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Abstract

This paper investigates the driving force for German stock market
behavior - stock market confidence. By using monthly new V DAX
closing prices and a copula-based Markov approach, a proxy for Ger-
man stock market confidence is derived. It can be shown that confi-
dence responds to expected output changes in terms of differences of
the IFO business climate index and to US confidence changes. Fur-
thermore, German stock market behavior seems to be sticky in com-
parison to the United States and reduces the marginal effects of the
remaining adjustment factors.
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1 Introduction

Almost every economic transaction is based on confidence of the contractual
partners. This fundamental economic issue becomes important in the public
debate on the latest financial crisis, which can be described as a confidence
crisis. Especially the behavior of stock market investors attracted attention
due to the deep impact on the economy. According to stock market confi-
dence of a market participant an individual investment strategy is selected
and determines on an aggregated level stock market uncertainty. Uncertainty
shocks lead to a drop in employment and output (see Bloom (2009))1 and
clarify the link between stock market confidence and macroeconomics. Trig-
gered by the latest financial turbulences various regulatory interventions are
discussed, which may suggests that stock market participants are only specu-
lative and are not guided by economic fundamentals. In order to understand
stock market behavior, the underlying reason - stock market confidence -
has to be analyzed in more detail. The behavioral characterizations could
be used for the development of new investment strategies. Hence, the aim
of this paper is the derivation of a stock market proxy for Germany, the de-
scription of its economic determinants and the characterization of German
stock market participants.

The well-established IFO business climate index approximates the effec-
tive business climate and considers the actual and expected business situation
in Germany. As a leading indicator for economic output the index is generally
accepted. If stock market confidence responds to the index, it implies that
market participants behave dependent on expectations concerning the real
economy. This behavior is consistent with neoclassical theory (see Diamond
(1967)). Even in case that output expectations - reflected by the index -
deviate from actual output, market participants would behave in accordance
to available economic information, if they consider the index for their con-
fidence fixing. If the market participants behave independently from the
business climate, the investment behavior is rather speculative and leads to
rather unpredictable macroeconomic consequences.

In this paper a proxy for German stock market confidence is derived on
the basis of stock market uncertainty. Generally, a canonical and typically
used proxy for stock market uncertainty is expected stock market variability.
Those uncertainty proxies are constructed by using options of specific under-
lying stock market indices. Prominent examples are the V IX for the S&P
500 in the USA, V FTSE for the FTSE 100 in the UK and the V DAX2 for

1Moreover, empirical evidence from the USA underlines the effect of stock market uncer-
tainty on monetary policy (see Jovanović and Zimmermann (2010)).
2In order to ease the notion, the new V DAX is labelled V DAX.
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the DAX in Germany. The V DAX was introduced by the Deutsche Börse
AG in April 2005 and is backward projected until January 1992.

Based on an economic model the temporal dependence of the V DAX
serves as a proxy for stock market confidence, where copula-based Markov
models are the methodological framework. By the theorem of Sklar (1959)
any multivariate distribution can be expressed in terms of its marginal distri-
butions and its copula function. A copula function is a multivariate distribu-
tion function with standard uniform marginals, which captures the scale-free
dependence structure of the multivariate distribution function. The copula-
based approach has the advantage of separating the information about the
marginal distributions from the scale-free dependence structure. Darsow
et al. (1992) extent this approach to Markov processes. By coupling dif-
ferent marginal distributions with different copula functions, copula-based
time series models are able to model a wide variety of marginal behaviors
(such as skewness and fat tails) and dependence properties (such as clus-
ters, positive or negative tail dependence). Chen and Fan (2006) develop a
two-step estimation procedure for parametric copula functions and make this
methodological approach usable for economic applications.

The rest of the paper is organized as follows. Section 2 reviews the
methodological concept of copula-based Markov processes. Section 3 presents
an economic model which deals with stock market confidence. The preceding
section 4 is concerned with the empirical investigation in Germany. Section
5 draws a conclusion. Some tables and technical details are relegated to the
Appendix.

2 Methodology

Let {Yt} be a stationary first-order Markov process with continuous state
space. Then the joint distribution function H(yt−1, yt) = P (Yt−1 ≤ yt−1, Yt ≤
yt), (yt−1, yt) ∈ IR2, of Yt−1 and Yt completely determines the stochastic
properties of {Yt}. Due to Sklar’s theorem, it is possible to express H(yt−1, yt)
in terms of the marginal distribution G(yt) = P (Yt ≤ yt), yt ∈ IR, of Yt and
the dependence function of Yt−1 and Yt. This dependence function

C(G(yt−1), G(yt)) = H(yt−1, yt) (1)

is known as ”copula”. Hence, C(ut−1, ut) = P (Ut−1 ≤ ut−1, Ut ≤ ut),
(ut−1, ut) ∈ [0, 1]2, is the joint distribution function of the two random vari-
ables Ut−1 = G(Yt−1) and Ut = G(Yt). h(·, ·), c(·, ·) and g(·) are the associ-
ated (joint) density functions. We will consider in this paper three frequently
used copulas (Gauss, Clayton, Frank) and one rarely used copula (Fang). For
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details see the Appendix. One obvious feature of the copula-based time se-
ries approach is the possibility to seperate the time dependence structure
from the marginal distribution. Especially in Economics this issue becomes
important, due to plenty economic information reflected by the marginal dis-
tribution.3 We consider the following set of assumptions:

