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Abstract

We propose a specification test for a wide range of parametric models for con-

ditional distribution function of an outcome variable given a vector of covariates.

The test is based on the Cramer-von Mises distance between an unrestricted esti-

mate of the joint distribution function of the data, and an restricted estimate that

imposes the structure implied by the model. The procedure is straightforward to

implement, is consistent against fixed alternatives, has non-trivial power against

local deviations from the null hypothesis of order n
−1/2, and does not require the

choice of smoothing parameters. We also provide an empirical application using

data on wages in the US.
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1. Introduction

In this paper, we propose an omnibus specification test for parametric models for the

conditional distribution function of a random variable Y ∈ R given a random vector of

covariates X ∈ R
k in a setting with independent observations. The main innovation of

our method is that we allow the unknown parameters to be function-valued. Specifically,

our interest is in testing the null hypothesis that

Pr(Y ≤ y|X = x) = F (y|x, θ) for all (y, x) ∈ supp(Y,X), (1.1)

where F is a function known up to a possibly function-valued parameter θ = θ(·), for

which a consistent estimator is available. The alternative hypothesis is that equation (1.1)

is violated for at least one pair of values (y, x) contained in the support of (Y,X). This set-

ting covers a wide range of conditional distributional models that are of great importance

in empirical applications. For example, the linear quantile regression model (Koenker and

Bassett, 1978; Koenker, 2005) implies a linear structure for the inverse of the conditional

CDF, namely that F−1(τ |x, θ) = x′θ(τ), where the functional parameter θ : (0, 1) 7→ R
k

is strictly increasing in each of its components; under the distributional regression model

(Foresi and Peracchi, 1995), the conditional CDF is specified as F (y|x, θ) = Λ(x′θ(y)),

where Λ is a known strictly increasing link function, e.g. the logistic or standard normal

distribution function. In both cases, the models are such that the conditional distribution

of Y given X cannot be fully described through a finite dimensional parameter.

Our test is an extension of the method proposed by Andrews (1997) in the context of

parametric models indexed by finite dimensional parameters. The basic idea is to com-

pare an unrestricted estimate of the joint distribution function of Y and X to a restricted

estimate that imposes the structure implied by the conditional distributional model. Our

test statistic is a Cramer-von Mises type measure of distance between the restricted and

unrestricted estimate, and is therefore called a Generalized Conditional Cramer-von Mises
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(GCCM) test.1 We reject the null hypothesis that the parametric model is correctly spec-

ified whenever this distance is “too large”. Since our test statistic is not asymptotically

pivotal, critical values cannot be tabulated, but can be obtained via the bootstrap. While

our test is thus computationally somewhat involved, it is straightforward to implement

and has a number of attractive theoretical properties: It is consistent against all fixed

alternatives, has non-trivial power against local deviations from the null hypothesis of or-

der n−1/2 (where n denotes the sample size), and does not require the choice of smoothing

parameters.

The correct specification of conditional distributional models of the type considered

in this paper is critical in many areas of applied statistics. In economics, there is an

extensive literature that uses such specifications in the context of determining the causes

of differences in the distribution of wages in different time periods, or different subgroups

of a particular population. See e.g. Machado and Mata (2005), Melly (2005), Albrecht,

Van Vuuren, and Vroman (2009), Chernozhukov, Fernandez-Val, and Melly (2009) or

Rothe (2010b), and Firpo, Fortin, and Lemieux (2010) for an extensive survey. From a

statistical point of view, these methods first obtain an estimate of the conditional CDF

of Y given X. In a second step, this function is integrated with respect to another CDF,

whose exact form depends on the particular application, yielding a new univariate dis-

tribution function. As a final step, features of this new distribution function, such as its

mean or quantiles, are estimated. Our concern is the implementation of the first step of

this procedure. For example, the Machado and Mata (2005) decomposition procedure

relies on the assumption that the entire conditional distribution of wages given obser-

vable individual characteristics can be described by a linear quantile regression model. If

this assumption is violated, the method can potentially lead to inappropriate conclusions

(see Rothe, 2010a, for some simulation evidence). From a practitioner’s point of view,

misspecification is a serious concern in this context, as the conditional quantiles of the

1We choose to work with the CvM distance instead of other measures, such as e.g. the Kolmogorov
distance used by Andrews (1997), since the resulting test statistics turned out to have substantially
better power properties in simulations. This is in line with classical findings on the power of specification
tests, e.g. Stephens (1974).
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wage distribution are e.g. known to be extremely flat in the vicinity of the legal minimum

wage, and might thus not be described adequately by a linear specification in this region

(Chernozhukov, Fernandez-Val, and Melly, 2009).

As an additional contribution, this paper provides some further empirical evidence on this

point: using US data from the Current Population Survey, we show that typical speci-

fications of linear quantile regressions containing a rich set of covariates are frequently

rejected by our GCCM test even for small and moderate sample sizes, whereas other

classes of models are not. The test we propose in this paper should thus be of great

practical importance for researchers applying decomposition methods in practice.

While there exists an extensive literature on specification testing in parametric models

for the conditional expectation function (see e.g. Bierens (1990), Härdle and Mammen

(1993), Bierens and Ploberger (1997), Horowitz and Spokoiny (2001)), the related prob-

lem of testing the validity of a model for the entire conditional distribution function has

received much less attention. Andrews (1997) proposes a test for conditional distribu-

tional models indexed by finite-dimensional parameters, such as e.g. Generalized Linear

Models. As noted above, our GCCM test is an extension of his approach to a substan-

tially more general class of models. While our testing procedure is conceptionally similar,

we allow for parametric specifications with possibly function-valued parameters, and thus

require somewhat different arguments for our theoretical analysis.

Since our framework covers quantile regression as a special case, this paper also con-

tributes to a growing literature on specification testing in this context. However, while

our interest is in testing the validity of a model for the entire conditional distribution,

most papers in this area focus on testing the validity at only one particular quantile, such

as the median. Examples include Zheng (1998), Bierens and Ginther (2001), Horowitz

and Spokoiny (2002), He and Zhu (2003) and Whang (2006). Two notable exceptions

are Escanciano and Velasco (2010) and Escanciano and Goh (2010), which both propose

testing procedures for the null hypothesis that a conditional quantile restriction is valid

over a range of quantiles. The former paper considers specification testing for dynamic
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quantile regression models in a time series setting using a subsampling approach, whereas

the latter paper studies the instrumental variables quantile regression model of e.g. Cher-

nozhukov and Hansen (2005), obtaining critical values via a clever multiplier bootstrap

scheme. The settings of those papers are thus very different from ours in general, but

they all include the standard quantile regression model with independent observations

as a special case. We present some Monte Carlo evidence on the relative merits of these

approaches for testing the validity of that particular model below.

