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ABSTRACT. The concentration function problem for locally com-
pact groups, i.e., the structure of groups admitting adapted non-
dissipating random walks, is closely related to relatively compact
M- or skew semigroups and corresponding space-time random walks,
resp. to 7-decomposable laws, where 7 denotes an automorphism.
Analogous results are obtained in the case of continuous time:
Non-dissipating Lévy processes are related to relatively compact
distributions of generalized Ornstein Uhlenbeck processes and cor-
responding space-time processes, resp. T-decomposable laws, T' =
(7¢) denoting a continuous group of automorphisms acting on groups
of the form N = Cg(T).

INTRODUCTION

Let G be a locally compact group, A € M*(G) a (w.l.o.g.) adapted
probability measure. A, more precisely, the random walk {)\’“} 1>0°

is called non-dissipating (or non scattering) if for some compact sub-
set C' C G the (right) concentration functions fyx(C) := sup \*(Cx)
€G

fail to converge to 0, with time k& — oo. Analogously one could de-

fine left concentration functions as gy« (C) := sup \¥(zC'). Note that
xeG
the behaviour of left and right concentration functions may differ in

characteristic manner. (Cf. e.g., Example 1.10.) If the random walk
is non-dissipating, {/\k}k>0 is relatively shift compact, equivalently,

{)\k * X’“} is relatively compact. Furthermore, if N = N, denotes
k>0

the smallest closed normal subgroup containing the support suppA % X,
then G/N = Z. Hence there exist © € G such that A = v % ¢, with
suppr C N.

Denoting the restriction of the inner automorphism i, to N by 7 :=
iz |n, we obtain: G = N %, Z, and X is representable as A = v(1) ® &1,
with v = v(1) € M!(N), hence the random walk is representable as
N =v(k)®@ey, all k € Z,, (v(k) € MYN), v(0) := ).

For the history of the concentration function problem on locally com-
pact groups the reader is referred to the survey of W. Jaworski [27]
showing previous developments and a recent state of investigations: Be-
ginning with the pioneer works [4], [24] to the investigations [27, 28, 25].
This is closely related to parallel investigations of M-semigroups and
T-decomposability:

To avoid trivialities, throughout G is supposed to be non-compact.
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k-1
As immediately seen, v(k) is representable as v(k) = * 77 (v(1)), k €
=0
N, and hence satisfies the the relation

vk +0) =v(k)* 8 w(l), kL€ Z, (0.1)

A sequence {v(k)}c;, satisfying (0.1) is called discrete time M-(or
Mehler-)semigroup (in fact, the (discrete) semigroup of transition ker-
nels is frequently called discrete Mehler semigroup), also called skew
semigroup or 7-semigroup. Moreover, this M-semigroup is relatively
compact. Conversely, discrete M-semigroups {v(k)} define space-time
random walks {)\k =v(k)® 5k} on the space-time building G = N Z.
So non-dissipating random walks (in G) correspond in a 1-1-manner to
relatively compact M-semigroups (on N). (Cf. Theorem 1.6 below.)

It is shown in [27] that N has an interesting structure: N = Cx (1),
where C(7) :={x € N : 7(z) — e} and Cx(7) :={z € N: 7"(x) — ¢
mod K} denote the contractible subgroup resp. the K-contractible
subgroup, K is a compact subgroup of N. And moreover, Cx (1) =
C(1) - K, at least in the case of Lie groups or totally disconnected
groups. In Theorem 1.6 we show that p := k‘h—>nc}o v(k) x wi exists and

is 7-decomposable, i.e., p = v(k) * 7™%(p) for cofactors v(k), k € Z,;
furthermore, p is right K-invariant. Conversely, for any such measure
we have lim v (k) x wgx = p, and hence p generates a relatively compact
M-semigroup of cofactors {v(k)}. Thus p resp. the cofactors generate
a non-dissipating random walk.

The second part of the paper is concerned with the continuous time
analogues. The random walk is replaced by a continuous convolution
semigroup {/\t}teR+7 the distributions of a Lévy process. First we show
that {/\t}teR+ is non-dissipating if some (hence all) skeleton random
walk {)\fo = )‘tok} keZ, is non-dissipating and that the subgroup N =
N,,, is independent of #, > 0 and is a normal subgroup in G (not
only within the group Gy, generated by supp) ). Thus the results for
discrete times apply easily to the continuous time setup. Furthermore,
G/N = R, and there exists a continuous one-parameter group (z(t)),.p
such that T = (Tt = lp) |N) C Aut(N) and G = N xr R.

In Theorem 2.7 we show that non-dissipating continuous convolution
semigroups and relatively compact (continuous time) M-semigroups
{v(t)},cg, correspond in a 1-1 way. Furthermore, p := tlirgo v(t) * wi

exists, is T-self-decomposable, i.e., for some cofactors v(t) € M*(N),
p=v(t)*m(p) for all t € Ry and p is right K-invariant. Conversely,
given such a measure, then there exists a continuous M-semigroup of
cofactors {v(t)},cp, C M (N) defining a space-time continuous con-
volution semigroup {A¢ = v(t) @ €:},p, . And since {v(t)} is relatively
compact, {\;} is non-dissipating.

The latter property, relative compactness of the M-semigroups, can
be characterized by the existence of logarithmic moments. For contin-

uous time this (and some equivalent assertions) is shown in Theorem
2.8.

For continuous time, M-(Mehler-) or skew semigroups and corre-
sponding space-time continuous convolution semigroups had been in-
vestigated in the past in different papers. Beginning with the pioneer
work [23] (with slightly different representations) to [14, 13, 21]. See
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also [3] for Mehler hemigroups and embedding of discrete time mod-
els into continuous time ones. In [14] the reader will find some more
hints to the literature, in particular to vector spaces beyond the locally
compact group case. Both branches of investigations, the concentra-
tion function problem and (semi)-stability and (self)-decomposability
resp. M-semigroups lead to investigations of the structure of (K)-
contractible subgroups C(7) resp. Cg(7) of locally compact groups.
See e.g., [39, 40], [20, 19], [21], Ch. III, [34, 35, 7, 6], [27, 28, 25], [10],
[1] and the literature mentioned there.