(A1) {Yt}n
t=1 is a sample of a stationary first-order Markov process generated

from the true marginal distribution G(·) - which is invariant and absolutely
continuous with respect to the Lebesgue measure on the real line - and the
true parametric copula C(·, ·; α) - which is absolutely continuous with respect
to the Lebesgue measure on [0, 1]2.
(A2) G(·) and the d-dimensional copula parameter α ∈ IRd are unknown.
(A3) C(·, ·; α) is neither the Fréchet-Hoeffding upper bound (C(ut−1, ut) =
min(ut−1, ut)) nor the lower bound (C(ut−1, ut) = max(ut−1 + ut − 1, 0)).

If (A3) would not be true, it is well-known that Yt would be almost surely
a monotonic function of Yt−1. Therefore, the resulting time series would be
deterministic and in case of stationarity, Yt = Yt−1 for the upper bound and
Yt = G−1(1 − G(Yt−1)) for the lower bound would follow. We abandon from
these cases to focus on stochastic samples of stationary first-order Markov
processes. Due to Sklar’s Theorem of equation (1) the copula density func-

tion c(ut−1, ut; α) = ∂2C(ut−1,ut;α)
∂ut−1∂ut

equals h(yt−1,yt)
g(yt−1)·g(yt)

. Hence, the conditional
density of yt given yt−1, . . . , y1 is

h(yt|yt−1) = g(yt)c(G(yt−1), G(yt); α) . (2)

As far as the conditional density is a function of the copula and the marginal,
the vt-th, vt ∈ [0, 1], conditional quantile Qvt

of yt given yt−1 is a function of
the copula and the marginal,

Qvt
(yt|yt−1) = G−1

(
C−1

t|t−1[vt|G(yt−1); α]
)

. (3)

Ct|t−1(ut|ut−1; α) = P (Ut ≤ ut|Ut−1 = ut−1) = ∂C(ut−1,ut;α)
∂ut−1

denotes the con-
ditional distribution of Ut given Ut−1 = ut−1, which we assume to exist.
Therefore, C−1

t|t−1[vt|G(yt−1); α] is the vt-th conditional quantile of ut given
ut−1. Considering assumption (A2) the unknown marginal distribution G(·)
and the unknown copula parameter vector α have to be estimated. Chen

3Furthermore, the temporal dependence structure is invariant concerning monotonic trans-
formations by the invariance theorem of copulas . Hence, temporal dependence of the
V DAX equals the temporal dependence structure of the frequently used transformations
V DAX2 and ln V DAX.
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and Fan (2006)4 derive the following semiparametric two-step procedure:

Step 1: Estimate G(y) by the rescaled empirical distribution

Ĝ(y) =
1

n + 1

n∑

t=1

1{Yt ≤ y} . (4)

Step 2: Estimate the copula parameter vector by

α̂ = arg max
α

1

n

n∑

t=2

log c(Ĝ(Yt−1), Ĝ(Yt); α) . (5)

α̂ is root-n consistent and has approximately a normal distribution.
According to Chen and Fan (2006) the following generalized semipara-

metric regression transformation model exists:

Λ1(G(Yt)) = Λ2(G(Yt−1)) + νt , E(νt|Yt−1) = 0 , (6)

with a parametric increasing function Λ1(·) of Ut, Λ2(ut−1) := E(Λ1(Ut)|Ut−1 =
ut−1), and the conditional density of νt given Ut−1 = ut−1 is

fνt|Ut−1=ut−1
(νt) =

c(ut−1, Λ
−1
1 (νt + Λ2(ut−1)); α)

dΛ1(νt+Λ2(ut−1))
dνt

. (7)

It follows in general

Λ2(ut−1) = E(Λ1(Ut)|Ut−1 = ut−1) =
∫ 1

0
Λ1(ut)c(ut−1, ut; α)dut (8)

and for the special case of identity mapping Λ1(ut) = ut

Λ2(ut−1) = E(Ut|Ut−1 = ut−1) = 1 −
∫ 1

0
Ct|t−1(ut|ut−1; α)dut . (9)

Therefore, without loss of generalization the identity mapping case yields to
the autoregressive process5

ut = Λ2(ut−1) + νt . (10)

4Instead of using the rescaled empirical distribution function, one could use an adequate
kernel estimator of the distribution function. Furthermore, they offer an appropriate
bootstrap method to construct statistical inference procedures for the estimated quantiles.
5Strictly speaking the process is an autoregressive quantile process, whereas the quantile
treatment can be simply interpreted as a stabilizing transformation.
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Contrary to the traditional linear case, |α| < 1,

ut = αut−1 + εt (11)

with an iid error εt, E(εt|ut−1) = 0, the copula-based approach allows for
nonlinear temporal dependence structures. In order to calculate a proxy
for the systematic temporal dependence between ut−1 and ut substitute the
theoretical quantile ut by its nonparametric estimate of the empirical distri-
bution ût = n+1

n
Ĝ(y) and name the ascended sorted empirical quantiles ût

by û??
t . The systematic projection of the expected quantile in the linear case

is û?
t = α̂ · û??

