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Abstract. The concentration function problem for locally com-
pact groups, i.e., the structure of groups admitting adapted non-
dissipating random walks, is closely related to relatively compact
M- or skew semigroups and corresponding space-time random walks,
resp. to τ -decomposable laws, where τ denotes an automorphism.
Analogous results are obtained in the case of continuous time:
Non-dissipating Lévy processes are related to relatively compact
distributions of generalized Ornstein Uhlenbeck processes and cor-
responding space-time processes, resp. T -decomposable laws, T =
(τt) denoting a continuous group of automorphisms acting on groups
of the form N = CK(T ).

Introduction

Let G be a locally compact group, λ ∈ M1(G) a (w.l.o.g.) adapted
probability measure. λ, more precisely, the random walk

{
λk
}

k≥0
,

is called non-dissipating (or non scattering) if for some compact sub-
set C ⊆ G the (right) concentration functions fλk(C) := sup

x∈G
λk(Cx)

fail to converge to 0, with time k → ∞. Analogously one could de-
fine left concentration functions as gλk(C) := sup

x∈G
λk(xC). Note that

the behaviour of left and right concentration functions may differ in
characteristic manner. (Cf. e.g., Example 1.10.) If the random walk
is non-dissipating,

{
λk
}

k≥0
is relatively shift compact, equivalently,{

λk ∗ λ̃k
}

k≥0
is relatively compact. Furthermore, if N = Nλ denotes

the smallest closed normal subgroup containing the support suppλ ∗ λ̃,
then G/N ∼= Z. Hence there exist x ∈ G such that λ = ν ∗ εx with
suppν ⊆ N .

Denoting the restriction of the inner automorphism ix to N by τ :=
ix |N , we obtain: G ∼= N oτ Z, and λ is representable as λ = ν(1)⊗ ε1,
with ν = ν(1) ∈ M1(N), hence the random walk is representable as
λk = ν(k)⊗ εk, all k ∈ Z+, (ν(k) ∈M1(N), ν(0) := ε0).

For the history of the concentration function problem on locally com-
pact groups the reader is referred to the survey of W. Jaworski [27]
showing previous developments and a recent state of investigations: Be-
ginning with the pioneer works [4], [24] to the investigations [27, 28, 25].
This is closely related to parallel investigations of M-semigroups and
τ -decomposability:

To avoid trivialities, throughout G is supposed to be non-compact.
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As immediately seen, ν(k) is representable as ν(k) =
k−1

∗
j=0

τ j(ν(1)), k ∈

N, and hence satisfies the the relation

ν(k + `) = ν(k) ∗ τ k(ν(`), k, ` ∈ Z+ (0.1)

A sequence {ν(k)}k∈Z+
satisfying (0.1) is called discrete time M-(or

Mehler-)semigroup (in fact, the (discrete) semigroup of transition ker-
nels is frequently called discrete Mehler semigroup), also called skew
semigroup or τ -semigroup. Moreover, this M-semigroup is relatively
compact. Conversely, discrete M-semigroups {ν(k)} define space-time
random walks

{
λk = ν(k)⊗ εk

}
on the space-time building G = NoτZ.

So non-dissipating random walks (in G) correspond in a 1-1-manner to
relatively compact M-semigroups (on N). (Cf. Theorem 1.6 below.)

It is shown in [27] that N has an interesting structure: N = CK(τ),
where C(τ) := {x ∈ N : τn(x) → e} and CK(τ) := {x ∈ N : τn(x) → e

mod K} denote the contractible subgroup resp. the K-contractible
subgroup, K is a compact subgroup of N . And moreover, CK(τ) =
C(τ) · K, at least in the case of Lie groups or totally disconnected
groups. In Theorem 1.6 we show that ρ := lim

k→∞
ν(k) ? ωK exists and

is τ -decomposable, i.e., ρ = ν(k) ∗ τ k(ρ) for cofactors ν(k), k ∈ Z+;
furthermore, ρ is right K-invariant. Conversely, for any such measure
we have lim ν(k) ? ωK = ρ, and hence ρ generates a relatively compact
M-semigroup of cofactors {ν(k)}. Thus ρ resp. the cofactors generate
a non-dissipating random walk.

The second part of the paper is concerned with the continuous time
analogues. The random walk is replaced by a continuous convolution
semigroup {λt}t∈R+

, the distributions of a Lévy process. First we show

that {λt}t∈R+
is non-dissipating if some (hence all) skeleton random

walk
{
λk

t0
= λt0k

}
k∈Z+

is non-dissipating and that the subgroup N =

Nλt0
is independent of t0 > 0 and is a normal subgroup in G (not

only within the group Gt0 generated by suppλt0). Thus the results for
discrete times apply easily to the continuous time setup. Furthermore,
G/N ∼= R, and there exists a continuous one-parameter group (x(t))t∈R
such that T =

(
τt := ix(t) |N

)
⊆ Aut(N) and G ∼= N oT R.

In Theorem 2.7 we show that non-dissipating continuous convolution
semigroups and relatively compact (continuous time) M-semigroups
{ν(t)}t∈R+

correspond in a 1-1 way. Furthermore, ρ := lim
t→∞

ν(t) ? ωK

exists, is T -self-decomposable, i.e., for some cofactors ν(t) ∈ M1(N),
ρ = ν(t) ? τt(ρ) for all t ∈ R+ and ρ is right K-invariant. Conversely,
given such a measure, then there exists a continuous M-semigroup of
cofactors {ν(t)}t∈R+

⊆ M1(N) defining a space-time continuous con-

volution semigroup {λt = ν(t)⊗ εt}t∈R+
. And since {ν(t)} is relatively

compact, {λt} is non-dissipating.

The latter property, relative compactness of the M-semigroups, can
be characterized by the existence of logarithmic moments. For contin-
uous time this (and some equivalent assertions) is shown in Theorem
2.8.

For continuous time, M-(Mehler-) or skew semigroups and corre-
sponding space-time continuous convolution semigroups had been in-
vestigated in the past in different papers. Beginning with the pioneer
work [23] (with slightly different representations) to [14, 13, 21]. See
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also [3] for Mehler hemigroups and embedding of discrete time mod-
els into continuous time ones. In [14] the reader will find some more
hints to the literature, in particular to vector spaces beyond the locally
compact group case. Both branches of investigations, the concentra-
tion function problem and (semi)-stability and (self)-decomposability
resp. M-semigroups lead to investigations of the structure of (K)-
contractible subgroups C(τ) resp. CK(τ) of locally compact groups.
See e.g., [39, 40], [20, 19], [21], Ch. III, [34, 35, 7, 6], [27, 28, 25], [10],
[1] and the literature mentioned there.

1. Discrete time: Non-dissipating random walks

Recall the following notations: G denotes a locally compact group,

for λ ∈ M1(G), the set of probabilities, let λ̃ be the image of λ under
the inverse mapping. ∗ denotes convolution on G, λk is the k-th convo-
lution power, λ0 := εe, where εx denotes the point measure in x ∈ G.
W.l.o.g. λ is supposed to be adapted, i.e., G is the closed group gener-
ated by the support suppλ. N = Nλ denotes the smallest closed normal

subgroup containing suppλ ∗ λ̃. The concentration function of the ran-
dom walk

{
λk
}

k∈Z+
is defined as Z+ 3 k 7→ fλk(C) := sup

x∈G
λk(Cx) for

compact C ⊆ G. λ or {λk} is called non-dissipating if fλk(C) fails to
converge to 0 with k →∞, for some compact C.

