
Processor-Core Based Design and Test

Peter Marwedel

Universit�at Dortmund, Informatik XII

44221 Dortmund, Germany

e-mai`: marwede`@`s12.informatik.uni-dortmund.de

Abstract| This tutorial responds to the rap-

idly increasing use of various cores for implement-

ing systems-on-a-chip. It speci�cally focusses on

processor cores. We will give some examples of

cores, including DSP cores and application-speci�c

instruction-set processors (ASIPs). We will mention

market trends for these components, and we will touch

design procedures, in particular the use compilers.

Finally, we will discuss the problem of testing core-

based designs. Existing solutions include boundary

scan, embedded in-circuit emulation (ICE), the use of

processor resources for stimuli/response compaction

and self-test programs.

I. Introduction

In response to the increasing size of advanced chips and

the continuing need for fast design cycles, a major amount

of new designs is using complex cores (rather than stand-

ard cells and macroblocks) as building blocks. Such cores

include: processor cores, communication cores, bus inter-

face cores, and memory cores. These cores are available

both from vendors and within system companies. Applic-

ations can be found in most segments of the embedded

system market, such as automotive electronics and tele-

communications.

Due to space and time constraints, the current text fo-

cusses on processor cores. Essential advantages of these

processors include their high 
exibility, short design time

and (in the case of o�-the-shelf processors) full-custom

layout quality. Furthermore, they allow an easy imple-

mentation of optional product features as well as easy

design correction and upgrading. Also, processors are

frequently used in cases where the systems must be ex-

tremely dependable. In such cases, the re-use of the design

of an o�-the-shelf processor greatly simpli�es dependab-

ility analysis.

II. Processor core examples

Core processors include core versions of general purpose

processors (such as core versions of various RISC architec-

tures [17, 1, 35], core versions of digital signal processors

(DSPs) and application-speci�c instruction set processors

(ASIPs). A classi�cation of processors is shown in �g. 1.

This processor cube results from using three main criteria

for classifying processors: availability of domain-speci�c

features, availability of application-speci�c features, and

the form in which the processor is available.

core (CAD cell)

Processor
available as

Package

Domain−specific
features

Application−
specific
features

None 
(General purpose
architecture)

possible
(ASIP)

ASIP

CORE

D
S

P

for DSP

Impossible
(off−the−
shelf proc.)

Fig. 1. Cube of processor types

The meaning of these dimensions and their values is as

follows:

1. Form in which the processor is available

At every point in time, the design and fabrication

processes for a certain processor have been completed

to a certain extent. The two extremes considered

here are represented by completely fabricated, pack-

aged processors and by processors which just exist as

a cell in a CAD system. The latter is called a core

processor. In-house cores are proprietary cores avail-

able just within one company. They usually have

some architectural 
exibility. Cores can be instan-

tiated from the library to become part of a larger

system-on-a-chip. In addition to cores, systems-on-

a-chip may contain RAMs, ROMs, and special accel-



erators. With these, much of the performance pen-

alty caused by the use of 
exible processors can be

compensated.

2. Domain-speci�c features

Processors can be designed to be domain-speci�c.

Possible domains are digital signal processing or

control-dominated applications.

DSP processors [22] contain special features for sig-

nal processing: multiply/accumulate instructions,

specialized (\heterogenous") register sets, multiple

ALUs, special DSP addressing modes (for example,

for ring bu�ers), and saturating arithmetic opera-

tions.

3. Application-speci�c features

At any point in time, the internal architecture of a

processor may either be �xed or still allow con�gur-

ations to take place.

The two extremes considered here are: processors

with a completely �xed architecture and ASIPs. Pro-

cessors with a �xed architecture or o�-the-shelf pro-

cessors have usually been designed to have an ex-

tremely e�cient layout. Some of them have passed

veri�cation procedures, allowing them to be em-

ployed in safety-critical applications.

ASIPs are processors with an application-speci�c in-

struction set. Depending upon the application, cer-

tain instructions and hardware features are either im-

plemented or unimplemented. Also, the de�nition

of ASIPs may include generic parameters. By \gen-

eric parameters" we mean compile-time parameters

de�ning, for example, the size of memories and the

bitwidth of functional units. A very nice set of refer-

ences to ASIPs is contained in a recent contribution

by Paulin [39]. A well-known example is the EPICs

architecture [51]. Optimal selection of instructions,

hardware features and values for parameters is a topic

which has recently received interest in the literature

[2, 42, 16]. ASIPs have the potential of requiring less

area or power than o�-the-shelf processors. Hence,

they are popular especially for low-power applica-

tions.

In addition to the three coordinates, there are of course

other criteria for classifying processors.