t−1 and leads to a constant strength of temporal dependence
calculated by ∆û?

t = α̂/n. In the generalized case the systematic projection
of the expected quantile is

û?
t = C−1

t|t−1(0.5|û??
t−1; α̂) (12)

and can be used to calculate the proxy for the strength of temporal depen-
dence ∆û?

t = û?
t − û?

t−1. This generalized version of temporal dependence
allows also for nonlinear dependencies conditional on the level of û?

t−1 and
the copula C. Therefore, the following definition of conditional temporal
dependence will be considered:

Definition 1 The proxy for conditional temporal dependence between the
random variables Ut−1 and Ut given û?

t−1 and a copula C is defined by:

dep(Ut−1, Ut|û?
t−1, C) := ∆û?

t

Once the values for ∆û?
t are calculated, every ût can be uniquely related to

a value yt and ∆û?
t and leads to a time series of conditional temporal depen-

dencies dep(Yt−1, Yt|yt−1, C) which correspond to the values of yt. Although
the copula parameters - which can be transformed to the correlation coeffi-
cient according to Kendall or Spearman - are treated as time invariant (α
and not αt) the copula itself allows for a variation of temporal dependence
conditional on the quantile level.

3 Economic model of stock market confidence

3.1 Time series derivation

Consider the random variable Y ?
i,t which stands for stock market uncer-

tainty of investor i = 1, . . . ,m at the end of the last trading day of month
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t = 1, . . . , n and its realization y?
i,t.

6 According to Aoki and Yoshikawa
(2007) about 95 percent of the total market participants belong to the two
largest subgroups of agents by types. With two largest clusters, there are two
regimes; one with a cluster of investors with strategy 1 as the largest share,
and the other with a cluster of investors using strategy 2 as the largest share.
Namely, fundamentalists dominate the market in regime 1 and chartists dom-
inate the market in regime 2. We postulate that the decision at the end of
period t of a market participant i being a fundamentalist (yi,t = 1) or a
chartist (yi,t = 0) is determined by individual stock market uncertainty y?

i,t

and an individual threshold ϕi for being a chartist or a fundamentalist.

yi,t =

{
0 , if y?

i,t ≥ ϕi

1 , if y?
i,t < ϕi

This decision rule implies that individuals make their strategy decision monthly
and know their own threshold ϕi.

The main argument for this decision rule is the attempt of the investors
to maximize their expected profits. Referring to this reasoning consider
stock market uncertainty in the conventional sense as expected stock mar-
ket variability. Hence, y?

i,t can be substituted by Ei,t(σt+1), where σt+1

stands for stock market variability during the month t + 1. As Aoki and
Yoshikawa (2007) show, a market structure dominated by chartists leads
to higher stock market variability σ than a market structure dominated
by fundamentalists. Corresponding to Fama (1970) the market structure
dominated by chartists reflects inefficient markets and the market struc-
ture dominated by fundamentalists reflects weak efficient markets. It is
therefore conceivable that investors conclude from variability to market ef-
ficiency. This behavioral assumption allows for the link between Ei,t(σt+1)
and Ei,t(market efficiencyt+1). In case of inefficient markets asset prices do
not reflect historical price information and it is possible to earn excess re-
turns r by being a chartist. On the other hand, if the market is rather
weak efficient, asset prices reflect historical price information and it is pos-
sible to achieve excess returns by being a fundamentalist. Consequently,
y?

i,t ≥ ϕi implies Ei,t(rt+1|yi,t = 0) > Ei,t(rt+1|yi,t = 1) and y?
i,t < ϕi implies

Ei,t(rt+1|yi,t = 1) > Ei,t(rt+1|yi,t = 0). Hence, the investment decision is mo-
tivated by expected profits and follows the expected market structure. High
uncertainty leads by the decision rule to an investment strategy which causes
higher stock market variability (Aoki and Yoshikawa (2007)). Straightfor-

6In fact Y ?
i,t symbolizes the quantile of stock market uncertainty. In order to avoid a

burdensome notation the economic argumentation neglects this transformation without
loss of generalization in this chapter.
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ward, the decision rule acts like an accelerator for financial market insta-
bility and equals a complementary game, which induces nonlinearities on a
macroeconomic level (see Cooper (1999)).

To construct a proxy for stock market confidence it is necessary to formu-
late an expectation formation mechanism of the expectation Ei,t(σt+1) = y?

i,t

in the decision rule. The following rule is motivated by Keynes (1936) and
explains expectations by a projection of the existing situation and expected
changes. Adopting this general approach in a time series context the projec-
tion of the existing situation is Λ3(Ei,t−1(σt)) with a function Λ3 determined
by a copula. The expected changes are Ei,t(σt+1|σ−

t ) − E−
t (σt+1) = ε?

i,t with
a projection of realized variability Ei,t(σt+1|σ−

t ) conditional on information
concerning realized variability σ−

t up to the day prior the last trading day
and information concerning market variability expectations E−

t (σt+1) until
the day before the last trading day. According to this thoughts we receive
the individual expectation formation

y?
i,t = Λ3(y

?
i,t−1) + ε?

i,t (13)

with E(ε?
i,t|y?

i,t−1) = 0. The variability
√

V (ε?
i,t|y?

