
Register-Constrained Address Computation in DSP Programs

Anupam Basu�, Rainer Leupers, Peter Marwedel

University of Dortmund

Department of Computer Science 12

44221 Dortmund, Germany

email: basujleupersjmarwedel@ls12.cs.uni-dortmund.de

Abstract
This paper describes a new code optimization tech-

nique for digital signal processors (DSPs). One im-
portant characteristic of DSP algorithms are iterative
accesses to data array elements within loops. DSPs
support e�cient address computations for such ar-
ray accesses by means of dedicated address genera-
tion units (AGUs). We present a heuristic technique
which, given an AGU with a �xed number of address
registers, minimizes the number of instructions needed
for array address computations in a program loop.1

1 Introduction
DSPs are a special class of embedded processors,

which show highly specialized instruction sets and
pose challenges both to compilers and assembly pro-
grammers. Many of today's C compilers for DSPs have
been shown to produce code of poor quality. In order
to overcome this problem, new DSP-speci�c code op-
timization techniques are required.

In DSP algorithms frequent references to elements
of data arrays are very common. Mostly, such ar-
ray elements are iteratively accessed in loops. DSPs
support this scheme by dedicated address generation
units (AGUs), which are capable of performing pointer
arithmetic in parallel to the operation of the central
data path. Clever allocation of array address pointers
in a DSP source program to available on-chip address
registers thus can enhance code quality.

We give a formulation of this register allocation
problem and present a heuristic algorithm which, un-
der a given register constraint, minimizes the num-
ber of machine instructions for array address compu-
tations. Our approach, which handles both register
constraints and inter-iteration dependencies in a loop,
eliminates some restrictions of earlier work [1, 2, 3] in
this area. It is complementary to work done on opti-
mized addressing of scalar program variables [4, 5].

2 Problem de�nition
The AGUs of most DSPs o�er post-increment or

post-decrement operations on address registers. These
operations modify the contents of a register R (serving
as the pointer to an array element) by adding some
constant integer d. Thus, if the two array elements

�On leave from IIT Kharagpur, India
1Publication: DATE, Paris/France, Feb 1998, c
1998 EDAA

A[i] and A[i + d] are to be accessed consecutively by
the same address register R, then the post-increment
operator R+ d applied after accessing A[i], will yield
the necessary next address. The range of e�cient
post-increment/decrement is restricted to a maximum
range M , for only within this range the address up-
date operations can be done in parallel to data path
operations. Whenever two consecutive array accesses
take place through the same register R and the ad-
dress distance d > M , then one extra instruction is
required to compute the next address.

This observation induces a partitioning of address
computations into zero-cost and unit-cost computa-
tions. Our goal is to allocate the N array accesses in
a program loop to a given number K of address regis-
ters, such that the number of unit-cost computations
is minimized.

Let us consider an example array access pattern to
illustrate the problem:

for (i = 2; i <= N; i++)

{ /* a_1 */ A[i+1] /* offset 1 */

/* a_2 */ A[i] /* offset 0 */

/* a_3 */ A[i+2] /* offset 2 */

/* a_4 */ A[i-1] /* offset -1 */

/* a_5 */ A[i+1] /* offset 1 */

/* a_6 */ A[i] /* offset 0 */

/* a_7 */ A[i-2] /* offset -2 */

}

Assume that a linear arrangement of array elements
in a contiguous address space is used. Assume further
that a maximum modify range M = 1 is given. We
can represent the access pattern by means of a graph
G = (V;E) (�g. 1), in which each node represents
an array access, denoted by its o�set w.r.t. the loop
variable. An edge (ai; aj) 2 E, with i < j, indicates
that, within one loop iteration, computing the address
for aj from the address of ai can be done at zero cost,
because the address distance is �M . That is, no unit-
cost computation would be incurred, if ai; aj shared an
address register. We can insert additional graph edges
which represent the same relation between consecutive
loop iterations.

Due to the construction of graph edges, each path in
G represents an opportunity for allocatingmultiple ac-
cesses to a single register without incurring unit-cost



a_1
A[i+1]

a_2
A[i]

a_3

A[i+2]

a_4

A[i-1]

a_5
A[i+1]

a_6
A[i]

a_7

A[i-2]

Figure 1: Graph model for the example loop

address computations. For instance, the access sub-
sequence (a1; a3; a5; a6) (which is a path in G) could
be realized with a single register R and using only
auto-increment and auto-decrement operations on R.
One can show that completely covering G by K node-
disjoint paths corresponds to a zero-cost allocation of
all array accesses to K registers.

