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Abstract

In this paper we investigate the problem of testing semiparametric hypotheses in locally station-

ary processes. The proposed method is based on an empirical version of the L2-distance between

the true time varying spectral density and its best approximation under the null hypothesis. As

this approach only requires estimation of integrals of the time varying spectral density and its

square, we do not have to choose a smoothing bandwidth for the local estimation of the spectral

density – in contrast to most other procedures discussed in the literature. Asymptotic normality

of the test statistic is derived both under the null hypothesis and the alternative. We also propose

a bootstrap procedure to obtain critical values in the case of small sample sizes. Additionally,

we investigate the finite sample properties of the new method and compare it with the currently

available procedures by means of a simulation study. Finally, we illustrate the performance of the

new test in a data example investigating log returns of the S&P 500.

AMS subject classification: 62M10, 62M15, 62G10
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1 Introduction

Most of the classical literature on time series analysis assumes that the underlying process is second-

order stationary. While this assumption is quite tempting from a mathematical point of view, because

it allows for an elegant development of useful statistical inference procedures, it is often difficult to

justify in applications, as most processes in reality change their dependency structure over time. A

more realistic framework is therefore one that allows for changes in the second-order characteristics

over time and many stochastic models which address this issue have been developed. Out of the large

literature we mention the early work on this subject of Priestley (1965), who considered oscillating

processes. In the last decade the concept of locally stationary processes has become quite popular,

because in contrast to other concepts this approach allows for a meaningful asymptotic theory, which

is essential for statistical inference in such models. Locally stationary processes were introduced by

Dahlhaus (1996) as processes with an MA(∞) representation, where the coefficients can vary smoothly

over time. An important subclass is that of time varying ARMA(p, q) models.

While estimation procedures for locally stationary processes in various settings have found considerable

interest in the literature [see for example Neumann and von Sachs (1997), Dahlhaus et al. (1999),

Chang and Morettin (1999), Dahlhaus and Polonik (2006) or Van Bellegem and von Sachs (2008) among

others], the problem of testing parametric or semiparametric hypotheses [like testing for a tvARMA(p, q)

structure] has received much less attention. However, testing hypotheses of this type is very important,

because if a model has been misspecified the use of model-based estimation and forecasting procedures

may yield an inefficient and – in the worst case – inconsistent and invalid statistical analysis of the

data.

In the “classical” case of stationary processes this statistical problem has been studied intensively in

the literature [see for example Hjellvik et al. (1998), Paparoditis (2000), Dette and Spreckelsen (2003),

Delgado et al. (2005), Eichler (2008) among many others]. For Gaussian locally stationary processes,

likelihood ratio as well as Wald and Lagrange multiplier tests of the null hypothesis that the time

varying spectral density depends on a finite dimensional parameter vector were suggested in Sakiyama

and Taniguchi (2003). As pointed out by Sergides and Paparoditis (2009), this approach is quite

restrictive and does not allow to test for a tvARMA(p, q) model for example. These authors proposed

an alternative test to decide whether a locally stationary process belongs to a general semiparametric

class of time varying processes against an unspecified, locally stationary alternative. Their method is

based on an L2-distance between a nonparametric and a semiparametric estimate of the local spectral

density.

A drawback in the approach of Sergides and Paparoditis (2009) is the choice of two regularization

parameters. The first one controls the length of the intervals on which the local estimation of the spectral

density takes place. This regularization is inherent to any statistical inference in locally stationary

processes and cannot be avoided. The second additional regularization parameter occurs in a kernel

smoothing procedure which is used for the nonparametric estimation of the local spectral density. As
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it was pointed out in Sergides and Paparoditis (2009), it is especially the choice of the smoothing

bandwidth in this estimate that influences the properties of the corresponding test substantially.

This paper is devoted to the presentation of a simple alternative method for testing semiparametric

hypotheses which does not require the choice of an additional smoothing bandwidth. As in Sergides

and Paparoditis (2009) our approach is based on an empirical L2-distance measure, but it avoids kernel

smoothing by estimating integrals of certain functionals of the local spectral density directly instead

of estimating the local spectral density first. As a consequence, the procedure proposed in this paper

requires only the specification of one regularization parameter, which is impossible to avoid in such

kinds of testing problems.

The remaining part of the paper is organized as follows. In Section 2 we introduce the necessary notation

and explain the basic principle of the method. In particular, we derive the asymptotic distribution of

the proposed statistic both under the null hypothesis and the alternative. In Section 3 we introduce a

bootstrap method to approximate the distribution of the test statistic under the null hypothesis when

sample sizes are rather small. The finite sample properties of the new test are studied in Section 4

by means of a simulation study, where we also provide a comparison with the procedure proposed by

Sergides and Paparoditis (2009) and analyze 2049 log returns of the S&P 500. Finally, all technical

details are deferred to an appendix in Section 5.

2 The testing procedure

Following Dahlhaus and Polonik (2009), we define locally stationary time series via a sequence of

stochastic processes {Xt,T}t=1,...,T , where each random variable Xt,T exhibits a linear representation of

the form

Xt,T =
∞∑

l=−∞

ψt,T,lZt−l, t = 1, . . . , T(2.1)

and the random variables Zt are i.i.d. N(0, 1) distributed [the assumption of Gaussianity is imposed to

simplify technical arguments, see Remark 2.9]. Since the constants ψt,T,l are in general time dependent,

each process {Xt,T} is typically not stationary. However, if we interpret Xt,T as the observation of some

underlying process X at time t/T and if we further assume that the coefficients ψt,T,l behave like some

smooth functions in the neighbourhood of each t/T , then the time series can be regarded as locally

stationary in the sense that observations nearby show approximately stationary behaviour. For this

reason we impose additionally that there exist twice continuously differentiable functions ψl : [0, 1]→ R

(l ∈ Z) with

∞∑
l=−∞

sup
t=1,...,T

|ψt,T,l − ψl(t/T )| = O(1/T ).(2.2)

3



Furthermore, we assume that the technical conditions

∞∑
l=−∞

sup
u∈[0,1]

|ψl(u)||l|2 <∞,(2.3)

∞∑
l=−∞

sup
u∈[0,1]

|ψ′l(u)||l| <∞,(2.4)

∞∑
l=−∞

sup
u∈[0,1]

|ψ′′l (u)| <∞(2.5)

are satisfied, which are in general rather mild, as they hold in a variety of time-varying ARMA(p, q)

models. Note also that variables Zt with time varying variance σ2(t/T ) can be included in the model

by choosing other coefficients ψt,T,l in the representation (2.1) appropriately.

The uniquely defined function

f(u, λ) =
1

2π
|ψ(u, exp(−iλ))|2

with

ψ(u, exp(−iλ)) :=
∞∑

l=−∞

ψl(u) exp(−iλl)

is called the time varying spectral density of {Xt,T} [see Dahlhaus (1996)]. It is continuous by assump-

tion, and we denote by FLS the set of all time varying spectral densities which satisfy (2.3)–(2.5).

