
Exploration of the scalability of SIMD
processing for software de�ned radio

von der Fakultät
Elektrotechnik und Informationstechnik
der Technischen Universität Dortmund

genehmigte
Dissertation

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

von
Peter Westermann
Dortmund, 14.02.2010

Tag der mündlichen Prüfung: 14.02.2011

Hauptreferent: Prof. Dr.-Ing. Hartmut Schröder

Korreferent: Prof. Dr.-Ing. Holger Blume

Acknowledgements

This thesis has been written during my stay with the Circuits and Systems Lab (CaS Lab)
at the TU Dortmund University.
First of all I would like to thank my advisor Prof. em. Dr.-Ing. Hartmut Schröder for
the many fruitful discussions and the opportunity to be engaged in challenging research
topics. The success of this thesis would not have been possible without him. I'm also very
grateful for experiencing the unique and pleasant working atmosphere at the CaS Lab.
I also would like to thank Prof. Dr.-Ing. Holger Blume from the Institute of Microelectronic
Systems at the Leibniz University Hannover for co-supervising my thesis and his interest
in general.
This thesis evolved from research projects on SIMD processing with Nokia and later Nokia
Siemens Networks, all under the guidance of Prof. Dr.-Ing. Ludwig Schwoerer from the
Communication and Electronics Institute at the Bochum University of Applied Sciences.
Thanks a lot for the support and contributions to this thesis � and for making me focus
on SIMD processing and SDR systems instead of image processing.
My thanks also goes to John Thompson and Xiang Wu at the University of Edinburgh for
the helpful discussions on sphere decoding and inviting me to Edinburgh.
Furthermore, I would like to say thanks to all my colleagues, former colleagues and students
at the TU Dortmund University and my project partners with Nokia and Nokia Siemens
Networks.
Above all, I would like to thank my family for love and support.

I

Abstract

The idea of software de�ned radio (SDR) describes a signal processing system for wireless
communications that allows performing major parts of the physical layer processing in
software. SDR systems are more �exible and have lower development costs than tradi-
tional systems based on application-speci�c integrated circuits (ASICs). Yet, SDR requires
programmable processor architectures that can meet the throughput and energy e�ciency
requirements of current third generation (3G) and future fourth generation (4G) wireless
standards for mobile devices.
Single instruction, multiple data (SIMD) processors operate on long data vectors in parallel
data lanes and can achieve a good ratio of computing power to energy consumption. Hence,
SIMD processors could be the basis of future SDR systems. Yet, SIMD processors only
achieve a high e�ciency if all parallel data lanes can be utilized.
This thesis investigates the scalability of SIMD processing for algorithms required in 4G
wireless systems; i. e. the scaling of performance and energy consumption with increasing
SIMD vector lengths is explored. The basis of the exploration is a scalable SIMD proces-
sor architecture, which also supports long instruction word (LIW) execution and can be
con�gured with four di�erent permutation networks for vector element permutations.
Radix-2 and mixed-radix fast Fourier transform (FFT) algorithms, sphere decoding for
multiple input, multiple output (MIMO) systems, and the decoding of quasi-cyclic low-
density parity check (LDPC) codes have been examined, as these are key algorithms for
4G wireless systems. The results show that the performance of all algorithms scales with
the SIMD vector length, yet there are di�erent constraints on the ratios between algorithm
and architecture parameters. The radix-2 FFT algorithm allows close to linear speedups
if the FFT size is at least twice the SIMD vector length, the mixed-radix FFT algorithm
requires the FFT size to be a multiple of the squared SIMD width. The performance of
the implemented sphere decoding algorithm scales linearly with the SIMD vector length.
The scalability of LDPC decoding is determined by the expansion factor of the quasi-
cyclic code. Wider SIMD processors o�er better performance and also require less energy
than processors with a shorter vector length for all considered algorithms. The results for
di�erent permutations networks show that a simple permutation network is su�cient for
most applications.

III

Contents

Abstract I

Table of contents V

List of �gures IX

List of tables XIII

Notation XVII

1 Introduction 1

2 Overview of software de�ned radio principles and architectures 7

2.1 Software de�ned radio . 7
2.1.1 Recon�gurable SDR architectures 9
2.1.2 SIMD-based architectures for SDR 9

2.2 Basic principles of SIMD processing . 10
2.2.1 SIMD vector processing . 11
2.2.2 Advantages and disadvantages of SIMD processing 12

2.3 Wide SIMD processor architectures and research on the scalability of SIMD
processing . 13
2.3.1 The Embedded Vector Processor 15
2.3.2 The Sandblaster SB3500 architecture 16
2.3.3 The Signal-processing On-Demand Architecture 17
2.3.4 The Ardbeg architecture based on SODA 19
2.3.5 Processor architectures based on SIMdD processing 21
2.3.6 Research on the scalability of SIMD processing for SDR 23

2.4 Key algorithms for future 4G SDR systems 27
2.4.1 MIMO-OFDM system model . 27

V

Contents

3 Scalable SIMD processor architecture 31
3.1 Development of the SIMD processor architecture based on algorithm re-

quirements . 31
3.1.1 Word lengths and data types . 32
3.1.2 Instruction set . 33
3.1.3 Instruction level parallelism . 38
3.1.4 Register �les . 42
3.1.5 Permutation networks . 45
3.1.6 Overview of the SIMD processor model 50

3.2 SIMD processor modeling in LISA . 53
3.2.1 Processor Designer toolkit overview 54
3.2.2 Processor modeling in LISA . 54
3.2.3 Extensions for modeling SIMD processors 55
3.2.4 Drawbacks of LISA as a modeling language for SIMD processors . . 58

3.3 Vertical-horizontal vector processing as an alternative for LIW 59
3.3.1 Vertical-horizontal vector processing for SDR 61
3.3.2 SDR algorithm performance . 62

3.4 SIMD architecture analysis methodology 63
3.4.1 Processor model synthesis . 63
3.4.2 Extraction of area, power, energy and performance �gures 65
3.4.3 Limitations of the proposed methodology 67

4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA 69
4.1 OFDM-A and SC-FDMA . 69
4.2 Matrix representation of the FFT . 71

4.2.1 Basic DFT decomposition for two factors 72
4.2.2 Formula manipulation rules for the DFT in matrix form 73
4.2.3 Vectorizable formulas . 73

4.3 Related work on SIMD FFT algorithms . 75
4.4 Derivation of SIMD radix-2 and mixed-radix FFT algorithms 76

4.4.1 Short radix-2 FFT algorithm . 76
4.4.2 Mixed-radix FFT algorithm . 81
4.4.3 Permutations for the vectorized FFT algorithms 84

4.5 Radix-2 and mixed-radix FFT implementations based on LTE 90
4.5.1 Grouping of FFT stages . 92
4.5.2 Implementation of DFT stages . 95
4.5.3 Implementation of permutation stages for di�erent permutation net-

works . 97
4.5.4 Short mixed-radix FFT implementation 99

VI

Contents

4.6 Performance analysis . 101
4.6.1 Overview of throughput results . 101
4.6.2 Speedup results . 102
4.6.3 Resource utilization and performance of FFT loops 106
4.6.4 Comparison to other SDR FFT implementations 108

4.7 Conclusion . 109

5 Sphere decoding for MIMO detection 111
5.1 MIMO system model . 111

5.1.1 Maximum likelihood detection . 113
5.1.2 Sphere decoding . 113
5.1.3 Soft-decision MIMO detection . 116

5.2 Breadth-�rst search MIMO decoders . 116
5.2.1 The K-best sphere decoder . 117
5.2.2 Selective spanning with fast-enumeration 118

5.3 The �xed-complexity sphere decoder . 120
5.3.1 FSD tree search . 120
5.3.2 FSD ordering of the channel matrix 121
5.3.3 Soft-decision MIMO detection based on the FSD 122

5.4 SIMD implementation of the FSD for MIMO-OFDM 125
5.4.1 Channel ordering . 126
5.4.2 QR-decomposition by Givens rotations 130
5.4.3 Hard-decision FSD tree search . 133
5.4.4 Soft-decision FSD tree search extension by bit-�ipping 134
5.4.5 LLR calculation for soft-decision MIMO decoding 136

5.5 Performance analysis . 136
5.5.1 Overview of FSD results . 137
5.5.2 Analysis of the achievable throughput 139
5.5.3 Comparison to SDR and hardware-based sphere decoders 142
5.5.4 Improving the FSD performance . 144

