measured ¢(® can be expected. In this situation the major
contribution to the fluctuations of the photon pair detections at a fixed screen posi-
tions is caused by the jitter placing a slightly different portion of the jitter at that
screen position for each single image taken. For short signals this fluctuation in the
momentary intensity in each single image is large compared to the intrinsic fluctuations
due to photon statistics. This opens up the possibility to determine the magnitude of
the timing jitter by a simple model describing the measured g]@) in the presence of
jitter. V., denotes the number of pictures taken and p is an index identifying a single
image. In analogy the momentary value of the jitter for a single image is given by j,.
Jp is normal-distributed around zero. A constant noise background photon count rate
is given by r,. A,(t) describes the total photon number of a signal pulse in a single
picture, which follows a probability distribution depending on the kind of light source
considered: a Poissonian distribution for coherent light or a Bose-Einstein distribution
for thermal light. Finally, S(t¢) gives the pure temporal shape of the signal without any
influences of jitter or noise, with the area under the curve normalized to unity. The
resulting gj(?) depends strongly on the discrete convolution of S(t) and the Gaussian
jitter. As it might also depend on the chosen temporal resolution for thermal light, a
discrete number of values for ¢ is used:

N’rep
N 2o 2+ ApS(E+ ) (rn + ApS(t+ 7+ Jp))]
1) = 0 ; 29)
. ZO ; [rn + ApS(t+ 5p)] 5 ZO ; [rn + ApS(t+ 7+ jp)]
p= p=

This is the jitter-broadened photon pair count rate divided by the product of two
broadened single photon count rates. Accordingly the numerator will not be broadened
as much as the denominator.

As an experimental test signal, the excitation laser pulse was used, which has Gaussian
shape, a well known standard deviation of o =1.42ps and ¢®(7) = 1 for all 7 inside
the pulse. The usage of a fully second-order coherent light source makes it possible to
use a simplified treatment instead of equation [2.5| as the photon pair count rate will
factorize into the product of the mean photon count rates. In this case it is sufficient
to calculate the convolution of the continuous pulse shapes with the jitter distribution

of standard deviation J:
@)y -y = J(S(2) + 1) (S(7 + 72) + 1) I (t — 72) dr
95 ) = (5 (m) + ) = m) dm)(J(S(r + ) 1) — ) ) 0
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The single photon count rates calculated in the denominator are convolutions of two
Gaussians and can be described as another Gaussian S;(t) with a modified standard

deviation of W; = W2 4 J2. The time-averaged gj(-Q)(T) is then given by:

_ S JS(m) +1a)(S(7 + 72) + 1) S (t — ) dTodt
J(S;(t) + 7)) (S;(t+7) + 1) di

a2 () (2.7)

The product of the jitter-broadened single-photon count rates will usually be a broader
distribution than the jitter broadened photon pair count rate. Therefore the streak
camera can be described as a jitter sensitive autocorrelator. An example of this behav-
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Figure 2.13: Comparison of the photon pair counting rate (red line) to the product
of the jitter-broadened mean photon count rates (blue line) at a time delay of 7 for
J = W = 1.42ps and single photon noise count rate r, = 0.0033 (green line). The

solid black line gives the corresponding g](?) (7).

ior is shown in figure for J =W = 1.42ps and r, = 0.0033. The jitter-broadened
photon pair detection rate depending on the delay 7 given by the red line shows a
narrower distribution than the expected photon pair detection rate as calculated by
the single photon detection rates (blue line). This deviation can be explained by look-
ing at the 7-dependence of the photon pair count rates inside a single picture. Inside
single images the t-integrated 7-dependence of the photon count rates is not affected
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by jitter. However, the mean photon count rates are broadened by jitter and lead to
the significant shape of g](-z) (1) seen in figure [2.13] It consists of three characteristic
regions. For short delays the pair count rate exceeds the expected value because its
width is mainly determined by the pulse width, while the mean photon count rate is
jitter broadened. This overshoot is a good measure of J. However, the faster decay
of the pair count rate compared to the expectation value causes g]@) (1) to decrease
below unity at some finite 7. This decay is mainly determined by the pulse width and
therefore a good measure of W. Finally g](-Q)(T) increases towards unity again for large
7. This increase is not caused by the signal, but by the intensity of the background
noise denoted by the solid green line becoming larger than the signal intensity and is
a good measure of r,. It is possible to give an estimate of these quantities by fitting
to a given autocorrelation trace. Some fits to the autocorrelation of the excitation
laser are shown in figure for several settings of the MCP gain and the photon
counting threshold. The choice of MCP gain and threshold settings is crucial because
the double-MCP stage we use creates a broad distribution in the actual number of
photoelectrons emitted per detected photon and their spatial distribution. The left

Gain set to 40 [ T Gain set to 42
P Threshold set to 88 = Threshold set to 88
OF ~_+ Threshold set to 130 1r Threshold set to 170 T
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Figure 2.14: Jitter induced autocorrelation trace of a laser pulse with FWHM of 3.34 ps.
for gain settings of 40 (left panel) and 42 (right panel). Experimental results for low
and high threshold settings are shown as black squares and red dots, respectively.
Solid lines represent fits according to equation 2.7, The red lines correspond to fits
for J =1.38ps, W = 1.42ps and r,, = 0.0033. The black line corresponds to a fit for
J=181ps, W =1.42ps and r,, = 0.0015.

panel shows experimental results for a MCP gain of 40 and a low (black squares) and
high (red dots) photon counting threshold, respectively. At first it is obvious that the
results for 7 below 1.3 ps are far too small. This is a result of introducing a 3x3 dead
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pixel area around each detected photon. The experimental values are not corrected for
the smaller effective detector area. However, the necessary correction factor could be
obtained from this data. Fits to the experimental results giving two different sets of
parameters are shown as solid black and red lines. The black line is a fit to the low
threshold results with W = 1.42ps, J = 1.81ps and r, = 0.0015, while the red line
corresponds to W = 1.42ps, J = 1.38ps and r,, = 0.0033. As normalized probability
distributions are used to fit g]@) (1), ry, is inversely proportional to the signal-to-noise
ratio. As can be seen a low threshold setting gives a good signal-to-noise ratio, but also
some underestimation of gj(-z) (7) for delays which correspond to streak camera positions
slightly beyond the artificial dead area. This is an artifact of the photon reconstruction
algorithm. For small thresholds R,o0n can become large. If two photons overlap at the
phosphorus screen, the photon reconstruction algorithm will sometimes detect them as
only one photon causing an underestimate of ng)(T). Usually this effect is countered
by introducing artificial dead pixels, but if Rppoton is larger than the dead area artifacts
remain. These artifacts also explain the large value of J seen in the black autocorrela-
tion trace. The variation in the center of gravity of the detected intensity will be very
large for a case when two photons are erroneously counted as one. For larger delays
the black trace matches the experimental data well. Also even the center of gravity of
single photon detections might not be well defined for small threshold settings. The
experimental data for larger photon counting threshold settings does not show this
underestimation of gj(?) (1) and reveals a significantly smaller jitter, but suffers from a
slightly worse signal-to-noise ratio. Therefore this setting should be chosen for strong
signals. The same signal at increased MCP gain is shown in the right panel. Black
Squares and red dots again denote low and high threshold settings, respectively. The
solid red line is a fit using the same parameters as the solid red line in the left panel. As
can be seen, neither the dark count rate, nor the timing jitter change at small changes of
the MCP gain. The fit matches the experimental data for both threshold settings well,
although the underestimation of g§2)(7) is even more pronounced for small threshold
settings and small 7. The jitter does, however, not show the drastic increase seen for
small threshold setting at lower gain. This might indicate that due to the larger gain
the photon spot shape on the phosphor screen becomes more homogeneous. Therefore
the photon reconstruction algorithm estimates the real center of gravity with higher
precision. These results demonstrate that the streak camera correlation principle is
insensitive to the choice of streak camera settings within a suitable range.

Especially the value of gj(?) (0) is a remarkable quantity. It depends strongly on the ratio
of J and W and is therefore important to distinguish between real and jitter-induced
correlations for short signals. As shown in figure the increased simultaneous pho-
ton detection probability due to jitter influence for second and third order goes as:

g?(0) = g<2><0>\/1+(%> (2:8)

g](_3)(0) _ 9(3)(()) (1 4 (%) > ’ (2.9)
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Figure 2.15: Simulated jitter dependence of the second-order (black) and third-order
(red) equal-time correlation functions depending on the ratio between .J and W for co-
herent (solid lines) and thermal (dashed lines) light. Results are shown on a logarithmic
scale.

if the influence of r, can be neglected. Significant deviations between gj(.Q)(O) and
g?(0) occur if % is larger than 0.25. Assuming that J takes on a value of 1.38 ps
as determined above for each experimental setting, the measured ¢®(0) should be
corrected for jitter effects for signals with FWHM smaller than approximately 10 ps. As
the jitter-broadened pulse width is automatically measured in the integrated intensity,
all quantities needed to perform the corrections for t-integrated measurements are well

known.

2.2.3 Characterization of Streak camera performance: time-
resolved measurements

Up to now mainly intensity correlation measurements without explicit ¢-dependence
have been considered. These results describe the statistical properties of the signal
pulse as a whole. If one is interested in the pulse dynamics, this point of view is
not sufficient. The photon statistics are not necessarily the same at different times
inside the signal pulse. Especially for systems which show a lasing transition, the
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time resolved correlation function ¢g?)(¢,7) can give deeper insight into the relevant
dynamics. Although it is in principle possible to perform complete two-dimensional
mapping of this function in ¢ and 7, the most relevant part is the time-resolved equal-
time intensity correlation function ¢g®(¢,0). It allows to follow the build-up and break-
down of coherence inside pulses. Although this quantity can in principle be easily
achieved by comparing the photon pair count rate inside a time bin to the square of
the single photon count rate of the same bin, the necessary corrections due to jitter are
more complicated than in the time-integrated case, mainly because the time integrated
photon pair count rate per pulse is not affected by jitter, while the time resolved pair
count rate at a certain screen position is. For Gaussian pulse shapes a solution of
g]@) (t,0) can be found from equation . The origin of the t-axis is in the following
assumed to be the time of arrival of the pulse peak. The measured intensity correlation
at this peak position gj(?)(0,0) is a good indicator of how much the real correlation
function is masked by the jitter. An analytical solution yields

4 /Bt + i
9,7(0.0) = g(0.0—— (2.10
T'n T Jaxw,

where B = v/2J2 + W2. This function is depicted in figure[2.16| The jitter-dependence
bears some similarities to g](-Z)(O). This is not surprising as the latter function is the av-

erage over all gj(?) (t,0) weighted by the squared mean photon count at time ¢. g](?) (0,0)
is the second order correlation function at the pulse peak position and will enter into
the averaged value with the largest weight. More interesting is the complete time de-
pendence of the jitter-dependent second order correlation function. Although it is in
general more complicated, an analytical form can be given for Gaussian pulse shapes:
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This function is shown in figure for values of J = 1.42ps and a constant noise
background of N = 0.0033 for three different values of W. From the enhanced value
at the peak position already given by equation [2.10 the increase in gj(?) (t,0) becomes
even larger in a narrow range around the origin, which tends to broaden with increased
W. The reason for this effect lies in the relevant effect of large-jitter events on pair
detections at pulse positions with small mean intensity. In these regions the mean
intensity will most likely occur due to few large shifts of the pulse peak position inside
single recorded pictures. For these few pulses the affected regions will be subject to a
rather high intensity, but there will be almost no intensity at these positions in other
single recorded pictures. These occurrences of large momentary jitter are rare events
and have different effect on regions with low and high intensity. For regions with
high mean intensity they cause one single frame of rather low intensity which does
not contribute much to the average intensity at that position. For regions with low
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Figure 2.16: Simulated jitter dependence of the second-order correlation function at
the position of the pulse peak.

mean intensity instead, these rare events cause a large portion of the mean intensity.
This corresponds to large shot-by-shot photon number fluctuations and causes the
significant overshoot seen in gj(-2) (t,0) away from the origin. In regions with even lower
mean intensity, the contribution of the noise becomes the dominant source of the mean
intensity and even the rate of large jitter events shifting intensity to these positions
vanishes. In this region g](-Q) (t,0) decays back to the uncorrelated value of 1. This
explains also the broadening of the overshoot region as also the onset of the noise-
dominated pulse region shifts to larger times with increased W.
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Figure 2.17: Effect of jitter on gj(?) (¢,0) for J = 1.42 ps and a constant noise background
of N = 0.0033. Black red and blue lines give the simulated results for values of W=
1.42, 2 and 4 ps, respectively.