The aim of this paper is to develop a test for the hypothesis that the time varying spectral density

f(u, λ) has a semiparametric structure, so the null hypothesis is given by

H0 : f(u, λ) ∈ FSPLS = {g(θ(u), λ); θ(u) = (θ1(u), ..., θp(u)) ∈ Θ}(2.6)

for some fixed integer p. Here, Θ denotes an appropriately defined space of p-dimensional functions

and g is some fixed mapping which will be specified below. Throughout this paper we will make the

following basic assumptions regarding the class FSPLS.

Assumption 2.1 For each u ∈ [0, 1] let Θu be a compact subset of R and set ΘR =
⋃
u∈[0,1] Θu. For

Θ, we assume the following condition to hold:

(i) Θ is the space of all continuously differentiable functions θ with θ(u) ∈ Θu for all u ∈ [0, 1].

We assume that the function g is defined on ΘR × IR. Furthermore,

(ii) For each θ ∈ ΘR, the function g(θ, λ) is symmetric and 2π-periodic in its second component λ.

(iii) The functions g and 1/g are four times continuously differentiable, and any of their partial deriva-

tives up to order four is continuous on ΘR × [−π, π] and uniformly bounded from below and

above.
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Example 2.1 An example of particular importance which fits in the described setup is the null hy-

pothesis that the underlying process is a tvARMA(p, q) process, i.e. Xt,T is generated by the equation

Xt,T +

p∑
j=1

aj(t/T )Xt−j,T = εt,T +

q∑
j=1

bj(t/T )εt−j,T

with independent random variables εt,T ∼ N(0, σ2(t/T )). To avoid identifiability issues we assume that

ap(u) and bq(u) are not zero everywhere. In Theorem 2.3 of Dahlhaus (1996) it is shown that a member

of this class of tvARMA(p, q) processes indeed defines a locally stationary process, if the functions aj(·),
bj(·) are both continuous on the interval [0, 1] and for all u ∈ [0, 1] the polynomial

∑p
j=0 aj(u)zj 6= 0

has no zeros in the disc {z : |z| ≤ 1 + δ} for some constant δ > 0 which is independent of u. In this

case the time varying spectral density is given by

f(u, λ) =
σ2(u)

2π

∣∣∣∑q
j=0 bj(u) exp(iλj)

∣∣∣2∣∣∣∑p
j=0 aj(u) exp(iλj)

∣∣∣2 ,
and we see that f(u, λ) is of the form g(θ(u), λ) with θ(u) = (a1(u), ..., ap(u), b1(u), ..., bq(u), σ2(u)).

Moreover, Assumption 2.1 is satisfied for an appropriate choice of the set Θ.

In order to measure the deviation between the true spectral density and its best approximation under

the null hypothesis, we proceed in a similar way as Sergides and Paparoditis (2009). Following Dahlhaus

(1996), the asymptotic Kullback-Leibler divergence between two Gaussian locally stationary processes

with respective spectral densities k(u, λ) and l(u, λ) is given by

LKL(k, l) =
1

4π

∫ 1

0

∫ π

−π

(
log

l(u, λ)

k(u, λ)
+
k(u, λ)

l(u, λ)
− 1
)
dλdu.

This result motivates the following choice of θ0 : [0, 1] → ΘR as the best approximation of the local

spectral density f(u, λ) by a given semiparametric class. We set for each u ∈ [0, 1]

θ0(u) = argminθ∈Θu
L(u, θ),(2.7)

L(u, θ) =
1

4π

∫ π

−π

(
log g(θ, λ) +

f(u, λ)

g(θ, λ)

)
dλ.(2.8)

This means that we determine the parameter θ0 : [0, 1] → IRp by minimizing a local version of the

Kullback-Leibler divergence L(f, gθ), where we ignore terms not depending on θ. If the null hypothesis

holds and Assumption 2.1 is satisfied, then θ0 indeed corresponds to the “parameter” of the true spectral

density. Under the alternative it is neither obvious that θ0(u) exists nor that the function θ0 belongs to

Θ. For this reason we introduce

Assumption 2.2 We have f ∈ FLS and assume that the set FSPLS satisfies
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(i) For each u ∈ [0, 1] the parameter θ0(u) defined in (2.7) exists and is unique.

(ii) For each u ∈ [0, 1] the parameter θ0(u) is an element of the interior of Θu.

(iii) For each u ∈ [0, 1] the matrix ∂2L(u,θ)
∂θ2

is invertible at (u, θ0(u)).

The last assumption guarantees that the minimizing function θ0 indeed belongs to Θ, which follows

from an application of the implicit function theorem. Our idea for the construction of a test for the

hypothesis

H0 : f ∈ FSPLS vs. H1 : f ∈ FLS\FSPLS

is to estimate one of the two closely related L2-distances

D2 :=
1

4π

∫ 1

0

∫ π

−π

(
f(u, λ)− g(θ0(u), λ)

)2

dλdu,(2.9)

R2 :=
1

4π

∫ 1

0

∫ π

−π

( f(u, λ)

g(θ0(u), λ)
− 1
)2

dλdu,(2.10)

where the parameter θ0(u) has been defined in (2.7). Both measures are justified by the fact that we

have f(u, λ) = g(θ0(u), λ) under the null hypothesis in which case D2 = R2 = 0 holds, whereas each of

the two distances is positive, whenever f(u, λ) corresponds to the alternative H1. The quantity D2 is

motivated by mathematical concept of L2-approximation, while R2 is considered for two reasons: it is

scale invariant by construction, and a Taylor expansion of the function h(z) = log(z−1) + z − 1 gives

h(z) = 1
2
(z − 1)2 +O((z − 1)3). Consequently, up to a constant the measure R2 can be regarded as an

approximation of the Kullback-Leibler divergence L(f, gθ0).

In order to define reasonable empirical versions of D2 and R2, we need at least rough estimators for the

local spectral density. Those will be obtained from local periodograms, and we assume (without loss of

generality) that the total sample size T can be decomposed as T = NM , where N and M are integers

and N is even. We define the local periodogram at time u by

IXN (u, λ) :=
1

2πN

∣∣∣N−1∑
s=0

XbuT c−N/2+1+s,T exp(−iλs)
∣∣∣2(2.11)

[see Dahlhaus (1997)], where we have set Xj,T = 0, if j 6∈ {1, . . . , T}. This is the usual periodogram

computed from the observations XbuT c−N/2+1,T , . . . , XbuT c+N/2,T , and this explains why it serves as a

reasonable estimate for f(u, λ), if N tends to infinity.

