
UMLsec4UML2 –
Adopting UMLsec to Support UML2∗

Using UMLsec4UML2 for the Specification of Architectural Security Patterns

Holger Schmidt and Jan Jürjens

In this paper, we present an approach to adopt UMLsec, which is defined for UML 1.5,
to support the current UML version 2.3. The new profile UMLsec4UML2 is technically
constructed as a UML profile diagram, which is equipped with a number of integrity conditions
expressed using OCL. Consequently, the UMLsec4UML2-profile can be loaded in any Eclipse-
based EMF- and MDT-compatible UML editing tool to develop and analyze different kinds of
security models. The OCL constraints replace the static checks of the tool support for the old
UMLsec defined for UML 1.5. Thus, the UMLsec4UML2-profile not only provides the whole
expresiveness of UML2.3 for security modeling, it also brings considerably more freedom in
selecting a basic UML editing tool, and it integrates modeling and analyzing security models.

Since UML2.3 comprises new diagram types, as well as new model elements and new seman-
tics of diagram types already contained in UML1.5, we consider a number of these changes in
detail. More specifically, we consider composite structure and sequence diagrams with respect
to modeling security properties according to the original version of UMLsec. The goal is to
use UMLsec4UML2 to specify architectural security patterns.

1 Introduction

The main goal of the work presented in this paper builds upon open research questions developed in the
authors’ PhD thesis (Schmidt, 2010). There, a pattern- and component-based method to develop secure
software is presented. This method is named Security Engineering Process using Patterns or short SEPP,
and it focuses on the early phases of software development, i.e., requirements analysis, specification, and
architectural design.

In (Schmidt, 2010, Part III), we presented several patterns for security sub-architectures, which are
denoted using different UML (Unified Modeling Language) (UML Revision Task Force, 2010) diagrams
to represent structural as well as behavioral views on the sub-architectures. Against this background,
the work presented in this paper should serve to achieve the following main goals:

• Express the patterns for security sub-architectures presented in (Schmidt, 2010, Part III) using
UMLsec

• Since the patterns for security sub-architectures are expressed using UML2.3 (e.g., structural views
are expressed using composite structure diagrams), adopt UMLsec to support UML2.3

The rest of the paper is organized as follows: we introduce some background information about UML
and UMLsec in Section 2, and we present an example of a security-critical software development problem
in Section 3, which we will use in the following sections to demonstrate the techniques presented in this
paper. We present the UMLsec4UML2-profile in Section 4. In Section 5, we present an approach to
specify architectural security patterns that makes use of the UMLsec4UML2-profile and a diagram type
new to UML2.3, i.e., composite structure diagrams. In Section 6, we give a summary.

∗Partially supported by the EU project “Security Engineering for Lifelong Evolvable Systems (Secure Change)” (ICT-
FET-231101)

1

2 Background

2 Background

We first present an overview of the UMLsec-profile for UML1.5 in Section 2.1. Second, we compare the
current UML version 2.3 with version 1.5 in Section 2.2.

2.1 Previous Version of UMLsec for UML1.5

UMLsec (Jürjens, 2005) is a profile for UML1.5 to develop and analyze security models. UMLsec considers
confidentiality and integrity properties depicted in different UML diagrams using stereotypes, tags, and
constraints. Stereotypes give a specific meaning to the elements of a UML diagram they are attached
to, and they are represented by labels surrounded by double angle brackets. Constraints are associated
with the stereotypes. The set of stereotypes predefined by UMLsec comprises on the one hand structural
syntactic conditions, and on the other hand semantic conditions on behavior models. The stereotypes
available in UMLsec are summarized in (Jürjens, 2005, p. 51). A tag or tagged value is a name-value
pair in curly brackets associating data with elements in a UML diagram. The tags available in UMLsec
are summarized in (Jürjens, 2005, p. 52).

As an example, we discuss the stereotype <<critical>>, which can be attached to objects or sub-
system instances containing data that is security-critical. Using tags such as secrecy and/or integrity,
the stereotype is specified in more detail. The values of the tag secrecy are the names of attributes or
message parameters of the object to be kept confidential. The values of the integrity tag are pairs (v;E)
where v is a variable of the object whose integrity should be protected and E is the set of acceptable
expressions that may be assigned to v. The expression E can be left out, which means that the value
v must remain unchanged completely. Constraints based on these tags are enforced by the stereotype
<<data security>> that labels subsystems containing <<critical>> objects. The tag adversary can be
used to describe attackers of a certain strength such as the default strength (Jürjens, 2005, pp. 57 ff.).

As already mentioned above, the stereotypes’ constraints can be grouped into structural syntactic
conditions (see Figure 1 for an overview) and semantic conditions on behavior models (see Figure 2 for
an overview). Note that these sets of stereotypes are not disjoint.

Secure software design according to UMLsec usually starts by first applying and verifying stereotypes
that constrain the structural design. Then, once the structural properties are successfully verified, one
proceeds by applying and verifying stereotypes that constrain the behavioral design models. The verifi-
cation is supported by a tool suite available online via http://www.umlsec.de/, which basically reflects
the mentioned groups of stereotypes:

Static checks are used for the verification of stereotypes that constitute structural syntactic conditions
on different UML diagrams.

Permission analysis is used for the verification of stereotypes that express RBAC (Role-Based Access
Control) (Ferraiolo & Kuhn, 1992) constraints on behavior models such as activity and sequence
diagrams.

Integration with external verification tools by generating input data for these tools (e.g., SPASS the-
orem prover (SPASS Theorem Prover 3.5 , 2010)) and receiving result data from them. Here, the
semantic behavioral conditions are verified using the external tools.

Code generation for some diagram types, e.g., class diagrams.

2.2 Changes in UML2.3 Compared to UML1.5

In this section, we briefly present changes in the current UML version 2.3 compared to the version 1.5,
which is supported by UMLsec.

Structure Diagrams

Class diagram already contained in UML1.5; semantics and metamodel partly changed, e.g., association
ends, association classes, etc.