To distinguish, in the sequel ’∗’ will denote convolution on G while
convolution on N is denoted by ’?’.

We collect some properties:

Facts 1.1. a)
{
λk
}

is non-dissipating iff
{
λk
}

is relatively shift com-

pact, i.e., for some xk ∈ G\{e},
{
λk ∗ εx−1

k

}
is relatively compact.

Equivalently, iff
{
λk ∗ λ̃k

}
is relatively compact.

In that case, if G is non-compact, the following assertions b)–f) hold:

b) G/N ∼= Z, hence the shifts can be chosen as xk = xk for some
x ∈ G\N .

c) The restriction to N of the inner automorphism τ := ix |N is con-
sidered as automorphism of N , and hence G has a canonical repre-
sentation G = N oτ Z (with product (g, k)(h, `) = (gτ(h), k + `) for
g, h ∈ N, k, ` ∈ Z, where x = (e, 1)).

d) There exists a compact subgroup K ⊆ N such that N = CK(τ) :={
x ∈ N : τ k(x) → e mod K

}
. Moreover, with C(τ) = C{e}(τ) we have

CK(τ) = C(τ) · K, at least in the case of Lie groups or totally dis-
connected groups. If N is compact then N = K as τ is compactly
contracting.

e) λ and ν := λ∗εx−1 are representable as λ = ν⊗ε1 ∈M1(N oτ Z),
ν =: ν(1) identified with a probability of M1(N). Hence by induction,

λk = ν(k) ⊗ εk, k ∈ Z+, with ν(0) = εe, ν(1) = ν, ν(k) =
k−1

?
j=0

τ j(ν) ∈

M1(N) and x identified with (e, 1). Furthermore, {ν(k)}k∈Z+
is rela-

tively compact.

f) Put L := {suppν(k) : k ∈ Z+}. Then N is the smallest τ -invariant
normal subgroup of N containing L. In general, L will not generate N .
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a) see [27], Corollary 3.2, and the literature mentioned there. In

particular, [9], [26], theorem 1.

b)c) See [27], theorem 3.4, [9].

d) See [27], theorem 3.5, 3.9. For the representation CK(τ) = C(τ)K
see [28], see also [1], [10], [25] for previous results. For Lie groups see
[19], [21], theorem 3.2.13.

e) is immediately verified.

f) λ is adapted, hence G is generated by suppν(1)⊗ 1. N /G, hence
N is τ -invariant and N ⊇ L. By definition, N is the smallest subgroup
with this property. It is easily shown, cf. e.g., Example 1.10, that N

may be larger than the group generated by L.
]]

As already mentioned, G is always supposed to be non-compact,
else any random walk would be non-dissipating. If N is compact then
N = K and thus any space-time random walk

{
λk = ν(k)⊗ εk

}
is

non-dissipating.

Definition 1.2. A probability µ on a locally compact group H possesses
finite first order moments resp. finite logarithmic moments if

∫
H fdµ <

∞ resp.
∫

H log(1 + f)dµ < ∞ for all sub-additive Borel functions
f : H → R+.

Similarily we define for nonnegative measures η on H which are
bounded outside any neighbourhood W ∈ U(e): η possesses finite first
order moments resp. finite logarithmic moments if

∫
H\W fdµ <∞ resp.∫

H\W log(1+f)dµ <∞ for all sub-additive Borel functions f : H → R+.

Facts 1.3. If N is a second countable locally compact group, let (Xk)
denote iid random variables in N with distribution Xk(P ) = ν(1). Put
Zn := X1τ(X2) · · · τn−1(Xn) with distribution Zn(P ) = ν(n). Then the
following assertions are equivalent:

(i) ν(k) is weakly convergent mod K, i.e., lim ν(k) ? ωK exists

(ii) {Zk} is stochastically convergent mod K

(iii) {Zk} is almost surely convergent mod K

(iv) ν(1) possesses finite logarithmic moments.

(v) λ possesses finite first order moments.[[
Obviously we have Zk(P ) = ν(k). The equivalence of the assertions

(i) − (iii) follows by Lévy’s equivalence theorem for groups, see [22],
theorem 2.2.14, or, in context of invariant metrics on N/K, [27].

The equivalence of the conditions (i)−(iv) is folklore for vector spaces
(cf. e.g. [29]), for homogeneous groups [18], [21], 2.14.24, for general
contractible groups [17]. For K-contractible groups, N = CK(τ), cf.
[27], proposition 4.3, (in the context of τ -functions and invariant met-
rics.)

(iv) ⇔ (v) cf. [27], corollary 2.15.
]]

Remark 1.4. The equivalence (i) ⇐⇒ (iv) in Facts 1.3 holds true
without separability assumptions.

Proof. (Cf. also [27], proof of theorem 3.9).
G, suppλ, and hence N are σ-compact. Hence (cf. [5], page 101, ex.
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11, or [41], theorem 5.2) representable as projective limits of metriz-
able quotients, N = lim

←
N/Γα resp. G = lim

←
N/Γα oτ Z with compact,

τ -invariant subgroups Γα /N . Obviously, ν(k) ? ωK is convergent resp.
ν(1) possesses finite logarithmic moments iff for all α the the projec-
tions to the quotients share this property. �

Definition 1.5. a) A sequence {ν(k)}k∈Z+
in M1(N) satisfying

ν(0) = εe, ν(1) =: ν, ν(k + `) = ν(k) ? τ k(ν(`)); k, ` ∈ Z+ (1.1)

is called discrete M-semigroup, (also called Mehler semigroup, τ -semi-
group, skew semigroup etc).

b) ρ ∈ M1(N) is called τ -decomposable if for some cofactor ν =
ν(1) ∈ M1(N) we have ρ = ν ? τ(ρ). Then by induction, ρ = ν(k) ?
τ k(ρ). Cofρ(τ

k) denotes the set of cofactors. According to the shift-
compactness theorem ([33], III, theorems 2.1, 2.2 (for metrizable groups),
[22], theorem 1.2.21), the sets of cofactors are compact for all k.

c) ρ is right K-invariant if ρ ? ωK = ρ, where ωK denotes the nor-
malized Haar measure on a compact subgroup K ⊆ N .

d) For short: ρ is K − τ -decomposable if ρ is τ -decomposable and
right K-invariant.

e) A 2-parameter family {ν(k, `)}k,`∈Z+
is called discrete hemigroup

(or distribution of an additive process) if for all k, `, r ∈ Z+ we have
ν(k, k + ` + r) = ν(k, k + `) ? ν(k + `, k + ` + r). It is a τ -hemi-
group, if in addition τ(ν(k, `)) = ν(k + 1, ` + 1). Then obviously,
ν(k, k + `+ r) = ν(k, k + `) ? τ `(ν(k, k + r)).