i,t−1) = |ε?
i,t| of ε?

i,t corre-

sponds to the absolute deviation of individual realized variability expecta-
tions and market variability expectations. Following Keynes (1936) ”confi-
dence” is defined by the relevance - or equivalently weight - of the systematic
expectation argument and causes the expectation. Regarding equation (13)
the systematic component y?

i,t−1 is weighted by the function Λ3. If the rel-
evance of y?

i,t−1 for y?
i,t is high, the confidence of the expectation argument

is high and vice versa. This mechanism implies in connection with the de-
cision rule that in case of high confidence the development of expectations
show more persistence and with it more persistence of the development of
investment strategies. The market participants have less incentive to change
their strategy in face of high confidence. As long as the expectations are
linked to stock market variability it is reasonable to equate expectation con-
fidence with stock market confidence. Hence, the correct specification of Λ3 in
the copula-based Markov approach of (13) allows for a description of stock
market confidence dependent on the level of stock market uncertainty. In
line with Definition 1 individual stock market confidence is then measurable
by the temporal dependence between Y ?

i,t−1 and Y ?
i,t. Leaving the individ-

ual level by aggregating individual investment decisions leads to the market
structure St+1 = m−1∑m

i=1 yi,t with 0 ≤ St+1 ≤ 1 and the market uncertainty
Et(σt+1) = y?

t = m−1∑m
i=1 y?

i,t, which can be described analog to (13) by

y?
t = Λ(y?

t−1) + ε?
t (14)
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with E(ε?
t |y?

t−1) = 0. The market wide stock market confidence proxy is the
temporal dependence of the market wide stock market uncertainty.

3.2 Structural explanation

Human behavior in terms of confidence is persistent. It takes time to provide
confidence and to lose confidence. In order to investigate the dynamics of
German stock market confidence κ consider ∆κ?

t , which induces a persistence
neutral systematic adjustment of stock market confidence in the following
framework:

κt = (1 − ρ)∆κ?
t + ρκt−1 + νt , 0 ≤ ρ < 1 (15)

νt is an independent and identically distributed error with E(νt) = 0, V (νt) >
0 and E(|νt|n) < ∞ for all n = 1, 2, . . .. Generally, in the case ∆κ?

t > 0
positive confidence adjustments and in the case ∆κ?

t < 0 negative confidence
adjustments follow. Dependent on the behavioral persistence - expressed
in the value for ρ - confidence adjustment varies. If ρ is high, adjustment
processes are low and vice versa. To concretize equation (15) ∆κ?

t has to be
specified.

According to neoclassical theory the price pt of a specific stock equals the
expected discounted future profits xt+τ , τ = 1, 2, . . ., and is therefore caused
by expected future output of the real economy (see Diamond (1967)). For a
constant discount rate i the present value model leads to

pt =
n∑

τ=1

(1 + i)−τEt(xt+τ ) and pt−1 =
n+1∑

τ=1

(1 + i)−τEt−1(xt+τ−1) . (16)

Consequently,

∆pt =
n∑

τ=1

(1 + i)−τ∆Et(xt+τ ) − (1 + i)−(n+1)Et−1(xt+n) (17)

and

lim
n→∞

∆pt =
∞∑

τ=1

(1 + i)−τ∆Et(xt+τ ) (18)

follows. In order to ease the notation, ”limn→∞” in equation (18) will be
neglected in the following. The commonly used unconditional estimate σ̂t of

the return variability σt is
√

∆p2
t = |∆pt| and leads by equation (18) and the

triangle inequality for sums to

σ̂t ≤
∞∑

τ=1

(1 + i)−τ |∆Et(xt+τ )| . (19)

9



Hence, neoclassical theory implies an estimate for stock market variability,
which includes an upper bound determined by expectation changes concern-
ing future profits. Stock market uncertainty in terms of expected future stock
market variability, i.e. Et(σt+1), considers behavioral assumptions concerning
expectation formation. Assuming worst case expectations and consequently
substituting σ by the upper bound for σ̂ in the definition for stock market
uncertainty, leads to the neoclassical explanation of uncertainty

Et(σt+1) ≈
∞∑

τ=1

(1 + i)−τ |∆Et(xt+τ+1)| . (20)

Therefore, according to neoclassical theory stock market uncertainty is deter-
mined by absolute values of expectation changes concerning future profits. In
turn, as previously discussed stock market confidence κt is the driving factor
of stock market uncertainty. For this reason it is reasonable to conclude that
expectation changes concerning profits cause confidence adjustments and is
an element of ∆κ?

t .
7 For the aggregated stock market it is quite unrealis-

tic that individuals discount infinite future changes of profit expectations,
which is implied by the present value model. Therefore, the expectation ef-
fect on confidence changes is reduced to a feasible and empirically justified
term ∆Et(xt+1) (see section 4). The second element of ∆κ?

t is the change
of US stock market confidence ∆κus,t and reflects the fact of US dependence
of German stock market behavior. According to this considerations German
stock market confidence adjustments are systematically driven by

∆κ?
t = β∆Et(xt+1) + γ∆κus,t . (21)

From equation (15) and (21) follows

κt = (1 − ρ)[β∆Et(xt+1) + γ∆κus,t] + ρκt−1 + νt . (22)