Chapter 3

Quantum Dot VCSELs

Efforts to realize lasers with extremely small lasing threshold led to the development
of vertical-cavity surface-emitting lasers (VCSELs). They consist of a semiconductor
nanostructure - either quantum dots or a quantum well - embedded as active medium
inside a microcavity in the weak coupling regime. In general the efficiency of lasers
depends on several characteristic quantities. As population inversion needs to be cre-
ated inside the whole active medium, small volumes of the active medium decrease
the threshold excitation density significantly. The drawback of small active volumes
manifests in small gain per pass which results in the need to achieve high Q-factors in
order to establish long photon lifetimes inside the microcavity. Also the S-factor

-1 -1
7y Ui

p— p— 3'1

T T oy

defining the spontaneous emission rate into a lasing mode 7; divided by the total spon-
taneous emission rate into all modes 7, including also nonradiative recombination
processes, has large impact on the lasing threshold [35], B6]. This can be seen nicely
by comparing input-output curves for lasers with different S-factors as shown in figure
A significant shift of the threshold pump rate towards lower thresholds occurs
with increasing [S-factor which is accompanied by an decrease in the step-like jump of
the mean emitted intensity in the threshold region. This decrease is a consequence of
the reduction of losses due to nonradiative recombination processes and spontaneous
emission into nonlasing modes for high-S-lasers. For atom laser systems this jump
scales with 37!, The case of 3 = 1 is the so-called thresholdless laser where the lasing
transition cannot be identified by the input-output (I0) curve anymore and lasing op-
eration is possible for extremely low excitation powers. Common semiconductor or gas
lasers show [-factors on the order of 1077 to 107° [37] only. Therefore, considerable
efforts were devoted to improvements of the -factor. Two main strategies were pro-
posed: Increasing the spontaneous radiative decay rate in order to minimize the effects
of nonradiative recombination channels and decreasing the number of photon modes an
excited emitter can radiatively decay to. While the latter approach has already been
discussed in chapter [1.2.2] the first approach has not been considered in detail yet.
In the weak-coupling regime the linewidth AAg of the emitter inside the microcavity
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Figure 3.1: Calculated input-output curves for lasers with varying S-factor.

is usually small compared to the spectral width AAs of the cavity mode. Then the
emitter couples to a continuum of modes allowing to describe the emission dynamics
by Fermi’s golden rule. Due to the tailored optical mode density inside a microcavity,
the spontaneous emission rate will be different from the free space emission rate 7!
and will in particular depend on the position 7 of the emitter inside the cavity and the
detuning between the emitter and the cavity mode as follows [38]:

TQ_2
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T 3

r |Emax|2 A)\% + 4(>\C - AE)2

+a (3.2)

for an electric field distribution F(7) with maximum amplitude E,,,,. Here « is the
emission rate into leaky modes and the Purcell factor [39]

3 A2,
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is a figure of merit for a bare microcavity with mode volume V,,, independent of the
emitter. Depending on the detuning of the emitter and the cavity, the spontaneous
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emission rate into the cavity is enhanced or suppressed [40]. For planar cavities Fp
is generally of the order of unity [14], but it can reach values around 30 for high-Q
micropillars [41]. As a result the radiative decay rate strongly exceeds the decay rates
of the nonradiative decay channels, allowing for low-threshold lasing.

In this regime the lasing threshold already becomes smeared out and less well defined.
Further complications in deriving correct conclusions arise from semiconductor specific
properties of the IO-curve. Saturation effects due to Pauli blocking, different relaxation
times for electrons and holes and modified spontaneous emission terms cause significant
differences between the 10 curves of atomic lasers and semiconductor lasers [35]. One
of the most important differences is found in the S-dependence of the kink in the 10
curve: for QD lasers this kink does not scale with 5~! anymore, but shows nontrivial
behavior. Therefore, it has been suggested that the combination of the IO curve and
an analysis of corresponding photon statistics gives a more accurate interpretation of
the nature of the emitted light [2] for high-3 lasers.

3.1 QD VCSEL Samples

Three different QD micropillar lasers with different characteristics were studied. All of
them have nominally cylindrical shape. One sample based on a II-VI material system
and two I1I-V material system based samples were used. The II-VI based sample was
grown by molecular beam epitaxy. The distributed Bragg reflectors consist of 15 up-
per and 18 bottom layers in which ZnSg 0gSeg.94 (48 nm) layers were used as high-index
material and a 25.5-period MgS (1.7 nm)ZnCdSe (0.6 nm) superlattice was used as low-
index material. The central A cavity contains a single sheet of CdSe/ZnSe quantum
dots with an approximate density of ~ 5 x 10 cm=2. A pillar with 1.5 ym diameter
was used for the measurements. The cavity quality factor was estimated to be ~ 1850.
The III-V micropillar samples were grown by molecular beam epitaxy on a GaAs sub-
strate. The distributed Bragg reflectors consist of 20 upper and 23 lower alternating
layers of AlAs (79nm)/GaAs (67nm) A/4 pairs for the low-Q micropillar and 26 up-
per and 33 lower alternating layers of AlAs (74nm)/GaAs (68 nm) A/4 pairs for the
high-Q micropillar. The central A cavity contains one layer of self-assembled InGaAs
quantum dots with a density of ~ 3 x 10°cm™2 in the low-Q case and one layer of
self-assembled AlGalnAs quantum dots with a density of ~ 6 x 10° cm™2 in the high-Q
case, from which cavities with diameters of several micrometres were fabricated by
means of high-resolution electron beam lithography and plasma-induced reactive ion
etching. Micropillars with diameters of 5 pm (low-Q) and 8 um (high-Q) were used for
the experiments. The Q-factors are deduced from the linewidths of the fundamental
modes seen in the modal spectra. Taking the finite resolution of the spectrometer into
account, they are estimated as 9000 and 19000, respectively. A typical mode spectrum
taken at high excitation power under non-resonant, pulsed optical excitation of 1 mW
for the low-Q III-V micropillar is shown in figure [3.2] The fundamental mode is lo-
cated at 893.53nm. The first excited mode can be seen at an emission wavelength of
892.85nm. This difference is large enough to single out the fundamental mode using
an interference filter with 1 nm spectral width.
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Figure 3.2: Longitudinal emission mode spectrum of the low-(Q micropillar laser. The
fundamental mode is twofold degenerate and shows emission at 893.53 nm. The polar-
ization splitting cannot be resolved. The first four excited modes can also be seen.

3.2 Correlation Measurements on QD VCSELs

The main aim of the measurements was to investigate the basic emission properties
of the three considered samples under varying excitation power. At low excitation
densities, a broad emission peak from the QD ensemble is seen, superimposed by a
series of narrow high intensity peaks marking the microcavity modes. With increasing
excitation density, the integrated fundamental mode intensities of all pillars show a
characteristic slope change in double-logarithmic plots as shown in the lower panel of
figure [3.3] This nonlinearity marks the onset of stimulated emission in the microlaser
structures. The nonlinear region is apparently broadened over a range of excitation
densities. For all three samples the width in excitation powers of this broadened region
roughly equals the excitation power at its onset which complicates the definition of
a well defined lasing threshold. Determining the [-factor is another nontrivial task
as the samples operate in a regime where the kink in the IO curve does not scale
with 87!, Theoretical analysis reveals S-factors on the order of ~0.1 for the III-
V cavities and a slightly higher [-factor on the order of ~0.13 for the II-VI cavity
[42]. Complementary measurements of the equal-time second-order correlation function
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Figure 3.3: ¢®(0) (upper panel) and corresponding input-output curves (lower panel)
for three different QD lasers. The left column shows results for a 1.5 ym diameter 11-VI
cavity. The other columns show results for III-V cavities of diameters 5pum (middle
column) and 8 gm (right column). Red lines in the upper panel denote the coherent
limit.

using the experimental setup presented in chapter [2] allow for a more detailed analysis
of the properties of the emitted light. Results are shown in the upper panel of figure
At high excitation densities far above the lasing threshold all samples show lasing
emission identified by values of ¢ (0) of approximately 1 which are clear evidence for
the Poissonian nature of the underlying photon statistics. The low-Q) III-V and the
[1-VI sample are still subject to some small excess fluctuations which manifest in values
of ¢ (0) = 1.1 and 1.2, respectively. The origin of this small amount of excess noise
is not completely clear. Possible reasons include relevant contributions of spontaneous
emission from early and late times in the pulse and efficient cavity feeding effects
[43, 44]. Further studies on the influence of spontaneous emission at different emission
times inside the pulse will be described later on, in chapter [3.3] Below threshold
the behavior is rather different for the three samples. None of the samples shows a
saturation of g®(0) at a value of 2 as would be expected for a classical low-3 laser. For
the II-VI cavity ¢?(0) saturates for low excitation powers at a value of ~ 1.9 — 1.95.
The small difference from the expected value for a low-/3 laser is a manifestation of
a limited number of emitters. A detailed treatment shows that thermal radiation
emitted by a system consisting of a fixed number N of emitters shows an emitter-
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number dependent second-order correlation function [45] already without considering

further cavity-QED effects:
1

g (0) = 2(1 = ). (3.4)

Value between 1.9 and 1.95 are therefore expected if 20-40 QDs contribute to the
emission in the II-VI cavity. Considering the QD density of this sample this number
corresponds to roughly 8 — 17 % of the QDs inside the micropillar coupling to the the
cavity mode. Considering the spectral overlap between the distribution of the QD
emission energies and the cavity mode and possible cavity feeding effects, this value
is reasonable. Interpretation of the results below threshold is more complicated for
the III-V samples. For these structures there is no resolvable saturation of ¢(*(0)
below threshold. The quantum efficiency of the S-20 photocathode inside the streak
camera is about one to two orders of magnitude worse for the wavelength range around
900 nm where the III-V samples operate compared to the 500 nm-range where the II-
VI sample operates. Correspondingly background noise contributes more strongly and
the necessary measurement duration becomes much longer already in the threshold
region for the III-V samples. Under these circumstances, it becomes impossible to
monitor the photon statistics below threshold. The highest measured values of ¢(®(0)
are about 1.7 for the low-() sample and approximately 1.4 for the high-() sample.
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Figure 3.4: Calculated zero-delay correlation function and input-output curve for a
low-() quantum dot microcavity laser.
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Figure 3.5: Calculated zero-delay correlation function and input-output curve for a
high-@) quantum dot microcavity laser.

A detailed theoretical analysis of the expected photon statistics (see appendix [A] for
details) for parameters as given by the samples used in our experiments which also
takes cavity-QED effects into account shows that the measured values are not far from
the saturation values [42]. The theoretical g®(0)-curves are shown in the upper panels
of figures (assuming parameters of the low-Q) cavity and 30 resonant QDs) and
(assuming parameters of the high-@) cavity and 15 resonant QDs), respectively. These
curves saturate at values of ~ 1.9 for the low-() sample and ~ 1.45 for the high-Q)
sample. Comparing the theoretical and experimental g(®(0)-curves at low excitation
powers at comparable points in the IO-curve shows reasonable qualitative agreement
between them. Inside the threshold region the II-VI and the low-@) I1I-V sample show
the classically expected behavior: ¢®(0) undergoes a smooth transition towards a
value of 1. The high-Q sample shows a different behavior. Here, g®(0) drops to values
below unity around the lasing threshold, giving clear evidence for the emission of non-
classical light. This is accompanied by an even smoother input - output curve. The
calculations reproduce this peculiar dip. It can be traced back to the small number of
emitters coupling to the cavity mode. This non-classical behavior vanishes with rising
excitation intensity as the intracavity photon number increases and coherence starts to
build up. Similar transitions from antibunching to bunching have been seen for atoms
in a cavity [46] for a variable number of emitters. Further insight into the details of
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the emission process can be gained from time-resolved correlation measurements which
will be the subject of the next section.

3.3 Time-resolved Correlation Measurements

For large 7, ¢®) (1) must necessarily return to 1 as photons emitted with a large delay are
statistically independent. For thermal light, straight application of classical coherence
theory predicts a decay from the value at 7 = 0 towards a value of unity on a timescale
of the order of the coherence time of the light. The dynamical evolution of the second-
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Figure 3.6: Temporal evolution of ¢® for selected pump powers. Results are shown
for the low-Q (left panel) and high-Q) (right panel) III-V cavities of figure 3.3l An
unexpected outcome is the appearance of dynamical antibunching ¢® (7) < 1 for low
and intermediate excitation densities at finite 7 for the low-@) cavity. The intensity
correlation function does not merely drop to a value of unity, but takes on smaller
values with subsequent oscillations. This is also particularly apparent for the high-Q
cavity at P.,. = 112mW. In the threshold region the high-Q) cavity shows antibunching
caused by the small number of quantum dots coupling to the cavity.

order correlations of the I1I-V cavities shown for selected excitation powers in figure|3.6
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differ from this prediction. For the low-Q cavity (left panel) and excitation below the
threshold region, ¢(® (7) drops smoothly from a value slightly below two towards unity
within the first picoseconds. However, for delays of around 40 ps, values below unity
appear. For the high-Q cavity (right panel) and excitation in the threshold region,
pronounced long-lasting oscillations of ¢(®(7) are visible. The oscillations become
obviously damped with increasing excitation power. Above threshold, we find that
g®(7) = 1 in both the low-Q case and the high-Q case. The origin of these oscillations
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Figure 3.7: Calculated ¢®(7) for a low-Q quantum dot microcavity laser. Selected
pump rates are used.

and the observed antibunching is not immediately clear. Application of a microscopic
theoretical model (for details, see chapter gives deeper insight into the complex
dynamics of the QD-cavity system. Figures[3.7 and [3.8|show examples of the numerical
calculations. They are intended to demonstrate possible results for two different sets
of parameters. The data are sensitive to the microscopic description of the carrier
scattering that provides a common source for carrier redistribution and dephasing.
These processes depend on, among other things, the electronic states both for the
recombination processes and for where the carriers are pumped. To simplify this rather
involved analysis, pumping at higher quantum-dot states was assumed. It was further
assumed that 50 quantum dots in the low-(Q micropillar and eight quantum dots in the
high-Q micropillar are resonant with the optical mode. A spontaneous emission factor
of f = 0.1, a total spontaneous-emission time (enhanced as a result of the Purcell
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Figure 3.8: Calculated ¢ (7) for a high-) quantum dot microcavity laser. Selected
pump rates are used.

effect) of 75, = 51.7ps (low Q) or 0.75 ps (high Q), and a quality factor of Q) = 40,000
(low) or 80,000 (high) were chosen for the calculations. Considering resonant pumping
of carriers in the quantum-dot p shell, relaxation times from p shell to s shell of 0.5
ps for electrons and 0.25 ps for holes were used. The chosen examples reproduce the
general trends of the experiments. The calculations of g®(7) for the low-Q case at low
excitation intensities show a non-monotonic decay to unity from the initial value. For
the high-QQ parameter set oscillations in ¢(®(7) are found as seen in the experimental
data.