Component diagram already contained in UML1.5; the component construct gains capabilities of com-
posite structure diagrams, e.g., ports and connectors

2

http://www.umlsec.de/

2 Background

Stereo-
type

Diagram
Type

Model Ele-
ment

Constraints

fair ex-
change

use case dia-
gram

package can be refined only by an activity diagram that
is stereotyped <<fair exchange>>

rbac activity dia-
gram

package enforces role-based access control; see (Jürjens,
2005, pp. 55 ff.) for details

Internet deployment di-
agram

communication
path

Internet connection; conflicts with other
UMLsec stereotypes for communication paths;
see (Jürjens, 2005, pp. 56 ff.) for details

encrypted deployment di-
agram

communication
path

encrypted connection; conflicts with other
UMLsec stereotypes for communication paths;
see (Jürjens, 2005, pp. 56 ff.) for details

LAN deployment di-
agram

communication
path, node

LAN (local area network) connection; conflicts
with other UMLsec stereotypes for commu-
nication paths or nodes; see (Jürjens, 2005,
pp. 56 ff.) for details

wire deployment di-
agram

communication
path

wire; conflicts with other UMLsec stereotypes
for nodes; see (Jürjens, 2005, pp. 56 ff.) for
details

smart
card

deployment di-
agram

node smart card node; conflicts with other UMLsec
stereotypes for nodes; see (Jürjens, 2005,
pp. 56 ff.) for details

POS
device

deployment di-
agram

node POS (point-of-sales) device; conflicts with other
UMLsec stereotypes for nodes; see (Jürjens,
2005, pp. 56 ff.) for details

issuer
node

deployment di-
agram

node issuer node; conflicts with other UMLsec stereo-
types for nodes; see (Jürjens, 2005, pp. 56 ff.)
for details

secrecy class diagram,
component di-
agram, deploy-
ment diagram

dependency requires secrecy; see (Jürjens, 2005, pp. 59 ff.)
for details

integrity class diagram,
component di-
agram, deploy-
ment diagram

dependency requires integrity; see (Jürjens, 2005, pp. 59 ff.)
for details

high class diagram,
component di-
agram, deploy-
ment diagram

dependency requires high sensitivity; see (Jürjens, 2005,
pp. 59 ff.) for details

critical class diagram,
component di-
agram, deploy-
ment diagram

class, compo-
nent, interface

critical class, component, or interface; see
(Jürjens, 2005, pp. 58 ff.) for details

secure
links

deployment di-
agram

package enforces secure communication links; used to
include malicious environment; see (Jürjens,
2005, p. 59) for details

secure de-
pendency

class diagram,
component dia-
gram

package structural data security; see (Jürjens, 2005,
pp. 59 ff.) for details

guarded
access

??? package access control using guard classes; see (Jürjens,
2005, pp. 65 ff.) for details

guarded class diagram class guarded class; see (Jürjens, 2005, p. 66) for de-
tails

Figure 1: UMLsec Stereotypes with Syntactic Structural Constraints

3

2 Background

Stereo-
type

Diagram
Type

Model Ele-
ment

Constraints

fair ex-
change

activity dia-
gram

package see (Jürjens, 2005, pp. 53 ff.) for details

provable activity dia-
gram

package see (Jürjens, 2005, p. 55) for details

data secu-
rity

at least one
structure and
one behavior
diagram

package basic data security requirements; see (Jürjens,
2005, pp. 60 ff.) for details

no down-
flow

state machine
diagram, se-
quence diagram

package information flow condition; see (Jürjens, 2005,
pp. 64 ff.) for details

no up-flow state machine
diagram, se-
quence diagram

package information flow condition; see (Jürjens, 2005,
pp. 64 ff.) for details

Figure 2: UMLsec Stereotypes with Semantic Behavioral Constraints

Composite structure diagram new diagram type to describe component structures

Deployment diagram already contained in UML1.5; e.g., nodes can now contain any element that can
be included in a package (not only components)

Object diagram already contained in UML1.5;

Package diagram new diagram type to depict how a system is split up into logical groupings by showing
the dependencies among these groupings

Profile diagram new diagram type to define UML profiles using standard extension mechanisms

Behavior Diagrams

Activity diagram already contained in UML1.5

• semantics changed and now similar to Petri-nets

• swim-lanes, called activity partitions, that describe what specific classes or subsystems do

• no longer emphasizes transitions; more concerned with token flow along activity edges

State machine diagram already contained in UML1.5

Use case diagram already contained in UML1.5; new model elements are actor generalization and di-
rection of interaction; stereotype <<used>> renamed to <<include>>

Interaction Diagrams

Interaction diagrams, a subset of behavior diagrams, emphasize the flow of control and data among the
different parts in the system being modeled:

Communication diagram named collaboration diagram in UML1.5

Interaction overview diagram new diagram type that represents an activity diagram in which the nodes
represent interaction diagrams;

• Top-level description of the main flow of interactions

• Basically an activity diagram, where nodes can be refined using other interaction diagram
types

Sequence diagram already contained in UML1.5; e.g., new model elements are combined fragments

4

3 Running Example

Timing diagram new diagram type that represents an interaction diagram, where the focus is on timing
constraints

Moreover, the definition and usage of stereotypes has changed in UML2.3. In contrast to UML1.5, a
tagged value is always attached to a specific stereotype.

3 Running Example

We partly demonstrate the results presented in this paper using the example of a password manager.
This case study is taken from (Deshmukh, Kawana, & Erkulla, 2010) and (Schmidt, 2010, Part IV),
where additional material such as the complete results from requirements analysis, the corresponding
specification, and the architectural design can be found.

The password manager is a client-server-based application. The password manager client is displayed
graphically to a user. It allows a user to create a master user account by filling in a registration form,
which requests a master username and a master password. On submit, the master user account data is
transmitted to the password manager server, where it is stored in a database.

Once the master user account is successfully created, a user can anytime login to the password manager
by entering his/her master username and master password. After successful login, a user can manage
his/her personal user account. A personal user account consists of a personal username, a personal
password and a personal user account description. A user can add, view, modify and delete his/her
personal user accounts.

