Novel Code Optimization Techniques for DSPs

Rainer Leupers

University of Dortmund
Department of Computer Science 12
44221 Dortmund, Germany
e-mail: leupers@Isl2.cs.uni-dortmund.de

ABSTRACT

Software development for DSPs is frequently a bottle-
neck in the system design process, due to the poor code
quality delivered by many current C compilers. As a con-
sequence, most of the DSP software still has to be writ-
ten manually in assembly language. In order to overcome
this problem, new DSP-specific code optimization tech-
niques are required, which, in contrast to classical com-
piler technology, take the detailed processor architecture
sufficiently into account. This paper describes several
new DSP code optimization techniques: maximum uti-
lization of parallel address generation units, exploitation
of instruction-level parallelism through exact code com-
paction, and optimized code generation for IF-statements
by means of conditional instructions. Experimental re-
sults indicate significant improvements in code quality as
compared to existing compilers.

1. INTRODUCTION

More and more DSP system designs are based on soft-
ware running on programmable processors rather than
on dedicated hardware [1]. This trend towards software-
based implementation is due to the fact, that software
provides higher flexibility and better opportunities for
reuse than hardware.

Today, however, software development for DSPs fre-
quently is a bottleneck in the system design process. It is
well-known that many of the currently available C compil-
ers for DSPs cause a significant overhead in code size and
performance as compared to hand-written assembly code.
This is confirmed by numerous software developers and
recent empirical studies from academia and industry. Ac-
cording to [2], the compiler overhead may be in the order
of several hundred percent. Such an overhead can hardly
be tolerated in presence of real-time constraints and lim-
ited program memory size. Therefore, time-consuming
assembly-level programming is still predominant in the
area of DSP, and better compilers are among the develop-
ment tools most urgently demanded by embedded system
designers [1]. As a consequence, efficient code generation
techniques for DSPs have received high attention during
the last years (cf. [3, 4, 5] for overviews).

The overhead of compiler-generated code is mainly due
to the special architectural features of DSPs; to which

classical code optimization techniques can hardly be ap-
plied. This includes the presence of special-purpose regis-
ters, special addressing modes, and instruction-level par-
allelism. In order to make the use of high-level language
compilers feasible for more DSP applications, new DSP-
specific code optimization techniques are required, which
take into account the detailed processor architecture. An
important constraint in this context is, that high compi-
lation speed is not necessarily an issue for DSP compilers.
Instead, many compiler users are willing to trade higher
compilation times against better code quality. This al-
lows to explore the use of code optimization algorithms of
a comparatively high computational complexity.

The purpose of this paper is to present several new
DSP-specific code optimization techniques. Experimen-
tal results indicate that the use of such techniques may
significantly reduce the overhead of compiler-generated
code. The organization of the paper is as follows. Section
2 describes techniques for utilization of special address-
ing modes in DSPs. Section 3 is focused on exploitation
of instruction-level parallelism through code compaction.
Section 5 deals with optimized code generation for if-
statements by using conditional instructions. Finally, sec-
tion 6 provides experimental results obtained by applying
the proposed techniques to different DSPs.

2. ADDRESS GENERATION

As compared to CISC processors, DSPs show very re-
stricted memory addressing modes. Frequently, only di-
rect (via the instruction word) and indirect addressing
(via special address registers) modes are supported. How-
ever, address generation units (AGUs) DSPs usually pro-
vide support for auto-increment and auto-decrement of
address registers in parallel to operations of the central
data path. Examples are the TT TMS320C25, the Mo-
torola b6k, and the Analog Devices ADSP-210x. This fea-
ture allows for parallel next-address computation, when-
ever the accessed program variables are appropriately
mapped to memory locations. In addition, many AGUs
comprise modify (or index) registers intended to store fre-
quently required address modification constants. Fig. 1
shows the general architecture of such an AGU, which
contains a file of k address registers (ARs) and m modify
registers (MRs).

In the following, we outline optimization techniques

immediate value

AR pointer MR pointer

register |
I

file |

AGU

effective
address

Fig. 1. Address generation unit (AGU) model

that aim at allocating ARs and arranging variables in
memory, such the the use of auto-increment address com-
putations is maximized.