1. DISCRETE TIME: INON-DISSIPATING RANDOM WALKS

Recall the following notations: G denotes a locally compact group,
for A € M'(G), the set of probabilities, let A be the image of A under
the inverse mapping. * denotes convolution on G, A* is the k-th convo-
lution power, \° := ¢., where ¢, denotes the point measure in z € G.
W.l.o.g. A is supposed to be adapted, i.e., G is the closed group gener-
ated by the support suppA. N = N, denotes the smallest closed normal
subgroup containing suppA * A. The concentration function of the ran-

dom walk {)\k}keZ+ is defined as Z, 2 k +— f(C) := sup \*(Cz) for
zeG

compact C' C G. X or {\*} is called non-dissipating if fyx(C) fails to
converge to 0 with k& — oo, for some compact C'.

To distinguish, in the sequel 'x’ will denote convolution on G while
convolution on N is denoted by "x .

We collect some properties:

Facts 1.1. a) {)\k} 18 non-dissipating iff {)\k} 1s relatively shift com-
pact, i.e., for some x, € G\{e}, <\ *81,]:1} is relatively compact.
Equivalently, iff {)\k * }v\k} 15 relatively compact.

In that case, if G is non-compact, the following assertions b)—f) hold:

b) G/N = 7, hence the shifts can be chosen as x), = x* for some
z € G\N.

c) The restriction to N of the inner automorphism 7 := i, |y s con-
sidered as automorphism of N, and hence G has a canonical repre-
sentation G = N x, Z (with product (g,k)(h,?) = (g7(h),k + £) for
g,h € N, k.l € Z, where x = (e, 1)).

d) There ezists a compact subgroup K C N such that N = Ck (1) :=
{z € N:7%(z) = e mod K}. Moreover, with C(t) = Cye}(7) we have
Ck(1) = C(7) - K, at least in the case of Lie groups or totally dis-
connected groups. If N is compact then N = K as 7 is compactly
contracting.

e) Xandv:= \xe,1 are representable as \ = v®@e; € M (N %, Z),

v =: v(1) identified with a probability of M*(N). Hence by induction,
k—1

N =v(k)®er, k€ Zy, withv(0) =e., v(1) =v, v(k) = % 19(v) €
=0

MY(N) and x identified with (e,1). Furthermore, {v(k)}ycy, is rela-

tively compact.

f) Put L := {suppv(k) : k € Z,}. Then N is the smallest T-invariant

normal subgroup of N containing L. In general, L will not generate N .
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a) see [27], Corollary 3.2, and the literature mentioned there. In
particular, [9], [26], theorem 1.

b)c) See [27], theorem 3.4, [9].

d) See [27], theorem 3.5, 3.9. For the representation Ck (1) = C(7)K

see [28], see also [1], [10], [25] for previous results. For Lie groups see
[19], [21], theorem 3.2.13.

e) is immediately verified.
f) A is adapted, hence G is generated by suppr(1) ® 1. N <G, hence

N is T-invariant and N O L. By definition, N is the smallest subgroup
with this property. It is easily shown, cf. e.g., Example 1.10, that N

may be larger than the group generated by L. ﬂ

As already mentioned, G is always supposed to be non-compact,
else any random walk would be non-dissipating. If NV is compact then
N = K and thus any space-time random walk {\ =v(k)®e;} is
non-dissipating.

Definition 1.2. A probability i on a locally compact group H possesses
finite first order moments resp. finite logarithmic moments if fH fdu <
00 TESP. fH log(1 4+ f)du < oo for all sub-additive Borel functions
fH—-R,.

Stmilarily we define for monnegative measures n on H which are
bounded outside any neighbourhood W € (e): n possesses finite first
order moments resp. finite logarithmic moments z'ffH\W fdp < oo resp.

fH\W log(14f)dpu < oo for all sub-additive Borel functions f : H — R

Facts 1.3. If N is a second countable locally compact group, let (Xy)
denote iid random variables in N with distribution X,(P) = v(1). Put
Zy = X11(Xo) - - 7YX, with distribution Z,(P) = v(n). Then the
following assertions are equivalent:

(i) v(k) is weakly convergent mod K, i.e., imv(k) x wg exists

(i) {Z} is stochastically convergent mod K

(11i) {Zy} is almost surely convergent mod K

(iv) v(1) possesses finite logarithmic moments.

(v) X\ possesses finite first order moments.

[[ Obviously we have Z(P) = v(k). The equivalence of the assertions
(1) — (i17) follows by Lévy’s equivalence theorem for groups, see [22],
theorem 2.2.14, or, in context of invariant metrics on N/K, [27].

The equivalence of the conditions (i) —(iv) is folklore for vector spaces
(cf. e.g. [29]), for homogeneous groups [18], [21], 2.14.24, for general
contractible groups [17]. For K-contractible groups, N = Ck(7), cf.
[27], proposition 4.3, (in the context of T-functions and invariant met-
rics.)

(v) < (v) cf. [27], corollary 2.15. ﬂ

Remark 1.4. The equivalence (i) <= (iv) in Facts 1.3 holds true
without separability assumptions.

Proof. (Cf. also [27], proof of theorem 3.9).
G, suppA, and hence N are o-compact. Hence (cf. [5], page 101, ex.
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11, or [41], theorem 5.2) representable as projective limits of metriz-
able quotients, N = lim N/I',, resp. G = lim N/I',, X, Z with compact,

T-invariant subgroups I'y, < N. Obviously, v(k) xwg is convergent resp.
v(1) possesses finite logarithmic moments iff for all « the the projec-
tions to the quotients share this property. 0

Definition 1.5. a) A sequence {v(k)};c;, in MY(N) satisfying
v(0) = e, v(1) =:v, v(k+0) =v(k)«8w(0); kl€Z, (1.1)

is called discrete M-semigroup, (also called Mehler semigroup, T-semi-
group, skew semigroup etc).

b) p € MYN) is called T-decomposable if for some cofactor v =

v(1) € MY(N) we have p = vx7(p). Then by induction, p = v(k) %

m(p). Cof,(7%) denotes the set of cofactors. According to the shift-

compactness theorem ([33], 111, theorems 2.1, 2.2 (for metrizable groups),
22], theorem 1.2.21), the sets of cofactors are compact for all k.

c) p is right K-invariant if p x wg = p, where wg denotes the nor-
malized Haar measure on a compact subgroup K C N.

d) For short: p is K — 7-decomposable if p is T-decomposable and
right K-invariant.

e) A 2-parameter family {V(k,ﬁ)}w€Z+ is called discrete hemigroup
(or distribution of an additive process) if for all k,0,r € Z, we have
vik,k+0+r) =vikk+ ) xvk+ k+0+7r). Itis aT-hemi-
group, if in addition T(v(k,0)) = v(k + 1,{ + 1). Then obviously,
vik,k+0+71)=v(k k+0) %tk k+71)).