After login, a user should be able to view his/her existing personal username(s) (if any). From the
displayed personal usernames a user can select any of the personal username to view the personal password
and personal user account description.

A user should fill in an add form to add a personal user account, where a user is requested for the
personal username, the personal password and the personal user account description. On submit, the
personal user account is transmitted to the password manager server, where it is stored in a database
and associated to his/her master user account.

A user can modify the existing personal user accounts by using a modify form. On submit, the modified
data is transmitted to the password manager server, where the changes are made in the database.

A user can delete the existing personal user account by selecting any of his/her personal username.
On select the request is sent to the web-based password manager server, where the selected personal user
account is deleted from the database.

Finally, the user can log out from the password manager.

4 A UMLsec-Profile for UML2

In this section, we first explain how profiles can be constructed, defined, and used according to UML2.3 in
Section 4.1. Second, we describe the UMLsec4UML2-profile in Section 4.2, and finally, we present OCL
integrity conditions for this profile in Section 4.3. Note that the complete UMLsec4UML2-profile, all
examples shown in this paper, as well as additional material are available online via http://www.umlsec

.de/umlsec4uml2.html.

4.1 Technical Background

We give in this section an overview of the technical background for the construction (Section 4.1.1),
definition, and usage (Section 4.1.2) of UML2.3 profiles.

4.1.1 UML Profile Construction

The Eclipse Modeling Framework (EMF) (Steinberg, Budinsky, Paternostro, & Merks, 2009) is a frame-
work for modeling and code generation. It unifies different representation forms of models, i.e., Java
(SUN Java 6 Standard Edition, 2010), XML (XML - Extensible Markup Language, 2010), UML (UML
Revision Task Force, 2010), by enabling seamless transformations between these notations. The ECore
model is used to represent EMF models. Hence, the ECore model is a metamodel for EMF models. In
fact, it is a meta-metamodel, since it is an EMF model, too. Eclipse (Eclipse - An Open Development

5

http://www.umlsec.de/umlsec4uml2.html
http://www.umlsec.de/umlsec4uml2.html

4 A UMLsec-Profile for UML2

Platform, 2010) and Eclipse-based applications support the ECore model and hence, EMF models. The
Model Development Tools (MDT) (Model Development Tools Project (MDT), 2010) project introduces
implementation of industry standard metamodels such as UML2.3 (UML Revision Task Force, 2010),
OCL2.0 (UML Revision Task Force, 2006), and BPMN2.0 (Object Management Group (OMG), 2009),
and it provides sample tools for developing models based on those metamodels. Finally, Eclipse in combi-
nation with the EMF-based implementations of the UML2.3 metamodel allows the construction of UML
profiles. For the work presented in this paper, the Eclipse-based UML editing tool Papyrus UML (Papyrus
UML 1.12 , 2010) is used. It is available as an Eclipse-plugin, and it is free and open-source. Alternative
and compatible editing tools are, e.g., Topcased (Topcased 3.4.1 , 2010), Eclipse, and MagicDraw UML
(MagicDraw UML 16.8 , 2010). Note that Papyrus UML is now part of the Eclipse MDT project. There,
a new state-of-the-art UML editing tool is currently developed based on Papyrus UML, Topcased, and
MOSKitt (MOSKitt – MOdeling Software Kitt , 2010).

The basis for a UML2.3 profile is a profile diagram, which defines extensions to the UML2.3 reference
metamodel. This way, it is possible to adapt the metamodel to a specific platform or domain. Metaclasses
from the reference metamodel are extended via stereotypes, which are defined as profile parts. Stereotypes
may have properties, which are referred to as tag definitions. Moreover, a profile diagram can be enriched
with formal constraints in OCL (see Section 4.3 for details). These constraints allow to check the validity
and consistency of a model created using the profile.

4.1.2 UML Profile Definition and Usage

Before a UML profile can be used, it has to be defined. Since a UML profile represents an extension of
the reference UML2.3 metamodel, in order for the specified extensions to appear as though they are part
of the UML2.3 metamodel, they need to be defined at the meta-metamodel (i.e., Ecore) level. This is
done automatically when storing a UML profile in Papyrus UML.

A UML2.3 profile can be used to create corresponding models using any Eclipse-based editing tool
that supports EMF/ECore and MDT. If the used profile is enriched with OCL constraints, and the used
editing tool supports the verification of OCL constraints (as it is the case for Papyrus UML, Eclipse,
MagicDraw UML, etc.), then models created using this profile can be verified automatically with respect
to the OCL constraints.

4.2 UMLsec4UML2

We present a UML2.3-compatible profile UMLsec4UML2 that adopts the UML1.5-compatible profile
UMLsec (Jürjens, 2005). It provides the model elements as defined for the UMLsec profile developed for
UML1.5, and it allows to check if a model is valid and consistent with respect to the UMLsec4UML2-
profile. Using the UMLsec4UML2-profile comprises several benefits:

• availability of the whole expressiveness of UML2.3 for security modeling including new diagram
types of UML2.3

• freedom to select from a number of compatible UML editing tools

• partly integration of modeling and analysis, since static checks are executed directly within the
UML editing tool

• improved feedback for debugging models provided by evaluation of OCL constraints

• improved maintainability, since UMLsec4UML2 is developed as a UML2.3 package diagram, which
can be evolved easily. This also applies to the OCL constraints included in the profile.

• opens the way to develop additional tool support “à la maison“, i.e., as Eclipse-plugins

UMLsec4UML2 is constructed using the Papyrus UML editing tool (Papyrus UML 1.12 , 2010) as
a UML profile diagram, which is part of UML2.3. A profile diagram operates at the metamodel level
to show stereotypes as classes with the <<stereotype>> stereotype, and profiles as packages with the
<<profile>> stereotype. The extension relation (solid line with closed, filled arrowhead) indicates what
metamodel element a given stereotype is extending. Figure 3 shows a part of the package diagram that
represents the UMLsec4UML2-profile.

