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Abstract

In the problem of estimating the lower and upper tail copula we propose two bootstrap procedures

for approximating the distribution of the corresponding empirical tail copulas. The first method uses a

multiplier bootstrap of the empirical tail copula process and requires estimation of the partial derivatives

of the tail copula. The second method avoids this estimation problem and uses multipliers in the two-

dimensional empirical distribution function and in the estimates of the marginal distributions. For

both multiplier bootstrap procedures we prove consistency.

For these investigations we demonstrate that the common assumption of the existence of continuous

partial derivatives in the the literature on tail copula estimation is so restrictive, such that the tail

copula corresponding to asymptotic independence is the only tail copula with this property. Moreover,

we are able to solve this problem and prove weak convergence of the empirical tail copula process

under nonrestrictive smoothness assumptions which are satisfied for many commonly used models.

These results are applied in several statistical problems including minimum distance estimation and

goodness-of-fit testing.

Keywords and Phrases: tail copula, stable tail dependence function, multiplier bootstrap, minimum

distance estimation, comparison of tail copulas, goodness-of-fit

AMS Subject Classification: Primary 62G32 ; secondary 62G20

1 Introduction

The stable tail dependence function appears naturally in multivariate extreme value theory as a function

that characterizes extremal dependence: if a bivariate distribution function F lies in the max-domain

of attraction of an extreme-value distribution G, then the copula of G is completely determined by the

stable tail dependence function [see e.g. Einmahl et al. (2008)]. The function is closely related to tail

copulas [see Schmidt and Stadtmüller (2006)] and represents the current standard to describe extremal

dependence [see Embrechts et al. (2003) and Malevergne and Sornette (2004)]. Following Schmidt and
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Stadtmüller (2006) the lower and the upper tail copulas are defined by

ΛL(x) = lim
t→∞

t C(x1/t, x2/t) (1.1)

ΛU (x) = lim
t→∞

t C̄(x1/t, x2/t), (1.2)

provided that the limits exist. Here x = (x1, x2) ∈ R̄2
+ := [0,∞]2 \ {(∞,∞)}, C denotes the copula of the

two-dimensional distribution function F , which relates F and its marginals F1, F2 by

F (x) = C(F1(x1), F2(x2)) (1.3)

[see Sklar (1959)], and C̄(u) = u1 + u2 − 1 + C(1 − u1, 1 − u2) denotes the survival copula. The stable

tail dependence function l and the upper tail copula ΛU are associated by the relationship

l(x) = x1 + x2 − ΛU (x) ∀ x ∈ R2
+.

Since its introduction various parametric and nonparametric estimates of the tail copulas and of the stable

tail dependence function have been proposed in the literature. Several authors assume that the dependence

function belongs to some parametric family. Coles and Tawn (1994), Tiago de Oliveira (1980) or Einmahl

et al. (1993) imposed restrictions on the marginal distributions to estimate multivariate extreme value

distributions. Nonparametric estimates of the stable tail dependence function have been investigated by

Huang (1992), Qi (1997) and Drees and Huang (1998), while corresponding estimates for tail copulas

have been discussed by Schmidt and Stadtmüller (2006). More recent work on inference on the stable tail

dependence function can be found in Einmahl et al. (2008) and Einmahl et al. (2006), who investigated

moment estimators of tail dependence and weighted approximations of tail copula processes, respectively.

The present paper has two main purposes. First we clarify some curiosities in the literature on tail

copula estimation, which stem from the fact that most authors assume the existence of continuous partial

derivatives of the tail copula [see e.g. Huang (1992), Drees and Huang (1998), Schmidt and Stadtmüller

(2006), Einmahl et al. (2006), de Haan and Ferreira (2006), Peng and Qi (2008) or de Haan et al. (2008)

among others]. However, the tail copula corresponding to asymptotic independence is the only tail copula

with this property, because the partial derivatives of a tail copula satisfy

∂1ΛL(0, x) =

limt→∞ ΛL(1, t) if x > 0

0 if x = 0.
(1.4)

As a consequence we provide a result regarding the weak convergence of the empirical tail copula process

(and thus also of the empirical stable tail dependence function) under weak smoothness assumptions

(see Theorem 2.2 in the following section). The smoothness conditions are nonrestrictive in the sense,

that in the case where they are not satisfied, the candidate limiting process does not have continuous

trajectories. The second objective of the paper is devoted to the approximation of the distribution of

estimators for the tail copulas by new bootstrap methods. In contrast to the problem of estimation

of the stable dependence function and tail copulas, this problem has found much less attention in the

literature. Recently, Peng and Qi (2008) considered the tail empirical distribution function and showed
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the consistency of the bootstrap based on resampling (again under the assumption of continuous partial

derivatives). These results were used to construct confidence bands for the tail dependence function.

While these authors considered the naive bootstrap, the present paper is devoted to multiplier bootstrap

procedures for tail copula estimation. On the one hand, our research is motivated by the observation that

the parametric bootstrap, which is commonly applied in goodness-of-fit testing problems [see de Haan

et al. (2008)], has very high computational costs, because it heavily relies on random number generation

and estimation [see also Kojadinovic and Yan (2010) and Kojadinovic et al. (2010) for a more detailed

discussion of the computational efficiency of the multiplier bootstrap]. On the other hand, it was pointed

out by Bücher and Dette (2010) in the context of nonparametric copula estimation that some multiplier

bootstrap procedures lead to more reliable approximations than the bootstrap based on resampling.

In Section 2 we briefly review the nonparametric estimates of the tail copula and discuss their main proper-

ties. In particular we establish weak convergence of the empirical tail copula process under nonrestrictive

smoothness assumptions, which are satisfied for many commonly used models. In Section 3 we introduce

the multiplier bootstrap for the empirical tail copula and prove its consistency. In particular, we discuss

two ways of approximating the distribution of the empirical tail copula by a multiplier bootstrap. Our

first method is called partial derivatives multiplier bootstrap and uses the limit distribution of the empiri-

cal tail copula process. As a consequence, this approach requires the estimation of the partial derivatives

of the tail copula. The second method, which avoids this problem, is called direct multiplier bootstrap

and uses multipliers in the two-dimensional empirical distribution function and in the estimates of the

marginal distributions. Finally, in Section 4 we discuss several statistical applications of the multiplier

bootstrap. In particular, we investigate the problem of testing for equality between two tail copulas and

we discuss the bootstrap approximations in the context of testing parametric assumptions for the tail

copula. Finally, the proofs and some of the technical details are deferred to an appendix.

2 Empirical tail copulas

Let X1, . . . ,Xn denote an i.i.d. sample of random variables distributed according to F and denote the

empirical distribution functions of F , F1 and F2 by Fn, Fn1 and Fn2, respectively. Following Schmidt and

Stadtmüller (2006) we consider the estimators

Λ̂L(x) =
n

k
Cn

(
kx1

n
,
kx2

n

)
, (2.1)

Λ̂U (x) =
n

k
C̄n

(
kx1

n
,
kx2

n

)
, (2.2)

for the lower and upper tail copula, respectively, where k → ∞ such that k = o(n), and Cn (resp. C̄n)

denotes the empirical copula (resp. empirical survival copula), that is

Cn(u) = Fn(F−n1(u1), F−n2(u2))

C̄n(u) = F̄n(F̄−n1(u1), F̄−n2(u2))
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It is easy to see that these estimators are asymptotically equivalent to the estimates

Λ̂L(x) ≈ 1

k

n∑
i=1

I{R(Xi1) ≤ kx1, R(Xi2) ≤ kx2}, (2.3)

Λ̂U (x) ≈ 1

k

n∑
i=1

I{R(Xi1) > n− kx1, R(Xi2) > n− kx2} (2.4)

where R(Xij) = nFn1(Xj1) denotes the rank of Xij among X1j , . . . Xnj (j = 1, 2). Therefore we introduce

analogs of (2.3) and (2.4) where the marginals F1 and F2 are assumed to be known, that is

Λ̃L(x) =
1

k

n∑
i=1

I{F1(Xi1) ≤ kx1

n
, F2(Xi2) ≤ kx2

n
}, (2.5)

Λ̃U (x) =
1

k

n∑
i=1

I{F1(Xi1) > 1− kx1

n
, F2(Xi2) > 1− kx2

n
}. (2.6)

For the sake of brevity we restrict our investigations to the case of lower tail copulas and we assume that

this function is non-zero in a single point x ∈ R2
+ [and as a consequence non-zero everywhere on R2

+, see

Theorem 1 in Schmidt and Stadtmüller (2006)].

Let B∞(R̄2
+) denote the space of all functions f : R̄2

+ → R, which are locally uniformly bounded on every

compact subset of R̄2
+, with metric

d(f1, f2) =
∞∑
i=1

2−i(||f1 − f2||Ti ∧ 1),

where the sets Ti are defined recursively by T3i = T3i−1 ∪ [0, i]2, T3i−1 = T3i−2 ∪ ([0, i] × {∞}), T3i−2 =

T3(i−1) ∪ ({∞}× [0, i]) and T0 = ∅. Note that with this metric the set B∞(R̄2
+) is a complete metric space

and that a sequence fn in B∞(R̄2
+) converges with respect to d if and only if it converges uniformly on

every Ti, see Van der Vaart and Wellner (1996). Throughout this paper l∞(T ) denotes the set of uniformly

bounded functions on a set T and  denotes weak convergence in the sense of Hoffmann-Jørgensen, see

e.g. Van der Vaart and Wellner (1996).