The observed oscillations in the photon correlations are a result of the dynamical
coupling between photons and carriers and can be qualitatively understood as follows.
For a microcavity operated at steady state in the spontaneous-emission regime, g (7)
decays from nearly two to one on the timescale of the coherence time. In the regime of
dominating stimulated emission, ¢'® (1) equals one independently of time delay. The
oscillations are observed in the regime of transition from spontaneous to stimulated
emission in a system that, under these conditions, contains only very few photons
emitted by very few quantum dots. This is the transition regime of cavity QED lasers
discussed in [2]. Unlike in the situation in the lasing regime, here the loss of a photon
from the cavity represents a severe perturbation of the system, which strongly influences
the coupled carrier-photon dynamics. Systems of emitters coupled to a cavity mode
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are known to exhibit different kinds of oscillations of the emission intensity. Relaxation
oscillations can occur close to the threshold region when the laser is switched on or
perturbed, and Rabi oscillations can occur in the regime in which the dissipation is
small in comparison with the light-matter coupling strength. The dynamics of the
correlation function ¢ (1) can be traced back to this behavior. Theory predicts that
both kinds of oscillations can be triggered by photon emission events. In reaction to the
perturbation, the system tries to re-establish equilibrium, and, in doing so, undergoes
quantum oscillations. In both cases, the origin of these oscillations is the feedback due
to the cavity, which can lead to out-of-phase oscillations of photon number and lasing
medium. These oscillations become damped as the pump rate increases and a regime
of stimulated emission is reached in which the photon number is high enough that
single photon losses no longer affect the system considerably. In the case discussed
before, the perturbation of the few-emitter system can become so prominent that,
for example, the subsequent emission of a photon is suppressed. This leads to the
dynamic antibunching both for zero delay and for times after enhanced photon pair
emission during the oscillations. These oscillations potentially also appear in intensity
measurements. However, as the moment of photon emission is stochastic, any time
averaging blurs the oscillations. Nevertheless, the oscillations also carry over to the
correlation functions similar to ¢(® (7). There they survive the averaging, as although
the moment of arrival of the first photon is still stochastic, a second photon is picked
whose delay, 7, relative to the first is fixed for all detected photon pairs. For increasing
@, the cavity feedback is enhanced, causing the quantum fluctuations to become more
pronounced as reflected by the oscillations of ¢(® (7).

The experimental and theoretical results shown so far show reasonable qualitative
agreement although measurements using pulsed excitation were compared with the
results of steady state calculations. It is also worthwhile to study a regime where
differences between pulsed and steady state operation occur, namely the dynamics in
the build-up and break-down of coherence during a pulse. The starting point of such a
study is again the time-resolved recording of the individual photon emission events in
the output pulse which provides a complete mapping of the second-order correlation
function of the emitted light in £ and 7. Instead of determining the 7-dependence by
calculating the intensity-weighted average of ¢ (¢, 7) over a time interval ¢ during the
emission pulse, as done in the earlier discussions, now the t-dependence at a vanishing
photon pair delay time of 7 = 0 is the central quantity to be studied. While the
former treatment gives a good characterization of the photon statistics and coherence
time of the emitted pulse as a whole, the latter is a good measure of the time-resolved
second-order coherence properties and therefore also the build-up and break-down of
coherence during a pulse. For these measurements a micropillar with 6 ym diameter
was used. All other characteristics of this pillar are comparable to the low-Q III-V
micropillar discussed before. The transition region to lasing was identified by measuring
the input-output curve shown in Fig. A nonlinear behavior between excitation
powers of 60 and 150 xW marks this region. At lower excitation powers, g (t,0) takes
on the expected static value of 2 without showing any dynamics. More interesting are
the excitation powers (filled squares in figure in and above the threshold region
for which the intensity-dependent second-order coherence properties of the emission
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Figure 3.9: Integrated intensity of the 6 um pillars fundamental mode under nonres-
onant pulsed excitation. Above threshold, saturation effects become apparent. Filled
squares mark the data sets shown in figure [3.10}

were determined. Figure shows ¢ (t,0) for these excitation powers alongside
the temporal emission-intensity profiles. The light exhibits thermal behavior at the
very beginning and at the very end of the emission pulse. After the generation of
carriers in the barrier states by the pump pulse, these carriers rapidly relax into the
QD states [47]. As long as a small number of carriers is present in the QD states,
spontaneous recombination processes determine the output. When the population
becomes sufficiently strong, the system is driven into the regime of coherent emission,
characterized by a decrease in the second-order correlation function toward the value
of 1, and by a faster decay of the emission intensity due to the stimulated processes,
visible in an apparent temporal narrowing of the emission peak. The decrease toward
g (t,0) = 1 becomes more pronounced for higher excitation densities, finally leading
to a broadening of the dip, as more carriers are excited in the system and stimulated
emission can be maintained for a longer time. While the transition from thermal to
coherent emission in the beginning of the pulsed emission can take 40 ps or even more
in the threshold region, it happens on a time scale on the order of 10-15ps far above
threshold.

As another important finding, it should also be noted that knowledge of ¢® allows
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Figure 3.10: Time evolution of the second-order photon correlation function g (t,0)
(symbols) compared to the normalized output intensity (solid lines) for the micropillar
fundamental mode. Black and red dotted lines denote the limiting cases of g(® (t,0)
for coherent and thermal light, respectively. The power density for pulsed excitation
increases from top to bottom. %, corresponds to the maximum of the emission
intensity for each pump power.
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us to determine how large the relative amounts of coherent and thermal emission are
for any given time within the emission pulse. This information is not accessible via
output intensity measurements alone. One can consider partially coherent light as a
superposition of a thermal and a coherent mode, which contribute to ¢ according to
[
1 1 e~ 277 22
©) _ 24 2 2
g9t 0)=14+-——-—+ VR + 9,7 (t,0)RZ + 2R R.(1 + +-——=), (3.5)
vt 22 S G
where v = I'T" with AI' & 63 eV is the thermal mode half width at half maximum,
T = 5ps is the sampling time and R. and R; are the relative fractions of coherent and
thermal emission, respectively. As can be seen in figure the thermal and coherent
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Figure 3.11: Relative fractions of coherent and thermal emission at a fixed g?(¢,0) as
given by a two-mode model (solid lines) compared to the ideal case for infinitely small
sampling time (dashed lines). Small deviations occur at high thermal fractions.

fractions depend nonlinearly on ¢® showing that already small amounts of thermal
emission can cause significant deviations from coherent emission.The finite sampling
time causes a slight underestimation of ¢ for large thermal fractions. In our case,
the minimum ¢® for 70 uW excitation power is about 1.5, for which about 70 % of the
emission is coherent. When ¢® drops on the other hand below 1.2, more than 90 % of
the emitted light is coherent.

It should be noted that in the time evolution of the second-order coherence g (¢, 0),
the position of the minimum coincides with the peak of the mean photon number of
the emission pulse. Also the time dependence of the leading and trailing edges of the
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emission pulse is mirrored in the dynamics of g®(¢,0). This suggests that the interplay
of stimulated emission and output coupling determines not only the emission intensity
but also the coherence properties. This behavior appears surprising as the dynamical
evolution of the mean photon number (b7(¢)b(t)) and of the two-photon coincidences
(bt (£)bT (£)b(£)b(t)) obey distinctly different equations of motion in which different types
of carrier-photon correlations enter, even though both expectation values can be traced
back to the time dependence of the photon probability distribution.
At the very early and late parts of the emission pulse, where low values of the emitted
intensity are present, an overshoot of g® (¢,0) beyond the thermal value of 2 is obtained
in the experiment. This behavior is an artifact of pulse jitter caused by electronic noise
as discussed in detail in section [2.2.3] and depicted schematically in figure 2.17 How-
ever, the emitted pulses are longer and not Gaussian, so that a qualitative discussion of
this overshoot under these conditions is necessary. The detected mean photon pair and
photon count rates at a screen position corresponding to time t are in fact a mixture of
all photon pair and photon count rates weighted with a narrow Gaussian distribution
centered at t. To determine whether this jitter has a significant effect on the recorded
photon statistics, it is necessary to compare the time scale on which the jitter occurs
to the time scale of the pulse dynamics. If the pulse dynamics are comparable to the
jitter time scale or even faster, the momentary intensity at a certain position on the
screen will vary strongly from picture to picture and the measured correlation function
will depend on these fluctuations instead of the intrinsic fluctuations of the light field.
For visualization of this effect, one can consider a coherent pulse with varying intensity
and a simplified jitter model, which leads to well defined shift At with a probability p
and causes no shift at all other times with the probability ¢ = 1 — p. The measured
intensity correlation at a position on the screen corresponding to time ¢ will now only
depend on p and the mean photon number ratio r = % of the times connected by
the jitter,

4 (1.0) = gn(t)* + plrn@))® _ q+pr* (3.6)

’ [gn(t) + pro(@)* (g +pr)?

This function is depicted in figure for rare events (black dotted line) and common
events (red solid line). The detrimental effect of the common jitter shown there is neg-
ligible for our measurement because common jitter happens on a time scale of about
1.5 ps and the mean photon count rates do not change significantly in this range. Even
at the steepest positions of the pulse slope, the intensity variation does not exceed 7%
within 1.5 ps (compare figure . Accordingly, only the region between r = 0.93 and
r = 1.07, where the red line does not show significant deviations from the expected
value of 1, contributes for frequent jitter. For rare events on the other hand, there
is no effect for small r but there are significant deviations for » > 20. As Gaussian
jitter is unbounded, there are indeed rare jitter events where r exceeds 20 for regions
with small mean photon count rate. These rare events cause the overshoot of g®(t,0)
seen far from the emission peak in figure In these regions, the increased pair
detection rate due to rare jitter events is larger than the intrinsic photon pair count
rate determined by the mean intensity at this position. This consideration shows that
special care must be exercised when the statistics of weak emission signals are studied.
The same microscopic theory applied to model the relaxation oscillations and the oc-
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Figure 3.12: Effect of jitter on the measured ¢®(¢,0) for a coherent light pulse de-
pending on the ratio r of the mean photon count rates at the pulse positions connected
by the jitter and the relative frequency p of jitter occurrence. While frequent jitter
(solid red line) has the same effects for pulse positions with high and low intensity, rare
events (dotted black line) only affect regions with low mean photon count rate (large

T).

currence of antibunching discussed before, has also been used to model the dynamics
of coherence build-up and break-down. As the details of carrier relaxation and capture
processes are not crucial for the photon-correlation dynamics, incoherent generation of
carriers in excited QD states with a time-dependent rate determined by an effective
pump pulse is assumed. The model includes subsequent carrier relaxation into the low-
est QD states that are coupled to the fundamental cavity mode. Carrier scattering and
dephasing rates are obtained from independent many-body calculations. A pulse dura-
tion of 68 ps provides a reasonable estimate for the population dynamics of the excited
QD states to obtain an evolution of the output intensity as observed in the experiment.
This value is in reasonable accord with recent studies on similar QD structures, which
give luminescence rise times on the order of 50 ps [49]. The calculated time-resolved
intensity and second-order correlation function ¢®(¢,7 = 0) are shown in figure
For increasing values of the time-integrated pump rate from P = 3 to P = 7, a temporal
narrowing of the output pulse due to the increasing stimulated-emission contribution
accompanied by a growing dip in the photon-correlation function approaching unity at
the intensity maximum is found. With increasing pump rate, inversion of the carrier
states is reached earlier and persists longer. For the highest considered pump rate
P = 10, saturation effects due to Pauli blocking start to reduce the peak intensity of
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Figure 3.13: Calculated input-output curve (inset) and time evolution of the mean
photon number (dashed lines) and the second-order correlation function (solid lines)
for selected values of the time-integrated pump rate indicated by the color-coded dots
on the input-output curve. All curves are calculated for a pump-pulse width of 68 ps.
The following parameters were used: number of resonant QDs: 140, cavity loss rate
2k: 0.09ps™!, spontaneous lifetime: 4.3 ps, scattering rates into (out of) the lasing
transition: 11.7ps™! (23.3 ps™!), light-matter coupling constant g: 0.22ps™!, loss rate
to nonlasing modes: I',,;=0.22ps™!, and constant dephasing: I'=8.5ps~!. Comparison
with extended calculations including an inhomogeneously broadened ensemble gives
very similar results with the present calculations using a homogeneous ensemble subject
to considerable dephasing.

the output pulse. As a consequence, these saturation effects also lead to the appearance
of a longer pulse duration.



70

Quantum Dot VCSELSs




Chapter 4

Quantum Well Diodes and VCSELs

In contrast to VCSELSs, quantum-well polaritonic diodes operate in the strong coupling
regime. Although often only polaritonic devices using electrical injection [50, 51| are
considered polaritonic diodes, in the following there will be no distinction between
polaritonic devices using electrical and nonresonant optical injection and both will be
termed polaritonic diodes. Both kinds of diodes rely solely on spontaneous relaxation
mechanisms to guide the excited carriers to the emission modes. Usually, the lower
polariton branch emission is the quantity of interest. Figure [4.1] shows a schematic
picture of the relaxation mechanisms [52]. The excitation is provided by external
pumping and creates a thermal reservoir of free electrons and holes. Polaritons are
formed from the thermal reservoir via acoustic- or optical-phonon emission. Inside
the polariton branches acoustic-phonon scattering and radiative recombination are the
most important processes. Other scattering processes, in particular exciton-carrier
scattering, exciton dissociation, exciton-exciton and polariton-polariton scattering, can
be neglected at low lattice temperatures and carrier densities. As the k| = 0 lower
polariton state shows the lowest energy, one might imagine this state to act as a
polariton trap and expect most emission to come from this state. Experimental results
show a different situation with the major part of the emission stemming from the
so-called bottleneck region marked in figure for negative detunings [53]. These
experimental findings can be explained by the taking the acoustic-phonon scattering
rates for polaritons into account. The maximum energy transferred by acoustic-phonon
scattering is on the order of 1meV [54]. In the bottleneck region the energy changes
very fast with k|, resulting in a small density of states and also in a reduced acoustic-
phonon scattering rate. Additionally also the polariton lifetime decreases strongly
in this region due to the large photonic content as shown in figure causing the
multiple phonon scattering processes needed to realize relaxation to the ground state
to be very unlikely. This relaxation bottleneck becomes more pronounced for larger
negative detunings because the density of states in the low-k)| region decreases strongly
with increased photonic content of the lower polariton. Stimulated polariton-polariton
scattering processes provide a way towards more efficient relaxation towards the ground
state as the maximum amount of energy transferred in a single scattering process is
larger. However, such processes become efficient only at larger polariton densities
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Figure 4.1: Schematic representation of the polariton dispersion and the possible po-
lariton formation and relaxation processes by means of optical (LO) and acoustic (AC)
phonon emission on a logarithmic scale. Red lines give the bare cavity and exciton
dispersions. LP and UP mark the lower and upper polariton dispersion, respectively.
The blue region marks the thermal free carrier reservoir. SC, BR and TR mark the
strong-coupling, bottleneck and thermal regions.

than are realizable in polaritonic diodes. For high polariton densities the Coulomb
interaction between the excitonic fractions of the polaritons increases and finally leads
to a bleaching of the exciton oscillator strength [55] which in turn leads to a reduction of
the Rabi splitting and finally breaks the strong coupling regime. The polaritonic diode
then transits into the weak coupling regime and turns into a VCSEL. For polaritonic
diodes the strong coupling regime is bleached before the polariton density becomes high
enough to allow stimulated polariton scattering processes under nonresonant excitation
conditions.