5.6 Conclusion . 146

6 Decoding of quasi-cyclic low density parity check codes 147
6.1 Fundamentals . 147

6.1.1 De�nition of LDPC codes . 147
6.1.2 Representation by Tanner graphs 148
6.1.3 Quasi-cyclic LDPC codes . 149

6.2 Decoding of LDPC codes . 150
6.2.1 Decoding schedules . 150
6.2.2 Iterative decoding algorithms . 152

VII

Contents

6.3 SIMD implementation of LDPC decoding for WiMAX 154
6.3.1 Algorithm for min-sum decoding 156
6.3.2 Implementation for the parallel processing of one sub-matrix 158
6.3.3 Implementation for the parallel processing of multiple sub-matrices 160

6.4 Performance analysis . 162
6.4.1 Throughput and speedup results . 163
6.4.2 LIW resource utilization . 164
6.4.3 Comparison to other architectures 167
6.4.4 Improving the LDPC decoding performance 168

6.5 Conclusion . 170

7 Evaluation of the SIMD architecture e�ciency 171
7.1 Area and power consumption results . 171

7.1.1 Average power consumption . 172
7.1.2 Area . 174
7.1.3 Power consumption and area estimates for memories 175

7.2 Energy e�ciency analysis . 177
7.2.1 Normalized energy consumption . 179
7.2.2 Energy-delay product analysis . 182

7.3 Possible approaches for improving the scalability 184
7.3.1 Vector alignment with indirect SIMdD processing 185
7.3.2 Support for operations on vector segments 186

7.4 Software development for LIW SIMD processors 187

8 Conclusion 191

Bibliography 197

VIII

List of Figures

2.1 SIMD-based SoC for SDR . 10
2.2 Examples for SIMD vector operations . 11
2.3 Example SIMD processor architecture with four lanes 12
2.4 Block diagram of the EVP architecture . 15
2.5 Block diagram of SODA . 17
2.6 Topologies of perfect shu�e exchange and inverse perfect shu�e exchange

networks . 18
2.7 Simpli�ed block diagram of a SIMD computation unit in SODA-II 19
2.8 Conceptual view of the vector pipeline in SODA-II 19
2.9 Block diagram of the SIMD and scalar data paths of an Ardbeg PE 20
2.10 Indirect SIMdD processing . 22
2.11 Block diagram of an AnySP processing element 23
2.12 Block diagram of transmitter and receiver in a MIMO-OFDM system . . . 28

3.1 De�nitions of arithmetic data types . 35
3.2 Visualization of ILP architectures based on [Smo02] 38
3.3 Fixed-length and variable-length LIW encoding 39
3.4 Encoding of 24-bit slots . 41
3.5 Read/write connections between the general-purpose SIMD register �le and

the SIMD units . 43
3.6 8-point DIF FFT . 44
3.7 4× 4 crossbar network based on transmission gates 47
3.8 Three MIN topologies based on cube network (a), Omega network (b) and

butter�y network (c) . 48
3.9 Example demonstrating the limited permutation support of MINs 50
3.10 Block diagram of the scalable SIMD processor architecture 52
3.11 Pipeline of the scalable SIMD processor architecture 53
3.12 Example of an operation hierarchy with a four-stage pipeline 56
3.13 Example for vertical-horizontal vector processing with two vector units . . 60
3.14 Cyclic mapping of FUs on register banks 61
3.15 Block diagram showing the synthesis and analysis methodology 64
3.16 Dynamic power consumption . 66

IX

List of Figures

4.1 Block diagram of an SC-FDMA transmitter 70
4.2 Signal �ow graphs corresponding to Kronecker products with DFT matrices 74
4.3 Signal-�ow graph for a vectorized 8-point FFT for a SIMD width of four

complex-valued elements. 77
4.4 Stride permutation de�ned by P3

8 for a vector length of four elements . . . 79
4.5 Permutations in between radix-2 FFT stages for the mixed-radix FFT with

m = 3 and V = 4 . 80
4.6 Block diagram of a 48-point mixed-radix FFT for a vector length of four . 84
4.7 Stride permutation (a) based on P2

4 for V = 4 and realization on a single-
vector permutation network (b) . 88

4.8 Masked butter�y permutations with di�erent block sizes for a vector length
of eight . 89

4.9 8-point SIMD FFT algorithm with butter�y permutations 91
4.10 Assembly code for realizing the equivalent of a masked 64-bit butter�y

permutation on a pair of vectors by permutations on a single-vector network 98
4.11 Merging of two FFTs for virtually reducing the vector length 101
4.12 Speedup for radix-2 and mixed-radix FFTs on di�erent SIMD processors

measured versus a 128-bit SIMD processor with a single-vector butter�y
network . 105

5.1 Channel model for a MIMO system with nT transmit and nR receive antennas112
5.2 Sphere search in a 4× 4 MIMO system for QPSK 115
5.3 K-best tree search in a 4× 4 MIMO system for QPSK 117
5.4 4× 4 MIMO SSFE search trees for two di�erent spanning vectors 118
5.5 Fast enumeration of the two closest nodes based on distance to computed

ξi for 16-QAM modulation . 119
5.6 FSD tree search for QPSK and a 4× 4 MIMO system 121
5.7 LFSD tree search for QPSK and a 4× 4 MIMO system with NS = 8 123
5.8 Example search tree for FSD with bit-�ipping for generating additional

paths (4× 4 MIMO with QPSK modulation) 125
5.9 Parallel processing of the FSD algorithm by parallel processing of OFDM

sub-carriers for a SIMD width of four elements 127
5.10 Example for the reduction of matrix A during the channel ordering 129
5.11 Swapping of data vectors v0 and v1 based on vector mask m1 using two

parallel masked move operations . 130
5.12 Merging of data vectors for the parallel computation of reciprocal square

roots. 133
5.13 Symbol detection by threshold comparisons in the scaled constellation dia-

gram for 16-QAM . 135

X

List of Figures

5.14 Best-case 4×4 MIMO FSD throughput for di�erent SIMD widths for hard-
decision (a) and soft-decision (b) decoding 140

5.15 Assembly code fragment for the calculation of the squared Euclidean distance144
5.16 Assembly code fragment for the thresholding operation during SE stages

for 16-QAM modulation . 145

6.1 Tanner graph of a (7,4) Hamming code . 149
6.2 LDPC decoding with (a) �ooding schedule and (b) check node serial schedule151
6.3 Check node serial iterative decoding algorithm for M ×N LDPC codes . . 154
6.4 Message calculation for message from bit node n to check node m using the

min-sum algorithm . 156
6.5 Check node update based on incoming message for min-sum algorithm . . 158
6.6 Cyclic shift by two for z = 12 and V = 4 159
6.7 Parallel processing of sub-matrices in a row of Hb for z = 4, V = 8 160
6.8 Merging of code words for parallel processing 162
6.9 Cyclic right shift by two for z = 12 and V = 8 for block-interleaved parallel

processing of code words . 162
6.10 Speedup of LDPC decoding compared to a 128-bit SIMD processor with a

single-vector inverse butter�y network . 165
6.11 Calculation of Ei

m,n during the message-passing 169
6.12 Update of minimum and minimum position during the check node update . 169

7.1 Normalized power consumption . 173
7.2 Normalized area . 174
7.3 Speedup of algorithms compared to 128-bit SIMD processor with single-

vector inverse butter�y network . 178
7.4 Normalized energy consumption of the implemented algorithms 182
7.5 Normalized energy-delay product and area for radix-2 and mixed-radix FFTs183
7.6 Normalized energy-delay product and area for soft-decision and hard-

decision FSD . 184
7.7 Normalized energy-delay product and area for the decoding of quasi-cyclic

LDPC codes . 185
7.8 Cyclic shift operation on an inverse butter�y network. The complete cyclic

shift is computed from cyclic shifts on smaller vector segments. 187

8.1 Processor utilization for the example MIMO-OFDM transmission scenario 194
8.2 Total energy consumption for the example MIMO-OFDM transmission sce-

nario . 195
8.3 Normalized energy-delay product and area for the described scenario . . . 196

XI

List of Tables

2.1 Overview of commercial and academical SIMD processors for SDR 14
2.2 Analysis of data parallelism [WLS+08b] . 25

3.1 Supported basic arithmetic data types . 34
3.2 Vector processing units and supported operation types 36
3.3 Scalar processing units and supported operation types 37
3.4 Latencies of scalar and vector instructions measured in clock cycles 37
3.5 Measured ILP on the EVP for inner loops of baseband algorithms 40
3.6 Evaluation of the grouping of radix-2 butter�y stages 44
3.7 Register �les in the scalable SIMD processor architecture 45
3.8 Summary of properties of the four implemented networks 51
3.9 Design space for the exploration of the scalability of SIMD processing . . . 51
3.10 Source lines of code measured for LISA model before and after M4 macro

expansion . 58
3.11 Model-based register �le comparison of monolithic and partitioned register

�les . 62
3.12 Performance comparison of LIW and vertical-horizontal vector processing

architectures . 63
3.13 SDR algorithms used for power optimization during synthesis 65
3.14 Standard cell library operating conditions 65