Theorem 1.6. The following assertions a)-c) are equivalent:

a) {)\”}nez+ is a mon-dissipating random walk on G, hence repre-
k-1

sentable as \* = v(k) @ ey, with v(k) = % 79(v) € MY(N), v(0) = &,
=0

v=r(l).

b) {v(k)}rez, is arelatively compact discrete M-semigroup in M'(N)

(cf. Definition 1.5).

c¢) If N = Ck(7), then p := lim v(k) x wg exists and is K — 7-

k—oo

decomposable (cf. Definition 1.5).

d) Conversely, if p is K—7-decomposable, the cofactors may be chosen
k—1

as v(k) = %7 (v), v = v(1) € Cof,(7) and satisfying (1.1), hence
j=0

form a M-semigroup (of cofactors) with p = limv (k) x wk.

Therefore, {v(k)} is relatively compact and hence the corresponding

space-time random walk {)\k} 18 non-dissipating.

e) A M-semigroup {v(k)} is relatively compact iff v(1) possesses finite

logarithmic moments resp. A possesses finite first order moments.

k+0-1
f) {V(k:,k:—i—f) = % T(v(l)) = Tk(l/(é))} is a discrete, Tel-
k€L

j=k
atiwely compact T-hemigroup, and conversely, any discrete, relatively

compact T-hemigroup defines a relatively compact M-semigroup v () :=
v(0,0), L € Zy.

Proof. For 'a) < b)’ see Facts 1.1 e).
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b < ¢)’ Let {v(k)} be a relatively compact M-semigroup on N =
Ck (7). Since 7% is uniformly K-contracting on compact subsets, the

accumulation points of {7”“(V(n))}n€Z+ are supported by K. Assume,

for some subnets, v(k,) — « and v(¢,) — ( and, w.lo.g., k, < ¢, for
all n. Then v({,)xwg = v(ky) %7 (v(, — k,,)) *wrx — B*wk, on the
one hand, and lim 7% (v(¢,, — k,)) * wx = wg on the other. Whence
a = 3 follows.

Le., p = limv(k) x wg exists and is obviously right K-invariant.
Conversely, if p exists, the M-semigroup is relatively compact.

Furthermore, p = limv(k + 1) x wxg = limv(1) * 7(v(k)) * wx =
v(1) % 7(p) yields K — 7-decomposability of p.

Conversely, assume p to be K — 7-decomposable. {Tk(p)} is rel-
atively compact as 7 is K-contracting, and all accumulation points
are supported by K. Right K-invariance implies 7%(p) — wg. Hence
p=v(k)*7F(p) yields v(k) x wr — p according to the shift compact-
ness theorem ([33], III, theorems 2.1, 2.2 (for metrizable groups), [22],
theorem 1.2.21).

d) By induction, if p is 7-decomposable, we can choose v(k) =
k—1
* 7 (v),v =v(1) € Cof ,(7), hence as relatively compact M-semigroup.
=0
Therefore, according to Facts 1.1, a space-time random walk on N %, Z
is defined, which is non-dissipating, since {v(k)} is relatively compact.

e) See Facts 1.3, Remark 1.4, or see [27], theorem 3.9.

k+0—1
f) Obviously, with v = v(1), v(k,k +£) := * 7i(v) = TF(v(())
j=k
a 7-hemigroup is defined. The converse follows along the same lines:
v(0,k+0) =v(0,k)xv(k, k+€) =v(0,k)x78((0, 7). O

Remarks 1.7. a) The connection between T-decomposability and ex-
istence of logarithmic moments in Theorem 1.6 ¢) is folklore for vector
spaces, see e.g., for continuous time, the monograph [29]. For con-
tractible Lie groups (homogeneous groups) cf. [18], [21], for general
contractible groups [17]. For the general case, N = Ck(7), see [27].
(For logarithmic moments see also the discussion before Theorem 2.8.)

b) As in the continuous time case, Section 2, the interplay between
T-hemigroups and M-semigroups is well known. We listed up property
f) in Theorem 1.6 for sake of completeness. For stable hemigroups (in
the continuous time case) the reader is referred, e.g., to [2].

Note that in Theorem 1.6, if N = Ck(7) and K # {e}, v(k) will
in general not be convergent. See e.g., the example 3.16 in [27], with
compact N = T? and an infinite number of accumulation points. A
further type of examples is obtained in the following way:

Example 1.8. Let M be a contractible locally compact group, with con-
tracting o € Aut(M), hence M = C(o). Let {u(k)} be a relatively com-
pact M-semigroup, u(k+0) = u(k)xo®(u(l)). Aso* {u(l) : £ > 0} i
{ee}, im pu(k) =: py exists. Let K be a finite cyclic group, let xy € K
generating K with ord(zg) > 2, and assume for some & € Aut(K)
that £(x¢) = x5'. (B.g. € i x+— 27%). Put N .= M ® K, define
T € Aut(N) as 7 = o ®¢&, and put finally v = v(1) := u(l) ®ey,. Then
{v(k) = p(k) ® ey } is a relatively compact M-semigroup (w.r.t. T)
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k=1

in MY(N), where y(k) = [] & (o). But infinitely often y(k) = e and
j=0

y(k) = xo, hence v(k) is not convergent.