4.1 Correlation measurements on QW VCSELs

The QW VCSEL sample consists of a GaAs/ AlGaAs microcavity grown by molec-
ular beam epitaxy. It contains one 10-nm-wide quantum well placed in the electric
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field antinode of a slightly wedged A cavity especially designed to avoid charge accu-
mulation in the quantum well [56]. The sample displays a vacuum Rabi splitting of
3.9 meV. The polariton dispersion for different excitation densities (figure shows
an apparent bleaching of the strong coupling regime with increasing excitation power.
Additionally, the LP ground state was found to be only weakly populated far below the
lasing threshold. Therefore, polariton-polariton scattering is also weak in this regime.
The far-field emission of the LP branch was investigated at a negative detuning of
-2meV. The Fourier plane of the emission was either imaged onto the entrance slit of a
monochromator for measuring the dispersion or onto the entrance slit of a streak cam-
era for photon counting measurements as explained in chapter 2l Photons, which are
emitted at an angle of 6, directly correspond to polaritons with energy E and in-plane

wave vector of kj = hﬁc sin@. Thus, in the first case, the entrance slit of the monochro-
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Figure 4.2: Momentum distribution of the polaritons as measured by angle-resolved
photoluminescence for three different excitation densities: (left panel) 50 mW (far
below the lasing threshold), (middle panel) 1.5 mW (at the lasing threshold), and
(right panel) 10 mW (above threshold). The false color scale is linear. The black
dashed lines indicate the dispersion of the LP and the bare cavity mode.

mator selects a narrow stripe with k.| = 0. In the second case, only the k| = 0 state
of the LP branch is selected with an angular resolution of ~ 1° by using a pinhole.
Additionally, an interference filter with a 1-nm width is used to ensure that only a
single mode contributes to the signal. With increasing excitation density, the filter is
tuned so that the central transmission wavelength follows the blue shift of the polariton
dispersion as shown in figure[4.3] As can be seen, there is a smooth and continuous blue
shift starting at the onset of the nonlinear region in the input-output curve. This is a
clear sign of increasing interactions between particles and bleaching of exciton oscilla-
tor strength. The measured time-averaged normalized intensity correlation functions
g™ (7 = 0) up to the fourth order (figure show that, for high excitation densities,
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Figure 4.3: Black squares indicate integrated intensity of the lasing mode measured at
normal incidence as a function of the nonresonant excitation power at a detuning of
-2meV. Blue circles represent emission energy around normal incidence as a function
of the excitation energy. Dashed lines indicate the linear dependence of the emitted
intensity on the excitation power below (lower curve) and above (upper curve) the
lasing threshold.

all orders approach the expected value of 1, denoting conventional photon lasing. With
decreasing excitation density, a smooth transition toward the thermal regime occurs,
which is accompanied by photon bunching. At an excitation power of ~ 1.5mW, the
bunching effect saturates at values of approximately 2 and 6, which are the expected
values of n factorial for the second and third orders of g™ (7 = 0). The fourth order also
shows an increase of the joint detections, but the number of detected four-photon com-
binations is too small at low excitation densities to give statistically significant results
in the thermal light regime. The results for different orders of ¢ (7 = 0) at the same
excitation power are derived from the same data set. To assure that only single-mode
thermal emission from the k| = 0 state was measured, the collection angle was also
increased by opening the pinhole. By doing so, the number of modes contributing to
the signal increases and, therefore, the regime of indistinguishable photons is left. As
can be seen in the right inset of figure [4.4] photon bunching is only present at collection
angles below 1.5°, suggesting that we are indeed operating in the single-mode thermal
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Figure 4.4: Second (black triangles), third (red spheres) and fourth (open green circles)
order intensity correlation function versus excitation power. (Left inset) Close-up of
the second- and third-order intensity correlation on a normalized linear scale. A value
of 0 corresponds to g™ (0) = 1 and a value of 1 corresponds to g™ (0) = 1. (Right
inset) Second-order intensity correlation function in the thermal regime for several total
collection angles. Error bars indicate the variation of the correlations, resulting from

the standard deviations of the detected photon numbers used for calculating ¢® and
(3)
gt

regime. To further ensure that the experimental results are the result of photon bunch-
ing and not just a consequence of some dominating noise source when the signal gets
weaker, we also studied the blue shift of the LP and the input-output curve of the
microcavity, as shown in figure . The onset of the decrease of g™ (7 = 0) coincides
with the beginning of the LP blue shift and the onset of a nonlinear increase in the
input-output curve. This shows that the system leaves the strong coupling regime and
starts to lase. At high excitation powers, well defined lasing at the bare cavity mode
builds up as expected. It is obvious that the thresholds,where the g™ (7 = 0) begin to
decrease toward a value of 1, do not occur at the same excitation density. This shift
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can be explained in terms of the low photon numbers inside the cavity at the lasing
threshold. Stimulated emission sets in at a mean photon number p of the order of unity
inside the mode of interest, but in the threshold region, there is still a superposition
of thermal and stimulated emission present. Because of the stronger photon number
fluctuations in chaotic fields, their contribution to n-photon combinations will still be
substantial, whereas p is smaller than n.



Chapter 5

Polaritonic Condensates

5.1 Nonequilibrium condensation

In the low-density limit cavity polaritons approximately behave like bosons. Thus,
they can in principle undergo Bose-Einstein condensation (BEC) when their de-Broglie
wavelength becomes comparable to their average separation. Their dual light-matter
nature makes this approach very promising. This mixture results in a small mass
and allows for very high critical temperatures up to room temperature. Also it is
easily accessible experimentally because the emitted photons are part of the polariton
wavefunction [57] and the properties of the emitted light directly reflect the properties
of the polaritons. The drawback of the added photonic content is the short lifetime
of the polaritons. It is typically on the order of 2 - 10 ps, which makes it difficult to
establish thermal equilibrium. In fact, full thermalization with the host lattice has not
been realized for polariton condensates. It is, however, possible to create a polariton
gas in self-equilibrium if polariton-polariton scattering processes are fast enough.

5.2 Strategies to reach degeneracy

After the first proposal of polariton lasers or polariton BEC acting as a laser without
inversion [58] huge efforts were devoted to the development of suitable structures to
realize this scenario. Basically the experimental structures are still similar to the ones
used for realization of QW diodes in chapter 4 However, the main difficulty lies in
reaching a quantum degenerate ground state and bosonic final state stimulation before
significant exciton oscillator strength bleaching sets in. There are several strategies to
overcome this problem and achieve large polariton densities and efficient stimulated
polariton-polariton scattering. They can be divided into two main categories: ap-
proaches aiming at realizing a larger Rabi splitting by a certain choice of material or
design of the cavity and approaches utilizing a more efficient excitation scheme. The
description of microcavities given in section focused on GaAs based approaches
as it is a material allowing for very precise sample growth with a small defect density
and most samples investigated in this thesis are GaAs based. However, the achievable
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2~k for a single quantum well is on the order of 3 — 4meV only. Correspondingly
there have been considerable efforts to realize larger Af)g in the strong coupling regime
using materials with larger exciton oscillator strength like CdTe (2h£2g up to 25 meV)
[59], GaN (2AQ g exceeding 50meV) [60] and ZnO (2AQx up to 50meV) [61]. Another
strategy also used for GaAs systems lies in increasing the number Ngp of quantum
wells embedded in the cavity [62]. As Qg increases with the square root of the exciton
oscillator strength, adding more of them corresponds to an effective coherent addi-
tion of the single quantum well oscillator strengths while simultaneously the polariton
density per quantum well at fixed total polariton number scales as N@}V A common
strategy is to position three stacks of 4 quantum wells each at the central antinode
of the cavity and the first antinode in each DBR mirror. By doing so Rabi splittings
as large as 15 meV have been realized for GaAs systems, allowing to reach stimulated
scattering into the LP ground state.

There are basically four different excitation schemes using optical excitation with vary-
ing efficiency. However, not all of them are suitable for each kind of experiment. The
easiest method is direct resonant excitation of the k; = 0 condensed state. While
being very efficient, this excitation geometry is not suitable for proof-of-principle ex-
periments aimed at demonstrating features like spontaneous build-up of coherence as
the coherence properties of the ground state could have been inherited directly from
the resonant optical pumping process. The same problem arises for resonant pump-
ing at the so-called magic angle. The magic angle state ks is the point of the LP
dispersion from which a resonant polariton-polariton scattering process to the states
K = 0 and 2k 5 is possible. In this process both total wavevector and energy are
conserved. However, it is a resonant scattering process and it is still possible that the
coherence of the pump beam is directly carried over to the condensed state. Therefore,
only two pumping schemes remain to demonstrate spontaneous build-up of coherence:
nonresonant pumping and resonant pumping of the LP under high angles where direct
resonant scattering to the ground state is forbidden. In both cases several polariton-
polariton or polariton-phonon scattering processes are necessary before the ground
state is reached. During this processes the initial coherence is lost. Both excitation
schemes have different pros and cons. Nonresonant excitation is very efficient. Here
the initial excitation creates electrons and holes. For those, the density of states is sig-
nificantly higher than for polaritons in a certain state. Accordingly threshold densities
are at least a factor of 10 smaller compared to resonant excitation of polaritons with
large k. On the other hand, nonresonant excitation also creates a large number of
background carriers interacting with the polariton gas. Therefore the exact features of
the polariton BEC will also depend strongly on the density and spatial distribution of
the residual carriers. Resonant excitation of polaritons with large k) is less efficient and
results in large threshold excitation densities, but also offers well defined experimental
conditions. Polaritons can be created directly with a desired polarization and there is
no excitation of other carriers interacting with them. In this chapter both excitation
schemes will be applied.
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5.2.1 Definitions and signatures of BEC

The definition and experimental identification of BEC is nontrivial. Over the course
of the last decades several possible definitions of BEC have been proposed which are
connected with different experimental signatures. This section will roughly follow the
account given in [63].

The first prediction of BEC goes back to Bose [64] and Einstein [65]. Considering N
non-interacting bosons at a temperature 7' in a volume R¢ consisting of the system
size R and its dimensionality d, the energetic distribution of these bosons will be given
by the following Bose-Einstein distribution:

fB(Eanu): !

exp (%) -1
Here E(k) gives the bosonic dispersion with the lowest value of E(k) set to 0, k is the
particle wavevector also of dimensionality d and p describes the chemical potential. —pu
is the energy needed to add another particle to the system. For bosons, this definition

makes sense only for nonpositive values of the chemical potential. Its exact value is
determined by the normalization condition for a given total particle number N:

N(Ta :U) = ZfB(Ea T, M)' (52>
k

(5.1)

As the quantity of interest is the particle density of the ground state, it is convenient
to divide between the ground state and all other states:

1 -
H = (‘@%) - > u

K,k£0

The particle density can be evaluated by taking the thermodynamic limit and convert-
ing the sum to an integral over reciprocal space:

. N(T, p) o -
0
Here the ground state particle density ng is given by:
1 1
no(T,pn) = lim — (5.5)

Well away from zero chemical potential, the ground state particle density vanishes,
while the integral on the right-hand-side of equation [5.4] increases with p. Accordingly,
increasing the particle density n in the system will also cause p to increase. As only
nonpositive values of p give sensible results, the maximum particle density n. that can
be accomodated following the Bose distribution function is given by:

— / fu(k,T)dk. (5.6)
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It seems that after reaching n. no additional particles can be added. Einstein proposed
that further increase of the particle density causes the added particles to collapse into
the ground state, which has a density given by:

no(T) = n(T) — ne(T). (5.7)

This is a phase transition which main characteristic is the massive accumulation of
particles in the ground state. The order parameter is the chemical potential, which
vanishes at the transition. From an experimental point of view, however, this macro-
scopic occupation of the ground state is a rather qualitative sign of BEC as the exact
onset of what should be considered as a large enough population of the ground state is
not necessarily defined well under all circumstances. A more modern definition of BEC
working also for interacting bosons which are not necessarily in equilibrium makes use
of the single-particle density matrix [66]. Any pure state s of a system of N bosons at
positions 7; (i=1..N) can be written in the form:

VN (t) = (.. TN, 1) (5-8)

The most general state of the system is given by a mixture of different of those nor-
malized and mutually orthogonal pure states s with weights p,. The single-particle
density matrix p; (7,77, t) is given by:

pi(F, 7 1) = NZps/drg...drN¢:(F,F2,...,FN,t)wj(F’,FQ,...,FN,t)
S

= <¢T(F7 t)?ﬂ(f’/, t)> (F: 1, 7= Fll) (5'9)

in terms of bosonic field operators. The choice not to integrate over 7 is arbitrary.
The single-particle density matrix is equivalent for each choice of 7;. Basically the
single-particle density matrix gives the product of the probability amplitudes to find a
certain particle at position 7 and 7/, averaged over the behavior of all other particles.
p1 can be considered as a matrix with respect to 7. This matrix is Hermitian and can
be diagonalized:

pr(F, 7", t) = Zni(t)x;"(ﬁ (", t). (5.10)
The eigenfunctions x;(7,t) form a complete, orthogonal set for each time ¢t. The eigen-
values of p; allow to characterize the system. Roughly speaking, the n;(t) are either
of order unity or of order N, which is equivalent to the limiting value of (n;/N) being
either a constant or 0 in the thermodynamic limit. If there is one eigenvalue of order
N the system exhibits BEC. This approach also allows to take fragmented BECs with
more than one eigenvalue on the order of N into account, which are difficult to handle
using other definitions of BEC.
Another possibility to classify BEC is the order parameter

¢(F7 t) = NO(t)XO(Fa t)) (511)

where xo = |xo|exp (i¢(7, 1)) is the eigenfunction of a single condensed state with
particle number Ny. This macroscopic phase of the condensed state leads to other
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possibilities to spot BEC properties. The condensate density and the current carried
by the condensed particles are given by:

Pl D) = Nolt) (7 ) (5.12a)
) = Nalt) (e ROVl ) + )
= Nol®) o7 0P v, (5.12b)

respectively. The ratio fc(F, t)/pe(7,t) is termed the superfluid velocity v(7,¢). It does
not depend on the magnitude of the order parameter:

@01@27%v¢@ny (5.13)

This is an important quantity when discussing superfluidity. There are two important
conclusions which can be drawn from [5.13f In any spatial region in which v is defined
(which equals nonzero xo(7,t)), one gets

V x vs(r,t) = 0, (5.14)

but considering a finite Path C' along which ¥ (7,¢) is defined enclosing a region, in
which it is not, one gets the Feynman-Onsager quantization condition [67) 68]:

f@ﬂ:ﬂf (5.15)

m

because the phase is only defined in multiples of 27w. These quantized vortices are
another signature of BEC.