An estimator for θ0(u) will now be constructed from an empirical version of the distance L(u, θ) defined

in (2.8). To this end we set

LT (u, θ) :=
1

N

bN
2
c∑

k=1

{
log g(θ, λk) +

IN(u, λk)

g(θ, λk)

}
,

6



so we use a Riemann sum at the Fourier frequencies λk := 2πk
N

to approximate the integral with respect

to λ and replace the unknown f(u, λk) by the previously defined local periodogram. In a next step we

define θ̂T (u) := argminθ∈Θu
LT (u, θ), and the following Lemma shows that θ̂T (u) is a consistent estimator

for θ0(u).

Lemma 2.3 If Assumption 2.1, Assumption 2.2 and

N →∞, M →∞, T 1/2

N
→ 0,

N

T 3/4
→ 0(2.12)

are satisfied, then for all u ∈ [0, 1] we have

θ̂T (u) = θ0(u) +Op(
√

1/N)

as T →∞.

It is worth noting that Lemma 2.3 holds both under the null hypothesis H0 and the alternative H1.

This result suggests to replace the unknown function θ0(u) by θ̂T (u) to obtain empirical versions of D2

and R2, and we focus on the estimation of the measure D2 defined in (2.9) for a moment. We have

a suitable approximation for the integral with respect to the variable λ using the Fourier frequencies

from above, whereas for the integral with respect to u we introduce the notation

uj :=
tj
T

:=
N(j − 1) +N/2

T
.

In other words, we split the interval [0, 1] into M disjoint intervals, each with N observations and mid-

point uj. Thus the entire procedure depends on the particular choice of the regularization parameter

N , which is an intrinsic feature of any method for statistical inference in locally stationary processes,

as one needs local estimates for the spectral density [see Dahlhaus (1997), Sakiyama and Taniguchi

(2004), Sergides and Paparoditis (2008), Sergides and Paparoditis (2009) or Palma and Olea (2010)

among many others]. Especially in the problem of testing semiparametric hypotheses it is impossible

to avoid some kind of smoothing, because one has to estimate the function θ(u) in some way.

From the discussion above, it follows that a natural estimator for D2 is given by

F̂T =
1

T

M∑
j=1

bN
2
c∑

k=1

(
IXN (uj, λk)− g(θ̂T (uj), λk)

)2

.

Our first result regards the error due to the estimation of θ(u) and is obtained from Lemma 2.3 and a

Taylor expansion.

Theorem 2.4 Suppose that Assumption 2.1, Assumption 2.2 and (2.12) are satisfied. Then we have

1

T

M∑
j=1

bN
2
c∑

k=1

(
g(θ0(uj), λk)− g(θ̂T (uj), λk)

)2

= OP (1/N).
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It turns out that this approximation error is of small order compared to the rate of convergence. Indeed,

the latter one will be of order
√

1/T , and from (2.12) we have
√
T/N → 0. Therefore, we will focus

first on the oracle

F̂ o
T =

1

T

M∑
j=1

bN
2
c∑

k=1

(
IXN (uj, λk)− g(θ0(uj), λk)

)2

.

This statistic is not a consistent estimate of D2, as it contains an additional bias term. Nevertheless, a

bias correction can be carried out easily and a consistent estimator for D2 is given by

Ĝo
T :=

1

T

M∑
j=1

bN
2
c∑

k=1

(
IXN (uj, λk)− g(θ0(uj), λk)

)2

− 1

2T

M∑
j=1

bN
2
c∑

k=1

IXN (uj, λk)
2.

We have precisely

Lemma 2.5 If Assumption 2.1, Assumption 2.2 and (2.12) are satisfied, then as T →∞

F̂ o
T → D2 +

1

4π

∫ 1

0

∫ π

−π
f 2(u, λ)dλdu and Ĝo

T → D2

in probability.

These results suggest that our final estimator for D2 will be given by the statistic

ĜT :=
1

T

M∑
j=1

bN
2
c∑

k=1

(
IXN (uj, λk)− g(θ̂T (uj), λk)

)2

− 1

2T

M∑
j=1

bN
2
c∑

k=1

IXN (uj, λk)
2.(2.13)

Our main result specifies the asymptotic properties of ĜT both under the null hypothesis and the

alternative.

Theorem 2.6 If Assumption 2.1, Assumption 2.2 and (2.12) are satisfied, then as T →∞ we have

√
T (ĜT −D2)

D−−→ N (0, σ2
1),

where the asymptotic variance is given by

σ2
1 =

5

4π

∫ 1

0

∫ π

−π
f 4(u, λ)dλdu+

1

π

∫ 1

0

∫ π

−π
g2(θ0(u), λ)f 2(u, λ)dλdu− 2

π

∫ 1

0

∫ π

−π
g(θ0(u), λ)f 3(u, λ)dλdu.

In a similar manner as Lemma 2.5 it can be shown that the statistic

V̂1,T :=
5

24T

M∑
j=1

bN
2
c∑

k=1

IXN (uj, λk)
4 +

2

T

M∑
j=1

bN
2
c∑

k=1

g2(θ̂T (uj), λk)I
X
N (uj, λk)

2 − 4

3T

M∑
j=1

bN
2
c∑

k=1

g(θ̂T (uj), λk)I
X
N (uj, λk)

3
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defines a consistent estimator of the asymptotic variance in Theorem 2.6. Under the null hypothesis

H0 the asymptotic variance reduces to

σ2
1,H0

=
1

4π

∫ 1

0

∫ π

−π
g4(θ0(u), λ)dλdu,

which can easily be estimated by

V̂1,H0,T :=
1

T

M∑
j=1

bN
2
c∑

k=1

g4(θ̂T (uj), λk).(2.14)

Therefore an asymptotic level α test is obtained by rejecting the null hypothesis if

√
T

ĜT√
V̂1,H0,T

≥ z1−α,(2.15)

where z1−α denotes the (1 − α)-quantile of the standard normal distribution. Due to ĜT → D2 in

probability, the test is consistent as well.

With the same arguments as above it can be shown that the statistic

ĤT :=
1

T

M∑
j=1

bN
2
c∑

k=1

( IN(uj, λk)

g(θ̂T (uj), λk)
− 1
)2

− 1

2T

M∑
j=1

bN
2
c∑

k=1

IXN (uj, λk)
2

g2(θ̂T (uj), λk)

defines a consistent estimator for the distance R2 defined in (2.10) and the analogue to Theorem 2.6 is

given by the following result.

Theorem 2.7 If Assumption 2.1, Assumption 2.2 and (2.12) are satisfied, then as T →∞ we have

√
T (ĤT −R2)

D−−→ N (0, σ2
2),

where the asymptotic variance is given by

σ2
2 =

5

4π

∫ 1

0

∫ π

−π

f 4(u, λ)

g4(θ0(u), λ)
dλdu+

1

π

∫ 1

0

∫ π

−π

f 2(u, λ)

g2(θ0(u), λ)
dλdu− 2

π

∫ 1

0

∫ π

−π

f 3(u, λ)

g3(θ0(u), λ)
dλdu.

