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Summary

The experimental and theoretical characterization of sheet metal forming continues to present a
number of challenges for theorists and experimentalists alike. Among the foremost issues in this
regard is a realistic model for the material behavior. The material model should be able to ac-
count for the effects of the microstructural development and the development of different types
of hardening that evolve due to complex loading path histories involved in sheet metal forming
processes. The characterization / identification of the material model needs to be performed
for the specific material using the available experiments that produce strain-stress responses for
different loading paths. The other issues involved in the characterization of sheet metal forming
are the numerical and physical (structural) factors. The current work falls within this context
and deals with the formulation of the material model, its characterization and application of
this material model to the simulation of sheet metal forming processes. the factors effecting the
simulation of metal forming and springback are then discussed.

In complex forming processes, sheet metal undergoes large plastic deformations involving
significant induced flow anisotropy resulting from the development of persistent oriented (pla-
nar) dislocation structures. The first part of this thesis deals with the formulation and iden-
tification of a phenomenological model which accounts for the effect of the evolution of this
oriented dislocation microstructure on the anisotropic hardening behavior. The model accounts
for changes in the size, center, and shape of the yield surface associated with isotropic, kine-
matic and cross hardening, respectively. Identification of the model for the ferritic sheet metal
steel LH800 is carried out with the help of shear, reverse shear, and tension-shear tests. The
identified model has been validated by using it to predict the stress-strain behavior of the ma-
terial along different tension-shear loading paths and comparison with analogous experimental
results. The results and, in particular, the comparison of theoretical predictions with experimen-
tal results clearly demonstrate the need of including cross hardening effects in the modeling of
sheet metals like LH800.

Metal forming processes generally involve large strains and severe strain path changes. Large
plastic strains in many metals lead to the development of persistent dislocation structures re-
sulting in strong flow anisotropy. Perhaps the most well-known micromechanically-based phe-
nomenological model for anisotropic hardening on (non-proportional) loading paths character-
ized by directional changes is that of Teodosiu and Hu (1995, 1998). The objective of the third
Chapter is to propose a simplified formulation of the modified Teodosiu model presented by
Wang et al. (2008). The simplified model and full model are then identified using the available
experimental tests for ferritic steel LH800 and IF steel DC06. Finally, the model behavior for
the full and simplified models is compared and discussed.

The fourth Chapter of the thesis is concerned with the identification of the material model for
the steel LH800 using the different sets of tests. The effect of loading path changes during the
metal forming processes is modeled by the material model presented in the first Chapter. Now,
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there is a need for experiments that resemble most of the proportional and non-proportional
loading path changes which occur during the real sheet metal forming processes. In the current
work we used three types of test data, i.e. cyclic bending test data, tension-compression test data
and reverse shear test data along with orthogonal tension shear data to identify the three different
sets of material parameters of the presented material model. All three aforementioned tests
involve different amounts of inelastic deformation and have different states of stress. Hence,
it is instructive to compare the influence of the test data used for identification on the material
model parameters. The identified sets of material parameters are then used to simulate a draw-
bending test and predict the amount of springback. The predicted springback is then compared
with the actual experimentally observed springback for each set of material parameters.

Accurate simulation of forming and springback in sheet metal forming processes requires
taking a number of factors / parameters into account. The factors affecting the simulation of
forming and springback fall in two categories: physical and numerical. In the fifth Chapter
of this thesis, the attention is focused on the roles played by type, order and scheme of the
finite element model and level of mesh refinement, which falls in the category of numerical
parameters. For the physical parameters affecting the simulation of forming and springback,
the effect of tool radius, friction coefficient, back force (sheet tension) and material model used
are investigated. The goal here is an optimal choice of element type, mesh refinement, contact
and friction modeling, as well as other numerical and physical parameters in such a way that
an efficient, robust and converged solution is achieved in the context of the simulation of sheet
metal forming and predicting the springback.



Zusammenfassung

Die experimentelle und theoretische Untersuchung der Umformung von Blechen ist nach wie
vor eine Herausforderung sowohl in der theoretischen Beschreibung als auch auf experimen-
teller Seite. Eine wesentliche Aufgabe kommt dabei der Verwendung eines realistischen Mate-
rialmodells zu. Das Modell sollte in der Lage sein, die Entwicklung der Mikrostruktur sowie die
verschiedenen Formen der Verfestigung, die bei den komplexen Lastpfaden in der Blechumfor-
mung auftreten, zu berücksichtigen. Die Charakterisierung / Identifikation des Materialmodells
muss für das jeweilige Material, basierend auf den vorliegenden experimentellen Spannung-
Dehnung-Ergebnissen für unterschiedliche Beanspruchungsarten durchgeführt werden. Außer-
dem sind numerische und physikalische (strukturbezogene) Faktoren im Zusammenhang mit
der Blechumformung zu betrachten. Diese Arbeit gehört in diesen Zusammenhang und be-
fasst sich mit der Formulierung des Materialmodells, sowie seiner Anwendung bei der Berech-
nung von Blechumformprozessen. Verschiedene Faktoren, die die Umformsimulation und die
Rückfederung beeinflussen, werden untersucht.

Bei komplexen Umformprozessen treten große plastische Verformungen und damit verbun-
den Fließanisotropie auf, die von der Entwicklung bleibender Versetzungsstrukturen verursacht
wird. Der erste Teil dieser Arbeit befasst sich mit der Formulierung und Identifizierung ei-
nes phänomenologischen Modells, das den Einfluss der orientierten Versetzungsmikrostruk-
turen auf das anisotrope Verfestigungsverhalten berücksichtigt. Das Modell berücksichtigt die
Änderungen der Größe, des Zentrums und der Form der Fließfläche, die mit isotroper-, kinemat-
ischer- und Querverfestigung in Verbindung stehen. Die Identifikation des ferritischen Stahls
LH800 wird anhand von Scher-, Scher-Rückscher- und Zug-Scher-Tests durchgeführt. Das
identifizierte Modell wurde durch Nachrechnen des Spannung-Dehnung-Zusammenhangs für
verschiedene Zug-Scher-Lastpfade, zu denen experimentelle Ergebnisse vorlagen, validiert. Die
Ergebnisse bzw. der Vergleich der theoretischen Vorhersagen mit den Experimentalergebnissen
zeigen, dass Querverfestigungseffekte bei Stählen wie LH800 berücksichtigt werden müssen.

Umformungen bei Metall gehen mit großen Dehnungen und ausgeprägten Belastungspfad-
wechseln einher. Große plastische Dehnungen führen in vielen Metallen zu der Entwicklung
von bleibenden Versetzungsstrukturen, was zu starker Fließanisotropie führt. Das vielleicht be-
kannteste mikromechanisch basierte phänomenologische Modell für anisotrope Verfestigung
bei nicht-proportionalen Lastpfaden, die durch Richtungswechsel charakterisiert werden, ist das
von Teodosiu und Hu (1995, 1998). Im dritten Kapitel wird eine vereinfachte Formulierung ei-
nes modifizierten Teodosiu Modells vorgeschlagen. Das vereinfachte Modell und das nicht ver-
einfachte Modell werden dann anhand der verfügbaren Versuchsergebnisse für den ferritischen
Stahl LH800 und den IF-Stahl DC06 identifiziert. Schließlich werden die Modellverhalten des
Vollmodells und des vereinfachten Modells miteinander verglichen.

Das vierte Kapitel der Arbeit befasst sich mit der Identifizierung des Materialmodells für
den Stahl LH800 basierend auf verschiedenen Testdaten. Der Einfluss der Belastungspfad-
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wechsel während des Umformens wird mit dem im ersten Kapitel präsentierten Materialmodell
modelliert. Hierfür sind Experimente erforderlich, die den meisten proportionalen und nicht-
proportionalen Lastpfadwechseln, wie sie in realen Blechumformprozessen auftreten, ähneln.
In der vorliegenden Arbeit wurden drei Testarten verwendet, nämlich zyklische Biegeversu-
che, Zug-Druck-Versuche und Scher-Rückscher-Versuche im Zusammenhang mit orthogona-
len Zug-Scher-Versuchen, um drei Parametersätze für das vorgestellte Modell zu bestimmen.
Die erwähnten Tests beinhalten unterschiedlich hohe inelastische Deformationen und verschie-
dene Spannungszustände. Daher ist es sinnvoll, den Einfluss der zugrunde liegenden Versuche
auf die Materialparameter zu untersuchen. Die identifizierten Datensätze werden dann für die
Simulation eines Streifenzugbiegeversuchs verwendet. Dies beinhaltet auch die rechnerische
Vorhersage der Rückfederung. Die berechnete Rückfederung wird für alle Datensätze mit der
experimentell ermittelten Rückfederung verglichen.

Eine akkurate Berechnung des Tiefziehens und der Rückfederung gelingt nur, wenn man
eine Reihe an Faktoren / Parametern berücksichtigt. Diese Einflussfaktoren lassen sich in die
Kategorien physikalisch und numerisch einteilen. Das fünfte Kapitel dieser Arbeit befasst sich
mit dem Einfluss des Typs, der Ordnung und des Integrationsschemas des verwendeten fini-
ten Elements sowie mit dem Einfluss der Diskretisierung. Dies gehört zu der Kategorie der
numerischen Parameter. Im Bereich der physikalischen Parameter, die das Berechnungsergeb-
nis beeinflussen, werden der Radius des Tiefziehwerkzeugs, der Reibkoeffizient, die Haltekraft
(Zugkraft im Blech) und das Materialmodell untersucht. Das Ziel dabei ist die optimale Wahl
des Elementtyps, des Netzes, der Kontakt- und Reibungsmodellierung und anderer Parameter,
sodass eine effiziente, robuste und konvergente Lösung für die Simulation der Blechumformung
und der damit verbundenen Rückfederung gefunden werden kann.



Chapter 1

Introduction

The simulation of sheet metal forming continues to present a number of challenges for re-
searchers. Among the foremost issues in this regard is a realistic model for the material be-
havior. The material model should be able to account for the effects of the microstructural
development and the development of different types of hardening that evolve due to complex
loading path histories involved in sheet metal forming processes. The initial anisotropy is rep-
resented by the grain microstructure in sheet metals and is determined almost solely by the
rolling process. Forming processes like cup drawing are expected to result in little or no change
in this microstructure. Consequently, during forming processes, anisotropic hardening behavior
is generally expected to be due almost solely to an evolving dislocation microstructure at the
grain- or grain-cluster level.

In Chapter two of the current work, a phenomenological model is presented which accounts
for the effect of the evolution of this oriented dislocation microstructure on the anisotropic
hardening behavior. The model accounts for changes in the size, center, and shape of the yield
surface associated with isotropic, kinematic, and cross hardening, respectively. The presented
model falls in the context of approach originally presented by Baltov and Sawczuk (1965). For
the Baltov and Sawczuk (1965) type models, the yield locus is dependent on the loading path.
The model is based on an evolution relation for the fourth order tensor accounting for the effects
of an evolving dislocation microstructure on the hardening behavior. The initial value of this
fourth order tensor is determined in the current model by the grain microstructure (i.e., texture).
The current form of the evolution relation for this fourth order tensor is directly motivated by
the evolution of the cell-wall dislocation microstructure (e.g., Nesterova et al. (2001)) during
loading-path changes and its effect on hardening.

Perhaps the most well-known micromechanically-based phenomenological model for anisot-
ropic hardening on (non-proportional) loading paths characterized by directional changes is that
of Teodosiu and Hu (1995, 1998). The model proposed by Teodosiu and Hu (1995) accounts
for cross-hardening, the Bauschinger effect and hardening stagnation. In their model the evolu-
tion of internal variables can be closely linked to the microstructural mechanisms inducing the
transient mechanical response. The model introduces strong coupling between different con-
tributions to anisotropic hardening. Central to the model is the introduction of a fourth-order
tensor accounting for the interaction of dislocation structures during loading path changes. The
effective yield stress depends on (the magnitude of) this fourth-order evolving structure tensor.
Therefore , this model is called yield stress model here. The model is capable of accounting
for isotropic, kinematic and directional hardening. The focus of the third Chapter is to present
a simplified formulation of the (Teodosiu and Hu, 1995, 1998) model. This model has been
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successfully applied to the simulation of sheet metal forming processes involving strain path
changes (Oliveira et al., 2007; Wang et al., 2008, 2006). The simplification leads to a reduction
of the coupling between different contributions of anisotropic hardening and a reduction in the
number of parameters which have to be identified. The agreement of the mechanical responses
predicted by the model with experimental test data and the full model is excellent.

After formulating the material model which is capable of describing the material behavior
under most common but complex strain path changes, the next challenge lies in the identifica-
tion of the material model using the available experiments. The most widely used experimental
test to evaluate the strain-stress response for a monotonic strain path is the uniaxial tension test.
But the identification of the afore mentioned material model can not be done only through uni-
axial tensile tests, and therefore other loading paths need to be investigated for the identification
of material parameters. To obtain a strain reversal in the loading path (for the Bauschinger
effect), the tests which have to be investigated are tension-compression tests (Yoshida et al.
(2002)), reverse shear tests (Bouvier et al. (2006); Noman et al. (2010)) and cyclic pure bending
tests (Boers et al. (2010); Brunet et al. (2001); Yoshida et al. (1998)). The conventional tension-
compression tests are commonly used for the identification of material parameters over the
decades, but these tests are generally very difficult to perform due to the buckling of the sheet
sample (Yoshida et al. (2002)). To overcome this problem, Yoshida et al. (1998) suggested a
pure bending test and performed cyclic bending of thin sheets. Based on cyclic bending test
data, Yoshida et al. (1998) identified the material parameters for a combined isotropic and kine-
matic hardening model by using an optimization technique based on the iterative approximation
concept. Later, Brunet et al. (2001) used cyclic bending test data simultaneously with the ten-
sile test data to identify the hardening parameters using an inverse approach. Carbonnière et al.
(2009) recently performed a comparison of work hardening using the identified parameters from
one cycle of a bending test and compared it with reverse shear test data. It should be noted that,
in a bending test, the maximum strain reached in each cycle for thin sheet metal of 1 mm thick-
ness is around 0.05 which is rather small. The simple shear tests performed by Rauch (1998);
Z. Hu and Teodosiu (1992) and more recently by Bouvier et al. (2006); Flores et al. (2007);
Haddadi et al. (2006); van Riel and van den Boogaard (2007) have shown that large amplitudes
of strain can be achieved, which is suitable for identifying isotropic and kinematic hardening
parameters at large level of strains. In order to identify the cross hardening parameters, a test
involving an orthogonal or quasi orthogonal strain path has to be used in the identification. This
is achieved by using the orthogonal tension-shear tests (Bouvier et al. (2006); Haddadi et al.
(2006); van Riel and van den Boogaard (2007)). Recently, Bouvier et al. (2006); Flores et al.
(2007); Haddadi et al. (2006); Noman et al. (2010) successfully used the orthogonal tension
shear test for the identification of cross hardening parameters.

The experimental setup and detailed results of the simple reverse shear and orthogonal
tension-shear tests are presented in Chapter two and Chapter three for the ferritic steel LH800,
and in appendix A for the ferritic steel DC06. In Chapter four of the current work, an overview
of three different experimental tests i.e. cyclic bending test, tension-compression test and sim-
ple reverse shear test along with orthogonal tension shear test are presented along with their
results.

The identification of the material model needs to be performed for the specific material using
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the available experiments that produce strain-stress responses for different loading paths. The
material parameter is identified by using the program LS-OPT in conjunction with LS-DYNA.
The optimization technique used relies on response surface methodology (RSM) (Stander et al.
(2008)), a mathematical method for constructing smooth approximations of functions in a de-
sign space. The approximations are based on results calculated at numerous points in the multi-
dimensional design space. In our example, the material parameters are the design variables,
and the model together with the data determine the objective function of the corresponding op-
timization problem. In Chapter two, the identification of the model for the ferritic sheet metal
steel LH800 is carried out with the help of shear, reverse shear, and tension-shear tests. The
identified model has been validated by using it to predict the stress-strain behavior of the ma-
terial along different tension-shear loading paths and comparison with analogous experimental
results. Chapter three deals with the identification of the full yield stress and simplified yield
stress models on the basis of monotonic shear, reverse shear and tension-shear tests for ferritic
steel LH800. The corresponding results for the steel DC06 are presented in Appendix A. In the
fourth Chapter, a study is conducted to investigate the influence of the test-data, i.e. uniaxial
tension-compression, simple reverse shear and cyclic pure bending, on the material model pa-
rameters. The results obtained using different test data are then compared in order to analyze
the influence of the database used.

Finally, in Chapter five, the parameters influencing the simulation of sheet metal forming pro-
cesses and springback prediction are studied. In general, the numerical simulation of the metal
forming process and springback prediction is influenced by two different kinds of parameters:
physical and numerical. The physical group of parameters includes both material properties,
such as isotropic and kinematic hardening, Bauschinger effect, distortional hardening, elastic
and plastic anisotropy (Carden et al. (2002), Laurent et al. (2009), Geng and Wagoner (2002),
Oliveira et al. (2007) and Li et al. (2002), Eggertsen and Mattiasson (2009, 2010), and Wang
et al. (2006) ) and process characteristics sensitiveness, such as sheet thickness, friction coef-
ficient, blank holder force, tool geometry (e.g. radius), temperature and unloading procedure
(Li et al. (2002) and Wang et al. (2005)). The numerical parameters influencing springback are
the type of element, order and integration scheme of the finite element, as well as, the shape,
size and the finite element mesh refinement (Li et al. (2002), Xu et al. (2004), Meinders et al.
(2008)).





Chapter 2

Experimental characterization and modeling of the
hardening behavior of the sheet steel LH800

Abstract– In complex forming processes, sheet metal undergoes large plastic deformations
involving significant induced flow anisotropy resulting from the development of persistent ori-
ented (planar) dislocation structures. The aim of the present work is the formulation and iden-
tification of a phenomenological model which accounts for the effect of the evolution of this
oriented dislocation microstructure on the anisotropic hardening behavior. The model accounts
for changes in the size, center, and shape, of the yield surface associated with isotropic, kine-
matic, and cross hardening, respectively. Identification of the model for the ferritic sheet metal
steel LH800 is carried out with the help of shear, reverse shear, and tension-shear tests. The
identified model has been validated using it to predict the stress-strain behavior of the mate-
rial along different tension-shear loading paths and comparison with analogous experimental
results. The results and in particular the comparison of theoretical predictions with experimen-
tal results clearly demonstrate the need of including cross hardening effects in the modeling of
sheet metals like LH800.

2.1 Introduction

The experimental and theoretical characterization of sheet metal forming continues to present
a number of challenges for theorist and experimentalist alike. Among the foremost issues in
this regard is a realistic model for the material behavior. Metal forming processes generally
involve large strain resulting in significant microstructural development and the development
of different types of hardening. The influence of a developing microstructure on the harden-
ing behavior in sheet metals has been the subject of many investigations (e.g. Aretz, 2008;
Barlat et al., 2003; Bouvier et al., 2005, 2006, 2003; Hiwatashi et al., 1997, 1998; Hoc and
Forest, 2001; Li et al., 2003; Peeters et al., 2001a, 2002, 2001b; Teodosiu and Hu, 1995, 1998;
Wang et al., 2008). The nature and strength of this influence is strongly dependent on the type
and complexity of the loading paths under consideration. As discussed for example by Barlat
et al. (2003), in the case of monotonic loading, the grain microstructure (i.e., texture) influ-
ences strongly the dependence of hardening on the loading direction. In contrast, for loading
paths with changes in direction, this behavior is dominated by the dislocation microstructure.
Experimentally-observed effects in this context include hardening stagnation after load reversal,
and cross hardening after orthogonal loading. Experimental results exhibiting these effects exist
for a number of different materials. Systematic studies of interstitial free (IF), high-strength low
alloyed (HSLA), dual-phase (DP) and transformation-induced plasticity (TRIP), steels, as well
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as 5000 and 6000 series aluminum alloys, conducted by Bouvier et al. (2006, 2003) found sig-
nificant kinematic hardening, hardening stagnation, as well as cross-hardening, especially for
IF steels. In their investigations, the blank material was subjected to monotonic shear, reverse
shear, as well as orthogonal tension-shear, loading. van Riel and van den Boogaard (2007) have
documented these effects in IF ferritic steels with the help of monotonic tension, reverse shear,
and orthogonal tension-shear, tests, all under plane-strain conditions.

Perhaps the most well-known micromechanically-based phenomenological model for anisot-
ropic hardening on (non-proportional) loading paths characterized by directional changes is that
of Teodosiu and Hu (1995, 1998). Besides accounting for isotropic and kinematic hardening,
their model accounts for cross hardening via an evolving fourth-order tensor S influencing
the effective yield stress in a loading-direction-dependent fashion. In the current back-rotated
framework relevant to metals, the yield function for this model takes the form

φTeo =
√
(M −X ) · ATeo (M −X )− σTeo . (2.1)

Here, M represents the Mandel stress, X the back stress, ATeo the Teodosiu flow anisotropy
tensor, and σTeo the Teodosiu yield stress. In particular, ATeo ≡ AHill is modeled by the constant
Hill (1950) initial flow anisotropy tensor AHill determined by grain microstructure (i.e., texture).
Further, σTeo ≡ σY0 + r+ f |S | is determined by (i) the initial yield stress σY0, (ii) the increase
r in this stress due to standard isotropic hardening, and (iii) the increase f |S | in this stress
due to cross hardening. f represents the fraction of dislocation walls contributing to isotropic
hardening whose strength in this sense is given by the magnitude |S | := √S · S =

√
Sijkl Sijkl

of S . Since M and S are decoupled in φTeo, note that the evolution of S does not influence the
form of the yield surface as represented by the dependence of φTeo on M . For more details on
this class of models as well as applications, the reader is referred to Oliveira et al. (2007); Wang
et al. (2008).

An alternative class of models for cross and more generally distortional hardening can be
based on the approach of Baltov and Sawczuk (1965). In the current framework, this involves
in particular a yield condition of the form

φBal =
√

(M −X ) · ABal (M −X )− σBal , (2.2)

with σBal ≡ σY0+ r. Besides the additional dependence of σTeo on S , then, the basic difference
between φTeo and φBal lies in the fact that ABal is not assumed constant. Its evolution is governed
by a constitutive relation, and its initial value is given by AHill. A number of models for this evo-
lution have been proposed in the literature, including the current one. For example, Voyiadjis
and Foroozesh (1990) proposed an evolution relation for ABal based on three material parame-
ters which mediate an assumed coupling between its principal directions and the effective stress
M −X , resulting in asymmetric distortion of the yield surface. The model of Schick (2004),
which is based on the approach of Dafalias et al. (2003), assumes multiple kinematic harden-
ing mechanisms and a dependence of the evolution of ABal on kinematic hardening in order to
model yield surface development during tension-torsion loading (Ishikawa, 1997). Evolution
of the yield surface has also been modeled by Yeganeh (2007) in a rigid-plastic framework as
based on the Hencky logarithmic strain. More recently, the model of Feigenbaum and Dafalias
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(2007) involves an evolution relation for ABal coupled to the magnitude of the effective stress
and the projection of the direction of the effective stress onto the back stress. This leads to an
asymmetric distortion of the yield surface with increasing curvature in the direction of distor-
tion in stress space. In Feigenbaum and Dafalias (2008), a simplified version of such a model
is developed in which there is no coupling to the evolution of the back stress. Development of
these types of models has been motivated by tension-torsion experiments on aluminum and steel
tubes (e.g., Boucher and Cordebois, 1994; Ishikawa, 1997; Phillips et al., 1974). In Boucher
and Cordebois (1994); Phillips et al. (1974), a distortion of the yield surface in the direction of
applied stress was determined. This involved an increase in curvature of the yield surface in this
direction and a corresponding decrease in curvature in the opposite direction.