Investigations of the structure of contractible and K —contractible
groups had been pushed forward in connection with investigations of
(semi-)stable laws. See e.g., [20], [19], [21], [6], and the literature men-
tioned there. However, there the concentration functions were not used
as an essential tool (only in connection with random time substitutions
and geometric (semi-)stability, cf. [16], [21]). Nevertheless it is worth
to point out that semistable laws provide interesting examples of rela-
tively compact M-semigroups, hence of non-dissipating random walks:

Let {p;} be a continuous convolution semigroup in M!(N), N a
locally compact group. Let 7 € Aut(N) and 0 < ¢ < 1. {p;} is (7, ¢)-
semistable if for all ¢ > 0, 7(p;) = pre. The idempotent py = wy is
a normalized Haar measure on a compact 7-invariant subgroup H. If
N is second countable, the contraction subgroups C'(7) and Cy(7) are
Borel sets, and we have: p(Cg(7)) = 1 for all ¢. Hence we assume
N = (Cg(r))~. If C(7) is closed, then Cy (1) = C(7) x H is closed,
hence H = K and N = Ck(7). If N is a Lie group, or if C(7) is
closed, p; may be identified with a H-invariant semistable continuous
convolution semigroup on C(7) with idempotent py = .. Cf. e.g., [21],
proposition 3.4.4, theorem 3.4.5. ff.

C'(7) is known to be closed if there exist contracting continuous one-
parameter groups of automorphisms ([19]), moreover, for p-adic Lie
groups ([42]), and more generally, for totally disconnected groups if
7 is a tidy automorphism ([10]). If C(7) is not closed and w.l.o.g.
N = (Cy(1))", then 7 is weakly contracting modH on N, and hence
N = Ck(7) for some compact, 7-invariant subgroup K O H (cf.[26],
theorem 5).

Example 1.9. Let now p := p1. Then p = p1_en * pen = p1_en * 7"(p).
Hence p is H—7-decomposable with cofactors v(n) := pi_. € Cof,(7").
In particular, p1_. (and hence all) p; possess finite logarithmic mo-
ments. (This could also be proved by direct calculation). In that exam-
ple, limv(n) = p exists. (And thus trivially also im v(n)xwix = prwi ).

As mentioned, it is well known that left and right concentration
functions, hence (right) concentration functions of {)\k} and {)\k} may

differ in characteristic manner. Already mentioned in [4] e.g. for Lie

groups. Here we discuss an example of totally disconnected groups (cf.
(39, 40], [21], 3.1.9, 3.1.10):

Example 1.10. Let N be totally disconnected and T € Aut(N), let
(Un) ez be a filtration with compact open subgroups, i.e., Uy, 2 Upiy,
Upi1 =7(U,), YU, = N, U, = {e}. Obviously we have N = C(T),
and on the other hand, C(t7') = {e} (since e.g. for all x # e we have
T "(z) ¢ Uy for sufficiently large n). Furthermore, {e} is the only
T-invariant compact subgroup.
Let G = N x; Z, put v := wy,, A =v ®¢ey. Obuviously \ is adapted.
k-1
We observe v(k) = *k wriw,) = wu,, hence {)\"“} is non-dissipating.
=0

On the other hand, \ = Wr-1(1) ® €-1, hence A= w(k) ® e_y, with
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w(k) = wy_,. One can easily show that {p(k)} is not relatively compact,
hence {X’“} 18 dissipating.

This can also be proved in the following way: Assume that {X’“}

is mon-dissipating. Then u(k)(Cx(771)) = 1 for all k > 0, for some
compact T-invariant subgroup K. But K = {e} and C(77') = {e},
as mentioned above, hence Cx(771) = C(77') - K = {e}. Thus \ =
€. ® e_1, and therefore A = e, ® €1, a contradiction.

The following result will explain more detailed the interplay between
limit behaviour of relatively compact M-semigroups and 7-decompos-
ability.

Proposition 1.11. Let {v(k)} be a relatively compact M-semigroup.
To avoid measurability problems, N is supposed to be second countable.
Put A := LIM{v(k) : k — oo} and § := LIM{r"(v(k,)) : n —
00, (k) CZy}. (LIM denoting the set of accumulation points.)

Then we have:
a) ACpxS
b) 1(8)=S8
c) If{v(k)} € M, a commutative x-sub-semigroup of M*(N), then
any p € A is T-decomposable with v(k)xay, € Cof ,(T%) for some ay, € S,
keZ,.
d) If for some compact T-invariant subgroup H C K, v(k) (Cy (1)) =
1 and v(k) wy = v(k) for all k, then S = {wg}, hence A = p and
limv(k) = p. Moreover, p is T-decomposabel with v(k) € Cof ,(7%).
Note that these conditions are satisfied in the semi-stable case, cf. Ezx-
ample 1.9. (It is not supposed that Cy,(T) is closed.)

Proof. a) Let p,o € A, v(k,) — p and v({,) — 0. Assume w.lo.g.
l, >k, for all n (else pass to a subsequence). Then v(,) = v(k,) *
7 (v(ly—ky)) — pxa, a € 8. Hence o = pxa € pxS, and analogously,
p € oS8 follows.

b) Assume 7% (v(m,)) — v € S. Them 7(y) = lim 7+ (v(m,)),
hence 7(y) € S, and analogously 77!(v) € S follows.

c) If {v(k)} € M then A C M~ a closed commutative sub-
semigroup. Let p € A, v(k,) — p. Then v(k, — 1) — px a (along
a sub-sequence) for some a € §. Hence v(k,) = v(1) * 7(p) * 7(a) =
(v(1) *x1(r)) *7(p). Le., v(1) x 7(a) € Cof,(7).

d) 7 is contracting mod H on Cg(7) and v(k) (Cy(7r)) = 1 for all
k, hence o(Cy(7r)) = 1 for « € S. Furthermore, o x wy = « yields
S = {wy}. Obviously, p is right H-invariant, therefore p x S = {p},
ie., limv(k) = p. O

2. CONTINUOUS TIME: NON-DISSIPATING CONTINUOUS
CONVOLUTION SEMIGROUPS

Next we replace the random walk by a continuous convolution semi-
group {At}teﬂh ( the distribution of a Lévy process on G, if G is metriz-
able). W.lLo.g. we assume that G is generated by {supp(X\;) : t > 0}.
For short, {\:} is called adapted then. Note that this does not imply
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that a single )\, is adapted. {M\},.p, is non-dissipating if the con-
centration functions fy,(C) := sup \(Cz) do not converge to 0 for
zcG

some compact C' (for t — o0). For any ¢ty > 0 the random walk
{XE = A} (called skeleton random walk) is a non-dissipating ran-
dom walk as Proposition 2.1 below shows.