Under the null hypothesis the asymptotic variance simplifies to

σ2
2,H0

=
1

2
,

whereas in the general case a consistent estimator for the variance σ2
2 is given by

V̂2,T :=
5

24T

M∑
j=1

bN
2
c∑

k=1

IXN (uj, λk)
4

g4(θ̂T (uj), λk)
+

2

T

M∑
j=1

bN
2
c∑

k=1

IXN (uj, λk)
2

g2(θ̂T (uj), λk)
− 4

3T

M∑
j=1

bN
2
c∑

k=1

IXN (uj, λk)
3

g3(θ̂T (uj), λk)
.(2.16)
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Hence an asymptotic level α test is obtained by rejecting the null hypothesis if

√
2TĤT ≥ z1−α.(2.17)

Due to ĤT → R2 in probability this test is consistent as well, and in practice it appears to be advan-

tageous to the previous one, as we do not have to estimate the asymptotic variance in Theorem 2.7.

However, in the simulation study in Section 4 we will demonstrate that a bootstrap version of the test

(2.15) is more robust with respect to the choice of the regularization parameter N than the test defined

by (2.17) and therefore both proposals have their pros and cons.

Remark 2.8

(a) Note that instead of θ̂T (u) every other
√
N -consistent estimator for θ0(u) could be used without

affecting the validity of Theorem 2.6 and Theorem 2.7.

(b) From Theorem 2.6 and 2.7 it follows that[
0, ĜT + z1−α

√
V̂1,T/T

]
and

[
0, ĤT + z1−α

√
V̂2,T/T

]

are asymptotic (1−α) confidence interval for the quantities D2 and R2, respectively [here z1−α denotes

the (1− α) quantile of the standard normal distribution].

(c) By means of Theorem 2.7 we can construct an asymptotic level α test for the so called precise

hypothesis

H0 : R2 > ε versus H1 : R2 ≤ ε(2.18)

[see Berger and Delampady (1987)] as well, where ε > 0 denotes a prespecified constant. We reject the

hypothesis H0 whenever

ĤT − ε < zα

√
V̂2,T/T ,

where the estimate V̂2,T is defined in (2.16). The importance of the hypothesis (2.18) stems from the

fact that in reality a particular model will never be precisely correct. Note that R2 defines a measure

for the deviation from the null hypothesis. Consequently – if the null hypotheses in (2.18) is rejected –

the experimenter decides for an approximately semiparametric model at a controlled type I error.

Remark 2.9

We note that the assumption of Gaussianity is only needed to simplify technical arguments. The

results in Theorem 2.6 and 2.7 can be extended to the more general case of independent and identically

distributed innovations with existing moments of all order. In this case both Theorem 2.6 and 2.7
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remain valid with the different asymptotic variances

σ2
1,g =

5

4π

∫ 1

0

∫ π

−π
f 4(u, λ)dλdu+

1

π

∫ 1

0

∫ π

−π
g2(θ0(u), λ)f 2(u, λ)dλdu− 2

π

∫ 1

0

∫ π

−π
g(θ0(u), λ)f 3(u, λ)dλdu

+ κ4

{ 1

4π2

∫ 1

0

(∫ π

−π
f 2(u, λ)dλ

)2

du+
1

4π2

∫ 1

0

(∫ π

−π
g(θ0(u), λ)f(u, λ)dλ

)2

du

− 1

2π2

∫ 1

0

(∫ π

−π
f 2(u, λ)dλ

)(∫ π

−π
g(θ0(u), λ)f(u, λ)dλ

)
du
}

and

σ2
2,g =

5

4π

∫ 1

0

∫ π

−π

f 4(u, λ)

g4(θ0(u), λ)
dλdu+

1

π

∫ 1

0

∫ π

−π

f 2(u, λ)

g2(θ0(u), λ)
dλdu− 2

π

∫ 1

0

∫ π

−π

f 3(u, λ)

g3(θ0(u), λ)
dλdu

+ κ4

{ 1

4π2

∫ 1

0

(∫ π

−π

f 2(u, λ)

g2(θ0(u), λ)
dλ
)2

du+
1

4π2

∫ 1

0

(∫ π

−π

f(u, λ)

g(θ0(u), λ)
dλ
)2

du

− 1

2π2

∫ 1

0

(∫ π

−π

f 2(u, λ)

g2(θ0(u), λ)
dλ
)(∫ π

−π

f(u, λ)

g(θ0(u), λ)
dλ
)
du,

where κ4 denotes the fourth cumulant of the innovations. If the null hypothesis (2.6) is true, we have

f(u, λ) = g(θ0(u), λ) and therefore σ2
1 = σ2

1,g and σ2
2 = σ2

2,g.

3 Bootstrapping the test statistic

Based on Theorem 2.6 and Theorem 2.7 we have constructed tests in (2.15) and (2.17) that rely on

approximations of the quantiles of the test statistics by the corresponding quantiles of the limiting

standard normal distribution. However, we have experienced that the quality of these approximations

is rather poor for finite samples, and it is worth noting that this is indeed the case for both situations.

Thus it seems as if it is not the estimation of the variance in (2.15) that affects the accuracy of the

normal approximation, but rather the shape of the finite sample distributions. For details on the precise

results of the simulation study we refer to Section 4.

To improve the approximation of the nominal level we propose a bootstrap procedure to create pseudo-

observations, from which in each step the test statistic is computed. By replication, we obtain empirical

quantiles on which alternative tests are based. For the sake of brevity we focus on the empirical quantiles

of the distribution of the statistic
√
TĜT/

√
V̂1,H0,T only, but a similar bootstrap method can be derived

to approximate the quantiles of the distribution of
√

2TĤT .

The general procedure starts with the generation of independent identically distributed random variables

Z∗1 , ..., Z
∗
T ∼ N(0, 1), from which we compute the local Fourier transforms

J∗N,Z(uj, λk) :=
1√

2πN

N−1∑
s=0

Z∗bujT c−N/2+1+s,T exp(−iλks)

11



for i = 1, ...,M and k = 1, ..., bN
2
c. In a next step we set

J∗N,X(uj, λk) :=

√
2πg(θ̂T (uj), λk)J

∗
N,Z(uj, λk),(3.1)

where θ̂T (uj) is the estimator of θ0(uj) using the original data X1,T , X2,T , ..., XT,T . We then calculate a

bootstrap version of the local periodogram via

I∗N(uj, λk) := |J∗N,X(uj, λk)|2.

This definition makes sense, as the standard result for stationary processes, which says that the peri-

odogram of a linear process can essentially be approximated by the product of its spectral density and

the periodogram of the innovations, also applies for locally stationary ones. Finally, the test statistic

for the bootstrap data is defined by
√
TĜ∗T/

√
V̂ ∗1,T , where

Ĝ∗T : =
1

T

M∑
j=1

bN
2
c∑

k=1

(
I∗N(uj, λk)− g(θ̂∗T (uj), λk)

)2

− 1

2T

M∑
j=1

bN
2
c∑

k=1

I∗N(uj, λk)
2,

V̂ ∗1,T : =
1

T

M∑
j=1

bN
2
c∑

k=1

g4(θ̂∗T (uj), λk),

are the bootstrap analogues of the statistics ĜT and V̂1,H0,T defined in (2.13) and (2.14), respectively, and

θ̂∗T (u) is the estimator for θ0(u) using the local periodogram I∗N(u, λ). Note that from (3.1) one could also

obtain a pseudo-series X∗1,T , ..., X
∗
T,T by the inversion formula for the discrete Fourier transformation,

which is not necessary here, since we only require replications of the local periodogram to compute our

test statistic.