2.1 Scalar variables

After code generation, the exact order of accesses to
scalar program variables is known. Usually, source lan-
guages, such as C, do not prescribe any specific order
of local variables in memory. Therefore, a compiler may
compute a good layout of variables in memory, tailored
towards the variable access sequence.

a) LOADAR,1 b | p) LOADAR,3 b
AR +=2 d AR -- d
AR -=3 a AR -- a
AR +=2 [+ AR -- c

0l_a | AR++ d 0] _c LOAD MR, 2
1] b AR-=3 a 1] a AR+=MR d
2| ¢ AR +=2 c 2| d AR -- a
3 d AR -- b 3 b AR -- c
AR - a AR +=3 b
AR +=3 d AR-=MR a
AR-=3 a AR ++ d
AR +=2 c AR -- a
. AR ++ d . AR -- c
cost: 9 cost: 3 AR+=MR d

Fig. 2. Addressing of scalar variables

As an example, consider a variable set V =
{a,b,e,d} and a variable access sequence S =
(b,d,a,e,d;a,c,b,a,d a,c,d). Suppose, one AR and one
MR are available for generating the required memory ad-
dresses for S. Fig. 2 a) shows (in C-like notation) the
corresponding sequence of AGU operations for a "naive”
memory layout, where variables are mapped to mem-
ory cells in lexicographic order. Since only 4 out of 13
address computations are implemented by parallel auto-
increment /decrement operations, there is a cost value of
9, 1.e., 9 extra instructions are required for explicit ad-
dress computations. A better memory layout is shown in

fig. 2 b). Additionally, modify register MR is used in the
AGU operation sequence to store the multiply required
address modification value 2. Since the use of MR values
as address modifiers neither incurs overhead, in total, this
address generation scheme only requires 3 ”costly” AGU
operations, while the others can be executed in parallel
to other machine instructions.

We have designed both heuristic graph-based and ge-
netic algorithm based techniques, which construct good
memory layouts. These techniques are capable of
constructing close-to-optimum scalar address generation
schemes for arbitrary numbers of ARs and MRs in the

AGU.
2.2 Arrays

In contrast to scalar variables, the memory layout for
arrays is typically fixed, so that only the allocation of ARs
for accesses to array elements can be optimized. Again,
the goal is maximum utilization of auto-increment ad-
dressing, so as to optimize code size and performance.
Consider the following array access pattern within a for
loop:

for (1 = 2; 1 <= N; i++)
{ /% a_1 %/ A[i+1]

/* a_2 %/ A[i]

/* a_3 %/ A[i+2]

/* a_4 %/ Ali-1]

/* a_5 %/ A[i+1]

/* a_6 #/ A[i]

/* a_7 %/ A[i-2]
¥

If only a single AR were used, the AGU operation
sequence for computing the addresses in the loop body
would look as follows:

AR1 = &A[3] /# initialize AR1 with &A[2+1] */

for (1 = 2; i <= N; i++)

{ /% a_1 %/ AR1 -- /* access A[i+1] */
/* a_2 %/ AR1 += 2 /* access A[i] */
/* a_3 %/ AR1 -= 3 /* access A[i+2] */
/* a_4 *x/ AR1 += 2 /* access A[i-1] */
/* a_5 %/ AR1 -- /* access A[i+1] */
/* a_6 */ AR1 -= 2 /* access A[i] */
/* a_7 */ AR1 += 4 /* access A[i-2] */

¥

However, this scheme would involve 5 costly address
computations per loop iteration. Another naive approach
would be to allocate a separate AR for each of the 7 ac-
cesses. In this case, all address computations could obvi-
ously be covered by auto-increment, but this would imply
a waste of ARs. Our optimization technique minimizes
the number of allocated ARs while avoiding address com-
putation overhead. For instance, consider the array access
pairs (a-1, a_2) and (a_1, a_3). Since in both cases the ab-
solute address distance is 1, sharing of an AR would be
possible without introducing costly address computations.
This relation can be modeled by a ”distance graph” (fig.
3), which contains a node for each array access and an
edge between nodes v and w, if the the address for w can

be computed from the address of v by auto-increment or

decrement.