A different approach closely related to the definitions given before uses off-diagonal
long-range order as an indicator for BEC [69]. This approach again focuses on the
single-particle density matrix p; (7, 7, t), but instead of explicit eigenvalues, its behavior
in the limit |7 — 7| — oo is the subject of interest. In that case p; can instead be
written in the following form:

- 1*1'|Hi> (77 t) = (70 f(F ) + po (7, 77, 1), (5.16)
where p1 (7,7, t) will tend to zero for |7"— 7’| — oo. This is the behavior expected
for the noncondensed fraction. f(7,¢) can be zero or nonzero. If it is nonzero, it
can be identified with the order parameter (7, t) and the system is Bose-condensed.
Otherwise it is not. A nonzero value of f(r,t) is often identified with the presence
of ODLRO. In simple cases this definition is equivalent to the definition of the order
parameter in equation [5.11} It should, however, be noted that the definition using
ODLRO cannot be simply applied to fragmented BECs or trapped systems, where the
limit |7 — 7’| — oo cannot be taken.

One more commonly used criterion for BEC the order parameter in terms of the Bose
field operator in second quantization Q/A}(F, t):

U(F,t) = (D(F, 1)) (5.17)
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Here the occurrence of BEC corresponds to a non-zero value of the right-hand side of
equation [5.17| analogous to the definition of a classical electric field . in terms of the
electric field operator £(7,t) by the prescription:

ea(r,t) = (£(7,1)). (5.18)

The field operators decrease the particle number N by one. While this is not a problem
for the electromagnetic field because there are no restrictions on the field being in a
superposition of states corresponding to different photon numbers, the situation is
not that trivial for atoms or other massive particles. Here the right-hand side of
equation [9.17| is identical to zero for any physically allowed state. One possibility to
overcome this problem lies in considering spontaneously broken U(1) gauge symmetry
[70]. This idea is applied in analogy to the ideal Heisenberg ferromagnet which has
a Hamiltonian with O(3) rotation symmetry. Below the Curie temperature a large
fractions of the spins will be aligned in parallel, but the exact direction is not specified.
Under these circumstances already a small field, which vanishes in the thermodynamic
limit, is enough to orient the other spins. The same explanation holds for BEC. A
small perturbation of the form

H =—(\ / O (F)dF + h.c.) (5.19)

will cause spontaneous breaking of O(1) symmetry and result in a finite value of the
order parameter. However, the validity of this approach is nontrivial. While there are
plenty of small external perturbations representing external fields which can orient a
ferromagnet, there is no known physical mechanism corresponding to the small pertur-
bation given by [5.19]

Several of these criteria have already been shown to be met for polariton condensates.
There have been demonstrations of macroscopic occupation of the ground state [71],
build-up of spatial coherence and ODLRO across the condensate [72], observation of
a Bogoliubov excitation spectrum [73], quantized vortices [74] and half vortices [75],
superfluid behavior[76, [77], build-up of spontaneous polarization [78] and second-order
correlation measurements [79, 80, [81].

Adding to the complex problem of identifying BEC, the existence of a critical particle
density is not automatically assured. Considering the case of a parabolic dispersion,
which is relevant for polaritons, one finds that n. converges for d > 2, but diverges for
d < 2. In two or less dimensions ODLRO cannot occur and spontaneous symmetry
breaking does not exist [82] [83], [84]. However, these no-go theorems are valid only for
two-dimensional systems of infinite size. For trapped systems a second-order phase
transition of Kosterlitz-Thouless type is still allowed for weakly interacting bosons [85]
and a superfluid state can form without the existence of strict BEC. This limitation
poses fundamental conceptual questions about the validity of the BEC criteria men-
tioned in the overview above as many of them cannot be directly applied to trapped
systems. Macroscopic population of the ground state is still a valid, but rather qual-
itative criterion. The first and second order coherence properties are among the best
remaining signatures of BEC, but need to be handled with care: Taking the dissipative
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nature of cavity polaritons into account, it is clear that polaritons can never reach
true equilibrium due to cavity losses, but only a nonequilibrium steady state deter-
mined by driving and decay. This places polariton BEC conceptually very close to a
common photon laser which shows similar coherence properties compared to those ex-
pected for polariton BEC. Thus, this chapter will focus on identifying similarities and
dissimilarities between photon lasers and polariton BEC in terms of their coherence
properties.

5.3 Correlation measurements on polariton BECs
and hip states

As discussed before, a signature for BEC of atoms and polaritons alike is the presence
of a large number of particles sharing the same quantum state. Therefore, one might
expect that the state of a polariton BEC shows the temporal coherence properties of a
coherent (¢ (0) = 1) or N-particle number state (9 (0) = 1 — +) which become in-
distinguishable in the limit of large occupation numbers. However, deviations from this
expected value of unity have been observed for polariton condensates [79, 80, 81, [86].
The origin of this effect is not immediately clear. One of the main differences between
polaritonic condensates and atomic BEC lies in the non-equilibrium nature of the po-
lariton BEC. Attributing the deviations from full coherence to non-equilibrium features
is a reasonable first assumption. Recent theoretical models [87, 88, [89] are able to re-
produce the bunching effect seen for polariton BECs pumped above threshold. These
models include polariton-polariton and polariton-phonon scattering as possible mecha-
nisms to couple the condensed ground state to the uncondensed polariton population.
Polariton-polariton scattering corresponds to quantum depletion of the ground state
where parametric scattering of two polaritons in the ground state into two excited
states with opposite momentum occurs. Due to interactions in the polariton gas, this
process would take place even at absolute zero and is therefore clearly distinguish-
able from thermal depletion of the ground state. Thermal depletion corresponds to
polariton-phonon scattering of one polariton in the ground state towards an excited
state at finite momentum. Above threshold the depletion of the ground state induced
by these two competing effects introduces occupation number fluctuations in the con-
densed fraction which result in a loss of coherence. However, as these processes depend
strongly on the relative populations of the different polariton states, the polariton life-
time and the shape of the dispersion in general, a strong dependence on the detuning
can be expected. Therefore, this chapter will focus on the coherence properties of
the polariton condensate for various detunings. Special emphasis is put on negative
detunings. With increasing negative detuning polaritons become more photonlike and
acquire a shorter lifetime. At some point, usually near zero detuning, this lifetime
will become shorter than the time needed for thermalization and the polariton gas will
not reach self-equilibrium [90]. In this case any transition towards a degenerate state
cannot be considered a thermodynamical equilibrium phase transition anymore. It is
worthwhile to study whether such a state shows properties differing from that of a
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self-equilibrium polariton-BEC. To clearly distinguish this non-equilibrium state from
common self-equilibrium polariton BECs, the former states will be referred to as highly
photonic (hip) states in the following.

The sample used to study the coherence properties of polariton BECs consists compre-
hensively of 12 GaAs/AlAs quantum wells embedded in a planar microcavity with 16
(20) AlGaAs/AlAs mirror pairs in the top (bottom) distributed Bragg reflector. Reflec-
tivity measurements gave results of 1.6158 eV for the bare exciton energy and 13.8 meV
for the Rabi splitting. Using a Ti-Sapphire laser with a pulse duration of 1.5ps and
a repetition rate of 75.39 MHz the pump was focused to a spot approximately 30 pm
in diameter on the sample at an angle of 45°. from normal incidence. The pump was
resonant with the LP branch at an in-plane wavenumber of k| = 5.8um™" for resonant
polariton injection or tuned to the first minimum of the cavity reflectivity curve at a
wavelength of 744nm for nonresonant and incoherent pumping. The emitted signal
was collected using a microscope objective with a numerical aperture of 0.26. The sig-
nal was then focused on a streak camera for correlation measurements, or the Fourier
plane was imaged on a monochromator for dispersion measurements.

As can be seen in figure , g®(0) does not reach the expected thermal value of
2 for any detuning as in this case there is no single-polarization fundamental mode
singled out like in the measurements described before, but both realizations of the
spin-degenerate ground state are detected simultaneously. Polaritons with different
spin states will not interfere with each other and therefore the values of ¢(®(0) and
g (0) expected in the thermal regime of two superposed modes are 1.5 and 3, respec-
tively. In this figure the results for linearly polarized and circularly polarized excitation
are shown in the upper and lower panel, respectively. It is striking that, if plotted on
a comparable scale, ¢ (0) and ¢®(0) give results, which are in good quantitative
agreement. Under linearly polarized excitation all detunings between A = 4+2meV
and A = —10meV show a degeneracy threshold, which is evidenced by a decrease
in ¢®(0) and ¢®(0) and agrees well with the position of the threshold (shown as
green dashed lines in figure evidenced in measurements of the input-output curve.
Here, the threshold is defined as the point where the LP emission and the emission
from the k| = 0 condensed state are equally strong. In the case of strong negative
detuning of A = —10meV no differences from a common photon lasing transition are
observed under linearly polarized pumping. Additional measurements of the polariton
dispersion evidence that above threshold the photons are indeed emitted from the bare
cavity mode in this case. Under circularly polarized pumping the threshold is not even
reached for a detuning of —10meV. This result is in accordance with previous results
showing that polariton relaxation is less efficient under circularly polarized pumping,
which in turn leads to a higher threshold excitation power Py, [91]. For all other detun-
ings, significant deviations from a simple photon laser behavior emerge. Even at high
excitation powers the ground state emission has lower energy compared to the bare
cavity mode with an energy difference of at least 4meV, indicating that the strong-
coupling regime is still intact. The second and third order correlation functions give
further evidence that the system is not a simple photon laser in the range of detunings
between +2meV and —7meV, corresponding to photonic contents in the range from
|C |2 ~ 44 —70%. Although at first a decay towards 1 is seen for linearly polarized
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Figure 5.1: Measured g (0) (black dots) and g®(0) (blue dots) determined by si-
multaneous two-photon and three-photon detections of the whole fundamental mode
emission for a wide range of excitation powers and detunings of -10 meV (|C|* ~77%),
-7 meV (|C] =70%), -4 meV (|C)* ~62%), -2 meV (|C]* ~56%), 0 meV (|C|* ~50%)
and +2 meV (|C|° ~44%) under linearly polarized (upper panel) and circularly po-
larized (lower panel) excitation. Red (blue) lines denote the coherent (thermal) limit.
Green dashed lines give the position of the degeneracy threshold determined by mea-
surements of the dispersion.

excitation, especially for a detuning of —7meV, an increase is evidenced for further
increased excitation densities. Depending on the detuning, ¢‘®(0) can reach values
even higher than the thermal value of 1.5. For further increased excitation power, a
smooth decrease back towards 1 is observed. For circularly polarized excitation the
general behavior of the correlation functions is similar to the linearly polarized case
as a decrease and a reoccurrence of the degenerate mode quantum fluctuations can
be identified for detunings between +2meV and —7meV. However, in this case the
correlation functions can also show increased fluctuations slightly above threshold as
can be nicely seen for a detuning of —7meV. This increase is caused by the build-up
of polarization. The thermal regime value of 1.5 is just valid for unpolarized two-mode
emission. As the excitation power reaches the threshold, the emission will also start
to polarize and the two modes will not contribute equally to the correlation functions
anymore. In the case of a superposition of two noninterfering modes A and B, the



86 Polaritonic Condensates

resulting measured gfé(()) is given by:
9'5(0) = gD (0)R? + g7 (0) R + 1RARp, (5.20)

where R4 and Rp are the relative intensity ratios of mode A and B to the total intensity.
Therefore it is possible to calculate gff)(O) from gff];(O) if the relative intensity ratios

and gg)(()) are known:

@ 955(0) — ¢ (0)R% — 1RARp
ga (O) = sz .