As long as equation (22) contains only unobservable variables adequate prox-
ies have to be substituted. The IFO business climate index is a highly
respected leading indicator for economic output and contains information
about profit expectations. Therefore, ∆Et(xt+1) will be substituted by the
difference of the IFO index, ∆x̂t. Furthermore, κt will be substituted by
the Frank-copula-based confidence proxy κ̂t and κus,t will be substituted by
the Fang-copula-based confidence proxy κ̂us,t (see preceding section). By the
appropriate substitutions equation (22) leads to the feasible model

κ̂t = (1 − ρ)[β∆x̂t + γ∆κ̂us,t] + ρκ̂t−1 + et (23)

7The absolute values of expectation changes are only valid, if the square in ∆p2

t is consid-
ered as a volatility estimate.
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with the linear combination of approximation errors and νt

et := −(κt − κ̂t) − ρ(κt−1 − κ̂t−1)

+(1 − ρ){β[∆Et(xt+1) − ∆x̂t] + γ[∆κus,t − ∆κ̂us,t]} + νt , (24)

which is assumed to be independent and identically distributed with E(et) =
0, V (et) > 0 and E(|et|n) < ∞ for all n = 1, 2, . . . and uncorrelated with
the right hand side variables of equation (23). Consequently, the unknown
parameter vector (β, γ, ρ) of equation (23) can be consistently estimated by
OLS. A simple autoregressive approach is misspecified and accounts not for
systematic adjustment processes of confidence.

4 Empirical results

Stock market uncertainty in terms of expected stock market volatility (see e.g.
Bloom (2009)) is canonically approximated by the V DAX in the German
case and by the V IX in the US case. Based on this index stock market
confidence is implied derivable. We use data from Thompson Datastream8 for
the period January 1992 to December 2010. Hence, the number of observed
months is n = 228. In order to derive a stock market confidence proxy
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Figure 1: Monthly V DAX closing prices.

four parametric copulas are discussed (Gauss, Clayton, Frank, Fang). For
technical details see the copula review and Table 4 of the Appendix. The

8The time series code for the daily V DAX closing prices in Euro is ”VDAXNEW” and
for the V IX closing prices in US dollars is ”CBOEVIX”.
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hypothesis that the Frank copula captures the time dependence structure of
the V DAX can not be rejected on any plausible level of significance.9 To test
the correctness of a copula in a first-order Markov framework, consider the
following multiple hypothesis test of interest (notation in line with chapter
2):
H0: {Yt} is a first-order Markov process with copula C

H0 is equivalent to
H ′

0 : Vt = Ct|t−1(Ut|Ut−1; α) is uniformly on [0, 1] distributed and not auto-
correlated
We reject H0 if H ′

0 is rejected. Table 1 shows the estimation and test results.

Table 1: V DAX results

Copula Estimate Estimated autocorrelation G-o-f
1 2 3 4 5 6

Gauss 0.885 -0.10 -0.12 0.02 -0.03 -0.01 0.09
(0.031) (0.14) (0.08) (0.73) (0.63) (0.93) (0.16) (0.17)

Clayton 2.812 0.13 0.08 0.13? 0.11 0.08 0.18?

(0.169) (0.06) (0.26) (0.05) (0.11) (0.24) (0.01) (0.76)
Frank 12.076 -0.05 -0.05 0.02 0.01 0.02 0.06

(0.861) (0.45) (0.46) (0.79) (0.84) (0.80) (0.40) (0.38)
Fang, α 0.186 0.03 -0.01 0.03 0.05 0.03 0.06

(0.016) (0.61) (0.89) (0.65) (0.48) (0.61) (0.34) (0.99)
Fang, β 0.9996

(0.0002)

Sample: 1992:1-2010:12 • Included observations T = 227 • Initial value of the
one parameter copulas is 1 and of the Fang copula are α̂1 = 0.3 and β̂1 = 1
• ML-estimates are different from zero at any level of significance (standard
errors in brackets) • Spearman’s correlation coefficients and p-values of the
hypothesis ρs(Vt, Vt−l) = 0, l = 1, . . . , 6, in brackets • ? indicates a significant
autocorrelation on the 10% overall error rate using Bonferroni’s adjustment
(see e.g. (Sokal & Rohlf, 1995)) • 2 is the number of tests performed (cor-
relation test up to a specific lag and goodness-of-fit (G-o-f) test) • Finite
sample adjustment of the Kolmogorov statistic and corresponding p-values
of the hypothesis Vt ∼ U [0, 1] in brackets (see e.g. (D’Agostino & Stephens,
1986))

9Although, the correctness of the Gauss and Fang copula can also not be rejected the
Frank copula is selected, because of its superior fit (see the section concerning copula-
specific forecasting errors of the Appendix). In contrast to the German case the Fang
copula is the unique identified correct copula in the US case and leads to the conclusion
of unambiguous asymmetric tail dispersion.
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Summing up the hypothesis tests and the forcasting errors of the Appendix
the appropriateness of the Frank copula is indicated. Figure 2 allows for a
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Figure 2: Contour with scatter plot of the empirical V DAX quantiles t and
t − 1 of the Frank copula, α̂ = 12.076.

graphical inspection of its density based on the parameter estimates. The
Frank copula shows more density mass in the lower and upper tails and obeys
symmetric tail dispersion.