The following result shows that under the null hypothesis the bootstrap method leads to a valid ap-

proximation of the distribution of the statistic ĜT . We follow Bickel and Freedman (1981) and measure

the distance between distributions F and G by Mallow’s distance

d2(F,G) = inf
(
E|X − Y |2

)1/2

,

where the infimum is taken over all pairs of random variables X and Y having the given marginal

distributions F and G.

Theorem 3.1 If the null hypothesis H0 in (2.6), (2.12) and Assumptions 2.1 and 2.2 are satisfied,

then, conditionally on X1,T , ..., XT,T , we have as T →∞

d2

( √TĜT√
V̂1,H0,T

,

√
TĜ∗T√
V̂ ∗1,T

)
→ 0

in probability.

12



Finally, we obtain empirical quantiles as follows: Let Ĝ∗T,1, . . . , Ĝ
∗
T,B and V̂ ∗1,T,1, . . . , V̂

∗
1,T,B denote the

sample from B bootstrap replications. Then we reject the null hypothesis whenever

ĜT√
V̂1,H0,T

>
( Ĝ∗√

V̂ ∗

)
T,(b(1−α)Bc)

,(3.2)

where
(

Ĝ∗√
V̂ ∗

)
T,1
, . . . ,

(
Ĝ∗√
V̂ ∗

)
T,B

denotes the order statistic of
Ĝ∗

T,1√
V̂ ∗
1,T,1

, . . . ,
Ĝ∗

T,B√
V̂ ∗
1,T,B

. By Theorem 3.1 this

test has asymptotic level α and is consistent, because conditionally on X1,T , ..., XT,T each bootstrap

statistic
√
TĜ∗T/

√
V̂ ∗1,T converges to a standard normal distribution, while

√
TĜT/

√
V̂1,H0,T blows up

to infinity by Theorem 2.6, if the null hypothesis is not satisfied. We can use a similar bootstrap

procedure to approximate the quantiles of the distribution of the statistic
√

2TĤT . In fact only the

final step differs, because we have to calculate Ĥ∗T instead of Ĝ∗T and V̂ ∗1,T .

Since we want to compare our approach with that of Sergides and Paparoditis (2009) in the next

section and as these authors require a bootstrap procedure to obtain satisfying results as well, we

also investigate the differences between the method suggested in this paper and the one proposed by

these authors. Their methodology is limited to the case of testing for a tvAR(p) structure, so the null

hypothesis is given by

(3.3) H0 : f(u, λ) =
σ2(u)

2π

∣∣∣ p∑
j=0

aj(u) exp(iλj)
∣∣∣−2

,

for some appropriate functions aj(·), σ(·), and the estimates for these functions are denoted by â(u) =

(â1(u), ..., âp(u))T and σ̂2(u). As it was pointed out in Dahlhaus (2009), in the case of a tvAR(p) process

the estimator θ̂T (u) is the same as the estimator obtained by solving the local Yule-Walker equations.

Consequently, the estimate â(u) can be obtained as a solution of the equation −Ŝ(u)â(u) = ŝ(u), where

Ŝ(u) := ĉN(u, i− j)i,j=1,...,p, ŝ(u) := (ĉN(u, 1), ..., ĉN(u, p))T ,

and

ĉN(u, j) :=
1

N

N−1∑
k,l=0
k−l=j

XbuT c−N/2+k+1,TXbuT c−N/2+l+1,T =

∫ π

−π
IXN (u, λ) exp(−iλj)dλ

plays the role of an empirical local covariance. An estimator for the variance function of the innovations

is then given by σ̂2(u) = ĉN(u, 0) + â(u)T ŝ(u).

The bootstrap procedure proposed by Sergides and Paparoditis (2009) fits a tvAR(p) model to the data

X1,T , ..., XT,T by solving the local Yule-Walker equations. Once we have computed those estimates at

times t/T , we generate pseudo observations X∗1,T , ..., X
∗
T,T from the fitted tvAR(p) model, i.e. from

X∗t,T +

p∑
j=1

âj(t/T )X∗t−j,T = σ̂(t/T )Z∗t .

13



Here we have set X∗j,T = Xj,T for the first p observations, and the Z∗t are i.i.d. N(0, 1) distributed

random variables, independent of X1,T , ..., XT,T . Using these pseudo observations we then calculate the

bootstrap version of our test statistic.

4 Finite sample properties

In this section we study the finite sample properties of the asymptotic level α tests defined by (2.15)

and (2.17) as well as of their bootstrap versions introduced in Section 3. We show the advantages

of the latter approximations and compare our approach with the one which was recently proposed

by Sergides and Paparoditis (2009). All reported results are based on 500 simulation runs and 200

bootstrap replications.

Let us start with a heuristic discussion on how to choose N [or M ] in practice. In general, we recommend

to choose N rather large compared to M . Apart from the assumptions in (2.12), which are required for

the asymptotic theory, the main reason is that we have to minimize the bias induced by the estimation

of the function θ(u). Theorem 2.4 suggests that any choice satisfying
√
T/N → 0 is sufficient, but in

order to obtain a negligible error for realistic sample sizes, we recommend to choose N of a considerably

larger order than
√
T . On the other hand, as we also have to address the local structure of the time

series, M may not be too small. Therefore, our experience is that in sample sizes up to T = 1024 the

choice M = 8 appears to be reasonable, and these recommendations are supported by the simulation

results presented in the next two sections as well.

4.1 Advantages of the bootstrap method

In this paragraph we compare the new test defined in (2.15), which is based on the quantiles of the

normal distribution, with the two bootstrap tests described in Section 3. In order to demonstrate the

advantages of the latter method and since we want to compare our procedure with that of Sergides and

Paparoditis (2009), we exemplarily consider AR(p) processes of the form

Xt,T + 0.5 cos(4πt/T )Xt−1,T + cXt−2,T = Zt,(4.1)

with independent, standard Gaussian distributed innovations Zt, and using different choices for the

parameter c. Other scenarios show similar results and are not depicted for the sake of brevity.

The null hypothesis is that the underlying process is a tvAR(1) process with homoscedastic innovations,

i.e. σ2(u) ≡ 1. Therefore the choice c = 0 in (4.1) corresponds to the null hypothesis, whereas c = 0.3

represents an alternative. Both the results with and without bootstrap approximations are depicted in

Table 1 for various sample sizes and choices of M and N . While the Bootstrap (1)-column corresponds

to the test in (3.2), the Bootstrap (2)-column corresponds to the proposal of Sergides and Paparoditis

(2009) which was described in the previous paragraph.