First we compare the behaviour of concentration functions of con-
tinuous convolution semigroups and their skeleton random walks:

Proposition 2.1. Let {\;} € M'(G) be a continuous convolution
semigroup. Then the following assertions are equivalent:

(i) {\} is non-dissipating

(it) For all [(ii’) for some] to > 0 the skeleton {\;. } is non-dissipating
(iti) For all [(iii’) for some] to > O the skeleton {\} is relatively
shift compact

(iv) For all [(iv’) for some] tg > 0 {)\,’fo * Xfo} is relatively compact
(v) { M} is relatively shift compact

(vi) {)\t * Xt} is relatively compact

(vii)  For all [(vii’) for some] to > 0 Ay, has finite first moments
(viii) For all [(viii’) for some] to > 0 v(ty) has finite logarithmic
moments

Proof. Obviously, we have (i) = (1), (it) = (i), (it3) = (i), (iv) =
(iv'), (1ii) < (i), (iii') < (iv'), (v) < (vi), furthermore, (v) = (iii).
(i1) & (1) < (iv) and (i7) < (iit') < (iv') follow by the results
mentioned in Facts 1.1 a).

'(#i7") = (v)’ Let z € G such that {Atok * 51;1} is relatively com-
pact. Then, {\;} being a continuous convolution semigroup, the set
{1 0<r <t} * {)\tok ¥ ey ke Z+} = {\; :t >0} is relatively
compact. Whence (v) follows.

"(v) = (1) {)\t * €x(t)—1} is relatively compact. Hence for any ¢ > 0
there exists a compact C' such that for all ¢ € Ry, \(Cz(t)™!) > e.
Therefore, f),(C) fails to converge to 0.

"(ii') & (vil!) & (viii')  and (i) < (vii) < (viii) follow by Theo-
rem 1.6 O

As mentioned before, a skeleton random walk need not be adapted
on G, hence we introduce for t; > 0 the subgroups Gy, as smallest
closed subgroup containing supp),. Hence )\, is adapted on Gy,. Fur-
thermore, a priori Ny, := N,, , the smallest closed normal subgroup

of Gy, containing supp, * Ay, might not be normal in G and might
depend on ty. In order to apply the results of Section 1 we have to
overcome these difficulties.

Proposition 2.2. We have Ny, = Ny =: N for allty > 0 and N < G.

Proof. Obviously, for all t > 0, G, = |J Naf for some (all) z; €
keZ
suppA;. First we consider dyadic numbers ¢, and then proceed to real

t applying continuity of {\;}.
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Let t = 1. Then obviously G; C Gy, since A\; = )\%/2. For all
T, T1/2 € supply e it follows xx )9, x%m € suppA; € Gy, hence

x21/9N1 = N1221/9 and 229Ny = x%/le = Nla:%/Q = Nizxyo (2.1)

[[ In fact, suppA; C xf/QNl =TTy = xf/zv = wxf/Q for some v, w €

N1, whence (2.1) follows. ﬂ
Therefore,

x_le/QNl = a:_l:ml/g]\/'l = x12N;  and (2.2)

Nlm%/ﬂil = Naypra~! = Nizy (2.3)

Claim: )\1/2(131/2]\71) = )\1/2(N1.§U1/2) = 1 and hence — with Nik =
N1 N ZL’l/QleL’l_/lQ — it follows

/\1/2(fo1/2) = )\1/2(.’E1/2Nf> =1 and NflEl/g = l’l/sz (24)
[[ Proof of the claim: By (2.1) and (2.2) we have

1 = )\1(N1$%/2> :/}\1/2(371]\[113%/2)(1)\1/2(27)

(2.1)

_ 2.2
= /)\1/2(ZE 1$?/2N1)d)\1/2(1‘) (:) /)\1/2(171/2N1)d)\1/2(17)

= >\1/2(N1I1/2) = /\1/2($1/2N1)

Analogously, 1 = f)xl/g(le%/zx_l)d/\l/g(x) = Aij2(N1z1/2). Whence
the first assertion follows.

Hence we also have Ay /o(N{x1/2) = Aij2(21/2N7) = 1. Since xf/Q €
Gy, N1<4Gy, it follows xl/szxl_/g = $1/2N1£L’1_/12m$1/2(l’1/2N1$;/12)$1_/12 =
$1/2N1371_/12m93§/2N1331_/22 @D N;. Hence also the second assertion of (2.4)

follows. ]

Consequently, we have Gy, C kLgJZ a:’f/sz = kLEJZ fo’f/2 (as suppA /2 C
x1/9NT = Nixy/2), according to (2.4).

Claim: Ny = zNjz! for all z € Gy [[ Let z € Gyjo. Then
there exist v,w € Ny, k € Z, such that z = :U'f/Qv = wx'f/Q. Hence

27N}z = xl_/’;w_lewx’f/Z = a:;/‘éNfa:’fm 2 Ny ﬂ

Claim: Ny, C Ny. [[ Ny N Ny, =: N*is a closed normal sub-
group of Gy, such that 1 = Ay /o(21/2N*) = Aijo(N*21/2). But Ny is
minimal with this property. Whence N;,, € N* C NY.

Claim: Nf = N* = Ny = Ni. | Nij2 4Gz yields Nyj39Gy (since
Nf C G C Gl/g). And /\1<JZ%/2N1/2> = f/\1/2(m_lx%/QNl/g)d/\l/Q(x) =
My2(x1/2N172) = Mj2(Nijpz12) = 1. In fact, for @ € supphijg, = =
T1/9W = VT1 /2, With w, v € Ny 5 we have x*1x§/2N1/2 = w w9 Nyp =
w™ Ny o1 /2 = Nijax1/2 = 12N 2. Hence, according to the definition,
Ny € Ny, follows. Together we obtain Ny € Ny, € Nf C N;, whence

the assertion follows. ﬂ
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By induction, we obtain for all n € Z,: N := N; = Ny/p» and hence
N = N, for all t € Dy = {k/2" : k,n € Z,}. Furthermore, n — Gy /on
is increasing. Finally, continuity of ¢ — \; shows that N = N, for all

t € Ry\{0}. And thus G = ( U x’f/QnN> = |J N for suitable

n,k€Z teRy
Ty € G

Proposition 2.3. Let G be non-compact and let {\;} be non-dissipating.
Then, with the afore introduced notations, there exists a continuous
one-parameter group {z(t) er € G such that G/N = R and suppA; C
2(t)N, t > 0.