(5.21)

Comparing single-mode g®-measurements to the values obtained by two mode mea-
surements shows that for circularly polarized excitation the two modes are indeed
independent and the crosscircularly polarized mode stays thermal. When crossing the
threshold this effect will lead to an increase in ¢‘?(0) while the buildup of coherence
will lead to a decrease. Although these results are in fair qualitative agreement with
mean-field and reservoir calculations of the second-order correlation function of a po-
lariton BEC [88],[89], they are not sufficient evidence for deviations from a photon laser
as the non-monotonous behavior of the correlation function can also be a result of the
interplay of coherence and polarization. To make sure this is not the case, ¢®(0) was
also studied under circularly polarized excitation for the cocircularly polarized emis-
sion component only. As shown in figure , here the expected value of ¢?(0) = 2
is approximately reached in the limit of low excitation power for all detunings except
+2meV. At this detuning the emitted intensity below threshold is too small to per-
form sensible measurements using our setup. Above threshold the shape of ¢®(0)
shows qualitative agreement with theoretical results [89]. For 0 meV detuning it is ap-
parent that full coherence is not reached within the available excitation power range.
Instead ¢‘®(0) decreases monotonically towards a value between 1.3 and 1.4. There is
a trend towards further decrease at high excitation powers, however, the dependence
on pump power is very small. Going to more negative detunings, the dip already seen
without polarization sensitive detection occurs still. Apparently, the excitation power
corresponding to the occurrence of the dip takes on smaller values compared to Py,
for larger negative detuning. However, also the rise in ¢?)(0) seen for further increase
of the excitation power increases in magnitude. This can be seen well for the most
negative detuning of —7meV where almost complete coherence is reached at an exci-
tation power of approximately 1.1 Py, and a steep rise to 9(2)(0) > 1.6 is evidenced at
1.5 Py

Calculations of the second-order correlation function are generally done using one of
two different approaches [89): Mean field calculations predict a decrease of ¢*(0)
towards approximately 1.2 at the threshold, followed by a short rise for increasing ex-
citation power until a constant value of about 1.3 is reached. This prediction is in
good agreement with our results for no or small negative detuning. A two-reservoir
model predicts a sharp decrease of ¢(®(0) at the threshold, followed by a strong recur-
rence of the photon bunching up to values of ¢ (0) = 1.6 and a slow drop for even
higher excitation powers. This model better reproduces our results for large negative
detuning. We conclude that due to the increasing relaxation bottleneck and decreased
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Figure 5.2: Measured ¢®(0) of the cocircularly polarized fundamental mode for a wide
range of detunings and excitation powers under circularly polarized excitation. Red
(blue) lines denote the coherent (thermal) limit. Green dashed lines give the position
of the degeneracy threshold determined by measurements of the dispersion.

scattering rate expected for large negative detuning the two-reservoir model appears
to be a valid description in the hip regime and the dip seen for several detunings is
a sign of inefficient scattering between degenerate ground state polaritons and those
in excited states. As the emission photon statistics depend strongly on the detuning,
one might also find variations depending on the Rabi splitting and the excitonic and
photonic decay constants. Therefore, microcavities operated in the hip regime may
open up the possibility to introduce a high intensity light source with tunable photon
statistics.

5.4 Dispersion measurements on polariton BECs
and hip states

Additional characteristics of condensation and the excitation spectrum are manifested
in the polariton dispersion. Above threshold a blueshift of the k; = 0 LP is expected
as well as the LP dispersion itself is supposed to change from a parabolic shape in
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the uncondensed case towards a phonon-like linear dispersion in the low-momentum
condensed regime |k&| < 1, where £ = \/#Pgnc is the healing length of the condensate
[73]. In standard homogeneous equilibrium Bogoliubov theory the expected dispersion
is given by:

WBRog = WLp + gne + gy + gner/ (€)2((k€)? + 2) (5.22)

Here g and ¢, are coupling constants describing the interaction between two conden-
sate polaritons and between condensate polaritons and reservoir excitons, respectively
and n. and n, are their densities. Using the same excitation scheme as in the previous
section, the reservoir exciton contributions are expected to be negligible. Highly pho-
tonic condensed states are neither in thermal equilibrium, nor spatially homogeneous.
Their spatial extent is given by the finite size of the pump spot. Therefore one might
expect their dispersion to show strong deviations from the ideal homogeneous equilib-
rium Bogoliubov dispersion. In figure the LP dispersion of the emission copolarized
with the excitation is compared to the theoretical prediction for detunings of 0, —2,
—4 and —7meV below and above threshold. Below threshold (A, E, I, M) the stan-
dard quadratic LP dispersion is observed in all cases. Increasing the excitation power
near the threshold value (B, F, J, N), a blueshift of the kj; = 0 emission energy be-
comes apparent, while the cross-circularly polarized emission component never shows
threshold-like behavior. In addition to the blueshift of the copolarized emission also
the dispersion shape starts to differ from the standard quadratic one. Blue and white
lines in figure [5.3| give the quadratic LP and calculated equilibrium Bogoliubov disper-
sions for the condensate blueshift. For calculating wp,, the experimentally determined
values of the blueshift were used for the interaction energies. It is apparent that at and
above threshold the equilibrium Bogoliubov dispersion shows reasonable agreement
with the measured dispersion shown for 0 and —7 meV detuning, while none of the two
theoretical dispersions can reproduce the measured dispersion accurately for k) = —2
or —4meV. Here the excitation powers are slightly below threshold and the measured
dispersions lie approximately in the middle between both theoretical dispersions and
are not even symmetric with respect to k = 0. The latter feature becomes more ap-
parent with increasing negative detuning and is a signature of the nonequilibrium state
favoring the presence of polaritons having a wavevector with the same sign as the pump
incidence wavevector, while the first can be attributed to the inhomogeneity of the sys-
tem: While the LPs with k| = 0 are stationary, LPs with k) # 0 will move across the
excitation spot and experience a different interaction energy given by the spatial pump
pulse profile. However, it is striking that the theoretical prediction again matches the
experimental data well for the A = —7meV dispersion recorded at threshold. This
choice of excitation power corresponds to the large dip seen in the ¢(®-measurements
at the same detuning. Therefore, further theoretical research is needed to identify the
microscopic mechanism connecting the suppression of occupation number fluctuations
and the linearized excitation spectrum at the threshold. Further above threshold (C,
G, K, O) the momentum-space region of highest intensity moves significantly closer
towards k| = 0. At negative detunings there still is no complete reflection symmetry
between k| and —kyj, but the positive wavevector half of the dispersion now shows rea-
sonable agreement with the equilibrium Bogoliubov dispersion up to k| ~ 0.75 pm =t



5.4 Dispersion measurements on polariton BECs and hip states 89

~

-1.5-1.0-0.5 0.0 0.5 1.0 1.5 -1.5-1.0-0.50.0 0.5 1.0 1.5 -1.5-1.0-0.50.0 0.5 1.0 1.5

=4

-1.6-1.0-0.56 0.0 0.5 1.0 1.5 -1.51.0-0.50.0 0.5 1.0 1.5 -1.5-1.0-0.50.0 0.5 1.0 1. -1.5-1.0-0.50.0 0.5 1.0 1.5

0.82P

770

77

~ ~
~ ~
N By

772

Wavelength (nm)

-1.6-1.0-0.5 0.0 0.5 1.0 1.5 -1.5-1.0-0.50.0 0.5 1.0 1.5 -1.6-1.0-0.50.0 0.5 1.0 1.5
v, —,

772
773

774

-1.5-1.0-0.50.0 0.5 1.0 1.5

-1.5-1.0-0.50.0 0.5 1.0 1.5 -1.5-1.00.50.0 0.5 1.0 1.5 1.5-1.0-0.50.0 0.5 1.0 1.5

k (um”)

Figure 5.3: Polariton dispersions on a logarithmic scale at several excitation densi-
ties along the threshold for detunings of A = 0meV (upper row), —2meV (second
row), —4meV (third row) and —7meV (bottom row). Black, blue and white lines
represent the calculated LP, blue-shifted LP and homogeneous equilibrium Bogoliubov
dispersions respectively.

without usage of any fitting parameters. This propagating sound-like mode indeed is a
sign of collective behavior as expected in a condensed and thermalized polariton gas. It
should be noted that the deviation of the negative wavevector half from the equilibrium
Bogoliubov dispersion gets gradually larger with increased photonic content of the LP.
This behavior agrees nicely with the increasing deviation from full coherence seen for
hip states with large photonic content. Further increase of the excitation power (D,
H, L, P) results in a more pronounced occupation of the ground state. Although the
reflection symmetry between positive and negative k| is still not perfect, both parts
of the dispersion can now be described by the same equilibrium Bogoliubov dispersion
with good accuracy. We interpret this behavior as a sign of effective redistribution by
polariton scattering processes. Accordingly we are approaching a more thermalized,
but still nonequilibrium regime for negative detunings.
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Figure 5.4: Flat polariton dispersion under nonresonant pumping at an excitation
power of P,,. = 12mW and a detuning of A = —4meV. Blue and black lines denote
the LP and bare cavity mode, respectively.

5.5 Nonresonantly pumped polariton BECs

Nonresonantly pumped polariton BECs show even richer physics due to their strong
dependence on the pumping geometry. The exciton reservoir contributions in equation
[b.22]cannot be neglected anymore, allowing for a modification of the condensate proper-
ties by changing the pumping spot size and shape [92]. The most striking consequence
of this background of carriers interacting with the polariton BEC is a change of the
dispersion shape. The dispersion becomes flat at some fixed energy over a wide range
of k). Although a flat region in momentum space is predicted independently of the ex-
citation scheme due to the diffusive nature of the Bogoliubov-Goldstone mode [93], 94],
the large extent of the flat dispersion in momentum-space and the independence of this
extent on the healing length of the condensate rules an interpretation in these terms
out. A typical flat dispersion of a nonresonantly pumped polariton BEC at a detuning
of A = —4meV is shown in figure[5.4] There are several different approaches to explain
this peculiar shape of the polariton dispersion under nonresonant pumping. Some of
them will be compared in this section to analyze the origin of the polariton dispersion
under nonresonant pumping in III-V material systems. First, a mean-field approach
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given in [92] for a II-VI material system will be explained in detail. In this framework
the macroscopic condensate wave function ¢ (7) can be obtained from a generalized
nonequilibrium Gross-Pitaevskii equation (GPE) which has the following form:

L OY(T) R _, ih 5 12 .

) = By sV SR~ ] + Ve )+ g [0+ Vol (). (5.23)
Here m denotes the effective mass of the LP, Ej is the LP ground state energy and
g gives the repulsive Coulomb interaction strength between two condensate polaritons
mediated by their excitonic content [95, 06]. V.,; describes an external potential term
representing excitonic or photonic disorder. 7. is the polaritonic cavity loss rate. The
condensate gain rate R[ng] depends on the number of noncondensed reservoir polari-
tons ng [97]. The reservoir also causes a repulsive mean-field potential V(7). In first
approximation it shows a linear dependence on the reservoir density and the pump rate
P(7r):

gr and gp are the strengths of the repulsive interactions between condensed polaritons
and reservoir polaritons and free carriers, respectively. These quantities are not well
known and need to be extracted from the experiment. The GPE equation [5.23| can
then be combined with a rate equation for the reservoir population ng(7) as follows:

ig(7) = P(7) = vne(7) — Rlne(7)] [v (7). (5.25)

Reservoir polaritons decay at an effective rate vz which is usually large compared to
the cavity decay rate. This magnitude seems a bit surprising as the pure reservoir
polariton loss rate to the cavity should not be larger than the ground state loss rate,
but the rapid thermalization of reservoir polaritons with a bath of high-energy carriers
created by the pump beam causes the effective decay rate to be much larger. The more
interesting decay channel in terms of bosonic final state stimulation is accounted for
by the term proportional to R[ng(7)] |1|>.

The stationary solutions of equations [5.23 and depend on the spatial shape of
the pump P(7). In the easiest case of a spatially homogeneous pump beam, below
threshold the reservoir population grows linearly with the pump intensity as ng = %
and the condensate density is equal to zero. At the condensation threshold P, the
cavity loss rate and the stimulated emission term cancel out R[ng ] = 7. and the
solution with zero condensate density becomes unstable. Above threshold, one gets a
homogeneous, fixed reservoir density ng(7") = npgm, and a condensate wave function

of the form ¢ (r) = ¢oei(E6F’“°t) leading to a condensate density of |1o|° = %.

However, there are several stable solutions as the value of /56 is still undetermined. For
each value of k., the corresponding condensate oscillation frequency w, is given by:

12k )
We — Wy = o + g|vol” + grnr + gpP. (5.26)

In the more realistic and relevant case of an inhomogeneous pump intensity profile
P(7r), the boundary conditions at the edge of the pump spot actually fix the specific
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solution taken at a certain position. However, assuming a global density and phase
of the condensate is not a valid approach anymore. Under these circumstances the
stationary solutions will be of the form

V(1) = do(Pe ™t = /p(R)el?0 et (5.27)
TZR(F,t) = TLR(F) (528)

Here p(7) and ¢(7) represent the local density and phase of the condensate wave func-
tion, respectively. The condensate frequency w,. is the same throughout the pumping
spot, while the local condensate wave vector EC(F) is given by the spatial gradient of the
condensate phase EC(F) = V#¢(7) in analogy to the definition of the superfluid velocity
in equation [5.13] Inserting equations and into equations [5.25] and5.23] one

gets the following requirements for stationary solutions:

h2k? h? V2
hw. = hwo+ —=4+ Vo + — rvP + hgp + hgrnr + hgp P (5.29)

2m 2m \/p
h -
0 = (R[nR] - 70)p - Evf‘pkc (530)
P = ~ygng+ R[nglp. (5.31)

For slowly varying pump profiles corresponding to large pump spots a local density
approximation (LDA) can be applied. Under these circumstances the quantum pressure
term in equation [5.29/and the current divergence term in [5.30| can be neglected. In this
approach, the condensate is treated as a homogeneous system with a local value of the
pump intensity. This also means that p(7) = 0 for all points 7 where the pump intensity
is below the threshold. Experiments show that in the area where a condensate is still
present, w. stays constant in space. Therefore the variation of P(7) along the pump
spot needs to be compensated by a spatial variation of EC(F) In the simple case of a
circular spot P(r) = P(r) analytical solutions can be found if no disorder is present.
In this case the stationary solutions need to be cylindrically symmetric and the local
wave vector at the center of the spot vanishes: k.(r = 0) = 0. This results in:

we —wp = gp(r =0) + gpngr(r =0) + gpP(r =0). (5.32)

For common Gaussian pump spots the local wave vector EC is always pointing in the
radial direction and its modulus increases with r. Its largest value is reached at the
condensate border where the pump intensity equals Pj,.. In this case the repulsive
interactions can be considered an antitrapping potential

Var = hgp(r) + hgrng(r) + hgpP(r), (5.33)

which causes the polaritons to be accelerated away from the center.