The purpose of the current work is to introduce and validate a new model for cross hard-
ening and hardening stagnation during orthogonal loading in the context of the approach of
Baltov and Sawczuk (1965). This is based on an evolution relation for ABal accounting for
the effects of an evolving dislocation microstructure on the hardening behavior. Like many of
the models discussed above, the initial value of ABal is determined in the current model by the
grain microstructure (i.e., texture). In contrast to these models, however, the current form of
the evolution relation for ABal is directly motivated by the evolution of the cell-wall disloca-
tion microstructure (e.g., Nesterova et al. (2001)) during loading-path changes and its effect on
hardening. An analogous form was formulated for S in the model of Wang et al. (2008). On the
one hand, this results in a model which is simpler than either that of Teodosiu and Hu (1998)
or Wang et al. (2008) and contains fewer material parameters. On the other hand, the current
model is not capable of representing hardening stagnation after reverse loading. Micromechan-
ical support for working with a model based on (2.2) rather than on (2.1), i.e., with a model in
which cross hardening is associated with a change in the shape of the yield surface, i.e., dis-
tortional hardening, comes for example from the very interesting work of Peeters et al. (2002).
They worked with a polycrystal model based on fully-constraint Taylor-based homogenization
which takes the evolution of the dislocation microstructure into account at the grain level in an
effective fashion. Using this approach, they were able to simulate the cross effect in orthogonal
tension-shear tests and a corresponding change in shape of the yield surface. In particular, the
development of dislocation walls at the grain level during proportional loading corresponds to
the expansion of the yield surface into directions orthogonal to the loading direction. On the
other hand, the development of localization bands and the breakdown of existing dislocation
structures after orthogonal change of direction leads to yield surface shrinkage in the new direc-
tion of loading. Besides the stress-strain- and loading-path-based data which will be presented
in this work, that of Ishikawa (1997) for yield surface development in the stainless steel SUS304
during tension-torsion exhibits (some of) these effects and in particular a change in shape of the
yield surface.

The current work begins in Section 2 with a formulation of the current model in the frame-
work of the multiplicative decomposition of the deformation gradient and the assumption of
small elastic strain relevant to metal inelasticity. In order to identify and validate the model,
tension-shear and cyclic shear tests on the ferritic steel LH800 (Tekkaya et al. (2008)) have
been carried out. The experimental setup and details of these tests together with the basic data
are presented in Section 3. The strategy developed for the model identification together with
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the results of this identification are discussed in Section 4. The model is also validated in this
section with the help of additional test results for other strain paths not used in the model iden-
tification. In Section 5, the identified model is used to investigate the evolution of the yield
surface and that of the inelastic state with respect to loading-path history. Finally, the work
ends in Section 6 with a discussion and conclusions.

2.2 Model formulation

The phenomenological representation of evolving hardening behavior in terms of changes in the
size, center and shape of the yield surface offers the means to characterize the behavior of the
steels of interest during complex, non-proportional loading processes present in many techno-
logical processes (e.g., deep-drawing). The challenge lies in the connection of such changes in
the yield surface geometry with the underlying microscopic and physical mechanisms of grain
and dislocation microstructural development in polycrystalline metals. One basic expectation
in this regard is that the grain microstructure in sheet metals is determined almost solely by
the rolling process. Forming processes like cup drawing are expected to result in little or no
change in this microstructure. Consequently, during forming processes, yield surface evolution
is generally expected to be due almost solely to an evolving dislocation microstructure at the
grain- or grain-cluster level. This is the focus of the current model.

The formulation of the current model is carried out in the framework of the standard in-
elastic multiplicative decomposition F = FEFP of the deformation gradient F (e.g., Simo and
Hughes, 1998). Such a decomposition arises naturally, e.g., in the context of the modeling of
FP as a change of local reference configuration (Svendsen, 2001). In this context, one obtains
in particular the result

RT
ELERE = RT

ELRE −UELP U
−1
E = RT

EṘE + U̇EU
−1
E (2.3)

via the right polar decomposition FE = REUE of FE for the back-rotated form of LE :=

ḞEF
−1
E in terms of L := Ḟ F−1 and LP := ḞPF

−1
P . For the current case of polycrystalline

metals and small elastic strain, we have

UE ≈ I + lnUE ,

U̇EU
−1
E ≈ ˙lnUE .

(2.4)

Substituting these into (2.3), and taking the symmetric and skew-symmetric parts of the result,
one obtains the evolution relations

˙lnUE = RT
EDRE −DP ,

ṘE = WRE −REWP ,
(2.5)

for lnUE and RE, respectively, in the incremental context. D := sym(L) is the continuum
rate of deformation, DP := sym(LP) its inelastic counterpart, W := skw(L) the continuum
spin, and WP := skw(LP) the plastic spin. Restricting the current formulation to the case
of sheet metal forming, it is reasonable to assume that the texture in these materials achieved
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during rolling remains largely unchanged during forming processes like tension, compression,
simple shear, cyclic simple shear, and combinations of these. In this case, WP is negligible,
and the evolution of RE depends only on W , in which case it reduces to a purely kinematic
quantity (i.e., the Jaumann rotation). In addition, focusing in this work on the material behavior
of sheet metal during forming below the forming limit, we assume for simplicity that damage
or any other processes resulting in inelastic volume changes are negligible. In this case, plastic
incompressibility det(FP) = 1 pertains, implying tr(DP) = 0 and D ′

P =DP in the incremental
context.

Since the elastic range and elastic strains are small, any texture effects from rolling leading
to an anisotropic elastic behavior are assumed negligible. In this case, the isotropic form

M = κ tr(EE) I + 2μE ′
E (2.6)

is assumed for the Mandel stress M in terms of the elastic strain EE := lnUE, bulk modulus κ,
shear modulus μ, and deviatoric part E ′

E of EE. Lastly, again in the framework of small elastic
strain, M and RE determine the Kirchhoff stress K via

K = REMRT
E . (2.7)

Consequently, in contrast to K ′ = REM
′RT

E , tr(K) = tr(M) of K is independent of RE.

In this framework, then, the material behavior of polycrystalline sheet metal during form-
ing processes below the forming limit is predominantly determined by a changing dislocation
microstructure and attendant evolving anisotropic yield behavior. Besides a shift of the yield
surface and its proportional expansion as in the case of conventional combined hardening, the
current model also accounts for an evolving yield surface shape and so distortional hardening.
As discussed in the introduction, this model is based in particular on a yield function of the
form (2.2) from Baltov and Sawczuk (1965). In the current notation, this is written simply in
the form

φ =
√

(M −X ) · A (M −X )− σY0 − r (2.8)

in terms of the initial yield stress σY0. For the class of materials under consideration, the satu-
ration (i.e., Voce) form

ṙ = cr (sr − r) α̇P (2.9)

for the evolution of r is appropriate, driven by that of the equivalent inelastic deformation
αP. Here, cr represents the rate, and sr the value, for saturation associated with r. Since
σY0 is the initial yield stress (i.e., for αP = 0), the initial value r0 of r is zero. In the cur-
rent rate-independent context, αP is determined as usual by the consistency condition. Analo-
gous to isotropic hardening, kinematic hardening is modeled via the saturation (i.e., Armstrong-
Frederick) form

Ẋ = cx (sxNP −X ) α̇P (2.10)

for the evolution of X depending on corresponding (constant) saturation rate cx, (constant)
saturation magnitude sx, as well as the (variable) direction NP := DP/|DP| of the rate of
inelastic deformation

DP = α̇P ∂M−X φ , (2.11)
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which is modeled here in associated form. The initial value of X is assumed to be zero.

The constitutive model formulation is completed by an evolution relation for A in order
to represent the effect of cross hardening on the material behavior. The form of this relation
introduced in what follows is based on the idea that active or “dynamic” dislocation microstruc-
tures oriented with respect to the current loading direction (idealized in the model context by
NP) persist and become inactive or “latent” after a loading-path change and strengthen existing
obstacles to glide-system activation in the new loading direction. In addition, both dynamic
and latent dislocation structures are assumed to saturate with increasing accumulated inelastic
deformation. These assumptions are built into the constitutive relation

Ȧ = cd (sdNP ⊗NP −Ad) α̇P

+ cl {sl (Idev −NP ⊗NP)−Al} α̇P

(2.12)

for the evolution of A. Here, Idev is the deviatoric part of the fourth-order identity tensor, and

Ad := (NP · ANP)NP ⊗NP ,

Al := A −Ad ,
(2.13)

represent the “dynamic” and “latent” parts of A, respectively. More precisely, these are the
projections of A parallel and orthogonal, respectively, to the current (instantaneous) inelastic
flow direction NP. The first term in (2.12) is of the saturation type with respect to Ad, with cd
the rate of saturation, and sdNP ⊗NP the saturation value, respectively, of Ad. Likewise, cl is
the saturation rate, and sl (Idev −NP⊗NP) the saturation value, of Al. The initial value A0 of
A is determined by any Hill initial flow orthotropy due to any texture from rolling. In contrast
to some of the models discussed in the introduction, e.g., Teodosiu and Hu (1998), Wang et al.
(2008), or Dafalias et al. (2003); Feigenbaum and Dafalias (2007), note that there is no direct
coupling between kinematic and distortional hardening in the current model. This is also the
case in the recent model of Feigenbaum and Dafalias (2008), which focuses on the asymmetric
development of the yield surface rather than on the effect of cross hardening as is done in the
current work.

The current material model was implemented in the commercial FE codes ABAQUS and
LS-DYNA via the user material interfaces provided. Besides the two elasticity parameters κ,
μ and the 6 parameters (e.g., in the sense of Hill: F , G, H , L, M , N) for the initial flow
orthotropy, this model contains 8 hardening parameters cr, sr, cx, sx, cd, sd, cl, sl which have to
be identified using the tests described next.

2.3 Material testing

The experimental work has been carried out on a biaxial testing device capable of loading a
sheet metal specimen in both simple shear and in plane-strain tension. Using this device, one
can carry out single- or multi-stage loading programs consisting of monotonic (e.g., forward
simple-shear), reverse (e.g., forward-reverse simple-shear), and / or orthogonal (e.g., tension-
shear) changes of loading direction. In particular, the latter can be carried out with or without
unloading of the specimen upon change of loading direction.
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2.3.1 Test setup

The biaxial testing equipment had been developed at the University of Twente. It consists of a
regular uniaxial testing device which via an actuator is used to achieve plane-strain tension in
the sample. A subframe mounted between the cross bars accommodates the actuator for simple
shear deformation. The deformation is applied to the sample as indicated in Figure 2.1. The

Figure 2.1: Biaxial test setup. Geometry of the tension-shear specimen and the measurement
region of height b and width c. The checkered region indicates the actual specimen and the
black area marks the actual deformation zone. The tension direction is direction 2 and the shear
direction is direction 1.

ratio of the height (b) of the measurement region to the sample thickness is chosen in order
to minimize the chance of buckling during simple shear. In addition, to achieve homogeneous
deformation in the measurement area c/b is large as shown in Figure 2.1. The deformation is
measured in an area within the deformation zone. The notched boundary then constrains the
specimen in the transverse direction during tension or shear, resulting in plane-strain conditions.

The deformation field is determined by optical measurement (in a procedure comparable to
the commercially available ARAMIS system). To this end, the motion of an array of sixteen
black silicon dots painted on the surface of the measurement area is tracked and recorded with
a camera. The relative motion of these dots is used to calculate the deformation gradient via a
least-squares method. During a test, two sensors on the actuators record the force achieved in
shear and in tension. Using the known geometry of the specimen, these force measurements are
used to calculate the Cauchy tensile and shear stress, T22 and T12, respectively. The plane-strain
tension and simple shear tests represent the boundaries of the range of stress states achievable
in the specimen with the help of the biaxial testing device (Figure 2.1). By applying different
combinations of simple shear and plane-strain tension, different stress states on the yield surface
are achieved. The exact position of the yield state in principal stress space, however, is unknown
since the transverse stress cannot be measured. Further details of the experimental setup can be
found in van Riel and van den Boogaard (2007).
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2.3.2 Test results

For the current work, tests performed on specimens of the ferritic steel LH800 include (i) mono-
tonic plane-strain tension at different strain-rates, (ii) reverse simple-shear for different amounts
of forward pre-shear, and (iii) orthogonal tension-shear with and without unloading. This sheet
steel is characterized by an initial texture consisting of fine-grained ferrite, grain size of approx-
imately 8 μm in diameter, see Figure 2.2 (Tekkaya et al. (2008)). The thickness of the sheet
metal specimens used in all the tests was 0.7 mm. Experimental characterization of the steel
DC06 can be found in Appendix A. All tests were performed with the tension direction ori-
ented in the rolling direction. Consider first the monotonic plane-strain tension tests. As stated

Figure 2.2: Scanning electron micrograph showing microstructure of LH800 (Experiment IW
Hannover).

above, these have been performed at different strain rates. Figure 2.3 displays the correspond-
ing results. As observed in many metals, the flow stress in LH800 increases as a function of
increasing strain-rate. The remaining tests have been performed under quasi-static conditions
(i.e., 10−3 s−1). Figure 2.4 shows the results of two reverse simple-shear tests. The elastic-
inelastic transition for this material upon load reversal is very diffuse. The Bauschinger effect is
clearly present. It would appear that the amount of pre-shear does not influence the magnitude
of the Bauschinger effect significantly. On the other hand, the test with the larger pre-shear
is clearly closer to the hardening saturation level. Hardening stagnation after load reversal is
clearly visible in both cases, but less pronounced at lower pre-shear.

Lastly, consider the results from the orthogonal tests. As stated above, these consist of plane-
strain tension followed by simple shear loading. The transition from tension to simple shear is
either discontinuous via intermediate unloading, or continuous without unloading. The data so
obtained include the 5 different continuous loading paths (numbered 1 to 5) shown in Figures
2.5 and 2.6.

Consistent with existing interpretations of such data in the literature, the presence or absence
of cross hardening in such orthogonal tests is judged solely by comparison with the monotonic
simple shear results. In particular, any overshoot of the yield stress above the monotonic level
upon transition from tension to shear is an indicator of such hardening. Using this “definition,”
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Figure 2.3: Tension test results for LH800 at strain rates of 10−1 s−1 (upper curve), 10−2 s−1

(middle curve), 10−3 s−1 (lowest curve). K22 represents the relevant component of the Kirchhoff
stress and F22 represents the relevant component of the deformation gradient.
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Figure 2.4: Reverse shear test results for LH800 for two different levels (i.e., 0.1 and 0.65) of
pre-shear. All stress results are shown in absolute value form.

curves 1, 2 and 3 in Figure 2.5 clearly exhibit cross hardening as can be seen in Figure 2.6 ,
curve 4 might exhibit a little, and curve 5 clearly none at all. In the one extreme (path 1), the
orthogonal change is realized via an “abrupt” reduction in tension and coincident increase in
shear at yield. This is closest to the case of a discontinuous orthogonal loading-path change
as shown in Figure 2.7. In the other extreme (path 5), the level of tension is maintained (and
further tensile deformation occurs) as shear loading increases. As indicated, the other three
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Figure 2.5: Experimental strain paths in LH800 resulting from continuous change of loading
direction from tension to shear.
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Figure 2.6: Stress response of LH800 for monotonic forward simple shear (curve starting at
F22 + F12 = 1) and for the 5 different orthogonal tension-shear paths shown in Figure 2.5.

paths (2, 3, and 4) in Figure 2.5 represent intermediate cases between these extremes.

In Figure 2.8, the paths in the (K12, K22) stress plane are shown which correspond to (i)
discontinuous orthogonal loading (curve “dis” in Figure 2.7) as well as, from Figure 2.5, (ii)
continuous orthogonal loading path 3 and (iii) continuous orthogonal loading path 5.

The stress states A, B and C correspond to deformation states of equal F22 + F12 which
intersect continuous path 5, continuous path 3 and the discontinuous path, respectively. The
intersections of the vertical dashed line in Figure 2.7 with the stress curves mark the same
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points, but in stress-deformation space. As implied by these results, the nature of the transi-
tion from tension to shear is crucial in determining whether or not cross hardening occurs, e.g.,
the increase in the yield stress above the monotonic shear level after an orthogonal change in
loading path from tension to shear. Beyond being associated with stress states on the yield
surface which are not influenced by cross hardening, cases 4 and 5 exhibit basically no cross
hardening and are characterized by the fact that significant further tension loading takes place
after the start of the shear loading phase. Assuming that the dislocation microstructure devel-
oped during the common pre-tension phase was the same in each case, these results imply that
continued tension loading during simultaneous shear loading at yield facilitates a breakdown
of tension-based dislocation microstructure which would otherwise result in cross hardening
upon transition to shear. Besides this, note that the paths with continued tension loading do not
return to the monotonic simple-shear reference curve, i.e., at least not within the range of the
experimental data. These and other aspects will be examined in more detail after we carry out
the model identification, to which we now turn.

2.4 Model identification

To demonstrate the capability of the presented model to describe the complex hardening be-
havior of LH800 during non-proportional loading just discussed, we now turn to its identifica-
tion. As shown by the experimental data in the last section, this behavior involves in particular
isotropic, kinematic, and cross hardening. The material parameter determination is carried out
using the program LS-OPT in conjunction with LS-DYNA. Given the homogeneous nature of
the tests, one-element calculations suffice. The optimization technique used relies on the re-
sponse surface methodology (RSM) (Stander et al. (2008)). Other methods have been used by
previous workers (e.g., Flores et al. (2007); Haddadi et al. (2006)) to identify related models
like the Teodosiu model.

All fits to follow are based on the fixed values κ = 167.05 GPa and μ = 77.09 GPa for the
elastic properties, as well as σY0 = 330.79 MPa for the initial yield stress, of LH800, all at
room temperature. Tensile tests performed on LH800 at 0◦, 45◦, 90◦ with respect to the rolling
direction yielded no distinct initial orthotropy and so Hill parameter values of F = G = H =

0.5 and L = M = N = 1.5. Strictly speaking, only N , F , G and H can be determined by in-
plane tensile tests. Isotropy is also in essence tacitly assumed for the case of through-thickness
shear. The fit procedure for the hardening model begins by using monotonic simple-shear test
data to identify the Voce isotropic hardening model alone, i.e., assuming no kinematic or cross
hardening. The results of this fit are shown in Table 2.1 (left).

The quality of the fit can be judged via the comparison of the fitted model with the data in
Figure 2.9. The isotropic hardening parameters so determined are then used as starting values to
identify the isotropic-kinematic hardening model parameters using both monotonic and cyclic
simple-shear test data. The results of this are shown in Table 2.1 (right). The quality of the
model identification can be judged via comparison with the fit data as shown for the current
combined (isotropic-kinematic) case in Figure 2.10. As can be seen in Figures 2.9, we use
the experimentally-determined components of the deformation gradient F to parameterize the
experimental data for the model identification procedure. This is in contrast to the standard
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Value Units
sr 341.50 MPa
cr 5.82

Value Units
sr 245.684 MPa
cr 4.295
sx 97.464 MPa
cx 33.642

Table 2.1: Identified hardening model parameter values for LH800. Left: isotropic hardening
parameter values determined from monotonic simple-shear test data alone. Right: isotropic-
kinematic hardening parameters determined from monotonic and cyclic simple-shear test data
alone.
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Figure 2.9: Comparison of the experimental monotonic simple-shear data with the correspond-
ing identified model prediction. K12 represents the relevant shear component of the Kirchhoff
stress.

practice of using the accumulated equivalent inelastic deformation αP for this purpose, which
is a model quantity and therefore not experimentally-determined. Note that these parameteri-
zations are not equivalent. This can also be seen from the fact that one obtains different model
parameter values than those in Table 2.1 when using αP in this way. For example, in the com-
bined isotropic-kinematic hardening case, one obtains cr = 2.96, sr = 219.37, cx = 15.19,
sx = 139.63 instead of the values shown in Table 2.1 (right), as well as a poorer fit.

Before we proceed to the identification of the complete hardening model, it is instructive to
compare the predictions of the identified standard combined (i.e., isotropic-kinematic) harden-
ing model for orthogonal tension-shear loading with the corresponding test data as represented
by path 1 in Figure 2.5. This is done in Figure 2.11. Not surprisingly, the model predicts
no cross hardening. Optically, one might be tempted to identify the prediction of the identi-
fied combined isotropic-kinematic model with case 4 or 5 in Figure 2.5. Since these represent
different paths in either strain or stress space, however, they are not directly comparable.

Consider lastly the identification of the isotropic-kinematic-cross (i.e., complete) hardening
model. Again, this is done with the help of the identified parameter values for the isotropic-
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Figure 2.10: Comparison of the experimental cyclic simple-shear data with the corresponding
identified combined isotropic-kinematic model prediction.
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Figure 2.11: Comparison of the predictions of the identified standard combined (i.e., isotropic-
kinematic) hardening model for forward simple shear and orthogonal tension-shear with corre-
sponding experimental results from path 1 in Figure 2.5.

kinematic case as starting values. In this way, the complete model is fit to monotonic shear,
cyclic shear and orthogonal tension-shear test data. In particular, the test data of path 1 in Fig-
ure 2.5 is added to the previous monotonic shear and cyclic shear data sets. As with cr and cx,
the saturation rates cd and cl associated with cross hardening are constrained to be greater than
zero in the fit. On the other hand, as with sr and sx, sd and sl may be positive or negative. Since
the values for sd determined in this way were on the order of 10−3, this parameter was set to
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Value Units
sr 254.519 MPa
cr 4.481
sx 90.896 MPa
cx 32.695
sd 0.0
cd 19.712
sl -0.863
cl 5.0

Table 2.2: Identified hardening model parameter values for LH800 for isotropic-kinematic-
cross hardening model parameter values determined from monotonic shear, cyclic shear, and
orthogonal tension-shear, test data.

zero in the final fits, resulting in the parameter values for the complete model shown in Table
2.2. A comparison of the corresponding experimental data and model fit is shown in Figure
2.12. Parameters identification of current model for the steel DC06 can be found in Appendix
A. As a first validation of the identified hardening model, this is used to simulate the behavior
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Figure 2.12: Comparison of identified isotropic-kinematic-cross hardening model behavior with
experimental data for monotonic simple-shear and orthogonal tension-shear test data corre-
sponding to strain path 1 in Figure 2.5.

of LH800 along the experimental strain paths 2 to 5 in Figure 2.5 not used in the identification
procedure. The results of this are shown in Figure 2.13 and 2.14. Clearly, the agreement
between experimental and simulation results is good. Beyond a realistic representation of com-
plete isotropic-kinematic-cross hardening behavior, then, the current model is also capable of
accounting for the dependence of cross hardening on the nature and details of the orthogonal
transition from tension to shear. To investigate this further, we turn next to examine the impli-
cations of the model for yield surface and internal state development during monotonic shear,
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Figure 2.13: Comparison of the experimental results for strain paths 5 and 4 in Figure 2.5 with
corresponding simulation results as based on the identified model for isotropic-kinematic-cross
hardening. Right: path 4. Left: path 5.
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Figure 2.14: Comparison of the experimental results for strain paths 3 and 2 in Figure 2.5 with
corresponding simulation results as based on the identified model for isotropic-kinematic-cross
hardening. Right: path 2. Left: path 3.

cyclic shear and orthogonal tension-shear loading processes.