Let, for t € R, 7 := iz |n denote the restriction of the inner
automorphism to N. Then T = (1) is a continuous one-parameter
group in Aut(N). And we have: G = N xp R (with group operation
(g,t)(h,s) = (gme(h),t +s), gh € N, t,s € R). Furthermore, \
may be represented as Ny = v(t) ® &, where t — v(t) € M (N) is a
continuous M-semigroup (w.r.t. T') (cf. Definition 2.6 below).

Proof. As shown before, there exist x; € G such that suppA\; C ;N
(for all t € R,). Hence, 7 : G — G/N denoting the canonical homo-
morphism, we obtain 7()\;) = €. with 2z(¢) = 2,/N. Hence {gz(t)}teR+
and therefore {z(t)},.p, are continuous one-parameter semigroups, ex-
tendible to groups, and thus G/N = R. Finally there exists a contin-
uous one-parameter group {x(t)}ter in G with 7(z(t)) = 2(t), whence
the assertion follows. (Cf. e.g. [30]).

To show that G splits as a semi-direct product, assume N NS =: L
to be non-trivial, where S := {z(¢) : t € R}. The subgroup N C G is
invariant under the inner automorphisms i,(;), L € N is a subgroup and
ix(t) acts trivially on S. Hence L = §, thus S C N. Furthermore, any
Ty, = lat,) is K-contracting, whence S C K in particular, S = {x(t)}
is relatively compact.

Therefore, {\;} is relatively compact since {)\t * gx(t)_1} is. But then
G must be compact, a contradiction to the assumption. (In fact, by
[31], theorem 2, applied to a skeleton, G must be compact. The metriz-
ability condition there is easily seen to be superfluous, since G can be
approximated by metrizable gropups.) O

Again, to avoid trivialities, throughout in the sequel G is assumed
to be non-compact. If N is compact, hence N = K, any continuous
convolution semigroup {\; = v(t) ® &;} is non-dissipating.

In the discrete time case it was essentially used that N = Cg(7).
This results follows immediately in the continuous time case, if we
consider the skeletons {)\fo}. However, in the continuous time-case the

structure of NV is even nicer: Put again, C(T') = {x EN: 7(z) == e}

and Ck(T) = {3: EN: 7, =%¢e mod K} for some compact, T-in-

variant subgroup K.

Proposition 2.4. a) With the notations above we have N = Ck(T)

In fact, for any locally compact group N admitting a continuous one
parameter group T = (1) C Aut(N) and a T-invariant compact sub-
group K we have:

b) Forallt >0, Cx(T) = Ck(r) , in particular, C(T) = C(m).
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c) C(T) is closed, T-invariant, contractible, connected and isomor-
phic to a contractible Lie group (hence a homogeneous group), Ck (T is
a closed T-invariant subgroup of N. If N is compact then Ck(T) = K.
d) C(T) < Ck(T) and there exists continuous homomorphism [3 :
Aut(K) — Awt(C(T)), B(k)(g9) == v 'gr, k € K,g € C(T), such
that OK(T) = O(T) X3 K

e) The restrictions S := T |c(ry = (0¢)eg € Aut(C(T)) and T :=
Tk = (V)er © Aut(K) are continuous one-parameter groups, I'
consisting of inner automorphisms of K.

f) T = (1 = (04,v)) satisfies the following consistency conditions

(or0B(k) = (B (k) ooy, ke K, teR.
Conversely, any group T arises in that way.

Proof. In fact, a) follows applying the results of Section 1, Facts 1.1 d)
for any skeleton, and by b)-f).

b) See [39], [21], Lemma 3.2.6.

c), d) Cf. [21], Theorem 3.2.32, [20], e) [19], Lemma 3.3, [21] and f)
21], 3.3.4 [20)]. 0

Remark 2.5. As mentioned before (Facts 1.1 d)), also in the discrete
time case, we have Ck (1) = C(7)K, at lest in the case of Lie- or totally
disconnected groups. However, C(1) will in general not be closed. Not
even on a 2-dimensional torus. (Cf. e.g., [19], [21], Example 3.12.5.)
As mentioned, C(7) is closed and hence C(7) splits semi-directly if G
is a p-adic Lie group ([42], [34], [8]), more generally, a totally discon-
nected group, and if T is a tidy automorphism ([1], [10], [26]).

Now we define in analogy to the discrete time case:

Definition 2.6. a) {v(t)},p, C MY(N) is a (continuous time) M-
semigroup (w.r.t. T = (7)) — also called skew semigroup, T-semigroup,
or distribution of a generalized Ornstein Uhlenbeck process — ift — v(t)
s continuous and if the following cocycle equation is satisfied:

v(t+s)=v(t)*n(v(s)) forallt,se Ry (2.5)

In the following we are interested in relatively compact M-semigroups.
b) p € MYN) is T-decomposable or T-self-decomposable, if for all
t e Ry, p=v(t)*1(p) with cofactors v(t). Cof,(1:) denotes the set of
cofactors. p € MY(N) is K — T-decomposable if in addition p is right
K-invariant.
¢) A 2-parameter family {v(t,t + s)}, 5o € M (N) is called T-stable
hemigroup if (t,s) — v(t,t + s) is continuous, for all r,s,t € Ry
vit,t+s+r) =v(t,t+s)xv(t+st+s+r) and (v(s,s+1)) =
v(is+t,s+r+t).