Schmidt and Stadtmüller (2006) assumed that the lower tail copula ΛL satisfies the second-order condition

lim
t→∞

ΛL(x)− tC(x1/t, x2/t)

A(t)
= g(x) (2.7)

locally uniformly for x = (x1, x2) ∈ R̄2
+, where g is a non-constant function and the function A : R+ →

R+ satisfies limt→∞A(t) = 0. Under this and the additional assumptions ΛL 6= 0,
√
kA(n/k) → 0,

k = k(n) → ∞, k = o(n), they showed that the lower tail copula process with known marginals defined

in (2.5) converges weakly in B∞(R̄2
+), that is

√
k
(

Λ̃L(x)− ΛL(x)
)
 GΛ̃L

(x), (2.8)

where GΛ̃L
is a centered Gaussian field with covariance structure given by

EGΛ̃L
(x)GΛ̃L

(y) = ΛL(x1 ∧ y1, x2 ∧ y2). (2.9)

4



For the empirical tail copula Λ̂L(x) they established the weak convergence

αn(x) =
√
k
(

Λ̂L(x)− ΛL(x)
)
 GΛ̂L

(x) (2.10)

in B∞(R̄2
+), provided that the tail copula has continuous partial derivatives. Here the limiting process

GΛ̂L
has the representation

GΛ̂L
(x) = GΛ̃L

(x)− ∂1ΛL(x)GΛ̃L
(x1,∞)− ∂2ΛL(x)GΛ̃L

(∞, x2). (2.11)

The assumption of continuous partial derivatives is made in the whole literature on estimation of stable

tail dependence functions and tail copulas. However, as demonstrated in (1.4) there does not exist any

tail copula ΛL 6= 0 with continuous partial derivatives at the origin (0, 0). With our first result we will

fill this gap and prove weak convergence of the empirical tail copula process under substantially weaker

smoothness assumptions. For this purpose we will use a similar approach as in Schmidt and Stadtmüller

(2006) since this turns out to be also useful for a proof of consistency of the multiplier bootstrap. First

we consider the case of known marginals. Due to the second order condition (2.7) the proof of (2.8) can

be given by showing weak convergence of the centered statistic

α̃n(x) :=
√
k
(

Λ̃L(x)− n

k
C(x1k/n, x2k/n)

)
. (2.12)

Lemma 2.1. If ΛL 6= 0 and the second order condition (2.7) holds with
√
kA(n/k) → 0, where k =

k(n)→∞ and k = o(n), then we have, as n tends to infinity

α̃n(x) =
√
k
(

Λ̃L(x)− n

k
C(x1k/n, x2k/n)

)
 GΛ̃L

(x) (2.13)

in B∞(R̄2
+), where GΛ̃L

is a tight centered Gaussian field concentrated on Cρ(R̄2
+) with covariance structure

given in (2.9), where ρ is a pseudometric on the space R̄2
+ defined by

ρ(x,y) = E
[
(GΛ̃L

(x)−GΛ̃L
(y))2

]1/2
= (ΛL(x)− 2ΛL(x ∧ y) + ΛL(x))1/2 ,

x = (x1, x2), y = (y1, y2), x ∧ y = (x1 ∧ y1, x2 ∧ y2) and Cρ(R̄2
+) ⊂ B∞(R̄2

+) denotes the subset of all

functions that are uniformly ρ-continuous on every Ti.

This assertion is proved in Schmidt and Stadtmüller (2006) by showing convergence of the finite dimen-

sional distributions and tightness. The proof of consistency of the bootstrap procedures proposed in the

following section follows in part by arguments from an alternative proof of (2.13) based on Donsker classes

which will be accomplished in the appendix.

For a proof of a corresponding result for the empirical tail copula process with estimated marginals in

(2.10) we will use the functional delta method in (2.8) with some suitable functional.

Theorem 2.2. Let ΛL 6= 0 be a lower tail copula whose partial derivatives satisfy the following first order

properties

∂p ΛL exists on {x ∈ R̄2
+ |xp <∞} and is continuous on {x ∈ R̄2

+ | 0 < xp <∞} (2.14)
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for p = 1, 2. If additionally the assumptions of Lemma 2.1 are satisfied then we have

αn(x) =
√
k
(

Λ̂L(x)− ΛL(x)
)
 GΛ̂L

(x)

in B∞(R̄2
+), where the process GΛ̂L

is defined in (2.11) and ∂p ΛL, p = 1, 2 is defined as 0 on the set

{x ∈ R̄2
+ |xp =∞}.

Theorem 2.2 has been proved by Schmidt and Stadtmüller (2006) under the additional assumption that

the tail copula has continuous partial derivatives. As pointed out in the previous paragraphs there does

not exist any tail copula ΛL 6= 0 with this property.

3 Multiplier bootstrap approximation

3.1 Asymptotic theory

In this section we will construct multiplier bootstrap approximations of the Gaussian limit distributions

GΛ̃L
and GΛ̂L

specified in (2.8) and (2.10), respectively. To this end let ξi be i.i.d. positive random

variables, independent of the Xi, with mean µ in (0,∞) and finite variance τ2, which additionally satisfy

||ξ||2,1 :=
∫∞

0

√
P (|ξ| > x) dx < ∞. We will first deal with the case of known marginals and define a

multiplier bootstrap analogue of (2.5) by

Λ̃ξL(x) =
1

k

n∑
i=1

ξi
ξ̄n

I{F1(Xi1) ≤ kx1

n
, F2(Xi2) ≤ kx2

n
} (3.1)

where ξ̄n = n−1
∑n

i=1 ξi denotes the mean of ξ1, . . . , ξn. We have

α̃mn (x) =
µ

τ

1√
n

n∑
i=1

(
ξi
ξ̄n
− 1

)
fn,x(Ui) =

µ

τ

√
k
(
Λ̃ξL − Λ̃L

)
, (3.2)

where the function fn,x(Ui) is defined by

fn,x(Ui) =

√
n

k
I {Ui1 ≤ kx1/n, Ui2 ≤ kx2/n} , (3.3)

and

Ui = (Ui1, Ui2); Uij = Fj(Xij), for j = 1, 2.

Throughout this paper we use the notation

Gn
P
 
ξ
G in D (3.4)

for conditional weak convergence in a metric space (D, d) in the sense of Kosorok (2008), page 19. To be

precise, (3.4) holds for some random variables Gn = Gn(X1, . . . ,Xn, ξ1, . . . ξn), G ∈ D if and only if

sup
h∈BL1(D)

|Eξh(Gn)− Eh(G)| P∗−→ 0 (3.5)
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and

Eξh(Gn)∗ − Eξh(Gn)∗
P∗−→ 0 for every h ∈ BL1(D), (3.6)

where

BL1(D) = {f : D→ R | ||f ||∞ ≤ 1, |f(β)− f(γ)| ≤ d(β, γ) ∀ γ, β ∈ D}

denotes the set of all Lipschitz-continuous functions bounded by 1. The subscript ξ in the expectations

indicates conditional expectation over the weights ξ = (ξ1, . . . , ξn) given the data and h(Gn)∗ and h(Gn)∗

denote measurable majorants and minorants with respect to the joint data, including the weights ξ. The

condition (3.5) is motivated by the metrization of weak convergence by the bounded Lipschitz-metric, see

e.g. Theorem 1.12.4 in Van der Vaart (1998). The following result shows that the process (3.2) provides

a valid bootstrap approximation of the process (2.12).

Theorem 3.1. If ΛL 6= 0 and the second order condition (2.7) holds with
√
kA(n/k)→ 0, k = k(n)→∞

and k = o(n) we have, as n tends to infinity,

α̃mn =
µ

τ

√
k
(
Λ̃ξL − Λ̃L

) P
 
ξ
GΛ̃L

in the metric space B∞(R̄2
+).

Since Theorem 3.1 states that we have weak convergence of α̃mn to GΛ̃L
conditional on the data Ui, it pro-

vides a bootstrap approximation of the empirical tail copula in the case where the marginal distributions

are known. To be precise, consider B ∈ N independent replications of the random variables ξ1, . . . , ξn and

denote them by ξ1,b, . . . , ξn,b. Compute the statistics α̃mn,b = α̃mn (ξ1,b, . . . , ξn,b) (b = 1, . . . , B) and use the

empirical distribution of α̃mn,1, . . . , α̃
m
n,B as an approximation for the limiting distribution of GΛ̃L

.

Because in most cases of practical interest there will be no information about the marginals one can-

not use Theorem 3.1 in many statistical applications. We will now develop two consistent bootstrap

approximation for the limiting distribution of the process (2.10) which do not require knowledge of the

marginals. Intuitively, it is natural to replace the unknown marginal distributions in (3.1) by its empirical

counterparts, that is

Λ̂ξ,·L (x) =
1

k

n∑
i=1

ξi
ξ̄n

I{Xi1 ≤ F−1
n1 (kx1/n), Xi2 ≤ F−1

n2 (kx2/n)} (3.7)

which yields the process

βn(x) =
µ

τ

√
k
(

Λ̂ξ,·L − Λ̂L

)
=
µ

τ

1√
k

n∑
i=1

(
ξi
ξ̄n
− 1

)
I{Xi1 ≤ F−1

n1 (kx1/n), Xi2 ≤ F−1
n2 (kx2/n)}.

Unfortunately, this intuitive approach does not yield an approximation for the distribution of the process

GΛ̂L
, but of GΛ̃L

.
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Theorem 3.2. Suppose that the assumptions of Theorem 2.2 hold. Then we have, as n tends to infinity

βn =
µ

τ

√
k
(
Λ̂ξ,·L − Λ̂L

) P
 
ξ
GΛ̃L

in the metric space B∞(R̄2
+).

Although Theorem 3.2 provides a negative result and shows, that the distribution of βn can not be used

for approximating the limiting law GΛ̂L
, it turns out to be essential for our first consistent multiplier

bootstrap method. To be precise, we note that the distribution of βn can be calculated from the data

without knowing the marginal distributions. As a consequence, we obtain an approximation for the

unknown distribution of the process GΛ̃L
. In order to get an approximation of GΛ̂L

we follow Rémillard

and Scaillet (2009) and estimate the derivatives of the tail copula by

∂̂pΛL(x) :=


Λ̂L(x+hep)−Λ̂L(x−hep)

2h ,∞ > xp ≥ h

∂̂pΛL(x + (h− xp)ep) =
Λ̂L(x+2hep)−Λ̂L(x−xpep)

2h , xp < h

0 , xp =∞

where h ∼ k−1/2 tends to 0 with increasing sample size. We will show in the Appendix (see the proof of

the following Theorem in Appendix A) that these estimates are consistent, and consequently we define

the process

αpdmn (x) = βn(x)− ∂̂1ΛL(x)βn(x1,∞)− ∂̂2ΛL(x)βn(∞, x2). (3.8)

Note that αpdmn only depends on the data and the multipliers ξ1, . . . , ξn. As a consequence, a bootstrap

sample can easily be generated as described in the previous paragraph and we call this method partial

derivatives multiplier bootstrap (pdm-bootstrap) in the following discussion. Our next result shows that

the pdm-bootstrap provides a valid approximation for the distribution of the process GΛ̂L
.

Theorem 3.3. Under the assumptions of Theorem 2.2 we have

αpdmn
P
 
ξ
GΛ̂L

in the metric space B∞(R̄2
+).

It turns out that there is an alternative valid multiplier bootstrap procedure in the case of unknown

marginal distributions, which is attractive because it avoids the problem of estimating the partial deriva-

tives of the lower tail copula. This method not only introduces multiplier random variables in the two-

dimensional distribution function but also in the inner estimators of the marginals. To be precise define

F ξn(x) =
1

n

n∑
i=1

ξi
ξ̄n

I{Xi1 ≤ x1, Xi2 ≤ x2}

F ξnj(xj) =
1

n

n∑
i=1

ξi
ξ̄n

I{Xij ≤ xj}, j = 1, 2
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Cξ,ξn (u) = F ξn(F ξ−n1 (u1), F ξ−n2 (u2)).

and consider the process

Λ̂ξ,ξL (x) :=
n

k
Cξ,ξn

(
k

n
x

)
=

1

k

n∑
i=1

ξi
ξ̄n

I{Xi1 ≤ F ξ−n1 (kx1/n), Xi2 ≤ F ξ−n2 (kx2/n)} (3.9)

≈ 1

k

n∑
i=1

ξi
ξ̄n

I{F ξn1(Xi1) ≤ kx1/n, F
ξ
n2(Xi2) ≤ kx2/n} (3.10)

Throughout this paper we will call this bootstrap method the direct multiplier bootstrap (dm-bootstrap).