Theorem 1.6. The following assertions a)–c) are equivalent:

a) {λn}n∈Z+
is a non-dissipating random walk on G, hence repre-

sentable as λk = ν(k)⊗ εk, with ν(k) =
k−1

?
j=0

τ j(ν) ∈M1(N), ν(0) = εe,

ν = ν(1).

b) {ν(k)}k∈Z+
is a relatively compact discrete M-semigroup in M1(N)

(cf. Definition 1.5).

c) If N = CK(τ), then ρ := lim
k→∞

ν(k) ? ωK exists and is K − τ -

decomposable (cf. Definition 1.5).

d) Conversely, if ρ is K−τ -decomposable, the cofactors may be chosen

as ν(k) =
k−1

?
j=0

τ j(ν), ν = ν(1) ∈ Cofρ(τ) and satisfying (1.1), hence

form a M-semigroup (of cofactors) with ρ = lim ν(k) ? ωK.

Therefore, {ν(k)} is relatively compact and hence the corresponding
space-time random walk

{
λk
}

is non-dissipating.

e) A M-semigroup {ν(k)} is relatively compact iff ν(1) possesses finite
logarithmic moments resp. λ possesses finite first order moments.

f)

{
ν(k, k + `) :=

k+`−1

?
j=k

τ j(ν(1)) = τ k(ν(`))

}
k,`∈Z+

is a discrete, rel-

atively compact τ -hemigroup, and conversely, any discrete, relatively
compact τ -hemigroup defines a relatively compact M-semigroup ν(`) :=
ν(0, `), ` ∈ Z+.

Proof. For ′a) ⇔ b)′ see Facts 1.1 e).
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’b ⇔ c)’ Let {ν(k)} be a relatively compact M-semigroup on N =
CK(τ). Since τ k is uniformly K-contracting on compact subsets, the
accumulation points of

{
τ k(ν(n))

}
n∈Z+

are supported by K. Assume,

for some subnets, ν(kn) → α and ν(`n) → β and, w.l.o.g., kn ≤ `n for
all n. Then ν(`n) ? ωK = ν(kn) ? τ kn(ν(`n− kn)) ? ωK → β ?ωK , on the
one hand, and lim τ kn(ν(`n − kn)) ? ωK = ωK on the other. Whence
α = β follows.

I.e., ρ = lim ν(k) ? ωK exists and is obviously right K-invariant.
Conversely, if ρ exists, the M-semigroup is relatively compact.

Furthermore, ρ = lim ν(k + 1) ? ωK = lim ν(1) ? τ(ν(k)) ? ωK =
ν(1) ? τ(ρ) yields K − τ -decomposability of ρ.

Conversely, assume ρ to be K − τ -decomposable.
{
τ k(ρ)

}
is rel-

atively compact as τ is K-contracting, and all accumulation points
are supported by K. Right K-invariance implies τ k(ρ) → ωK . Hence
ρ = ν(k) ? τ k(ρ) yields ν(k) ? ωK → ρ according to the shift compact-
ness theorem ([33], III, theorems 2.1, 2.2 (for metrizable groups), [22],
theorem 1.2.21).

d) By induction, if ρ is τ -decomposable, we can choose ν(k) =
k−1

?
j=0

τ j(ν), ν = ν(1) ∈ Cofρ(τ), hence as relatively compact M-semigroup.

Therefore, according to Facts 1.1, a space-time random walk on Noτ Z
is defined, which is non-dissipating, since {ν(k)} is relatively compact.

e) See Facts 1.3, Remark 1.4, or see [27], theorem 3.9.

f) Obviously, with ν = ν(1), ν(k, k + `) :=
k+`−1

?
j=k

τ j(ν) = τ k(ν(`))

a τ -hemigroup is defined. The converse follows along the same lines:
ν(0, k + `) = ν(0, k) ? ν(k, k + `) = ν(0, k) ? τ k(ν(0, `)). �

Remarks 1.7. a) The connection between τ -decomposability and ex-
istence of logarithmic moments in Theorem 1.6 e) is folklore for vector
spaces, see e.g., for continuous time, the monograph [29]. For con-
tractible Lie groups (homogeneous groups) cf. [18], [21], for general
contractible groups [17]. For the general case, N = CK(τ), see [27].
(For logarithmic moments see also the discussion before Theorem 2.8.)

b) As in the continuous time case, Section 2, the interplay between
τ -hemigroups and M-semigroups is well known. We listed up property
f) in Theorem 1.6 for sake of completeness. For stable hemigroups (in
the continuous time case) the reader is referred, e.g., to [2].

Note that in Theorem 1.6, if N = CK(τ) and K 6= {e}, ν(k) will
in general not be convergent. See e.g., the example 3.16 in [27], with
compact N = T2 and an infinite number of accumulation points. A
further type of examples is obtained in the following way:

Example 1.8. Let M be a contractible locally compact group, with con-
tracting σ ∈ Aut(M), hence M = C(σ). Let {µ(k)} be a relatively com-

pact M-semigroup, µ(k+`) = µ(k)?σk(µ(`)). As σk {µ(`) : ` ≥ 0} k→∞−→
{εe}, limµ(k) =: ρ1 exists. Let K be a finite cyclic group, let x0 ∈ K
generating K with ord(x0) > 2, and assume for some ξ ∈ Aut(K)
that ξ(x0) = x−1

0 . (E.g. ξ : x 7→ x−1). Put N := M ⊗ K, define
τ ∈ Aut(N) as τ = σ⊗ ξ, and put finally ν = ν(1) := µ(1)⊗ εx0. Then{
ν(k) = µ(k)⊗ εy(k)

}
is a relatively compact M-semigroup (w.r.t. τ)
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in M1(N), where y(k) =
k−1∏
j=0

ξj(x0). But infinitely often y(k) = e and

y(k) = x0, hence ν(k) is not convergent.

Investigations of the structure of contractible and K−contractible
groups had been pushed forward in connection with investigations of
(semi-)stable laws. See e.g., [20], [19], [21], [6], and the literature men-
tioned there. However, there the concentration functions were not used
as an essential tool (only in connection with random time substitutions
and geometric (semi-)stability, cf. [16], [21]). Nevertheless it is worth
to point out that semistable laws provide interesting examples of rela-
tively compact M-semigroups, hence of non-dissipating random walks:

Let {ρt} be a continuous convolution semigroup in M1(N), N a
locally compact group. Let τ ∈ Aut(N) and 0 < c < 1. {ρt} is (τ, c)-
semistable if for all t ≥ 0, τ(ρt) = ρt·c. The idempotent ρ0 = ωH is
a normalized Haar measure on a compact τ -invariant subgroup H. If
N is second countable, the contraction subgroups C(τ) and CH(τ) are
Borel sets, and we have: ρt(CH(τ)) = 1 for all t. Hence we assume
N = (CH(τ))−. If C(τ) is closed, then CH(τ) = C(τ) o H is closed,
hence H = K and N = CK(τ). If N is a Lie group, or if C(τ) is
closed, ρt may be identified with a H-invariant semistable continuous
convolution semigroup on C(τ) with idempotent ρ0 = εe. Cf. e.g., [21],
proposition 3.4.4, theorem 3.4.5. ff.