NP

Fig. 3. Distance graph for array accesses in loops

One can show that the problem of optimal AR al-
location is equivalent to a path covering problem on
the distance graph. We have designed a branch-and-
bound technique to compute optimal path covers. In
case of the above example, the following addressing
scheme with 3 ARs is optimal, which requires only auto-
increment /decrement operations:

AR1 = &A[3] /# initialize AR1 with &A[2+1] */

AR2 = &A[2] /# initialize AR2 with &A[2+0] */

AR3 = &A[0] /# initialize AR3 with &A[2-2] */

for (1 = 2; i <= N; i++)

{ /% a_1 %/ AR1 —- /* access A[i+1] */
/* a_2 */ AR2 —- /* access A[i] */
/* a_3 */ AR1 —- /* access A[i+2] */
/* a_4 */ AR2 ++ /* access A[i-1] */
/* a_5 */ AR1 ++ /* access A[i+1] */
/* a_6 */ AR2 ++ /* access A[i] */
/* a_7 */ AR3 ++ /* access A[i-2] */

¥

3. CODE COMPACTION

Most DSPs show a certain degree of instruction-level
parallelism (ILP). A TI *C25, for instance, can execute a
multiply-accumulate operation in parallel to an address
computation within a single instruction cycle. Obviously,
exploitation of ILP 1s a major source for code optimiza-
tion. A popular technique for this purpose i1s code com-
paction. Code compaction reads a piece of sequential ma-
chine code, and assigns instructions to a minimum number
of control steps, such that all inter-instruction dependen-
cies and restrictions imposed by the instruction format
are obeyed.

As an example, consider the expression tree shown in
fig. 4. Sequential assembly code implementing this tree
on a TT ’C25 DSP is shown in fig. 5 a). The *C25 instruc-
tion set allows to combine different instruction pairs to
single instructions. For instance, an APAC (add P regis-
ter to accumulator) and an LT (load T register) can be
compacted to an LTA instruction, and an APAC and a
MPY (multiply) can be compacted to MPYA, whenever
not prevented by data dependencies. However, the most
efficient compaction scheme is usually far from obvious.

Fig. 4. Ezpression tree

LT m7 LT m7
MPY m8 MPY m8
PAC— = LTPmS
LT m5 MPY m6
MPY m6 LT m3
APAC MPYA m4
SACL tmp SACL tmp
LT m3 LTPml
MPY M MPY m2
PAC LTA tmp
LT ml MPY m9
MPY m2 SPAC
APAC
LT tmp
MPY m9
SPAC

a) b)

Fig. 5. Sequential and compacted C25 assembly code

Fig. 5 b) shows an optimal compaction for the sequential
assembly code. In this case, a reduction from 16 to 12
instructions (25 %) is achieved.

One problem in code compaction for DSPs is that clas-
sical heuristic code compaction techniques [6], mainly de-
veloped for VLIW machines, can hardly be applied di-
rectly. The instruction format of DSPs sometimes per-
mits alternative encodings for the same instruction, and
also undesired side effects in the compacted code have to
be avoided. In order to overcome the limitations of earlier
heuristic compaction algorithms, we are using a technique
based on Integer Linear Programming. In this approach,
only the problem constraints (such as inter-instruction
conflicts and dependencies) are specified in the form of
linear (in)equations. Then, the equation system is solved
by a standard tool. This guarantees (locally) optimally
compacted code. Alternatively, a cycle constraint can be
imposed on the compacted code. The technique is flexible
enough to cope with alternative encodings and possible
side effects. Even though Integer Linear Programming is
of exponential complexity, we empirically found that it is
still fast enough to solve many compaction problems of

small to medium size. For a ’C25b, code blocks of a length
up to 50 instructions can typically be compacted within

one minute of SPARC-20 CPU time.