Theorem 3.4. Under the assumptions of Theorem 2.2 we have

αdmn (x) =
µ

τ

√
k
(

Λ̂ξ,ξL (x)− Λ̂L(x)
)

P
 
ξ
GΛ̂L

in B∞(R̄2
+)). (3.11)

3.2 Finite sample results

In this section we will present a small comparison of the finite sample properties of the two bootstrap

approximations given in this section. For the sake of brevity we only consider data generated form the

Clayton copula with a coefficient of lower tail dependence λL = 0.25. The Clayton copula,

C(u; θ) =
(
u−θ1 + u−θ2 − 1

)−1/θ
, θ > 0, (3.12)

is a widely used copula family for the modeling of negative tail dependent data. Its lower tail copula is

given by

ΛL(x) =
(
x−θ1 + x−θ2

)−1/θ
.

In Tables 1 - 3 we investigate the accuracy of the bootstrap approximation of the covariances of the limiting

variable GΛ̂L
. More precisely, we chose three points on the unit circle {eiϕ, ϕ = kπ/8 with k = 1, 2, 3} and

show in the first four columns of Table 1 the true covariances of the limiting process GΛ̂L
. The remaining

columns show the simulated covariances of the process αn on the basis of 5 · 105 simulation runs, where

the sample size is n = 1000 and the parameter k is chosen as 50. This table is the benchmark for the

bootstrap approximations of the covariances stated in Table 2. For the sake of completeness we also

investigated the resampling bootstrap considered in Peng and Qi (2008) (which is hereafter denoted by

αresn ). The covariances are based on the average of 1000 simulation runs, where in each run the covariance

is estimated on the basis of B = 500 bootstrap replications. In Table 3 we present the corresponding

mean squared error.

As one can see all bootstrap procedures yield approximations of quite comparable magnitude. Considering

only the bias in Table 2 the pdm-bootstrap has slight advantages in all cases, while there are basically no

differences between the dm- and the resampling bootstrap. A comparison of the mean squared error in

Table 3 shows that the pdm-bootstrap has the best performance on the diagonal. On the other hand, it

yields a less accurate approximation in case of approximating off-diagonal covariances. In this case, the

dm-bootstrap yields the best results.
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True π
8 2π8 3π8 αn

π
8 2π8 3π8

π
8 0.0874 0.0754 0.0516 π

8 0.0889 0.0737 0.0476

2π8 0.1160 0.0754 2π8 0.1218 0.0741

3π8 0.0874 3π8 0.0892

Table 1: Left part: True covariances of GΛ̂L
for the Clayton Copula with λL = 0.25. Right part: sample

covariances of the empirical tail copula process αn with sample size n = 1000 and parameter k = 50.

αpdmn
π
8 2π8 3π8 αdmn

π
8 2π8 3π8 αresn

π
8 2π8 3π8

π
8 0.0948 0.0729 0.0468 π

8 0.1001 0.0714 0.0450 π
8 0.1004 0.0701 0.0439

2π8 0.1300 0.0724 2π8 0.1369 0.7073 2π8 0.1363 0.0702

3π8 0.0944 3π8 0.0999 3π8 0.0998

Table 2: Averaged sample covariances of the Bootstrap approximations αpdmn , αdmn and αresn of GΛ̂L
under

the conditions of Table 1.

αpdmn
π
8 2π8 3π8 αdmn

π
8 2π8 3π8 αresn

π
8 2π8 3π8

π
8 3.6767 4.6885 3.6509 π

8 3.8699 3.4967 2.7241 π
8 4.2179 3.8511 3.2198

2π8 8.1104 4.8774 2π8 8.8928 3.2598 2π8 8.7310 3.6403

3π8 3.7062 3π8 3.7777 3π8 3.9002

Table 3: Mean squared error ×104 of the different estimates for the covariances in Table 2.
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4 Statistical applications

In this section we investigate several statistical applications of the multiplier bootstrap. In particular we

discuss the problem of comparing lower tail copulas from different samples, the problem of constructing

confidence intervals and the problem of testing for a parametric form of the lower tail copula.

4.1 Testing for equality between two tail copulas

Let X1, . . . ,Xn1 and Y1, . . . ,Yn2 denote two independent samples of i.i.d. random variables [we will

relax the assumption of independence between the samples later on] with cumulative distribution function

F = C(F1, F2) and H = D(H1, H2), respectively. We assume that the marginal distributions F1, F2 and

H1, H2 of F and H are continuous and that for both distributions the corresponding lower tail copulas,

say ΛL,X and ΛL,Y , exist and do not vanish. We are interested in a test for the hypothesis

H0 : ΛL,X ≡ ΛL,Y vs. H1 : ΛL,X 6= ΛL,Y (4.1)

Due to the homogeneity of tail copulas we have ΛL(tx) = tΛL(x) ∀t > 0,x ∈ R2
+, and the hypotheses

are equivalent to

H0 : %(ΛL,X ,ΛL,Y ) = 0 vs H1 : %(ΛL,X ,ΛL,Y ) > 0,

where the distance % is defined by

%(ΛL,X ,ΛL,Y ) :=

∫ π/2

0

(
ΛL,X(cosϕ, sinϕ)− ΛL,Y (cosϕ, sinϕ)

)2
dϕ (4.2)

=

∫ π/2

0

(
Λ∠L,X(ϕ)− Λ∠L,Y (ϕ)

)2
dϕ

and we have used the notation

Λ∠L,X(ϕ) = ΛL,X(cosϕ, sinϕ), Λ∠L,Y (ϕ) = ΛL,Y (cosϕ, sinϕ).

We propose to base the test for the hypothesis (4.1) on the distance between the empirical tail copulas

and define

Sn =
k1k2

k1 + k2
%(Λ̂L,X , Λ̂L,Y ) =

k1k2

k1 + k2

∫ π/2

0
(Λ̂∠L,X(ϕ)− Λ̂∠L,Y (ϕ))2 dϕ,

where Λ̂∠L,X(ϕ) = Λ̂L,X(cos(ϕ), sin(ϕ)), Λ̂∠L,Y = Λ̂L,Y (cos(ϕ), sin(ϕ)) denote the empirical tail copulas

Λ̂L,X and Λ̂L,Y with corresponding parameters k1 and k2, satisfying

ki = o(ni), ki/ log(ni)→∞ (i = 1, 2) and k1/(k1 + k2)→ λ ∈ (0, 1).

Note that Sn can easily be computed from the ranks ofXil and Yil in their respective samples, X1l, . . . , Xn1l

and Y1l, . . . , Yn2l that is

Sn =
k1k2

k1 + k2

{
1

k2
1

n1∑
i=1

n1∑
j=1

[(arccos(Si1) ∧ arccos(Sj1))− (arcsin(Si2) ∨ arcsin(Sj2))]+

11



− 2

k1k2

n1∑
i=1

n2∑
j=1

[(arccos(Si1) ∧ arccos(Tj1))− (arcsin(Si2) ∨ arcsin(Tj2))]+

+
1

k2
2

n2∑
i=1

n2∑
j=1

[(arccos(Ti1) ∧ arccos(Tj1))− (arcsin(Ti2) ∨ arcsin(Tj2))]+ .

Here we used the notation Sil = R(Xil)
k1
∧ 1, Til = R(Yil)

k1
∧ 1 (l = 1, 2) and [f ]+ denotes the positive part

of the function f .

Under the null hypothesis (4.1) of equality between the tail copulas we have Sn = Tn with

Tn =

∫ π/2

0
E2
n(cosϕ, sinϕ) dϕ,

where

En(x) =

√
k2

k1 + k2

√
k1(Λ̂L,X(x)− ΛL,X(x))−

√
k1

k1 + k2

√
k2(Λ̂L,Y (x)− ΛL,Y (x)).

Since the two samples X and Y are independent we obtain independently of the hypotheses that

En  
√

1− λGΛ̂L,X
−
√
λGΛ̂L,Y

=: E .

in the metric space B∞(R̄2
+), where the two-dimensional centered Gaussian fields GΛ̂L,X

and GΛ̂L,Y
are

defined in (2.11). This yields by the continuous mapping theorem

Tn  
∫ π/2

0
E2(cosϕ, sinϕ) dϕ =: T

under both the null hypothesis and the alternative. Note that %(Λ̂L,X , Λ̂L,Y )
P→ %(ΛL,X ,ΛL,Y ), which

vanishes if and only if the null hypothesis (4.1) is satisfied. Therefore we can conclude that

Sn  H0 T , Sn
P→H1 ∞, (4.3)

which shows that a test, which rejects the null hypothesis (4.1) for large values of Tn is consistent.

In order to determine critical values for the test we approximate the limiting distribution T by the

multiplier bootstrap proposed in Section 3. For this purpose we exemplarily consider the pdm-bootstrap

(the extension to the dm-bootstrap is straightforward) using the definition in equation (3.11) and denote

for any b ∈ {1, . . . , B} by ξ1,b, . . . , ξn1,b, ζ1,b, . . . , ζn2,b independent and identically distributed non-negative

random variables with mean µ1 (resp. µ2) and variance τ2
1 (resp. τ2

2 ). We compute for each b and both

samples the bootstrap statistics as given in (3.8) or (3.11), i.e.

αpdmX,n1,b
(x) = βX,n1,b(x)− ∂̂1ΛL,X(x)βX,n1,b(x1,∞)− ∂̂2ΛL,X(x)βX,n1,b(∞, x2),

αpdmY,n2,b
(x) = βY,n2,b(x)− ∂̂1ΛL,Y (x)βY,n2,b(x1,∞)− ∂̂2ΛL,Y (x)βY,n2,b(∞, x2),

where

βX,n1,b(x) =
µ1

τ1

1√
k1

n1∑
i=1

(
ξi,b

ξ̄·,bn1

− 1

)
I{Fn11(Xi1) ≤ k1x1/n1, Fn12(Xi2) ≤ k1x2/n1},
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βY,n2,b(x) =
µ2

τ2

1√
k2

n2∑
i=1

(
ζi,b

ζ̄·,bn2

− 1

)
I{Hn21(Yi1) ≤ k2x1/n2, Hn22(Yi2) ≤ k2x2/n2},

and ∂̂jΛL,X and ∂̂jΛL,Y are the corresponding estimates of the partial derivatives (j = 1, 2, e1 = (1, 0),

e2 = (0, 1)). For all x ∈ R̄2
+ and all b ∈ {1, . . . , B} define

Ê(pdm,b)
n (x) :=

√
k2

k1 + k2
αpdmX,n1,b

(x)−
√

k1

k1 + k2
αpdmY,n2,b

(x),

T̂ (pdm,b)
n :=

∫ π/2

0

{
Ê(pdm,b)
n (cosϕ, sinϕ)

}2
dϕ,

By Theorem 3.3 and Theorem 10.8 in Kosorok (2008), it follows for every b ∈ {1, . . . , B}

T̂ (pdm,b)
n

P
 
ξ
T (b),

where T (b) is an independent copy of T (note that we consider the processes Ê(β,b)
n and Ê(γ,b)

n in the

Banachspace l∞([0, 1]2)). Similarly, we have T̂ (dm,b)
n

P
 
ξ
T (b). From (4.3) we therefore obtain a consistent

asymptotic level α test for the null hypothesis (4.1) by rejecting H0 for large values of Sn, that is

Sn > qm1−α (4.4)

where qm1−α denotes the (1− α) quantile of the empirical distribution function

Km
n (s) =

1

B

B∑
b=1

I{T̂ (m,b)
n ≤ s}

(here m is either pdm or dm corresponding to partial derivative or direct multiplier bootstrap).