The remainder of the paper is structured as follows. In the next section, we describe

our testing problem, the test statistic, and a bootstrap procedure to obtain critical values.

In Section 3, we establish the theoretical properties of our test under general conditions.

Section 4 contains some Monte Carlo evidence on the finite sample properties of our test,

and evaluates the appropriateness of various models for the conditional distribution of

wages given individual characteristics in the US. Finally, Section 5 concludes.

2. Testing General Conditional Distributional Models

2.1. Testing Problem. We observe an outcome variable Yi and a vector of explanatory

variables Xi for i = 1, . . . , n, where Zi = (Yi, Xi) ∼ H and Xi ∼ G. We assume

throughout the paper that the data points are independent and identically distributed,

although it would also be possible to extend our analysis to certain forms of temporal

dependence. Let F be the class of all conditional distribution functions on the support of

Y given X, and define a conditional distributional model F0 ⊂ F as a parametric family

of conditional distribution functions indexed by (potentially) functional parameters. That

is, we define

F0 = {F (·|·, θ) : θ ∈ B(T,Θ)}, (2.1)

where B(T,Θ) is a class of mappings u 7→ θ(u) such that θ(u) ∈ Θ ⊂ R
p for u ∈ T ⊂ R.

We assume that for every F ∈ F0 there exists a unique value θ0 ∈ B(T,Θ) of the
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functional parameter satisfying F (y|x) = F (y|x, θ0). Furthermore, we assume that this

value is identified as the solution to the equation

Ψ(θ, u) := E(ψ(Z, θ, u)) = 0 (2.2)

for some uniformly integrable function ψ : Z × Θ× T 7→ R
p, whose exact form depends

on the specific conditional distributional model F0. Chernozhukov, Fernandez-Val, and

Melly (2009) provide a detailed analysis of this class of conditional distributional models,

and our theoretical analysis below uses their results extensively. The framework covers

a number of important specifications, including the quantile regression model (Koenker

and Bassett, 1978; Koenker, 2005), and the distributional regression model (Foresi and

Peracchi, 1995). We discuss these two examples in more detail in Section 3.4. In the

special case that the parameter θ0(u) ≡ θ̄0 does not depend on u, the framework also

includes many limited dependent variable models and generalized linear models.

Our aim is to test the validity of the conditional distributional model, i.e. whether

the conditional distribution function F of Yi given Xi is contained in F0. Our testing

problem is thus given by

H0 : F (·|·) = F (·|·, θ0) for some θ0 ∈ B(T,Θ)

versus H1 : F (·|·) 6= F (·|·, θ) for all θ ∈ B(T,Θ).

(2.3)

Note that this is a challenging problem since it involves testing the value of a function at

an infinite number of points.

2.2. Test Statistic. Our test statistic for the problem in (2.3) is based on the distance

between an unrestricted estimate of the joint CDF of (Y,X) and an estimate that imposes

the structure implied by the conditional distributional model under the null hypothesis.

In the present context, the most straightforward unrestricted estimate of H is arguably

6



the empirical distribution function

Ĥ(y, x) =
1

n

n
∑

i=1

I{Yi ≤ y}I{Xi ≤ x}.

Here I{A} denotes the usual indicator function. To obtain an estimate that imposes the

structure implied by the conditional distributional model, note that in the population the

function H and the conditional distribution function F are linked via the relationship

H(y, x) =

∫

F (y|t)I{t ≤ x}dG(t).

Thus a natural choice for the restricted estimator is given by the sample analogue of the

last equation, namely

Ĥ0(y, x) =

∫

F̂ (y|t)I{t ≤ x}dĜn(x) =
1

n

n
∑

i=1

F̂ (y|Xi)I{Xi ≤ x},

where Ĝn(x) = n−1
∑n

i=1 I{Xi ≤ x} is the empirical distribution function of the observed

explanatory variables, and

F̂ (y|x) = F (y|x, θ̂)

is a parametric estimate of F based on an estimate θ̂ of θ0. We take θ̂ to be an approximate

Z-estimator satisfying

‖Ψ̂n(θ̂(u), u)‖ = o(n−1/2),

where Ψ̂n(θ, u) := n−1
∑n

i=1 ψ(Zi, θ, u) is the sample analogue of the moment condition

in (2.2). Such an approach is feasible for all examples we consider in this paper. Note that

our estimate of F is compatible with the conditional distributional model by construction,

i.e. F̂ ∈ F0 almost surely, irrespectively of whether or not the null hypothesis is true.

Under general conditions described in the following section, both Ĥ and Ĥ0 converge

to the true joint distribution function H of Z = (Y,X) under the null hypothesis. How-

ever, when the alternative is true, the restricted estimate Ĥ0 has a probability limit H̄
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that is typically different from H, while Ĥ remains of course consistent. One can thus

construct a specification test for the conditional distributional model F0 based on the

distance between Ĥ and Ĥ0. We define our test statistic Tn as a Cramer-von Mises type

measure of distance between the restricted and the unrestricted estimate of H at the

observed sample points, scaled by the sample size:

Tn = n

∫

(

Ĥ(y, x)− Ĥ0(y, x)
)2

dĤ(y, x) =
n

∑

i=1

(

Ĥ(Yi, Xi)− Ĥ0(Yi, Xi)
)2

.