2.5 Yield surface evolution

Having established the ability of the current model to represent the development of combined
isotropic-kinematic-cross hardening in LH800 during non-proportional loading, we now turn to
a discussion of the evolution of the yield surface. To begin, consider the yield surface evolu-
tion for LH800 predicted by the identified model from the previous section. To this end, we
look at the cases of (i) uniaxial tension, (ii) simple shear, (iii) plane-strain tension followed
by simple shear and (iv) a continuous transition from plane-strain tension to simple shear. For
representation purposes, we work with the normalized shear K̄12 :=

√
3K12/σY0 and normal

K̄22 := K22/σY0 stress components. For example, an isotropic yield surface in (K̄12, K̄22)-
space takes the form of the unit circle. The resulting yield surface evolution is shown in Figure
2.15. In addition to an increase in its size and a translation of its center, the current model
clearly predicts a symmetric distortion of the yield surface. In particular, this latter takes the
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Figure 2.15: Yield surface evolution for LH800 during uniaxial tension (top) and simple shear
(bottom). Shown here are the initial surface (Ini), an intermediate tension state (Ten1), the final
tension state at F22 = 1.2 (Ten2), the final forward shear state at F12 = 0.4 (She1), and the final
reverse shear state at F12 = 0.0 (She2).

form of an elongation in the direction perpendicular to the current loading direction.

Consider next the case of an orthogonal loading path change from plane-strain tension to
simple shear via intermediate unloading corresponding to the discontinuous path shown in Fig-
ure 2.7. The corresponding evolution of the yield surface is shown in Figure 2.16. During the
tension phase (curve TenFin), the yield surface cross hardens as expected in the shear direction.
After the shift from tension to shear, the yield surface shrinks continuously in the shear direction
(curves TenShe1 to TenShe3) and elongates in the tension direction. This corresponds to cross
hardening in the tension direction. Note that the shape of the yield surface at the end of the
shear phase approachs that one attained in the monotonic shear test. This is in agreement with
the observed experimental behavior for the discontinuous test. The stress state C attained in this
case represents the point of maximum possible cross hardening, also in agreement with the ex-
perimental discontinuous and path 1 continuous (Figure 2.5 and 2.7) cases. On the other hand,
the yield surface development for the continuous loading path 5 predicted by the current model
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Figure 2.16: Predicted yield surface evolution for LH800 during orthogonal loading from plane-
strain tension to simple-shear depicted in normalized stress space (K̄12, K̄22) for the discontin-
uous transition. Ini represents the initial yield surface. TenFin is the final tensile state. TenShe1
to TenShe3 represent subsequent yield surfaces during subsequent loading for the loading path
also shown in Figure 2.5 and 2.7. The point C indicates the stress state obtained during the
experiment and is the same point C as shown in Figure 2.8.
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Figure 2.17: Predicted yield surface evolution for LH800 during orthogonal loading from plane-
strain tension to simple-shear depicted in normalized stress space (K̄12, K̄22) for the continuous
path 5. Ini represents the initial yield surface. TenFin is the final tensile state. TenShe1 to
TenShe3 represent subsequent yield surfaces during subsequent loading for the loading path
also shown in Figure 2.5. The point A indicates the stress state obtained during the experiment
and is the same point A as shown in Figure 2.8.

(Figure 2.17) shows that the state A reached on this path results in little or no cross hardening.
In both cases, the curves TenShe1 represent the yield surfaces predicted by the current model
for equal F22 + F12. Note also the nearly isotropic shape of the yield surface (curve TenShe2)
obtained during the transition from shear to tension. Since a change in shape of the yield surface
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is clearly associated with cross hardening here, it is reasonable to regard cross hardening as a
special type of distortional hardening, at least in the context of the current model.

Having now examined the model yield surface evolution for LH800, we can take a closer
look at the meaning of the values obtained for the saturation magnitudes sd and sl from Sec-
tion 2.4 associated with cross hardening. Since isotropic, kinematic and cross hardening are
decoupled in the current model, the special case of pure distortional hardening can be obtained
by simply setting sr and sx to zero in the identified model. The resulting yield surface devel-
opment for unixial tension to F22 = 1.2 and for simple shear to F12 = 0.4 in the case of pure
distortional hardening are shown in Figure 2.18. These are the same deformation paths as in
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Figure 2.18: Yield surfaces development for LH800 during monotonic uniaxial tension (top)
and simple shear (bottom) for pure cross hardening. Ini represents the initial yield surface.
Ten1 is an intermediate tension stage. Ten2 represents the final tension stage for F22 = 1.2.
She1 is an intermediate shear stage. She2 indicates the yield surface for F12 = 0.4.

Figure 2.15. As expected, pure distortional hardening leads to a pure shape change in the yield
surface. This is due in particular to the fact sd = 0 in the fit. In addition, an increase in the yield
level in directions orthogonal to the current direction follows for sl < 0. These observations can
be used in general with the current model as reasonable constraints on the model identification
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in order to make this more efficient.

For comparison, consider the yield surfaces obtained by Ishikawa (1997) for the steel SUS304
subject to tension and torsion loading as depicted in Figure 2.19. For his tests, he used tubes
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Figure 2.19: Yield surfaces after tension (top) and torsion (bottom) obtained by Ishikawa (1997)
for SUS304. Ini represents the initial isotropic yield surface, Ten1 is the yield surface translated
to the origin after tension, Ten2 is the yield surface after tension, She1 and She2 represent
the translated and measured yield surfaces, respectively, after torsion. Cen marks the computed
center of the subsequent yield surfaces. τ and σ represent the relevant Cauchy shear and normal
stresses, respectively.

milled from bulk SUS304. After milling, the tubes were annealed, and an average initial yield
stress of 194 MPa was obtained using a 50 μm/m definition. The initial yield surface depicted
in Figure 2.19 was determined with the help of a least-square fit for 12 experimentally deter-
mined points on the yield surface. Subsequent yield surfaces were determined by applying a
pre-stress. For the tension case depicted in Figure 2.19, the experimentally-determined Cauchy
normal stress σ is 253 MPa, and the corresponding normalized shear stress τNor =

√
3 τ is -4

MPa. With the help of a model described in earlier work, Ishikawa (1997) then determined the
centers of subsequent yield surfaces. In the case of torsion to an accumulated inelastic deforma-
tion of approximately 10−3, for example, values of 1 MPa for σ and of 284 MPa for τNor at the
center of the yield surface were obtained in this way. Starting from these, he determined sub-
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sequent yield surfaces via radial probing in stress space. As shown in Figure 2.19, subsequent
yield surfaces determined in this fashion for SUS304 subject to tension and torsion loading are
symmetrically distorted. For SUS304, this takes the form of a flattening of the yield surface
in the direction of the applied stress. Note that there is neither noticeable isotropic hardening
nor cross hardening in the sense of an increase in the yield stress in the orthogonal direction for
SUS304 at the very small level of pre-strain involved (10−3). This is understandable from the
point of view that, at this level of pre-strain, oriented dislocation microstructures responsible
for cross hardening have not yet developed. In the case of the IF steel DC06, for example,
noticeable cross-hardening occurs only after pre-straining up to approximately 10−2. As the
experimental data presented in Section 2.3 and the above results shows, this is similar for the
currently investigated steel LH800.

2.6 Inelastic state evolution

The previous section 2.5 focused on the predictions of the model for stress-strain behavior and
yield surface evolution. In this section, attention is directed to the evolution of the internal
variables. In contrast to stress-strain relations and the yield surface, internal variables cannot
be measured experimentally. The interpretation of the evolution of these in the model context,
however, is of interest here.

To begin, consider the development of A. Again, recall that this quantity embodies the effect
of oriented dislocation microstructure development on the effective flow anisotropy and yield
surface form. Now, as discussed above, along the experimental paths in Figure 2.5, the material
is subject to first tension in the 2 direction followed by shear in the 1 direction. Since sd is
constrained to be zero, the dominant evolution of A is in the orthogonal (i.e., shear) direction
during the tension phase. Indeed, with sd = 0, (2.12) can be rewritten in the reduced form

Ȧ = cl sl (Idev −NP ⊗NP) α̇P

− {cl A + (cd − cl) (NP · ANP)NP ⊗NP} α̇P

(2.14)

in which growth is in the direction Idev − NP ⊗NP “perpendicular” to NP ⊗ NP. As such,
ad = NP ·ANP remains zero during the tension phase, as shown in Figure 2.20. Consequently,
Ad does not influence the yield behavior of the material in the tension phase, but rather only
after the orthogonal loading direction change into the shear phase. Indeed, as shown in Figure
2.20, upon change of loading direction from tension to shear, the projection of A in the current
(i.e., shear) loading direction, i.e., ad, is now non-zero and negative. Since sl < 0, its magnitude
decreases to zero with further loading in the shear direction (Figure 2.20). In turn, this results in
a contraction of the yield surface in the shear direction. On the other hand, as shown in Figure
2.21, A, and so Al, continue to evolve, resulting in an expansion of the yield surface in the
tension direction during the shear loading phase. The amount of cross hardening is inversely
correlated with the saturation level for |A|. This correlation can also be established with respect
to the development of kinematic hardening. Recall that the form

√
(M −X) · A (M −X) of

the equivalent stress measure appearing in the yield condition (2.8) depends on both A and X .
In this sense, these quantities are related to each other, since they both influence the equivalent
stress.
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Figure 2.20: Evolution of ad on paths 1, 3 and 5 in Figure 2.5. Note that |Ad| = |ad|.
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Figure 2.21: Development of |A| on paths 1, 3 and 5 in Figure 2.5.

Consider next the evolution of the back stress along the paths 1, 3 and 5 in Figure 2.5 as
displayed in Figure 2.22. As can be seen, |X | increases during the tension stage, decreases at
the start of shear stage, and then saturates. Note the nearly perfect correlation of the amount of
decrease in |X | with loading path upon change from tension to shear. In particular, the largest
decrease occurs along strain path 1, representing the path with the least amount of tension
loading. Analogously, the smallest decrease occurs along path 5 having the greatest amount of
tension loading. To examine this result in more detail, consider the evolution of the relevant
components of X . For the tension phase, this is the X22-component, and for the shear phase,
the X12 component, of X . The evolution of the former is shown in Figure 2.23. During the
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Figure 2.22: Evolution of |X | along paths 1, 3 and 5 in Figure 2.5.
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Figure 2.23: Development of X22 along paths 1, 3 and 5 in Figure 2.5.

common part of the tension stage, X22 develops in basically the same way for all experiments
as expected. As exhibited by the results, this changes at the start of the transition from tension
to shear. In all cases, X22 decreases. The largest decrease occurs in the case of path 1, for
which the amount of tension is the smallest. On the other hand, the smallest decrease occurs for
path 5 having the largest amount of tension. In all cases, X22 decreases basically to zero since
the effective saturation value for this component of X goes to zero as NP22 does. As shown
by the results in Figure 2.24, during the shear phase, the development of X12 is the same for
all paths, saturating in each case in essence to the monotonic value. From the point of view of
the effective stress and so of the yield surface, then, we see that the decrease of X22 during the
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Figure 2.24: Evolution of X12 along paths 1, 3 and 5 in Figure 2.5.

transition from tension to shear in combination with the development of A determines to what
extent (if at all) a change in form of the yield surface occurs resulting in cross hardening, as
shown in Figures 2.16, 2.17 and 2.18. In the case of the sharpest drop, i.e., path 1, having the
“shortest” tension phase, this change is the largest. On the other hand, for the strain paths 4 and
5, having the longest tension phase, this change is the smallest. As already discussed above in
the context of Figure 2.11, the superposition of the contributions of r, X and A is decisive for
the modeling of the anisotropic behavior.

2.7 Summary and conclusions

Motivated by experimental results, a material model for isotropic, kinematic and cross harden-
ing has been formulated, identified and validated for the ferritic steel LH800. The novel aspect
of the current approach is the form of the evolution relation for cross hardening, which repre-
sents a special type of distortional hardening. This process is modeled with the help of an evolu-
tion relation for the fourth-order anisotropic flow tensor A of the saturation type. As such, this
model is a special case of the class of models tacitly introduced by Baltov and Sawczuk (1965).
Differences between the current and previous models (e.g., Dafalias et al. (2003); Feigenbaum
and Dafalias (2007); Schick (2004)) for the evolution of this tensor include (i) no coupling be-
tween kinematic and distortional hardening, and (ii) the form of the evolution relation. As in
the current case, the approach of Feigenbaum and Dafalias (2008) involves no coupling of the
evolution of the back stress and ABal . The focus in their case is on the asymmetric develop-
ment of the yield surface rather than on the effect of cross hardening as in the current work. In
contrast to all previous models, the form of the evolution relation for A is determined by the
split of A into parts parallel Ad and perpendicular Al to the current loading direction in stress
space. This split is physically-motivated with the help of TEM investigations of the develop-
ment of oriented dislocation microstructures (e.g., Nesterova et al. (2001)) directly related to
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the history of the loading path direction and its changes. The form of the evolution relation for
A is formally analogous to that introduced by Wang et al. (2008) as based on the earlier work
of Teodosiu and Hu (1998) for the fourth-order hardening tensor S whose evolution accounts
for the effect of cross hardening on the flow behavior. In contrast to the class of models based
on the approach of Baltov and Sawczuk (1965), this tensor affects the current yield stress level
rather than the effective stress level. As such, there is no change of shape of the yield surface
associated with cross hardening in the class of models based on Teodosiu and Hu (1998); Wang
et al. (2008). Unlike the Teodosiu and Hu (1998) model, the current model does not account
for additional effects like hardening stagnation after load reversal. In work in progress, a more
detailed comparison of the two classes of models is being carried out. In addition, a thermo-
dynamically consistent framework for the current model analogous to that of Feigenbaum and
Dafalias (2007); Schick (2004) represents on-going research and will be reported on in future
work.





Chapter 3

Simplification and identification of a model for
directional hardening

Abstract– In general, metal forming processes involve large strains and severe strain path
changes. Large plastic strains in many metals lead to the development of persistent disloca-
tion structures resulting in strong flow anisotropy. Teodosiu and Hu (1995, 1998) proposed a
micro-mechanically motivated model which accounts for the effect of evolving persistent dislo-
cation microstructures during loading-path changes on the hardening behavior via an evolving
fourth-order structure tensor. The objective of this work is to proposed a simplified formulation
of the (Teodosiu and Hu, 1995, 1998) model. The full and simplified models are then charac-
terized with the help of shear, reverse shear and tension-shear tests. The identified models have
been validated by using them to predict the stress-strain behavior of the material along different
tension-shear loading paths and by comparison with analogous experimental results.

3.1 Introduction

The focus of this work is to present a simplified formulation of the (Teodosiu and Hu, 1995,
1998) model. This model has been successfully applied to the simulation of sheet metal form-
ing processes involving strain path changes (Oliveira et al., 2007; Wang et al., 2008, 2006). The
simplification leads to a reduction of the coupling between different contributions of anisotropic
hardening and a reduction in the number of parameters which have to be identified. The agree-
ment of the mechanical responses predicted by the model with experimental test data and the
full model is excellent.

Sheet metals, especially ferritic interstitial free steels, show transient behavior after changes
in strain path. This behavior was investigated by a number of authors. Ghosh and Backofen
(1973) were among the first to report transients in stress-strain relations for interstitial free steels
for sequences of plane strain tension to uniaxial tension. They observed a distinct increase in
stress after such a change in strain-path. Rauch and Schmitt (1989), Rauch and Thuillier (1993)
and Thuillier and Rauch (1994) used pre-strained specimen in combination with simple shear
tests to determine the effect of load reversal on the mechanical response and the evolution of the
dislocation microstructure. Besides the distinct increase in stress after a change in strain-path
they observed a strong Bauschinger effect. The Bauschinger effect describes the fact that, the
magnitude of the yield stress after load reversal is lower compared to the yield stress at the
same amount of equivalent deformation in a monotonic test. In the works of Nesterova et al.
(2001); Rauch and Schmitt (1989); Rauch and Thuillier (1993); Thuillier and Rauch (1994),
the macroscopically observable phenomena were related to the interactions in the dislocation
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microstructure. The increase in yield stress after a strain path change referred to as cross-
hardening was attributed to the interaction of dislocations associated with the first and second
loading direction in two stage tests. Ferritic steels tend to form planar dislocation structures.
The spatial arrangement of these planar structures can be correlated with macroscopic axes of
straining. Transmission-electron-microscopic analyses show that these structures are aligned
with the glide directions of highly active glide systems. After a change in strain path different
sets of glide systems are activated and the previously formed dislocation arrangements act as ob-
stacles to dislocation glide. On the macroscopic scale this is observed as cross-hardening. After
a substantial amount of straining in the new direction has occurred, the dislocation structures
associated with the new loading direction become dominant. On the macroscopic scale this
leads to the fact that with progressing straining after the change in strain path, the stress-strain
curves of the monotonic and non-monotonic tests become coincident.

Teodosiu and Hu (1995) proposed a micro-mechanically motivated model which accounts
for cross-hardening, the Bauschinger effect and hardening stagnation. In their model the evolu-
tion of internal variables can be closely linked to the microstructural mechanisms inducing the
transient mechanical response. The model introduces strong coupling between different con-
tributions to anisotropic hardening. Central to the model is the introduction of a fourth-order
tensor accounting for the interaction of dislocation structures during loading path changes. The
effective yield stress depends on (the magnitude of) this fourth-order evolving structure tensor,
therefore, we called here this model as yield stress model. The model is capable of accounting
for isotropic, kinematic and directional hardening. For the full model, 22 parameters govern-
ing the plastic behavior need to be identified. In general, this is done by inverse analysis with
the aim to fit simulated material responses to experimentally determined stress strain curves.
This can become a complex task by itself as is demonstrated by Haddadi et al. (2006) and also
reviewed in this work. The reduction of the level of coupling between the different hardening
contributions and the reduction of parameters are desirable for different reasons.

Strong coupling implies the use of more elaborate integration algorithms or small time steps
in order to secure stability of the material algorithm. In addition, the time required for parameter
identification increases with the number of parameters. This work presents a simplified version
of the modified Teodosiu model (Wang et al., 2008) which captures the characteristic transient
effects observed in experiments to a large extent. The modified Teodosiu model proposed by
Wang et al. (2008) is reviewed. The simplifications reducing the number of parameters to 17
and decoupling isotropic, kinematic and directional hardening are presented. The full yield
stress and simplified yield stress models are identified on the basis of monotonic shear, reverse
shear and tension-shear tests for ferritic steel LH800. Finally, the model behavior for the full
and simplified models is compared and discussed.

3.2 Model formulation

3.2.1 Framework

The formulation of the current models is carried out in the framework of the standard inelastic
multiplicative decomposition F = FEFP of the deformation gradient F (e.g., Lee, 1969). Such
a decomposition arises naturally, e.g., in the context of the modeling of FP as a change of local
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reference configuration (Svendsen, 2001). In this context, one obtains in particular the result

RT
ELERE = RT

ELRE −UE LP U
−1
E = RT

EṘE + U̇EU
−1
E (3.1)

via the right polar decomposition FE = REUE of FE for the back-rotated form of LE :=

ḞEF
−1
E in terms of L := Ḟ F −1 and LP := ḞPF

−1
P . For the current case of polycrystalline

metals and small elastic strain, the approximations

UE ≈ I + lnUE ,

U̇EU
−1
E ≈ ˙lnUE ,

(3.2)

hold. Substituting these into (3.1), and taking the symmetric and skew-symmetric parts of the
result, the evolution relations

˙lnUE = RT
EDRE −DP ,

ṘE = WRE −REWP ,
(3.3)

are obtained for lnUE and RE, respectively, in the incremental context. Here, D = sym(L)

is the continuum rate of deformation, DP = sym(LP) its inelastic counterpart, W = skw(L)

the continuum spin, and WP = skw(LP) the plastic spin. Restricting the current formulation
to the case of sheet metal forming, it is reasonable to assume that the texture in these materi-
als achieved during rolling remains largely unchanged during forming processes like tension,
compression, simple shear, cyclic simple shear, and combinations of these. In this case, the
plastic spin WP is negligible, and the evolution of RE depends only on the spin W . In this
case it reduces to a purely kinematic quantity (i.e., the Jaumann rotation). In addition, focusing
in this work on the material behavior of sheet metal during forming below the forming limit, we
assume for simplicity that damage or any other process resulting in inelastic volume changes is
negligible. In this case, plastic incompressibility det(FP) = 1 pertains, implying tr(DP) = 0

in the incremental context. In this case, DP is equal to its deviatoric part D ′
P.

Since the elastic range and elastic strain are small, any elastic anisotropy arising from rolling
is assumed negligible here. In this case, the isotropic form

M = κ tr(EE) I + 2μE ′
E (3.4)

is assumed for the Mandel stress M in terms of the elastic strain EE = lnUE, bulk modulus κ,
shear modulus μ, and deviatoric part E ′

E of EE. Lastly, again in the framework of small elastic
strain, M and RE determine the Kirchhoff K , and so the Cauchy T = K/ det(F ), stress via

K = REMRT
E . (3.5)

Consequently, in contrast to K ′ = REM
′RT

E , tr(K) = tr(M ) of K is independent of RE.

Consider next the modeling of isotropic and kinematic hardening. Let r represent the con-
tribution of isotropic hardening to the effective yield stress of the model, and X the back stress
as usual. For the class of materials under consideration, the standard saturation-based forms

ṙ = cr (sr − r) α̇P ,

Ẋ = cx (sx NP −X ) α̇P ,
(3.6)
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for the evolution of these quantities are relevant. Both are driven by the evolution of the equiv-
alent inelastic deformation αP. Here, cr and cx represent the rates, and sr and sx the saturation
values, associated with r and X , with NP = DP/|DP| the direction of the rate of inelastic
deformation. In what follows, we also work with the fourth-order tensor NP = NP ⊗ NP

determined by NP. As usual, DP is given by the associated flow rule

DP = α̇P ∂M−X φ . (3.7)

Finally, in the current rate-independent context, αP is determined as usual by the “consistency”
condition φ̇ = 0.