Once the correct copula is specified, it is possible to calculate the stock
market confidence proxy according to equation (12) and Definition 1. Figure
3 shows on the left side the dependence structure between confidence and un-
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Figure 3: Dependence between German stock market uncertainty and Ger-
man stock market confidence.
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Table 2: German stock market confidence

ρ β γ R
2

BG White ARCH
(a) 0.719 - - 0.52 {0.59} {0.02} {0.01}

(0.056) - -
(b) 0.709 2.035 0.420 0.55 {0.37} {0.20} {0.12}

(0.057) (0.751) (0.176)

Confidence explanation: κ̂t = (1 − ρ)[β∆x̂t + γ∆κ̂us,t] + ρκ̂t−1 + et with
(a) restricted model (β = γ = 0) and (b) unrestricted model • Sam-
ple: 1992:1-2010:12 • OLS estimation • Included observations T = 227
• White heteroskedasticity-consistent standard errors in parenthesis • p-
values in curly brackets • Breusch-Godfrey test (BG) of the lag order 2. The
test indicates on the 95% level at any lag uncorrelated residuals • White’s
heteroskedasticity test (White) with cross terms of the residuals • Test of
ARCH(1) effects of the residuals (ARCH) • The test statistics are T · R2.

certainty quantiles10 and on the right side the dependence between confidence
and uncertainty levels. The backward projection from the quantiles to the
levels is done by the empirical distribution function. By using copula-based
Markov models as the methodological framework the statistical significant
and stable relationship between the Keynesian motivated stock market con-
fidence proxy and its dependent stock market uncertainty can be derived. It
is interesting to note that the estimated autocorrealation coefficient (lag 1)
of German stock market confidence (0.72) exhibits the US value of 0.42 by
wide margins and leads to the conclusion of more persistence of stock market
behavior in Germany.

The estimation results of the structural model of German stock market
confidence (see equation (23)) and of the autoregressive approach are sum-
marized in Table 2. Hereby the IFO business climate index is received from
Thompson Datastream.11 If on the one hand stock market confidence is
explained autoregressive, unexplained systematic variability is relegated to
the residuals and leads to ARCH(1) heteroskedasticity. If on the other side
the autoregressive approach is augmented by expectation changes concerning
the real economy and US confidence changes, the residuals show no system-
atic pattern anymore. Estimating the simple autoregressive model leads to

10Obvious outliers are substituted by local means.
11The time series code for the monthly index is ”BDCNFBUSQ”. All time series of the
regression approach are normalized with the arithmetic mean of 0 and the sample variance
of 1.
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misspecification.12

5 Conclusions

In this paper German stock market confidence is approximated by temporal
dependence of the monthly V DAX closing prices in a Frank copula-based
Markov model. The derived time series proxy for confidence is additionally
explained by an autoregressive structural equation. Neoclassical theory im-
plies the relevance of expected output changes for confidence adjustments.
Based on this theory differences of the IFO business climate index are used as
proxies for expected output changes. Due to the highly significant confidence
response to IFO index changes, German stock market behavior is systemat-
ically driven by expectations on the real economy. Even in case of irrational
expectations market behavior is systematically influenced by these expecta-
tions. Hence, regardless of the rationality of the expectations German stock
market behavior can be characterized as fundamental due to the systematic
output focus.

Because of the empirical evidence of the IFO business climate relevance for
German stock market behavior, further forecasting research concerning the
predictability of out-sample stock market uncertainty or uncertainty change-
points is indicated. From a macroeconomic perspective the predictability of
stock market uncertainty is important with respect to financial stability and
due to risk premiums essential for interest rates. From a finance perspec-
tive the predictability of stock market uncertainty is directly important for
volatility derivatives, where the payoff of an asset is dependent on an uncer-
tainty index like the V DAX. Furthermore, improved uncertainty predictions
could be potentially useful for the development of new investment strategies.

US confidence changes also influence German stock market confidence
adjustments significantly. Although the international response of German
stock market confidence is much less than domestic expected output changes,
the US dependence of the German stock market is empirically verifiable.

German stock market behavior is also characterized by high persistence
and influences the effect of output and US confidence changes. High persis-
tence reduces the marginal effects and, therefore, German confidence adjust-
ments seem to be sticky. Compared to US stock market confidence it takes
more time to increase or to decrease stock market confidence in Germany and
leads to the conclusion of a less fluctuating German stock market behavior.

12Especially out-sample predictions could potentially benefit from the augmented specifi-
cation.
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Appendix

Copula review:

Bivariate tail dependence is one way to focus on variability of temporal depen-
dence. This concept relates to the amount of dependence in the lower-quadrant
tail or the upper-quadrant tail of a bivariate distribution (see e.g. (Joe, 1997)) and
is relevant for dependence in extreme values. A copula has lower tail dependence if
λL ∈ (0, 1], where λL = limu→0 P (Ut−1 ≤ u|Ut ≤ u), and no lower tail dependence
if λL = 0. Similarly, a copula has upper tail dependence if λU ∈ (0, 1], where
λU = limu→1 P (Ut−1 > u|Ut > u), and no upper tail dependence if λU = 0.