The workflow for using the UMLsec4UML2-profile is illustrated in Figure 4. The workflow is incre-
mental and iterative in nature, and it consists of the following steps:

6

4 A UMLsec-Profile for UML2

 «p
ro

fil
e»

U
M

L
se

c4
U

M
L

2

(u
m

l)
C

o
n

n
ec

to
r

(u
m

l)
P

ac
ka

g
e

«s
te

re
ot

yp
e»

ca
ll «s

te
re

ot
yp

e»

In
te

rn
et

«s
te

re
ot

yp
e»

L
A

N

«s
te

re
ot

yp
e»

sm
ar

t
ca

rd
«s

te
re

ot
yp

e»

P
O

S
 d

ev
ic

e

«s
te

re
ot

yp
e»

se
cr

ec
y

«s
te

re
ot

yp
e»

d
at

a
se

cu
ri

ty

 a
dv

er
sa

ry
: S

tr
in

g

(u
m

l)
N

o
d

e

«s
te

re
ot

yp
e»

is
su

er
 n

o
d

e

«s
te

re
ot

yp
e»

h
ig

h

«s
te

re
ot

yp
e»

w
ir

e

(u
m

l)
M

o
d

el

(u
m

l)
C

o
m

m
u

n
ic

at
io

n
P

at
h

(u
m

l)
C

la
ss

«s
te

re
ot

yp
e»

cr
it

ic
al

 s
ec

re
cy

: S
tr

in
g

 i
nt

eg
rit

y:
 S

tr
in

g
 h

ig
h:

 S
tr

in
g

«s
te

re
ot

yp
e»

se
n

d
«s

te
re

ot
yp

e»

se
cu

re
 d

ep
en

d
en

cy

«s
te

re
ot

yp
e»

se
cu

re
 li

n
ks

 a
dv

er
sa

ry
: S

tr
in

g

(u
m

l)
C

o
m

p
o

n
en

t

«s
te

re
ot

yp
e»

en
cr

yp
te

d

«s
te

re
ot

yp
e»

in
te

g
ri

ty
(u

m
l)

D
ep

en
d

en
cy

F
ig

u
re

3
:

P
ro

fi
le

D
ia

g
ra

m
o
f

U
M

L
se

c4
U

M
L

2-
P

ro
fi

le

7

4 A UMLsec-Profile for UML2

1. Developer uses a compatible UML editing tool to create a UML2.3 model.

2. Automatic verification of the OCL constraints directly within the UML editing tool; developer
inspects text reports and possibly corrects model.

3. Usage of further UMLsec-Tools (as Eclipse-Plugins).

4. Developer inspects text reports and possibly corrects model.

Developer

UML Editing Tool

(ECore 3.0/EMF/OCL 2.0-Compliant)

e.g., Papyrus UML 1.12
UML2.3 Model

Text Report

use

UMLsec4UML2-Profile

(UML 2.3 Profile Diagram)
OCL Integrity Conditions

output

create

show

verify
load

Further UMLsec-Tools

(Eclipse-Plugins)

input

output

Figure 4: Workflow for using the UMLsec4UML2-Profile

In the following, we specify as examples the stereotypes <<secure dependency>> for class diagrams
in Section 4.2.1 and <<secure links>> for deployment diagrams in Section 4.2.2.

4.2.1 Stereotype <<secure dependency>>

The <<secure dependency>> stereotype (Jürjens, 2005, pp. 59 ff.) is developed to label subsystems
containing static structure diagrams (especially class diagrams). UML2.3 does not contain a metaclass
subsystem. Instead, subsystems can be modeled as instances of the metaclass component stereotyped with
<<subsystem>>. In the UMLsec4UML2-profile, the <<secure dependency>> extends the metaclasses
Model and Package as depicted in Figure 3. This way, one can label arbitrary models with this stereotype,
and one can make use of the advanced modeling possibilities for packages, e.g., package imports, merge,
nesting, and so on.

Structure diagrams contained in a package might contain <<call>> and/or <<send>> dependencies
between structural elements such as classes. Hence, the <<call>> and <<send>> stereotypes are modeled
in Figure 3 as extensions of the metaclass Dependency. The source and target elements of a dependency
can be be marked with the stereotype <<critical>> to express that some data that might be transmitted
between source and target should fulfill certain security properties. Note that is possible to make use of
<<interface>> classes, so that dependencies are connected to the interfaces. Then, classes that realize
these interfaces are marked with the stereotype <<critical>>.

The stereotype <<critical>> has the tags {secrecy}, {integrity}, and {high}, which allow to
specify security properties in more detail. Consequently, we introduce a stereotype <<critical>> in
Figure 3 as an extension to the metaclasses class and component with the properties secrecy, integrity,
and high of type String. The fact that this stereotype is an extension of the metaclass component allows
one to apply it to component and composite structure diagrams, too.

In addition to the tag definitions, corresponding dependencies must be marked with the stereotypes
<<secrecy>>, <<integrity>>, and/or <<high>>. So, these stereotypes are introduced in Figure 3 as
extensions of the metaclass Dependency.

Note that the constraints associated with the <<secure dependency>> stereotype are explained in
detail in Section 4.3.

An example of a class diagram contained in a package stereotyped <<secure dependency>> is shown
in Figure 5. In this example, the class Class 1 is equipped with an explicit interface class Interface 0. It
is also possible to omit explicit interface classes, and connect classes directly via dependencies.

8

4 A UMLsec-Profile for UML2

«secure dependency»

Package_0

«critical»
Class_0

 Operation_0()

«critical»
Class_1

 Operation_1()

 «critical»
 secrecy =
Operation_0()

«interface»
Interface_0

 Operation_1()

 «critical»
 secrecy =
Operation_0()

«call, secrecy»

Figure 5: Class Diagram with Explicit Interface Class Contained in a Package Stereotyped <<secure

dependency>>

4.2.2 Stereotype <<secure links>>

The <<secure links>> stereotype (Jürjens, 2005, p. 59) is developed to label subsystems containing
deployment diagrams. In the UMLsec4UML2-profile, <<secure links>> extends the metaclasses Model
and Package as depicted in Figure 3. Moreover, it is equipped with a tag adversary of type String, which
can have the values default (Jürjens, 2005, p. 57) and insider (Jürjens, 2005, p. 58).