3.2.2 Yield stress model

As discussed in the introduction, the yield stress model accounts for the effect of evolving
oriented dislocation microstructures during loading-path changes on the hardening behavior
via an evolving fourth-order structure tensor S . In particular, the magnitude of this tensor
determines the effective yield stress of the material via the form

φ(M , r,X ,S ) =
√
(M −X ) · A0 (M −X )− σY0 − r − f |S | (3.8)

of the yield function due to Teodosiu and Hu (1995, 1998). A0 represents the fourth-order
symmetric traceless constant flow anisotropy tensor, σY0 is the initial yield stress, and f is
a material constant determining the fraction of the dislocation walls strength contributing to
isotropic hardening.

In contrast to the approach of Teodosiu and Hu (1998), the current form (a slight generaliza-
tion of that of Wang et al., 2008) is based on the modeling of S as a standard internal variable
with constitutive relation

Ṡ = cd (hp + hx)

{
hp

hp + hx

ss NP − Sd

}
α̇P

+ cl |Sl/ss|nl {sl (Idev −NP)− Sl} α̇P

(3.9)

in the back-rotated frame. Here, Idev = I − 1
3
I ⊗ I is the fourth-order deviatoric identity,

Sd represents the strength of the dislocation structures associated with the currently active slip
systems, and Sl = S − Sd is that of the dislocation structures associated with the latent slip
systems. The material function cd (hp + hx) determines the effective saturation rate, and that
hp ss/(hp + hx) the effective saturation magnitude, associated with Sd. By analogy, cl |Sl/ss|nl

is the effective saturation rate, and sl represents the corresponding saturation magnitude, as-
sociated with Sl. These quantities contain the material constants cd, cl, ss, sl and nl. Setting
sl = 0 reduces (3.9) to the form in (Wang et al., 2008). hp represents a further material function
depending on Sd, NP, a further material constant np, and the symmetric traceless second-order
tensor-valued internal variable P with evolution constitutive relation

Ṗ = cp (NP −P ) α̇P (3.10)

which accounts for the effect of dislocation polarization on cross hardening (see, e.g., Teodosiu
and Hu, 1998; Wang et al., 2008). cp is the corresponding saturation rate. The effect of hard-
ening stagnation after load reversal is accounted for via material function hx depending on NP,
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X , and
A = (M −X )/

√
(M −X ) · A0 (M −X ) (3.11)

(again, see, e.g., Teodosiu and Hu, 1998; Wang et al., 2008). Lastly, the saturation magnitude
sx of X is given by the constitutive relation

sx = x0 + (1− f )
√
|Sd|2 +m |Sl|2 (3.12)

depending on the directional strength of the dislocation microstructure. Here, x0 represents the
initial value of sx. The parameter m determines the influence of latent as opposed to current
dislocation structures on the saturation magnitude sx of X .

3.2.3 Simplified yield stress model

As discussed in the last sub-section, in addition to isotropic, kinematic, and cross hardening,
the (full) yield stress model accounts for additional processes like dislocation polarization or
hardening stagnation after load reversal. The (full) yield stress model can be reduced (i) by
decoupling kinematic and directional hardening and (ii) reducing the number of internal vari-
ables. This implies that hardening stagnation can not be captured accurately by the simplified
model. Hardening stagnation refers to a regime of very low work-hardening after a change in
strain path. Hardening stagnation can be observed after orthogonal strain path changes or load
reversal. Especially dual phase steels show distinct hardening stagnation after load reversals
(Bouvier et al., 2006; Haddadi et al., 2006). In ferritic steels LH800 the effect is rather small for
moderate amount of straining. Thus the omission of this contribution is justified. To eliminate
the effect of dislocation polarization, for example, set cp = 0, This yields P ≡ 0 and so hp = 1

independent of the value of np, which is then superfluous. Further, set hx ≡ 0 and nl = 0. Then

Ṡ = cd (ss NP − Sd) α̇P + cl {sl (Idev −NP)− Sl} α̇P (3.13)

follows from (3.9). Assume further f = 1. This decouples X and S , i.e., sx = x0 follows from
(3.12) independent of the value of m, which then is superfluous. In addition,

φ(M , r,X ,S ) =
√
(M −X ) · A0 (M −X )− σY0 − r − |S| (3.14)

follows from (3.14) for the yield function.

The full yield stress model discussed above contains 22 material parameters. These include
the elastic bulk κ and shear μ moduli, the initial yield stress σY0, the six parameters F , G, H ,
L, M , and N determining the initial flow anisotropy tensor A0, the five saturation rates cr, cx,
cd, cl and cp, the three saturation values sr, x0, ss and sl, the two exponents nl and np, as well
as f and m. Since cp, np, nl, f , and m are either specified or eliminated in deriving the reduced
yield stress model as based on (3.13) and (3.14), this depends on only 17 of the 22 material
parameters of the full model: κ, μ, σY0, F , G, H , L, M , N , cr, cx, cd, cl, sr, x0, ss, and sl.

3.3 Material testing

For the experimental work a biaxial testing equipment developed at the University of Twente,
the Netherlands, was used to subject specimen shown in Figure 3.1. The equipment is capable
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of loading a sheet metal specimen in both simple shear and in plane-strain tension. Using this
device, one can carry out single- or multi-stage loading programs consisting of monotonic (e.g.,
forward simple-shear), reverse (e.g., forward-reverse simple-shear), and / or orthogonal (e.g.,
tension-shear) changes of loading direction. In particular, the latter can be carried out with or
without unloading of the specimen upon change of loading direction.

3.3.1 Test setup

The biaxial testing equipment consists of a regular uniaxial testing device which via an actuator
is used to achieve plane-strain tension in the sample. A subframe mounted between the cross
bars accommodates the actuator for simple shear deformation. The deformation is applied to
the sample as indicated in Figure 3.1. Further details concerning the experimental setup and
procedure can be found in Noman et al. (2010).

3

55
45

10
2

1

2

Figure 3.1: Biaxial test setup. Geometry of the tension-shear specimen and the measurement
region of height 3.0mm and width 45.0 mm. The checkered region indicates the actual speci-
men and the black area marks the actual deformation zone. The tension direction is direction 2
and the shear direction is direction 1.

3.3.2 Test results

For the current work, tests performed on specimens of the ferritic steel LH800 include (i) mono-
tonic plane-strain tension at different strain-rates, (ii) reverse simple-shear for different amounts
of forward pre-shear, and (iii) orthogonal tension-shear with and without unloading. All tests
were performed with the tension direction oriented in the rolling direction. Figure 3.2 shows
the results of 2 reverse simple-shear tests. The material exihibits early re-yielding after load re-
versal, followed by a period of work hardening stagnation as can be seen in Figure 3.2. Lastly,
consider the results from the orthogonal tests. As stated above, these consist of plane-strain
tension followed by simple shear loading. The transition from tension to simple shear is either
discontinuous via intermediate unloading, or continuous without unloading. The data so ob-
tained include the 5 different continuous loading paths (numbered 1 to 5) shown in Figures 3.3
and 3.4.
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Figure 3.2: Reverse shear test results for LH800 for two different levels (i.e., 0.1 and 0.65) of
pre-shear. All stress results are shown in absolute value form.
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Figure 3.3: Experimental strain paths in LH800 resulting from continuous change of loading
direction from tension to shear.

Consistent with existing interpretations of such data in the literature, the presence or absence
of cross hardening in such orthogonal tests is judged solely by comparison with the monotonic
simple shear results. In particular, any overshoot of the yield stress above the monotonic level
upon transition from tension to shear is an indicator of such hardening. Using this “definition,”
curves 1, 2 and 3 in Figure 3.3 clearly exhibit cross hardening as can be seen in Figure 3.4 ,
curve 4 might exhibit a little, and curve 5 clearly none at all. For the detailed discussion of the
results the reader is referred to Noman et al. (2010).
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Figure 3.4: Stress response of LH800 for monotonic forward simple shear (curve starting at
F22 + F12 = 1) and for the 5 different orthogonal tension-shear paths shown in Figure 3.3.

3.4 Identification of material models

The material parameter determination is carried out using the program LS-OPT in conjunction
with LS-DYNA. Given the homogeneous nature of the tests, one-element calculations suffice.
The optimization technique used relies on response surface methodology (RSM) (Stander et al.
(2008)). Other methods have been used by previous workers (e.g., Flores et al. (2007); Haddadi
et al. (2006)) to identify related models like the Teodosiu model. All fits to follow are based
on the fixed values κ = 167.05 GPa and μ = 77.09 GPa for the elastic properties, as well
as σY0 = 330.79 MPa for the initial yield stress, of LH800, all at room temperature. Tensile
tests performed on LH800 at 0◦, 45◦, 90◦ with respect to the rolling direction yielded no distinct
initial orthotropy and so Hill parameter values of F = G = H = 0.5 and L = M = N = 1.5.

3.4.1 Identification of the full yield stress model

Since the internal variables r, X, P , S are coupled in the full yield stress model and there
exist 22 material parameters in the yield stress based model, the identification procedure is te-
dious and more complicated than for the material model presented in Noman et al. (2010). The
strategy here is also to identify successively different subsets of the complete set of material
parameters with specific test data. In a final global run, all parameters can be varied in order to
minimize a global cost function containing experimental data from all considered tests. Had-
dadi et al. (2006) presented a detailed analysis of the identification procedure using the software
SiDoLo for various materials for the Teodosiu model. Differing from the procedure suggested
in Haddadi et al. (2006) no special weight is given to specific regions of the stress-strain curves
in order to improve the quality of the fit. Even though the author acknowledges that the ef-
fects of the variation in certain parameters are localized, in the current work the only weights
introduced to the cost function account for the fact that different tests represent different levels



3.4 Identification of material models 39

of deformation. Here the constant weight of a single test is dependent of FTot =
∫ T

0
|Ḟ | dt.

Also differing from Haddadi et al. (2006) only stress vs. deformation curves as can be seen
from Figures 3.2 - 3.4 were used. As already mentioned in Noman et al. (2010) the use of
components of the deformation gradient instead of the accumulated plastic strain αP leads to
an improvement of the fit for both models especially in the elbow area in the cyclic tests. The
parameters sr, cr, ss, cd, np, cp, f, x0 and cx are determined from monotonic and cyclic shear
tests. The identified set of parameters is presented in Table 3.1.

Parameter value units
x0 70.785 MPa
sr 155.21 MPa
ssat 107.984 MPa

Parameter value
cp 44.9
cx 44.561
cd 9.865
cr 5.097
f 0.452
np 196.09

Table 3.1: Material parameter values for LH 800 using only cyclic shear data.

Keeping these identified parameters constant, the parameters cl, nl , sl and m are then deter-
mined from the tension-shear test data of strain path 1 presented in Figure 3.3. This procedure
yields the values of these parameters as cl = 49, nl = 0.968, sl = 0.0 and m = 42.453. In
the final run, using the monotonic and cyclic shear test and tension-shear test data of strain path
1 presented in Figure 3.3 with a variation of all parameters the identification is performed. In
this way the complete yield stress based model is identified and the parameters for the complete
model can be seen in Table 3.2. A comparison of the corresponding experimental cyclic shear
data and tension-shear data of strain path 1 presented in Figure 3.3 with numerical fit is shown
in Figure 3.5 and Figure 3.6. Parameter identification of full yield stress model for the steel
DC06 can be found in Appendix A.

Parameter value units
κ 167050 MPa
μ 77097 MPa
σY0 330.79 MPa
x0 13.89 MPa
sr 74.43 MPa
ss 243.76 MPa
sl 0.0 MPa

Parameter value
cp 18.8956
cx 138.376
cd 11.08
cl 2.752
cr 1.459

Parameter value
m 1.973
f 0.105
nl 0.0
np 199.96

Table 3.2: Identified parameters of the full yield stress model for LH 800.

As a first validation of the identified hardening model, this is used to simulate the behavior
of LH800 along the experimental strain paths 2 to 5 in Figure 3.3 not used in the identification
procedure. The results of this are shown in Figure 3.7 and 3.8. The good agreement between
the numerical prediction of yield stress based model and the experiments emphasize the fact
that, besides capturing of cross hardening, this model is also capable of accounting for the de-
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Figure 3.5: Comparison of the experimental cyclic simple-shear data with the corresponding
identified full yield stress model prediction.
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Figure 3.6: Comparison of the experimental tension-shear data for strain path 1 in Figure 3.3
with the corresponding identified full yield stress model prediction.

pendence of cross hardening on the nature and details of the orthogonal transition from tension
to shear.

3.4.2 Identification of the simplified yield stress model

The simplified yield stress model decouples the kinematic hardening and directional hardening,
this simplification reduces the number of parameters to be determined to 17. The values of
parameters describing the elastic state and initial yield surface are κ = 167.05 GPa, μ = 77.09
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Figure 3.7: Comparison of the experimental results for strain paths 5 and 4 in Figure 3.3 with
corresponding simulation results as based on the identified full yield stress model for isotropic-
kinematic-cross hardening. Right: path 4. Left: path 5.
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Figure 3.8: Comparison of the experimental results for strain paths 3 and 2 in Figure 3.3 with
corresponding simulation results as based on the identified full yield stress model for isotropic-
kinematic-cross hardening. Right: path 2. Left: path 3.

GPa, F = G = H = 0.5 and L = M = N = 1.5. Adopting a similar procedure, as presented
in the last section, successively different subsets of the complete set of material parameters
are identified with specific test data. The parameters sr, cr, x0 and cx are determined from
monotonic and cyclic shear tests. The identified set of parameters is presented in Table 3.3.

Parameter value units
x0 93.58 MPa
sr 139.56 MPa
ss 343.14 MPa

Parameter value
cx 35.86
cr 3.87

Table 3.3: Material parameter values for LH 800 using only cyclic shear data.

Keeping these identified parameters constant, the parameters cl, ss sl and cd are then deter-
mined from the tension-shear test data of strain path 1 presented in Figure 3.3. This procedure
yields the values of these parameters as cl = 49, ss = 343.193, sl = 0.0 MPa and cd = 5.314.
In the final global run using the monotonic and cyclic shear test as well as the tension-shear
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test data of strain path 1 presented in Figure 3.3 a variation of all parameters is performed.
The identified set parameters for the complete simplified yield stress model can be seen in Ta-
ble 3.4. A comparison of numerical fit with the corresponding experimental cyclic shear data
and tension-shear data of strain path 1 presented in Figure 3.3 is presented in Figure 3.9 and
Figure 3.10. Parameter identification of simplified yield stress model for the steel DC06 can be
found in Appendix A.

Parameter value units
κ 167050 MPa
μ 77097 MPa
σY0 330.79 MPa
x0 101.32 MPa
sr 193.447 MPa
ss 45.1 MPa
sl 0.0 MPa

Parameter value
cx 92.81
cd 828.273
cl 5.1
cr 3.7818

Table 3.4: Identified parameters of the simplified yield stress model for LH 800.
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Figure 3.9: Comparison of the experimental cyclic simple-shear data with the corresponding
identified (simplified) yield stress model prediction.

For the validation of the identified hardening model, the simplified yield stress model is used
to simulate the behavior of LH800 along the experimental strain paths 2 to 5 shown in Figure
3.3. These were not used in the identification procedure. The results of this are shown in Figure
3.11 and 3.12. The good agreement between the numerical prediction of the simplified yield
stress model and the experiments can be visualized.
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Figure 3.10: Comparison of the experimental tension-shear data for strain path 1 in Figure 3.3
with the corresponding identified (simplified) yield stress model prediction.
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Figure 3.11: Comparison of the experimental results for strain paths 5 and 4 in Figure 3.3 with
corresponding simulation results as based on the identified (simplified) yield stress model for
isotropic-kinematic-cross hardening. Right: path 4. Left: path 5.

3.5 Evolution of internal state variables

In this section we consider the evolution of internal state variables to understand the behavior
of the yield stress model and simplified yield stress model. For this, we consider a simple
reverse shear test and an orthogonal tension-shear strain path 1 as shown in Figure 3.3 for the
full yield stress model. Figure 3.13 shows the evolution of the saturation value of the back
stress sx and the magnitude of shear stress over the accumulated plastic strain for the full yield
stress model. The shear stress (K12) curve clearly exhibits the hardening stagnation followed by
the pronounced Bauschinger effect after load reversal. The sx curve representing the evolution
of sx shows an increase during the forward shear stage, a slight decrease immediately after
load reversal, becomes approximately constant for a very short time and then begins to increase
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Figure 3.12: Comparison of the experimental results for strain paths 3 and 2 in Figure 3.3 with
corresponding simulation results as based on the identified (simplified) yield stress model for
isotropic-kinematic-cross hardening. Right: path 2. Left: path 3.

again in the course of further loading. Here, the evolution of sx is responsible for the hardening
stagnation via Equation 3.12.
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Figure 3.13: Evolution of internal state variable sx and shear stress K12 for reverse shear shear
experiment predicted by yield stress model. αP represents accumulated plastic strain.

Figure 3.14 shows the evolution of the saturation value of the back stress sx and the mag-
nitude of shear stress over the accumulated plastic strain for the simplified yield stress model.
The shear stress (K12) curve clearly does not exhibit the hardening stagnation after load rever-
sal. This behavior is due to the fact of decoupling the kinematic hardening from the directional
hardening tensor S . The shear stress (K12) curve shows the pronounced Bauschinger effect
after load reversal. The sx curve representing the evolution of sx, shows the same behavior as
shown by the shear stress (K12) curve. The hardening stagnation after load reversal can not be
captured in the case of simplified yield stress model.
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Figure 3.14: Evolution of internal state variable sx and shear stress K12 for reverse shear shear
experiment predicted by simplified yield stress model. αP represents accumulated plastic strain.

Now consider the case of orthogonal tension-shear test. As shown in Figure 3.15, during
the tensile deformation the evolution of S is dominated by the evolution of sd which increased
monotonically during the first stage and then dropped to zero at the beginning of the subsequent
(shear) stage. In contrast, the value of |Sl| remains zero during the first stage and then jumps to
the value of sd after the strain path change. Such behavior of sd and |S�| immediately after the
orthogonal strain path change leads to the cross hardening. At the beginning of second stage,
|S�| decreases more rapidly than the Sd increases. This result in short softening stage followed
by cross hardening.

For the simplified yield stress model, Figure 3.16 shows the evolution of |S |, |Sd| and |S�| for
the orthogonal tension-shear test. Since the directional hardening tensor |S | decouples with the
kinematic hardening in the simplified yield stress model, all the contribution of |S | now goes to
the isotropic hardening during the first stage. The latent part |S�| of the directional hardening
tensor |S | remains negligibly small during the first stage and just after the load reversal shoots
to a finite value to capture the cross-hardening effect. It is evident that, |S�| decreases more
rapidly than the Sd increases. This result in short softening stage followed by cross hardening.

3.6 Summary and conclusions

In this work, a simplified formulation of the model originally proposed by Teodosiu and Hu
(1995, 1998) and later modified by Wang et al. (2008) is presented. The original model accounts
for the effect of evolving oriented dislocation microstructures during loading-path changes on
the hardening behavior via an evolving fourth-order structure tensor S . In particular, the mag-
nitude of this tensor determines the effective yield stress of the material, therefore this model is
referred as yield stress model here. The (full) yield stress model is reduced by decoupling kine-
matic and directional hardening this results in reducing the number of internal variables. This
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Figure 3.15: Evolution of internal state variables for tension-shear experiment path1 in Figure
3.3 predicted by yield stress model.
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Figure 3.16: Evolution of internal state variables for tension-shear experiment path1 in Figure
3.3 predicted by simplified yield stress model.

simplification in turn results in the hardening stagnation and can not be captured accurately by
the simplified model. The full yield stress model and simplified yield stress model are then
identified via cyclic simple shear and orthogonal tension-shear tests. The identified models are
also validated using the experimental strain paths 2 to 5 in Figure 3.3 not used in the identifica-
tion procedure. In contrast to the full yield stress model, the simplified yield stress model can
not capture the hardening stagnation after load reversal.



Chapter 4

Comparison of the hardening behavior of the sheet
steel LH800 for tests with strain path changes and
its influence on springback

Abstract– Metal forming processes generally involve large strain resulting in significant mi-
crostructural development and the development of different types of hardening. Accurate nu-
merical simulation of such complex metal forming processes requires an appropriate material
model that describes the material behavior adequately. In this work we used a material model
that accounts for the changes in the size, center, and shape of the yield surface associated with
isotropic, kinematic and cross hardening, respectively. The objective of the current work is to
investigate the influence of the test data, i.e. uniaxial tension-compression, simple reverse shear
and cyclic pure bending, on the material model parameters. The different parameter sets are
applied to a draw-bending test simulation which includes springback. The simulation results
are compared with experimental results.

4.1 Introduction

In complex metal forming processes, sheet metal undergoes severe strain path changes and
large plastic deformations involving significant induced flow anisotropy resulting from the de-
velopment of persistent oriented (planar) dislocation structures. A material model is required
which accounts for the effect of the evolution of this oriented dislocation microstructure on the
anisotropic hardening behavior and should able to simulate the metal forming processes and
able to predict the springback effect, a phenomenon which is vital in structural component’s
accuracy. The common metal forming processes usually consist of two stages, loading/forming
stage and releasing the final part to observe the springback. The simulation of springback ap-
pears to be the minor task, as compared to the simulation of the loading/forming stage, because
of the absence of contact stresses and applied loading, the final equilibrium state can easily
achieved. But it remains a a great challenge in the simulation of the metal forming processes
and has been investigating over the years by researchers (e.g. (Kleiner et al., 2005), Wang et al.
(2005), Oliveira et al. (2007)).

After formulating the material model which is capable of describing the material behavior
under most common but complex strain path changes, the next challenge lies in the identification
of the material model using the available experiments. The most widely used experimental test
to evaluate the strain-stress response for a monotonic strain path is the uniaxial tension test. But
the identification of the afore mentioned material model can not be done using only the uniaxial
tensile tests, and therefore other loading paths need to be investigated for the identification of
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material parameters. To get a strain reversal in the loading path (for the Bauschinger effect ) the
tests which have to be investigated are tension-compression tests (Yoshida et al. (2002)), reverse
shear tests (Bouvier et al. (2006); Noman et al. (2010)) and cyclic pure bending tests (Boers et al.
(2010); Brunet et al. (2001); Yoshida et al. (1998)). The conventional tension-compression tests
are commonly used for the identification of material parameters over the decades but these
tests are generally very difficult to perform due to the buckling of the sheet sample (Yoshida
et al. (2002)). To overcome this problem, Yoshida et al. (1998) suggested a pure bending test
and performed cyclic bending of thin sheets. Based on cyclic bending test data, Yoshida et al.
(1998) identified the material parameters for a combined isotropic and kinematic hardening
model by using an optimization technique based on the iterative approximation concept. Later,
Brunet et al. (2001) used cyclic bending test data simultaneously with the tensile test data to
identify the hardening parameters using an inverse approach. Recently Carbonnière et al. (2009)
performed a comparison of work hardening using the identified parameters from one cycle of a
bending test and compared it with reverse shear test data. It should be noted that, in a bending
test, the maximum strain reached in each cycle for thin sheet metal of 1 mm thickness is around
0.05 which is rather small. The simple shear tests performed by Rauch (1998); Z. Hu and
Teodosiu (1992) and more recently by Bouvier et al. (2006); Flores et al. (2007); Haddadi et al.
(2006); van Riel and van den Boogaard (2007) have shown that large amplitudes of strain can
be achieved, which is suitable for identifying isotropic and kinematic hardening parameters at
large level of strains. In order to identify the cross hardening parameters, a test involving an
orthogonal or quasi orthogonal strain path has to be used in the identification. This is achieved
by using the orthogonal tension-shear tests (Bouvier et al. (2006); Haddadi et al. (2006); van
Riel and van den Boogaard (2007)). Bouvier et al. (2006); Flores et al. (2007); Haddadi et al.
(2006); Noman et al. (2010) recently successfully used the orthogonal tension shear test for the
identification of cross hardening parameters.