We observe that for small sample sizes the approximation using the quantiles of the standard normal

distribution is rather poor, while for the sample size T = 1024 the approximation becomes more accurate

14



Without Bootstrap With Bootstrap (1) With Bootstrap (2)

H0 : c = 0 H1 : c = 0.3 H0 : c = 0 H1 : c = 0.3 H0 : c = 0 H1 : c = 0.3

T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

64 8 8 .004 .022 .104 .162 .070 .104 .164 .214 .054 .100 .160 .248

128 16 8 .014 .034 .146 .216 .038 .086 .272 .346 .050 .100 .262 .350

128 8 16 .006 .030 .090 .170 .056 .078 .226 .276 .064 .116 .228 .314

256 32 8 .024 .036 .298 .398 .080 .110 .448 .588 .056 .104 .480 .576

256 16 16 .006 .036 .220 .322 .048 .092 .424 .506 .048 .106 .402 .480

256 8 32 .004 .044 .092 .200 .048 .06 .286 .332 .066 .122 .292 .396

512 64 8 .028 .050 .592 .696 .050 .100 .724 .828 .056 .138 .692 .794

512 32 16 .016 .026 .500 .628 .068 .116 .750 .818 .064 .118 .690 .778

512 16 32 .008 .032 .348 .486 .032 .072 .626 .688 .076 .112 .582 .646

512 8 64 .006 .100 .142 .314 .026 .044 .328 .372 .060 .128 .306 .396

1024 128 8 .044 .076 .852 .908 .082 .136 .906 .954 .058 .100 .882 .944

1024 64 16 .020 .024 .832 .89 .054 .122 .906 .970 .074 .136 .926 .962

1024 32 32 .004 .012 .696 .786 .054 .080 .938 .958 .052 .094 .868 .920

1024 16 64 .004 .038 .510 .648 .050 .090 .758 .802 .082 .106 .680 .754

1024 8 128 .018 .198 .192 .440 .016 .032 .368 .424 .080 .148 .332 .408

Table 1: Rejection probabilities of the test (2.15) in the model (4.1) for different values of c using the

quantiles of the standard normal distribution and of the bootstrap approximations.
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H0 : φ(x)=−0.9x
c=0

H0 : φ(x)=0.9x
c=0

H1 : φ(x)=0.9x
c=0.2

H1 : φ(x)=0.9x
c=0.3

T N M 5% 10% 5% 10% 5% 10% 5% 10%

64 8 8 .042 .090 .062 .098 .090 .146 .198 .280

128 16 8 .056 .094 .056 .096 .166 .236 .278 .348

128 8 16 .050 .116 .058 .096 .096 .156 .168 .248

256 32 8 .048 .108 .048 .094 .172 .268 .334 .456

256 16 16 .054 .102 .056 .104 .184 .248 .322 .390

256 8 32 .056 .112 .048 .098 .080 .142 .140 .198

Table 2: Rejection probabilities of the bootstrap version of the test (2.15) in model (4.2) for different

choices of the function φ and the parameter c using the quantiles of the bootstrap approximation.

if we choose M = 8, as it was recommended in the previous paragraph. In comparison to that, the

results using the quantiles of the bootstrap approximation are quite satisfying even for small sample

sizes [note that T = 64 corresponds to a very small sample size, as we need both N and M to be large

for the asymptotics to kick in]. Furthermore, the approximation of the nominal level of the bootstrap

test is not very sensitive with respect to the choice of M , and we observe a slightly better performance

of the bootstrap method (2). Under the alternative represented by the choice c = 0.3 the bootstrap

tests are usually more powerful, and this can only be partially explained by the fact that the asymptotic

level α test from (2.15) is very conservative. In most cases we observe a slightly larger power of the

bootstrap method (1). The simulation results of the power also confirm our recommendation to choose

M equal to 8, and we note that the bootstrap method is only sensitive to odd choices of N and M that

clearly contradict the assumption (2.12).

For the test (2.17) and its corresponding bootstrap version we obtain similar results, which are not

reported for the sake of brevity.

4.2 Size and power performance of the test

From now on, following the results of the last paragraph, we only investigate the behaviour of the

tests (2.15) and (2.17) using a bootstrap approximation. Furthermore, as we are interested in a fair

comparison between the [bootstrap versions of the] tests (2.15), (2.17) and the kernel-based test derived

in Sergides and Paparoditis (2009) later on, we restrict ourselves to their bootstrap method. We also

focus on the cases T = 64, T = 128 and T = 256 only, since our method seems to work well even for

these small sample sizes.

As in the last section the null hypothesis is that the underlying process has a tvAR(1) structure with
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H0 : φ(x)=−0.9x
c=0

H0 : φ(x)=0.9x
c=0

H1 : φ(x)=0.9x
c=0.2

H1 : φ(x)=0.9x
c=0.3

T N M 5% 10% 5% 10% 5% 10% 5% 10%

64 8 8 .028 .042 .012 .056 .024 .060 .096 .182

128 16 8 .066 .088 .022 .062 .138 .240 .420 .574

128 8 16 .024 .078 .002 .022 .008 .018 .046 .098

256 32 8 .060 .072 .038 .080 .118 .244 .670 .784

256 16 16 .042 .090 .020 .074 .075 .160 .638 .750

256 8 32 .008 .044 .002 .026 .016 .044 .034 .124

Table 3: Rejection probabilities of the bootstrap version of the test (2.17) in model (4.2) for different

choices of the function φ and the parameter c using the quantiles of the bootstrap approximation.

σ2(u) ≡ 1. We consider processes of the form

Xt,T + φ(t/T )Xt−1,T + cXt−2,T = Zt,(4.2)

with different functions φ : IR→ IR and different values for c. The results are depicted in Table 2 and

Table 3 for the bootstrap versions of the tests (2.15) and (2.17), respectively. They confirm the results

from the last paragraph [namely that M = 8 seems to be the best choice] and they show that in most

cases the bootstrap test based on the statistic D2 is much more robust with respect to the choice of

N and M than the test based on the statistic R2 defined in (2.10). In the latter case the differences

caused by the choice of M and N can be substantial, in particular for small sample sizes. For example,

if N = 32,M = 8 the power of the bootstrap version of the test (2.17) for c = 0.3 is .118 while it is

.075 if N = M = 16. On the other hand, this test yields better results for c = 0.3, if T ≥ 128 and N

and M are chosen in a way that does not contradict (2.12).