The discussion up till now holds true for two independent populations Xi and Yi. Nevertheless it is easy to

check that the methodology of the previous sections also applies if we are faced with paired observations,

i.e. Xi is not independent of Yi, but n1 = n2 = n. In that case we have to set ζi,b = ξi,b for all i = 1, . . . , n

and b = 1, . . . , B. To see this, set Zi = (Xi1,Xi2,Yi1,Yi2) and denote the (empirical) copula of Zi by

(Cn) C. Clearly,

C(u1, u2) = C(u1, u2, 1, 1), D(v1, v2) = C(1, 1, v1, v2),

Cn(u1, u2) = Cn(u1, u2, 1, 1), Dn(v1, v2) = Cn(1, 1, v1, v2).

If we set

ΛL,Z(x,y) = lim
t→∞

t C(x/t,y/t),

Λ̂L,Z(x,y) =
n

k
Cn(

nx

k
,
ny

k
),

we obtain

ΛL,X(x) = ΛL,Z(x,∞,∞), ΛL,Y (y) = ΛL,Z(∞,∞,y),

13



λL,X λL,Y α = 0.15 α = 0.1 α = 0.05

0.25 0.25 0.143 0.098 0.054

0.5 0.5 0.140 0.099 0.047

0.75 0.75 0.117 0.078 0.029

0.25 0.5 0.764 0.706 0.605

0.5 0.75 0.896 0.856 0.783

0.25 0.75 1 1 1

Table 4: Simulated rejection probabilities of the pdm bootstrap test (4.4) for the hypothesis (4.1) .

λL,X λL,Y α = 0.15 α = 0.1 α = 0.05

0.25 0.25 0.125 0.091 0.052

0.5 0.5 0.108 0.069 0.036

0.75 0.75 0.068 0.051 0.023

0.25 0.5 0.713 0.643 0.529

0.5 0.75 0.869 0.822 0.713

0.25 0.75 0.999 0.999 0.997

Table 5: Simulated rejection probabilities of the dm bootstrap test (4.4) for the hypothesis (4.1)

Λ̂L,X(x) = Λ̂L,Z(x,∞,∞), Λ̂L,Y (y) = Λ̂L,Z(∞,∞,y).

Similar relations for the multiplier approximations are straightforward and the result follows along similar

lines as in the previous sections.

For an investigation of the finite sample property we consider two independent samples of i.i.d. distributed

random variables according to the Clayton copula, see (3.12), with a coefficient of lower tail dependence

λL varying in the set {0.25, 0.5, 0.75}.
In Table 4 and 5 we show the simulated rejection probabilities of the pdm and dm bootstrap test defined

in (4.4) for various nominal levels on the basis of 1000 simulation runs. The sample size is n = 1000,

k = 50 and B = 500 bootstrap replications with Laplacian(0, 2) multipliers have been used.

We observe that the nominal level is well approximated by the pdm bootstrap if the coefficient of tail

dependence is not too large. For a larger coefficient the test is conservative. On the other hand, the

dm bootstrap test is slightly more conservative and this effect is increasing with the coefficient of tail

dependence. The alternative of different lower tail copulas is detected with reasonable power where both

tests yield rather similar results with slight advantages for the pdm-bootstrap.
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4.2 Bootstrap approximation of a minimum distance estimate and a computationally

efficient goodness-of-fit test

In this section we are interested in estimating the tail copula of X under the additional assumption that

the tail copula lies in some parametric class, say

L = {ΛL(·; θ) | θ ∈ Θ} . (4.5)

Recently, estimates for parametric classes of tail copulas and stable tail dependence functions have been

investigated by de Haan et al. (2008) and Einmahl et al. (2008) who proposed a censored likelihood and

a moment based estimator, respectively. In the present section we investigate a further estimate, which is

based on the minimum distance method. To be precise let ΛL denote an arbitrary lower tail copula and

ΛL( · ; θ) an element in the parametric class L and define

Λ∠L(ϕ) = ΛL(cosϕ, sinϕ), Λ∠L(ϕ; θ) = ΛL(cosϕ, sinϕ; θ).

We consider the parameter corresponding to the best approximation by the distance % defined in (4.2)

θB = T (ΛL) = arg min
θ∈Θ

%(ΛL,ΛL( · ; θ)), (4.6)

and call θ̂MD
n = T (Λ̂L) a minimum distance estimator for θ, where Λ̂L is the empirical lower tail copula

defined in (2.1) and Λ̂∠L = Λ̂L(cosϕ, sinϕ). Note that θB is the “true” parameter if the null hypothesis is

satisfied.

Throughout this subsection let X1, . . . ,Xn denote i.i.d. bivariate random variables with cumulative

distribution function F = C(F1, F2) and existing lower tail copula ΛL. Furthermore, we introduce the

notations

Q(θ) = %(ΛL,ΛL(·; θ)), ψ(θ) = ∂θQ(θ),

Qn(θ) = %(Λ̂L,ΛL(·; θ)), ψn(θ) = ∂θQn(θ),

and assume that the following regularity conditions are satisfied.

(B.1) The parameter space Θ has non-empty interior, say Θ0, and the parameter θB = T (ΛL) ∈ Θ0

corresponding to the best approximation of the lower tail copula by the parametric class L exists

and is unique.

(B.2) ΛL(·; θ) is continuously differentiable with respect to θ ∈ Θ0 with δθ(x) = ∂θ ΛL(x; θ) and the

mapping x 7→ supθ∈Θ ||δθ(x)|| is integrable on K+ = {(cosϕ, sinϕ) : ϕ ∈ [0, π/2]}.

(B.3) For every ε > 0

inf
θ:||θ−θB ||≥ε

||ψ(θ)|| > 0 = ||ψ(θB)||.

(B.4) ∂θ δθ(x) exists for every x ∈ K+ and is continuous in θB.
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(B.5) The matrix

AθB :=

∫
δ∠θB (ϕ)δ∠θB (ϕ)T + ∂θ δ

∠
θB

(ϕ)(Λ∠L(ϕ; θB)− Λ∠L(ϕ)) dϕ

exists and is non-singular, where δ∠θ (ϕ) = δθ(cosϕ, sinϕ).

Theorem 4.1. If the assumptions (B.1) - (B.3) hold and the true tail copula ΛL satisfies the first or-

der condition (2.14) of Theorem 2.2, then the minimum distance estimator θ̂MD
n is consistent for the

parameter θB corresponding to the best approximation with respect to the distance %. If additionally the

conditions (B.4) and (B.5) also hold, then the minimum distance estimator θ̂MD
n is asymptotically nor-

mally distributed, more precisely

ΘMD
n :=

√
k(θ̂MD

n − θB) =
√
k

∫
γθB (ϕ)

(
Λ̂∠L(ϕ)− Λ∠L(ϕ)

)
dϕ+ oP∗(1)

 
∫
γθB (ϕ)G∠

Λ̂L
(ϕ) dϕ =: ΘMD,

where γθB (ϕ) = A−1
θB
δ∠θB (ϕ) and G∠

Λ̂L
(ϕ) = GΛ̂L

(cosϕ, sinϕ). The limiting variable ΘMD is centered

normally distributed with variance

σ2 =

∫
[0,π/2]2

γθB (ϕ)γθB (ϕ′)r(cosϕ, sinϕ, cosϕ′, sinϕ′) d(ϕ,ϕ′),

where r denotes the covariance functional of the process GΛ̂L
defined in (2.11).

In order to make use of the latter result in statistical applications one needs the quantiles of the limiting

distribution. We propose to use the multiplier bootstrap discussed in the previous section. The following

theorem shows that the pdm and dm bootstrap yield a valid approximation of the distribution of the

random variable ΘMD.

Theorem 4.2. If the assumptions of the Theorems 4.1, 3.3 and 3.4 hold and Γn denotes either the process

αpdmn (Theorem 3.3) or αdmn (Theorem 3.4) obtained by the pdm- or dm-bootstrap, respectively, then

ΘMD,m
n :=

∫
γθ̂MD

n
(ϕ)Γ∠n(ϕ) dϕ

P
 
ξ

ΘMD,

where Γ∠n(ϕ) = Γn(cosϕ, sinϕ).

On the basis of this result it is possible to construct asymptotic confidence regions for the parameter θ

as well as to test point hypotheses regarding the parameter. In Table 6 we present a small simulation

study regarding the finite sample coverage probabilities of some confidence intervals for the parameter of a

Clayton tail copula. The sample size is n = 1000 or n = 3000 and we used B = 500 bootstrap replications

and 1000 simulation runs to calculate the coverage probabilities. The parameter of the Clayton tail copula

is chosen in such a way that the tail dependence coefficient varies in the set {1/4, 2/4, 3/4}. As one can

see we get accurate results in all cases. For small sample sizes the approximation works better for weak
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n λL 90% 95% n λL 90% 95%

1000 0.25 0.895 0.955 3000 0.25 0.833 0.914

0.5 0.893 0.936 0.5 0.900 0.941

0.75 0.838 0.887 0.75 0.890 0.935

Table 6: Simulated coverage probability of the confidence intervals based on the pdm-bootstrap, n = 1000

(k = 50) and n = 3000 (k = 100)

tail dependence while for rather large sample sizes strong tail dependence yields slightly more accurate

results.

It is also notable that the dm- and pdm-bootstrap can be used to construct a consistent approximation

of the asymptotic distribution of the censored likelihood and moment estimator investigated in de Haan

et al. (2008) and Einmahl et al. (2008).

In the following we will use the multiplier bootstrap to construct a computationally efficient goodness-of-fit

test for the hypothesis that the lower tail copula has a specific parametric form, i.e.

H0 : ΛL ∈ L, H1 : ΛL /∈ L. (4.7)

This problem has also been discussed in de Haan et al. (2008) and Einmahl et al. (2008) who proposed a

comparison between a nonparametric and a parametric estimate of the lower tail copula by an L2-distance.

In both cases the limiting distribution of the corresponding test statistic under the null hypothesis depends

in a complicated way on the process GΛ̂L
and the unknown true parameter θB. While Einmahl et al. (2008)

does not propose any bootstrap approximation, de Haan et al. (2008) proposed to use the parametric

bootstrap. However, it was pointed out by Kojadinovic and Yan (2010) or Kojadinovic et al. (2010) that

for copula models, approximations based on multiplier bootstraps are computationally more efficient,

especially for large sample sizes. We will now illustrate how the multiplier bootstrap can be successfully

applied in the problem of testing the hypothesis (4.7).