I. The Gauss copula (e.g. Joe (1997))

C(ut−1, ut; α) = Φα[Φ−1(ut−1), Φ
−1(ut)]

with the standard normal distribution function Φ(·), the bivariate normal dis-
tribution function Φα(·, ·) with means zero and variances 1 and the correlation
coefficient |α| < 1 is an elliptical copula. Its lower tail dependence parameter is
λL = 0 und its upper tail dependence parameter is λU = 0. Therefore, it exhibits
neither dependence in the negative tail nor in the positive tail. The copula density
function c(ut−1, ut; ·) is:

(1 − α2)−1/2 exp

{
−1

2
(1 − α2)−1[u2

t−1 + u2
t − 2αut−1ut]

}
exp

{
1

2
[u2

t−1 + u2
t ]

}

Due to the linearity of the Gauss copula according to Chen and Fan (2006)
Φ−1(ut) = αΦ−1(ut−1) + εt with εt ∼ N(0;

√
1 − α2) follows. Consequently,

ut = Φ(αΦ−1(ut−1) + εt) and vt = Φ(εt/
√

1 − α2) follows.
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II. The Clayton copula (Clayton (1978))

C(ut−1, ut; α) =
(
u−α

t−1 + u−α
t − 1

)− 1

α ,

α > 0, is an asymmetric Archimedean copula. Its lower tail dependence parameter
is λL = 2−

1

α und its upper tail dependence parameter is λU = 0. Therefore, it
exhibits greater dependence in the negative tail than in the positive tail. The
copula density function is:

c(ut−1, ut; α) = (1 + α) (ut−1ut)
−α−1(ut−1

−α + ut
−α − 1

)−2−1/α

The inverse of the conditional distribution is:

C−1
t|t−1(vt|ut−1; α) = ut = [(v

−α/(1+α)
t − 1)u−α

t−1 + 1]−1/α

III. The Frank copula (Frank (1979))

C(ut−1, ut; α) = − 1

α
log

(
1 +

(e−αut−1 − 1) (e−αut − 1)

(e−α − 1)

)
,

α = (−∞, +∞)\{0}, is a symmetric Archimedean copula. Its lower tail depen-
dence parameter is λL = 0 and its upper tail dependence parameter is λU = 0.
Therefore, it exhibits neither dependence in the negative tail nor in the positive
tail and shows more tail dispersion than the Gauss copula. The copula density
function is:

c(ut−1, ut; α) = αηe−α(ut−1+ut)/[η − (1 − e−αut−1)(1 − e−αut)]2, η = 1 − e−α

The inverse of the conditional distribution is:

C−1
t|t−1(vt|ut−1; α) = ut = −α−1 log{1 − (1 − e−α)/[(v−1

t − 1)e−αut−1 + 1]}

In order to allow for a more flexible copula specification the following two
parameter copula will be applied.

IV. The Fang copula (Fang et al. (2000))

C(ut−1, ut; α, β) =
ut−1ut[

1 − β
(
1 − ut−1

1

α

) (
1 − ut

1

α

)]α (25)

considers the parameters α > 0 and 0 ≤ β ≤ 1. When β = 0, Ut−1 and Ut are inde-
pendent. When β = 1, C(ut−1, ut; α, 1) in (25) becomes the bivariate Clayton cop-
ula. As α = 1, C(ut−1, ut; 1, β) is the Ali-Mikhail-Haq copula (Ali et al. (1978)) and
the generalized Eyraud-Farlie-Gumbel-Morgenstern copula (Cambanis (1977)). By
means of some stochastic transforms, some bivariate distributions can be induced
by the Fang copula, such as the generalization of Gumbel’s bivariate logistic dis-
tribution given by Satterthwaite and Hutchinson (1978). Moreover, it can be
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shown that if β < 1, limα→0 C(ut−1, ut; α, β) = limα→∞ C(ut−1, ut; α, β) = ut−1ut.
Therefore, Ut−1 and Ut are independent as α → 0 and α → ∞. To asses the
correlation between two random variables, copulas can be used to define Spear-
man’s ρs (see Joe (1997)) in general. Analog to the general case the Spearman’s
correlation coefficient of the Fang copula between Ut−1 and Ut is representable by
a hypergeometric function. A hypergeometric function of x is defined as

pFq(a1, · · · , ap; b1, · · · , bq; x) =
∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

xk

k!
,

where (a)k = Γ(a+k)/Γ(a) and a1, . . . ap, b1, . . . , bq are parameters. Γ(z) stands for
the gamma function

∫∞
0 e−ttz−1dt. Then, the Spearman’s correlation coefficient

ρs(α, β) of the Fang copula in (25) between Ut−1 and Ut is given by

ρs(α, β) = 3(3F2(1, 1, α; 1 + 2α, 1 + 2α; β) − 1) . (26)

The copula density function is:

c(ut−1, ut; α, β) =
(β2 + β/α)(ut−1ut)

1/α + (β − β2)(u
1/α
t−1 + u

1/α
t ) + (1 − β)2

[1 − β(1 − ut−1
1/α)(1 − ut

1/α)]α+2

C−1
t|t−1 does not exist in closed form. ut = C−1

t|t−1(vt|ut−1; α, β) can be obtained

from the equation vt = Ct|t−1(ut|ut−1; α, β) using a numerical root-finding routine
(here: Newton’s procedure).