With the exception of the use of a different distance measure, our testing principle is anal-

ogous to the Conditional Kolmogorov test in Andrews (1997). Since we allow for a much

wider class of conditional distributional models, we refer to our test in the following as a

Generalized Conditional Cramer-von Mises (GCCM) test. The reason for departing from

Andrews (1997) with respect to the distance measure is that our simulation experiments

suggest that Cramer-von Mises type statistics have somewhat better power properties

than those based on the Kolmogorov distance. They are also simpler to obtain from a

computational point of view, since they do not involve a maximization problem over a

high-dimensional space.2

2.3. Bootstrap Critical Values. As we show in more detail below, for most common

conditional distributional models the null distribution of Tn is non-pivotal and depends

on the data generating process in a complex fashion. We therefore obtain critical values

for our test statistic by the bootstrap, using the restricted estimate Ĥ0
n as the bootstrap

distribution. Since F̂ ∈ F0 by construction, this approach ensures that the bootstrap

mimics the distribution of the data under the null hypothesis, even though the data

might be generated by an alternative distribution. The procedure is implemented as

follows. The bootstrap data is given by a random sample {(Yb,i, Xb,i), 1 ≤ i ≤ n} drawn

from the distribution function Ĥ0. Such a sample can be obtained by first drawing

2It would of course conceptionally be straightforward to consider other measures of distance between
the two distribution functions to construct a test statistic for the problem in (2.3). The properties of
such a test could be derived in essentially the same way as the one presented in the following subsections.

8



{Xb,i, 1 ≤ i ≤ n} with replacement from the realized values {Xi, 1 ≤ i ≤ n} of the

explanatory variables, and then simulating the bootstrap values Yb,i of the dependent

variable according to the estimated distribution function F̂ (·|Xb,i). The new data is then

used to calculate the restricted and unrestricted bootstrap estimates of H, denoted by

Ĥ0
b and Ĥb, respectively, using the estimators described in the previous subsection. The

bootstrap version of our test statistic is then given by

Tb,n = n

∫

(

Ĥb(y, x)− Ĥ0
b (y, x)

)2

dĤb(y, x). (2.4)

The distribution of Tb,n can be determined through the usual repeated resampling of

the data, and, as shown formally below, can then be used as an approximation to the

distribution of Tn under the null hypothesis for a wide range of conditional distributional

models. In particular, we can obtain an asymptotically valid level α critical value ĉn(α)

for the testing problem in (2.3) by computing the (1− α)-quantile of the distribution of

Tb,n, i.e. ĉn(α) is the smallest constant that satisfies

Pb(Tb,n ≤ ĉn(α)) ≥ 1− α,

where Pb is the probability with respect to bootstrap sampling. The test thus rejects H0

if Tn > ĉn(α) for some pre-specified significance level α ∈ (0, 1).

3. Theoretical Properties

This section shows that the GCCM test has correct asymptotic size, consistency against

fixed alternatives, and non-trivial power against local deviations from the null hypothesis

of order n−1/2. We write “
d→” to denote convergence in distribution of a sequence of

random variables, and “⇒” to denote weak convergence of a sequence of random func-

tions. In addition, we write “the data are distributed according to F̃” whenever the joint

distribution function of Z = (Y,X) is given by H̃(y, x) =
∫

F̃ (y|t)I{t ≤ x}dG(t) for some
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F̃ ∈ F , and denote the expectation taken with respect to H̃ by EH̃ . All limits are taken

as n→ ∞.

3.1. Limiting Distribution of the Test Statistic. The large sample properties of

our test statistic require the following assumptions.

Assumption 1. The set Θ is a compact subset of Rp and T is either a finite subset or

a bounded open subset of R.

Assumption 2. For each u ∈ T , there exists a unique value θ0(u) in the interior of Θ

such that Ψ(θ0(u), u) = 0.

Assumption 3. The mapping (θ, u) 7→ ψ(Z, θ, u) is continuous at each (θ, u) ∈ Θ × T

with probability one, and continuously differentiable at (θ0(u), u) with a uniformly bounded

derivative on T (where differentiability in u is only required when T is not finite). The

function Ψ̇(θ, u) := ∂θΨ(θ, u) is nonsingular at θ0(·) uniformly in u ∈ T .

Assumption 4. The set of functions G = {ψ(Z, θ, u), (θ, u) ∈ Θ×T} is H-Donsker with

a square integrable envelope.

Assumption 5. The mapping θ 7→ F (·|·, θ) is Hadamard differentiable at all θ ∈ B(T,Θ),

with derivative h 7→ Ḟ (·|·, θ)[h].

Assumption 6. Under the alternative, P (H̄(Y,X) 6= H(Y,X)) > 0, where H̄(y, x) =
∫

F (y|t, θ0)I{t ≤ x}dG(t).

Assumptions 1–4 are standard regularity conditions also imposed by Chernozhukov,

Fernandez-Val, and Melly (2009). They allow for establishing a functional central limit

theorem for the Z-estimator process u 7→ √
n(θ̂(u)−θ0(u)). Assumption 5 is a smoothness

condition that can be verified directly in applications. Together with the Functional Delta

Method, it implies that the restricted CDF estimator process (y, x) 7→ √
n(Ĥ0(y, x) −

H̄(y, x)) also converges to a Gaussian limit process G1, with H̄ as in Assumption 6.

This convergence can be shown to be jointly with that of the empirical CDF process
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(y, x) 7→ √
n(Ĥ(y, x)−H(y, x)) to an H-Brownian Bridge G2. The limiting distribution

of our test statistic Tn then follows from the continuous mapping theorem.

Theorem 1. Under Assumption 1–6 we have

i) Under the null hypothesis, i.e. when the data are distributed according to some

F ∈ F0,

Tn
d→
∫

(G1(y, x)−G2(y, x))
2 dH(y, x), (3.1)

where G = (G1,G2) is a bivariate mean zero Gaussian process given in the Appendix.

ii) Under any fixed alternative, i.e. when the data are distributed according to some

F ∈ F \ F0,

lim
n→∞

P (Tn > c) → 1 for all constants c > 0. (3.2)

3.2. Local Alternatives. This section derives the limiting distribution of our test

statistic under a sequence of local alternatives that shrink towards an element of F0 at

rate n−1/2, where n denotes the sample size. That is, the conditional distribution function

of Y given X is given by

Qn(y|x) = (1− δ/
√
n)F ∗(y|x) + (δ/

√
n)Q(y|x) (3.3)

for some F ∗ ∈ F0, Q ∈ F \ F0, a constant δ and n ≥ δ2, satisfying the following

assumption.

Assumption 7. The sequence Hn(y, x) =
∫

Qn(y|t)I{t ≤ x}dG(t) of distribution func-

tions implied by the local alternative Qn given in (3.3) is contiguous to the distribution

function H∗(y, x) =
∫

F ∗(y|t)I{t ≤ x}dG(t) implied by F ∗.