Calculated results for the polariton distribution in real space, the emitted intensity
in momentum space and the local wavevector Ec(r) in the case of a constant pump
rate and a circular spot with a diameter of 18 ym are shown in figure 5.5 The real
space polariton distribution in the upper panel shows a clear broadening due to the
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Figure 5.5: Calculated results using a LDA approach for a pumping spot of 18 um
diameter assuming an underlying parabolic dispersion. The upper panel gives the
spatial polariton density, the middle panel gives the local condensate wave vector Ec(r)
and the bottom panel gives the emitted intensity in momentum space. The intensity is
calculated from the polariton distribution in momentum space considering the varying
lifetimes of polaritons with different k.

antitrapping potential. The local polariton number vanishes at the position where
the polariton density falls below the threshold polariton density. At this point also
the local condensate wave vector shown in the middle panel starts to saturate. The
rather steep slope of IZC(’/‘) near the center of the pump spot results in a broad polariton
distribution in momentum space. It is contained within the region where the condensate
energy is larger than the quadratic free particle dispersion as seen in the bottom panel.
These results can explain the flat dispersions seen in II-VI polariton OPOs [98] and
nonresonantly pumped II-VI polariton condensates using large pumping spots [99]
well. However, the momentum space distribution of I1I-V based polariton condensates
behaves differently and calls for a different model. An example is shown in the upper
panel of figure where the intensity distribution in momentum space for a III-V
based polariton condensate at zero detuning with 18 ym pumping spot size is compared
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to the theoretical calculations based on a parabolic polariton dispersion. Obviously
the broad distribution predicted for this pump geometry does not occur. Instead
a narrower and peaked distribution with a superimposed substructure occurs. This
substructure is a consequence of a slight disorder potential present in the system.
However, the dicrepancy between the experimental data and the theoretical prediction
calls for a modified theoretical model. The two main differences between the theoretical
assumptions and the experimental conditions are the usage of a I1I-V system and pulsed
excitation. Also, the above model does not consider the thermodynamic properties of
the polariton BEC. Therefore, a first possible modification lies in the particular shape
of the underlying polariton dispersion. The above approach assumes a parabolic LP-
like dispersion for the polaritons. In III-V based cavities, however, the presence of a
linearized Bogoliubov dispersion has been demonstrated [73] as also shown in section
b.4] Therefore, it seems reasonable to calculate the local condensate wave vector and
the resulting intensity distribution assuming a modified dispersion corresponding to
equation [5.22| Results calculated for the case of a linearized dispersion, but keeping
all other constants the same as before are shown in figure 5.6l As seen in the upper
panel, the local condensate wavevector does not increase as steep as before at positions
away from the center of the pump beam. As the Bogoliubov dispersion is steeper than
the parabolic one, a smaller Ec(r) is sufficient to level the energies at different positions
throughout the pumping spot and l;c(r) shows an almost parabolic dependence on
the position. At large distances from the center of the pump spot the local polariton
density decreases and the dispersion shows deviations from linear behavior and /ZC(T)
saturates. Accordingly, the corresponding momentum-space emission pattern is much
narrower compared to the one for a parabolic dispersion and most of the intensity will
be emitted at small wave vectors. However, as shown in the second panel of figure
this model is also not sufficient to explain the emission pattern seen in experiments
which is broader in momentum space. A broadening due to the limited resolution of
the measurement apparatus alone is not sufficient to explain this difference. Another
possibility to explain the emission pattern can be given by taking redistribution in
terms of polariton-polariton scattering into account. This mechanism conserves the
total momentum of the scattering particles. For the ground state this results in two
particles with k) = 0 scattering into states with opposite momentum and results in
depletion of the ground state [73]. Also thermally activated excitations from the ground
state are possible.

In the following a toy model will be used to investigate this approach. It is based on
a semiclassical Boltzmann equation treatment. The populations n; of the states of
the condensate dispersion are assumed to follow bosonic coupled rate equations of the
following form:

dn

While this set of coupled rate equations looks simple, calculating the scattering rates
is a nontrivial task. The easiest approach lies in using the Fermi golden rule. However,
such a method requires the possibility of treating the scattering processes in a pertur-
bative manner. In the strong coupling regime and especially in the Bogoliubov regime
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Figure 5.6: Calculated results using a LDA approach for a pumping spot of 18 um
diameter assuming an underlying Bogoliubov dispersion. The upper panel gives the
spatial polariton density, the middle panel gives the local condensate wave vector l;c(r)
and the bottom panel gives the emitted intensity in momentum space. The intensity is
calculated from the polariton distribution in momentum space considering the varying
lifetimes of polaritons with different k.

massive energy renormalization is present and a completely perturbative treatment is
not possible. Therefore, a non-perturbative treatment of these phenomena is neces-
sary. Here this problem is solved by treating all non-perturbative effects in terms of a
modified dispersion. The initial distribution of the polaritons in momentum space is
then assumed to follow the Bogoliubov dispersion as shown in the lower panel of figure
5.0l and their interactions will only cause scattering within this dispersion which can
be calculated perturbatively via the Fermi golden rule. The most important contribu-
tion to the polariton distribution will be caused by polariton-polariton scattering. The
polariton-polariton scattering rate is given by:

2 = No(1 4 Ny i) [ M (X | X P 1X | [ X ginr il
h 4 (E(K) — E(k) + E(q+ K — k) — E(q))* + 72

WP, = (5.35)
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It depends on the polariton linewidths <, the excitonic Hopfield coefficients, the
exciton-exciton interaction matrix element M*X~%X and the instantaneous population of
all other polariton modes. The exact value of MX~¥ is difficult to determine [T00, 10T].
The following numerical estimate will be used [54] which is sufficient for the toy model

presented here:
2
MXX ~ 628 R, (5.36)
S

ap gives the two-dimensional Bohr radius [I02], £, is the exciton binding energy and S
gives the normalization area. The differential equations are evaluated on a linear grid
in momentum space. Cylindrical symmetry is assumed and well justified in the case
of non-resonant pumping. Therefore, the scattering rates from all states belonging to
one point of the grid to all states belonging to one other point of the grid are equal.
The initial occupation of the polariton states was calculated from the emitted intensity
pattern assuming an occupation on the order of unity at the border of the condensate
and takes the polariton lifetimes and the density of states into account. However, the
initial values can at best be a rough estimate. Simulations using this model show a
rapid redistribution of polaritons in momentum space away from the ground state for
large initial polariton numbers. At large times the ground state is depleted and most
of the emission comes from states with large k). The time-integrated emission of the
condensate is shown in the third panel of figure [5.7, While this model gives a better
estimate for the intensity distribution near the ground state, it predicts a redistribution
of the polaritons which is much larger than seen in the experiment and results in an
emission pattern which is too broad.
It should be noted that the aforementioned models still treat the effect of condensation
as some kind of boundary condition causing polaritons to have some common energy
or phase, but still treat the polaritons as some kind of individual particles. A final
possible modification lies in explicitly treating the condensate as a single state with
a population of the excitation spectrum depending on the thermodynamic properties
of the condensate [73]. Considering the condensate as a macroscopic state. For this
model the excitation spectrum is again assumed to follow a linearized dispersion as
given by equation [5.22] The average population of Bogoliubov particles with a fixed
K is then simply given by:

o 1
</Ul-|;\|vk‘|> - EBog (537)
eksT —1

However, the particles actually seen in the experiments are not the Bogoliubov particles,
but the lower polaritons. Accordingly, a Bogoliubov transformation can be used to
calculate the expected distribution in terms of polaritons and emitted intensity:

Cij = fk’H@k’H + gikH@T—kH (538)

k7 h 1
I gnc
_ = 4+ + + —. 5.40
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Figure 5.7: Expected momentum-space intensity distributions of a nonresonantly
pumped polariton BEC and a pump diameter of 18 um compared for several com-
mon models. The upper panel gives the results of a mean-field approach assuming an
underlying parabolic excitation spectrum. The middle panel uses the same approach,
but assumes a linearized Bogoliubov dispersion. The lower panel shows the prediction
using the linearized model as a starting point and considering redistribution in terms
of stimulated scattering processes. All models give wrong results for large regions of
the dispersion.
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The occupation number of the observable particles is then given by:

2 2
ma = @) = || (800 + o | (U @ o) (5.41)
2 2
2 ‘fk‘H + ‘g—k‘u‘
- ‘g_k“’ + (5.42)
eksT —1

This occupation number consists of one temperature-dependent and one temperature-
2
independent term. The temperature independent term ’ g_ku‘ causes particles to be

emitted at finite k)| even at absolute zero, where <@,1H@ku> = 0. This mechanism is
called quantum depletion and corresponds to the simultaneous spontaneous excitation
of two polaritons in the ground state towards states with opposite k. The other
term represents thermal depletion and corresponds to the thermal excitation of one
polariton from the ground state towards some state with finite k. Both mechanisms
can be distinguished by taking their dependence on k| into account. At small k) one
can assume terms of order k¢ to be dominant, while terms of order (k¢)? will vanish.
In this limit the occupation numbers according to quantum depletion will behave as
follows:

1
AT -~ ~
(G, ) = Ve (5.43)
2 2
In the case of thermal depletion at small &, ‘f’fn ‘ + ‘g—’fu ‘ can be approximated as %
og
and in the low-energy regime the Bogoliubov particle occupation can be approximated
as <7711H77k”> ~ ggT . Neglecting terms of order h4k|4|, the occupation numbers in the case
og
of thermal depletion are given approximately by:
SN _ mkaT
(o o) =~ 50 E (5.44)

Therefore, the emitted intensity should either show a kil or kﬁ dependence.

The experimental data is compared to these predictions in a double-logarithmic plot in
figure The differing photonic fractions at different k)| have been considered. Red
and blue lines give the expected emitted intensity for thermal and quantum depletion,
respectively. Even for the low temperature of 10 K used in the experiment, thermal
depletion is dominant by at least a factor of four for large k)| and even by more than
one order of magnitude for small k. However, thermal depletion can reproduce the
distribution seen in the experiment only for a narrow range of wave vectors between
0.4 ym~' and 0.75 yum~'. For smaller and larger wave vectors, the theoretical prediction
gives too large values by more than one order of magnitude. The discrepancy at
low wave vectors can be explained by taking the finite size of the pumping spot into
account. As the condensate is contained within the finite spot size R, it is in some
respects comparable to a trapped condensate with the steep decrease of the excitation
power in real space acting as the trapping potential. However, this potential still differs
significantly from a potential well as there is a shallow decrease of the excitation power
past the steep one. In theoretical treatments this trapping potential is often modeled
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Figure 5.8: Theoretical predictions of polariton occupation numbers for quantum (blue
line) and thermal (red line) depletion approximated for small k). Black squares give
the experimental results. Thermal depletion is always dominant, but can explain the
observed distribution only in a very narrow range.

by considering a finite spacing of 27/ R between the ground state and the first excited
state, while the remaining states in reciprocal space are assumed to vary continuously
[16]. For the case of a 18 um pump spot the distance between the steepest edges of
the pulse shape will be somewhere between 14 and 18 um, corresponding to a ground
state width between 0.35 um~! and 0.45 um~!. These agrees remarkably well with the
region in figure up to ky = 0.4 pm~" inside which the experimental data shows only
a small decrease with k. As the basic Bogoliubov theory used to predict the amount of
thermal depletion assumes an untrapped condensate, the results for wavevectors below
the continuum of states are very inaccurate. Interpreting the emission from these small
wave vectors as belonging to a single quantum state gives a better explanation in this
region.

The deviations at larger wave vectors require a more detailed explanation. Strictly
speaking, equations and are valid only in the regime of small wave vectors,
where the dependence of the condensate depletion on the local polariton density can
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be neglected. At larger wave vectors, these contributions become important and the
complete expressions for quantum and thermal depletion are given by

h2k3 .
JS PN < T gne 1
f 2m  JC
(i ) o =5 oo, 5 (5.45)
and .
. m
<qIJ2Hq’€H> X . th? J (546>
h /’{:”(Qm,mc +2)

respectively. Both relations require knowledge of the underlying polariton-polariton
interaction energy U = hgn. at each position. Evaluating these in the case of non-
resonant pumping is a complicated task as the polariton-polariton interaction is not
the dominant source of the condensate blueshift as in the case of resonant pumping. As
a rather qualitative model, one can assume the polariton-polariton interaction energy
at the degeneracy threshold to equal the condensate blueshift at the threshold seen for
resonant pumping. In both cases degeneracy should set in at a ground state population
of unity. In the resonant pumping scheme the polariton-polariton interaction is the only
important contribution to the blueshift. Therefore, the interaction energies should be of
the same order. In this case, a value of Uy = hgn. = 1.2meV is assumed at the center of
the pump spot. The local interaction constants at other positions are then given by the
relative occupations at the different positions and scale as UO%. However, finding the
equivalent values in momentum space is more demanding. The polariton occupation
in k-space alone is not a sensible estimate as emission with a certain k) can come
from different positions inside the pumping spot and the corresponding polaritons will
move through several regions with different polariton densities during their life time.
As polaritons with finite k) usually move away from the center of the pump spot,
the mean polariton density in their vicinity will be higher than the one given by the
occupation number at kj. A sensible approach lies in assuming local condensate wave
vectors k.(r) like in the first approach used again and using an averaged polariton
density giving the average over all positions between the center of the pumps spot and
the position where k| = k.(r). The resulting function is nontrivial, but can reasonably
well be approximated by

(5.47)

Inserting these results in the expressions for quantum and thermal depletion yields
distributions as shown by solid blue and red lines in figure [5.9, Dotted lines give the
corresponding approximations neglecting higher-order terms. Thermal depletion is still
dominant over quantum depletion by at least one order of magnitude. Additionally, a
decrease of thermal depletion at large wave vectors is seen. This behavior reproduces
the values seen in the experiment well in the region beyond the condensate ground
state. This is a good argument for the elementary underlying excitation spectrum of
a nonresonantly pumped polariton condensate being of a linearized Bogoliubov kind,
while the additional blue shift causing the flat dispersion seen in experiment stems from
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Figure 5.9: Theoretical predictions of polariton occupation numbers for quantum (blue
line) and thermal (red line) depletion when taking higher order contributions into
consideration. For comparison, the predictions neglecting these contributions are shown
as dotted lines. Thermal depletion is the dominant mechanism populating states at
finite k. The experimental data is well reproduced for wave vectors beyond the extent
of the condensate ground state.

a background of carriers created by the pump pulse. However, whether this underlying
dispersion is strictly linear as claimed in [73] or rather of a diffusive and flat nature
at small kj as predicted in [93] cannot be finally answered at this point, although
the flat intensity distribution within the condensate ground state seems to suggest the
existence of a diffusive region. Further experimental and theoretical investigations, for
example in terms of a varying pump spot diameter, are needed to clear this point up.