C(τ) is known to be closed if there exist contracting continuous one-
parameter groups of automorphisms ([19]), moreover, for p-adic Lie
groups ([42]), and more generally, for totally disconnected groups if
τ is a tidy automorphism ([10]). If C(τ) is not closed and w.l.o.g.
N = (CH(τ))−, then τ is weakly contracting modH on N , and hence
N = CK(τ) for some compact, τ -invariant subgroup K ⊇ H (cf.[26],
theorem 5).

Example 1.9. Let now ρ := ρ1. Then ρ = ρ1−cn ? ρcn = ρ1−cn ? τn(ρ).
Hence ρ is H−τ -decomposable with cofactors ν(n) := ρ1−cn ∈ Cofρ(τ

n).
In particular, ρ1−cn (and hence all) ρt possess finite logarithmic mo-
ments. (This could also be proved by direct calculation). In that exam-
ple, lim ν(n) = ρ exists. (And thus trivially also lim ν(n)?ωK = ρ?ωK).

As mentioned, it is well known that left and right concentration

functions, hence (right) concentration functions of
{
λk
}

and
{
λ̃k
}

may

differ in characteristic manner. Already mentioned in [4] e.g. for Lie
groups. Here we discuss an example of totally disconnected groups (cf.
[39, 40], [21], 3.1.9, 3.1.10):

Example 1.10. Let N be totally disconnected and τ ∈ Aut(N), let
(Un)n∈Z be a filtration with compact open subgroups, i.e., Un ⊇ Un+1,
Un+1 = τ(Un),

⋃
Un = N ,

⋂
Un = {e}. Obviously we have N = C(τ),

and on the other hand, C(τ−1) = {e} (since e.g. for all x 6= e we have
τ−n(x) /∈ U0 for sufficiently large n). Furthermore, {e} is the only
τ -invariant compact subgroup.

Let G = N oτ Z, put ν := ωU0, λ = ν ⊗ ε1. Obviously λ is adapted.

We observe ν(k) =
k−1

?
j=0

ωτj(U0) = ωU0, hence
{
λk
}

is non-dissipating.

On the other hand, λ̃ = ωτ−1(U0) ⊗ ε−1, hence λ̃k =: µ(k) ⊗ ε−k with
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µ(k) = ωU−k
. One can easily show that {µ(k)} is not relatively compact,

hence
{
λ̃k
}

is dissipating.

This can also be proved in the following way: Assume that
{
λ̃k
}

is non-dissipating. Then µ(k)(CK(τ−1)) = 1 for all k ≥ 0, for some
compact τ -invariant subgroup K. But K = {e} and C(τ−1) = {e},
as mentioned above, hence CK(τ−1) = C(τ−1) · K = {e}. Thus λ̃ =
εe ⊗ ε−1, and therefore λ = εe ⊗ ε1, a contradiction.

The following result will explain more detailed the interplay between
limit behaviour of relatively compact M-semigroups and τ -decompos-
ability.

Proposition 1.11. Let {ν(k)} be a relatively compact M-semigroup.
To avoid measurability problems, N is supposed to be second countable.
Put A := LIM{ν(k) : k → ∞} and S := LIM{τn(ν(kn)) : n →
∞, (kn) ⊆ Z+}. (LIM denoting the set of accumulation points.)

Then we have:

a) A ⊆ ρ ? S
b) τ(S) = S
c) If {ν(k)} ⊆ M, a commutative ?-sub-semigroup of M1(N), then
any ρ ∈ A is τ -decomposable with ν(k)?αk ∈ Cofρ(τ

k) for some αk ∈ S,
k ∈ Z+.

d) If for some compact τ -invariant subgroup H ⊆ K, ν(k) (CH(τ)) =
1 and ν(k) ? ωH = ν(k) for all k, then S = {ωH}, hence A = ρ and
lim ν(k) = ρ. Moreover, ρ is τ -decomposabel with ν(k) ∈ Cofρ(τ

k).
Note that these conditions are satisfied in the semi-stable case, cf. Ex-
ample 1.9. (It is not supposed that Ch(τ) is closed.)

Proof. a) Let ρ, σ ∈ A, ν(kn) → ρ and ν(`n) → σ. Assume w.l.o.g.
`n ≥ kn for all n (else pass to a subsequence). Then ν(`n) = ν(kn) ?
τ kn(ν(`n−kn)) → ρ?α, α ∈ S. Hence σ = ρ?α ∈ ρ?S, and analogously,
ρ ∈ σ ? S follows.

b) Assume τ `n(ν(mn)) → γ ∈ S. Them τ(γ) = lim τ `n+1(ν(mn)),
hence τ(γ) ∈ S, and analogously τ−1(γ) ∈ S follows.

c) If {ν(k)} ⊆ M then A ⊆ M−, a closed commutative sub-
semigroup. Let ρ ∈ A, ν(kn) → ρ. Then ν(kn − 1) → ρ ? α (along
a sub-sequence) for some α ∈ S. Hence ν(kn) = ν(1) ? τ(ρ) ? τ(α) =
(ν(1) ? τ(α)) ? τ(ρ). I.e., ν(1) ? τ(α) ∈ Cofρ(τ).

d) τ is contracting mod H on CH(τ) and ν(k) (CH(τ)) = 1 for all
k, hence α(CH(τ)) = 1 for α ∈ S. Furthermore, α ? ωH = α yields
S = {ωH}. Obviously, ρ is right H-invariant, therefore ρ ? S = {ρ},
i.e., lim ν(k) = ρ. �

2. Continuous time: Non-dissipating continuous
convolution semigroups

Next we replace the random walk by a continuous convolution semi-
group {λt}t∈R+

( the distribution of a Lévy process on G, if G is metriz-

able). W.l.o.g. we assume that G is generated by {supp(λt) : t ≥ 0}.
For short, {λt} is called adapted then. Note that this does not imply
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that a single λt is adapted. {λt}t∈R+
is non-dissipating if the con-

centration functions fλt(C) := sup
x∈G

λt(Cx) do not converge to 0 for

some compact C (for t → ∞). For any t0 > 0 the random walk{
λk

t0
= λt0k

}
(called skeleton random walk) is a non-dissipating ran-

dom walk as Proposition 2.1 below shows.

First we compare the behaviour of concentration functions of con-
tinuous convolution semigroups and their skeleton random walks:

Proposition 2.1. Let {λt} ⊆ M1(G) be a continuous convolution
semigroup. Then the following assertions are equivalent:

(i) {λt} is non-dissipating

(ii) For all [(ii’) for some] t0 > 0 the skeleton
{
λk

t0

}
is non-dissipating

(iii) For all [(iii’) for some] t0 > 0 the skeleton
{
λk

t0

}
is relatively

shift compact

(iv) For all [(iv’) for some] t0 > 0
{
λk

t0
∗ λ̃k

t0

}
is relatively compact

(v) {λt} is relatively shift compact

(vi)
{
λt ∗ λ̃t

}
is relatively compact

(vii) For all [(vii’) for some] t0 > 0 λt0 has finite first moments

(viii) For all [(viii’) for some] t0 > 0 ν(t0) has finite logarithmic
moments

Proof. Obviously, we have (i) ⇒ (ii), (ii) ⇒ (ii′), (iii) ⇒ (iii′), (iv) ⇒
(iv′), (iii) ⇔ (iv), (iii′) ⇔ (iv′), (v) ⇔ (vi), furthermore, (v) ⇒ (iii).
(ii) ⇔ (iii) ⇔ (iv) and (ii′) ⇔ (iii′) ⇔ (iv′) follow by the results
mentioned in Facts 1.1 a).