4.1 IDFT sizes at the transmitter side in LTE [Tec10] 71
4.2 Constraints for radix-2 and mixed-radix FFT sizes for di�erent vector lengths 91
4.3 Implemented radix-2 and mixed-radix FFTs 92
4.4 Short radix-2 FFTs that �t into the vector register �le 93
4.5 Decomposition of long radix-2 and mixed-radix FFTs into groups of FFT

stages in loops . 94
4.6 Overview of additional permutation stages for short radix-2 FFTs 99
4.7 Peak throughput in FFTs per second without overhead for initialization . . 103
4.8 Throughput in FFTs per second with overhead for initialization (long CP

mode) . 104
4.9 Overview of the LIW performance of FFT loops 107
4.10 Comparison of SDR implementations of radix-2 and mixed-radix FFTs . . 108

XIII

List of Tables

5.1 Number of searched paths and node distribution vectors for the LFSD and
a 4× 4 MIMO system with 16-QAM modulation 123

5.2 Number of candidates for the soft-decision FSD with bit-�ipping at each
tree level for 4× 4 MIMO . 124

5.3 Complexity comparison of scalar and vector channel matrix reordering for
a 4× 4 matrix . 130

5.4 Polynomial coe�cients for reciprocal square root approximation 132
5.5 Overview of FSD implementation results 138
5.6 4× 4 FSD throughput on 128-bit SIMD processor architectures 139
5.7 Throughput requirements for di�erent channel bandwidths for 4×4 MIMO

with 16-QAM modulation . 141
5.8 Maximum number of resource blocks that can be decoded in real-time for

4× 4 MIMO with 16-QAM modulation . 142
5.9 Performance of sphere decoding algorithms with �xed-complexity in ASICs

and on FPGA . 142
5.10 Performance of sphere decoding algorithms with �xed-complexity on SDR

processors . 143

6.1 Notation for LDPC decoding . 153
6.2 Implemented WiMAX codes [IEE09b] . 155
6.3 Block matrices for WiMAX [IEE09b] . 156
6.4 Notation for min-sum decoding . 157
6.5 Decomposition of check node/bit node update operations and cyclic shifts

into loops . 159
6.6 Required memory for permutation patterns and masks for cyclic shifts on

segments of vectors on a 1024-bit SIMD processor with an inverse butter�y
network . 163

6.7 Throughput of LDPC decoding with 10 decoding iterations 164
6.8 LIW resource utilization of bit node and check node update loops 166
6.9 Overview of LDPC decoder implementations for WiMAX 167

7.1 Area and power consumption results for the scalable SIMD processor archi-
tecture . 172

7.2 Permutation network area . 175
7.3 Area of processor core and memories . 176
7.4 Power consumption of processor core and memories 177
7.5 Total energy consumption for the implemented algorithms on 128-bit and

256-bit SIMD processors. 180
7.6 Total energy consumption for the implemented algorithms on 512-bit and

1024-bit SIMD processors. 181

XIV

List of Tables

7.7 Comparison of compiler generated code on the EVP and hand-optimized
assembly code on the proposed SIMD architecture (256 bit SIMD width,
crossbar network). FFT throughput is measured in FFTs per second, while
FSD throughput is measured in OFDM sub-carriers per second. 190

XV

Notation

Abbreviations

3G Third Generation
4G Fourth Generation
ADL Architecture Description Language
AGU Address Generation Unit
ALU Arithmetic Logic Unit
APP A Posteriori Probability
ASIC Application-Speci�c Integrated Circuit
ASIP Application-Speci�c Instruction-set Processor
ASP Application-Speci�c Processor
BER Bit Error Rate
BP Belief Propagation
BPSK Binary Phase Shift Keying
BU Branch Unit
CDMA Code Division Multiple Access
CGU Code Generation Unit
CP Cyclic Pre�x
DFT Discrete Fourier Transform
DIF Decimation In Frequency (FFT)
DL DownLink
DMA Direct Memory Access
DSE Design Space Exploration
DSP Digital Signal Processor or Digital Signal Processing
DVB-H Digital Video Broadcasting - Handhelds
DVB-T Digital Video Broadcasting Terrestrial
EPIC Explicitly Parallel Instruction Computing
EVP Embedded Vector Processor
EVP-C EVP C language
FE Full Expansion (stage of the FSD algorithm)
FEC Forward Error Correction
FFT Fast Fourier Transform

XVII

Notation

FFU Flexible Functional Unit
FIR Finite Impulse Response
FPGA Field Programmable Gate Array
FSD Fixed-Complexity Sphere Decoder
FU Functional Unit
GMAC/s Giga MAC operations per second
GMul./s Giga Multiplications per second
GOPS Giga Operations Per Second
GPP General-Purpose Processor
HSDPA High Speed Downlink Packet Access, extension of UMTS
IDFT Inverse Discrete Fourier Transform
IFFT Inverse Fast Fourier Transform
i. i. d. Independent Identically-Distributed
ILP Instruction Level Parallelism
IMT-Advanced International Mobile Telecommunications-Advanced
IP Intellectual Property
ISA Instruction Set Architecture
ISI InterSymbol Interference
ISS Instruction Set Simulator
ITRS International Technology Roadmap for Semiconductors
IVU Intra Vector Unit
LDPC Low-Density Parity Check
LFSD List Fixed-complexity Sphere Decoder
LISA Language for Instruction Set Architecture
LIW Long Instruction Word
LLR Log-Likelihood Ratio
LMMSE Linear Minimum Mean Squared Error
LSU Load/Store Unit
LTE Long Term Evolution
LTE-Advanced Long Term Evolution-Advanced
LUT LookUp Table
MAC Multiply-Accumulate or Multipy-Accumulate Unit
MALU Mask ALU
MAP Maximum A posteriori Probability
MIMO Multiple Input, Multiple Output
MIN Multistage Interconnect Network
ML Maximum Likelihood
MMSE Minimum Mean Squared Error
MOPS Million Operations Per Second
MSB Most Signi�cant Bit

XVIII

Notation

NMOS N-channel Metal�Oxide�Semiconductor (�eld-e�ect transistor)
nop No-Operation
OFDM Orthogonal Frequency Division Multiplex
OFDM-A Orthogonal Frequency Division Multiple Access
PALU Predicate ALU
PAPR Peak-to-Average Power Ratio
PCU Program Control Unit
PDA Personal Digital Assistant
PE Processing Element
PED Partial Euclidean Distance
PiCoGA Pipelined Con�gurable Gate Array
PMOS P-channel Metal�Oxide�Semiconductor (�eld-e�ect transistor)
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
QRD-M QR-Decomposition and M-algorithm
RCA Recon�gurable Communication Architecture
RF Register File
RISC Reduced Instruction Set Computer
RTL Register Transfer Level
SC-FDMA Single Carrier Frequency Division Multiple Access, also denoted as

DFT-spread OFDMA
SD Sphere Decoder
SDR Software De�ned Radio
SE Single Expansion (stage of the FSD algorithm)
SFSD Soft-decision FSD algorithm with bit �ipping
SIMD Single Instruction (stream), Multiple Data (streams)
SIMdD Single Instruction (stream), Multiple disjoint (or distributed) Data

(streams)
SIMO Single Input, Multiple Output
SIMT Single Instruction stream, Multiple Task
SISO Single Input, Single Output
SLOC Source Lines Of Code
SNR Signal-to-Noise Ratio
SoC System on a Chip
SODA Signal-processing On-Demand Architecture
SRAM Static Random-Access Memory
SSFE Selective Spanning with Fast Enumeration
SSN SIMD Shu�e Network
STBC Space Time Block Coding/Code
SVD Singular Value Decomposition

XIX

Notation

SXU Scalar Exchange Unit
TD-SCDMA Time Division Synchronous Code Division Multiple Access
TTA Transport-Triggered Architecture
UL UpLink
UMTS Universal Mobile Telecommunications System
VALU Vector ALU
V-BLAST Vertical Bell Laboratories Layered Space-Time
VLIW Very Long Instruction Word
VLSU Vector LSU
VMAC Vector MAC Unit
VMU Vector Move Unit
VPU Vector Permutation Unit
VSHU Vector Shu�e Unit
W-CDMA Wideband Code Division Multiple Access
WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Network
ZOL Zero-Overhead Loop, also denoted as hardware loop

Symbols and mathematical notation

det |·| Matrix determinant operator

sign (·) Sign operator

max (·) Maximum operator

min (·) Minimum operator

P (·) Probability

Re {·} Real part of a complex value

Im {·} Imaginary part of a complex value

b·c Operator for rounding down

O (·) Landau notation for asymptotic complexity

Q.f Fixed-point data type with one sign bit, zero integer bits and f fractional
bits; example: Q.15

Qm.f Fixed-point data format with one sign bit, m integer bits and f fractional
bits; example: Q8.31

XX

Notation

A Matrix

v Vector

i Imaginary unit i =
√
−1

Ai,j Element of matrix A in row i and column j. Alternatively, the matrix
element operator [A] (i, j) is also used.