102 Polaritonic Condensates




Chapter 6

Summary and Outlook

This thesis introduced and characterized a novel intensity correlation technique. By
using a streak camera instead of photodiodes a time resolution on the order of 2ps
was realized. This technique was used to access time-resolved correlations inside short
pulses emitted from semiconductor light sources. Thereby it was possible to identify
the transition from spontaneous to stimulated emission in these structures. In detail,
it was possible to identify the transition from spontaneous to stimulated emission of
the emission from quantum dot micropillar lasers in a time integrated as well as two
different time resolved manners and reveal a region of nonclassical light emission. Fur-
ther studies on QW microcavity systems allowed us to trace the bleaching of the strong
coupling regime accompanied with the onset of lasing in these structures and its re-
flection in the second- and higher order correlation functions. A different sample made
consisting of 12 QWs embedded in a microcavity made it possible to investigate a sys-
tem where condensation occurs before the strong coupling regime is bleached. Here it
was possible to demonstrate that this special kind of non-equilibrium condensate shows
deviations from ideal coherence seen for atomic condensates. For resonant excitation
under large angles, these deviations are caused by scattering to and from the conden-
sate ground state and were shown to be strongly dependent on the detuning between
the exciton and the cavity mode. For nonresonant excitation a clear description of
the condensed state showed to be more complicated as the excitation spectrum of the
condensate is not easily accessible because strong interactions with background carriers
are dominant. Nevertheless, it could be shown that the momentum distribution of the
emitted intensity gives evidence for a linearized Bogoliubov excitation spectrum with
occupation numbers based mainly on the thermodynamical properties of the system.

From here on the work can be continued in several directions. From a technical point of
view, there are still several possibilities to optimize the efficiency of the streak camera
approach for given experimental situations. Especially, the repetition rate of the CCD
used is a limiting factor. Replacing it by an array of avalanche photodiodes connected
to on-board logical circuits realized by field programmable gate arrays could lead to an
enormous increase in the possible readout rate and drastically shorten the necessary in-
tegration times. It might therefore become possible to analyze the photon statistics of
weak emitters, down to the level of single photon sources using the presented approach.
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Also, at present the streak camera correlation technique can only be applied to pulsed
signals at the repetition frequency of the laser triggering the streak camera, but not
for CW signals. However, it is in principle possible to use a pulsed signal for triggering
the camera, but a CW laser for performing the experiment. To realize this case, the
photo cathode off the streak camera should not receive any signal while the horizontal
deflection unit is gated off. Otherwise the large constant optical intensity might induce
irreparable damage to the photocathode. This could in principle be achieved by feeding
the CW signal into an acousto-optic modulator triggered by the same signal used to
trigger the horizontal deflection unit. Doing so would create long pulses with constant
intensity over a duration of approximately 600 ns, which is longer than the coherence
times of interest by a factor of 10* and can be considered as pseudo-CW excitation.
From a more physical point of view, there are still plenty of open questions. The mi-
croscopic origin of the non-classical light emission seen for the high-QQ QD micropillar
sample is still not completely clear. Further, it might be interesting to study other
ultrafast phenomena like superradiant light emission of quantum dot ensembles. Also
the field of polaritonic BECs still offers plenty of further research directions. Whether
the photon statistics seen in the case of resonant excitation under large angles will
be reproduced in the case of nonresonant pumping or pumping at the magic angle, is
not clear. Also, the modified inscattering and outscattering rates of the condensate
ground state due to acoustic phonon scattering at elevated temperatures might result
in modified intensity correlation properties. Finally, it might be worthwhile to study
the modified properties of the polariton condensate under the influence of an external
magnetic field, where phenomena like the polariton counterpart of the Spin-Meissner
effect have been predicted [103].



Appendix A

Theoretical Model of QD
Micropillar Lasers

The microscopic QD laser theory applied throughout this thesis was developed in the
semiconductor theory group of Prof. Jahnke at the University of Bremen [35] 1T04]. It
makes use of the cluster expansion technique [I05] [106]. The light field and the carrier
system are treated in second quantization. The corresponding total Hamiltonian reads:

H = H" + Heou + Hon + Hp. (A.1)

It consists of four contributions. The carrier part contains the single-particle contribu-
tions for conduction and valence band carriers with energy %"

Hm = ZaccTcy Zs”v“}y (A.2)

¢, and éf are fermionic annihilation and creation operators for conduction band carriers
in the state |v). 9, and 9] are the corresponding operators for valence band carriers.
The Hamiltonian describing the two-particle Coulomb interaction with Coulomb matrix

AN ' .
elements V)7 , is given by:

N 1 . v ~ b
HCOUZ = 5 Z [V;Cuua a’cTCV'Ca Valzjzua Lvi 'Ua] Z Vo(zn;/z/ac Ul /CCY (A3>

a'vv'a a'vv'a

The electromagnetic field Hamiltonian has the form
. A 1
Hy, = Eq: huw, (bgbq + 5) : (A.4)

where I;q and 32 are bosonic operators annihilating and creating a photon in mode q.
Light-matter interaction is considered in dipole approximation. The corresponding
two-particle Hamiltonian is given by:

Hy ==Y (gqa,,ag B, + gqa,,@;é,,i)q) VY He, (A.5)

q,av
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where the light-matter coupling strength g, is determined by the overlap of the elec-
tromagnetic field mode function with index ¢ and the single-particle wave functions
corresponding to states |«) and |v).

Starting from the full Hamiltonian H, coupled equations of motion for the carrier dy-
namics and the temporal behavior of the photon modes can be derived in the Heisenberg
picture. The occurring operator averages for the different quantities of interest can now
be classified according to the number of particles involved. For example, the electron
and hole populations f¢ = (¢,ufé,u), f = 1 — (d,u’d,u) are singlet contributions, the
source term of spontaneous emission(é! 9,01¢,) and the photon-assisted polarization
(52@,16,,} are doublet terms.

It is possible to describe these N-particle averages (IV) in a factorized sum of one- up to
(N-1)-particle averages. The difference between the factorization and the full average
can be expressed as a correlation function of order N, denoted as §(IN). Accordingly
factorizations are given by

1) = &(1), (A.6a)
(2) = (1)(1) +6(2), (A.6b)
3) = (L)L) + (1)d(2) +0(3) (A.6c)
(4) = O{OW) + (1)(1)a(2) + (1)6(3) + 4(4), (A.6d)

and so on. The two-particle parts of the Hamiltonians I:[c(,ul and H p cause an infinte
hierarchy when one tries to set up equations of motion in the Heisenberg picture. The
basic idea of the cluster expansion method lies in replacing occurring operator expecta-
tion values (N) according to equations , so that instead equations of motion for the
correlation functions §(/V) are obtained. It is then possible to truncate the hierarchy of
correlation functions at a desired level and allows to include correlations consistently
up to the chosen order in all appearing operator expectation values. Truncating the
hierarchy at the doublet level leads to the so-called semiconductor luminescence equa-
tions which has been successfully applied to the luminescence dynamics of quantum
wells [107] and QDs [108|, [109]. Addressing photon correlations requires truncation at
the quadruplet level.

The QD-laser model does not consider every cavity mode individually, but distinguishes
between one dominant lasing mode of photon number (b'b) where the index is omitted
and all non-lasing modes with index nl, allowing to define the S-factor in accordance
with equation 3.1} The lasing transition is assumed to be resonant with the radiative
s-shell electron-hole recombination of a QD ensemble. The pumping process is mod-
eled as resonant optical excitation of the p-shell at a constant pumping rate P and
takes saturation effects caused by Pauli blocking into account. Carrier relaxation from
the p-shell to the s-shell is considered in relaxation-time approximation [I10] where
different relaxation times 7" are used for electrons and holes. The cavity loss rate 2r,
can be directly determined from the cavity mode Q-factor @ = fw/2x,,.

In the framework of this model, the evolution of the occupancy of a cavity mode g and
the carrier populations are given by:

d
(hd + 2k bTb Z |gql/| Cv)). (A7)
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This dependence points out the major role of the photon-assisted polarization (@2@6,,}
which is basically the expectation value for creation of a photon combined with an
interband transition of an electron from the conduction to the valence band.in the
photon number dynamics. The sum over v involves all possible interband transitions
from several QDs. The photon-assisted transition amplitude becomes damped due to
carrier-carrier and carrier-phonon interactions. This behavior is reflected by introduc-
ing a phenomenological damping constant I'. Taking Pauli blocking and the coupling
to the intracavity photon number into account, the corresponding equation of motion
for the most important photon-assisted polarization <Z;T@lés> involving the s-shell and
the lasing mode is then given by:

mj+n+rx ey = fifl = (U= £ = f)010) + o(pTbele.) — o(bTbolo.),  (A.8)

which in turn depends on the s-shell carrier dynamics f&". As the relaxation processes
from the p- to the s-shell are included in relaxation-time approximation at a rate

Reh = (1— f& h) pr the equations of motion for the carrier dynamics are given by

p—S
d o S e
Crt = 2g ROl — (1 5Ty Ret (A.92)
Top
d e e ffh e
K (O L (A9D)

sp

respectively. The separate inclusion of electron and hole dynamics represents one of the
major difference to the situation in atomic approaches. This set of equations already
allows to determine the temporal evolution of carrier and photon number dynamics.
Accessing photon number correlations requires consideration of quadruplet contribu-
tions, too. The equal-time correlation function can be calculated as

(bTotbd) ) 5 (bt bt bb)

@) =+~ = — A.10
9+7(0) ity + ity (A.10)

The time evolution of the correlation term is given by
(h + k)5 (bbTbD) = 4 |gg.o> > (bbb}, 6,). (A.11)

V/

The sum is again taken over all resonant laser transitions from various QDs. The photon
correlation in term depends on the correlation between photon number and photon-
assisted polarization ¢ (IA)TZA)TIA)QA)Z, ¢,). The time-dependence of this term is already rather
complicated:

(h% + 3k 4+ D)5 (bT00016) = —2|gq.° (BF07e,)2
— (1= f5 = f1)5(b'b'bb)
+ 2788 (bt e,) — 2556 (b bl 0,)
- Z 26(bT bt of e, 0,0) + 6(bTbo! 0le,e,). (A12)
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The last two terms can be neglected. The first of these is a generalization of the
effect of Coulomb carrier correlations on the spontaneous emission source term which
is negligible under usual conditions. The second of these requires annihilation of two
conduction band electrons. As there is only two possible electron states with different
spin values in the s-shell, this means that these electrons need to belong to different
QDs if a circularly polarized cavity mode is considered. Correlations between carriers
from different QDs correspond to superradiant coupling which can be neglected for the
systems studied in this thesis. The remaining undefined terms are the photon-carrier
correlations which already appeared in equation [A.8] Their time-evolution is given by

d . ran
(h%+2/f)5<bTbélé,,) = —2|gg.s|> R6DDIboTE,)

+ Y s(bolelese) + ((070) + f5)(0T0le,)],  (A.13)

d 717 ANg AL
(A + 26)0(010050,) = 2|gg.s)? RO(BTOTBO]E,)

In these equations, the time evolution of all, but the sum terms has been given. How-
ever, these terms are of the same nature as the superradiant terms discussed before
and can therefore be neglected.

The theoretical results for [O-curves and ¢g?(0) of QD lasers shown in chapter |3| are
numerical solutions of this set of equations. Calculations of results for ¢ (7) re-
quire more involved approaches. For these approaches, the quantities of interest like

~ ~

(Bt ()b(t)), (BT ()b (£)b(t)b(t)), and so on are first calculated in the steady state limit
t — oo according to the single-time equations of motion as discussed beforehand. It is
now possible to calculate the 7-dependence of the unnormalized photon correlations:

AL A

G (r) = ({B(r)b(r))) (b'b) (A.15)

where the expectation value ((...)) is taken with respect to a modified density operator
p = bpb'/(b'b). In this manner the two-time problem is reduced to two successively
solvable single-time problems. Evaluation of the unnormalized photon correlations
G2(7) requires using the single-time equations of motion for ((bf (7)b())), ((¢}(7)é, (1))
and the other quantities of interest with initial conditions

.  (bTbTob)

(O (D(T))=0 = ) (A.16)
(e, (r <I;TBAZT'6V>
(et = = (A17)

and so on. This approach assumes that the truncation introduced by the cluster expan-
sion works equally well for operator averages taken with respect to the density operators
p and p. The theoretical ¢(® (7)-curves shown in chapter [3| have been calculated using
this approach.
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Symbols and abbreviations

symbol meaning

ap 2D exciton Bohr radius

B spontaneous emission factor

BEC Bose-FEinstein condensate

c speed of light (299792458 m/s)

CCD charge-coupled device

CW continuous wave

DOS density of states

e electron, unit charge (1.602176 -10~° C)
£y exciton binding energy

Egap band gap energy

eV electron volt (1.602176 -10712 J)

f focal length

Fp Purcell factor

FWHM full width at half maximum

g? second order correlation function

g® third order correlation function

GPE Gross-Pitaevskii equation

h h/27n= 1.054571- 1073* J s= 6.582118- 10716 eV s
HBT Hanbury-Brown-Twiss

kp Boltzmann constant (1.38062-10723JK 1)
k wave vector

Ky, in-plane wave vector

K Kelvin

A wavelength
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Less effective cavity length

LP lower polariton

mo free electron mass (9.109381 - 1073! kg)
MCP micro-channel plate

meV milli-electron volt

pm micrometer

MX=X exciton-exciton interaction matrix element
n refractive index

NA numerical aperture

Nd:YAG yttrium aluminium garnet doped with neodymium
nm nanometer

ODLRO off-diagonal long-range order

PL photoluminescence

ps picosecond

P order parameter

Q quality factor

QD quantum dot

QW quantum well

R reflectivity

Te coherence time

t time

T temperature

TCSPC time-correlated single photon counting
UP upper polariton

VCSEL vertical-cavity surface-emitting laser

Us superfluid velocity

Watt
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