The requirement that the local alternatives are contiguous (see Van der Vaart, 2000,

Section 6.2 for a formal definition of contiguity) to the limiting distribution function
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is standard when analyzing local power properties. When the conditional distribution

functions F ∗ and Q admit conditional density functions f ∗ and q with respect to the

same σ-finite measure (e.g. the Lebesgue measure), respectively, a sufficient condition

for contiguity is

sup
(x,y):f∗(y|x)>0

q(y|x)
f ∗(y|x) <∞. (3.4)

Intuitively, this would be the case when Q has lighter tails than F ∗. This statement is

formally proven in Section B in the Appendix.

The following theorem shows that under local alternatives of the form (3.3) the lim-

iting distribution of Tn contains an additional deterministic shift function ensuring non-

trivial local power of the test. To describe this function, define ΨQ(θ, u) = EQ(ψ(Z, θ, u))

and Ψ∗(θ, u) = EF ∗(ψ(Z, θ, u)), and let θQ and θ∗ be the functions satisfying

ΨQ(θQ(u), u) = 0 and Ψ∗(θ∗(u), u) = 0 for all u ∈ T , respectively.

Theorem 2. Under Assumption 1–5 and 7, and if the data are distributed according to

a local alternative Qn as given in (3.3),

Tn
d→
∫

(G1(y, x)−G2(y, x) + µ(y, x))2 dH(y, x).

where

µ(y, x) = δ

∫

(Q(y|t)− F (y|t, θ∗) + Ḟ (y|t, θ∗) [h])I{t ≤ x}dG(t)

with h(u) = ∂θ′ΨF ∗(θ∗(u), u)
−1ΨQ(θ∗(u), u).

Note that the function F ∗ to which the local alternative Qn shrinks can be cho-

sen as F (·|·, θQ), the probability limit of estimator F̂ under Q. In this case, we have
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ΨQ(θ∗(u), u) = 0 for all u ∈ T , and hence the drift term in Theorem 2 simplifies to

µ(y, x) = δ

∫

(Q(y|t)− F (y|t, θ∗))I{t ≤ x}dG(t),

and is thus proportional to the difference between the joint distribution functions implied

by Q and F ∗.

3.3. Validity of the Bootstrap. As a final step, we establish asymptotic validity of

the critical values obtained via the bootstrap procedure described in Section 2.3. This

does not require any further assumptions. Under the null hypothesis, Assumptions 1–

5 ensure that the bootstrap consistently estimates the limiting distribution of the test

statistic Tn, and hence consistently estimates the true critical values. Under any fixed

alternative, the bootstrap critical values can be shown to be bounded in probability.

Together with Theorem 1(ii), this implies that the power of our test converges to one in

this case. Finally, since contiguity preserves convergence in probability, it follows from

Assumption 7 that under any local alternative the bootstrap critical values converge

to the same value as under the null hypothesis. We can thus deduce from Anderson’s

Lemma that our test has non-trivial local power. The following theorem formalizes these

arguments.

Theorem 3. Under Assumption 1–7, the following statements hold for any α ∈ (0, 1):

i) Under the null hypothesis, i.e. when the data are distributed according to some

F ∈ F0, we have that

lim
n→∞

P (Tn > ĉn(α)) = α.

ii) Under any fixed alternative, i.e. when the data are distributed according to some
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F ∈ F \ F0, we have that

lim
n→∞

P (Tn > ĉn(α)) = 1.

iii) Under any local alternative, i.e. when the data are distributed according to some

Qn ∈ F \ F0 as described in (3.3), we have that

lim
n→∞

P (Tn > ĉn(α)) ≥ α.

3.4. Application to Specific Models. In this subsection, we give two examples for

classes of conditional distributional models that can be tested in our framework. We

provide primitive conditions that imply Assumptions 1–5.

Example 1 (Quantile Regression). Our leading example for a conditional distributional

model indexed by function-valued parameters is the linear quantile regression model

(Koenker and Bassett, 1978; Koenker, 2005). It postulates that the conditional τ -quantile

of Y given X = x is linear in a vector of parameters varying with τ :

F0 = {F−1(τ |x) = x′θ(τ) for some θ(τ) ∈ Θ ⊂ R
p and all τ ∈ (0, 1)}.

Such a model would be correctly specified if the true data generating process could

be represented by the random coefficient model Y = X ′θ0(U), where U ∼ U [0, 1] is

independent of X and the function θ0(·) is strictly increasing in each of its arguments.

We consider the usual estimator θ̂(u) of θ0(u), given by

θ̂(u) := argmin
θ

1

n

n
∑

i=1

ρu(Yi −X ′
iθ), (3.5)

where ρu(s) = s(u − I{s ≤ 0}) is the usual “check function”. This estimator is con-

tained in the class of approximate Z-estimators we consider in this paper, as it satis-

fies ‖Ψ̂n(θ̂(u), u)‖ = o(n−1/2), where Ψ̂n(θ, u) := n−1
∑n

i=1 ψ(Zi, θ, u) and ψ(Zi, θ, u) =
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(u − I{Yi − X ′
iθ ≤ 0})Xi. The following theorem gives conditions for the Quantile Re-

gression model to satisfy the “high level” conditions in Section 3.

Theorem 4. Suppose that (i) the distribution function F (·|X) admits a density function

f(·|X) that is continuous, bounded and bounded away from zero at X ′θ0(u), uniformly

over u ∈ (0, 1), almost surely. (ii) The matrix E(XX ′) is finite and of full rank, (iii)

the parameter θ0(·) solving E(ψ(Z, θ0(u), u)) = 0 is such that θ0(u) is in the interior of

the parameter space Θ for every u ∈ (0, 1). Then Assumption 1–5 hold for the Quantile

Regression model with Ḟ (y|x, θ)[h(·)] = −f(y|x)x′[h(F (y|x, θ))].

Example 2 (Distributional Regression). Another interesting class of conditional distri-

butional models is the distributional regression model introduced by Foresi and Peracchi

(1995). Here the conditional CDF Y given X is modeled directly by fitting a binary-

choice-type model for the event that the dependent variable Y exceeds some threshold y

in the support Y of Y separately for each threshold level:

F0 = {F (y|x) = Λ(x′θ(y)) for some θ(y) ∈ Θ ⊂ R
p}, (3.6)

where Λ(·) is a known strictly increasing link function, e.g. the logistic or standard normal

distribution function, or simply the identity function. In the context of the analysis of

counterfactual distributions, this type of model is e.g. used in Chernozhukov, Fernandez-

Val, and Melly (2009) and Rothe (2010b) for the respective empirical applications.