3 Address register allocation
Given a loop with N array accesses, it is in gen-

eral not possible to achieve a zero-cost addressing
scheme with K registers. We use a two-phase ap-
proach to heuristically compute a minimum-cost ad-
dressing scheme:

1. Compute the minimum number ~K of "virtual"
registers, for which all addresses for array ac-
cesses could be computed by zero-cost computa-
tions only. If ~K � K, then a zero-cost allocation
under the given register constraint is possible.

2. Otherwise, if ~K > K, select two registers Ri; Rj

with i; j < ~K. Merge the sets of array accesses
assigned to Ri; Rj and decrement ~K. Repeat this
step, until the number K of physical registers is
no longer exceeded.

In the following, we explain these two phases in more
detail.

3.1 Computation of ~K

If address computation dependencies across single
loop iterations are taken into account, then comput-
ing ~K is an exponential problem. In [3], we have pro-
posed a fast branch-and-bound procedure for solving
this problem. The procedure computes a cover of the
graph model G by ~K node-disjoint paths. We use a
technique proposed in [2] to compute a lower bound
on ~K, and a heuristic algorithm for determination of
a tight upper bound. Based on these bounds, one can
quickly decide whether or not a certain graph edge e
must be included in the path cover. The result is a
set fP1; : : : ; P ~Kg of node-disjoint paths. Each path is
mapped to one address register and represents a sub-
sequence of the original array access pattern.

3.2 Meeting the register constraint

If ~K > K, then the number of paths must be re-
duced further, so as to meet the physical register limit.
This can be done by merging of paths. The merge op-
eration "�" retains the order of array accesses in the
original access pattern. For instance, merging paths
P1 = (a1; a4; a6) and P2 = (a3; a5) results in the path
P1 � P2 = (a1; a3; a4; a5; a6).

Selecting candidates for path merging is based on
the notion of path costs. The costs C(P ) of a path
P = (ai1 ; : : : ; aini ) are de�ned as the number of pairs

(aik ; aik+1) in P , such that the address distance be-
tween aik and aik+1 is larger than M . That is, C(P )
denotes the number of unit-cost address computations
required for the array references represented by P .

Two implications hold by de�nition of ~K: The
path costs for each element of the initial path set
fP1; : : : ; P ~Kg are zero. Furthermore, each merge op-
eration incurs at least one unit-cost address compu-
tation. In order to minimize the total number of
unit-cost address computations incurred by merging,
it is reasonable to select that pair (Pi; Pj) of paths
in fP1; : : : ; P ~Kg for merging, such that C(Pi � Pj) is
minimal among all pairs. After merging of (Pi; Pj),
we obtain a new path set fP1; : : : ; P ~K�1g. On this
set, merging is iterated until only K paths are left.

4 Results
In order to determine the net e�ect of the proposed

path-merging heuristic, we have performed a statisti-
cal analysis as compared to a non-optimized address
register allocation, which repetitively merges two ar-
bitrary paths until the register constraint is met.

We have determined the number of unit-cost ad-
dress computations for random access patterns and
a variety of parameters N;M , and K. As a result,
we have observed that the address register allocation
determined by path merging reduces the addressing
cost by about 40 % on the average, as compared to
the "naive" solution. Experimental studies for realis-
tic DSP programs [1] indicate possible improvements
up to 30 % and 60 % in code size and speed due to
optimized array index computation, as compared to
code compiled by a regular C compiler.

References
[1] C. Liem, P.Paulin, A. Jerraya: Address Calculation for Retar-

getable Compilation and Exploration of Instruction-Set Ar-

chitectures, 33rd Design Automation Conference (DAC), 1996

[2] G. Araujo, A. Sudarsanam, S. Malik: Instruction Set Design

and Optimizations for Address Computation in DSP Archi-

tectures, 9th Int. Symp. on System Synthesis (ISSS), 1996

[3] R. Leupers, A. Basu, P. Marwedel: Optimized Array Index

Computation in DSP Programs, ASP-DAC, 1998

[4] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang: Storage

Assignment to Decrease Code Size, ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation

(PLDI), 1995

[5] R. Leupers, P. Marwedel: Algorithms for Address Assignment

in DSP Code Generation, Int. Conf. on Computer-Aided De-

sign (ICCAD), 1996