Copula-specific forecasting errors:

Consider the nonparametric estimated conditional quantiles ût, which contain
no information about a parametric copula. On the other hand if a parametric
copula is selected, it is possible to calculate copula implied conditional quantiles
which are used to construct a copula-based confidence interval of the conditional
quantiles. Regarding the level of significance ε it follows for the upper interval
bound

ût,ε = C−1
t|t−1(1 − ε/2|ût−1; α̂) (27)

and for the lower interval bound

ût,ε = C−1
t|t−1(ε/2|ût−1; α̂) . (28)

The ,,overall region” of Table 3 reports the estimated error rates for all conditional
quantiles ût, t = 2, . . . , n. Therefore, given ût, ût,ε and ût,ε copula-based error rates
are:

ε̂overall = 1 −
(

1

n − 1

n∑

t=2

1{ût,ε ≤ ût ≤ ût,ε}
)

(29)
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Focusing the tails of the bivariate copula leads to further information about the
copula adequacy. The calculation of the estimated error rates of the ,,lower region”
of Table 3 is analog to (29), but only valid for lower ût. We define the region for
lower quantiles by ût < π with π = 1/3.13 According to

ε̂lower = 1 −
(

1

n

n∑

t=2

1{ût,ε ≤ ût ≤ ût,ε and ût < π}
)

(30)

the estimated error rate for the lower region are computed. Consequently, for the
,,upper region”

ε̂upper = 1 −
(

1

n

n∑

t=2

1{ût,ε ≤ ût ≤ ût,ε and ût > 1 − π}
)

(31)

holds. n stands for the cases with ût < π and n for the cases with ût > 1 − π.
Table 3 shows additionally the root mean squared error of the true and estimated
error rates separated according to different regions.

13Also for varying π similar error rates are observed.
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Table 3: Estimated conditional quantile error rates of the V DAX

Copula Lower region Upper region Overall region
ε ε ε
0.10 0.05 0.10 0.05 0.10 0.05

Gauss 0.12 0.04 0.14 0.12 0.10 0.03
(0.0907) (0.1322) (0.0796)

{0.1134}
Clayton 0.23 0.19 0.07 0.03 0.07 0.07

(0.2104) (0.0501) (0.0873)
{0.1530}

Frank 0.03 0.00 0.11 0.07 0.10 0.03
(0.0191) (0.0878) (0.0562)

{0.0635}
Fang 0.08 0.03 0.08 0.05 0.07 0.04

(0.0604) (0.0671) (0.0583)
{0.0639}

Sample: 1992:1-2010:12 • The estimated conditional quantiles ût are computed by the

empirical distribution. By assuming a certain parametric copula a level of significance ε

determines a (1− ε) confidence interval of the nonparametric estimated conditional quan-

tiles ût. With respect to the inverse conditional distributions for the upper interval bound

vt = 1 − ε/2 and for the lower bound vt = ε/2 holds. The unknown copula parameters

are substituted by appropriate ML-estimates according to Table 4. • The copula specific

numbers are the relative frequencies for the nonparametric estimated conditional quan-

tiles outside the parametric confidence interval. The lower quantile region is defined by

quantiles in a range of (0; 1/3). For the upper quantile region (2/3; 1) holds. • Root mean

squared errors of the regions in parenthesis and root mean squared errors of the extreme

regions in curly brackets (root of the arithmetic mean of the squared errors).

21



Table 4: V IX results

Copula Estimate Estimated autocorrelation G-o-f
1 2 3 4 5 6

Gauss 0.849 -0.16? -0.04 -0.05 0.03 0.04 -0.01
(0.035) (0.02) (0.60) (0.50) (0.68) (0.59) (0.92) (0.39)

Clayton 1.920 0.07 0.24? 0.10 0.12 0.14? 0.09
(0.120) (0.30) (0.00) (0.15) (0.07) (0.04) (0.19) (0.08)

Frank 10.995 -0.13? -0.01 -0.03 0.02 0.03 -0.07
(0.835) (0.05) (0.91) (0.70) (0.76) (0.67) (0.33) (0.95)

Fang, α 0.157 -0.08 0.00 0.00 0.03 0.00 -0.08
(0.014) (0.22) (0.99) (0.99) (0.64) (0.97) (0.22) (0.91)

Fang, β 0.9995
(0.0004)

Sample: 1992:1-2010:12 • Included observations T = 227 • Initial value of the
one parameter copulas is 1 and of the Fang copula are α̂1 = 0.3 and β̂1 = 1
• ML-estimates are different from zero at any level of significance (standard
errors in brackets) • Spearman’s correlation coefficients and p-values of the
hypothesis ρs(Vt, Vt−l) = 0, l = 1, . . . , 6, in brackets • ? indicates a significant
autocorrelation on the 10% overall error rate using Bonferroni’s adjustment
(see e.g. (Sokal & Rohlf, 1995)) • 2 is the number of tests performed (cor-
relation test up to a specific lag and goodness-of-fit (G-o-f) test) • Finite
sample adjustment of the Kolmogorov statistic and corresponding p-values
of the hypothesis Vt ∼ U [0, 1] in brackets (see e.g. (D’Agostino & Stephens,
1986))
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