A deployment diagram contained in a package stereotyped <<secure links>> might contain communi-
cation paths, which can be marked <<Internet>>, <<encrypted>>, <<LAN>>, or <<wire>> (see Figure 1
for details). These stereotypes represent types of communication links, and they are associated with
possible threats (Jürjens, 2005, pp. 57 ff.). Consequently, we introduce these stereotypes in Figure 3 as
an extension to the metaclass Communication Path. Communication paths connect nodes, which can be
marked <<LAN>>, <<smart card>>, <<POS device>>, or <<issuer node>>. These stereotypes represent
node types, and similar to the stereotypes for communication paths, they are associated with possible
threats (Jürjens, 2005, pp. 57 ff.). We introduce these stereotypes in Figure 3 as an extension to the meta-
class Node. Based on an adversary tag and on stereotyped communication paths and nodes an attacker
setting is defined in detail.

According to UML2.3, nodes can contain any element that can be contained in a package (not only
components, as it is the case for UML1.5). Hence, dependencies (marked according to the <<secure

dependency>> stereotype) between nodes or between parts, connectors, or classes contained in nodes are
used to model security-critical call or send relationships.

Note that the constraints associated with the <<secure links>> stereotype are explained in detail in
Section 4.3.

«secure links»
Package_0

Node_0

Class_0

Node_1

Class_1

 «secure links»
 adversary = default

«call, secrecy»

 + node_1 + node_0

«internet»

Figure 6: Deployment Diagram Contained in a Package Stereotyped <<secure links>>

9

4 A UMLsec-Profile for UML2

An example of a deployment diagram contained in a package stereotyped <<secure links>> is shown
in Figure 6. There, the dependency stereotyped <<secrecy>> connects classes contained in the nodes
that communicate via a connection stereotyped <<Internet>>. The value of the adversary tag is default.

«secure links»
PasswordManager

PasswordManagerClient

PasswordManagerServer Database

 «secure links»
 adversary = default

 + server

 + client

«internet»

«call, integrity, secrecy»

«call, integrity, secrecy»

 + database + server

«lAN»

«integrity, secrecy, send»

«integrity, secrecy, send»

Figure 7: Deployment Diagram for Password Manager Example Contained in a Package Stereotyped
<<secure links>>

A deployment diagram for the running example of a password manager as described in Section 3 is
shown in Figure 7. The diagram is contained in a package stereotyped <<secure links>>, and it consists
of the three nodes PasswordManagerClient, PasswordManagerServer, and Database. The communication
path between the first two nodes is of type <<Internet>>, and the one between the last two nodes is
of type <<LAN>>. Since the password manager should preserve the confidentiality and integrity of the
data, i.e., passwords, usernames, etc., transmitted between the nodes, corresponding dependencies labeled
<<secrecy>> and <<integrity>> are included.

4.3 OCL Integrity Conditions for UMLsec4UML2

The UMLsec4UML2-profile presented in Section 4.2 is enriched with integrity conditions denoted in
Object Constraint Language (OCL) (UML Revision Task Force, 2006; Warmer & Kleppe, 2003). OCL is
part of UML (UML Revision Task Force, 2010), and it is a notation to describe constraints on object-
oriented modeling artifacts. A constraint is a restriction on one or more elements of an object-oriented
model. In fact, the OCL constraints realize the functionality of a part of the tool support developed for
the UMLsec-profile developed for UML1.5. More specifically, the static checks available in this tool are
covered by the OCL constraints in the UMLsec4UML2-profile.

As an example, we present OCL integrity conditions for the <<secure dependency>> constraints.
These integrity conditions are part of the UMLsec4UML2-profile. In the following, we explain the con-
straints informally, and we present the corresponding OCL integrity conditions:

Listing 1 For each <<call>> or <<send>> dependency connecting two classes contained in a package
that is equipped with the stereotype <<secure dependency>> the source and target classes must
be equipped with the stereotype <<critical>> if the dependency has the stereotype <<secrecy>>,
<<integrity>>, or <<high>>.

Listing 2 If the dependency has the stereotype <<secrecy>>, then the source and target classes must
have tags {secrecy} with equal tagged values.1

A UMLsec4UML2 model fulfills the <<secure dependency>> constraints as defined for UMLsec for
UML1.5 if it fulfills the conjunction of the previously presented OCL integrity conditions.

1Note that similar constraints apply for the tags {integrity} and {high}.

10

4 A UMLsec-Profile for UML2

1 (Package.allInstances ()->select(p |
2 (p.oclIsTypeOf(Package)) and (p.oclAsType(Package).getAppliedStereotypes ().name ->includes(’
3 secure dependency ’)))).allOwnedElements ()->select(d |
4 (d.oclIsTypeOf(Dependency)) and
5 ((d.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’call’))
6 or (d.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’send’))
7))->forAll(d |
8 (d.oclAsType(Dependency).source ->forAll(oclIsTypeOf(Class))) and
9 (d.oclAsType(Dependency).target ->forAll(oclIsTypeOf(Class))) and

10 (d.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’secrecy ’) and
11 d.oclAsType(Dependency).source.getAppliedStereotypes ().name ->includes(’critical ’) and
12 d.oclAsType(Dependency).target.getAppliedStereotypes ().name ->includes(’critical ’)) or
13 (d.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’integrity ’) and
14 d.oclAsType(Dependency).source.getAppliedStereotypes ().name ->includes(’critical ’) and
15 d.oclAsType(Dependency).target.getAppliedStereotypes ().name ->includes(’critical ’)) or
16 (d.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’high’) and
17 d.oclAsType(Dependency).source.getAppliedStereotypes ().name ->includes(’critical ’) and
18 d.oclAsType(Dependency).target.getAppliedStereotypes ().name ->includes(’critical ’))
19)