Since for every threshold value y ∈ Y the Distributional Regression model resem-

bles a standard binary choice model, a natural estimator for the functional parameter

θ0(y) is the maximum likelihood estimator θ̂(y), which solves ‖Ψ̂n(θ̂(u), u)‖ = 0, where

Ψ̂n(θ, u) := n−1
∑n

i=1 ψ(Zi, θ, u) and ψ(Zi, θ, y) = (Λ(X ′
iθ)(1 − Λ(X ′

iθ)))
−1(Λ(X ′

iθ) −

I{Yi ≤ y})λ(X ′
iθ)Xi is the score function. The estimated conditional CDF of Y given

X is then given by F̂ (y|x) = Λ(x′θ̂(y)). The following theorem gives conditions for the

Distributional Regression model to satisfy the “high level” conditions in Section 3.
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Theorem 5. Suppose that: (i) The support Y of Y is a bounded open subset of R (ii)

The distribution function F (·|X) admits a density function f(·|X) that is continuous,

bounded and bounded away from zero at all y ∈ Y, almost surely. (iii) The matrix

E(XX ′) is finite and of full rank. (iv) The parameter θ0(·) solving E(ψ(Z, θ0(y), y)) = 0

is such that θ0(y) is in the interior of the parameter space Θ for every y ∈ Y. (v)

The quantity Λ(X ′θ) is bounded away from zero and one uniformly over θ ∈ Θ, almost

surely. Then Assumption 1–5 hold for the Distributional Regression Model in (3.6) with

Ḟ (y|x, θ)[h(·)] = (∂Λ(x, θ(y))/∂θ′)[h(y)].

4. Numerical Evidence

4.1. Monte Carlo Study. In order to demonstrate the usefulness of our proposed

testing procedure, we conduct a number of simulation experiments to assess the size and

power properties in finite samples. We consider the same data generating processes as

in Escanciano and Goh (2010) to be able to compare the properties of their test to ours

for the special case of a quantile regression model, when both methods are applicable.

In particular, we simulate a dependent variable Y according to one of the following data

generating processes:

(DGP1): Y = X1 +X2 + cσ3/2 + U

(DGP2): Y = X1 +X2 + (1 + cσ3/2)U

where σ = X2
1 + X2

2 + X1X2, and X1, X2 and U are taken to be standard normally

distributed and mutually independent. We vary the parameter c over the set of va-

lues {−.3,−.2,−.1, 0, .1, .2, .3} and {−1,−.5, 0, .5, 1} for DGP1 and DGP2, respectively,

consider the sample sizes n = 100 and n = 250, and set the number of replications to

1000. In each simulation run, we test for correctness of the specification of the two types

of models discussed in Section 3.4: the linear quantile regression model (QR) and the
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Table 1: Simulated Rejection Frequencies for DGP1 (left panel: n = 100, right panel n = 250)

QR Model DR Model QR Model DR Model
c 5% 10% 5% 10% 5% 10% 5% 10%
-.3 0.808 0.881 0.897 0.942 1.000 1.000 1.000 1.000
-.2 0.499 0.621 0.662 0.745 0.975 0.996 0.915 0.950
-.1 0.085 0.153 0.167 0.244 0.428 0.565 0.331 0.437
0 0.037 0.064 0.035 0.069 0.043 0.079 0.041 0.073
.1 0.630 0.755 0.320 0.441 0.946 0.986 0.606 0.721
.2 0.899 0.963 0.751 0.834 0.998 1.000 0.966 0.980
.3 0.971 0.996 0.889 0.943 1.000 1.000 1.000 1.000

Table 2: Simulated Rejection Frequencies for DGP2 (left panel: n = 100, right panel n = 250)

QR Model DR Model QR Model DR Model
c 5% 10% 5% 10% 5% 10% 5% 10%
-1 0.393 0.576 0.798 0.918 0.914 0.977 0.991 0.998
-.5 0.160 0.286 0.756 0.856 0.635 0.790 0.982 0.995
0 0.028 0.066 0.026 0.064 0.039 0.086 0.041 0.087
.5 0.379 0.553 0.589 0.761 0.878 0.951 0.914 0.975
1 0.504 0.681 0.649 0.815 0.956 0.981 0.954 0.996

distributional regression model (DR):

(QR): F0 = {F−1(τ |x) = x′θ(τ)}

(DR): F0 = {F (y|x) = Λ(x′θ(y))}

For the DR model, we choose the link function Λ as the standard normal distribution

function. Thus both models are correctly specified under DGP1–2 when c = 0, and

misspecified with c 6= 0.

In Table 1–2, we show the empirical rejection probabilities of our GCCM test for

the nomial levels 5% and 10%. When setting the parameter to c = 0, and thus both

models are correctly specified under DGP1–2, the size of the test is slightly below its

respective nominal value, but still reasonable close given the small sample sizes. Under

misspecification, empirical rejection rates from testing the DR model are mostly higher

than those for the QR model, although there is no uniform ordering. The power of our

tests is also increasing in the sample size and the absolute value of the parameter c,
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as expected. Comparing our results for the QR model to those in Escanciano and Goh

(2010), we see that the rejection probabilities of our testing procedure are broadly similar

to theirs for all parameter constellations in DGP2, and for positive values of c in DGP1.

For negative values of c in DGP1, in particular c = −.1, their test exhibits substantially

higher power.3 Testing the validity of the DR model is not directly possible with the

procedure in Escanciano and Goh (2010), and thus no comparisons can be made for this

case.

4.2. Empirical Application. In this subsection, we use our GCCM test to assess the

validity of various commonly used models for the conditional distribution of wages given

certain individual characteristics. As pointed out in the introduction, such models play

an important role in the literature on decomposing counterfactual distributions (Firpo,

Fortin, and Lemieux, 2010). There are doubts, however, that simple and parsimonious

models are able to capture some important features of such conditional distributions,

such as the nonlinearities around th minimum wage. The results in this subsection shed

some light on this important empirical issue.