[A] (i, j) Matrix element operator

IN N-point identity matrix

AT Transpose of matrix A

AH Conjugate transpose of complex-valued matrix A

a∗ Conjugate complex of scalar value a

det (A) Determinant of matrix A

adj (A) Adjugate matrix of matrix A

||·||2 Euclidean (matrix) norm

|·| Absolute value

⊗ Kronecker product operator: A⊗B = (aij ·B)

⊕ Bitwise exclusive or operator

SNR Signal-to-noise ratio (SNR)

N0 Noise power

WN N-point DFT matrix

NDFT DFT size/length

GF (q) Galois �eld with q elements

d·e Operator for rounding up to the next greater integer number

XXI

Chapter 1

Introduction

The idea of software de�ned radio (SDR) has gained signi�cant interest in the last decade.
SDR describes a wireless communication device, where "some or all of the physical layer
functions are software de�ned" [For07]. The term radio characterizes any kind of wireless
communication device that transmits or receives radio frequency signals. Examples of
radio devices range from cell phones, laptop computers, and PDAs to door openers and
navigation systems. An SDR system comprises programmable signal processing devices
that allow implementing some or all of the physical layer operations in software. These
devices may be based on �eld programmable gate arrays (FPGAs), digital signal processors
(DSPs), application-speci�c processors (ASPs) or multiple of these devices in a system on
chip (SoC).

SDR systems o�er some advantages in comparison to solutions based on application-
speci�c integrated circuits (ASICs) [SVPG+10]: a common programmable architecture
can be used for multiple di�erent wireless protocols and products. This allows reducing
the time to market for new products and the development costs, as software and hard-
ware can be reused, leading to increasing chip volumes. Programmability also reduces
maintenance costs, as software updates and bug �xes can be applied either over-the-air or
by other means of remote programming. The possibility of software updates also enables
future extensions to existing radio systems. A common platform for multiple protocols
enables service providers to use one platform for multiple markets and enables multi-mode
operation for the customers, i. e., depending on the available network technologies, dif-
ferent protocols can be used (e. g. UMTS, LTE, WiMAX, or WLAN) without need for
additional hardware.

Yet, the bene�ts of SDR come with steep requirements: the radio device has to operate in
real-time with low power consumption. This is especially true for battery-powered mobile
devices, where an e�ciency of approximately 100 million operations per second (MOPS)
per milliwatt is necessary for third generation (3G) wireless protocols [Lin08] with even
higher demands for future fourth generation (4G) systems [WLS+08b, Rep08]. The power
budget for baseband signal processing is approximately 500mW [Lin08]. Hence, there is

1

Chapter 1 Introduction

a need for e�cient processor architectures for SDR � with parallel processing as the only
means to achieve the required e�ciency.
Programmable architectures for SDR can be classi�ed into two groups � recon�gurable
architectures and architectures based on single instruction, multiple data (SIMD) process-
ing [Ram07]. Coarse-grain and �ne-grain recon�gurable architectures (e. g. [MVV+03,
LCB+06]) o�er less �exibility than SIMD architectures and the programming model for
SIMD architectures is simpler than the programming model of recon�gurable architectures.
Hence, SIMD processor architectures are especially interesting for future 4G systems.
SIMD processor architectures contain multiple parallel data lanes that all execute the
same instruction on di�erent elements of long data vectors. The combination of parallel
processing and a low overhead for the decoding of instructions leads to a good e�ciency.
SIMD processor architectures can be categorized into wide SIMD architectures with 16 or
more parallel data lanes [vHM+05, LLW+06, WLS+08a, MG08, WSM+09] and short SIMD
architectures with few parallel data lanes [GI06, Kno05, GRS07, Nil07]. The number of
parallel lanes is denoted as the SIMD width or vector length.
Future SDR devices based on SIMD processing will be designed as SoCs with multiple
SIMD processor cores for tasks that can be e�ciently parallelized and require programma-
bility and few ASICs as accelerators for tasks that cannot be e�ciently mapped on a
SIMD processor and/or do not require programmability. Such an SDR SoC could com-
prise many small or few wide SIMD processor cores. In principle, wide SIMD processors
can achieve better energy e�ciency than processors that only support short SIMD op-
erations [WLS+08a]. Yet, a high performance and a good energy e�ciency can only be
achieved for algorithms that can utilize all parallel data lanes e�ciently. The optimal
SIMD width depends on architecture parameters as well as algorithm parameters. While
SIMD processing is a technique that has been thoroughly investigated, few research re-
sults have been published that discuss the issue of selecting an appropriate SIMD width
for SDR [WLS+08a, WLS+08b].

Objective of this thesis

This thesis focuses on the issue of the scalability of SIMD processing for SDR algorithms:
How do performance and energy consumption of a SIMD processor architecture scale with
an increasing SIMD width for the key algorithms of future 4G systems?
In order to be able to evaluate di�erent SIMD widths, a scalable SIMD processor ar-
chitecture has been developed using the LISA language [ZPM96, PHZM99, Pee02] and
synthesized in a 90 nm technology for SIMD widths ranging from 8 to 64 parallel 16-bit
lanes. The processor architecture combines SIMD processing with long instruction word
(LIW) execution � di�erent processing units can execute operations in parallel to each
other � to reduce the overhead for data alignment and memory access operations. Fur-

2

thermore, four di�erent permutation networks for vector element permutations have been
modeled.
Three key algorithms for future 4G systems have been mapped on the scalable SIMD pro-
cessor architecture and their performance has been explored. The considered algorithms
are radix-2 and mixed-radix FFTs, which are required for orthogonal frequency division
multiplex (OFDM) systems, a sphere decoding algorithm for multiple input, multiple out-
put (MIMO) systems, and the decoding of quasi-cyclic low-density parity check (LDPC)
codes.
The major contributions of this thesis are as follows:

• A scalable SIMD processor architecture has been developed in LISA. The processor
architecture enables a systematic exploration of a design space that comprises four
SIMD widths and four di�erent permutation networks. As the processor architecture
also supports LIW execution, the mitigation of overhead for memory access and
vector alignment by LIW has also been investigated.

• The mapping of three state-of-the-art algorithms for 4G MIMO-OFDM systems on
the scalable SIMD processor architecture has been investigated. The scalability of
the algorithms has been studied and constraints for the scalability on SIMD proces-
sors have been identi�ed. The radix-2 FFT algorithm requires the FFT size to be at
least twice the SIMD width, the mixed-radix FFT algorithm requires an FFT size
that is a multiple of the squared SIMD width. The sphere decoded implementation
processes multiple OFDM sub-carriers in parallel, which enables e�cient vectoriza-
tion for SIMD widths up to the OFDM symbol size. The decoding algorithm for
quasi-cyclic LDPC codes can e�ciently utilize SIMD widths up to the value of the ex-
pansion factor of the code. Wider SIMD widths can also be utilized using a modi�ed
algorithm for the parallel processing of multiple sub-matrices.

• An algorithm for mixed-radix FFTs has been developed that enables the vector-
ization of FFT sizes that are a multiple of the squared SIMD width. An e�cient
mapping of permutation stages on a �xed number of simple butter�y permutations
is developed.

• The performance of the implemented algorithms and the energy e�ciency on the
proposed scalable SIMD architecture have been investigated. The results show that
linear or close to linear speedups can be achieved for all algorithms, as long as
the constraints for scalability are satis�ed. The energy e�ciency increases with
the SIMD width. The exploration of di�erent permutation network topologies shows
that wider permutation networks may lead to performance gains for FFT processing,
but wider permutation networks also require more register �le ports, which leads
to signi�cantly higher register �le power consumption. The achieved throughputs

3

Chapter 1 Introduction

of FFTs and sphere decoding are su�cient for data rates beyond 100Mbps; LDPC
decoding requires further modi�cations on the architecture to meet the requirements
of future 4G systems.