III. Market trends

Statistical data concerning the increased used of pro-

cessors for implementing information processing systems

is available through the web pages of EE Times [10] and

papers published by Paulin [38, 41, 40]. According to

Paulin, about 82 % of all designs analysed in a study at

Bell Northern Research (BNR) were essentially based on

processors. In recent papers, a clear trend towards ASIPs

has been identi�ed.

IV. Designing with core processors

Due to the trend towards using cores in general and

processor cores in particular, it is important to analyse

design procedures for systems containing processor cores.

Codesign

From a conceptual point of view, designers start with

an overall behavioural speci�cation. Standard languages

such as C or VHDL are currently very popular for this

step. Recently introduced graphical or semi-graphical

languages [12], aim at faciliating this step. The speci�c-

ation is then partitioned into software parts and hard-

ware parts. Di�erent approaches to this step of hard-

ware/software co-design have been described in an excel-

lent survey by Buchenrieder [7]. Software parts (e.g. a

fraction of the C program) are later compiled onto an en-

visioned processor. Hardware parts are used as input to

a hardware synthesis system. A survey on codesign has

recently been presented by R. Gupta [14].

Cosimulation

In the codesign environment, simulations are needed at

di�erent levels. First of all, the speci�cation has to be

simulatable. This is required in order to check whether

or not the speci�ed algorithm really performs the inten-

ded function. Later, the generated code will be simulated

using an instruction set model of the processor. This sim-

ulation can take the generated hardware parts into ac-

count. Finally, the processor may also be simulated at the

structural level. Achieving high simulation speeds also an

important issue. See, for example, Valderrama [50].

Runtime environment

Embedded systems using board-level integration fre-

quently take advantage of available real-time operating

systems in order to provide an environment suitable for

running programs on processors. For chip-level integra-

tion, storage requirements for current operating systems

do not allow this solution. The knowledge about applica-

tion programs is exploited in an IMEC approach for avoid-

ing those bulky operating systems [8].

Real-time response

Systems-on-a-chip have to guarantee a certain real-time

response to external events. The issue of specifying, ana-

lyzing and checking timing constraints is covered, for ex-

ample, in books by Ku, De Micheli and Gupta [19, 13],

and papers by Boriello [4] and by Li, Malik, Wolfe [30].



Compilers

It has been observed (see e.g. Paulin [38]) that the ma-

jority of processor-based designs is implemented using as-

sembly languages. The reason for this is the poor perform-

ance of current compilers for DSPs. Quantitative com-

parisons between compiler-generated code and assembly

language libraries provided by the processor vendors have

been published by Zivojnovic [52]. Recent research has

aimed at the design of new compiler optimizations taking

the special characteristics of the application area and the

target processors into account.

A number of pointers to such algorithms is contained

in a paper by Liao, Devadas [31]. Improved address as-

signment techniques have recently been published by Liao

[32], Liem [34] and Leupers [27]. Code compaction for an

existing machine has been studied recently by Leupers

[29], Timmer [49], Strik [46], and Nicolau [37]. Register

and memory bank assignment studied, for example, by

Rimey [45], by Bradlee [5], by Hartmann [15], and by

Malik [47].

Currently, compilers for �xed target architectures are

employed. However, they do not provide the 
exibility

for experimenting with di�erent target processors. They

do not allow trying out di�erent ASIP parameters, and

leaving out or adding certain processor features. Code

generation which supports this process has to be retarget-

able. \Retargeting" in this context means: fast and easy

retargeting, simple enough to be handled by the user. In

order to provide compiler support for ASIPs, a few so-

called retargetable compilers have been designed. There

is a book focussing on retargetable compilers [36]. For

details about such compilers see Paulin [33], Fauth [11],

Leupers [29, 28] and Goossens [21, 43].

V. Testing

Testing of systems-on-a-chip comprising cores is a very

di�cult issue. Many signals which were previously dir-

ectly accessable are now only available within a chip. In

response to the demands of test engineers, boundary scan

is available for most cores. This technique originally was

intended to be used at the board level and now found a

new application.

As a replacement for board-level in-circuit emulation

(ICE), so called embedded ICE is available for some cores.

Such cores allow monitoring selected signals, such as

memory or program counter-related signals. As in the

case of chip-level boundary scan, there seems to be no

agreement between companies, whether or not the ex-

penses for the required additional test hardware can be

tolerated.

In the case of processor cores, the existence of data

path resources can be exploited for testing. For example,

Rajski [44] and Kunzmann [20] propose techniques for

test pattern generation and compaction using data path

resources. Alternatively, self-test programs can be ex-

ecuted on processor cores. Functional test program gen-

eration was �rst proposed by Thatte and Abraham [48]

and later re�ned [6]. Knowledge about the structure was

exploited by Lee and Patel [23, 25, 24, 26] and Kr�uger [18].

A new approach using the constraint logic programming

language ECLIPSE [9] has been implemented by Bieker

[3].