Our data is taken from the 1988 wave of the Current Population Survey (CPS), an

extensive survey of US households. The dataset is the same as the one used in DiNardo,

Fortin, and Lemieux (1996), to which we refer for details of its construction. The data

set contains information on 74,661 males that were employed in the relevant period,

including the hourly wage, years of education, years of potential labor market experience,

and indicator variables for union coverage, race, marital status, part-time status, living

in a Standard Metropolitan Statistical Area (SMSA), type of occupation (2 levels), and

industry (20 levels). As in the previous subsection, we consider both the linear quantile

regression model (QR), and the distributional regression model (DR) using the normal

3Note that Escanciano and Goh (2010) state that for their simulations they experimented with various
values for a certain tuning parameter of their bootstrap procedure, reporting only the results that resulted
in the best size properties. This is of course not feasible in empirical application, where the true data
generating process is unknown. There are no such issues with our test, since it does not require the
choice of tuning parameters.
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Table 3: Empirical Application: Rejection Probabilities

Model 1 Model 2 Model 3
Nom. level: .05 .1 .05 .1 .05 .1

DR n=500 0.515 0.565 0.000 0.015 0.000 0.005
n=1000 0.655 0.705 0.005 0.015 0.005 0.005

QR n=500 0.965 0.995 0.875 0.970 0.440 0.655
n=1000 1.000 1.000 1.000 1.000 0.735 0.915

CDF as a link function. We test the correct specification of each model with hourly wage

as the dependent variable, and the following three different subsets of the explanatory

variables, respectively:

• Model 1: union coverage, education, experience.

• Model 2: all variables in Model 1, experience (squared), education interacted with

experience, martial status, part-time status, race, SMSA.

• Model 3: all variables in Model 2, occupation, industry.

Given the large sample size, we would expect all specifications to be rejected by the

data, since every model is at best a reasonable approximation to the true data generating

mechanism. However, this would not directly imply that such specifications would result

in misleading conclusions, as in large samples our GCCM test should be able to pick

up deviations from the null hypothesis even if they are not of economically significant

magnitude. On the other hand, we should have much more reason to be concerned if

flexible models including many covariates would be rejected even in small samples. We

therefore conduct a simulation experiment, where in each run we test the validity of the

QR and DR specification of Model 1–3 for random subsamples of the data of size n = 500

and n = 1000. Results from 200 repetitions are summarized in Table 3.

We can see that there is compelling evidence against the QR model. The specifications

in Model 1–2 are rejected in about 90% of all simulation runs for n = 500, and in every

single one for n = 1000. Even the extensively parametrized Model 3, which uses a 31-

dimensional parameter vector, is rejected at a nominal level of 5% in about half the
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simulation runs for n = 500, and in three quarters of all runs for n = 1000. Given these

high rejection rates on small subsamples of the data, practitioners might want to consider

a different class of models for the conditional distribution of wages. Our simulation results

show that a flexibly specified DR model might be a suitable candidate. While rejection

rates are still considerable for the (possibly over-parsimonious) Model 1 for both sample

sizes under consideration, the more realistic specifications Model 2 and 3 exhibit empirical

rejection probabilities well below the respective nominal testing levels. The simulation

results in the previous subsection suggest that this finding should not be due to a lack

of power of our test under the DR specification. The class of distributional regression

models might thus be more adequate to capture the particular features of conditional

wage distributions, such as e.g. the nonlinearities close to the legal minimum wage level.

Remark 1. A particular feature of the CPS data is that the empirical distribution of

hourly wages contains a number of mass points, since many workers are paid a “round”

amount of dollars, or at least report it in the survey. Since the linear quantile regression

model implies a strictly increasing conditional CDF, it is not able to reproduce such

patterns. In order to check whether our high rejection rates are simply due to this

issue, we repeated the above empirical exercise with the following modification: First,

each individual we computed her rank in the distribution of wages, breaking ties at

random. Second, we replaced the observed wage by the quantile of a smoothed version

of the empirical distribution of wages (obtained by linear interpolation of jump points)

corresponding to the individual’s rank. That is, we are “spreading” the mass points evenly

in order to obtain a smooth distribution of wages. The results remained qualitatively

unchanged, and are hence not reported for brevity. There are no theoretical issues related

to mass points in the distribution of outcomes when using the class of distributional

regression models, which was also confirmed in our simulation.
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5. Conclusions

This paper provides a specification test for a general class of conditional distributional

models indexed by function-valued parameters. Our method is straightforward to imple-

ment and does not require the choice of smoothing parameters. We establish consistency

of our testing procedure against fixed alternatives under general conditions, and study its

local power properties. We illustrate the usefulness of our procedure via a simulation pro-

cedure, highlighting its favorable practical properties compared to a competing approach.

In an application to real data, we show that our test is able to detect misspecification

of standard linear quantile regression models for conditional distribution of wages in the

US even in small samples, while a rich distributional regression model can typically not

be rejected.

A. Appendix

A.1. Proofs of Theorems. In this subsection, we collect the proofs of our main theo-

rems. Some auxiliary results needed in the course of the proofs are given in Appendix A.2.

Proof of Theorem 1. To prove part i), define the processes ν(y, x) =
√
n(Ĥn(y, x) −

H(y, x)) and ν0(y, x) =
√
n(Ĥ0

n(y, x)−H̄(y, x)), and note that
√
n(Ĥn(y, x)−Ĥ0

n(y, x)) =

ν(y, x)− ν0(y, x). We can thus rewrite our test statistic as follows:

Tn =

∫

(ν(y, x)− ν0(y, x))
2dH(y, x) +

∫

(ν(y, x)− ν0(y, x))
2d(Ĥ(y, x)−H(y, x)).

From Lemma 2, we know that (ν, ν0) ⇒ G, where G = (G1,G2) is a tight bivariate mean

zero gaussian process. By the continuous mapping theorem, we thus have that

Tn =

∫

(G1(y, x)−G2(y, x))
2dH(y, x) + op(1),
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as claimed. To show part ii), note that under a fixed alternative we have that

√
n(Ĥn(y, x)− Ĥ0

n(y, x)) = (v(y, x)− v0(y, x)) +
√
n(H(y, x)− H̄(y, x)),

with H̄ as defined in Assumption 6. The first summand on the right-hand side of the last

equation is bounded in probability by Lemma 2, whereas the second term is of the order

O(n1/2) for values of (y, x) in a set with positive probability by Assumption 6. Hence T̃n

becomes arbitrarily large with probability approaching 1 as n→ ∞.