4. CONDITIONAL INSTRUCTIONS

The source code of control dominated applications typ-
ically contains a large number of if-then-else (ITE) state-
ments. Classical compiler technology uses conditional
jumps for implementation of ITE statements. However, a
frequent change of control flow due to many conditional
jumps in the machine code has a strongly negative im-
pact on performance in particular for deeply pipelined and
highly parallel VLIW-like processors. On a T1 C62xx, for
instance, any jump incurs up to 5 stall cycles resulting in a
performance waste of up to 40 instructions (8 per cycle).
Therefore, recent VLIW DSPs permit to replace condi-
tional jumps by conditional (or predicated) instructions.
A conditional instruction is a term [C] I, where the con-
dition C' is a Boolean variable stored in a register and I
is any “regular” machine instruction, e.g., an arithmetic
operation, a register move, or a jump. The semantics of a
conditional instruction is that instruction I is effectively
executed, if and only if the condition (' evaluates to true
at the point of time when the control flow in a machine
program reaches instruction 7. Otherwise, instruction 7
behaves like a no-operation.

The availability of conditional instructions leads to the
presence of two alternative I'TE implementation schemes
for a compiler. We denote the schemes with conditional
instructions and conditional jumps by c-exec and c-jump,
respectively.

4.1 The c-jump scheme

Consider an ITE statement of the form
if <cond> then <B_T> else <B_E>

where <cond> denotes a condition, and B_T and B_E are
the then and else blocks of the statement. The standard
replacement scheme using conditional jumps looks as fol-
lows:

¢ := evaluate(cond)
[c] goto then_label
B_E
goto join_label
then_label: B_T
join_label:

The condition is evaluated into a register ¢, and de-
pendent on the value of ¢, either By or Bg are exe-
cuted. Then, control flow joins at the next instruction.
Let T(B) denote the time to execute a basic block B,
and let J denote the (machine-dependent) jump penalty,
including the time for executing the jump instruction it-
self. If the conditional jump is taken (i.e., condition ¢ is
true) then the execution time for the ITE statement S
is Tr(S) = J 4+ T(Bp). If the jump is not taken, then

Tg(S) =2-J+4+T(Bg). The worst-case execution time is
T(S) = max(Tr(S), Te(S5)).

4.2 The c-exec scheme

A semantically equivalent implementation using condi-
tional instructions is:

¢ := evaluate(cond)
[c] B_T
['c] B_E

The notation ” [c¢] B_T” denotes the conditional exe-
cution of all instructions in block By. The worst-case
execution time when using c-exec is T(S) = T(Br o Bg),
where ”70” denotes the concatenation of basic blocks. In
total, c-exec leads to a shorter worst-case execution time

than c-jump, exactly if
T(Br o Bg) <max(J +T(Br),2-J+T(Bg))

A potential advantage of c-exec lies in the fact, that
in VLIW processors, T(By o Bg) is frequently much less
than T(Br)+T(Bg), because the instructions in By and
Bg may be partially executed in parallel. On the other
hand it is obvious that c-exec is not guaranteed to be the
fastest alternative in any case.

4.3 Implementation selection

We select the fastest implementation (w.r.t. the worst-
case execution time) for an ITE statement by means
of estimations and a dynamic programming algorithm.
The estimation functions essentially count the number of
statements in the then and else block of an ITE state-
ment. In case of nested ITE statements, some addi-
tional instructions have to be inserted into the c-jump
and c-exec schemes shown above, which ensure the cor-
rect propagation of preconditions to lower-level ITE state-
ments. Preconditions reflect the fact, that some nested
ITE statement must only be executed, if the condition
of the ”surrounding” ITE statement has been evaluated
to true. This additional code is also taken into account
during estimation.

The main problem is to select the fastest ITE imple-
mentation schemes across all nesting levels, because there
is a cyclic dependence of the execution speed of ITE state-
ments at different nesting levels. The dynamic program-
ming algorithm breaks this cyclic dependence while ex-
ploiting the estimations as subroutines. In a bottom-up
fashion, four cost estimation values are computed for each
ITE statement, which depend on whether the statement
is implemented by c-jump or c-exec, and whether or not a
precondition has to be passed the the next nesting level.
Afterwards, a top-down pass actually selects the fastest
implementations for the ITE statements at all levels.