In Noman et al. (2010) we introduced and validated a new model which accounts for the
effect of the anisotropic hardening behavior due to the evolving microstructure under com-
plex strain paths and large deformations. The model accounts for changes in the size, center,
and shape of the yield surface associated with isotropic, kinematic and cross hardening, re-
spectively. In the current work we used three types of test data i.e. cyclic bending test data,
tension-compression test data and reverse shear test data along with orthogonal tension shear
data to identify the three different sets of material parameters of the presented material model.
All three afore mentioned tests involve different amounts of inelastic deformation and have dif-
ferent states of stress. Hence, it is instructive to compare the influence of the test data used for
identification on the material model parameters. This is done by identifying a different set of
the material model parameters from the uniaxial tension-compression test, the simple reverse
shear test and the cyclic pure bending test respectively. Then each test is simulated using the
parameters based on the other two tests. The simulated responses are then compared with the
experimental response. The identified sets of material parameters are also used to simulate a
draw-bending test and predict the amount of springback. The predicted springback is then com-
pared with the actual experimentally observed springback for each set of material parameters.

The current work begins with the summary of the material model implemented in the frame-
work of the multiplicative decomposition of the deformation gradient and the assumption of
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small elastic strain relevant to metal inelasticity. Afterwards the experimental setup and de-
tails of the tests are presented in Section 3 along with the results of the tests, namely tension-
compression test, simple reverse shear test and cyclic pure bending test. In Section 4, the
identification scheme together with the results of the identifications are discussed for each test
data. The results obtained using different test data are then compared to analyze the influence of
the database used. In Section 6, the identified parameters are used to simulate the draw-bending
test and a comparison of the predicted and experimentally obtained amount of springback is
done. The work ends in Section 7 with the summary and conclusion.

4.2 Material Model

The phenomenological representation of evolving hardening behavior in terms of changes in the
size, center and shape of the yield surface offers the means to characterize the behavior of the
steels of interest during complex, non-proportional loading processes present in many techno-
logical processes (e.g., deep-drawing). The challenge lies in the connection of such changes in
the yield surface geometry with the underlying microscopic and physical mechanisms of grain
and dislocation microstructural development in polycrystalline metals. One basic expectation
in this regard is that the grain microstructure in sheet metals is determined almost solely by
the rolling process. Forming processes like cup drawing are expected to result in little or no
change in this microstructure. Consequently, during forming processes, yield surface evolution
is generally expected to be due almost solely to an evolving dislocation microstructure at the
grain- or grain-cluster level. This is the focus of the current model.

The formulation of the current model is carried out in the framework of the standard inelastic
multiplicative decomposition F = FEFP of the deformation gradient F (Simo and Hughes
(e.g., 1998)). Such a decomposition arises naturally, e.g. in the context of the modeling of FP

as a change of local reference configuration Svendsen (2001). In this context, one obtains in
particular the result

RT
ELERE = RT

ELRE −UE LP U
−1
E = RT

EṘE + U̇EU
−1
E (4.1)

via the right polar decomposition FE = REUE of FE for the back-rotated form of LE :=

ḞEF
−1
E in terms of L := Ḟ F −1 and LP := ḞPF

−1
P . For the current case of polycrystalline

metals and small elastic strain, we have

UE ≈ I + lnUE ,

U̇E U
−1
E ≈ ˙lnUE .

(4.2)

Substituting these into (4.1), and taking the symmetric and skew-symmetric parts of the result,
one obtains the evolution relations

˙lnUE = RT
EDRE −DP ,

ṘE = WRE −REWP ,
(4.3)

for lnUE and RE, respectively, in the incremental context. D := sym(L) is the continuum
rate of deformation, DP := sym(LP) its inelastic counterpart, W := skw(L) the continuum
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spin, and WP := skw(LP) the plastic spin. Restricting the current formulation to the case
of sheet metal forming, it is reasonable to assume that the texture in these materials achieved
during rolling remains largely unchanged during forming processes like tension, compression,
simple shear, cyclic simple shear, and combinations of these. In this case, WP is negligible,
and the evolution of RE depends only on W , in which case it reduces to a purely kinematic
quantity (i.e., the Jaumann rotation). In addition, focusing in this work on the material behavior
of sheet metal during forming below the forming limit, we assume for simplicity that damage
or any other process resulting in inelastic volume changes are negligible. In this case, plastic
incompressibility det(FP) = 1 pertains, implying tr(DP) = 0 and D ′

P =DP in the incremental
context.

Since the elastic range and elastic strain are small, any texture effects from rolling leading to
an anisotropic elastic behavior are assumed negligible. In this case, the isotropic form

M = κ tr(EE) I + 2μE ′
E (4.4)

is assumed for the Mandel stress M in terms of the elastic strain EE := lnUE, bulk modulus κ,
shear modulus μ, and deviatoric part E ′

E of EE. Lastly, again in the framework of small elastic
strain, M and RE determine the Kirchhoff stress K via

K = REMRT
E . (4.5)

Consequently, in contrast to K ′ = REM
′RT

E, tr(K) = tr(M) of K is independent of RE.

In this framework, then, the material behavior of polycrystalline sheet metal during form-
ing processes below the forming limit is predominantly determined by a changing dislocation
microstructure and attendant evolving anisotropic yield behavior. Besides a shift of the yield
surface and its proportional expansion as in the case of conventional combined hardening, the
current model also accounts for an evolving yield surface shape and so distortional hardening.
In the current notation, the model is written simply in the form

φ =
√

(M −X ) · A (M −X )− σY0 − r (4.6)

in terms of the initial yield stress σY0. For the class of materials under consideration, the satu-
ration (i.e., Voce) form

ṙ = cr (sr − r) α̇P (4.7)

for the evolution of r is appropriate, driven by that of the equivalent inelastic deformation
αP. Here, cr represents the rate, and sr the value, for saturation associated with r. Since
σY0 is the initial yield stress (i.e., for αP = 0), the initial value r0 of r is zero. In the cur-
rent rate-independent context, αP is determined as usual by the consistency condition. Analo-
gous to isotropic hardening, kinematic hardening is modeled via the saturation (i.e., Armstrong-
Frederick) form

Ẋ = cx (sxNP −X ) α̇P (4.8)

for the evolution of X depending on corresponding (constant) saturation rate cx, (constant)
saturation magnitude sx, as well as the (variable) direction NP := DP/|DP| of the rate of
inelastic deformation

DP = α̇P ∂M−X φ , (4.9)
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which is modeled here in associated form. The initial value of X is assumed to be zero.

The constitutive model formulation is completed by an evolution relation for A in order
to represent the effect of cross hardening on the material behavior. The form of this relation
introduced in what follows is based on the idea that active or “dynamic” dislocation microstruc-
tures oriented with respect to the current loading direction (idealized in the model context by
NP) persist and become inactive or “latent” after a loading-path change and strengthen existing
obstacles to glide-system activation in the new loading direction. In addition, both dynamic
and latent dislocation structures are assumed to saturate with increasing accumulated inelastic
deformation. These assumptions are built into the constitutive relation

Ȧ = cd (sdNP ⊗NP −Ad) α̇P

+ cl {sl (Idev −NP ⊗NP)−Al} α̇P

(4.10)

for the evolution of A. Here, Idev is the deviatoric part of the fourth-order identity tensor, and

Ad := (NP · ANP)NP ⊗NP ,

Al := A −Ad ,
(4.11)

represent the “dynamic” and “latent” parts of A, respectively. More precisely, these are the
projections of A parallel and orthogonal, respectively, to the current (instantaneous) inelastic
flow direction NP. The first term in (4.10) is of the saturation type with respect to Ad, with cd
the rate of saturation, and sdNP ⊗NP the saturation value, respectively, of Ad. Likewise, cl is
the saturation rate, and sl (Idev −NP⊗NP) the saturation value, of Al. The initial value A0 of
A is determined by any Hill initial flow orthotropy due to any texture from rolling. In contrast
to some of the models discussed in the introduction, e.g., Teodosiu and Hu (1998), Wang et al.
(2008), or Dafalias et al. (2003); Feigenbaum and Dafalias (2007), note that there is no direct
coupling between kinematic and distortional hardening in the current model.

The current material model was implemented in the commercial FE codes ABAQUS and LS-
Dyna via the user material interfaces provided. Besides the two elasticity parameters κ, μ and
the 6 parameters (e.g., in the sense of Hill: F , G, H , L, M , N) for the initial flow orthotropy,
this model contains 9 hardening parameters σY0 cr, sr, cx, sx, cd, sd, cl, sl to be identified using
the tests to be described next.

4.3 Material testing

Numerical simulation of elastic-plastic metal forming processes is impossible without the knowl-
edge of the material behavior. In order to characterize the material behavior of the metal the
most widely used experimental tests are uniaxial tension-compression and simple reverse shear
tests. In addition to the commonly used tests, a pure bending test is also conducted in order to
characterize the material.

4.3.1 Material

The material under investigation is ferritic steel LH800 which is characterized by a good cold
formability before and a high stiffness after hardening. The main feature of this material is
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the ability of air hardening having a carbon content of approximately 0.1%. Another property
of this steel is the good suitability for thermal joining making it an interesting sheet material
for automotive industry. The average Young’s Modulus E over the three directions 0◦ , 45◦

and 90◦ with respect to the rolling direction is determined to 200 450 MPa with Poisson’s ratio
ν = 0.3. The chemical composition of steel LH800 is presented in Table 1. This sheet steel is
characterized by an initial texture consisting of fine-grained ferrite, grain size of approximately
8 μm in diameter, see Figure 4.1 (Tekkaya et al. (2008)).

C Mn Si P S N Al Cu Cr Ni

0.088 1.957 0.276 0.019 0.001 0.008 0.035 0.066 0.774 0.047

B Mo As Sn Ti V Nb Ca

0.0043 0.17 0.003 0.011 0.031 0.064 0.0046 0.0006

Table 4.1: Chemical composition of steel LH800. All values are given as weight percentage.

Figure 4.1: Scanning electron micro graph showing microstructure of LH800 in the as received
condition (Experiment IW Hannover).

4.3.2 Simple shear test

For the experimental work a biaxial testing device developed at the University of Twente was
used to subject specimen shown in Fig. 4.2 to states of planar deformation. Using this device,
one can carry out single- or multi-stage loading programs consisting of monotonic (e.g., forward
simple-shear), reverse (e.g., forward-reverse simple-shear), and / or orthogonal (e.g., tension-
shear), changes of loading direction. In particular, the latter can be carried out with or without
unloading of the specimen upon change of loading direction.

Test setup

A vertical and a horizontal actuator can be used to deform the specimen. If only the vertical
actuator is activated, the specimen is deformed in plane strain tension. If only the horizontal
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actuator is used, the specimen is deformed in simple shear as can be seen in Fig. 4.2. Conse-
quently, if the direction of movement of the horizontal actuator is reversed, reverse shear tests
can be carried out. Mixed plane strain tension/simple shear loading is possible if both actuators
are active simultaneously. In addition, arbitrary sequences of attainable states of deformation
are also possible. The deformation field is obtained by optical measurement of an array of
painted dots in the center of the deformation zone of the specimen. Since the deformation field
in the deformation zone is homogeneous for the level of straining investigated in this work, the
relative motion of the dots determines the deformation field. The horizontal and vertical force
are recorded such that, together with the known geometry, the Cauchy stresses T11 and T12 can
be computed. The plane-strain tension and simple shear tests represent the boundaries of the
range of stress states achievable in the specimen with the help of the biaxial testing device. By
applying different combinations of simple shear and plane-strain tension, different stress states
on the yield surface are achieved. The exact position of the yield state in principal stress space,
however, is unknown since the transverse stress cannot be measured. Further details concern-
ing the experimental setup can be found in Noman et al. (2010); van Riel (2009); van Riel and
van den Boogaard (2007). The strain rate for all experiments was set to 10−3 1/s.

3

55
45

10
2

1

2

Figure 4.2: Biaxial test setup. Geometry of the tension-shear specimen and the measurement
region of height 3.0mm and width 45.0 mm. The checkered region indicates the actual speci-
men and the black area marks the actual deformation zone. The tension direction is direction 2
and the shear direction is direction 1.

Test results

The thickness of the sheet metal specimens used in all the tests was 0.7 mm. All tests were
performed with the tension direction oriented in the rolling direction. Figure 4.3 shows the
results of 2 reverse simple-shear tests. The elastic-inelastic transition for this material upon
load reversal is very diffuse. The Bauschinger effect (a decrease in the flow stress after load
reversal) is clearly present. It would appear that the amount of pre-shear does not influence the
magnitude of the Bauschinger effect significantly. On the other hand, the test with the larger
pre-shear is clearly closer to the hardening saturation level. Hardening stagnation after load
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reversal is clearly visible in both cases, but less pronounced at lower pre-shear.
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Figure 4.3: Reverse shear test results for LH800 for two different levels of pre-shear. All
stress results are shown in absolute value form. K12 represents the relevant component of the
Kirchhoff stress and F12 represents the relevant component of the deformation gradient.

Consider now, the results from the orthogonal tests. As stated, these consist of plane-strain
tension followed by simple shear loading. The transition from tension to simple shear differs
in degree of sharpness from tension to shear, Figure 4.4 is showing the 5 different continuous
loading paths (numbered 1 to 5) and Figure 4.5 presents the result obtained for these paths.
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Figure 4.4: Experimental strain paths in LH800 resulting from continuous change of loading
direction from tension to shear.
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Figure 4.5: Stress response of LH800 for monotonic forward simple shear (curve starting at
F22 + F12 = 1) and for the 5 different orthogonal tension-shear paths shown in Figure 4.4.

Consistent with existing interpretations of such data in the literature, the presence or absence
of cross hardening in such orthogonal tests is judged solely by comparison with the monotonic
simple shear results. In particular, any overshoot of the yield stress above the monotonic level
upon transition from tension to shear is an indicator of such hardening. Using this “definition”,
curves 1, 2 and 3 in Figure 4.4 clearly exhibit cross hardening as can be seen in Figure 4.5 ,
curve 4 might exhibit a little, and curve 5 clearly none at all. Further details concerning the
presence of cross hardening in the Steel LH800 can be found in Noman et al. (2010).

4.3.3 Uniaxial tension and tension-compression test

Tensile tests have been performed according to DIN EN 10002 in order to quantitatively de-
scribe the behavior of the air-hardening steel LH800 under uniaxial tension. The testing spec-
imen have been cut from sheets of 1.5 mm thickness having angles of 0◦ , 45◦ and 90◦ with
respect to the rolling direction. In order to increase the precision of the resulting stress-strain
diagram, five tests are conducted in each direction. The tensile tests have been performed on
a universal testing machine Zwick Z250 at 20◦C and a strain rate of 0.005 s−1 (Tekkaya et al.
(2008)). Figure 4.6 shows the results of tensile tests averaged across the three different speci-
men directions. The stress-strain curve analysis shows a negligible divergence of the results for
the three selected directions. This implies that the initial flow anisotropy is negligible.

Besides the uniaxial tension tests, uniaxial tension-compression tests have also been per-
formed. The strain reversal during the tension-compression test activates the kinematic harden-
ing resulting in a decrease in the flow stress (the so called Bauschinger effect) upon unloading
and reloading in compression. This tension-compression test has been performed on an existing
tension compression module at IW Hannover. A flat specimen in the test is been used, unlike
the commonly used cylindrical specimen, due to the fact that the material is delivered in thin
sheets and that the material should be characterized in the as received form. The strain-stress
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Figure 4.6: Tensile test results conducted at 0◦ , 45◦ and 90◦ with respect to the rolling direction.
K22 represents relevant components of Kirchoff stress and ln U11 represents relevant component
of logarithmic strain

response obtained as the result of the tension-compression test is presented in Figure 4.7.
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Figure 4.7: Tension-compression test result for LH800.

4.3.4 Pure bending test

The pure bending test, conducted at Eindhoven University of Technology, enables the researchers
to study the reversed loading, orthogonal strain path changes and elastic springback effects by
applying a pure bending moment on a rectangular plate. The advantages of the pure bending
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test are the absence of contact force, material slip and friction. But the pure bending test is
inhomogeneous, unlike the tension-compression and the reverse shear tests.

Figure 4.8: Pure bending device with air suspended clamps (Boers et al. (2010))

Figure 4.8 shows the bending device present at the Eindhoven University of Technology. The
specimen (5) is clamped between the hydraulically actuated clamps (3 and 4) that are mounted
orthogonally on two air suspended linear guides (1 and 2). Between the linear guide (2) and the
clamp (4) is an electric motor that controls the rotation of the clamp, whereas the other clamp
measures the applied bending moment by using an elastic joint (6) in combination with a set
of strain gauges. Because the linear guides are positioned at a relative angle of 90 degrees,
no lateral force can be transferred from one clamp to the other. The bending moment can be
measured with an accuracy of 0.02 Nm. The whole set-up is positioned on a solid frame (7) and
measures approximately 1 x 1 x 0.5 m3.

Figure 4.9 illustrates the procedure of pure bending test. First a straight specimen, having
dimensions of 60 x 100 x 1.55 mm3, is clamped into the device and afterwards the specimen is
bent up to an angle of 180◦ and then unbent. This process can be repeated several times. When
the clamp stops at zero degrees the specimen is under stress and bent. In principle one should
stop at the position when the bending moment is zero. Therefore the specimen is bent further
in negative direction, the negative angle is chosen in such a way that the specimen springs back
to zero degrees. If the clamp now rotates to the 0◦ position, the bending moment is zero and the
sample can be taken out straight and can be used for further investigations. Now either reversed
loading is applied by repeating the previous procedure or orthogonal loading can be applied.
For this, the sample side parts have to be removed from the center part, as they did not deform
during the first bending. From the prestrained sample, two samples are prepared of which one
is used for a reversed pure bending test and the other for an orthogonal pure bending test. The
effective sample dimension are 30 x 50 x 1.55 mm3 for each Bauschinger and orthogonal pure
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Figure 4.9: Schematic representation of pure bending experiment. (Boers et al. (2010))

bending test.

Figure 4.10 (right) presents the result of the experiments, where the samples were bent three
times from 0◦ to 180◦. The excellent agreement between the three individual experiments em-
phasizes the reproducibility. During the experiment the stress across the cross-section varies and
that leads to the the fact that one side of the specimen is compressed, while the opposite side
of the specimen is elongated. The presence of both compressive and tensile stresses at any time
enables repeated reversed bending tests without necking. From the prestrained specimen, two
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samples are then prepared of which one is used for a reversed pure bending test, and the other
for orthogonal pure bending test. In Figure 4.10 (left) , the results of the reversed (Bauschinger)
test and orthogonal test is presented.
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Figure 4.10: Pure bending test results. Left: Pure bending test results for 3 cycles of bending .
Right: Bauschinger and Orthogonal test Results of prestrained sample.

4.4 Model identification

To demonstrate the capability of the presented model to describe the complex hardening behav-
ior of LH800 during non-proportional loading just discussed, we now turn to its identification.
The material parameter determination is carried out using the program LS-OPT in conjunc-
tion with LS-DYNA. The optimization technique used relies on response surface methodology
(RSM) (Stander et al. (2008)), a mathematical method for constructing smooth approximations
of functions in a design space. The approximations are based on results calculated at numerous
points in the multi-dimensional design space. In our example, the material parameters are the
design variables, and the model together with the data determine the objective function of the
corresponding optimization problem.

All fits to follow are based on the fixed values of κ = 167.05 GPa and μ = 77.09 GPa for
the elastic properties of LH800, all at room temperature. Tensile tests performed on LH800 at
0◦, 45◦, 90◦ with respect to the rolling direction yielded no distinct initial orthotropy and so Hill
parameter values of F = G = H = 0.5 and L = M = N = 1.5 are used. Strictly speaking,
only N , F , G and H can be determined by in-plane tensile tests, while L and M , corresponding
to through-thickness shear, are assumed to be equal to N .

4.4.1 Simple shear test

The simple shear test is homogeneous so one element simulation is sufficient. The fit procedure
for the hardening model begins by using monotonic simple-shear test data to identify the Voce
isotropic hardening model alone, i.e., assuming no kinematic and cross hardening. The results
of this fit are shown in Table 4.2 (left). The quality of the fit can be judged via the comparison
of the fitted model with the data in Figure 4.11.
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Value Units

σY 0 330.79 MPa

sr 341.50 MPa

cr 5.82

Value Units

σY 0 330.79 MPa

sr 245.684 MPa

cr 4.295

sx 97.464 MPa

cx 33.642

Table 4.2: Identified hardening model parameter values for LH800. Left: isotropic hardening
parameter values determined from monotonic simple-shear test data alone. Right: isotropic-
kinematic hardening parameters determined from monotonic and reverse simple-shear test data.
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Figure 4.11: Comparison of the experimental monotonic simple-shear data with the correspond-
ing identified model prediction. K12 represents the relevant shear component of the Kirchhoff
stress and F12 represents the relevant component of the deformation gradient.

The isotropic hardening parameters so determined are then used as starting values to identify
the isotropic-kinematic hardening model parameters using both monotonic and reverse simple-
shear test data. The results of this are shown in Table 4.2 (right). The quality of the model
identification can be judged via comparison with the fit data as shown for the current combined
case in Figure 4.12. As can be seen in Figures 4.11 and 4.12, we use the experimentally-
determined components of the deformation gradient F to parameterize the experimental data
for the model identification procedure. This is in contrast to the standard practice of using the
accumulated equivalent inelastic deformation αP for this purpose, which is a model quantity and
therefore not experimentally-determined. Note that these parameterizations are not equivalent.
This can also be seen from the fact that one obtains different model parameter values than those
in Table 4.2 when using αP in this way. For example, in the combined hardening case, one
obtains cr = 2.96, sr = 219.37, cx = 15.19, sx = 139.63 instead of the values shown in Table
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Figure 4.12: Comparison of the experimental reverse simple-shear data with the corresponding
identified model prediction.

4.2, as well as a poorer fit.