Synopsis

Chapter 2 introduces SDR and SIMD-based processor architectures for SDR. The advan-
tages and disadvantages of SDR and SIMD processing are discussed and relevant wide
SIMD architectures and related work on the scalability of SIMD processing are reviewed.
Furthermore, the key algorithms for future 4G systems are identi�ed.
In chapter 3, the development of the proposed scalable SIMD processor architecture is
discussed in detail. The used modeling language LISA is introduced and the methodology
for the evaluation of the SIMD processor architecture is discussed. Moreover, an alternative
for LIW processing based on vertical-horizontal vector processing is brie�y sketched.
Chapter 4 discusses radix-2 and mixed-radix FFTs that are required for orthogonal fre-
quency division multiple access (OFDM-A) and single carrier frequency division multiple
access (SC-FDMA), which is an extension of OFDM-A used for the uplink channel in the
long term evolution (LTE) standard [Tec09b]. A novel decomposition for the mixed-radix
FFT, which is optimized for SIMD processing, is derived from the matrix representation
of the FFT and constraints for the e�cient SIMD processing of radix-2 and mixed-radix
FFTs are developed. Implementations of FFTs on the proposed scalable SIMD proces-
sor architecture are discussed and performance results, which show approximately linear
speedups, are presented.
In chapter 5, di�erent algorithms for MIMO detection based on the sphere decoder (SD)
are explained. The �xed-complexity sphere decoder (FSD) is discussed in detail as it
has been implemented on the scalable SIMD processor architecture. The FSD has good
properties for parallel processing and achieves a bit error rate (BER) close to the maximum
likelihood (ML) solution. The algorithm implementation is explained and the throughput
performance is analyzed and compared to other SDR and hardware MIMO detection
implementations.
The following chapter (chapter 6) focuses on the decoding of LDPC codes. The properties
of LDPC codes and decoding algorithms based on message-passing are discussed. It is
shown that quasi-cyclic LDPC codes � as e. g. optionally supported by WiMAX [IEE09b]
� are the most promising codes from an implementation point of view, because of their
regular structure. A parallel implementation of quasi-cyclic LDPC decoding for WiMAX
is discussed and limitations of the proposed scalable SIMD processor architecture are
demonstrated. The chapter concludes with a performance analysis and a comparison to
other SDR and hardware implementations.
In chapter 7, the scalable SIMD processor architecture is analyzed based on the results
obtained for radix-2 and mixed-radix FFTs, MIMO detection, and LDPC decoding. The

4

chapter contains an analysis of area, power consumption, and energy e�ciency of proces-
sors with di�erent SIMD widths and permutation networks. Furthermore, modi�cations
on the processor architecture that could improve the scalability of mixed-radix FFTs and
LDPC decoding are explained. The chapter concludes with a brief discussion of the com-
plexity of mapping algorithms on SIMD processors and the possible support of this task
by vectorizing compilers.
Finally, chapter 8 contains a summary of results, conclusions for the scalability of SIMD
processing, and an outlook of possible future research directions.

5

Chapter 2

Overview of software de�ned radio

principles and architectures

This chapter contains an overview of SIMD processing and the concept of software de-
�ned radio (SDR). Section 2.1 discusses advantages and disadvantages of SDR and gives
an overview of SDR architecture classes. Section 2.2 describes SIMD vector processing
and discusses its advantages and disadvantages. Wide SIMD processor architectures and
related research on the scalability of SIMD processing are described in section 2.3. The
chapter concludes with an overview of the key algorithms of future 4G systems/standards
in section 2.4.

2.1 Software de�ned radio

The SDR principle describes a wireless communication device that implements the phys-
ical layer processing exclusively or mostly on programmable processing architectures, for
example digital signal processors (DSPs), application-speci�c processors (ASPs), or re-
con�gurable architectures. Classic architectures for wireless communication are based on
application-speci�c integrated circuits (ASICs), assisted by one or few DSPs [Ram07], and
do not o�er any �exibility. The programmability of SDR solutions o�ers some advantages
versus the traditional hardware solutions [SVPG+10]:

• SDR solutions enable performing software development and hardware design and
veri�cation in parallel. Furthermore, new protocols can be quickly implemented in
software and mapped onto an existing SDR platform, without a hardware redesign.
Therefore, development time and costs are signi�cantly lower than for classical ASIC
solutions. Development costs are further reduced by the potentially higher chip
volumes, as one SDR platform can be used for di�erent applications.

• SDR solutions enable dynamically executing di�erent wireless communication pro-
tocols on the same processor architecture (multi-mode operation). Commonly used
functions, such as �lters, encoders/decoders, and transforms (FFT), can be adjusted

7

Chapter 2 Overview of software de�ned radio principles and architectures

at runtime. Multi-mode capability allows service providers to use one platform
for di�erent markets and o�er more functionality to the end users. Furthermore,
hardware costs are reduced if resources can be shared e�ectively between wireless
protocols.

• The programmability of SDR systems also reduces maintenance costs, as new func-
tionality (e. g. new standard releases) or bug �xes can be applied either over-the-air
or by other means of remote programming.

The keynote of these arguments is that SDR increases the �exibility and reduces the
costs of wireless communication devices. Yet, the increased �exibility has its price, as
SDR systems will always consume more power than an optimized ASIC-centered solution
[Ram07]. The chip area of a programmable SDR architecture for one wireless protocol is
also greater than the chip area using ASICs, but this can be canceled out by multi-mode
support, i. e. multiple wireless protocols are supported on the same SDR architecture,
while an ASIC-centered approach would require adding further ASICs, which increases
the chip area.
One further argument sometimes used against programmable SDR solutions is the notion
that many of the algorithms in the physical layer processing of wireless communication
protocols could be e�ciently realized on dedicated hardware accelerators with limited re-
con�gurability, e. g. allowing parameter adjustments for �lters. However, this approach
leads to an increased development time and increasing costs for designing accelerators that
can support the requirements of multiple wireless protocols. Furthermore, an accelerator
will only support one algorithm. Some critical physical layer tasks, such as MIMO sym-
bol detection, can be performed by many di�erent (possibly in-house) algorithms, which
achieve di�erent trade-o�s between algorithm complexity (e. g. runtime, required mem-
ory) and algorithm performance (e. g. BER). An SDR architecture that o�ers su�cient
computing power can perform any of these algorithms, allowing companies to implement
their own preferred solution.
Future 4G wireless protocols aim at data rates between 100Mbps and 1Gbps [Rep08,
Tec09a]. Therefore, SDR solutions need to achieve high throughputs, while still comply-
ing with the power restrictions of wireless communication devices. The power budget for
baseband processing in mobile devices is approximately 500mW (see [Lin08, Neu04]), with
a power e�ciency of approximately 100 million operations per second (MOPS) per milli-
watt required for 3G and even steeper requirements for 4G. Therefore, energy e�ciency
is of essential importance for SDR systems. High energy e�ciency can be achieved by
parallel processing and by employing application-speci�c instructions or processing units.
Programmable architectures for SDR can be categorized into two philosophies � recon-
�gurable architectures and architectures based on SIMD processors [Ram07].

8

2.1 Software de�ned radio

2.1.1 Recon�gurable SDR architectures

The design-�ow for recon�gurable SDR architectures is as follows: First, algorithms or
parts of algorithms that are used by multiple or all targeted wireless protocols are iden-
ti�ed. Next, recon�gurable data paths, which provide the necessary processing for this
common functionality, are designed. The �exibility of recon�gurable SDR architectures
depends on the granularity of the decomposition into common data paths. An example
for a �ne-grain recon�gurable data path is a small DSP core, which implements elemen-
tary functions, such as addition or multiplication. Coarse-grain recon�gurable data paths
might implement complete algorithms, for example, a data path might be realized as an
ASP for FFT processing.
Examples for �ne-grain recon�gurable SDR architectures are University of Bologna's
XiRisc processor architecture [LCB+06] and picoChip's picoArray [Pul08, BDT08]. The
XiRisc processor is a VLIW RISC processor, with two data paths with arithmetic and
DSP-like functional units and a third data path based on a pipelined con�gurable gate ar-
ray (PiCoGA) [LTC03]. Application-speci�c functions can be mapped onto the PiCoGA.
The picoArray architecture consists of many independent RISC processors organized in a
two-dimensional array. For example, the picoArray PC102 comprises 308 processors. Each
processor executes its own instruction stream and processes its own data. Processors are
connected by a high-speed time-division multiplexed bus system.
Intel's recon�gurable communication architecture (RCA) [CTC+04] and IMEC's ADRES
architecture [MVV+03, SVPG+10] are examples for coarse-grain recon�gurable SDR ar-
chitectures. Intel's RCA consists of a mesh of heterogeneous, recon�gurable processing
elements (PEs), connected by routers. The PEs are optimized for di�erent parts of the
baseband processing, e. g. �ltering or Turbo coding. The ADRES architecture combines
a VLIW processor with a coarse-grained recon�gurable array. The coarse-grained array
consists of recon�gurable functional units (FUs) with local memories. Neighboring FUs
can exchange data without any register �le accesses in between. The VLIW core and the
FUs communicate through a global register �le and shared memory. A typical ADRES
instance consists of a 4 × 4 array [SVPG+10] with 128-bit SIMD FUs (12 recon�gurable
units and 4 units in the VLIW part of the architecture).