We finally compare the power behaviour of the new approach to the one suggested in Sergides and

Paparoditis (2009). These authors basically estimate the distance 4πR2 by a feasible version of

QT :=
1

M

M∑
j=1

∫ π

−π

{
1

N

∑
k

Kb(λ− λj)
( IXN (uj, λk)

g(θ̂T (uj), λk)
− 1
)}2

dλ

with Kb(x) = K(x/b)
b

for some kernel function K and a bandwidth b. The results of the corresponding

bootstrap test are shown in Table 4 for different choices of the bandwidth b and the parameter M .

It can be seen that this method depends in the same way on the choice of the parameter M as our

procedure does, and the best results are also usually obtained by choosing M = 8. Furthermore, the

method seems to be quite sensible with respect to the choice of the bandwidth b, although we considered

only a rather small range of all possible values of b [while we showed results for essentially all reasonable

values of N and M ]. The bootstrap test based on the statistic D2 is in most examples better or at least
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H1 : c = 0.2

b = 0.4 b = 0.5 b = 0.6

T N M 5% 10% 5% 10% 5% 10%

64 8 8 .045 .105 .045 .120 .035 .105

128 16 8 .134 .234 .078 .150 .058 .136

128 8 16 .056 .108 .046 .084 .034 .090

256 32 8 .238 .352 .14 .262 .136 .230

256 16 16 .132 .230 .126 .238 .066 .146

256 8 32 .034 .098 .040 .098 .036 .074

H1 : c = 0.3

b = 0.4 b = 0.5 b = 0.6

T N M 5% 10% 5% 10% 5% 10%

64 8 8 .108 .190 .09 .182 .068 .152

128 16 8 .306 .424 .204 .324 .192 .308

128 8 16 .126 .242 .104 .228 .098 .152

256 32 8 .600 .710 .484 .604 .346 .496

256 16 16 .336 .514 .288 .458 .218 .344

256 8 32 .134 .252 .086 .198 .092 .208

Table 4: Rejection probabilities of the test proposed in Sergides and Paparoditis (2009) in the model

(4.2) for φ(x) = 0.9x and different choices of the parameter c.
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Figure 1: The left panel displays the price of the S&P 500 index between 11/08/2001 and 12/31/2009,

whereas the log returns of the S&P 500 in the same period are shown in the middle panel. Two variance

estimators σ̂2(·) are depicted in the right panel. The dotted line corresponds to the choice N = 256,

while the solid line belongs to the choice N = 128.

competitive to that of Sergides and Paparoditis (2009). The approach of these authors yields better

results than the test proposed in this paper for some choices of N , M and b, if c = 0.3 and T ≥ 128.

On the other hand, it is clearly outperformed in these cases by the bootstrap test based on the statistic

R2.

4.3 Data example

In this section we illustrate the performance of the test developed in the present paper in a data example

investigating 2049 observations of the S&P 500 index which were recorded between 11/08/2001 and

12/31/2009. We consider the log returns Yi = log
(
Xi+1

Xi

)
(i = 1, ..., 2048), and the null hypothesis is

that these log returns are Gaussian with a time varying variance. Precisely, we are testing if

H0 : Yi,T = σ
( i

2048

)
Zi for i = 1, ..., T,(4.3)

with Zi ∼ iid N(0, 1) and Yi,T = Yi for T = 2048. The S&P 500 prices, the log returns and two

estimators σ̂2(·) for the variance function are displayed in Figure 1. The two variance estimators were

obtained by calculating θ̂T (i/T ) for i = 1, ..., 2048 using a rolling window of either N = 256 (dotted

line) or N = 128 (solid line) observations around i to compute the local periodogram IXN (i/T, λ) from.

Both estimates reproduce the rather large volatility in the aftermath of the dotcom crash and 9/11 and

during the credit crisis 2008 very well, and the estimator using a smaller window yields a larger variance

for both crashes, as might have been expected.

In order test the null hypothesis (4.3) we use the bootstrap version of the tests (2.15) and (2.17) both

with N = 256 and N = 128. The p-values are depicted in Table 5, and again we note that the test
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With Bootstrap

T N M Test (2.15) Test (2.17)

2048 256 8 .139 .223

2048 128 16 .180 .524

Table 5: P-values of the tests (2.15) and (2.17) for the null hypothesis (4.3) using different choices for

M.

based on the statistic ĜT is much more robust with respect to different choices of M and N . In all

cases we observe p-values larger than 10%, which means that there is not enough evidence to reject the

null hypothesis (4.3).
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5 Appendix: Some technical details

Before we come to the proof of the main results in this paper, let us start with introducing two important

auxiliary claims which have applications beyond the scope of this paper. In both cases we will only give

a sketch of the proof, as a formal proof of a closely related (but slightly less general) theorem can be

found in Dette et al. (2010).

Lemma 5.1 Let φi : [0, 1] × [−π, π] → IR, i = 1, 2, be continuously differentiable functions with

φi(u, λ) = φi(u,−λ). If (2.12) is satisfied, we have

√
T

 1
T

∑M
j=1

∑bN
2
c

k=1 φ1(uj, λk)I
X
N (uj, λk)

2 − µ1

1
T

∑M
j=1

∑bN
2
c

k=1 φ2(uj, λk)I
X
N (uj, λk)− µ2

 D−−→ N (0,Σ),

with mean

µ1 =
1

2π

∫ 1

0

∫ π

−π
φ1(u, λ)f 2(u, λ)dλdu

µ2 =
1

4π

∫ 1

0

∫ π

−π
φ2(u, λ)f(u, λ)dλdu

and variance

Σ =

(
5
π

∫ 1

0

∫ π
−π φ

2
1(u, λ)f 4(u, λ)dλdu 1

π

∫ 1

0

∫ π
−π φ1(u, λ)φ2(u, λ)f 3(u, λ)dλdu

1
π

∫ 1

0

∫ π
−π φ1(u, λ)φ2(u, λ)f 3(u, λ)dλdu 1

4π

∫ 1

0

∫ π
−π φ

2
2(u, λ)f 2(u, λ)dλdu

)
.
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Proof: Let us give some basic ideas only. With tj = ujT we have

IXN (uj, λk) =
1

2πN

N−1∑
r,s=0

Xtj−N/2+1+r,TXtj−N/2+1+s,T exp(−iλk(r − s)),

and from (2.2) it follows that the error due to the approximation of Xt,T by the corresponding series

Xt,T =
∞∑

l=−∞

ψl(t/T )Zt−l, t = 1, . . . , T,(5.1)

is of small order. Using the latter representation and equations (2.3)–(2.5) one can show that a Taylor

expansion of ψ in a neighbourhood of uj yields

IXN (uj, λk) =
1

2πN

∞∑
l,m=−∞

ψl(uj)ψm(uj)
N−1∑
r,s=0

Ztj−N/2+1+r−lZtj−N/2+1+s−m exp(−iλk(r − s)) +Op(
N2

T 2
).

Starting from this representation all claims regarding asymptotic means and variances can be derived.

For example, using (2.3)–(2.5) again one obtains

E[IXN (uj, λk)] =
1

2πN

∞∑
l,m=−∞

ψl(uj)ψm(uj) exp(−iλk(l −m)) +O(1/N) +O(N2/T 2)

= f(uj, λk) +O(1/N) +O(N2/T 2).