′(iii′) ⇒ (v)′ Let xk ∈ G such that
{
λt0k ∗ εx−1

k

}
is relatively com-

pact. Then, {λt} being a continuous convolution semigroup, the set

{λr : 0 ≤ r ≤ t0} ∗
{
λt0k ∗ εx−1

k
: k ∈ Z+

}
= {λt : t ≥ 0} is relatively

compact. Whence (v) follows.
′(v) ⇒ (i)′

{
λt ∗ εx(t)−1

}
is relatively compact. Hence for any ε > 0

there exists a compact C such that for all t ∈ R+, λt(Cx(t)
−1) ≥ ε.

Therefore, fλt(C) fails to converge to 0.
′(ii′) ⇔ (vii′) ⇔ (viii′)′ and ′(ii) ⇔ (vii) ⇔ (viii)′ follow by Theo-

rem 1.6 �

As mentioned before, a skeleton random walk need not be adapted
on G, hence we introduce for t0 > 0 the subgroups Gt0 as smallest
closed subgroup containing suppλt0 . Hence λt0 is adapted on Gt0 . Fur-
thermore, a priori Nt0 := Nλt0

, the smallest closed normal subgroup

of Gt0 containing suppλt0 ∗ λ̃t0 , might not be normal in G and might
depend on t0. In order to apply the results of Section 1 we have to
overcome these difficulties.

Proposition 2.2. We have Nt0 = N1 =: N for all t0 > 0 and N /G.

Proof. Obviously, for all t > 0, Gt =
⋃

k∈Z
Ntx

k
t for some (all) xt ∈

suppλt. First we consider dyadic numbers t, and then proceed to real
t applying continuity of {λt}.
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Let t = 1. Then obviously G1 ⊆ G1/2 since λ1 = λ2
1/2. For all

x, x1/2 ∈ suppλ1/2 it follows xx1/2, x
2
1/2 ∈ suppλ1 ⊆ G1, hence

xx1/2N1 = N1xx1/2 and xx1/2N1 = x2
1/2N1 = N1x

2
1/2 = N1xx1/2 (2.1)[[

In fact, suppλ1 ⊆ x2
1/2N1 ⇒ xx1/2 = x2

1/2v = wx2
1/2 for some v, w ∈

N1, whence (2.1) follows.
]]

Therefore,

x−1x2
1/2N1 = x−1xx1/2N1 = x1/2N1 and (2.2)

N1x
2
1/2x

−1 = N1x1/2xx
−1 = N1x1/2 (2.3)

Claim: λ1/2(x1/2N1) = λ1/2(N1x1/2) = 1 and hence – with N∗1 :=
N1 ∩ x1/2N1x

−1
1/2 – it follows

λ1/2(N
∗
1x1/2) = λ1/2(x1/2N

∗
1 ) = 1 and N∗1x1/2 = x1/2N

∗
1 (2.4)[[

Proof of the claim: By (2.1) and (2.2) we have

1 = λ1(N1x
2
1/2) =

∫
λ1/2(x

−1N1x
2
1/2)dλ1/2(x)

(2.1)
=

∫
λ1/2(x

−1x2
1/2N1)dλ1/2(x)

(2.2)
=

∫
λ1/2(x1/2N1)dλ1/2(x)

= λ1/2(N1x1/2) = λ1/2(x1/2N1)

Analogously, 1 =
∫
λ1/2(N1x

2
1/2x

−1)dλ1/2(x) = λ1/2(N1x1/2). Whence
the first assertion follows.

Hence we also have λ1/2(N
∗
1x1/2) = λ1/2(x1/2N

∗
1 ) = 1. Since x2

1/2 ∈
G1, N1/G1, it follows x1/2N

∗
1x
−1
1/2 = x1/2N1x

−1
1/2∩x1/2(x1/2N1x

−1
1/2)x

−1
1/2 =

x1/2N1x
−1
1/2∩x2

1/2N1x
−2
1/2

(2.1)
= N∗1 . Hence also the second assertion of (2.4)

follows.
]]

Consequently, we have G1/2 ⊆
⋃

k∈Z
xk

1/2N
∗
1 =

⋃
k∈Z

N∗1x
k
1/2 (as suppλ1/2 ⊆

x1/2N
∗
1 = N∗1x1/2), according to (2.4).

Claim: N∗1 = zN∗1 z
−1 for all z ∈ G1/2.

[[
Let z ∈ G1/2. Then

there exist v, w ∈ N∗1 , k ∈ Z, such that z = xk
1/2v = wxk

1/2. Hence

z−1N∗1 z = x−k
1/2w

−1N∗1wx
k
1/2 = x−k

1/2N
∗
1x

k
1/2

(2.4)
= N∗1 .

]]
Claim: N1/2 ⊆ N∗1 .

[[
N∗1 ∩ N1/2 =: N∗ is a closed normal sub-

group of G1/2 such that 1 = λ1/2(x1/2N
∗) = λ1/2(N

∗x1/2). But N1/2 is

minimal with this property. Whence N1/2 ⊆ N∗ ⊆ N∗1 .
]]

Claim: N∗1 = N∗ = N1/2 = N1.
[[
N1/2 /G1/2 yields N1/2 /G1 (since

N∗1 ⊆ G1 ⊆ G1/2). And λ1(x
2
1/2N1/2) =

∫
λ1/2(x

−1x2
1/2N1/2)dλ1/2(x) =

λ1/2(x1/2N1/2) = λ1/2(N1/2x1/2) = 1. In fact, for x ∈ suppλ1/2, x =
x1/2w = vx1/2, with w, v ∈ N1/2 we have x−1x2

1/2N1/2 = w−1x1/2N1/2 =

w−1N1/2x1/2 = N1/2x1/2 = x1/2N1/2. Hence, according to the definition,
N1 ⊆ N1/2 follows. Together we obtain N1 ⊆ N1/2 ⊆ N∗1 ⊆ N1, whence

the assertion follows.
]]
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By induction, we obtain for all n ∈ Z+: N := N1 = N1/2n and hence
N = Nt for all t ∈ D+ = {k/2n : k, n ∈ Z+}. Furthermore, n 7→ G1/2n

is increasing. Finally, continuity of t 7→ λt shows that N = Nt for all

t ∈ R+\{0}. And thus G =

( ⋃
n,k∈Z+

xk
1/2nN

)−
=
⋃

t∈R+

xtN for suitable

xt ∈ G. �

Proposition 2.3. Let G be non-compact and let {λt} be non-dissipating.
Then, with the afore introduced notations, there exists a continuous
one-parameter group {x(t)}t∈R ⊆ G such that G/N ∼= R and suppλt ⊆
x(t)N, t ≥ 0.