Listing 1: OCL Constraint: secureDependency

1 (Dependency.allInstances ()->select(
2 d | d.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’secrecy ’))->forAll(
3 d_1 | (
4 d_1.oclAsType(Dependency).source.getAppliedStereotypes ()->any(
5 s | s.oclAsType(Stereotype).name=’critical ’).getValue(
6 d_1.oclAsType(Dependency).source.getAppliedStereotypes ()->any(
7 s | s.oclAsType(Stereotype).name=’critical ’),’secrecy ’)
8)
9 = (

10 d_1.oclAsType(Dependency).target.getAppliedStereotypes ()->any(
11 s | s.oclAsType(Stereotype).name=’critical ’).getValue(
12 d_1.oclAsType(Dependency).target.getAppliedStereotypes ()->any(
13 s | s.oclAsType(Stereotype).name=’critical ’),’secrecy ’)
14)
15)
16)

Listing 2: OCL Constraint: secrecyTaggedValuesAreEqual

The current version of this part of the UMLsec4UML2-profile has the following limitation: scenarios
with <<interface>> classes are not yet covered, i.e., dependencies must connect <<critical>> classes
directly.

In the following, we present OCL integrity conditions for the <<secure links>> constraints. These
integrity conditions are part of the UMLsec4UML2-profile. In the following, we explain the constraints
informally, and we present the corresponding OCL integrity conditions:

Listing 3 If there exists a package stereotyped <<secure links>> and the adversary tag has the value de-
fault, and if there exists a communication path stereotyped <<Internet>> between two nodes, then
the existence of a dependency stereotyped <<call>> or <<send>> and <<secrecy>>, <<integrity>>,
or <<high>> between the same two nodes is not allowed.

Listing 4 Communication paths are stereotyped <<Internet>>, <<encrypted>>, <<LAN>>, or <<wire>>,
or they are marked with none of these stereotypes.

A UMLsec4UML2 model fulfills the <<secure links>> constraints as defined for UMLsec for UML1.5
if it fulfills the conjunction of the previously presented OCL integrity conditions.

In summary, the UMLsec4UML2-profile offers a convenient way to develop UMLsec models as described
in Figure 4, and to automatically verify that these models fulfill the OCL integrity conditions included
in the profile.

11

5 Specification of Architectural Security Patterns Using UMLsec4UML2

1 (Package.allInstances ()->select(p |
2 (p.oclIsTypeOf(Package)) and
3 (p.oclAsType(Package).getAppliedStereotypes ().name ->includes(’secure links’)) and
4 (p.oclAsType(Package).getValue(p.oclAsType(Package).getAppliedStereotype(’UMLsec4UML2 :: secure

links’),’adversary ’).oclAsType(String)=’default ’)
5)
6).allOwnedElements ()->select(c |
7 (c.oclIsTypeOf(CommunicationPath)) and
8 (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’Internet ’) and)
9).allOwnedElements ()->select(p |

10 (p.oclIsTypeOf(Property)) and
11 ((p.oclAsType(Property).type.oclAsType(Node).clientDependency.oclAsType(Dependency).

getAppliedStereotypes ().name ->includes(’call’)) or
12 (p.oclAsType(Property).type.oclAsType(Node).clientDependency.oclAsType(Dependency).

getAppliedStereotypes ().name ->includes(’send’))) and
13 ((p.oclAsType(Property).type.oclAsType(Node).clientDependency.oclAsType(Dependency).

getAppliedStereotypes ().name ->includes(’secrecy ’)) or
14 (p.oclAsType(Property).type.oclAsType(Node).clientDependency.oclAsType(Dependency).

getAppliedStereotypes ().name ->includes(’integrity ’)) or
15 (p.oclAsType(Property).type.oclAsType(Node).clientDependency.oclAsType(Dependency).

getAppliedStereotypes ().name ->includes(’high’)))
16)->isEmpty ()

Listing 3: OCL Constraint: secureLinksWithDefaultAttackerAndInternet

1 (Package.allInstances ()->select(p |
2 (p.oclIsTypeOf(Package)) and
3 (p.oclAsType(Package).getAppliedStereotypes ().name ->includes(’secure links’))
4)
5).allOwnedElements ()->forAll(c |
6 (c.oclIsTypeOf(CommunicationPath)) and
7 (((c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’Internet ’)) and
8 not (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’encrypted ’)) and
9 not (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’LAN’)) and

10 not (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’wire’)))
11 or
12 ((c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’encrypted ’)) and
13 not (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’Internet ’)) and
14 not (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’LAN’)) and
15 not (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’wire’)))
16 or
17 ((c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’LAN’)) and
18 not (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’Internet ’)) and
19 not (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’encrypted ’)) and
20 not (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’wire’)))
21 or
22 ((c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’wire’)) and
23 not (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’Internet ’)) and
24 not (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’encrypted ’)) and
25 not (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’LAN’)))
26 or
27 (not (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’wire’)) and
28 not (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’Internet ’)) and
29 not (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’encrypted ’)) and
30 not (c.oclAsType(CommunicationPath).getAppliedStereotypes ().name ->includes(’LAN’)))
31)
32)

Listing 4: OCL Constraint: communicationPathsStereotypedOnlyOnce

5 Specification of Architectural Security Patterns Using
UMLsec4UML2

We presented a pattern- and component-based approach named SEPP (as introduced in Section 1)
to construct secure software systems in (Schmidt, 2010) that especially deals with the early software
development phases. SEPP makes use of security problem frames (SPF) and concretized security problem
frames (CSPF), which constitute patterns for security requirements engineering. SPFs are patterns for
structuring, characterizing, and analyzing problems that occur frequently in security engineering. CSPFs
involve first solution approaches for the problems described by SPFs.

Then, the security requirements previously analyzed and specified are realized by generic security
architectures (GSA), which constitute architectural patterns. They are related to CSPFs, and they

12

5 Specification of Architectural Security Patterns Using UMLsec4UML2

Figure 8: Class Diagram Stereotyped <<secure dependency>> to Define the Port Type PasswordReader

«critical»

PasswordReader

 PwdRIf: PasswordReader

EnvIf

PasswordReaderIf «critical»
 secrecy = ck
 integrity = ck

 «critical»
 secrecy = pwd
 integrity = pwd

Figure 9: Composite Structure Diagram for the GSC PasswordReader Using the Port Type Defined in
Figure 8

consist of generic security components (GSC) and generic non-security components (GNC). After a GSA
is instantiated for each CSPF instance of a given software development problem, the different GSAs must
be composed to obtain a global GSA. Finally, this global architecture is refined, and the result is a secure
software product built from existing and/or tailor-made security components.