Since ∫ 1

0

∫ π

−π
φ2(u, λ)f(u, λ)dλdu =

4π

T

M∑
j=1

bN
2
c∑

k=1

φ2(uj, λk)f(uj, λk) +O(1/N2) +O(
N2

T 2
)(5.2)

from the choice of uj and by a periodic extension of φ2 in its second component, (2.12) yields

√
TE
[ 1

T

M∑
j=1

bN
2
c∑

k=1

φ2(uj, λk)I
X
N (uj, λk)− µ2

]
→ 0

easily. In a similar way one proves the claim regarding the mean of the first component. All (co)variances

can be computed using the product theorem for cumulants from Brillinger (1981), and the latter result

is the main key for the formal proof of the entire result. In fact, one uses the Cramér-Wold device and

shows weak convergence of any linear combination to the corresponding normal distribution, which is

usually done by establishing convergence of all cumulants. See Dette et al. (2010) for an explicit proof

in a similar situation. 2
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Lemma 5.2 Let u ∈ [0, 1] be fixed and let φ : [0, 1] × [−π, π] → IR be continuously differentiable with

φ(u, λ) = φ(u,−λ). Then we have

√
N

(
1

N

bN
2
c∑

k=1

(
IN(u, λk)− f(u, λk)

)
φ(u, λk)

)
D−−→ N (0, τ 2)

with

τ 2 =
1

4π

∫ π

−π
φ2(u, λ)f 2(u, λ)dλ.

This auxiliary result can be shown similarly to the previous one. Let us now come to the proof of the

main results of this paper.

Proof of Lemma 2.3: Without loss of generality we assume p = 1. The mean value theorem gives

∂

∂θ
LT (u, θ̂T (u))− ∂

∂θ
LT (u, θ0(u)) =

∂2

∂θ2
LT (u, θ̃

(u)
T )(θ̂T (u)− θ0(u))

with some appropriate θ̃
(u)
T satisfying |θ̃(u)

T − θ0(u)| ≤ |θ̂T (u) − θ0(u)|. For any fixed u the function

LT (u, θ) is minimized by θ̂T (u), and using Lemma 5.2 plus the uniqueness of θ̂T (u) and θ0(u) one can

show easily that θ̂T (u) converges in probability to θ0(u). Thus we can assume that θ̂T (u) is an interior

point and obtain

− ∂

∂θ
LT (u, θ0(u)) =

∂2

∂θ2
LT (u, θ̃

(u)
T )(θ̂T (u)− θ0(u)).(5.3)

A straightforward calculation yields

∂

∂θ
LT (u, θ0(u)) =

1

N

bN
2
c∑

k=1

(
IXN (u, λk)− g(θ0(u), λk)

) ∂
∂θ

(
g−1(θ0(u), λk)

)
and

∂2

∂θ2
LT (u, θ0(u)) =

1

N

bN
2
c∑

k=1

{(
IXN (u, λk)− g(θ0(u), λk)

) ∂2

∂θ2

(
g−1(θ0(u), λk)

)
− ∂

∂θ
g(θ0(u), λk)

∂

∂θ

(
g−1(θ0(u), λk)

)}
.

Note that

1

N

bN
2
c∑

k=1

(
f(u, λk)− g(θ0(u), λk)

) ∂
∂θ

(
g−1(θ0(u), λk)

)
=

1

4π

∫ π

−π

(
f(u, λ)− g(θ0(u), λ)

) ∂
∂θ

(
g−1(θ0(u), λ)

)
dλ+O(1/N)

=
∂

∂θ
L(u, θ0(u)) +O(1/N) = O(1/N)
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by definition of θ0(u), thus

∂

∂θ
LT (u, θ0(u)) =

1

N

bN
2
c∑

k=1

(
IXN (u, λk)− f(u, λk)

) ∂
∂θ

(
g−1(θ0(u), λk)

)
+O(

1

N
).

Using Lemma 5.2 we obtain

∂

∂θ
LT (u, θ0(u)) = OP (1/

√
N).(5.4)

Finally,

∂2

∂θ2
LT (u, θ0(u))

P−−→ 1

4π

∫ π

−π

(
f(u, λ)− g(θ0(u), λ)

) ∂2

∂θ2

(
g−1(θ0(u), λ)

)
dλ(5.5)

− 1

4π

∫ π

−π

∂

∂θ
g(θ0(u), λ)

∂

∂θ

(
g−1(θ0(u), λ)

)
dλ =: Γ(u),

which is positive definite, since θ0(u) is unique. From θ̃
(u)
T → θ0(u) in probability the claim follows. 2

Proof of Lemma 2.5: By definition of F̂ o
T we have

F̂ o
T =

1

T

M∑
j=1

bN
2
c∑

k=1

IXN (uj, λk)
2 − 2

1

T

M∑
j=1

bN
2
c∑

k=1

IXN (uj, λk)g(θ0(uj), λk) +
1

T

M∑
j=1

bN
2
c∑

k=1

g2(θ0(uj), λk).

The latter term satisfies

1

T

M∑
j=1

bN
2
c∑

k=1

g2(θ0(uj), λk) =
1

4π

∫ 1

0

∫ π

−π
g2(θ0(u), λ)dλdu+ o(1/

√
T )(5.6)

from (2.12) and the same estimate as in (5.2), whereas

1

T

M∑
j=1

bN
2
c∑

k=1

IXN (uj, λk)
2 =

1

2π

∫ 1

0

∫ π

−π
f 2(u, λ)dλdu+Op(1/

√
T ),(5.7)

1

T

M∑
j=1

bN
2
c∑

k=1

IXN (uj, λk)g(θ0(uj), λk) =
1

4π

∫ 1

0

∫ π

−π
f(u, λ)g(θ0(u), λ)dλdu+Op(1/

√
T ).(5.8)

using Lemma 5.1. Note that g(θ0(u), λ) satisfies the necessary assumptions by differentiability of θ0.

The claim follows. 2

Proof of Theorem 2.6: We start with the proof of

√
T (Ĝo

T −D2)
D−−→ N (0, σ2),

for which we use the same decomposition as in the previous proof. Due to (5.6) it is the convergence in

(5.7) and (5.8) that drives the asymptotics, thus the claim follows from Lemma 5.1 immediately. The
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entire result can then be deduced from Theorem 2.4 and (2.12) via an application of the Cauchy-Schwarz

inequality. 2

Proof of Theorem 3.1: Because of Assumption 2.1 and 2.2 the function g(θ̂(u), λ) satisfies the

assumptions on the function φ(u, λ) in Lemma 5.1. Thus following the same steps as in the proof of

Theorem 2.6 we see, that the limits of all cumulants of
√
TĜ∗T converge to the cumulants of the limiting

normal distribution given in Theorem 2.6. 2
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