To be precise, we propose to compare a parametric (using the minimum distance estimate θ̂MD
n ) and a

nonparametric estimate of the tail copula and to reject the null hypothesis (4.7) for large values of the

statistic

GOFn := k %(Λ̂L,ΛL(·; θ̂MD
n )) = k

∫ (
Λ̂∠L(ϕ)− Λ∠L(ϕ; θ̂MD

n )
)2

dϕ,

where θ̂MD
n denotes the minimum distance estimate. If the assumptions (B.1) - (B.5) are satisfied we

obtain for the process Hn =
√
k
(

Λ̂L − ΛL(·; θ̂MD
n )

)
under the null hypothesis H0 : ΛL = ΛL(·; θB)

Hn =
√
k
(

Λ̂L − ΛL − (Λ̂L(·, θ̂MD
n )− ΛL(·, θ))

)
=
√
k
(

Λ̂L − ΛL − δθ(θ̂MD
n − θ)

)
+ oP∗(1)

=
√
k

(
Λ̂L − ΛL − δθ

∫
γθ(ϕ)(Λ̂∠L(ϕ)− Λ∠L(ϕ) dϕ

)
+ oP∗(1)
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 GΛ̂L
− δθ

∫
γθ(ϕ)G∠

Λ̂L
(ϕ) dϕ = GΛ̂L

− δθ ΘMD.

Under the alternative hypothesis we get an additional summand

Hn =
√
k
(

Λ̂L − ΛL − δθ(θ̂MD
n − θ)− (ΛL(·; θB)− ΛL)

)
+ oP∗(1),

which converges to either plus or minus infinity whenever ΛL(x, θB) 6= ΛL(x). The continuous mapping

theorem yields the following result.

Theorem 4.3. Assume that assumptions of Theorem 4.1 are satisfied. If the null hypothesis is valid then

GOFn =

∫
{H∠n (ϕ)}2 dϕ 

∫ (
G∠

Λ̂L
(ϕ)− δ∠θ (ϕ) ΘMD

)2

dϕ,

while under the alternative

GOFn =

∫
{H∠n (ϕ)}2 dϕ P∗−→∞.

The critical values of the test, which rejects the null hypothesis for large values of GOFn can be calculated

on the basis of the following theorem. The proof is similar to the proof of Theorem 4.2 in the appendix

and is therefore omitted.

Theorem 4.4. If the assumptions of the Theorems 4.1, 3.3 and 3.4 hold and Γn denotes either the

process αpdmn (Theorem 3.3) or αdmn (Theorem 3.4) obtained by the pdm- or dm-bootstrap, respectively,

then it holds independently of the hypotheses that

Hm
n := Γn − δθ̂MD

n

∫
γθ̂MD

n
(ϕ) Γ∠n(ϕ) dϕ

P
 
ξ
GΛ̂L

− δθB ΘMD.

Therefore

GOFmn =

∫
{Hm∠

n (ϕ)}2 dϕ P
 
ξ

∫ (
G∠

Λ̂L
(ϕ)− δ∠θ (ϕ) ΘMD

)2

dϕ.

In order to investigate the finite sample properties of a goodness-of-fit test on the basis of the multiplier

bootstrap we show in Table 7 the simulated level of the pdm-bootstrap test

GOFn > q
(pdm)
1−α (4.8)

where q
(pdm)
1−α denotes the (1 − α) quantile of the bootstrap distribution. For the null hypothesis we

considered as the parametric class the family of Clayton tail copulas. In particular we investigated three

scenarios corresponding to a coefficient of tail dependence varying in {0.25, 0.5, 0.75}. The results are

based on 1000 simulation runs, while the sample size is either n = 1000 and k = 50 or n = 3000

and k = 200. For each test B = 500 bootstrap replications with Laplacian(0, 2) multipliers have been

performed. We observe a reasonable power and approximation of the nominal level. Note that for the

sample size n = 1000 the pdm-bootstrap test is conservative and this effect is increasing with the level of

tail dependence.
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n λL α = 0.15 α = 0.1 α = 0.05 n λL α = 0.15 α = 0.1 α = 0.05

1000 0.25 0.124 0.087 0.037 3000 0.25 0.129 0.090 0.048

0.5 0.097 0.068 0.032 0.5 0.105 0.069 0.031

0.75 0.091 0.048 0.018 0.75 0.084 0.056 0.026

Table 7: Simulated rejection probabilities of the pdm-bootstrap test (4.8) for the hypothesis (4.5) under

the null hypothesis; n = 1000 (k = 50), n = 3000 (k = 200).

n λL α = 0.15 α = 0.1 α = 0.05 n λL α = 0.15 α = 0.1 α = 0.05

1000 1/12 0.095 0.052 0.017 3000 1/12 0.217 0.155 0.092

2/12 0.124 0.066 0.029 2/12 0.374 0.292 0.176

3/12 0.298 0.200 0.088 3/12 0.868 0.819 0.696

Table 8: Simulated rejection probabilities of the pdm-bootstrap test (4.8) for the hypothesis (4.5) under the

alternative C = 1/3Cclay + 2/3Π, where Π denotes the independence copula; n = 1000 (k = 50), n = 3000

(k = 200).
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Appendix A: Proofs

A.1 Proof of Lemma 2.1

Due to Theorem 1.6.1 in Van der Vaart and Wellner (1996) the proof of weak convergence of α̃n in

B∞(R̄2
+) can be given for each l∞(Ti) separately. To this end we note that every Ti can be written in the

form T = [0,M1]× {∞} ∪ {∞} × [0,M2] ∪ [0,M3]2, where M1,M2,M3 ∈ N, and show weak convergence

in l∞(T ). Recalling the notation of fn,x(Ui) in (3.3) we can express α̃n as

α̃n(x) =
1√
n

n∑
i=1

(fn,x(Ui)− Efn,x(Ui)),

and the assertion now follows by an application of Theorem 11.20 in Kosorok (2008). For this purpose

we show that the assumptions for this result are satisfied. Let Fn = {fn,x : x ∈ T} be a class of functions

changing with n and denote by

Fn(u) =

√
n

k
I {u1 ≤ kM/n or u2 ≤ kM/n} ,
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M = M1 ∨M2 ∨M3 a corresponding sequence of envelopes of Fn. We have to prove that

(i) (Fn, Fn) satisfies the bounded uniform entropy integral condition

lim sup
n→∞

sup
Q

∫ 1

0

√
logN(ε||Fn||Q,2,Fn, L2(Q)) dε <∞, (A.1)

where for each n the supremum ranges over all probability measures Q with finite support and

||Fn||Q,2 =
(∫
Fn(x)2 dQ(x)

)1/2
> 0.

(ii) The limit H(x,y) = limn→∞ E[α̃n(x)α̃n(y)] exists for every x and y in T .

(iii) lim supn→∞ EF 2
n(U1) <∞

(iv) limn→∞ EF 2
n(U1)I{Fn(U1) > ε

√
n} = 0 for all ε > 0.

(v) limn→∞ ρn(x,y) = ρ(x,y) for all x,y ∈ R̄2
+, where

ρn(x,y) =
(
E(fn,x(U1))− fn,y(U1))2

)1/2
. (A.2)

Furthermore, for all sequences (xn)n, (yn)n in T the convergence ρn(xn,yn) → 0 holds, provided

ρ(xn,yn)→ 0.

(vi) The sequence Fn of classes is almost measurable Suslin (AMS), i.e. for all n ≥ 1 there exists a

Suslin topological space Tn ⊂ T with Borel sets Bn such that

(a) P∗(supx∈T infy∈Tn |fn,x(U1)− fn,y(U1)| > 0) = 0,

(b) fn,· : [0, 1]2 × Tn → R is B|[0,1]2 × Bn-measurable for i = 1, . . . , n.

In order to prove the bounded uniform entropy integral condition (i) we decompose Fn =
⋃3
i=1F

(i)
n with

F (i)
n = {f (i)

n,x,x ∈ T} and

f
(1)
n,x(Ui) =

√
n

k
I {Ui1 ≤ kx1/n} I{x2 =∞}, f

(2)
n,x(Ui) =

√
n

k
I {Ui2 ≤ kx2/n} I{x1 =∞},

f
(3)
n,x(Ui) =

√
n

k
I {Ui1 ≤ kx1/n, Ui2 ≤ kx2/n} I{x1 <∞, x2 <∞}.

The corresponding envelopes of the classes F (i)
n are given by

F (1)
n (Ui) =

√
n

k
I(Ui1 ≤ kM/n), F (2)

n (Ui) =

√
n

k
I(Ui2 ≤ kM/n),

F (3)
n (Ui) =

√
n

k
I(Ui1 ≤ kM/n,Ui2 ≤ kM/n),

so that Fn(Ui) = max3
i=1{F

(i)
n (Ui)}. If we prove that the sequences (F (i)

n , F
(i)
n ) satisfy the bounded

uniform integral entropy condition given in (A.1), then the condition holds also for (Fn, Fn) by Lemma
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B.1 in the appendix and thus the assertion in (i) is proved. We only consider the (hardest) case of F (3)
n .

Note that F (3)
n = {fn,x,x ∈ [0,M3]2} = G(1)

n · G(2)
n , where

fn,x = (n/k)1/2 I{Ui1 ≤ kx1/n, Ui2 ≤ kx2/n},

G(j)
n = {gn,t = (n/k)1/4I{Uij ≤ kt/n} | t ∈ [0,M3]}

for j = 1, 2. Since the functions gn,t are increasing in t the G
(j)
n are VC-classes with VC-index 2. Thus

by Lemma 11.21 in Kosorok (2008) both classes satisfy the bounded uniform integral entropy condition

(A.1). Proposition 11.22 in Kosorok (2008) shows that F (3)
n has the same property and by the discussion

at the beginning of this paragraph (i) is satisfied.

For the proof of (ii) note that E[α̃n(x)α̃n(y)] = n/k
(
C( (x∧y)k

n )− C(xkn )C(ykn )
)
, which converges to

ΛL(x ∧ y) =: H(x,y), since n
kC(xkn )C(ykn )→ 0.

Regarding (iii) and (iv) we note that EFn(U1)2 = 2M − n
kC(Mk/n,Mk/n), which converges to 2M −

ΛL(M,M). Further,

EF 2
n(U1)I{Fn(U1) > ε

√
n} =

∫
{Fn(U1)>ε

√
n}
F 2
n(U1) dP

≤ n

k
P(

1

k
I{U11 ≤ kM/n or U12 ≤ kM/n} > ε) = 0

for sufficiently large n, such that k > 1/ε. For (v) we note that

ρn(x,y) =
(
E(fn,x(U1)− fn,y(U1))2

)1/2
=

√
n

k
(C(xk/n)− 2C((x ∧ y)k/n) + C(yk/n))1/2

→ (ΛL(x)− 2ΛL(x ∧ y) + ΛL(y))1/2 =: ρ(x,y).

Due to Theorem 1 in Schmidt and Stadtmüller (2006) we have locally uniform convergence in the latter

expression, which yields the second condition stated in (v).