Proof of Theorem 2. To prove the result, we first define the empirical processes λ1(y, x) =

√
n((Ĥn(y, x) −

∫

F ∗(y|t)I{t ≤ x}dG(t)) and λ2(θ, u) =
√
n(Ψ̂(θ, u) − EF ∗(ψ(Z, θ, u))),

and denote the joint process by λ(y, x, θ, u) = (λ1(y, x), λ2(θ, u)). It then follows with

Lemma 3 that

λ⇒
(

G1 + δµ1, G̃1 + δµ̃2

)

,

where µ1(y, x) =
∫

(Q(y|t) − F ∗(y|t))I{t ≤ x}dG(t) and µ̃2(θ, u) = EQ(ψ(Z, θ, u)) −

EF ∗(ψ(Z, θ, u)). Next, define the empirical processes ν∗(y, x) =
√
n(Ĥn(y, x)−H∗(y, x))

and ν∗0(y, x) =
√
n(Ĥ0

n(y, x) − H∗(y, x)), with H∗(y, x) =
∫

F ∗(y|t)I{t ≤ x}dG(t). Pro-

ceeding in the same way as in the proof of Lemma 2, we find that

(ν, ν0) ⇒ (G1 + δµ1,G2 + δµ2),

where µ2(y, x) =
∫

Ḟ (y|t)[h]I{t ≤ x}dG(t) and h(u) = ∂θ′ΨF ∗(θ∗(u), u)
−1ΨQ(θ∗(u), u).

The statement of the Theorem then follows from the continuous mapping theorem, in

the same way as in the proof of Theorem 1.

Proof of Theorem 3. To prove part i) let c(α) be the “true” critical value satisfying

P (Tn > c(α)) = α + o(1). Then it follows from Lemma 4 that ĉn(α) = c(α) + op(1).

This implies that Tn and T̃n = Tn − (ĉn(α)− c(α)) converge to the same limiting distri-

bution as n→ ∞, and hence we have that P (Tn > ĉn(α)) = α + o(1) as claimed.

To prove part ii), note that by Lemma 4 the bootstrap critical value ĉ(α) is bounded
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in probability under fixed alternatives. Hence for any ǫ > 0 there exists a sufficiently

large constant M such that P (ĉn(α) > M) < ǫ+ o(1). Using elementary inequalities, we

also have that

P (Tn ≤ ĉn(α)) = P (Tn ≤ ĉn(α), Tn ≤M) + P (Tn ≤ ĉn(α), Tn > M)

≤ P (Tn ≤M) + P (ĉn(α) > M).

From Theorem 1(ii), we know that P (Tn ≤M) = o(1), and thus P (Tn ≤ ĉn(α)) < ǫ+o(1),

which implies the statement of the theorem since ǫ can be chosen arbitrarily small.

To show part iii), define c(α) as in the proof of part i), i.e. the asymptotic α-quantile

of the test statistic Tn under the null hypothesis. Using Anderson’s Lemma, we find that

P

(∫

(G1(y, x)−G2(y, x) + µ(y, x))2 dH(y, x) > c(α)

)

≥ P

(∫

(G1(y, x)−G2(y, x))
2 dH(y, x) > c(α)

)

= α,

because the Gaussian process G1−G2 has mean zero (see also Andrews (1997, p. 1114)).

Under a local alternative, we therefore have that P (Tn > c(α)) ≥ α+ o(1). Furthermore,

we have already shown in part i) that P (Tn > ĉn(α)) = P (Tn > c(α)) + o(1) under the

null hypothesis. By using contiguity arguments, this can also shown to be true under the

local alternative, see e.g. the proof of Corollary 2.1 in Bickel and Ren (2001).

Proof of Theorem 4–5. This follows by straightforward applications of results in Cher-

nozhukov, Fernandez-Val, and Melly (2009, Appendix F).

A.2. Auxiliary Results. In this subsection, we collect a number of auxiliary results

used in the proofs of our main results above.

Lemma 1. Define the empirical processes ν(y, x) =
√
n(Ĥn(y, x)−H(y, x)) and w(θ, u) =

√
n(Ψ̂(θ, u)−Ψ(θ, u)). Then, under either the null hypothesis or a fixed alternative, and

Assumptions 1-6, it holds that (v, w) ⇒ G̃ in l∞(Z × Θ × T ), where G̃ = (G1, G̃2) is a
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tight bivariate mean zero Gaussian process. Moreover, the bootstrap procedure in Section

2.3 consistently estimates the law of G̃.

Proof. This lemma is a minor generalization of Lemma 13 in Chernozhukov, Fernandez-

Val, and Melly (2009).

Lemma 2. Let either the null hypothesis or a fixed alternative, and Assumptions 1-6

be true. Define the empirical processes ν(y, x) =
√
n(Ĥn(y, x) −H(y, x)) and ν0(y, x) =

√
n(Ĥ0

n(y, x)−H̄(y, x)). Then it holds that (ν, ν0) ⇒ G in l∞(Z×Z), where G = (G1,G2)

is a tight bivariate mean zero gaussian process.

Proof. Under either the null hypothesis or a fixed alternative, it follows from our Lemma

1 and Lemma 11 in Chernozhukov, Fernandez-Val, and Melly (2009) that

√
n







Ĥn(·, ·)−H(·, ·)

θ̂(·)− θ0(·)






⇒







G1(·, ·)

−Ψ̇−1
θ0(·),·[G̃2(θ0(·), ·)]







in ℓ∞(Z) × ℓ∞(T ). Next, it follows from Assumption 5 that
√
n(F̂ (y|x) − F (y|x)) ⇒

−Ḟ (y|x, θ0)[Ψ̇−1
θ0(·),·[G̃2(θ0(·), ·)]]. The statement of the Lemma then follows directly from

Hadamard differentiability of the mapping (G,H) 7→
∫

G(·)I{t ≤ ·}dH(t), and the Func-

tional Delta Method. In particular, for the second component G2 of the joint limiting

process we have that

G2(y, x) =

∫

F (y|t)I{t ≤ x}dG1(∞, t) +

∫

G1(y, t)I{t ≤ x}dG(t),

which follows from the form of the Hadamard differential of the mapping (G,H) 7→
∫

G(·)I{t ≤ ·}dH(t).