Theorem 2.7. a) {v(s)},g. is a continuous M-semigroup in M'(N)
+
iff {v(t,t + s) == 7(v(5))}, ser, 15 @ T-stable hemigroup.
b) {v(s)}er, 15 a continuous M-semigroup in M'(N) iff {\; := v(t)®
Et}ier, 08 a continuous convolution semigroup in MY G), G = NxrR.
{v(s)}ier, n a), b) is relatively compact iff {As} is non-dissi-
pating.

seR4
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¢) Let {v(s)},cr, be relatively compact and N = Cx(T). Then p :=
lim v(t) xwg ezists and is K — T-decomposable, with cofactors v(t) €

t—o0

Cof (1), t € Ry,

d) Conversely, let p € M'(N) be K—T-decomposable. Then there ex-
ists a non-dissipating continuous convolution semigroup {\;} € MY(G),
with Ay = v(t) ® ¢, and hence a relatively compact continuous M-
semigroup {v(t)} in M*(N) with p := tlim v(t) xwg

d) {v(s)} is relatively compact iff for all (some) to > 0 Ay, has fi-
nite first order moments, equivalently, iff v(ty) has finite logarithmic
moments.

Proof. a), b) are proved as in the discrete time case, Theorem 1.6 f).
(For aperiodic groups see [14], proposition A, [13], theorem 3.16.)

¢) Assume v(t,) — a,v(s,) — ( and w.l.o.g. t, > s,. Then v(t,)
wr = v(sp) * T, (W(ty — $p)) x wxg — [ * wg, since 75, is compactly
contracting mod K. Hence a x wg = 3 x wg for all accumulation
points, whence the assertion follows.

d) To prove the converse, i.e., the existence of a continuous solution
{v(t)}, we need some tools from the embedding problem for infinitely
divisible laws on groups. (For aperiodic groups, in particular simply
connected nilpotent Lie group, see [13], proposition 3.6, see also [14],
theorem B.)

Let again D, := {k/2" : k,n € Z,} denote the dyadic numbers.
For all n € Z; choose vy, € Cof,(ry /Qn). As immediately seen, for
pi € Cof,(a;), 1 = 1,2, we have py * a1(p2) € Cof,(ajaz). Hence by

k—1
induction, vy, = *()Tj/zn(yl,n) € Cof,(/2n). Put Ag’})zn =V, ®
‘]:
gn on_1
€1/2n, and AY‘) = <x\§%n> = | X 7en(in) | ®e1 = vony, ® 61
§=0

In fact, for all £k € Z, we have (/\g%n)k = Uy @ Egjon and v, €
Cof ,(7/2n). Indeed, as immediately verified, {0 coF=A=u® sk} =
{0 =vQRe : VE Cof,\(ﬁ/k)}.

For all fixed n, {vgn}, -, satisfies the discrete cocycle (or M-semigroup)
equation: Put v™(k/2") := 1, then for t = k/27,s = (/2" we
have v (t + s) = v™(t) x 7,(v™(s)). Hence {Aﬁ”)} is relatively

TLEZ+

compact with {VYZ)} C Cof,(m) and has relatively compact 2™-
neN

th root sets {x\&%m}neN with {v™(1/2m)} C Cof,(71/2m). Accord-
ing to Tychonov’s theorem, we can choose a convergent subnet (n’)
such that for all m € N, lim (M) = Mg = (1/27) @ €1

exists, and by construction, (Al/gmk)k = Aijom for all m, k. Thus,
D, 35t=Fk/2" — X\ := Ao is a convolution semigroup with param-
eter set D.

We have to show that a continuous version may be selected. Put
Ro:={\:t€[0,1]]ND;}".

Claim: R, is compact in M!(G) with all accumulation points of
the form v(t) ® &;. [[ Let t, € [0,1]NDy, ¢, — t € [0,1] along a subnet,
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hence 7, (p) — 7(p). Furthermore, p = v(t,,)*7, (p) yields that {v(t,)}

is relatively compact with all accumulation points v(t) € Cof (7).

Let @y denote the set of accumulation points of {\; € Ry : t — 0}.
Therefore, 0 € @ is representable as 0 = u ® gy for u € Cof,(79), i.e.,
U*xp=p.

A straight forward generalization of E. Siebert’s embedding theorem
([36], 5. Satz 1, 6. Satz 1, [22], Theorem 3.5.4) shows the existence of a
continuous convolution semigroup {\; = v/(t) ® & },5, with A} = oyx A,
o, = u ® &, € Py: In fact, one of the essential steps in the proof
is an extension of a semigroup homomorphism from Q; to Ry ([36],
4. Satz 1, [22], Theorem 3.5.1). And Q, may be replaced by any
sub-monogeneous semigroup, hence e.g., by D,. This is shown in the
diploma thesis [32]. (For a sketch of a proof cf. [12], Lemma 2.4).

Therefore {/\;} is a continuous convolution semigroup, and thus
{V(t)} is a continuous M-semigroup of cofactors of p, as asserted. [

To obtain in the continuous time case necessary and sufficient condi-
tions for the existence of logarithmic moments in analogy to [27], propo-
sition 2.14, corollary 2.15, we have to recall some notations and facts:
Let H be a locally compact group. A Borel function f : H — R, is sub-
additive (resp. a’jauge’) if f(xy) < f(x)+f(y) (resp. < C+f(x)+f(y)
for some C' > 0). f is sub-multiplicative if f(zy) < f(z)f(y). As im-
mediately seen, if f is sub-additive (and > 0) then g := 1 + f is
sub-multiplicative and > 1 and if h is sub-multiplicative and > 1 then
log(h) is sub-additive and > 0. Thus log(1l + f) is sub-additive and
1 +log(1+ f) is sub-multiplicative.

We shall always suppose that for some € > 0 the set {f < €} is a
neighbourhood of e.

Let H be compactly generated, H = |J,-, V" for some symmetric
compact V' C i(e). Then we define a sub-additive function &y : x +
inf{n € Z, : x € V"}. According to [11], proposition 1, in that case
any jauge, in particular any sub-additive function f is dominated by
6v, i.e.,

f < Ady + B for some constants A > 0,B >0 (2.6)

If {\;} is a continuous convolution semigroup, the Lévy measure 7
is defined by [gdn = %|t:0fgdAt, for ¢ € C*(H) vanishing in a
neighbourhood of the unit. If as before, H = G = N x R and \; =
v(t) ® &, then, as easily seen, 7 is supported by N and fN gdn =
C(li—ﬂt:o [y 9dv(t). Recall that a Lévy measure is bounded outside any
neighbourhood of e. According to a well-known Result of E. Siebert,
[37], theorem 1, [38], theorem 5, for a sub-multiplicative function g
such that for some € > 0, {g < €} € U(e), we have:

/gd)\t < ooVt >0 iff / gdn < oo, U € U(e) (2.7)
G\U

Hence, for a sub-additive function f we obtain [ 1+ fd\; < oo, equiv-
alently [ fd\; < oo iff fG\U 1+ fdn < oo, equivalently, fG\U fdn < co.