In (Schmidt, 2010, Part III), the GSAs are expressed using plain UML. In this paper, we present an
approach to express GSAs using our UMLsec4UML2-profile, and to prepare the ground for tool support
to check whether composed GSAs still fulfill the security requirements provided by the individual GSAs.

While UML1.5 has several disadvantages for the specification of software architectures compared to its
successor UML2.3 as explained by Ivers et al. (2004); Pérez-Mart́ınez and Sierra-Alonso (2004), UML2.3
can be used to model software architectures (Avgeriou, Guelfi, & Medvidovic, 2004; Björkander & Kobryn,
2003; Medvidovic, Rosenblum, Redmiles, & Robbins, 2002). For example, UML2.3 supports the concepts
of parts, i.e., black-box components, and connectors.

As presented in (Schmidt, 2010, Part III), GSCs (similar to GSAs) are represented by composite
structure diagrams and sequence diagrams. An example of a composite structure diagram for the GSC
PasswordReader is shown in Figure 9. The port PwdRIf is typed PasswordReader as defined in Figure 8.

Both diagrams are stereotyped <<secure dependency>>2 and the values of the {secrecy} and {integrity}
tags refer to the password retrieved from the environment using interface EnvIf, and to the cryptographic
key processed by the PasswordReader component that provides this cryptographic key to other compo-
nents.

While the <<secure dependency>> constraint of the <<use>> dependency between the PasswordReader
component and the EnvIf interface is fulfilled (see Figure 8), a similar statement about the {secrecy}
and {integrity} tags of the <<critical>> stereotype of the PasswordReaderIf interface cannot be made

2Note that when using Papyrus UML, composite structure diagrams cannot be contained in packages. However, the model
itself can be stereotyped as specified in the UMLsec4UML2-profile depicted in Figure 3.

13

5 Specification of Architectural Security Patterns Using UMLsec4UML2

Figure 10: Port Type Definitions for GSA of CSPF Confidential Data Storage Using Password-Based
Symmetric Encryption

«critical»

Application

 : Application

«critical»

PasswordReader
 : PasswordReader

EnvIf

PwdRIf

SEncDecIf

PwdRIf

SMIf

«critical»

SymmetricEncryptorDecryptor

StorageManager

 : SymmetricEncryptorDecryptor

 : StorageManager

SEncDecIf

SMIf

 «critical»
 secrecy = pt, ck
 integrity = ct,ck,pt

 «critical»
 secrecy = ck
 integrity = ck

 «critical»
 secrecy = pwd
 integrity = pwd

 «critical»
 secrecy = ck
 integrity = ck

 «critical»
 secrecy = pt, ck
 integrity = ct,ck,pt

UserInterface

 : UserInterface

UIUserIf

ApplicationIf

UIIf

UIIf

ApplicationIf

Figure 11: Structural View with Lollipop Notation of GSA for CSPF Confidential Data Storage Using
Password-Based Symmetric Encryption

(see Figure 8). To check the <<secure dependency>> constraint, the component by which the Passwor-
dReaderIf interface is used must be known and analyzed.

Figures 10 and 11 show the structural view of a GSA presented in (Schmidt, 2010, Part III) related
to the problem class of confidential data storage using password-based symmetric encryption. This GSA
makes use of the previously presented GSC PasswordReader.

The GSA is contained in a package stereotyped <<secure dependency>>. According to the original

14

6 Conclusion

«critical»

GSA Confidential Data Storage Using Password-Based Symmetric Encryption

Application

 : Application

PasswordReader

SymmetricEncryptorDecryptor

StorageManager

 : StorageManager

 : PasswordReader

 : SymmetricEncryptorDecryptor

 : EnvIf

UserInterface

 : UIUserIf

 : ApplicationIf

 : EnvIf

 : UIUserIf

«integrity, secrecy»

«integrity, secrecy»

Figure 12: Structural View with Connectors of GSA for CSPF Confidential Data Storage Using Password-
Based Symmetric Encryption

UMLsec for UML1.5, this stereotype refers to dependencies stereotyped <<call>> or <<send>>. Com-
posite structure diagrams, which we use to model the structural views of GSAs, contain dependencies
stereotyped <<use>>3 to specify that components make use of interfaces of other components contained in
an architecture. For example, the component Application in Figure 10 depends on the components Sym-
metricEncryptorDecryptor, PasswordReader, and StorageManager. It makes use of the interfaces realized
by these components. Hence, the UMLsec4UML2-profile is extended to additionally cover <<use>> de-
pendencies. The constraint expressed by the <<secure dependency>> stereotype is basically unchanged:
the values of the {secrecy}, {integrity}, and/or {high} tags of the <<critical>> stereotypes of two
components that are connected via a <<use>> dependency stereotyped <<secrecy>>, stereointegrity,
and/or <<high>> should be equal. In our example in Figure 10 all <<use>> dependencies are stereotyped
<<secrecy>> and <<integrity>>, and the tagged values of the <<critical>> stereotypes of the involved
components are equal. Hence, the <<secure dependency>> constraint is fulfilled.

Figures 13 and 14 show the architecture of the node PasswordManagerClient in the deployment diagram
in Figure 7. In this software architecture, several GSAs are composed.

6 Conclusion

We presented in this paper the new UMLsec4UML2-profile, which integrates modeling and verification
activities. UMLsec4UML2 makes the whole expressiveness of UML2.3 available for architectural security
modeling. We validated and discussed the approach presented in this paper using the sample development
of a password management software.

3In contrast to the stereotypes <<call>> and <<send>>, the stereotype <<use>> is predefined in the UML2.3 metamodel.