For the proof of condition (vi) we use Lemma 11.15 and the discussion on page 224 in Kosorok (2008)

and show separability of Fn, i.e. for every n ≥ 1 there exists a countable subset Tn ⊂ T such that

P∗
(

sup
x∈T

inf
y∈Tn

|fn,y(U1)− fn,x(U1)| > 0

)
= 0.

Choose Tn = (Q ∩ [0,M1] × {∞}) ∪ ({∞} × Q ∩ [0,M2]) ∪ (Q2 ∩ [0,M3]2), then we have (note that

the functions fn,x are built by indicators) that for every ω and every x ∈ T there is an y ∈ Tn with

|fn,x(U1(ω))−fn,y(U1(ω))| = 0. This yields the assertion and thus the proof of Lemma 2.1 is finished.

A.2 Proof of Theorem 2.2

Let B∞(R+) denote the set of functions f : R+ → R that are uniformly bounded on compact sets

(equipped with the topology of uniform convergence on compact sets), define BI,0∞ (R+) as the subset of

all non-decreasing functions f : R+ → R+ with f(0) = 0 and set

BI,0∞ (R̄2
+) :=

{
γ ∈ B∞(R̄2

+) | γ(·,∞) ∈ BI,0∞ (R+), γ(∞, ·) ∈ BI,0∞ (R+)
}
.
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We define a map Φ : BI,0∞ (R̄2
+)→ B∞(R̄2

+) by

γ 7−→ Φ(γ) =


γ(γ−(x,∞), γ−(∞, y)) , if x, y 6=∞
γ(γ−(x,∞),∞) , if y =∞
γ(∞, γ−(∞, y)) , if x =∞.

,

where f− denotes the adjusted generalized inverse function of f ∈ BI,0∞ (R+) defined by

f−(z) = min
{

inf{x ∈ R | f(x) ≥ z}, sup(ran f)
}
,

see also Schmidt and Stadtmüller (2006). Observing that the adjusted generalized inverse of Λ̃L(x,∞)

is (P-almost surely) given by n
kF1(F−n1(kx/n)), one can conclude that Φ(ΛL) = ΛL and Φ(Λ̃L) = Λ̂L

(P-almost surely) and the proof of Theorem 2.2 follows from the functional delta method [Theorem 3.9.4

in Van der Vaart and Wellner (1996)] and the following Lemma, which is an extension of the result in the

proof of Theorem 5 in Schmidt and Stadtmüller (2006).

Lemma A.5. Let ΛL be a lower tail copula whose partial derivatives satisfy the following first order

properties

∂p ΛL exists on {x ∈ R̄2
+ |xp <∞} and is continuous on {x ∈ R̄2

+ | 0 < xp <∞}

for p = 1, 2. Then Φ is Hadamard-differentiable at ΛL tangentially to the set

C0(R̄2
+) =

{
γ ∈ B∞(R̄2

+) | γ continuous with γ(·, 0) = γ(0, ·) = 0
}
.

Its derivative at ΛL in γ ∈ C0(R̄2
+) is given by

Φ′ΛL
(γ)(x) = γ(x)− ∂1ΛL(x)γ(x1,∞)− ∂2ΛL(x)γ(∞, x2) (A.3)

where ∂p ΛL, p = 1, 2 is defined as 0 on the set {x ∈ R̄2
+ |xp =∞}.

Proof. Decompose Φ = Φ3 ◦ Φ2 ◦ Φ1 where

Φ1 :BI,0∞ (R̄2
+)→ BI,0∞ (R̄2

+)× BI,0∞ (R+)× BI,0∞ (R+)

γ 7−→ (γ, γ(·,∞), γ(∞, ·))

Φ2 :BI,0∞ (R̄2
+)× BI,0∞ (R+)× BI,0∞ (R+)→ BI,0∞ (R̄2

+)× BI,0∞ (R+)× BI,0∞ (R+)

(γ, f, g) 7−→ (γ, f−, g−))

Φ3 :BI,0∞ (R̄2
+)× BI,0∞ (R+)× BI,0∞ (R+)→ B∞(R̄2

+)

(γ, f, g) 7−→


γ(f(x), g(y)) , if x, y 6=∞
γ(f(x),∞) , if y =∞
γ(∞, g(y)) , if x =∞.

Now Φ1 is Hadamard-differentiable at ΛL tangentially to C0(R̄2
+) since it is linear and continuous. The

second map Φ2 is Hadamard-differentiable at (ΛL, idR+ , idR+) tangentially to C0(R̄2
+)× C0(R+)× C0(R+)
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where C0(R+) consists of all continuous functions f on R+ = [0,∞) with f(0) = 0 and the derivative

of Φ2 at (ΛL, idR+ , idR+) in (γ, f, g) is given by Φ′2,(ΛL,idR+ ,idR+ )(γ, f, g) = (γ,−f,−g) [see Schmidt and

Stadtmüller (2006), p. 321]. Some more efforts are necessary to show that Φ3 is Hadamard-differentiable

at (ΛL, idR+ , idR+) tangentially to C0(R̄2
+)× C0(R+)× C0(R+) with derivative

Φ′3,(ΛL,idR+ ,idR+ )(γ, f, g)(x) = γ(x) + ∂1ΛL(x)f(x1) + ∂2ΛL(x)g(x2).

To see this let tn → 0, (γn, fn, gn) ∈ B∞(R̄2
+) × B∞(R+) × B∞(R+) with (γn, fn, gn) → (γ, f, g) ∈

C0(R̄2
+)×C0(R+)×C0(R+) such that (ΛL+tnγn, idR+ +tnfn, idR+ +tngn) ∈ BI,0∞ (R̄2

+)×BI,0∞ (R+)×BI,0∞ (R+).

Now Φ3 is linear in its first argument and we introduce the decomposition

t−1
n

{
Φ3(ΛL + tnγn, idR+ +tnfn, idR+ +tngn)− Φ3(ΛL, idR+ , idR+)

}
= Ln1 + Ln2,

where

Ln1 = t−1
n

{
Φ3(ΛL, idR+ +tnfn, idR+ +tngn)− Φ3(ΛL, idR+ , idR+)

}
Ln2 = Φ3(γn, idR+ +tnfn, idR+ +tngn).

By the definition of d it suffices to show uniform convergence on sets T of the form T = [0,M1]× {∞} ∪
{∞} × [0,M2] ∪ [0,M3]2, where M1,M2,M3 ∈ N. Since T ⊂ R̄2

+ is compact (fn, gn) converges uniformly

and γ is uniformly continuous; hence Ln2 uniformly converges to γ.

Considering Ln1 we split the investigation into six different cases. First, let x ∈ (0,M3]2. A series

expansion at x yields

Ln1 = ∂1ΛL(x)fn(x1) + ∂2ΛL(x)gn(x2) + rn(x),

where the error term rn can be written as

rn(x) =
(
∂1ΛL(y)− ∂1ΛL(x)

)
fn(x1) +

(
∂2ΛL(y)− ∂2ΛL(x)

)
gn(x2)

with some intermediate point y = y(n) between x and (x1 + tnfn(x1), x2 + tnfn(x2)). The dominating

term converges uniformly to ∂1ΛL(x)f(x1)+∂2ΛL(x)g(x2), hence it remains to show that rn(x) converges

to 0 uniformly in x. For a given ε > 0 uniform convergence of fn and uniform continuity of f on [0,M3]

as well as the fact that f(0) = 0 allows to choose a δ > 0 such that |fn(x1)| < ε for all x1 < δ. Since

partial derivatives of tail copulas are bounded by 1, the first term of rn(x) is uniformly small for x1 < δ.

On the quadrangle [δ,M3]× (0,M3] the partial derivative ∂1ΛL is uniformly continuous which yields the

desired convergence under consideration of y(n)→ x and boundedness of f . The same arguments apply

for the second derivative and the case x ∈ (0,M3]2 is finished.

Now consider the case x ∈ (0,M3]× {0}. By Lipschitz-continuity of ΛL on R2
+ we get

|Ln1(x1, 0)| = t−1
n |ΛL(x1 + tnfn(x1), tngn(0))| = t−1

n |ΛL(x1 + tnfn(x1), tngn(0))− ΛL(x1 + tnfn(x1), 0)|

≤ |gn(0)| → g(0) = 0.
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Since ∂1ΛL(x1, 0)f(x1) + ∂2ΛL(x1, 0)g(0) = 0 this yields the assertion. For the cases x = (0, 0) and

x ∈ {0} × (0,M3] the arguments are similar and we proceed with x ∈ [0,M1] × {∞} (and analogously

x ∈ {∞} × [0,M2])

Ln1(x1,∞) = t−1
n (ΛL(x1 + tnfn(x1),∞)− ΛL(x1,∞)) = fn(x1)→ f(x1).

By ∂1ΛL(x1,∞) = 1 and ∂2ΛL(x1,∞) = 0 this yields the assertion. To conclude, Φ3 is Hadamard-

differentiable as asserted.

An application of the chain rule [see Lemma 3.9.3 in Van der Vaart and Wellner (1996)] completes the

proof of the Lemma.

A.3 Proof of Theorem 3.1

Due to Lemma B.2 in the Appendix B we can proceed as in the proof of Lemma 2.1 and consider just

convergence in l∞(T ) with T = [0,M1] × {∞} ∪ {∞} × [0,M2] ∪ [0,M3]2, where M1,M2 and M3 are

arbitrary constants in N. The assertion now follows from Theorem 11.23 in Kosorok (2008), because the

corresponding sufficient conditions have already been established in the proof of Lemma 2.1.

A.4 Proof of Theorem 3.4

For technical reasons we give a proof of Theorem 3.4 in advance of Theorem 3.2 and 3.3. The proof

is essentially a consequence of a bootstrap version of the functional delta method, see Theorem 12.1 in

Kosorok (2008). Since this result only holds for Banach space valued stochastic processes some adjust-

ments have to be made. Note that the space B∞(R̄2
+) is a complete topological vector space with a metric

d and some care is necessary whenever technical results depending on the norm are used.

Due to Lemma 2.1 and Theorem 3.1 we have

√
k
(
Λ̃L − ΛL

)
 GΛ̃L

,
√
k
µ

τ

(
Λ̃ξL − Λ̃L

) P
 
ξ
GΛ̃L

in B∞(R̄2
+). Observing that the generalized inverses of Λ̃L(x,∞) and Λ̃ξL(x,∞) are (P-almost surely) given

by n
kF1(F−n1(kx/n)) and n

kF1(F ξ−n1 (kx/n)), respectively, one can conclude that Φ(ΛL) = ΛL,Φ(Λ̃L) = Λ̂L

and Φ(Λ̃ξL) = Λ̂ξ,ξL (P-almost surely). By Lemma A.5 Φ is Hadamard-differentiable on BI∞(R̄2
+) at γ0 = ΛL

tangentially to C0(R̄2
+) ⊂ B∞(R̄2

+). Therefore it remains to argue why Theorem 12.1 in Kosorok (2008)

can be applied in the present context.