In [27], definition 2.6, particular sub-additive functions p : N — R,
called reqular T-functions are defined (depending on 7 and K) and it
is shown ([27], proposition 2.14) that for symmetric U € H(e) (in N)
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and Vo := U ® {£1,0} C G; = N x Z the restriction of dy, to N and
log(1 4 ¢) are equivalent, i.e.,

(SV(J('? 0) < Alog(l + 90() + B and log(l + 30() > C(SV()(': 0) (28)
Put V := U®[-1,1] C G, then we observe: |JV]' =G, and V" = G.
Furthermore, Vj C V, hence éy (x,t) < dy,(z,t) for (z,t) € Gy, i.e., for
t € Z. In particular, for t = 0, oy |y < dy,|n-

Note that oy |n(x) = dy(z,0) = inf {n : Jy; € N,t; € [-1,1],t, = 0,
such that [[™ 7, () = 2,3 t; = 0}
Theorem 2.8. The following assertions are equivalent:
(a) {A\:} is non-dissipating
(b) For some (any) ty > 0, Ny, has finite first moments
(¢c) m has finite first moments
(d) [ ovdA, < o0
(e) fG\W dydn < oo for some (any) W € U(e)
(f) For some (any) to > 0 v(ty) has finite logarithmic moments
(g9) n (considered as measure on N ) has finite logarithmic moments
(h)  For some (any) to >0 [y 0v(x,0)dv(to)(z) < oo
(i) fN\W, oy (z,0)dn(z) < oo for some (any) neighbourhood W' of the
unit in N.

Proof. (a) < (b) and (b) < (f) follow by Theorem 2.7, (b) < (c)
by the above mentioned Result of E. Siebert, cf.(2.7). (¢) = (d) is
obvious and (d) = (c¢) follows since any sub-additive function (on G)
is dominated by dy, as mentioned above, cf.(2.6). (d) < (e) again by
Siebert’s result, as afore.

(d) & (f) & (h) and (e) & (g9) < (i): Let ¢ be a regular 7-
function. In particular, sub-additive. Then, as easily verified, v :
G — Ry, (z,t) — 14 p(x) + |||| is sub-multiplicative, where ||7|| :=
sup {¢(r(x))/¢(x) : = ¢ K}. (For N = C(T) see e.g., [21], proposi-
tion 2.14.28.) Hence, as mentioned before, log(1 + v) is dominated
by dy; moreover, dy, |y is dominated by log(1l 4+ ¢) = log(1 + ¥)|n-
Furthermore dy |y < dy,|n. Finally, arguing as before, we obtain for
any sub-additive function f : N — R, that log(1 + f) is dominated
by dy|ny and hence by log(1 + ¢). Whence the assertions immediately
follow. U

We close with two examples in analogy with the case of discrete
times. The first shows that lim v(f) need not to exist if N = Ck(T),
K # {e}. (For K = {e}, i.e., N = C(T), limv(t) exists, cf. [14],
proposition A.)

Example 2.9. Let M be a contractible, hence simply connected nilpo-
tent Lie group with contracting one-parameter group S = (Ut)t>0 m
Aut(M), let K be a solenoidal compact group with dense one-parameter
subgroup (x(t)),cp- Put N := M ® K and define T := (1;) € Aut(N)
by = o0y ®1id, t € R. Hence N = Cg(T). Let {u(t)} be a con-
tinuous M-semigroup (w.r.t. S) in MY(M) such that p = lim u(t)
exists. As & = 7|k = id, M-semigroups in M*(K) (w.r.t. (&))
are just continuous convolution semigroups, in particular, {Ex(t)} 1S a
M-semigroup. It is immediately verified that {v(t) == pu(t) @ ey} is
a relatively compact M-semigroup in MY(N) and {\; .= v(t) ® &} is
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a non-dissipating continuous convolution semigroup in M*(N xr R).
As (xz(t)) is dense in K, the set of accumulation points of v(t),t — oo,
consists of {p @ e, : k € K}. In particular, limv(t) does not exist.

In the next example we point out the connections between stable
laws and non-dissipating continuous convolution semigroups.

Example 2.10. Stable laws are particular self-decomposable laws. To
show this we have to switch between additive and multiplicative para-
metrizations of continuous one-parameter groups:

Let N be a simply connected nilpotent Lie group and S = (o) C
Aut(N) be a contracting continuous group with multiplicative parame-
trization, 0,0, = 045 fort,s > 0, and lir% o(z) =e forallz € N. A

continuous convolution semigroup {p;} in M*(N) is called S-stable if
oi(p1) = pi, for all t > 0, equivalently, oy(ps) = prs fort > 0,5 > 0.
Put p := p1. We have p = p1_s*04(p), hence p is os-decomposable with
cofactors p1_s € Cof ,(05), for all 0 < s < 1.

To obtain a continuous M-semigroup of cofactors we have to switch
to additive parametrization: T 1= (Ty := Oe-t),cp 15 a continuous one-
parameter group satisfying Tiys = T¢Ts and tll)rglo (x) =e for allx € N.
And with this notations we obtain p = py_o—t *x 74(p) for t > 0.

As immediately verified, {v(t) = p1-e-t}icp, is a relatively com-
pact continuous M-semigroup with v(t) € Cof,(n) and p = limv(t),
hence defines a non-dissipating continuous convolution semigroup in
MY (G), G = N xr R. Note that in this (trivial) case, v(t) = py_e—t =
O1—e—t (;0) = Tlog(e—t—1) (P)

In analogous way, stable laws on N = Ck(T') with idempotent wx
could be treated.

Of course, also Proposition 1.11 has a counterpart for continuous
time M-semigroups. However, less instructive, since H = K and Cy(T)

is closed and = Ck(T) = N.
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