15

6 Conclusion

Figure 13: Class Diagram for Password Manager Example Stereotyped <<secure dependency>> to De-
fine Port Types

«critical»

SymmetricEncryptorDecryptor

 SEncDecIf: SymmetricEncryptorDecryptor

«critical»

PasswordManagerClient
 SEncDecIf: PasswordManagerClient

SymmetricEncryptorDecryptorIf

SymmetricEncryptorDecryptorIf

 «critical»
 secrecy = pt, ck
 integrity = pt,ct, ck

 «critical»
 secrecy = pt, ck
 integrity = pt,ct, ck

RandomNumberGenerator

KeyedHashProcessing

DigitalSignatureProcessing

UserInterface

CommunicationManager

 RNGIf: RandomNumberGenerator

 KeyedHashPIf: KeyedHashProcessing

 DSPIf: DigitalSignatureProcessing

 UIIf: UserInterface

 CMIf: CommunicationManager

RandomNumberGeneratorIf

KeyedHashProcessingIf

DigitalSignatureProcessingIf

UserInterfaceIf

CommunicationManagerIf

 «critical»
 secrecy = ck
 integrity = d

 RNGIf: RandomNumberGenerator

 KeyedHashPIf: PasswordManagerClient

 DSPIf: DigitalSignatureProcessing

KeyedHashProcessingIf

 «critical»
 secrecy = ck
 integrity = d CMIf: CommunicationManager

 UIIf: UserInterface

Figure 14: Composite Structure Diagram for Password Manager Example Stereotyped <<secure

dependency>> Using the Port Types Defined in Figure 13

16

References

References

Avgeriou, P., Guelfi, N., & Medvidovic, N. (2004). Software architecture description and UML. In UML
satellite activities (pp. 23–32). Springer.

Björkander, M., & Kobryn, C. (2003). Architecting systems with UML 2.0. IEEE Software, 20 (4),
57–61.

Deshmukh, M., Kawana, P., & Erkulla, S. (2010). Development of a web-based password manager using
SEPP. (Report of student project at University Duisburg-Essen, Germany)

Eclipse - An Open Development Platform. (2010, June). (http://www.eclipse.org/)
Ferraiolo, D. F., & Kuhn, D. R. (1992). Role-based access control. In Proceedings of the national computer

security conference (pp. 554–563).
Ivers, J., Clements, P., Garlan, D., Nord, R., Schmerl, B., & Silva, J. R. O. (2004). Documenting

component and connector views with UML 2.0 (Tech. Rep. No. CMU/SEI-2004-TR-008). Carnegie
Mellon Software Engineering Institute.

Jürjens, J. (2005). Secure systems development with UML. Springer.
MagicDraw UML 16.8. (2010, June). (http://www.magicdraw.com)
Medvidovic, N., Rosenblum, D. S., Redmiles, D. F., & Robbins, J. E. (2002). Modeling software

architectures in the unified modeling language. ACM Transactions on Software Engineering and
Methodology , 11 (1), 2–57.

Model Development Tools Project (MDT). (2010, June). (http://www.eclipse.org/modeling/mdt/)
MOSKitt – MOdeling Software Kitt. (2010, June). (http://www.moskitt.org)
Object Management Group (OMG). (2009, August). OMG business process model and notation (bpmn)

[Computer software manual]. (http://www.omg.org/cgi-bin/doc?dtc/09-08-14.pdf)
Papyrus UML 1.12. (2010, June). (http://www.papyrusuml.org)
Pérez-Mart́ınez, J. E., & Sierra-Alonso, A. (2004). UML 1.4 versus UML 2.0 as languages to describe

software architectures. In Proceedings of the european workshop on software architectures (EWSA)
(pp. 88–102). Springer.

Schmidt, H. (2010). A pattern- and component-based method to develop secure software. Deutscher
Wissenschafts-Verlag (DWV) Baden-Baden. (Online version: http://www.mathomhouse.de/

phdthesis.html)
SPASS Theorem Prover 3.5. (2010, June). (http://www.spass-prover.org/)
Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E. (2009). EMF: Eclipse modeling framework

(Vol. Second Edition). Addison-Wesley.
SUN Java 6 Standard Edition. (2010, June). (http://java.sun.com/javase/6/docs/api/)
Topcased 3.4.1. (2010, June). (http://www.topcased.org)
UML Revision Task Force. (2006, May). Object constraint language specification [Computer software

manual]. (http://www.omg.org/docs/formal/06-05-01.pdf)
UML Revision Task Force. (2010, May). OMG unified modeling language: Superstructure [Computer

software manual]. (http://www.omg.org/spec/UML/2.3/Superstructure/PDF/)
Warmer, J., & Kleppe, A. (2003). The object constraint language 2.0: Getting your models ready for

MDA (2nd ed.). Pearson Education.
XML - Extensible Markup Language. (2010, June). (http://www.w3.org/XML/)

17

http://www.eclipse.org/
http://www.magicdraw.com
http://www.eclipse.org/modeling/mdt/
http://www.moskitt.org
http://www.omg.org/cgi-bin/doc?dtc/09-08-14.pdf
http://www.papyrusuml.org
http://www.mathomhouse.de/phdthesis.html
http://www.mathomhouse.de/phdthesis.html
http://www.spass-prover.org/
http://java.sun.com/javase/6/docs/api/
http://www.topcased.org
http://www.omg.org/docs/formal/06-05-01.pdf
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.w3.org/XML/

	1 Introduction
	2 Background
	2.1 Previous Version of UMLsec for UML1.5
	2.2 Changes in UML2.3 Compared to UML1.5

	3 Running Example
	4 A UMLsec-Profile for UML2
	4.1 Technical Background
	4.1.1 UML Profile Construction
	4.1.2 UML Profile Definition and Usage

	4.2 UMLsec4UML2
	4.2.1 Stereotype <<secure dependency>>
	4.2.2 Stereotype <<secure links>>

	4.3 OCL Integrity Conditions for UMLsec4UML2

	5 Specification of Architectural Security Patterns Using UMLsec4UML2
	6 Conclusion
	References