Lemma 3. Suppose the data are distributed according to a local alternative Qn sat-

isfying Assumption 7. Define the processes vn(y, x) =
√
n(Ĥn(y, x) − Hn(y, x)) and

wn(θ, u) =
√
n(Ψ̂(θ, u) − Ψn(θ, u)), where Hn(y, x) =

∫

Qn(y|t)I{t ≤ x}dG(t) and
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Ψn(θ, u) = EQn
(ψ(Z, θ, u)). Then it holds (vn, wn) ⇒ G̃ in l∞(Z × Θ × T ), where the

limiting process is the same as in Lemma 1.

Proof. This follows by an application of Lemma 2.8.7 in Van der Vaart and Wellner

(1996), using the fact that by Assumption 4, Qn is the linear combination of two measures

under which the function class G is Donsker with a square integrable envelope.

Lemma 4. Define the bootstrap empirical processes νb(y, x) =
√
n(Ĥbn(y, x)− Ĥ0

n(y, x))

and νb,0(y, x) =
√
n(Ĥ0

bn(y, x)− Ĥ0
n(y, x)). Then it holds under either the null hypothesis

or a fixed alternative that (νb, νb,0) ⇒ Gb, where Gb = (Gb1,Gb2) is a tight bivariate mean

zero gaussian process whose distribution coincides with that of the process G in Lemma 1

under the null hypothesis.

Proof. This follows from Lemma 1 and the Functional Delta Method for the bootstrap

(Van der Vaart and Wellner, 1996, Theorem 3.9.11)

B. Sufficient Condition for Contiguity.

In this section, we show that the condition given in (3.4) is sufficient for contiguity.

Our argument is analogous to the one given in Andrews (1997), and stated here only

for completeness. For and distribution function H, let PH be the probability mea-

sure induced by H. By definition, PHn is contiguous to PH∗

if PH∗

(An) → 0 implies

PHn(An) → 0 for every sequence of measurable sets An. By an application of Le Cam’s

First Lemma (Van der Vaart, 2000, Theorem 6.4) this is the case if dPHn/dPH∗

con-

verges in distribution to a random variable V with E(V ) = 1 under PH∗

. We show that

log(dPHn/dPH∗

)
d→ N(−σ2/2, σ2) for some value σ2 > 0, which directly implies that

the aforementioned condition is fulfilled (see also Example 6.5 in Van der Vaart (2000)).

Writing an = δ/
√
n, it holds by the definition of dPHn and dPH∗

that

dPHn

dPH∗
=

∏n
i=1{(1− an)f

∗(Yi|Xi)g(Xi) + anq(Yi|Xi)g(Xi)}
∏n

i=1 f
∗(Yi|Xi)g(Xi)

,
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and we thus have that

log

(

dPHn

dPH∗

)

=
n

∑

i=1

log

(

(1− an)f
∗(Yi|Xi)g(Xi) + anq(Yi|Xi)g(Xi)

f ∗(Yi|Xi)g(Xi)

)

=
n

∑

i=1

log

(

1 + an
q(Yi|Xi)− f ∗(Yi|Xi)

f ∗(Yi|Xi)

)

=
n

∑

i=1

log(1 + Zi),

where

Zi = an
q(Yi|Xi)− f ∗(Yi|Xi)

f ∗(Yi|Xi)
.

A Taylor expansion of log(1 + Zi) around 1 yields

log

(

dPHn

dPH∗

)

=
n

∑

i=1

(

Zi −
1

2
Z2

i +
1

6
Z3

i

2

(1 + ξi)3

)

for some ξi ∈ [−Zi, Zi], as log(1) = 0.Next, we show that by the central limit theorem
∑n

i=1 Zi converges in distribution to a normally distributed random variable, that by

the law of large numbers
∑n

i=1 Z
2
i converges almost surely to a constant, and that the

remaining summand

Z∗
n :=

n
∑

i=1

(

1

6
Z3

i

2

(1 + ξi)3

)

converges to 0 in probability.

First consider the expectation of the random variable Z̃i = δ q(Yi|Xi)−f∗(Yi|Xi)
f∗(Yi|Xi)

under P :

E(Z̃i) = δ

∫ ∫

q(y|x)− f ∗(y|x)
f ∗(y|x) f ∗(y|x)dµ(y)dG(x)

= δ

∫ ∫

(q(y|x)− f ∗(y|x))dµ(y)dG(x)

= δ

∫ ∫

q(y|x)dµ(y)dG(x)− δ

∫ ∫

f ∗(y|x)dµ(y)dG(x) = δ − δ = 0.
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Furthermore, note that with (3.4) we have that

E(|Z̃i|p) = E

(∣

∣

∣

∣

q(Yi|Xi)

f ∗(Yi|Xi)
− 1

∣

∣

∣

∣

p)

<∞

for all values of p. Since
∑n

i=1 Zi = 1√
n

∑n
i=1 Z̃i, we can directly apply the standard

central limit theorem for i.i.d. random variables and get

n
∑

i=1

Zi
d→ N(0,E((Z̃i)

2)).

Moreover, we have
∑n

i=1 Z
2
i = 1

n

∑n
i=1(Z̃i)

2. As E((Z̃i)
2) < ∞, the usual strong law of

large numbers yields
n

∑

i=1

Z2
i →a.s. E((Z̃i)

2).

To show convergence of the remaining summand to 0, we apply Markov’s inequality to

Z∗
n. For any ǫ > 0, we have

E(|Z∗
n|)
ǫ

≤ 1

6

1√
nǫ

E(|Z̃3
i |)E

(

2

|(1 + ξi)3|

)

. (B.1)

Since we have ξi ∈ [−Zi, Zi], and since (3.3) implies that

|Zi| =
1√
n
δ

∣

∣

∣

∣

q(Yi|Xi)

f ∗(Yi|Xi)
− 1

∣

∣

∣

∣

≤ C1/
√
n

for a constant C1, we obtain the bound |ξi| < 1 for sufficiently large n. Therefore, the

expression on the righthand side of (B.1) is bounded, and we find that for arbitrary ǫ > 0,

sufficiently large n and a constant C2 is holds that

P(|Z∗
n| > ǫ) ≤ E(|Z∗

n|)
ǫ

≤ C2√
n
,
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and thus Z∗
n

p→ 0, as claimed. Taken together, we now thus shown that

log

(

dPHn

dPH∗

)

d→ N(−1

2
E((Z̃i)

2),E((Z̃i)
2)),

which completes the argument.
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