Before we proceed to the identification of the complete hardening model, it is instructive to
compare the predictions of the identified standard combined (i.e., isotropic-kinematic) harden-
ing model for orthogonal tension-shear loading with the corresponding test data as represented
by path 1 in Figure 4.4. This is done in Figure 4.13. Not surprisingly, the model predicts

0

100

200

300

400

1 1.2 1.4 1.6 1.8

experiment path 1
simulation path 1
experiment monotonic  shear

K
1
2

[M
Pa

]

F22 + F12 [-]

Figure 4.13: Comparison of the predictions of the identified standard combined (i.e., isotropic-
kinematic) hardening model for forward simple shear and orthogonal tension-shear with corre-
sponding experimental results from path 1 in Figure 4.4.

no cross hardening. Optically, one might be tempted to identify the prediction of the identi-
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fied combined isotropic-kinematic model with case 4 or 5 in Figure 4.4. Since these represent
different paths in either strain or stress space, however, they are not directly comparable.

Value Units
sr 254.519 MPa
cr 4.481
sx 90.896 MPa
cx 32.695
sd 0.0
cd 19.712
sl -0.863
cl 5.0

Table 4.3: Identified hardening model parameter values for LH800 for isotropic-kinematic-
cross hardening model parameter values determined from monotonic shear, cyclic shear, and
orthogonal tension-shear, test data.
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Figure 4.14: Comparison of identified isotropic-kinematic-cross hardening model behavior with
experimental data for monotonic simple-shear and orthogonal tension-shear test data corre-
sponding to strain path 1 in Figure 4.4.

Consider lastly the identification of the isotropic-kinematic-cross (i.e., complete) hardening
model. Again, this is done with the help of the identified parameter values for the isotropic-
kinematic case as starting values. In this way, the complete model is fit to monotonic shear,
cyclic shear, and orthogonal tension-shear, test data. In particular, the test data of path 1 in
Figure 4.4 is added to the previous monotonic shear and cyclic shear data sets. As with cr and
cx, the saturation rates cd and cl associated with cross hardening are constrained to be greater
than zero in the fit. On the other hand, as with sr and sx, sd and sl may be positive or negative.
Since the values for sd determined in this way were on the order of 10−3, this parameter was set
to zero in the final fits, resulting in the parameter values for the complete model shown in Table
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4.3. A comparison of the corresponding experimental data and model fit is shown in Figure
4.14.

4.4.2 Uniaxial tension-compression test

The identification procedure adopted here is the same as for the simple shear tests. Since the
uniaxial tension and tension-compression tests are homogeneous, therefore one element simu-
lation is used. The identification procedure begins by using uniaxial tension test data to identify
the Voce isotopic hardening model alone, the results of the fit are shown in table 4.4 (left). The
quality of the fit can be judged via the comparison of fitted model with the data in Figure 4.15.
The isotropic hardening parameters just identified are used as starting value to identify the com-
bined isotropic-kinematic hardening model using both uniaxial tension and uniaxial tension-
compression test data. The comparison of experiment and simulation for this identification is
presented in Figure 4.16. The results are shown in Table 4.4 (right). Since no orthogonal test
data is available for this type of test, we restricted ourselves to the identification of combined
isotropic-kinematic hardening model.

Value Units

σY 0 335.745 MPa

sr 281.034 MPa

cr 13.069

Value Units

σY 0 335.745 MPa

sr 238.62 MPa

cr 8.445

sx 77.747 MPa

cx 12.155

Table 4.4: Identified hardening model parameter values for LH800. Left: isotropic hardening
parameter values determined from uniaxial tension test data alone. Right: isotropic-kinematic
hardening parameters determined from uniaxial tension and uniaxial tension compression test
data.

4.4.3 Pure bending test

Unlike the afore mentioned reverse shear and tension-compression tests, the pure bending test
is inhomogeneous. Therefore, here, for the identification the specimen has to be modeled. This
was done using 3D solid/brick elements. The mesh size was chosen by conducting a mesh
convergence analysis. Figure 4.17 demonstrates the sensitivity of number of through thickness
elements used over the bending moment during the pure bending test. Figure 4.17 (left) shows
the bending moment versus bending angle results for variable number of through thickness
elements and Figure 4.17 (right) shows the bending moment at the end of 1st cycle versus
number of thickness elements. The converged solution is obtained for 9 elements in thickness
direction.

The identification procedure begins by using bending test data to identify the Voce isotopic
hardening model alone, the results of the fit are shown in table 4.5 (left). The quality of the fit
can be judged via the comparison of fitted model with the data in Figure 4.18. The identifica-
tion of parameters for the combined isotropic-kinematic hardening is conducted using the three
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Figure 4.15: Comparison of the experimental uniaxial tension data with the corresponding iden-
tified model prediction.
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Figure 4.16: Comparison of the experimental uniaxial tension compression data with the corre-
sponding identified model prediction.

cycles of pure bending test. The results of the identification are shown in Table-4.5 (right). The
quality of the fit can be judged with comparison to the experimental data and is presented in
Figure 4.19.

The value of the evolution rate cx of kinematic hardening is significantly higher here (cx =

324.735) than for the previous tests, i.e. reverse simple shear (cx =32.695) and uniaxial tension-
compression tests (cx =12.155). This could be due to the fact that the gradual change of the
bending moment versus bending angle curve (Figure 4.10) after re-yielding compared to the
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Figure 4.17: Result of mesh convergence analysis for thickness direction. Left: for one cycle
of bending test. Right: bending moment at the end of first cycle.

Value Units

σY 0 355.1 MPa

sr 160.02 MPa

cr 22.088

Value Units

σY 0 328.863 MPa

sr 140.281 MPa

cr 1.578

sx 95.368 MPa

cx 324.735

Table 4.5: Identified hardening model parameter values for LH800 determined from pure bend-
ing test data. Left: isotropic hardening parameter values determined . Right: isotropic-kinematic
hardening parameters.
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Figure 4.18: Comparison of the experimental bending test data with the isotropic hardening
model prediction.
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Figure 4.19: Comparison of the experimental bending test data with the isotropic-kinematic
hardening model prediction.

relatively sharp change of the stress versus strain curve (Figure 4.7) after reyielding is yielded
with higher value of cx and relatively lower value of sx. In addition, the saturation value sr
for isotropic hardening is about 100 MPa smaller than in the uniaxial tension-compression and
reverse simple shear case. This could be attributed to the fact of a considerably smaller ampli-
tude of applied strain. Thus, smaller total levels of stress are achieved in the pure bending test
compared to the other tests.

As already mentioned, the prestrained specimen are then cut down into the two small sam-
ples. One of those is used for another reversed pure bending test, and the second is used for the
orthogonal pure bending test. We now carry out a small validation test for the identified com-
bined isotropic-kinematic hardening model parameters by predicting the reverse bending test
data obtained from the small specimen. The comparison of the simulation with the experiment
shows a good agreement, as shown in Figure 4.20 (left).

We also compare the predictions of the identified standard combined isotropic-kinematic
hardening model for the orthogonal loading with the corresponding test data which is repre-
sented as orthogonal test in Figure 4.4 (right). The comparison of the simulation with the ex-
periment is presented in Figure 4.20 (right). Note that in the case shown in Figure 4.20 (right)
the sample is removed from the clamps after cyclic bending and then rotated 90deg. After the
rotation cyclic bending is applied. This represents a change in loading path which is neither a re-
versal nor a “pure” orthogonal change. Orthogonal loading path here is understood as a change
in loading path where two subsequent directions of plastic flow NP1 and NP2 are orthogonal.
The effect of cross hardening in this test is relatively small due to this and due to the fact that the
amplitude of pre-straining is relatively small. Consequently, the combined isotropic-kinematic
hardening model which is not capable of modeling cross-hardening shows good agreement with
the experiment. From another point of view, at this level of pre-strain, oriented dislocation mi-
crostructures responsible for cross hardening have not yet developed. This is also true for other
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Figure 4.20: Comparison of the predictions of the identified standard combined (i.e., isotropic-
kinematic) hardening model. Left: for reverse bending test. Right: for orthogonal bending
test.

steels. In the case of IF steel DC06 and SUS 304, no noticeable cross hardening occurs after
pre-straining up to approximately 10−2 and 10−3 respectively (Ishikawa, 1997; Noman et al.,
2010). So one can say that the orthogonal bending test may generally be used to identify the
cross hardening parameters as done by Boers et al. (2010), but for the case of steel LH800 the
cross hardening is not activated for the given amount of pre-strain.

4.5 Comparison of responses of tests with the responses of simulations

In this section a comparison is performed between the experimental and the simulated responses
to investigate the influence of the test data used for the identification on the material model pa-
rameters. To perform such a comparison, each test is simulated using the identified combined
isotropic-kinematic hardening parameters based on the other two tests, and the simulated re-
sponses are then compared with the experimental response.

4.5.1 Uniaxial tension-compression test

The uniaxial tension-compression test is simulated with the combined isotropic-kinematic hard-
ening parameters identified from the reverse shear test and the pure bending test. Figure 4.21
shows the comparison between the experiment and the finite element simulations. For the sim-
ulation based on the parameters identified from the reverse simple shear test, the agreement
is good in tension phase. To the contrary, the agreement in the compression phase is not so
good. For the simulation based on the parameters identified from the pure bending test, the
agreement is not good as it starts to saturate at a smaller strain. The agreement gets better for
the compression part. The improved agreement in the compression phase also points out that
the pure bending test is kinematic hardening dominated and that there is not enough inelastic
deformation/strain hardening to saturate to the saturation parameters sr of the Voce isotropic
hardening rule, see equation 7. In addition the saturation value sr is smaller as stated before.
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Figure 4.21: Comparison of the experimental and simulation stress-strain response. The ex-
periment is uniaxial tension-compression and simulations are performed using the parameters
identified from the reverse shear test and the pure bending test respectively.

-400

-200

0

200

400

0 0.3 0.6 0.9 1.2

reverse shear experiment

param. based on ten-comp test

param. based on bending testK
1
2

[M
Pa

]

F12 [-]

Figure 4.22: Comparison of the experimental and simulation stress-strain response. The ex-
periment is the reverse shear test and simulations are performed using the parameters identified
from the uniaxial tension-compression test and the pure bending test respectively.

4.5.2 Reverse shear test

The reverse shear test is simulated with the combined isotropic-kinematic hardening param-
eters identified from the uniaxial tension-compression test and the pure bending test. Figure
4.22 shows the comparison between the experiment and the finite element simulations. For the
simulation based on the parameters identified from the tension-compression test, the agreement
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with the shear experiment is very good in the forward shear phase. The behavior observed after
re-yielding is not accurately captured by this set of data. However for large levels of reverse
straining the agreement gets better as the hardening in the material saturates. For the simulation
of the reverse shear experiment based on the parameters identified from the pure bending test,
only the level of stress at yielding and re-yielding is captured accurately. There is no increase
of the stress after initial yielding and re-yielding as in the experiment meaning that the general
agreement is very poor. This could be understood by recalling the low value of sr, the saturation
value of isotropic hardening and also low value of cr, the rate of isotropic hardening yielded by
the identification based on the pure bending test data.

4.5.3 Pure bending test

The pure bending test is simulated with the combined isotropic-kinematic hardening parameters
identified from the uniaxial tension-compression test and the reverse shear test. Figure 4.23
shows the comparison between the experiment and the finite element simulations for the first
cycle of bending-unbending. The agreement between the simulations and the experiment is
good in both cases, however differences can be observed at the beginning of the hardening in
the loading phase and for the reyielding after load reversal.
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Figure 4.23: Comparison of the experimental and simulation bending moment versus bending
angle response. The experiment is the pure bending test and simulations are performed using
the parameters identified from the uniaxial tension-compression test and the reverse shear test
respectively.

4.6 Application to springback prediction (during draw-bending test)

The draw-bending test is exemplary for a number of sheet forming operations, yet has the
advantage of simplicity. Such a test is mostly used in springback prediction studies. This test
is simulated here in 5 steps by analogy with the experimental procedure. In the first step, the
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sheet metal strip is pre-bent to 90 degrees using the bending tool. Secondly, the bending tool
is removed. Thirdly, the strip is clamped into the machine at both ends and pulled tightly over
a rubber roller from both ends, subjecting it to tension. The actual test begins with the strip
being pulled from right to left over the roller under tension, such that it experiences bending-
unbending. Since the roller moves with the strip, there is little or no friction between them. In
the last step, the strip is unclamped and the resulting springback process is simulated. During
the draw-bending test, the bending-unbending represents the loading path of load-reversal type
in which isotropic and kinematic hardening are the main hardening mechanisms. The finite
element model used is based on conventional shell elements. For efficiency, the symmetry of
the strip (Figure 4.24) has been exploited in the simulation. The minimal friction taking place
between the roller and strip has been modeled in ABAQUS via the definition of a “Contact
Property” of “Friction” type.

Figure 4.24: Finite element model for draw-bending test

As already mentioned, three sets of combined isotropic-kinematic hardening parameters are
available obtained from the experiments, namely uniaxial tension-compression test, reverse
shear test and reverse pure bending test. A simulation is performed for each set of parameter
using ABAQUS. The simulation is performed using the combined isotropic-kinematic harden-
ing parameters, since isotropic hardening alone over-predicts the springback, as pointed out by
Svendsen et al. (2006); Wang et al. (2005). A comparison of the experimental and simulation
results for springback of the strip using roller of radii of 10 and 15 mm is shown in Figures 4.25
and Figure 4.26.

As can be seen, the agreement is very good between the predicted springback of the sim-
ulation using the parameters based on the tension-compression test and the experiment. The
simulation based on the parameters identified from the reverse shear test data under predicts the
amount of springback a little. The amount of springback predicted by the simulation, based on
the the parameters identified from the pure bending test, is much smaller than in the experiment.
This confirms the argument presented in Section 6 that due to small level of the amplitude in
straining and thus a small total level of strain isotropic hardening is under represented by the
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Figure 4.25: Comparison of experimental and simulation results for roller radius 10 mm.
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Figure 4.26: Comparison of experimental and simulation results for roller radius 15 mm.

pure bending based data. This in turn leads in general to the prediction of lower level of stress.
With constant elastic parameters, this results in a smaller amount of predicted springback for this
type of data. To demonstrate the importance of complete isotropic-kinematic-cross hardening
model, we now compare the experimental results for springback with the corresponding simula-
tion results based on the combined isotropic-kinematic hardening model (parameters are iden-
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tified using the simple reverse shear test) and the complete isotropic-kinematic-cross hardening
model (parameters are identified using the simple reverse shear and orthogonal test). Figure
4.27 shows the comparison of the simulation and experimental results for the roller radius of 10
mm. The agreement is even better in the case of the complete isotropic-kinematic-cross harden-
ing model than of the combined isotropic-kinematic hardening model. The complete isotropic-
kinematic-cross hardening model is computationally expensive and takes approximately nine
hours, compared to the combined isotropic-kinematic hardening model that takes one and half
hours for the complete simulation. This emphasizes the fact that, indeed, the complete isotropic-
kinematic-cross hardening model minutely increases the accuracy of the springback prediction
but that the computation time is six times higher.
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Figure 4.27: Comparison of experimental and simulation results using the combined and the
distortional hardening model for roller radius 10 mm.

4.7 Summary and Conclusions

Uniaxial tension-compression, simple reverse shear and pure bending tests have been performed
on the sheet steel LH800. The material was characterized as initially isotropic due to a lack of
strong texture. The hardening behavior has been described by the recently presented material
model that is able to capture not only a shift of the yield surface and its proportional expansion
as in the case of conventional combined hardening, but is also able to account for an evolv-
ing yield surface shape and so distortional hardening. Three sets of material parameters were
identified with uniaxial tension-compression test, pure bending test and simple reverse shear
test together with orthogonal tension-shear test. Numerical simulation of each test has been
performed using the identified parameters from the other two tests. Using these simulation re-
sponses, a comparison is performed between the experimental and the simulation responses to
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investigate the influence of the test data used for the identification on the material model param-
eters. The comparison shows that the simulation responses based on the parameters identified
from the reverse shear test and the uniaxial tension compression test agree well with the ex-
perimental responses of the experiment not used for identification, i.e. the reverse shear and
pure bending test for the tension-compression based data and the tension-compression and pure
bending test for the reverse shear based data. However, for the simulation responses of the shear
test and the tension-compression test using the parameters identified from the pure bending test,
a divergence is observed by comparing them with the experimental test responses. After con-
ducting the comparison study, a more realistic metal forming process, i.e. draw-bending test,
was simulated that is used widely in springback studies. The prediction shows a good agree-
ment when the combined isotropic-kinematic hardening model parameters obtained from the
uniaxial tension-compression test are used. A slight difference is noticed when the combined
isotropic-kinematic hardening model parameters obtained from the simple reverse shear test
are used. Prediction of the springback is poor when the parameters obtained from the bend-
ing test are taken. It can therefore be concluded that the uniaxial tension-compression test and
the reverse shear test have advantages over the pure bending test, as the level of strains gen-
erated in these tests are higher and the parameters identified from these tests may predict the
responses of the experiments that involve large levels of strains better. In addition, the hard-
ening behavior of the material under investigation, ferritic steel LH800, is represented more
accurately by the sets of parameters identified from the tension-compression or reverse shear
tests. This leads to the fact that the amount of springback predicted by simulations using such
data is also most accurate. This is due to the effect that the level of stress predicted by a model
directly influenced the amount of springback for constant elastic behavior. Furthermore, the
complete isotropic-kinematic-cross hardening model predicts the amount of springback more
accurately as compared to the combined isotropic-kinematic hardening model, but over the cost
of more computation time which is six times higher than the computation time required for the
simulation using the combined isotropic-kinematic hardening model.
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Chapter 5

Numerical and physical factors affecting the
springback simulation for sheet metal forming

Abstract– Springback is a phenomenon which is vital in the structural component’s accuracy. It
usually produces deviation from the desired shape and raises problems in the assembly of differ-
ent parts. Hence, it becomes necessary to simulate the forming process and predict springback
numerically beforehand to meet the requirements. In general, the numerical simulation of the
metal forming process and springback prediction is influenced by two different kinds of param-
eters: physical and numerical. The purpose of the current work is the investigation of a number
of these parameters, both physical and numerical, on the metal forming process and spring-
back prediction. The study has been carried out using the commercial finite element codes
ABAQUS/Standard and LS-DYNA. In particular, the influence of numerical parameters such
as the finite element formulation, mesh size and integration scheme and the effect of physical
parameters, e.g. back force, tool radius, friction coefficient and material model are examined.

5.1 Introduction

Springback is defined as the undesired change in shape of the part upon removal of the forming
load at the end of forming process. It usually produces deviation from the desired shape and
raises the problems in assembly of different parts, thus extra effort is required to compensate
this undesired change in shape. Despite this, accurate prediction of springback is a growing
problem with the use of high strength and low modulus materials. Hence it becomes necessary
to predict springback beforehand to meet manufacturer requirements to use lighter and stronger
materials.

The prediction of springback was initially carried out using analytical approaches. Several
mathematical models have also been proposed to describe and predict springback for simple
geometries, (e.g. by Wenner (1983), Baba and Tozawa (1964), Chan (1999), Levy (1984),
Queener and Angelis (1968), Shaffer and House (1955), Li et al. (2002), Ueda et al. (1981)
and Yuen (2000)). With the increase in computational power and development of numerical
methods, the finite element method becomes an efficient tool and obvious choice to simulate
the metal forming processes and predicting springback. Many researchers used FEM (e.g Lee
and Yang (1998), Kleiner et al. (2005), Chen et al. (2005), Wagoner and Li (2005)) to simulate
the forming processes and to predict the springback. The availability of commercial codes
for the simulation of forming processes (e.g., LS-DYNA, ABAQUS, PAM-STAMP, AutoForm,
DYNAform, Stampack, etc.) has greatly facilitated the numerical simulation of springback.
Several experimental geometries have been studied that could easily describe the springback
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phenomenon, e.g., cylindrical tool bending (e.g., Martin and Tsang (1966)), V-die bending
(e.g., Asnafi (2000), Z. Hu and Teodosiu (1992), Tan et al. (1992)), U-channel forming (e.g.,
Huang and Leu (1995)) and flanging (e.g., Davies and Liu (1984)).

In general, the numerical simulation of the metal forming process and springback prediction
is influenced by two different kinds of parameters: physical and numerical. The physical group
of parameters includes both material properties, such as isotropic and kinematic hardening,
Bauschinger effect, distortional hardening, elastic and plastic anisotropy (Carden et al. (2002),
Laurent et al. (2009),Geng and Wagoner (2002), Oliveira et al. (2007) and Li et al. (2002),
Eggertsen and Mattiasson (2009, 2010), and Wang et al. (2006) ) and process characteristics
sensitiveness, such as sheet thickness, friction coefficient, blank holder force, tool geometry
(e.g. radius), temperature and unloading procedure (Li et al. (2002) and Wang et al. (2005)).
The numerical parameters influencing springback are the type of element, order and integration
scheme of the finite element, as well as the shape, size and the finite element mesh refinement
( Li et al. (2002), Xu et al. (2004), Meinders et al. (2008)). The purpose of the current work is
the investigation of a number of these parameters, both physical and numerical, on the basis of
the combined hardening model which has been implemented in the commercial finite element
codes ABAQUS/Standard and LS-DYNA and comparison of the results of both FE codes. To
this end, a relatively “simple” forming process, draw-bending test, is considered. The draw-
bending test (e.g., Carden et al. (2002), Kleiner et al. (2005), Li et al. (2002) and Wang (2004))
mimics closely the typical stamping deformation of the sheet metal, during which it is drawn,
stretched, bent and unbent over a die radius entering a typical die cavity. In particular, bending
and unbending represent a loading path change of the load-reversal type in which isotropic and
kinematic hardening are the principle hardening mechanisms.

The paper begins (Section 5.2) with a brief review of the material model used in the present
work. In order to focus on numerical and physical parameters (e.g., contact and friction), at-
tention is restricted in this model for simplicity to isotropic von-Mises yielding as well as to
isotropic and kinematic (i.e., classical combined) hardening. After a brief review of the issues
of element formulation (Section 5.4) as well as the contact and friction algorithm (Section 5.5),
attention is focused on the investigation of the dependence of the solution on the number of
elements, the element formulation, the number of integration points, as well as on contact and
friction modeling (Section 5.6). Some additional physical aspects of the simulation (e.g., effect
of back force) are also investigated (Section 5.7). The work ends with a brief summary and
conclusions (Section 5.8).