5. EXPERIMENTAL RESULTS

We have experimentally evaluated the techniques out-
lined in the previous sections for different DSPs. The

700

600 1

5001

400+

300+

200+
100+
04

Nreal
updates

real update complex

mult

complex
update

N complex
updates

fir biquad_one convolution

biquad_N

dot product

Fig. 6. Fxperimental results: relative code size for DSPStone benchmarks and TI °C25 DSP

address generation and code compaction techniques de-
scribed in sections 2 and 3 have been implemented in
RECORD, a retargetable compiler for a class of fixed-point
DSPs [5]. We have used RECORD to compile the DSP-
Stone benchmarks [2] into machine code for a TT C25
DSP and compared the code size with the machine code
generated by the TI C25 ANSI C Compiler. The results
are shown in fig. 6.

The left columns show the overhead (in percent com-
pared to hand-written assembly code) produced by the TIT
compiler, while the right columns show the corresponding
results produced by RECORD. On the average, RECORD
was able to halve the overhead as compared to the TI
compiler. However, this achievement comes at the price
of an increase in compilation time. Due to the use of
comparatively time-intensive optimization techniques, the
compilation speed is in the order of 2-5 generated instruc-
tions per CPU second. As mentioned above, however,
high compilation speed frequently is not the most criti-
cal resource in the area of DSP, but better code quality
justifies lower compilation speed.

The optimization of IF-statements described in section
4 has been evaluated for a TT C62xx VLIW DSP (table I).
We have extracted 10 control-intensive pieces of C source
code from an ADPCM transcoder and an MPEG package.
These program fragments have been compiled by means
of the ITE implementation selection algorithm and the
TT assembly optimizer (column ”opt”). Again the results
have been compared to those directly produced by the TI
C6x ANSI C compiler (column ”TT”). Even though we are
currently using rather simple estimation functions, faster
code has been generated in most cases. This is due to
the fact, that the proposed technique makes more inten-
sive use of conditional instructions (across several nesting
levels) than the TT compiler. However, also an increase
in code size has been measured. So, the applicability of
the optimization technique from section 4 depends on the
code optimization goal (size or speed).

6. CONCLUSIONS

In this paper, we have proposed several new DSP code
optimization techniques beyond the scope of classical
compilers, and we have experimentally shown their prac-
tical applicability. Many of the techniques are efficient
and easy to implement, so that they could be integrated

| source | opt | TI |
adapt_quant 11 | 15
adapt_predictl | 13 | 13
adapt_predict2 | 22 | 27
diff_comp 12 | 10
outp_conv 24 | 21
code_adjl 23 | 30
code_adj2 49 | 51
code_adj3 30 | 41
detect_pos 27 | 29
find_mv 30 | 28

TABLE 1
Experimental results: worst-case evecution time (instruction
cycles) for TI C62zz DSP with and without optimization of
IF-statements

into commercial compilers.

Future work will concentrate on further optimization
techniques, with emphasis on VLIW DSPs. The main
goal is to provide compiler technology, that is capable
of replacing assembly-level programming of DSPs by the
use of high-level languages and compilers, so as to enable
higher productivity in DSP software development.

REFERENCES

[1] P.Paulin, M. Cornero, C. Liem, et al.: Trends in Embedded Sys-
tems Technology, in: M.G. Sami, G. De Micheli (eds.): Hard-
ware/Software Codesign, Kluwer Academic Publishers, 1996

[2] V. Zivojnovic, J.M. Velarde, C. Schlager, H. Meyr: DSPStone
— A DSP-oriented Benchmarking Methodology, Int. Conf. on
Signal Processing Applications and Technology (ICSPAT), 1994

[3] P. Marwedel, G. Goossens (eds.): Code Generation for Embed-
ded Processors, Kluwer Academic Publishers, 1995

[4] C. Liem: Retargetable Compilers for Embedded Core Proces-
sors, Kluwer Academic Publishers, 1997

[5] R. Leupers: Retargetable Code Gemeration for Digital Signal
Processors, Kluwer Academic Publishers, 1997

[6] S. Davidson, D. Landskov, B.D. Shriver, P.W. Mallett: Some
FEzperiments in Local Microcode Compaction for Horizontal
Machines, IEEE Trans. on Computers, vol. 30, no. 7, 1981,
pp. 460-477