Let, for t ∈ R, τt := ix(t) |N denote the restriction of the inner
automorphism to N . Then T = (τt) is a continuous one-parameter
group in Aut(N). And we have: G ∼= N oT R (with group operation
(g, t)(h, s) = (gτt(h), t + s), g, h ∈ N, t, s ∈ R). Furthermore, λt

may be represented as λt = ν(t) ⊗ εt, where t 7→ ν(t) ∈ M1(N) is a
continuous M-semigroup (w.r.t. T ) (cf. Definition 2.6 below).

Proof. As shown before, there exist xt ∈ G such that suppλt ⊆ xtN
(for all t ∈ R+). Hence, π : G → G/N denoting the canonical homo-
morphism, we obtain π(λt) = εz(t) with z(t) = xtN . Hence

{
εz(t)

}
t∈R+

and therefore {z(t)}t∈R+
are continuous one-parameter semigroups, ex-

tendible to groups, and thus G/N ∼= R. Finally there exists a contin-
uous one-parameter group {x(t)}t∈R in G with π(x(t)) = z(t), whence
the assertion follows. (Cf. e.g. [30]).

To show that G splits as a semi-direct product, assume N ∩ S =: L
to be non-trivial, where S := {x(t) : t ∈ R}. The subgroup N ⊆ G is
invariant under the inner automorphisms ix(t), L ⊆ N is a subgroup and
ix(t) acts trivially on S. Hence L = S, thus S ⊆ N . Furthermore, any
τt1 = ix(t1) is K-contracting, whence S ⊆ K; in particular, S = {x(t)}
is relatively compact.

Therefore, {λt} is relatively compact since
{
λt ∗ εx(t)−1

}
is. But then

G must be compact, a contradiction to the assumption. (In fact, by
[31], theorem 2, applied to a skeleton, G must be compact. The metriz-
ability condition there is easily seen to be superfluous, since G can be
approximated by metrizable gropups.) �

Again, to avoid trivialities, throughout in the sequel G is assumed
to be non-compact. If N is compact, hence N = K, any continuous
convolution semigroup {λt = ν(t)⊗ εt} is non-dissipating.

In the discrete time case it was essentially used that N ∼= CK(τ).
This results follows immediately in the continuous time case, if we
consider the skeletons

{
λk

t0

}
. However, in the continuous time-case the

structure ofN is even nicer: Put again, C(T ) =
{
x ∈ N : τt(x)

t→∞−→ e
}

and CK(T ) =
{
x ∈ N : τt

t→∞−→ e mod K
}

for some compact, T -in-

variant subgroup K.

Proposition 2.4. a) With the notations above we have N ∼= CK(T )

In fact, for any locally compact group N admitting a continuous one
parameter group T = (τt) ⊆ Aut(N) and a τ -invariant compact sub-
group K we have:

b) For all t > 0, CK(T ) = CK(τt) , in particular, C(T ) = C(τt).
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c) C(T ) is closed, T -invariant, contractible, connected and isomor-
phic to a contractible Lie group (hence a homogeneous group), CK(T ) is
a closed T -invariant subgroup of N . If N is compact then CK(T ) = K.

d) C(T ) / CK(T ) and there exists continuous homomorphism β :
Aut(K) → Aut(C(T )), β(κ)(g) := κ−1gκ, κ ∈ K, g ∈ C(T ), such
that CK(T ) = C(T ) oβ K

e) The restrictions S := T
∣∣
C(T ) = (σt)t∈R ⊆ Aut(C(T )) and Γ :=

T |K = (γt)t∈R ⊆ Aut(K) are continuous one-parameter groups, Γ
consisting of inner automorphisms of K.

f) T = (τt = (σt, γt)) satisfies the following consistency conditions

(σt ◦ β(κ)) = (β (γt(κ)) ◦ σt), κ ∈ K, t ∈ R.
Conversely, any group T arises in that way.

Proof. In fact, a) follows applying the results of Section 1, Facts 1.1 d)
for any skeleton, and by b)–f).

b) See [39], [21], Lemma 3.2.6.

c), d) Cf. [21], Theorem 3.2.32, [20], e) [19], Lemma 3.3, [21] and f)
[21], 3.3.4 [20]. �

Remark 2.5. As mentioned before (Facts 1.1 d)), also in the discrete
time case, we have CK(τ) = C(τ)K, at lest in the case of Lie- or totally
disconnected groups. However, C(τ) will in general not be closed. Not
even on a 2-dimensional torus. (Cf. e.g., [19], [21], Example 3.12.5.)
As mentioned, C(τ) is closed and hence CK(τ) splits semi-directly if G
is a p-adic Lie group ([42], [34], [8]), more generally, a totally discon-
nected group, and if τ is a tidy automorphism ([1], [10], [26]).

Now we define in analogy to the discrete time case:

Definition 2.6. a) {ν(t)}t∈R+
⊆ M1(N) is a (continuous time) M-

semigroup (w.r.t. T = (τt)) – also called skew semigroup, T -semigroup,
or distribution of a generalized Ornstein Uhlenbeck process – if t 7→ ν(t)
is continuous and if the following cocycle equation is satisfied:

ν(t+ s) = ν(t) ? τt(ν(s)) for all t, s ∈ R+ (2.5)

In the following we are interested in relatively compact M-semigroups.

b) ρ ∈ M1(N) is T -decomposable or T -self-decomposable, if for all
t ∈ R+, ρ = ν(t) ? τt(ρ) with cofactors ν(t). Cofρ(τt) denotes the set of
cofactors. ρ ∈ M1(N) is K − T -decomposable if in addition ρ is right
K-invariant.

c) A 2-parameter family {ν(t, t+ s)}t,s≥0 ⊆M1(N) is called T -stable

hemigroup if (t, s) 7→ ν(t, t + s) is continuous, for all r, s, t ∈ R+

ν(t, t + s + r) = ν(t, t + s) ? ν(t + s, t + s + r) and τt(ν(s, s + r)) =
ν(s+ t, s+ r + t).

Theorem 2.7. a) {ν(s)}s∈R+
is a continuous M-semigroup inM1(N)

iff {ν(t, t+ s) := τt(ν(s))}t,s∈R+
is a T -stable hemigroup.

b) {ν(s)}s∈R+
is a continuous M-semigroup inM1(N) iff {λt := ν(t)⊗

εt}t∈R+
is a continuous convolution semigroup in M1(G), G ∼= NoT R.

{ν(s)}s∈R+
in a), b) is relatively compact iff {λs}s∈R+

is non-dissi-
pating.
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c) Let {ν(s)}s∈R+
be relatively compact and N = CK(T ). Then ρ :=

lim
t→∞

ν(t) ? ωK exists and is K − T -decomposable, with cofactors ν(t) ∈
Cofρ(τt), t ∈ R+.

d) Conversely, let ρ ∈M1(N) be K−T -decomposable. Then there ex-
ists a non-dissipating continuous convolution semigroup {λt} ⊆ M1(G),
with λt = ν(t) ⊗ εt, and hence a relatively compact continuous M-
semigroup {ν(t)} in M1(N) with ρ := lim

t→∞
ν(t) ? ωK

d) {ν(s)} is relatively compact iff for all (some) t0 > 0 λt0 has fi-
nite first order moments, equivalently, iff ν(t0) has finite logarithmic
moments.