5.2 Material Model

The most widely used hardening model to simulate the metal forming processes and predicting
springback is the standard combined hardening model. Such models are intended to represent
the hardening behavior particularly during cyclic loading or during a strain-path reversal. For
more complex loading histories, additional hardening mechanisms resulting in directional hard-
ening effects generally need to be taken into account (Noman et al. (2010), Teodosiu and Hu
(1998) and Wang et al. (2008)). Since we are focusing here, however, on numerical issues,
attention is restricted for simplicity to combined hardening.
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The formulation of the current model is carried out in the framework of the standard inelastic
multiplicative decomposition F = FEFP of the deformation gradient F (Simo and Hughes
(e.g., 1998)). Such a decomposition arises naturally, e.g., in the context of the modeling of FP

as a change of local reference configuration Svendsen (2001). In this context, one obtains in
particular the result

RT
ELERE = RT

ELRE −UE LP U
−1
E = RT

EṘE + U̇EU
−1
E (5.1)

via the right polar decomposition FE = REUE of FE for the back-rotated form of LE :=

ḞEF
−1
E in terms of L := Ḟ F −1 and LP := ḞPF

−1
P . For the current case of polycrystalline

metals and small elastic strain, we have

UE ≈ I + lnUE ,

U̇E U
−1
E ≈ ˙lnUE .

(5.2)

Substituting these into (5.1), and taking the symmetric and skew-symmetric parts of the result,
one obtains the evolution relations

˙lnUE = RT
EDRE −DP ,

ṘE = WRE −REWP ,
(5.3)

for lnUE and RE, respectively, in the incremental context. D := sym(L) is the continuum
rate of deformation, DP := sym(LP) its inelastic counterpart, W := skw(L) the continuum
spin, and WP := skw(LP) the plastic spin. Restricting the current formulation to the case
of sheet metal forming, it is reasonable to assume that the texture in these materials achieved
during rolling remains largely unchanged during forming processes like tension, compression,
simple shear, cyclic simple shear, and combinations of these. In this case, WP is negligible,
and the evolution of RE depends only on W , in which case it reduces to a purely kinematic
quantity (i.e., the Jaumann rotation). In addition, focusing in this work on the material behavior
of sheet metal during forming below the forming limit, we assume for simplicity that damage
or any other process resulting in inelastic volume changes are negligible. In this case, plastic
incompressibility det(FP) = 1 pertains, implying tr(DP) = 0 and D ′

P =DP in the incremental
context.

Since the elastic range and elastic strain are small, any texture effects from rolling leading to
an anisotropic elastic behavior are assumed negligible. In this case, the isotropic form

M = κ tr(EE) I + 2μE ′
E (5.4)

is assumed for the Mandel stress M in terms of the elastic strain EE := lnUE, bulk modulus κ,
shear modulus μ, and deviatoric part E ′

E of EE. Lastly, again in the framework of small elastic
strain, M and RE determine the Kirchhoff stress K via

K = REMRT
E . (5.5)

Consequently, in contrast to K ′ = REM
′RT

E , tr(K) = tr(M) of K is independent of RE.
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In this framework, then, the material behavior of polycrystalline sheet metal during form-
ing processes below the forming limit is predominantly determined by a changing dislocation
microstructure and attendant evolving anisotropic yield behavior. Besides a shift of the yield
surface and its proportional expansion as in the case of conventional combined hardening, the
current model also accounts for an evolving yield surface shape and so distortional hardening.
In the current notation, the model is written simply in the form

φ =
√

(M −X ) · A (M −X )− σY0 − r (5.6)

in terms of the initial yield stress σY0. A is the fourth order anisotropy tensor, here set to the
fourth order identity. For the class of materials under consideration, the saturation (i.e., Voce)
form

ṙ = cr (sr − r) α̇P (5.7)

for the evolution of r is appropriate, driven by that of the equivalent inelastic deformation
αP. Here, cr represents the rate, and sr the value, for saturation associated with r. Since
σY0 is the initial yield stress (i.e., for αP = 0), the initial value r0 of r is zero. In the cur-
rent rate-independent context, αP is determined as usual by the consistency condition. Analo-
gous to isotropic hardening, kinematic hardening is modeled via the saturation (i.e., Armstrong-
Frederick) form

Ẋ = cx (sxNP −X ) α̇P (5.8)

for the evolution of X depending on corresponding (constant) saturation rate cx, (constant)
saturation magnitude sx, as well as the (variable) direction NP := DP/|DP| of the rate of
inelastic deformation

DP = α̇P ∂M−X φ , (5.9)

which is modeled here in associated form. The initial value of X is assumed to be zero.

The current material model was implemented in the commercial FE codes ABAQUS and
LS-Dyna via the user material interfaces provided. Besides the two elasticity parameters κ, μ,
this model contains 5 hardening parameters σY0 cr, sr, cx and sx to be identified.

5.3 Draw-Bending Test

In real sheet metal forming operations, the bending and unbending of the sheet metal occurs
under superposed tension as the blank slides over the tool surface, under the influence of the
tool/punch force. In the draw-bending test, a sheet metal strip is bent, drawn and then straight-
ened over a die radius comparable to that of a typical die cavity. Besides simulating these, the
draw-bending test still offers the necessary simplification of simplifying the boundary condi-
tions and eliminates friction effects, allowing for a focus over the effect of the loading condi-
tions on the material behavior, residual stress development and springback.

The test itself is carried out with the help of a servo-hydraulic mechanical test machine and
a bending frame as shown in Figure 5.1. Here, two hydraulic actuators oriented orthogonal to
each other control the forming of the strip. In particular, the right actuator provides a constant
restraining force (i.e., the back force), while the left one moves at a constant speed. The tension
force is measured by sensors attached to each actuator. At the beginning of the test, the specimen
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Figure 5.1: Draw-bending test machine and experimental setup, from Kleiner et al. (2005).

is first pre-bent in a right angle with a triangular punch rounded off at the corner. Then it is
clamped into the machine. A tension force of 2.4 KN is applied at the left end of the strip
holding the right end fixed. The strip is then drawn over the fixed roller with negligible friction
under constant tension. The drawing speed was 4.5 mm/s. In this case, the sheet metal strip
undergoes bending and unbending under constant tension, resulting in a load reversal in the
material in the sense of bending and unbending. After the forming operation is completed, the
lower grip is opened to allow the specimen to springback freely.

The complete draw-bending test is simulated here in 5 steps by analogy with the experimental
procedure. As just discussed, in the experiment, the strip is first pre-bent from the initial straight
form into a right angle by means of a triangular punch rounded off at the corner. This pre-
bending process is idealized in the simulation by pre-bending the strip directly around the guide
roller with the bending tool, resulting in the initial configuration. In the current simulation, the
roller and bending tool are idealized as analytical rigid surfaces. As in the tests, the strip is 448
mm long, 50 mm wide and with a thickness of 1.6 mm. In addition, the roller, and so the bending
radius is 10 mm. Due to the symmetry of the specimen, only half of the structure needs to be
included in the simulation. In the second step, the bending tool is removed. Now the tension
is applied at the right end of the strip in the third step. The strip is then drawn by applying
a velocity at the left end under the influence of the tensile force which is applied constantly
at the right end. After having been drawn, the strip is unloaded to observe its springback. In
what follows we refer to bending, applying tension and then drawing steps as forming stage.
Releasing the strip afterwards to get the final form is referred as springback stage.
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5.4 Element formulations

5.4.1 Shell element formulations

Shell elements are used to model structures in which one dimension, the thickness, is signifi-
cantly smaller than the other dimensions. In ABAQUS two types of shell elements are avail-
able: conventional shell elements and continuum shell elements. Conventional shell elements
discretize a body by defining the geometry at a reference surface, in such a way that each node
has displacement and rotational degrees of freedom. In the conventional shell, the thickness is
defined through the section property definition. In contrast, continuum shell elements discretize
an entire three-dimensional body. The thickness is determined from the element nodal geome-
try. Continuum shell elements have only displacement degrees of freedom. From a modeling
point of view continuum shell elements look like three-dimensional continuum solids, but their
kinematic and constitutive behavior is similar to conventional shell elements. Both element
types allow for a variable number of integration points through the thickness.

For the metal forming simulations of interest here, large-deformation continuum and conven-
tional shells are relevant. In the latter case, the shell element S4 (4-node doubly curved general
purpose shell) is most frequently used. Each node has three displacement and three rotation
degrees of freedom. Bilinear interpolation is used. A transverse shear strain field is used in the
formulation and it is calculated at the element center. Besides this, S4R is a reduced integration
element with stabilization control against hourglassing. The membrane behavior of this element
is based on the uniform strain formulation for a 4-node quadrilateral plane-stress element. Be-
yond such elements, stress/displacement continuum shell elements in ABAQUS are also used in
three-dimensional sheet forming analysis. These elements have displacement degrees of free-
dom only and are based on linear interpolation. It is known that continuum shell elements such
as SC6R and SC8R (6 and 8-node in-plane general-purpose continuum shell with reduced in-
tegration, respectively) are more accurate in contact modeling than conventional shells, since
they employ two-sided contact taking into account changes in thickness no matter how thick
the elements are compared to other element dimensions. However, although continuum shells
provide robust and accurate solutions to most shell applications, these elements may show slow
convergence for very thin shell applications. In such cases conventional thin shell elements
should be used, as we will see later on.

In LS-DYNA different formulations are available for the shell elements. The most frequently
used shell element is the so called Belytschko-Lin-Tsay element. It was first implemented in
LS-DYNA as a computationally more efficient element than its precursor. The Belytschko-
Lin-Tsay element is based on a combined co-rotational and velocity strain formulation. The
co-rotational portion of the formulation avoids the complexities of nonlinear mechanics by em-
bedding a coordinate system in the element. The Belytschko-Lin-Tsay element uses a reduced
integration scheme, in order to reduce the hourglass modes hourglass control is introduced. The
fully integrated shell element with assumed strain interpolants used to alleviate locking and en-
hance in-plane bending behavior. It uses a local element coordinate system that rotates with the
material to account for rigid body motion and automatically satisfies frame invariance of the
constitutive relations. The local element coordinate system is similar to the one used for the
Belytschko-Tsay element, where the the first two basis vectors are tangent to the shell midsur-
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face at the center of the element, and the third basis vector is in the normal direction of this
surface and initially coincident with the fiber vectors [3].

5.4.2 Solid element formulations

Solid (continuum) elements are the standard volume elements of ABAQUS. With these nearly
all volumetric structures can be modeled and calculated. The number of elements and therefore
the number of nodes is much larger than in comparable 2D models. Solid structures usually lead
to large meshes when modeled with solid elements and therefore need large computational time
and memory. In regions of large stress gradients the mesh density must be large. Therefore
one should use shell or beam elements whenever possible. Solid elements are provided with
first-order (linear C3D8) and second-order (quadratic C3D20) interpolation. Metal forming ap-
plications involve bending with large deformations, the strain variation through the thickness
must be at least linear, and constant strain (first-order, C3D8) elements do a poor job of repre-
senting this variation. Fully integrated first-order solid elements (C3D8) also suffer from “shear
locking” in thin sheets. They cannot provide the pure bending solution because they must shear
at the numerical integration points to respond with an appropriate kinematic behavior corre-
sponding to the bending. This shearing then locks the element–the response is far too stiff. For
the isoparametric elements reduced integration provides a cure for these problems, but at the
cost of allowing spurious singular modes (“hourglassing”). The use of second order elements
(C3D20) is a more reliable alternative, because the second-order interpolation naturally con-
tains the linear strain field. The cost of high computation time could be compensated by using
the reduced integration second-order solid elements (C3D20R). For example, a fully integrated,
second-order, 20-node three-dimensional element requires integration at 27 points, while the re-
duced integration version of the same element only uses 8 points and, therefore, costs less than
30% of the fully integrated version. In contrast, when reduced integration is used in the first-
order elements (the 4-node quadrilateral and the 8-node brick), hourglassing can often make
the elements unusable unless it is controlled. In ABAQUS the artificial stiffness method and
the artificial damping method given in Flanagan and Belytschko (1981) are used to control the
hourglass modes in these elements.

In LS-DYNA, 8-node brick element is available with full and reduced integration. To re-
duce the computation time of simulation mostly reduced integration is preferable over the full
integration solid element. As already mentioned that fully integrated 8-node solid element also
suffer from “shear locking”. To preclude locking, reduced integration is a solution but at the
cost of allowing spurious singular modes (“hourglassing”). Unlike ABAQUS, LS-DYNA pro-
vides different hourglass control methods to reduce the hourglass modes. Type 6 hourglass
control invokes an assumed-strain co-rotational formulation for type 1 solid (8-node) elements
and under-integrated 2D solids.

5.5 Contact and friction modeling

Modeling of contact between at least two bodies is an essential feature of many metal forming
simulations. Appropriate modeling of the contact conditions is vital to the success of such sim-
ulations. In typical forming applications, the tools like dies deform very little and are modeled
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as rigid bodies. In the current work, the attention will be focused on the interface between a
deformable body and a rigid body.

5.5.1 Contact modeling in ABAQUS

In metal forming processes, contact occurs between a deformable body (blank) and one or more
rigid bodies (forming tools). For defining the contact between the blank and forming tool,
ABAQUS provides two methods for modeling the contact interactions: Surface based contact
simulations and contact elements based simulations. In the former case, a pure “master-slave”
relationship is enforced. The surface of the blank is considered as the “slave”, and the surface
of the forming tool is considered as the “master”. For the surface based contact simulations,
ABAQUS/Standard offers two contact discretization options: a traditional “node-to-surface”
discretization and a true “surface-to-surface” discretization. In surface-to-surface discretiza-
tion, contact conditions are enforced in an average sense over the slave surface, rather than at
discrete points. Such as at slave nodes, as in the case of node-to-surface discretization. To
enforce contact between the contacting surfaces, for metal forming simulation they are slave
(strip) surface and master (tool) surface, there are three contact constraint enforcement meth-
ods available in ABAQUS/Standard: i) The direct method attempts to strictly enforce a given
pressure-overclosure behavior per constraint, without approximation or use of augmentation it-
erations. ii) The penalty method is a stiff approximation of hard contact. iii) The augmented
Lagrange method uses the same kind of stiff approximation as the penalty method, but also uses
augmentation iterations to improve the accuracy of the approximation.

The constraint enforcement method depends in part on our choice of pressure-overclosure
relationship. In order to understand the contact algorithm used in this work, consider now first
the kinematics of the interacting surfaces. As shown in ABAQUS Theory Manual, let A be a
point on the deforming mesh, with current coordinates xA. Let C be the rigid body reference
node that defines the position of the rigid body with current coordinates xC . Let A′ be the
closest point on the surface of the rigid body to A at which the normal to the surface of the rigid
body passes through A . Define r as the vector from C to A′. The configuration described by
these quantities is shown in Figure 5.2. Here, h is the distance from A′to A along direction −n:
the “overclosure” of the surfaces. From the definitions introduced above, we have

hn = −xa + xc + r (5.10)

Then if h < −c, there is no contact between the surfaces at A, and no further surface
interaction calculations need be done at this point. Here c is the clearance below which contact
occurs. We define a “hard” surface for the case of c = 0. The standard contact relationship using
the “hard” surface is defined as “hard contact”, which is the most frequently used contact in
ABAQUS/Standard. The hard contact allows no penetration of the slave nodes into the master
surface, thus, leading to “real” contact.

The conventional shell and solid element formulation in ABAQUS works with both “hard”
contact and “softened” contact. Generally, when a “softened” contact relationship is used, the
contact pressure is a function of the clearance between the surfaces. The pressure-overclosure
relationship can be prescribed by using different forms, e.g., an exponential form (Figure 5.3),



5.5 Contact and friction modeling 83

C

r

A’

n
A

Figure 5.2: Rigid boundary surface geometry (ABAQUS 6.9.1 Theory Manual 5.1.3).

which is used here.
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p0

exponential pressure-
overclosure relationship

Figure 5.3: ”‘Softened”’ pressure-overclosure relationship defined with the exponential relation
(ABAQUS 6.9.1 Analysis’s User’s Manual ).

With this (softened) contact pressure-overclosure relationship, the surfaces begin to trans-
mit contact pressure once the clearance between them, as measured in the contact (normal)
direction, reduces to c0. The contact pressure transmitted between the surfaces then increases
exponentially as the clearance continues to diminish.

The friction between the die and the workpiece plays a significant role in metal forming sim-
ulations. We distinguish between cohesive and adhesive friction. In cohesive friction the sliding



84 CHAPTER 5

stresses depend on the yield stress of the workpiece, and the sliding actually occurs in a small
boundary layer in the workpiece. This is typical in (but not limited to) bulk forming processes.
In adhesive friction, the sliding stresses are proportional to the contact stress. In this case, slid-
ing occurs between the die and the workpiece, which is typical in (but not limited to) sheet
forming processes. Adhesive friction is modeled in ABAQUS with a classical Coulomb friction
model. The friction coefficient and contact pressure are both important here. In the current
investigations, isotropic adhesive friction is assumed. As we will see later, the corresponding
(isotropic) friction coefficient has a significant influence on sheet forming and springback.

5.5.2 Contact modeling in LS-DYNA

In LS-DYNA, a contact is defined by identifying (via parts, part sets, segment sets, and/or node
sets) what locations are to be checked for potential penetration of a “slave” node through a
“master” segment. To enable flexibility for the user in modeling contact, LS-DYNA presents a
number of contact types and a number of parameters that control various aspects of the contact
treatment. In metal forming simulations, since the master side is referred as rigid body, only
slave nodes are needed to check for penetration into the master surface. In this situation LS-
DYNA offers one-way contact type. The one-way term is used to indicate that only the user-
specified slave nodes are checked for penetration of the master segments. A situation where
one-way contact may be appropriate for deformable bodies is where a relatively fine mesh
(slave) encounters a relatively smooth, coarse mesh (master).

For metal forming simulations, special one-way forming contacts are recommended with the
workpiece defined on the slave side:

*CONTACT FORMING ONE WAY SURFACE TO SURFACE

Orientation is automatic with forming contacts. The treatment of contact between the slave
(blank) and master (rigid) surfaces are by default done by using the penalty method. In the
penalty-based contact, when a penetration is found a force proportional to the penetration depth
is applied to resist, and ultimately eliminate, the penetration. Other methods are also available
in LS-DYNA for contact interaction handling, namely, the kinematic constraint method and
distributed parameter method. For the penalty method three implementations are available.
These are: (i) standard penalty formulation: this is the default method and uses the size of the
contact segment and its material properties to determine the contact spring stiffness. As this
method depends on the material constants and the size of the segments, it works effectively
when the material stiffness parameters between the contacting surfaces are of the same order-
of-magnitude. (ii) Soft constrained penalty formulation: this method calculates the stiffness
of the linear contact springs based on the nodal masses that come into contact and the global
time step size. The resulting contact stiffness is independent of the material constants and is
well suited for treating contact between bodies of dissimilar materials. The stiffness is found by
taking the nodal mass divided by the square of the time step size with a scale factor to ensure
stability. Generally, for the case of metals contacting metals the resulting penalty stiffness for
standard penalty formulation or soft constrained penalty formulation is similar. (iii) Segment
based penalty formulation: the logic of this method is slave segment-master segment approach
instead of traditional slave node-to-master segment approach. This contact has proven very
useful for airbag self contact during inflation and complex contact conditions. The Coulomb
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friction formulation is used in in LS-DYNA to model the friction effects between the interacting
bodies.

5.6 Convergence behavior and numerical integration

Simulations are carried out for the draw-bending test using the commercial softwares ABAQUS
Version 6.9.1 and LS-DYNA version 971 release 4. In order to obtain a converged solution of
the boundary value problem and reduce the effects introduced by dynamic explicit calculations,
the static implicit method was used for both forming and springback stages of the simulations.
Due to the symmetry of the part, only half of the 3D structure was modeled. For simplicity,
any effects of the mild initial flow anisotropy and the plastic spin are neglected here. For the
purpose of investigation of numerical factors such as element number and integration points,
firstly the 3D shell element S4R is used for the simulation. The remaining numerical studies are
carried out using 3D solid elements. For simplicity, the bending tool and the roller are modeled
as analytical rigid surfaces. The mechanical interaction between the contact surfaces is set to
be frictional contact using the isotropic Coulomb model with friction coefficient 0.15. For the
numerical investigations to follow, the combined hardening with Voce-type isotropic hardening
is generally assumed. The corresponding parameter values used are those for the steel LH 800
as given in Table 5.1.

Value Units

σY 0 335.745 MPa

sr 238.62 MPa

cr 8.445

sx 77.747 MPa

cx 12.155

Table 5.1: Material model parameter values for LH 800.

5.6.1 Convergence behavior

We begin with a convergence study for the finite element discretization used in the context of
the forming (bending and drawing together is referred as forming stage) and springback stages
of the draw-bending simulations. To this end, we work with the amount of von Mises stress
generated at the end of forming stage at the reference point (see Figure 5.4) and the amount of
springback predicted. The reference point is chosen in such a way that it is in the most affected
region, experiences the bending, the tension force and then drawing under the influence of
tension force, and experiences deformation from the beginning to the end of forming stage.

5.6.2 Use of shell elements

For ABAQUS, the strip is discretized using the 3D shell element S4R with reduced integration.
The results in Figure 5.5 (left) imply that 1790 elements (2.5 mm x 2.5 mm size of each element)
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______ reference point

Figure 5.4: 3D FEM model for the draw-bending test and position of Reference Point.

are sufficient for a converged solution as judged by the amount of stress generated. Hence a
convergent solution is obtained for this case with 179 such elements along the strip and 10 such
elements across the strip. It is also of interest to investigate the effect of convergence in the
context of predicted springback. Figure 5.5 (right) shows that the predicted springback is not
much effected by the mesh refinement. Even the coarse mesh (700 elements having 4 mm x 4
mm ) gives suitably accurate springback prediction. However fine mesh (1790 elements having
2.5 mm x 2.5 mm ) gives more accurate springback prediction.
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Figure 5.5: Influence of the number of shell elements (S4R) using ABAQUS. Left: On the von
Mises stress generated at the end of forming stage. Right: On the springback predicted.

Figure 5.6 (left) shows the von Mises stress at the reference point at the end of forming stage
using shell elements with a variable number of elements using LS-DYNA. LS-DYNA gives
converged solution for 2240 elements (von Mises stress generated is 551.39 MPa) compared to
1790 elements using ABAQUS (von Mises stress generated is 550.3 MPa) for the same process
conditions. As can be seen in Figure 5.6 (right) the accuracy of springback prediction is not
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Figure 5.6: Influence of the number of shell elements using LS-DYNA. Left: On the von Mises
stress generated at the end of forming stage. Right: On the springback predicted.

much affected by the level of mesh refinement and 2240 elements (2 mm x 2.5 mm ) is enough
for the good agreement of springback prediction with the experiment.

5.6.3 Number of integration points in the thickness direction

The number of through thickness integration points is an important factor in determining the
stress state and the amount of springback predicted in the simulation. The purpose of this
section is to examine the influence of the number of through thickness integration points used
in simulation on the accuracy of springback prediction and generated stress during the forming
stage of the draw-bending simulation. The study is conducted using the Finite element software
ABAQUS and LS-DYNA keeping the other parameters such as element size, material model
and tension force constant.
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Figure 5.7: Influence of the number of through thickness integration points using ABAQUS.
Left: On the von Mises stress generated at the end of forming stage. Right: On the springback
predicted.