2.1.2 SIMD-based architectures for SDR

SIMD-based architectures for SDR utilize SIMD processor cores to achieve high energy
e�ciency. The basics of SIMD processing are discussed in section 2.2. A system on a chip
(SoC) for SDR based on SIMD processing consists of many SIMD processor cores and few
ASICs [Ram07]. The ASICs accelerate algorithms that do not require programmability
and/or cannot be e�ciently mapped on the SIMD processors. Figure 2.1 shows a block
diagram of a SIMD-based SoC for SDR.

9

Chapter 2 Overview of software de�ned radio principles and architectures

Figure 2.1: SIMD-based SoC for SDR

SIMD processor architectures for SDR can be categorized into short SIMD architectures
and wide SIMD architectures. Most of the SIMD processors from both classes support
long instruction word (LIW) execution (see chapter 3.1.3), enabling concurrent memory
access and arithmetic operations.

Short SIMD architectures support SIMD data paths with few parallel lanes (typically four
lanes). Examples are Sandbridge's Sandblaster SB3011 [GI06], Icera's DXP [Kno05], In�-
neon's MuSIC architecture [GRS07] and Linköping University's single instruction stream,
multiple task (SIMT) architecture [Nil07, NTL09].

Wide SIMD architectures utilize 16 or more parallel data lanes. A higher degree of SIMD
parallelism leads to better energy e�ciency, but higher levels of data parallelism are re-
quired to utilize all data lanes e�ectively. This thesis analyses data parallelism in SDR
algorithms for wide SIMD architectures. Hence, relevant wide SIMD architectures are dis-
cussed in more detail in section 2.3. The CEVA-XC [CEV09] architecture is a wide SIMD
processor architecture, which supports VLIW execution of multiple parallel 256-bit SIMD
data paths. Yet, too little information on CEVA-XC is available for a detailed analysis.

2.2 Basic principles of SIMD processing

The term single instruction stream, multiple data stream (SIMD) processing has been
introduced by Flynn in his taxonomy of very high-speed computers [Fly66, Fly72]. Flynn
classi�ed processor architectures based on the parallel processing of instruction and data
streams. A SIMD processor architecture processes multiple data streams in parallel, yet
each data stream performs the same operation, as there is only one instruction stream.
SIMD processor architectures for SDR support SIMD processing by vector operations on
�xed-length data vectors.

10

2.2 Basic principles of SIMD processing

2.2.1 SIMD vector processing

SIMD vector operations process all vector elements independently and in parallel. Vector
data lanes contain the processing units associated to vector element positions. The number
of vector elements is the vector length or SIMD width. Figure 2.2 shows three examples of
vector operations, which demonstrate the principle of vector processing.

(a) Vector addition (b) Vector element rotation (c) Masked vector subtraction

Figure 2.2: Examples for SIMD vector operations

The vector addition in �gure 2.2a adds elements from one vector to elements from another
vector. All data lanes operate independently of each other, yet they all execute the same
instruction. Furthermore, only elements at the same position in a vector can be processed
together, it is e. g. not possible to add element b3 to element a1 in a vector operation.
If vector elements are needed at di�erent positions, they have to be permuted on a per-
mutation network. Figure 2.2b shows a cyclic rotation of vector elements as an example
for a vector element permutation.
Figure 2.2c demonstrates a third technique that is necessary for e�cient SIMD vector
processing. If an operation shall only be performed on some of the elements in a vector, the
remaining element positions can be excluded from the computation by masking. Masking
temporarily disables vector lanes based on the values of a binary vector mask.
Figure 2.3 illustrates the structure of a typical SIMD processor architecture with four
parallel lanes. The lanes contain one or multiple processing units (in this case an ALU)
for the processing of one vector element and a local register �le that stores the elements of
di�erent vectors. All lanes have the same structure and the processing units in di�erent
lanes execute the same instructions in parallel. Memory access is also done in parallel
on a load/store unit. Element permutations are performed on the vector permutation
unit, which contains a permutation network � in this case, based on an inverse butter�y
network topology (see chapter 3.1.5).

11

Chapter 2 Overview of software de�ned radio principles and architectures

Figure 2.3: Example SIMD processor architecture with four lanes

2.2.2 Advantages and disadvantages of SIMD processing

The main reason for using SIMD processor architectures in SDR systems is their high
energy e�ciency. Scalar processors spend signi�cant amounts of the total power on the
decoding of instructions and other control tasks. SIMD processors execute one instruction
on many parallel data paths; hence, the relative amount of power spent on control tasks
is reduced. Wider SIMD vectors lead to higher energy e�ciency. Furthermore, parallel
processing enables lowering the clock frequency, which also reduces power consumption.
Due to the regular structure of the SIMD data path (see �gure 2.3), SIMD processor
architectures scale very well. Only the number � not the complexity � of data lanes
increases if the vector length is raised. The only exception is the vector permutation
network, whose complexity depends on the number of vector elements (see chapter 3.1.5).
The main drawback of SIMD processor architectures is that they only reach high energy
e�ciency if the vector data lanes can be e�ectively utilized. The utilization of the data
lanes is limited by available data parallelism, i. e. the number of data values that can be
processed in parallel, and the restriction by the required alignment on vectors. Due to the
restricted alignment, some algorithms require complex permutation stages for reordering

12

2.3 Wide SIMD processor architectures and research on the scalability of SIMD processing

vector elements. A further drawback is the lack of e�cient software development tools
that can perform the vectorization of algorithms. Hence, software development for SIMD
processors is time consuming and requires knowledge about the processor architecture.

Data parallelism in baseband processing

Many baseband processing algorithms, such as FIR �ltering, FFT, and correlation, o�er
plenty data parallelism, with very little data dependent control �ow. Most algorithms can
be represented by matrix-vector or vector-vector operations. Hence, SIMD processing is a
natural �t for SDR.
The amount of available data parallelism and the overhead for performing data alignment
operations (e. g. vector permutations, memory access) depend on the algorithms and on
architecture parameters. The overhead for vector permutation operations and memory
access can be reduced by enabling parallel processing of operations on distinct processing
units, e. g. through LIW execution.
The goal of this thesis is analyzing the mapping of three major 4G baseband algorithms on
wide SIMD processor architectures with LIW support. The dependence between algorithm
parameters and performance for di�erent SIMD widths is evaluated. The focus is on
determining how performance and energy e�ciency scale with the SIMD width.

2.3 Wide SIMD processor architectures and research

on the scalability of SIMD processing

In the following, relevant academical and commercial wide SIMD processor architectures
for SDR are surveyed. The discussed processor architectures are the Embedded Vec-
tor Processor (EVP) (section 2.3.1), the Sandblaster SB3500 processor (section 2.3.2),
the Signal-processing On-Demand Architecture (SODA) (section 2.3.3), and the Ardbeg
processor (section 2.3.4). Architectural features of these processor architectures are com-
pared in table 2.1. Here, the performance is measured in giga MAC operations per second
(GMAC/s) on 16-bit values.1 Most of the processor architectures support LIW execution
and permutation operations on SIMD permutation networks. These aspects of the SIMD
processor design are discussed in detail in chapter 3, sections 3.1.3 and 3.1.5.
In section 2.3.5, single instruction, multiple disjoint data (SIMdD) architectures are dis-
cussed. Section 2.3.6 reviews related research on the scalability of SIMD processing for
SDR.

1For SODA and Ardbeg, performance is reported in giga multiplications per second (GMul./s).