Proof. a), b) are proved as in the discrete time case, Theorem 1.6 f).
(For aperiodic groups see [14], proposition A, [13], theorem 3.16.)

c) Assume ν(tn) → α, ν(sn) → β and w.l.o.g. tn ≥ sn. Then ν(tn) ?
ωK = ν(sn) ? τsn(ν(tn − sn)) ? ωK → β ? ωK , since τsn is compactly
contracting mod K. Hence α ? ωK = β ? ωK for all accumulation
points, whence the assertion follows.

d) To prove the converse, i.e., the existence of a continuous solution
{ν(t)}, we need some tools from the embedding problem for infinitely
divisible laws on groups. (For aperiodic groups, in particular simply
connected nilpotent Lie group, see [13], proposition 3.6, see also [14],
theorem B.)

Let again D+ := {k/2n : k, n ∈ Z+} denote the dyadic numbers.
For all n ∈ Z+ choose ν1,n ∈ Cofρ(τ1/2n). As immediately seen, for
µi ∈ Cofρ(ai), i = 1, 2, we have µ1 ? a1(µ2) ∈ Cofρ(a1a2). Hence by

induction, νk,n :=
k−1

?
j=0

τj/2n(ν1,n) ∈ Cofρ(τk/2n). Put λ
(n)
1/2n := ν1,n ⊗

ε1/2n , and λ
(n)
1 =

(
λ

(n)
1/2n

)2n

=

(
2n−1

?
j=0

τj/2n(ν1,n)

)
⊗ ε1 = ν2n,n ⊗ ε1.

In fact, for all k ∈ Z+ we have
(
λ

(n)
1/2n

)k

= νk,n ⊗ εk/2n and νk,n ∈
Cofρ(τk/2n). Indeed, as immediately verified,

{
σ : σk = λ = µ⊗ εk

}
={

σ = ν ⊗ ε1 : ν ∈ Cofλ(τ1/k)
}
.

For all fixed n, {νk,n}k≥0 satisfies the discrete cocycle (or M-semigroup)

equation: Put ν(n)(k/2n) := νk,n then for t = k/2n, s = `/2n we

have ν(n)(t + s) = ν(n)(t) ? τt(ν
(n)(s)). Hence

{
λ

(n)
1

}
n∈Z+

is relatively

compact with
{
ν

(n)
1

}
n∈N

⊆ Cofρ(τ1) and has relatively compact 2m-

th root sets
{
λ

(n)
1/2m

}
n∈N

with
{
ν(n)(1/2m)

}
⊆ Cofρ(τ1/2m). Accord-

ing to Tychonov’s theorem, we can choose a convergent subnet (n′)

such that for all m ∈ N, lim
(n′)

(
λ

(n)
1/2m·n

)n

=: λ1/2m = ν(1/2m) ⊗ ε1/2m

exists, and by construction,
(
λ1/2mk

)k
= λ1/2m for all m, k. Thus,

D+ 3 t = k/2n 7→ λt := λk/2n is a convolution semigroup with param-
eter set D+.

We have to show that a continuous version may be selected. Put
R0 := {λt : t ∈ [0, 1] ∩ D+}−.

Claim: R0 is compact in M1(G) with all accumulation points of

the form ν(t)⊗εt.
[[

Let tn ∈ [0, 1]∩D+, tn → t ∈ [0, 1] along a subnet,
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hence τtn(ρ) → τt(ρ). Furthermore, ρ = ν(tn)?τtn(ρ) yields that {ν(tn)}
is relatively compact with all accumulation points ν(t) ∈ Cofρ(τt).

]]
Let Φ0 denote the set of accumulation points of {λt ∈ R0 : t→ 0}.

Therefore, σ ∈ Φ0 is representable as σ = u⊗ ε0 for u ∈ Cofρ(τ0), i.e.,
u ? ρ = ρ.

A straight forward generalization of E. Siebert’s embedding theorem
([36], 5. Satz 1, 6. Satz 1, [22], Theorem 3.5.4) shows the existence of a
continuous convolution semigroup {λ′t = ν ′(t)⊗ εt}t≥0 with λ′t = σt?λt,
σt = ut ⊗ εt ∈ Φ0: In fact, one of the essential steps in the proof
is an extension of a semigroup homomorphism from Q+ to R+ ([36],
4. Satz 1, [22], Theorem 3.5.1). And Q+ may be replaced by any
sub-monogeneous semigroup, hence e.g., by D+. This is shown in the
diploma thesis [32]. (For a sketch of a proof cf. [12], Lemma 2.4).

Therefore
{
λ

′
t

}
is a continuous convolution semigroup, and thus

{ν ′(t)} is a continuous M-semigroup of cofactors of ρ, as asserted. �

To obtain in the continuous time case necessary and sufficient condi-
tions for the existence of logarithmic moments in analogy to [27], propo-
sition 2.14, corollary 2.15, we have to recall some notations and facts:
Let H be a locally compact group. A Borel function f : H → R+ is sub-
additive (resp. a ’jauge’) if f(xy) ≤ f(x)+f(y) (resp. ≤ C+f(x)+f(y)
for some C ≥ 0). f is sub-multiplicative if f(xy) ≤ f(x)f(y). As im-
mediately seen, if f is sub-additive (and ≥ 0) then g := 1 + f is
sub-multiplicative and ≥ 1 and if h is sub-multiplicative and ≥ 1 then
log(h) is sub-additive and ≥ 0. Thus log(1 + f) is sub-additive and
1 + log(1 + f) is sub-multiplicative.

We shall always suppose that for some ε > 0 the set {f ≤ ε} is a
neighbourhood of e.

Let H be compactly generated, H =
⋃

n≥0 V
n for some symmetric

compact V ⊆ U(e). Then we define a sub-additive function δV : x 7→
inf{n ∈ Z+ : x ∈ V n}. According to [11], proposition 1, in that case
any jauge, in particular any sub-additive function f is dominated by
δV , i.e.,

f ≤ AδV +B for some constants A > 0, B ≥ 0 (2.6)

If {λt} is a continuous convolution semigroup, the Lévy measure η

is defined by
∫
gdη = d+

dt
|t=0

∫
gdλt, for g ∈ Cb(H) vanishing in a

neighbourhood of the unit. If as before, H = G = N o R and λt =
ν(t) ⊗ εt, then, as easily seen, η is supported by N and

∫
N
gdη =

d+

dt
|t=0

∫
N
gdν(t). Recall that a Lévy measure is bounded outside any

neighbourhood of e. According to a well-known Result of E. Siebert,
[37], theorem 1, [38], theorem 5, for a sub-multiplicative function g
such that for some ε > 0, {g ≤ ε} ∈ U(e), we have:∫

gdλt <∞ ∀t ≥ 0 iff

∫
G\U

gdη <∞, U ∈ U(e) (2.7)

Hence, for a sub-additive function f we obtain
∫

1 + fdλt <∞, equiv-
alently

∫
fdλt <∞ iff

∫
G\U 1 + fdη <∞, equivalently,

∫
G\U fdη <∞.