In the case of ABAQUS, Figure 5.7 (left) shows the von Mises stress at the reference point
at the end of the forming stage using shell elements S4R with a variable number of integration
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Figure 5.8: Influence of the number of through thickness integration points using LS-DYNA.
Left: On the von Mises stress generated at the end of forming stage. Right: On the springback
predicted.

points along the shell thickness. This result shown here demonstrated indeed the sensitivity of
the von Mises stress to the number of integration points used over the thickness. The converged
solution is obtained at 9 integration points and below 9 integration points the results were oscil-
lating. Figure 5.7 (right) demonstrates the influence of integration points used over the predicted
springback. It shows that 7 integration point gives the most accurate result. However, for the
accuracy, 11 integration points would appear to be necessary for the solution convergence in the
context of springback prediction.

Figure 5.8 (left) shows the von Mises stress at the reference point at the end of the forming
stage using shell elements with a variable number of integration points along the shell thick-
ness using LS-DYNA. Similar behavior is obtained here for LS-DYNA; 9 integration points are
recommended for accuracy (Stander et al. (2007)) because the above 9 integration points trape-
zoidal scheme is used for numerical integration which requires many more integration points
for converged solution as compared to default Gauss integration scheme. Figure 5.8 (right)
demonstrates that the springback prediction is in better agreement with the experiment for 9
integration points and less for 13 integration points.

On the basis of results in Figure 5.7 and Figure 5.8, at least 11 integration points would
appear to be necessary for ABAQUS and 9 integration points would be necessary for LS-DYNA
for solution convergence in the context of springback prediction for the draw-bending test.

5.6.4 Use of solid elements

Another possible source of error of the simulations is the use of shell instead of solid elements.
For solid elements simulations we used 2.5 mm x 2.5 mm element size in the plane of the sheet
which gave converged solution, and variable number of elements in thickness direction. For the
case of ABAQUS, Figure 5.9 (left) shows von Mises stress at the reference point using linear
solid element C3D8R with reduced integration. It is clear that convergence is achieved for the
linear solid elements in the context of von Mises stress at the end of forming stage. However, it
can be seen in Figure 5.9 (right), the error between the predicted and experimentally obtained
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springback increases with increasing the number of elements in the thickness direction.

The use of second order elements is the reliable alternative for bending dominant problems.
The computational cost is increased to a large extent, but the results are in better agreement
with the experiment as can be seen in Figure 5.9 (right). Figure 5.9 (left) shows the comparison
of the von Mises stress generated using the linear solid (C3D8R) elements with the von Mises
stress generated using the quadratic solid elements (C3D20R) at the end of the forming stage.
Figure 5.9 (right) demonstrates the comparison of the predicted springback obtained using the
quadratic solid elements and by the linear solid elements. The second order quadratic elements
(C3D20R) are more accurate in predicting the springback for the draw-bending test simulations.
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Figure 5.9: Influence of the number of through thickness solid elements using ABAQUS. Left:
On the von Mises stress generated at the end of forming stage. Right: On the springback
predicted.
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Figure 5.10: Influence of the number of through thickness solid elements using LS-DYNA.
Left: On the von Mises stress generated at the end of forming stage. Right: On the springback
predicted.

For the case of LS-DYNA, solid elements used in the simulation are 8-node brick elements.
By default, solid elements use reduced integration plus viscous hourglass control for faster
element formulation. One point integration is advantageous due to savings on computer time
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and robustness in cases of large deformations. Figure 5.10 (left) shows the von Mises stress
at the end of forming stage for the different number of solid elements in thickness direction.
Figure 5.10 (right) shows the comparison of the springback predicted for different number of
elements through thickness with the experiment.

On the basis of the results presented in Figure 5.9 and Figure 5.10, it can be concluded that
for ABAQUS the quadratic solid elements (C3D20R) with reduced integration predicted spring-
back better than the linear sold elements (C3D8R) in comparison with the experiment. However
for LS-DYNA linear solid 8 node elements with reduced integration and viscous hourglass con-
trol give good agreement in terms of springback prediction in comparison with the experiment.
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Figure 5.11: Influence of the element formulation over the predicted springback. Left: Using
ABAQUS. Right: Using LS-DYNA.

We now compare the influence of element formulation over the predicted springback in com-
parison with the experiment. Figure 5.11 compares the experimentally measured springback
with the simulation results using shell and solid elements for both softwares ABAQUS and LS-
DYNA. For ABAQUS, compared to the predicted springback using shell elements and linear
solid elements (C3D8R), the predicted springback using the quadratic solid elements (C3D20R)
is in better agreement with the experiment (see Figure 5.11 (left)). For LS-DYNA, the 8 node
linear solid elements give better agreement with the experiment than the shell elements, as
shown in Figure 5.11 (right).

5.7 Structural and process conditions

As shown in the previous section, several numerical aspects of the simulation can have a consid-
erable effect on the prediction of springback. Beyond this, of course, the structural and process
conditions play a role in the amount of springback obtained. In what follows, we consider in
this regard the back force (the tension applied to the strip), frictional effects, and geometric
factors such as the tool radius.
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5.7.1 Effect of Back Force

To study the effect of back force (the tension applied to the strip) applied to the strip over
the springback produced, different simulations are carried out using different amount of back
force. Figure 5.12 (left) shows von Mises stress at the reference point at the end of the forming
stage using shell elements S4R with different amount of back force. These results shown here
demonstrate that less von Mises stress for the high back force and this trend continues except in
the beginning of the curve at small back force of 2.5 kN before which von Mises stress increases.
Due to the higher von Mises stresses for 2.5 kN back force, the springback predicted is higher
than the springback predicted for 4 kN back force. Although, from the results in Figure 5.12
(right), it is clear that with increasing amount of back force, and other process and numerical
parameters kept unchanged, the springback decreases.
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Figure 5.12: Influence of the back force. Left: On the von Mises stress generated at the end of
forming stage. Right: On the springback predicted.

5.7.2 Effect of Roller Radius

For the draw-bending test, the bending radius has significant impact on the springback keeping
the other process and simulation parameters constant. Figure 5.13 (left) shows that with the
decreasing roller radius the von Mises stress increases at the end of forming stage. This increase
of stress gives rise to more residual stresses hence more springback is produced. This reduction
of springback with the increase of roller radius is shown in Figure 5.13 (right).

5.7.3 Effect of Friction

The effect of friction between the roller and the strip and between the strip and bending tool is
now analyzed. We first started with the case of no-friction between the parts. The coefficient
of friction increased gradually from zero to 0.15, 0.2 and 0.4. Figure 5.14 (left) shows the
coefficient of friction has no effect on the stress generated during the forming stage. This in turn
leads to the same springback prediction for all different friction coefficients. These results are
shown in Figure 5.14 (right). Hence, the friction has negligible or no effect over the springback
predicted for the draw-bending test. Although, the conclusion departs from the results presented
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Figure 5.13: Influence of the roller radius. Left: On the von Mises stress generated at the end
of forming stage. Right: On the springback predicted.

in literature (e.g. Wang et al. (2005)), most likely due to the fact that in most experiments the
sheet tension can not be controlled independently of friction, as in the draw-bending experiment.
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Figure 5.14: Influence of the friction. Left: On the von Mises stress generated at the end of
forming stage. Right: On the springback predicted.

5.7.4 Effect of material model

The choice of material model used for the simulation of metal forming and springback stages is
perhaps the most important factor that affects the results and springback prediction. The mate-
rial model describes the initial yield surface and the evolution of the initial yield surface which
may change its size, position and even shape due to plastic deformation. A uniform increase
of the yield surface can be modeled with isotropic hardening. In this case, the center of the
surface is fixed and its shape remains unaltered. A shift of the yield surface with no change in
shape and size can be modeled using kinematic hardening. To investigate the effect of material
model, we assumed the initial yield surface shows no distinct plastic orthotropy and is thus
defined by using an isotropic von Mises yield surface. Investigation for three different types
of models ( isotropic hardening model (Voce isotropic hardening law), the kinematic harden-
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ing model (Armstrong-Frederick kinematic hardening law) and combined standard isotropic-
kinematic hardening model (Voce isotropic hardening law and Armstrong-Frederick kinematic
hardening law)) are carried out. The values of the hardening model parameters used are shown
in Table 5.2. Figure 5.15 shows the comparison of the results with the experiment. The isotropic
hardening model overestimates the springback and kinematic hardening model underestimates
the springback. Hence, the standard combined hardening model estimates the springback much
better than the isotropic and kinematic hardening model alone.

Value Units

σY 0 335.745 MPa

sr 281.034 MPa

cr 13.069

Value Units

σY 0 335.745 MPa

sx 281.034 MPa

cx 33.1

Value Units

σY 0 335.745 MPa

sr 238.62 MPa

cr 8.445

sx 77.747 MPa

cx 12.155

Table 5.2: Identified hardening model parameter values for LH800. Left: isotropic hardening
model parameter. Middle: kinematic hardening model parameter. Right: combined isotropic-
kinematic hardening model parameters.
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Figure 5.15: Influence of the material model used.

5.7.5 Effect of Elastic and Inelastic material model over springback

Two choices of material models were investigated for the springback stage: Firstly, the use of
the same material model in the simulation of springback which was used in the simulation of
the forming stage. Secondly, the use of elastic material model in the springback followed by
the simulation of forming stage in which combined hardening model is used. As can be seen in



94 CHAPTER 5

Figure 5.16, the inelastic material model used in the simulation of springback stage predicts a
better result than the elastic material model.
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Figure 5.16: Influence of the elastic unloading scheme on the springback prediction results of
draw-bending.

5.8 Conclusions

In this chapter, a numerical study of the springback effect using the draw-bending test on steel
LH 800 was presented. Two FEA codes, ABAQUS and LS-DYNA, were used under simi-
lar physical and numerical conditions to simulate the draw-bending test. The test corresponds
closely to the drawing of sheet metal over a die radius into a die cavity during a typical metal
forming operation. The dependence of simulated springback on both numerical parameters and
physical ones has been investigated, and, where data was available, the results have been com-
pared with experiments. For the draw-bending test, the shell element formulation implemented
in ABAQUS and LS-DYNA shows the same trend for the mesh convergence analysis during
the forming stage, the converged solution is obtained for ABAQUS when the sheet strip is dis-
cretized by 179 x 10 elements (2.5 mm x 2.5 mm) along and across the length of the strip. For
LS-DYNA 224 x 10 elements (2.0 mm x 2.5 mm each element size) along and across the length
of the strip yield the converged solution. The predicted springback is not much affected by the
mesh refinement for both softwares.

The current investigation shows that forming results are also sensitive to the number of inte-
gration points used in the simulation. LS-DYNA gives accurate results for 9 integration points.
However, for ABAQUS, the results converged for 11 integration points for both forming and
springback prediction.

For the solid 3D element formulation, ABAQUS shows good convergence for the number of
thickness elements when using linear solid elements with reduced integration (C3D8R). How-
ever, the predicted springback is not converged and gives more springback for increasing thick-
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ness elements. The solution of this problem lies in using quadratic elements with reduced
integration (C3D20R). The springback predicted by the quadratic elements with reduced inte-
gration (C3D20R) is in better agreement with the experiment than with the linear solid element
(C3D8R). For LS-DYNA the linear 8 node brick elements give a more accurate prediction of
springback compared to ABAQUS which requires 20 node solid elements. For LS-DYNA, the
springback prediction using solid elements is in good agreement with the experiment as com-
pared to the shell elements. However, for ABAQUS the springback prediction by the non linear
solid elements are in better agreement with the experiment than the linear sold elements and
shell elements.

For the draw-bending test, the increase of the back force (sheet tension) drastically reduces
the springback. Friction between the tool and the blank usually affects the springback, as re-
ported by the literature. In the draw-bending test, the friction has little or no effect on the
springback. This perhaps could be due to the fact that the sheet tension (back force) can be con-
trolled independently of the friction, and that increasing friction does not change the back force
in the draw-bending experiment. A large radius reduces the springback for the draw-bending
test keeping the other process conditions as fixed. Most of the inaccuracies in the results can be
attributed to the material model used. In particular the inclusion of the Bauschinger effect in the
hardening material model significantly alters the result, and good agreement is reached with the
experiment as compared to the isotropic hardening model alone, which usually over-predicts
the springback. The choice of elastic and elastic-plastic unloading scheme has little effect on
the springback. The elastic-plastic springback gives better agreement with the experiment.





Appendix A

Experimental characterization and model
identification of steel DC06

This appendix presents the experimental data and identification results of the material models
presented in Chapter 1 and chapter 2 for the steel DC06.

A.1 Material Testing

The experiments in this work have been carried out using a biaxial testing device capable of
loading a sheet metal specimen in both simple shear and in plane strain tension. The device can
carry out the single- or multi-stage loading programs consisting of monotonic (e.g., forward
simple-shear), reverse (e.g., forward-reverse simple-shear), and / or orthogonal (e.g., tension-
shear) changes of loading direction. For the current work, tests were performed on specimens
of the steel DC06. The thickness of the sheet metal specimens used in all the tests was 0.7 mm.
For details concerning the experimental setup and procedure, the reader referred to chapter 1
and to Noman et al. (2010).

A.1.1 Test results

The tests performed on the specimen of the steel DC06 consist of reverse simple shear test with
different amounts of prestrains and orthogonal tension shear. The interstitial free steel DC06
characterized with the pronounced Bauschinger effect, i.e. the early re-yielding after the load
reversal, a difference of 50 MPa is observed for the largest amount of preshear. The stagnation
of work hardening is found to increase with preshear as can be seen in Figure A.1.

Consider now the orthogonal tension-shear test consists of plane strain tension followed by
the simple shear loading. The transition from tension to simple shear is either discontinuous via
intermediate unloading (path 1), or two continuous strain path changes differing in the sharpness
of the transition from tension to shear loading (path 2 and path 3, respectively). The data so
obtained is shown in Figures A.2 to A.4. Figure A.2 shows the experimental strain paths in
DC06.

Consistent with existing interpretations of such data in the literature, the presence or absence
of cross hardening in such orthogonal tests is judged solely by comparison with the monotonic
simple shear results. In particular, any overshoot of the yield stress above the monotonic level
upon transition from tension to shear is an indicator of such hardening. Using this “definition,”
paths 1 and 2 in Figure A.2 clearly exhibit cross hardening, path 3 with the smoothest transition
from tension to shear (as can be seen in Figure A.4) might exhibit a little.
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Figure A.1: Reverse simple shear tests for the steel DC06 for different levels of preshear. K12

represents the relevant component of the Kirchhoff stress and F12 represents the relevant com-
ponent of the deformation gradient.

 

 

F
1
2

[-
]

F22 − 1.0 [-]

path 1
path 2
path 3

0.2

0.3

0.4

0.5

0.6

0.02 0.04 0.06 0.08

0.1

0.1 0.12 0.14

0

0

Figure A.2: Experimental strain paths in DC06 resulting from change of loading direction from
tension to shear.

A.2 Parameter Identification

The experimental results presented in the last section show, steel DC06 exhibits pronounced
Bauschinger effect, hardening stagnation after load reversal and cross hardening after orthogo-
nal loading path change. The focus is now to identify the material parameters of the material
models presented in chapter 1 and chapter 2 using the presented experiments. The material pa-
rameter determination is carried out using the program LS-OPT in conjunction with LS-DYNA.
Given the homogeneous nature of the tests, one-element calculations suffice. The optimization
technique used relies on response surface methodology (RSM) (Stander et al., 2008).

All fits to follow are based on the fixed values of κ = 151 GPa and μ = 69.6 GPa for the



A.2 Parameter Identification 99

 

 

K
1
2

[M
Pa

]

F22 + F12 [-]

path 1
path 2
path 3

monotonic shear

0
0

50

100

150

200

250

1.1 1.2 1.3 1.4 1.5 1.6 1.7

Figure A.3: Shear stress response monotonic forward simple shear and for the three different
strain-paths of orthogonal tension-shear test shown in Figure A.2.
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Figure A.4: Discontinuous and continuous orthogonal loading-path changes from tension to
shear in DC06.

elastic properties, as well as that σY0 = 132.19 MPa for the initial yield stress, of DC06, all at
room temperature. Tensile tests performed on DC06 at 0◦, 45◦, 90◦ with respect to the rolling
direction yielded distinct initial orthotropy and so Hill parameter values of F = 0.259, G =

0.302, H = 0.698, L = M = 1.5,and N = 1.36. Strictly speaking, only N , F , G and H can be
determined by in-plane tensile tests. Isotropy is also in essence tacitly assumed for the case of
through-thickness shear.

A.2.1 Identification of the yield surface model

The material model presented in the first chapter, accounts besides a shift of the yield surface
and its proportional expansion as in the case of conventional combined hardening, also accounts
for an evolving yield surface shape and so distortional hardening. As discussed in chapter one,
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the model captures the directional hardening by an evolving yield surface. Therefore, it is
referred to here as “yield surface model”. In contrast to other models presented in literature,
e.g. presented by Teodosiu and Hu (1995, 1998); Wang et al. (2008), the current model does not
introduce coupling between the fourth order directional hardening tensor and the evolution of
back stress or a coupling of the isotropic hardening with the directional hardening tensor. For a
detailed description of the model see chapter 2. The fit procedure for the yield surface model is
described in detail in chapter 1. A brief summary will be given here. The fit procedure begins
by using monotonic simple-shear test data to identify the Voce isotropic hardening model alone,
i.e., assuming no kinematic or cross hardening.

The isotropic hardening parameters so determined are then used as starting values and upper
bound to identify the isotropic-kinematic hardening model parameters using both monotonic
and cyclic simple-shear test data.
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Figure A.5: Comparison of the experimental cyclic simple-shear data with the corresponding
identified combined isotropic-kinematic model prediction.

Value Units
sr 192 MPa
cr 6.64
sx 56.0 MPa
cx 33.1
sd 0.0
cd 23.9
sl -0.447
cl 87.3

Table A.1: Identified yield surface model parameter values for DC06 for isotropic-kinematic-
cross hardening model parameter values determined from monotonic shear, cyclic shear, and
orthogonal tension-shear, test data.
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Figure A.6: Comparison of identified isotropic-kinematic-cross hardening model behavior with
experimental data for monotonic simple-shear and orthogonal tension-shear test data corre-
sponding to strain path 1 in Figure A.2.

Finally the identification of the isotropic-kinematic-cross (i.e., complete) yield surface model
is performed. This is done with the help of the identified parameter values for the isotropic-
kinematic case as starting values. In this way, the complete model is fit to monotonic shear,
cyclic shear, and orthogonal tension-shear, test data. In particular, the test data of path 1 in
Figure A.2 is added to the previous monotonic shear and cyclic shear data sets. As with cr and
cx, the saturation rates cd and cl associated with cross hardening are constrained to be greater
than zero in the fit. On the other hand, as with sr and sx, sd and sl may be positive or negative.
Since the values for sd determined in this way were on the order of 10−3, this parameter was set
to zero in the final fits, resulting in the parameter values for the complete model shown in Table
A.1. A comparison of the corresponding experimental data and model fit is shown in Figure
A.5 and Figure A.6.

A.2.2 Identification of the full yield stress model

The yield stress model discussed in the second chapter accounts for cross-hardening, the Bausc-
hinger effect and hardening stagnation. Since the internal variables describing the hardening
behavior are coupled in the full yield stress model and there exist 22 material parameters, the
identification procedure is tedious and more complicated than for the yield stress model pre-
sented in chapter1. The strategy here is also to identify successively different subsets of the
complete set of material parameters with specific test data. In a final global run, all parameters
can be varied in order to minimize a global cost function containing experimental data from
all considered tests. Haddadi et al. (2006) presented a detailed analysis of the identification
procedure using the software SiDoLo for various materials for the Teodosiu model. The great
advantage of the identification of this material DC06 is that material parameters for DC06 from
a different manufacturer were available e.g. Boers et al. (2010); Haddadi et al. (2006). Differing
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from the procedure suggested in Haddadi et al. (2006) no special weight is given to specific re-
gions of the stress-strain curves in order to improve the quality of the fit. Even though the author
acknowledges that the effects of the variation in certain parameters are localized, in the current
work the only weights introduced to the cost function account for the fact that different tests
represent different levels of deformation. Here the constant weight of a single test is dependent
of FTot =

∫ T

0
|Ḟ | dt.

Parameter value units
κ 151000 MPa
μ 69600 MPa
σY0 132.19 MPa
x0 8.1 MPa
sr 20.8 MPa
ss 221 MPa
sl 0.0 MPa

Parameter value
cp 4.0
cx 499
cd 8.36
cl 4.07
cr 20.1

Parameter value
m 1.58
f 0.2
nl 0.0
np 90.0

Table A.2: Identified parameters of the full yield stress model for DC06.
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Figure A.7: Comparison of the experimental cyclic simple-shear data with the corresponding
identified full yield stress model prediction.

The parameters sr, cr, ss, cd, np, cp, f, x0 and cx are determined from monotonic and cyclic
shear tests. Keeping these identified parameters constant, the parameters cl, nl, sl and m are
then determined from the tension-shear test data of strain path 1 presented in Figure A.2. In
the final run using the monotonic and cyclic shear test and tension-shear test data of strain path
1 presented in Figure A.2 a variation of all parameters is performed. In this way the complete
yield stress based model is identified. The parameters for the complete model can be seen in
Table A.2. A comparison of the corresponding experimental cyclic shear data and tension-shear
data of strain path 1 presented in Figure A.2 with numerical fit is shown in Figure A.7 and
Figure A.8.
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Figure A.8: Comparison of the experimental tension-shear data for strain path 1 in Figure A.2
with the corresponding identified full yield stress model prediction.

A.2.3 Identification of the simplified yield stress model

The simplified yield stress model disussed in detail chapter 2, decouples the kinematic hard-
ening and directional hardening. This simplification reduces the number of parameters to be
determined to 17. Adopting a similar procedure, as presented in the last sub-section, succes-
sively different subsets of the complete set of material parameters are identified with specific
test data. The parameters sr, cr, x0 and cx are determined from monotonic and cyclic shear
tests.

Parameter value units
κ 151000 MPa
μ 69600 MPa
σY0 132.19 MPa
x0 50.83 MPa
sr 162.085 MPa
ss 277.39 MPa
sl 0.0 MPa

Parameter value
cx 498.9
cd 0.185
cl 12.13
cr 10.07

Table A.3: Identified parameters of the simplified yield stress model for DC06.

Keeping these identified parameters constant, the parameters cl, ss, sl and cd are then deter-
mined from the tension-shear test data of strain path 1 presented in Figure 3.3. In the final global
run using the monotonic and cyclic shear test as well as the tension-shear test data of strain path
1 presented in Figure A.2 a variation of all parameters is performed. The identified set param-
eters for the complete simplified yield stress model can be seen in Table A.3. A comparison of
numerical fit with the corresponding experimental cyclic shear data and tension-shear data of
strain path 1 presented in Figure A.2 is presented in Figure A.9 and Figure A.10.
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Figure A.9: Comparison of the experimental cyclic simple-shear data with the corresponding
identified (simplified) yield stress model prediction.
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Figure A.10: Comparison of the experimental tension-shear data for strain path 1 in Figure A.2
with the corresponding identified (simplified) yield stress model prediction.
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