A careful inspection of the proof of Theorem 12.1 in Kosorok (2008) shows that properties going beyond

our specific assumptions (i.e. the complete topological vector space (B∞(R̄2
+), d)) are used only three

times. First of all the mapping Φ′ΛL
needs to be extended to the whole space B∞(R̄2

+), which is possible

using equation (A.3) as the defining identity. Secondly, the proof of Theorem 12.1 in Kosorok (2008) uses

the usual functional delta method as stated in Theorem 2.8 in the same reference, but this result can

be replaced by Theorem 3.9.4 in Van der Vaart and Wellner (1996), which provides a functional delta

method holding in general metrizable topological vector spaces. Finally, the proof of Theorem 12.1 in
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Kosorok (2008) makes use of a bootstrap continuous mapping theorem, see Theorem 10.8 in Kosorok

(2008), which would yield that

√
k
µ

τ
(Λ̃ξL − Λ̃L)

P
 
ξ
GΛ̃L

⇒ Φ′ΛL
(
√
k
µ

τ
(Λ̃ξL − Λ̃L))

P
 
ξ

Φ′ΛL
(GΛ̃L

).

In our specific context this statement follows immediately from the Lipschitz continuity of the derivative

Φ′ΛL
and an application of Lemma B.3 in Appendix B.

A.5 Proof of Theorem 3.2.

Consider the mapping Ψ : BI,0∞ (R̄2
+)× BI,0∞ (R̄2

+) −→ B∞(R̄2
+) defined by Ψ = Φ3 ◦ Φ2 ◦Ψ1, where Φ3 and

Φ2 are defined in the proof of Lemma A.5 and Ψ1 is given by

Ψ1 :BI,0∞ (R̄2
+)× BI,0∞ (R̄2

+)→ BI,0∞ (R̄2
+)× BI,0∞ (R+)× BI,0∞ (R+)

(β, γ) 7−→ (β, γ(·,∞), γ(∞, ·)).

Note that we obtain the representations Ψ(ΛL,ΛL) = ΛL, Ψ(Λ̃L, Λ̃L) = Λ̂L and Ψ(Λ̃ξL, Λ̃L) = Λ̂ξ,·L (P-

almost surely). Clearly, Ψ1 is Hadamard-differentiable at (ΛL,ΛL) since it is linear and continuous. Φ2

and Φ3 are Hadamard-differentiable tangentially to suitable subspaces as well, see the proof of Lemma

A.5. By an application of the chain rule, see Lemma 3.9.3 in Van der Vaart and Wellner (1996), we can

conclude that Ψ is Hadamard-differentiable (ΛL,ΛL) tangentially to C0(R̄2
+)× C0(R̄2

+) with derivative

Ψ′(ΛL,ΛL)(β, γ)(x) = β(x)− ∂1ΛL(x)γ(x1,∞)− ∂2ΛL(x)γ(∞, x2). (A.4)

Note that, unlike in the previous proof, we do not have weak convergence (resp. weak conditional con-

vergence) of
√
k
(

(Λ̃L, Λ̃L)− (ΛL,ΛL)
)

and µ
τ

√
k
(

(Λ̃ξL, Λ̃L)− (Λ̃L, Λ̃L)
)

towards the same limiting field,

which would be necessary for an application of the functional delta method for the bootstrap [see for

example Theorem 12.1 in Kosorok (2008)]. Nevertheless, we can mimic certain steps in the proof of this

theorem to conclude the result. To be precise, note that we obtain by analogous arguments as on page

236 of Kosorok (2008) that

√
k

(
Λ̃ξL − ΛL

Λ̃L − ΛL

)
 

(
c−1G1 + G2

G2

)
,

unconditionally, where G1 and G2 denote independent copies of GΛ̃L
and c = µτ−1. Hadamard-differentiability

of the mapping (β, γ) 7→ (Ψ(β, γ),Ψ(γ, γ), (β, γ), (γ, γ)) and the usual functional delta method [Theorem

3.9.4 in Van der Vaart and Wellner (1996)] yields

√
k


Ψ(Λ̃ξL, Λ̃L)−Ψ(ΛL,ΛL)

Ψ(Λ̃L, Λ̃L)− ψ(ΛL,ΛL)

(Λ̃ξL, Λ̃L)− (ΛL,ΛL)

(Λ̃L, Λ̃L)− (ΛL,ΛL)

 


Ψ′(ΛL,ΛL)(c
−1G1 + G2,G2)

Ψ′(ΛL,ΛL)(G2,G2)

(c−1G1 + G2,G2)

(G2,G2)

 .
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Observing that Ψ′(ΛL,ΛL) is linear we can conclude that

c
√
k

(
Ψ(Λ̃ξL, Λ̃L)−Ψ(Λ̃L, Λ̃L)

(Λ̃ξL, Λ̃L)− (Λ̃L, Λ̃L)

)
 

(
Ψ′(ΛL,ΛL)(G1, 0)

(G1, 0)

)
=

(
G1

(G1, 0)

)
.

Continuity of the map (α, β, γ) 7→ d(α, β) yields

d
(
c
√
k
(

Ψ(Λ̃ξL, Λ̃L)−Ψ(Λ̃L, Λ̃L)
)
, c
√
k
(

Λ̃ξL − Λ̃L

))
−→ 0

in outer probability and thus by boundedness of the metric d also in outer expectation. Since c
√
k(Λ̃ξL −

Λ̃L)
P
 
ξ
G1 we obtain the assertion by Lemma B.4.

A.6 Proof of Theorem 3.3.

Let T be a set of the form T = [0,M1] × {∞} ∪ {∞} × [0,M2] ∪ [0,M3]2, see also the beginning of the

proof of Lemma 2.1. We start the proof with an assertion regarding consistency of ∂̂pΛL and claim that

for any δ ∈ (0, 1)

sup
x∈T :xp≥δ

∣∣∣∂̂pΛL(x)− ∂pΛL(x)
∣∣∣ −→ 0 (A.5)

in outer probability. For a proof of (A.5) split T into three subsets as indicated by its definition and then

proceed similar as in the proof of Lemma 4.1 in Segers (2010). The details are omitted. Regarding the

assertion of the Theorem we set

ᾱpdmn (x) = βn(x)− ∂1ΛL(x)βn(x1,∞)− ∂2ΛL(x)βn(∞, x2).

Under consideration of Lemma B.4 it suffices to prove that d(αpdmn , ᾱpdmn ) converges to 0 in outer proba-

bility. By the definition of d we have to show uniform convergence on the set T . Since |αpdmn − ᾱpdmn | ≤
Dn1 +Dn2, where

Dn1 =
∣∣∣∂̂1ΛL − ∂1ΛL

∣∣∣ |βn(·,∞)|, Dn2 =
∣∣∣∂̂2ΛL − ∂2ΛL

∣∣∣ |βn(∞, ·)|

we can consider both summands Dnp separately and deal with Dn1 exemplarily. First consider the case

x ∈ [0,M3]2, then for arbitrary ε > 0 and δ ∈ (0, 1)

P∗
(

sup
x∈[0,M3]2

Dn1(x) > ε

)
≤ P∗

(
sup

x∈[0,M3]2,x1≥δ
Dn1(x) > ε/2

)
+ P∗

(
sup

x∈[0,M3]2,x1<δ

Dn1(x) > ε/2

)
.

(A.6)

Since ∂̂1ΛL is uniformly consistent on {x ∈ [0,M3]2 |x1 ≥ δ} and since βn is asymptotically tight in l∞(T )

[βn converges unconditionally by the results in Chapter 10 of Kosorok (2008)] the first probability on the

right-hand side converges to zero.

Regarding the second summand note that F−n1(kx/n) = Xdkxe:n,1 (where dxe = min{k ∈ Z | k ≥ x}) so

that

sup
x∈[0,M3]2

∣∣∣∂̂1ΛL(x)
∣∣∣ ≤ sup

x∈[0,M3]2,x1≥h

dk(x1 + h)e − dk(x1 − h)e
2h

≤ 1 +
M3

2kh
≤ 2
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for sufficiently large n. Hence the right-hand side of equation (A.6) is bounded by

P∗
(

sup
x∈[0,M3]2,x1<δ

|βn(x)| > ε/4

)
,

eventually. As βn  GΛ̃L
(unconditionally) the lim sup of this outer probability is bounded by

P

(
sup

x∈[0,M3]2,x1<δ

|GΛ̃L
(x)| > ε/4

)
.

Since GΛ̃L
has continuous trajectories and GΛ̃L

(0, x2) = 0 (almost surely) this probability can be made

arbitrary small by choosing δ sufficiently small. The case x ∈ [0,M3]2 is finished. For x ∈ [0,M1]× {∞}
the arguments are similar, while for x ∈ {∞} × [0,M2] we have Dn1 = 0 and nothing has to be shown.

To conclude, supx∈T Dn1(x) converges to zero in outer probability and because the term supx∈T Dn2 can

be treated similarly the proof is finished.

A.7 Proof of Theorem 4.1

The consistency follows by Theorem 5.9 in Van der Vaart (1998) observing the inequality

sup
θ∈Θ
||ψn(θ)− ψ(θ)|| ≤ 2

∫
sup
θ∈Θ
||δ∠θ (ϕ)|| |Λ̂∠L(ϕ)− Λ∠L(ϕ)| dϕ = oP∗(1)

and the consistency of the empirical tail copula.

Regarding the asymptotic normality note that by a Taylor expansion we have

0 = ψn(θ̂MD
n ) = ψn(θb) + ∂θ ψn(θ̄)(θ̂MD

n − θB),

where ‖ θ − θB ‖ ≤ ‖ θB − θ̂MD
n ‖. Due to consistency of both the empirical tail copula Λ̂L and the

MD-estimator θ̂MD
n we can conclude (note that the functions ΛL(· ; θ), δθ and ∂θ δθ are continuous in θB)

that

∂θ ψn(θ̄) = 2

∫
δ∠θ̄ (ϕ)δ∠θ̄ (ϕ)T + ∂θ δ

∠
θ̄ (ϕ)(Λ∠L(ϕ; θ̄)− Λ̂∠L(ϕ)) dϕ

P∗−→ 2AθB .

Since 0 = ψ(θB) = 2
∫
δ∠θB (ϕ)(Λ∠L(ϕ, θB)− Λ∠L(ϕ)) dϕ we obtain

2

∫
δ∠θB (ϕ)(Λ̂∠L(ϕ)− Λ∠L(ϕ)) dϕ = −ψn(θB) = 2 (AθB + oP∗(1))(θ̂MD

n − θB).

The probability that (2AθB + oP∗(1)) is invertible, converges to one, which yields the assertion by multi-

plying the last equality with
√
k 1/2(AθB + oP∗(1))−1.

A.8 Proof of Theorem 4.2

Since Γn
P
 
ξ
GΛ̂L

and γθ̂MD
n

P∗→ γθB (consistency of θ̂MD
n for θB) it is easy to see that

sup
x∈[0,1]2

|γθ̂MD
n

Γn(x)− γθBΓn(x)|

converges to zero in outer probability. Hence, by Lemma B.4, γθ̂MD
n

Γn
P
 
ξ
GΛ̂L

in l∞[0, 1]2 and the assertion

follows invoking the Lipschitz-continuous mapping Theorem for the bootstrap, Lemma B.3.
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B Appendix B: Auxiliary results

Lemma B.1. Suppose Gn and Hn are sequences of measurable functions with envelopes Gn and Hn, so

that (Gn, Gn) and (Hn, Hn) satisfy the bounded uniform integral entopry condition as stated in (A.1).