13

Chapter 2 Overview of software de�ned radio principles and architectures

T
ab
le
2.
1:
O
ve
rv
ie
w
of

co
m
m
er
ci
al
an
d
ac
ad
em

ic
al
SI
M
D
pr
oc
es
so
rs
fo
r
SD

R

A
rc
h
it
e
ct
u
re

E
V
P

Sa
nd
bl
as
te
r
SB

35
00

SO
D
A

A
rd
b
eg

P
ro
ce
ss
o
r
co
re

a
rc
h
it
e
ct
u
re

T
e
ch
n
o
lo
g
y

45
nm

65
nm

0.
18
µ
m
/0
.1

3
µ
m

90
nm

M
u
lt
i-
co
re

1
co
re

3
co
re
s,

4
th
re
ad
s

p
er

co
re

4
co
re
s

2
co
re
s

L
IW

sl
o
ts

10
(6

ve
ct
or
)

3
(v
ec
to
r
+
m
em

or
y

+
sc
al
ar

or
br
an
ch
)

1
ve
ct
or

2
ve
ct
or

M
a
x
.
fr
e
q
u
e
n
cy

32
0
M
H
z

60
0
M
H
z

40
0
M
H
z/

30
0
M
H
z

35
0
M
H
z

L
o
ca
l
m
e
m
o
ry

(d
a
ta
+
p
ro
g
ra
m
)

12
8
K
B
+
12
8
K
B

25
6
K
B
+
32

K
B
p
er

co
re

8
K
B
+
4
K
B

32
K
b
�
12
8
K
B

P
e
rf
o
rm

a
n
ce

4.
8
G
M
A
C
/s

(3
00

M
H
z)

28
.8
G
M
A
C
/s

19
.2
G
M
ul
./
s

(3
00

M
H
z)

22
.4
G
M
ul
./
s

P
o
w
e
r/
E
n
e
rg
y

<
0.
5
m
W
/M

H
z

30
0
m
W

@
50
0
M
H
z
≈
3
W

(0
.1

8
µ
m
)

21
0
m
W

(0
.1

3
µ
m
)

≈
18
0
m
W

(W
-C
D
M
A
2
M
bp
s)

A
re
a

3.
2
m
m

2
�

26
.6
m
m

2
(0
.1
8
µ
m
)

10
m
m

2
(0
.1
3
µ
m
)

�

S
IM

D
a
rc
h
it
e
ct
u
re

S
IM

D
w
id
th

25
6
bi
t

25
6
bi
t

51
2
bi
t

51
2
bi
t

D
a
ta

p
re
ci
si
o
n

8/
16
/3
2
bi
t

16
/3
2
bi
t

16
bi
t

8/
16
/3
2
bi
t

(b
lo
ck

�o
at
.
p
oi
nt
)

C
o
m
p
le
x
m
u
lt
.

X
X

N
/A

N
/A

S
IM

D
re
g
.
�
le

16
re
gi
st
er
s

8
re
gi
st
er
s

16
re
gi
st
er
s

15
re
gi
st
er
s

P
e
rm

u
ta
ti
o
n
n
e
t-

w
o
rk

cr
os
sb
ar

�
si
ng
le
-s
ta
ge

p
er
fe
ct

sh
u�

e
do
ub
le
-v
ec
to
r

ba
ny
an

ne
tw
or
k

14

2.3 Wide SIMD processor architectures and research on the scalability of SIMD processing

2.3.1 The Embedded Vector Processor

The Embedded Vector Processor (EVP) is a SIMD vector processor architecture that
is commercially available from ST-Ericsson [SE09] (formerly NXP Semiconductors). The
processor architecture has been designed for SDR systems, focusing on the modem stage of
the baseband processing [vHM+04, vHM+05]. The �rst instance of the EVP, the VD32040
processor is already in mass-production in multi-mode TD-SCDMA handsets [SVPG+10].
A block diagram of the processor architecture is displayed in �gure 2.4.

Figure 2.4: Block diagram of the EVP architecture

The EVP supports vector operations on 256-bit data vectors. Data vectors can be inter-
preted as 8 32-bit elements, 16 16-bit elements, or 32 8-bit elements. Yet, some instructions
(e. g. multiplication, MAC operation) only support 16-bit values. Complex multiplication
and MAC operations are also supported.
The processor architecture consists of a scalar and a vector data path. The scalar data
path contains an arithmetic logic unit (ALU), a load store unit for scalar memory ac-
cess (LSU) and a multiply-accumulate unit (MAC). Furthermore, scalar values can be
broadcasted to vectors. The scalar program control unit (PCU, not in �gure 2.4) per-
forms branch operations and zero-overhead loops (ZOLs). The vector data path contains
a vector ALU (VALU), a vector MAC unit (VMAC), a vector LSU (VLSU) and three

15

Chapter 2 Overview of software de�ned radio principles and architectures

special vector processing units: The vector shu�e unit (VSHU) performs arbitrary vector
element permutations on one data vector. The intra vector unit (IVU) supports mini-
mum/maximum search on elements of a vector and accumulation of elements in a vector.
The code generation unit (CGU) is an application-speci�c accelerator for scrambling and
channelization codes (e. g. for W-CDMA).
Next to processing data vectors in parallel, the EVP also supports very long instruction
word (VLIW) execution: Operations on each of the vector and scalar processing units can
execute in parallel in one clock cycle.
The processor is designed for a working frequency of 300MHz (maximum 320MHz in a
low-power 45 nm process) and achieves 4.8GMAC/s in the SIMD data path and up to
30 GOPS (Giga operations per second) on 16-bit data at this clock frequency [SE09].
For a typical memory con�guration (128KB program memory, 128KB data memory)
and typical applications, the newest instance of the EVP, the VD32041, requires less than
0.5mW/MHz energy and 3.2mm2 area (1.3mm2 for the processor core without memories).
The architectural features of the scalable SIMD processor architecture in chapter 3 are
based on an extensive analysis of SDR applications on the EVP.

2.3.2 The Sandblaster SB3500 architecture

The Sandblaster SB3500 architecture is a low-power multi-core processor architecture de-
veloped by Sandbridge Technologies [MG08, SMN+09, SVPG+10]. The multi-core pro-
cessor consists of an ARM processor core and three SBX processor cores. The SBX cores
support 256-bit SIMD vector operations, including complex multiplication, reduction op-
erations (e. g. sum of vector elements), permutation operations (rotation, shifting) and
special operations for Galois �eld arithmetic and Viterbi decoding.
Each SBX executes four sequential hardware threads. If the processor is clocked at
the maximum clock frequency of 600MHz, this corresponds to four threads running at
150MHz. The sequential processing of threads enables an e�cient pipelining of execution
stages, which hides the instruction latency from the programmer and reduces the power
consumption. Each SBX core also supports long instruction word (LIW) execution; three
operations are issued per clock cycle, including up to one vector operation and one memory
access operation.
The SB3500 is supported by a complete parallelizing tool chain. The compiler includes
algorithms for the vectorization of loops, the detection of saturation arithmetic, and multi-
threading.
The SB3500 processor architecture achieves a peak performance of 9.6GMAC/s per SBX
core and is fabricated in 65 nm technology. The typical power consumption of one SBX
core at 500MHz is 100mW [San09].

16

2.3 Wide SIMD processor architectures and research on the scalability of SIMD processing

2.3.3 The Signal-processing On-Demand Architecture

The Signal-processing On-Demand Architecture (SODA) is a multi-core SIMD processor
architecture for SDR [LLW+06, LLW+07, Lin08, WSL+07], which was developed at the
University of Michigan at Ann Arbor. The original SODA consists of four processing
elements (PEs) with local memories, a global memory, and an ARM control processor (see
�gure 2.5). The PEs support SIMD operations on 512-bit data vectors.

Figure 2.5: Block diagram of SODA

Each PE has three parallel pipelines for address generation, scalar, and SIMD operations.
Each pipeline executes one instruction per clock cycle. The SIMD pipeline consists of
32 lanes with 16-bit ALUs and 16-bit multipliers (a multiplication requires two clock
cycles). A so-called SIMD shu�e network (SSN) performs vector element permutations
using a single-stage combined perfect shu�e exchange, inverse perfect shu�e exchange
network with a feedback path [LLW+06], which enables performing complex permutations
by multiple permutation iterations on the single-stage network. Figure 2.6 shows the
topology of perfect shu�e exchange and inverse perfect shu�e exchange networks for
eight elements in a vector.
SODA has been synthesized in 0.18µm technology for a maximum clock frequency of
400MHz. The total power consumption for W-CDMA (2Mbps) is 2.95W, SODA re-
quires 26.6mm2 for PEs, ARM processor, bus system, and memories. Recently, the pro-
cessor architecture has been resynthesized in 0.13µm technology [LCM09] for a clock
frequency of 300MHz. In 0.13µm technology, the architecture requires 210mW for W-
CDMA (2Mbps) and occupies 10mm2 chip area. The processor architecture achieves
19.2GMul./s at 300MHz.