VI. Conclusion

Currently, there is a signi�cant shift in how complex

systems are designed. The use of cores, and -in particular-

the use of processor cores, is an essential characteristic of

this shift. This shift demands for new CAD techniques.

It is no longer feasible to restrict the designer's scope to

hardware design. For example, compiler- and operating

system-related issues have to be taken into account. This

text aims at motivating research into this direction.

References

[1] Advanced RISC Machines Ltd. ARM. web pages.

http://www.arm.com/, 1995.

[2] A. Alomary, T. Nakata, Y. Honma, M. Imai, and N. Hikichi.

An ASIP instruction set optimization algorithm with func-

tional module sharing constraint. Int. Conf. on Computer-
Aided Design (ICCAD), pages 526{532, 1993.

[3] U. Bieker and P. Marwedel. Retargetable self-test program

generation using constraint logic programming. 32nd Design

Automation Conference, 1995.

[4] G. Boriello. Software scheduling in the co-synthesis of reactive

real-time systems. Proceedings of the 31th Design Automation
Conference, pages 1{4, 1994.

[5] D. G. Bradlee, S. J. Eggers, and R. R. Henry. Integrating

register allocation and instruction scheduling for RISCs. Ar-

chitectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 122{131, 1991.

[6] D. Brahme and J. A. Abraham. Functional testing of micro-

processors. IEEE Trans. on Computers, pages 475{485, 1984.

[7] K. Buchenrieder. Hardware/Software Co-Design. ITT Press

Hartenstein, ISBN 3-929814-07-4, 1995.

[8] M. Cornero, F. Thoen, G. Goossens, and F. Curatelli. Software

synthesis for real-time information processing systems. in: P.
Marwedel, G. Goossens (ed.): Code Generation for Embedded
Processors, Kluwer, 1995.

[9] European Computer Research Center ECRC. ECLIPSE

3.4 user manual, ECRC common logic programming system.

ECRC GmbH, Munich, 1994.

[10] EE Times. web pages. http://techweb.cmp.com/techweb/eet-

/embedded/embedded.html, 1995.

[11] A. Fauth and A. Knoll. Automated generationof DSP program

development tools using a machine description formalism. Int.
Conf. on Audio, Speech and Signal Processing, 1993.

[12] D. Gajski, F. Vahid, S. Narayan, and J. Gong. Speci�cation
and design of embedded systems. Prentice Hall, 1994.

[13] R. Gupta. Co-synthesis of Hardware and Software for Embed-
ded Systems. Kluwer Academic Publishers, 1995.

[14] R. Gupta. Hardware software co-design of embedded systems.

Tutorial at the VLSI Design Conference, Bangalore, 1996.



[15] Hartmann. Combined scheduling and data routing for pro-

grammable ASIC systems. EDAC, pages 486{490, 1992.

[16] I.-J. Huang and A. Despain. Generating instruction sets and

microarchitectures from applications. Int. Conf. on CAD (IC-
CAD), pages 391{396, 1994.

[17] Intel Corp. web pages. http://www.intel.com/product/tech-
briefs/index.html, 1996.

[18] G. Kr�uger. A tool for hierarchical test generation. IEEE Trans.
on CAD, Vol. 10, pages 519{524, 1991.

[19] D. Ku and G. De Micheli. High Level Synthesis Under Timing
and Synchroniszation Constraints. Kluwer Academic Publish-

ers, 1992.

[20] A. Kunzmann. Test pattern generation hardware motivated by

pseudo-exhaustive test techniques. EURO-DAC, pages 240{
245, 1994.

[21] D. Lanneer, J. Van Praet, A. Ki
i, K. Schoofs, W. Geurts,

F. Thoen, and G. Goossens. CHESS: retargetable code gen-

eration for embedded DSP processors. in: P. Marwedel, G.
Goossens (ed.): Code Generation for Embedded Processors,
Kluwer Academic Publishers, 1995.

[22] E. Lee. Programmable DSP architectures, parts i and ii. IEEE
ASSP Magazine, Oct. 1988 & Jan. 1989, 1988.

[23] J. Lee and J.H. Patel. An architectural level test generator for

data path faults and control faults. Proc. of the Intern. Test
Conference, pages 729{738, 1991.

[24] J. Lee and J.H. Patel. Hierarchical test generation under in-

tensive global functional constraints. Proc. 29th Design Auto-

mation Conf., pages 261{266, 1992.

[25] J. Lee and J.H. Patel. An instruction sequence assembling

methodology for testing microprocessors. Proc. of the Intern.
Test Conference, pages 49{58, 1992.

[26] J. Lee and J.H. Patel. Architectural level test generationfor mi-

croprocessors. IEEE Trans. on Computer-Aided Design, pages

1288{1300, 1994.