Then the bounded uniform entropy integral condition (A.1) holds also for Fn = Gn ∪ Hn, with envelopes

Fn = Gn ∨Hn.

Proof. Note that

N := N(ε||Fn||Q,2,Fn, L2(Q))

≤ N(ε||Fn||Q,2,Gn, L2(Q)) +N(ε||Fn||Q,2,Hn, L2(Q)) ≤ N1 +N2,

where N1 = N(ε||Gn||Q,2,Gn, L2(Q)) and N2 = N(ε||Hn||Q,2,Hn, L2(Q)). By monotonicity and subaddi-

tivity of log(n) and
√
n for n ≥ 2 we obtain the inequality√

logN ≤
√

logN1 +
√

logN2,

which yields the assertion.

Lemma B.2. Suppose Gn = Gn(X1, . . .Xn, ξ1, . . . ξn) is some statistic taking values in B∞(R̄2
+). Then

a conditional version of Theorem 1.6.1 in Van der Vaart and Wellner (1996) holds , namely Gn
P
 
ξ
G in

B∞(R̄2
+) is equivalent to Gn

P
 
ξ
G in l∞(Ti) for every i ∈ N.

Proof. We first show that

an = sup
h∈BL1(B∞(R̄2

+))

|Eξh(Gn)− Eh(G)| P∗−→ 0 (B.1)

is equivalent to

an(Ti) = sup
h∈BL1(l∞(Ti))

|Eξh(Gn|Ti)− Eh(G|Ti)|
P∗−→ 0 (B.2)

for all i ∈ N.

Suppose first that (B.1) holds. For arbitrary h ∈ BL1(l∞(Ti)) we consider the mapping

h′ : B∞(R̄2
+)→ R, α 7→ h(α|Ti).

Then

|h′(α)− h′(β)| ≤ sup
x∈Ti
|α(x)− β(x)| ∧ 2 ≤ 2

i∑
j=1

(
sup
x∈Tj
|α(x)− β(x)| ∧ 1

)

≤ 2i+1
i∑

j=1

2−j

(
sup
x∈Tj
|α(x)− β(x)| ∧ 1

)
≤ 2i+1d(α, β),
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and therefore the mapping h′′ := 2−i−1h′ is an element of BL1(B∞(R̄2
+)). Observing

|Eξh(Gn|Ti)− Eh(G|Ti)| = 2i+1|Eξh′′(Gn)− Eh′′(G)|

≤ 2i+1 sup
h∈BL1(B∞(R̄2

+))

|Eξh(Gn)− Eh(G)|,

this yields the assertion.

Now suppose that (B.2) holds for all i ∈ N. For h ∈ BL1(B∞(R̄2
+)) define hi(α) = h(α ITi), then

hi ∈ BL1(l∞(Ti)) by the following reasoning: Obviously ||hi|| ≤ 1 and

|hi(α)− hi(β)| = |h(α ITi)− h(β ITi)| ≤
∞∑
j=1

2−j

(
sup
x∈Tj

∣∣(α ITi)(x)− (β ITi)(x)
∣∣ ∧ 1

)

=
i∑

j=1

2−j

(
sup
x∈Tj

∣∣α(x)− β(x)
∣∣ ∧ 1

)
+

(
sup
x∈Ti

∣∣α(x)− β(x)
∣∣ ∧ 1

) ∞∑
j=i+1

2−j

≤
(

sup
x∈Ti

∣∣α(x)− β(x)
∣∣ ∧ 1

) ∞∑
j=1

2−j

≤ sup
x∈Ti

∣∣α(x)− β(x)
∣∣.

Now we choose for ε > 0 an i0 with
∑∞

j=i0+1 2−j < ε, then for any i ≥ i0

|h(α)− hi(α)| = |h(α)− h(α ITi)| ≤ d(α, α ITi) =
∞∑
j=1

2−j sup
x∈Tj

∣∣α(x)− (α ITi)(x)
∣∣ ∧ 1

=
∞∑

j=i+1

2−j

(
sup
x∈Tj

∣∣α(x)
∣∣ ∧ 1

)
=

∞∑
j=i+1

2−j < ε.

This yields, for any i ≥ i0

|Eξh(Gn)− Eh(G)| ≤ |Eξh(Gn)− Eξhi(Gn)|+ |Eξhi(Gn)− Ehi(G)|+ |Ehi(G)− Eh(G)|

≤ 2ε+ |Eξhi(Gn)− Ehi(G)|

≤ 2ε+ sup
h∈BL1(l∞(Ti))

|Eξh(Gn)− Eh(G)|

and the latter summand converges to 0 in outer probability by assumption. Since ε > 0 was arbitrary the

assertion follows.

It remains to show that Eξh(Gn)∗−Eξh(G)∗
P−→ 0 for all h ∈ BL1(B∞(R̄2

+)) if and only if Eξh(Gn|Ti)∗−
Eξh(Gn|Ti)∗

P−→ 0 for every h ∈ BL1(l∞(Ti)) and every i ∈ N. This assertion can be proved along similar

lines as in the proof of the first equivalence given above. The necessity follows from

Eξh(Gn|Ti)∗ − Eξh(Gn|Ti)∗ = 2i+1Eξh′′(Gn)∗ − Eξh′′(Gn)∗
P−→ 0,

while sufficiency can be concluded from

Eξh(Gn)∗ − Eξh(Gn)∗
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≤ Eξ|h(Gn)∗ − hi(Gn)∗|+ Eξhi(Gn)∗ − Eξhi(Gn)∗ + Eξ|hi(Gn)∗ − h(Gn)∗|

≤ 2ε+ Eξhi(Gn)∗ − Eξhi(Gn)∗
P−→ 2ε,

where we estimated the first and the last summand in the second line under consideration of Lemma 1.2.2

in Van der Vaart and Wellner (1996).

Lemma B.3. Suppose that g : D1 −→ D2 is a Lipschitz-continuous map between metrized topological

vector spaces. If Gn = Gn(X1, . . . , Xn, ξ1, . . . , ξn)
P
 
ξ
G in D1, where G is tight, then g(Gn)

P
 
ξ
g(G) in

D2.

Proof. Let c0 ≥ 1 denote a Lipschitz constant for g. For arbitrary h ∈ BL1(D2) we have |hg(α) −
hg(β)| ≤ d(gα, gβ) ≤ c0d(α, β), which yields that the mapping h′ := c−1

0 hg lies in BL1(D1) and therefore

sup
h∈BL1(D2)

|Eξh(g(Gn))− Eh(g(G))| ≤ c0 sup
h∈BL1(D1)

|Eξh(Gn)− Eh(G)| P∗−→ 0.

The asymptotic measurability follows along similar lines.

Lemma B.4. Let Yn = Yn(X1, . . . , Xn, ξ1, . . . , ξn) and Zn = Zn(X1, . . . , Xn, ξ1, . . . , ξn) be two (bootstrap)

statistics in a metric space (D, d), depending on the data X1, . . . , Xn and on some multipliers ξ1, . . . , ξn.

If Yn
P
 
ξ
Y in D, where Y is tight, and d(Yn, Zn)

P∗−→ 0, then also Zn
P
 
ξ
Y in D.

Proof. We only prove (3.5), the assertion about the asymptotic measurability in (3.6) follows along

similar lines. Observing the estimate

sup
h∈BL1(D)

|Eξh(Zn)− Eh(Y )| ≤ Eξ [d(Yn, Zn)∗ ∧ 2] + sup
h∈BL1(D)

|Eξh(Yn)− Eh(Y )|

it suffices to show that Eξ [d(Yn, Zn)∗ ∧ 2] converges to 0 in outer probability. Now d(Yn, Zn)∗ ∧ 2 is

uniformly integrable and converges in probability by assumption, hence it also converges in L1. We

finally use Markov’s inequality to obtain Eξ[d(Yn, Zn)∗ ∧ 2]
P∗−→ 0, which proves the assertion.
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Bücher, A. and Dette, H. (2010). A note on bootstrap approximations for the empirical copula process.

Statist. Probab. Lett. in press.

Coles, S. G. and Tawn, J. A. (1994). Statistical methods for multivariate extremes: An application to

structural design. Journal of Applied Statistics, 43:1–48.

de Haan, L. and Ferreira, A. (2006). Extreme value theory. Springer Series in Operations Research and

Financial Engineering. Springer, New York.

de Haan, L., Neves, C., and Peng, L. (2008). Parametric tail copula estimation and model testing. J.

Multivar. Anal., 99(6):1260–1275.

30



Drees, H. and Huang, X. (1998). Best attainable rates of convergence for estimates of the stable tail

dependence functions. Journal of Multivariate Analysis, 64:25–47.

Einmahl, H. J., de Haan, L., and Li, D. (2006). Weighted approximations of tail copula processes with

application to testing the bivariate extreme value condition. Annals of Statistics, 34:1987–2014.

Einmahl, H. J., de Haan, L., and Xin, H. (1993). Estimating a multidimensional extreme-value distribu-

tion. Journal of Multivariate Analysis, 47:35–47.

Einmahl, H. J., Krajina, A., and Segers, J. (2008). A method of moments estimator of tail dependence.

Bernoulli, 14:1003–1026.

Embrechts, P., Lindskog, F., and McNeil, A. (2003). Modelling dependence with copulas and applications

to risk management. In Rachev, S., editor, Handbook of heavy tailed distributions in finance, pages

329–384. Elsevier, Amsterdam.

Huang, X. (1992). Statistics of bivariate extreme values. PhD thesis, Tinbergen Institute Research Series,

Netherlands.

Kojadinovic, I. and Yan, J. (2010). A goodness-of-fit test for multivariate multiparameter copulas based

on multiplier central limit theorems. Statistics and Computing. in press.

Kojadinovic, I., Yan, J., and Holmes, M. (2010). Fast large sample goodness-of-fit tests for copulas.

Statistica Sinica. to appear.

Kosorok, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference. Springer, New

York.

Malevergne, Y. and Sornette, D. (2004). How to account for extreme co-movements between individual

stocks and the market. J. Risk, 6:71–116.

Peng, L. and Qi, Y. (2008). Bootstrap approximation of tail dependence function. Journal of Multivariate

Analysis, 99:1807–1824.

Qi, Y. (1997). Almost sure convergence of the stable tail empirical dependence function in multivariate

extreme statistics. Acta Math. Appl. Sinica (English Ser.), 13:167–175.

Rémillard, B. and Scaillet, O. (2009). Testing for equality between two copulas. Journal of Multivariate

Analysis, 100:377–386.

Schmidt, R. and Stadtmüller, U. (2006). Nonparametric estimation of tail dependence. Scandinavian

Journal of Statistics, 33:307–335.

Segers, J. (2010). Weak convergence of empirical copula processes under nonrestrictive smoothness as-

sumptions. arXiv:1012.2133v.

31
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