In [27], definition 2.6, particular sub-additive functions ϕ : N → R+,
called regular τ -functions are defined (depending on τ and K) and it
is shown ([27], proposition 2.14) that for symmetric U ∈ U(e) (in N)
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and V0 := U ⊗ {±1, 0} ⊆ G1 = N o Z the restriction of δV0 to N and
log(1 + ϕ) are equivalent, i.e.,

δV0(·, 0) ≤ A log(1 + ϕ(·) +B and log(1 + ϕ(·) ≥ CδV0(·, 0) (2.8)

Put V := U⊗[−1, 1] ⊆ G, then we observe:
⋃
V n

0 = G1 and
⋃
V n = G.

Furthermore, V0 ⊆ V , hence δV (x, t) ≤ δV0(x, t) for (x, t) ∈ G1, i.e., for
t ∈ Z. In particular, for t = 0, δV |N ≤ δV0|N .

Note that δV |N(x) = δV (x, 0) = inf {n : ∃yi ∈ N, ti ∈ [−1, 1], t0 = 0,
such that

∏n−1
0 τti(yi) = x,

∑n
1 ti = 0

}
Theorem 2.8. The following assertions are equivalent:

(a) {λt} is non-dissipating

(b) For some (any) t0 > 0, λt0 has finite first moments

(c) η has finite first moments

(d)
∫

G δV dλt0 <∞
(e)

∫
G\W δV dη <∞ for some (any) W ∈ U(e)

(f) For some (any) t0 > 0 ν(t0) has finite logarithmic moments

(g) η (considered as measure on N) has finite logarithmic moments

(h) For some (any) t0 > 0
∫

N
δV (x, 0)dν(t0)(x) <∞

(i)
∫

N\W ′ δV (x, 0)dη(x) <∞ for some (any) neighbourhood W ′ of the

unit in N .

Proof. (a) ⇔ (b) and (b) ⇔ (f) follow by Theorem 2.7, (b) ⇔ (c)
by the above mentioned Result of E. Siebert, cf.(2.7). (c) ⇒ (d) is
obvious and (d) ⇒ (c) follows since any sub-additive function (on G)
is dominated by δV , as mentioned above, cf.(2.6). (d) ⇔ (e) again by
Siebert’s result, as afore.

(d) ⇔ (f) ⇔ (h) and (e) ⇔ (g) ⇔ (i): Let ϕ be a regular τ1-
function. In particular, sub-additive. Then, as easily verified, ψ :
G → R+, (x, t) 7→ 1 + ϕ(x) + ||τt|| is sub-multiplicative, where ||τt|| :=
sup {ϕ(τt(x))/ϕ(x) : x /∈ K}. (For N = C(T ) see e.g., [21], proposi-
tion 2.14.28.) Hence, as mentioned before, log(1 + ψ) is dominated
by δV ; moreover, δV0|N is dominated by log(1 + ϕ) = log(1 + ψ)|N .
Furthermore δV |N ≤ δV0 |N . Finally, arguing as before, we obtain for
any sub-additive function f : N → R+ that log(1 + f) is dominated
by δV |N and hence by log(1 + ϕ). Whence the assertions immediately
follow. �

We close with two examples in analogy with the case of discrete
times. The first shows that lim ν(t) need not to exist if N = CK(T ),
K 6= {e}. (For K = {e}, i.e., N = C(T ), lim ν(t) exists, cf. [14],
proposition A.)

Example 2.9. Let M be a contractible, hence simply connected nilpo-
tent Lie group with contracting one-parameter group S = (σt)t>0 in
Aut(M), let K be a solenoidal compact group with dense one-parameter
subgroup (x(t))t∈R. Put N := M ⊗K and define T := (τt) ⊆ Aut(N)
by τt = σt ⊗ id, t ∈ R. Hence N = CK(T ). Let {µ(t)} be a con-
tinuous M-semigroup (w.r.t. S) in M1(M) such that ρ = limµ(t)
exists. As ξt := τt |K = id, M-semigroups in M1(K) (w.r.t. (ξt))
are just continuous convolution semigroups, in particular,

{
εx(t)

}
is a

M-semigroup. It is immediately verified that
{
ν(t) := µ(t)⊗ εx(t)

}
is

a relatively compact M-semigroup in M1(N) and {λt := ν(t)⊗ εt} is
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a non-dissipating continuous convolution semigroup in M1(N oT R).
As (x(t)) is dense in K, the set of accumulation points of ν(t), t→∞,
consists of {ρ⊗ εκ : κ ∈ K}. In particular, lim ν(t) does not exist.

In the next example we point out the connections between stable
laws and non-dissipating continuous convolution semigroups.

Example 2.10. Stable laws are particular self-decomposable laws. To
show this we have to switch between additive and multiplicative para-
metrizations of continuous one-parameter groups:

Let N be a simply connected nilpotent Lie group and S = (σt) ⊆
Aut(N) be a contracting continuous group with multiplicative parame-
trization, σtσs = σt·s for t, s > 0, and lim

t→0
σt(x) = e for all x ∈ N . A

continuous convolution semigroup {ρt} in M1(N) is called S-stable if
σt(ρ1) = ρt, for all t > 0, equivalently, σt(ρs) = ρt·s for t > 0, s ≥ 0.
Put ρ := ρ1. We have ρ = ρ1−s ?σs(ρ), hence ρ is σs-decomposable with
cofactors ρ1−s ∈ Cofρ(σs), for all 0 < s ≤ 1.

To obtain a continuous M-semigroup of cofactors we have to switch
to additive parametrization: T := (τt := σe−t)t∈R is a continuous one-
parameter group satisfying τt+s = τtτs and lim

t→∞
τt(x) = e for all x ∈ N .

And with this notations we obtain ρ = ρ1−e−t ? τt(ρ) for t ≥ 0.

As immediately verified, {ν(t) := ρ1−e−t}t∈R+
is a relatively com-

pact continuous M-semigroup with ν(t) ∈ Cofρ(τt) and ρ = lim ν(t),
hence defines a non-dissipating continuous convolution semigroup in
M1(G), G = N oT R. Note that in this (trivial) case, ν(t) = ρ1−e−t =
σ1−e−t(ρ) = τlog(e−t−1)(ρ).

In analogous way, stable laws on N = CK(T ) with idempotent ωK

could be treated.

Of course, also Proposition 1.11 has a counterpart for continuous
time M-semigroups. However, less instructive, sinceH = K and CH(T )
is closed and = CK(T ) = N .
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2010-02 René L. Schilling and Alexander Schnurr
The Symbol Associated with the Solution of a Stochastic Differential Equation

2010-01 Henryk Zähle
Rates of almost sure convergence of plug-in estimates for distortion risk measures

2009-16 Lorenz J. Schwachhöfer
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