[27] R. Leupers. Algorithms for address assigment in DSP code

generation. ICCAD, 1996.

[28] R. Leupers and P. Marwedel. A BDD-based frontend for retar-

getable compilers. European Design & Test Conference, 1995.

[29] R. Leupers and P. Marwedel. Time-constrained code compac-

tion for DSPs. Int. Symp. on System Synthesis (ISSS), 1995.

[30] Y-T. S. Li, S. Malik, and A. Wolfe. Performance estimation of

embedded software with instructioncache modeling. Int. Conf.
on Computer-Aided Design (ICCAD), pages 380{387, 1995.

[31] S. Liao, S. Devadas, K. Keutzer, and S. Tijang. Code optim-

ization techniques for embedded DSP microprocessors. 32nd
Design Automation Conference, pages 599{604, 1995.

[32] S. Liao, S. Devadas, K. Keutzer, S. Tijang, and A. Wang. Stor-

age assignment to decrease code size. Programming Language
Design and Implementation (PLDI), 1995.

[33] C. Liem and P. Paulin. FlexWare { A 
exible �rmware develop-

ment environment. Proc. European Design & Test Conference
(EDAC-ETC-EUROASIC), pages 31{37, 1994.

[34] C. Liem, P. Paulin, and A. Jerraya. Address calculation for

retargetable compilation and exploration of instruction set ar-

chitectures. to appear: 33rd Design Automation Conference,
1996.

[35] LSI Logic Inc. web pages. http://www.lsil.com/products/-
unit5 5.html, 1996.

[36] P. Marwedel. Introduction. in: P. Marwedel, G. Goossens
(ed.): Code Generation for Embedded Processors, Kluwer,

1995.

[37] S. Novack, A. Nicolau, and N. Dutt. A uni�ed code gener-

ation approach using mutation scheduling. in: P. Marwedel,
G. Goossens (ed.): Code Generation for Embedded Processors,
Kluwer Academic Publishers, 1995.

[38] P. Paulin. DSP design tool requirements for the nineties: An

industrial perspective. High-Level Synthesis Workshop, Dana
Point, Cal., 1992.

[39] P. Paulin, M. Cornero, C. Liem, F. Na abal, C. Donawa,

S. Sutarwala, and C. Valderrama. Trends in embedded sys-

tems technology: An industrial perspective. in: M.G. Sami, G.
De Micheli: Hardware/Software Codesign, Kluwer Academic
Publishers, 1996.

[40] P. Paulin and C. Liem. Embedded systems: Trends and tools.

Tutorial at the European Design & Test Conference, 1996.

[41] P. Paulin, C. Liem, T. May, and S. Sutarwala. DSP design tool

requirements for embedded systems: A telecommunications in-

dustrial perspective. Journal of VLSI Signal Processing, pages
23{47, 1995.

[42] J. V. Praet, G. Goossens, D. Lanneer, and H. De Man. Instruc-

tion set de�nition and instruction selection for ASIPs. 7.th Int.
Symposium on High-Level Synthesis, pages 11{16, 1994.

[43] J. V. Praet, D. Lanneer, G. Goossens, W. Geurts, and H. De

Man. A graph based processor model for retargetable code

generation. European Design & Test Conference, 1996.

[44] J. Rajski and J. Tyszer. Multiplicative window generators of

pseudo-random test vectors. European Design & Test Confer-

ence (ED&TC), 1996.

[45] Rimey and Hil�nger. Lazy data routing and greedy scheduling

for application-speci�c processors. 21st Annual Workshop on
Microprogramming (MICRO-21), pages 111{115, 1988.

[46] M. Strik, J. van Meerbergen, A. Timmer, and J. Jess. E�cient

code generation for in-house DSP cores. European Design &
Test Conference, pages 244{249, 1995.

[47] A. Sudarsanam and S. Malik. Memory bank and register al-

location in software synthesis for ASIPs. Intern. Conf. on
Computer-Aided Design (ICCAD), pages 388{392, 1995.

[48] S.M. Thatte and J.A. Abraham. Test generation for micropro-

cessors. IEEE Trans. on Computers, pages 429{441, 1980.

[49] E. Timmer. Con
ict modelling and instruction scheduling in

code generation for in-house DSP cores. 32th Design Automa-

tion Conference, 1995.

[50] C.A. Valderrama and et al. A uni�ed model for co-

simulation and co-synthesis of mixed hardware/software sys-

tems. European Design & Test Conference, 1995.

[51] R. Woudsma. EPICS, a 
exible approach to embedded DSP

cores. Int. Conf. on Signal Processing and Applications and
Technology, 1994.

[52] V. Zivojnovic and et al. DSPstone: A DSP-oriented bench-

marking methodology. Proc. of the Intern. Conf. on Signal
Processing and Technology, 1994.


