
Synthesis of Communicating Controllers for Concurrent

Hardware/Software Systems

R. Niemann P. Marwedel

Dept. of Computer Science XII Dept. of Computer Science XII

University of Dortmund University of Dortmund

Dortmund, Germany Dortmund, Germany

Abstract

Two main aspects in hardware/software co-design

are hardware/software partitioning and co-synthesis.

Most co-design approaches work only on one of these

problems. In this paper, an approach coupling hard-

ware/software partitioning and co-synthesis will be

presented, working fully-automatic. The techniques

have been integrated in the co-design tool Cool1 sup-

porting the complete design ow from system speci�ca-

tion to board-level implementation for multi-processor

and multi-ASIC target architectures for data-ow

dominated applications.

1 Introduction

Most approaches in co-design work either on tech-
niques for partitioning or co-synthesis using manual
partitioning. Hardware/software partitioning has
been explored intensively, using di�erent algorithms
to solve this complex optimization problem, e.g. dy-
namic programming, evolutionary strategies, mixed
integer linear programming or several heuristic ap-
proaches. Techniques for interface and communication
synthesis have been explored for example in Chinook
[1] or Cosmos [2]. In both approaches, the systems
are partitioned manually. This paper presents an ap-
proach for a coupled hardware/software partitioning
and co-synthesis algorithm. It is based on the syn-
thesis of a system controller (similar to [3]) steering
all processors and ASICs according to the computed
schedule. All techniques have been implemented in
the co-design tool Cool.

2 The Cool framework

The codesign tool Cool is a framework for imple-
menting hardware/software systems starting from a
uni�ed, implementation independent system level de-
scription. The way of specifying systems (based on a
subset of VHDL) and the partitioning algorithms have
been described in detail in [4]. Partitioning is either

1
Cool: COdesign toOL

based on mixed integer linear programming (MILP),
a combination of MILP and a heuristic, or on genetic

algorithms. This paper describes the design steps in
Cool after partitioning has �nished.

Figure 1: Design Flow in Cool

The result of the partitioning phase is (1) a col-
oured partitioning graph where each colour either rep-
resents a hardware or software resource and (2) a
static schedule as depicted in �gure 2. The goal of
the co-synthesis approach in Cool is to generate syn-
thesizable hardware speci�cations in VHDL and soft-
ware speci�cations for compilation in C. In a �rst
step, a state/transition graph (STG) is generated rep-



Figure 2: Partitioning Graph for a 4-band equalizer

resenting the fundamental data structure during co-
synthesis. This graph is computed by adding a WAIT-
(w), an EXECUTION-(x) and a DONE-state (d) for
each node of the coloured partitioning graph to the
STG. These states represent the execution order of
a function steered by the system controller. In ad-
dition, RESET-states (r) are inserted for each hard-
ware resource and processor and global system states
(X, R, D) are added. Edges are added according to
the computed schedule and the data dependencies.
After the number of states of the STG has been min-
imized, memory cells are allocated (starting from a
base address) for each edge representing a data trans-
fer between di�erent processing units. The result is
depicted in �gure 3.

Figure 3: STG and Memory Allocation

Then, the original speci�cations of the hardware
and software parts are re�ned using the information
annotated at the STG. Communication mechanisms
formemory mapped I/O and direct communication are
inserted to replace the abstract communication chan-
nels. To implement a complete hardware/software sys-
tem, additional parts are required: the system con-

troller, steering the complete system according to the
computed schedule, data path controllers to support
hardware sharing, an I/O controller to communic-
ate with the environment and bus arbiters to prevent
conicts. These additional pieces will be implemen-
ted in hardware, because hardware allows concurrent
processes. Cool generates VHDL-speci�cations for all

Figure 4: Generated Netlist

these additional pieces and a net-list wiring all them as
depicted in �gure 4. Then, these VHDL-speci�cations
are synthesized by the high-level synthesis toolOscar
and the commercial synthesis tool Synopsys.

3 Results

Cool was used during a student project [5] deal-
ing with the design of a fuzzy controller. This fuzzy
system was speci�ed with Cool (about 900 lines of
code) resulting in a partitioning graph containing 31
nodes. This speci�cation was implemented on a target
architecture containing a Motorola DSP56001 placed
on a plug-in card in a PC and two Xilinx FPGAs
4005 (with 196 CLBs each) on a board. In addition, a
memory card with 64kB static RAM was build and all
components were connected by a bus card. Di�erent
hardware/software partitions of the fuzzy controller
were implemented and in all cases the time to execute
the complete design ow from system speci�cation to
an implementation on the prototyping board took not
more than about 60 minutes. The time-consuming
factor was always the hardware synthesis which con-
sumed more than 90% of the design time.

References

[1] P. Chou, R.B. Ortega and G. Borriello. The Chinook

Hardware/Software Co-Synthesis System. ISSS, 1995.

[2] T.B. Ismail and A.A. Jerraya. Synthesis Steps and

Design Models for Codesign. IEEE Computer, 1995.

[3] V. Mooney, T. Sakamoto and G. De Micheli. Run-

Time Scheduler Synthesis For Hardware-Software

Systems and Application to Robot Control Design. 5th

Int. Workshop on HW/SW Codesign, 1997.

[4] R. Niemann, and P. Marwedel. An Algorithm for

Hardware/Software Partitioning using Mixed Integer

Linear Programming. Design Automation for Embed-

ded Systems, pp. 165{193, 1997.

[5] S. Bashford, B. Landwehr, R. Niemann et al. En-

dbericht der Projektgruppe 293. Forschungsbericht,

Universit�at Dortmund, 1997.