SODA-II

SODA-II is a follow-up architecture of SODA, which tries to address the shortcomings of
the original SODA by optimizing the data paths [LCM09]. The main shortcomings of the

17

Chapter 2 Overview of software de�ned radio principles and architectures

(a) Perfect Shu�e exchange (b) Inverse perfect shu�e exchange

Figure 2.6: Topologies of perfect shu�e exchange and inverse perfect shu�e exchange net-
works

original SODA are its high register �le power consumption (between 27 and 37 percent of
the total power consumption [LLW+06]) and the overhead for data alignment operations.
SODA-II applies three techniques to improve SODA: operation chaining, pipelining of
vector operations, and staggered memory access and multi-cycling.
Operation chaining describes the concatenation of SIMD operations in one instruction.
SODA-II's SIMD computation units comprise two parallel ALUs/multipliers, followed by
a third ALU. Operations, such as performing two multiplications and accumulating the
results can be performed in one instruction. The concatenation of instructions lessens
register �le accesses and reduces the cycle count. A simpli�ed block diagram of a SIMD
computation unit is shown in �gure 2.7.
Pipelining of vector operations is done to reduce the overhead for non-computational
operations, such as memory access and vector permutations. A conceptual view of SODA-
II's vector pipeline is shown in �gure 2.8. The pipeline comprises �ve stages: memory read
access, vector alignment, vector computation, vector alignment or reduction, and write
back to memory. The vector alignment is realized on the SIMD permutation network or
by simply writing vectors to vector registers.
Staggered memory access and multi-cycling are done to avoid permutations for complex
data alignments, such as required for the FFT or Viterbi decoding. Complex data align-
ment is implemented by reading one value at a time (denoted as staggered memory access);
the processing on computation units for di�erent vector elements is initialized sequen-
tially. A high utilization of the SIMD computation units with staggered memory access
can only be achieved if the computation units are busy for multiple cycles (denoted as
multi-cycling). Therefore, the computation units are realized as small microprocessors,
which support complex multi-cycle operations that iterate on the input data for multiple
cycles and single-cycle operations, such as the chained operations mentioned above.
Like SODA, SODA-II is also realized as a multi-core architecture with four 512-bit SIMD
processors. SODA-II has been synthesized in a 0.13µm process for a clock frequency
of 300MHz [LCM09]. The processor architecture requires 11mm2 chip area. W-CDMA

18

2.3 Wide SIMD processor architectures and research on the scalability of SIMD processing

Figure 2.7: Simpli�ed block diagram of a SIMD computation unit in SODA-II

Figure 2.8: Conceptual view of the vector pipeline in SODA-II

(2Mbps) requires two of the four SIMD processor at a power consumption of approximately
120mW. The original SODA requires all four processors to achieve 2Mbps throughput and
consumes 210mW power. Performance results for 4G algorithms have not been obtained.

2.3.4 The Ardbeg architecture based on SODA

The Ardbeg architecture is a commercial processor architecture, which has been developed
based on a redesign of SODA for 90 nm technology [WLS+08a, Lin08]. The processor
architecture is part of ARM spin-out Cognovo's software de�ned modem platform. The
Ardbeg architecture contains two Ardbeg PEs. Figure 2.9 shows a high-level block diagram
of the data path of an Ardbeg PE. SODA has been extended with limited LIW support
for SIMD operations and an accelerator for turbo decoding (ASIC). Furthermore, the
permutation network has been redesigned and SIMD processing units have been optimized.
The SIMD width (512 bits) has not been changed.

19

Chapter 2 Overview of software de�ned radio principles and architectures

Figure 2.9: Block diagram of the SIMD and scalar data paths of an Ardbeg PE

LIW support has been implemented, as the utilization of processing units in SODA is
poor. For example, the SIMD ALU is only active for 30 percent of the total time for W-
CDMA and IEEE 802.11a [WLS+08a]. LIW support can improve the resource utilization
by e. g. enabling to perform memory access in parallel to arithmetic operations. In the
Ardbeg architecture, LIW processing is limited to at most two parallel SIMD operations,
and only some combinations of functional units are supported (e. g. memory access and
multiplication or multiplication and ALU operation).
Turbo decoding has been o�oaded to an accelerator, because of its poor performance on
SODA: The turbo decoder for W-CDMA, at a data rate of 2Mbps, occupies one complete
SODA PE. The same performance can be achieved on an ASIC with approximately 5
times lower power consumption.
SODA utilizes a single-stage permutation network, which can only perform a very limited
set of permutations in one step. Multi-stage interconnect networks (MINs) have not been
considered, because the delay in 0.18µm technology was too long. Ardbeg has been
designed for 90 nm and implemented with a banyan network with seven stages and a
width of two vectors. The banyan network is a MIN and can perform permutations on
pairs of vectors in one operation (see chapter 3.1.5).

20

2.3 Wide SIMD processor architectures and research on the scalability of SIMD processing

As a last optimization, the SIMD processing units have been optimized. All units support
8-, 16-, and 32-bit data types instead of only 16-bit data types. Furthermore, block
�oating point support has been added. In a �oating point representation, each value has
its own mantissa and exponent. In a block �oating point representation, all elements in a
vector share the same exponent, which reduces the overhead for �oating point processing.
Moreover, a single-stage permutation network has been added to the SIMD ALU, which
enables to perform permutations (e. g. for an FFT) and addition or subtraction in one
operation. The multipliers have been redesigned for single-cycle latency.
The various optimizations lead to a speedup between 1.5× and 7× over SODA for W-
CDMA, IEEE 802.11a, and DVB-H/DVB-T [WLS+08a]. The Ardbeg architecture con-
sumes approximately 180mW of power for W-CDMA at 2Mbps.

2.3.5 Processor architectures based on SIMdD processing

Single instruction, multiple disjoint data (SIMdD) processing [HM03] describes a processor
architecture that enables SIMD units to operate on any data, without alignment restric-
tions by forcing operations on data vectors. The register �le complexity of a SIMdD
architecture grows with the SIMD width as the register �le complexity of a VLIW archi-
tecture grows with the number of parallel instruction slots. Therefore, SIMdD processing
is not practical for wide SIMD architectures.
Indirect SIMdD architectures still operate on aligned data vectors in registers, yet allow
�exible memory access by providing vector pointers. The basic idea is illustrated by �gure
2.10: A vector pointer is provided; each component of the vector pointer determines the
memory location of one vector element or one vector segment (if the vector pointer has
fewer elements than the data vectors) for memory access operations. During memory
access, the vector elements/segments are processed independently. Data that has been
read from memory is stored in data vectors (in a register �le). The processing of data
vectors does not di�er from classical SIMD architectures.

IBM's eLite DSP architecture

The concept of SIMdD processing has been invented at IBM research and implemented
in the eLite DSP architecture [MZS+03, DMW03, DM03]. eLite supports 64-bit SIMD
vectors (four 16-bit elements) and LIW execution. The vector data path consists of a vector
pointer unit, a vector element unit, and a vector accumulator unit. The vector pointer unit
performs vector pointer operations for addressing registers in the vector element register
�le. The vector element unit performs arithmetical operations on the data from the vector
element register �le. The vector accumulator unit is utilized for accumulation or reduction
operations on 40-bit values. Every vector instruction speci�es one or two vector pointer
registers, which in turn point to the element registers.

21

Chapter 2 Overview of software de�ned radio principles and architectures

Figure 2.10: Indirect SIMdD processing: A vector pointer determines memory locations
for each vector element independently during memory access operations

eLite has been implemented in 0.13µm technology and achieves 2GMAC/s at a clock
frequency of 500MHz with a power consumption of 300mW. At 250MHz eLite only con-
sumes 50mW of power. While eLite is not an alternative for SDR processing, the concept
of SIMdD � and especially indirect SIMdD � is interesting for wide SIMD architectures,
as discussed in chapter 7.3.1.

The AnySP architecture

The AnySP architecture has been developed at the University of Michigan at Ann Arbor
[WSM+09, WSM+10, WMMC10] and is the �rst indirect SIMdD processor architecture for
SDR. Like SODA, AnySP is a multi-processor architecture with four processing elements
(PEs). Each AnySP PE is a 1024-bit SIMD processor (64 16-bit lanes) with a con�gurable
SIMD data path that supports three modes of execution: wide SIMD execution with
64 lanes, eight parallel threads with eight lanes, and SIMD execution with 32 lanes and
operation chaining (see section 2.3.3). A block diagram of an AnySP PE is displayed in
�gure 2.11.
Execution with 32 lanes and operation chaining is realized by using two neighboring 16-bit
processing units in consecutive cycles without write back to the register �le. Hence, the
vector length is reduced for support of more complex instructions. Neighboring units that
can be combined are denoted as �exible functional units (FFU).
Eight parallel threads on 128-bit vectors are supported by indirect SIMdD processing,
each thread executes the same operations, only memory access locations di�er. Memory
access is realized by providing eight independent address generation units (AGUs), one for
each 128-bit SIMD thread. Furthermore, accumulation of vector elements for independent
threads is supported by implementing a multiple-output adder tree.
The architecture has been further optimized by providing two SIMD register �les (RFs):
one large register �le (16 entries) and one small register �le (4 entries) for values with a

22

2.3 Wide SIMD processor architectures and research on the scalability of SIMD processing

Figure 2.11: Block diagram of an AnySP processing element

short lifetime. The partitioning of the register �le into two register �les reduces the power
consumption. Furthermore, a crossbar network based on SRAM cells for cross points,
called swizzle network, is implemented. The SRAM-based network requires less power
than a multiplexer-based network.
AnySP has been synthesized in 90 nm technology for a target frequency of 300MHz. Per-
formance and power consumption have been measured based on a mix of H.264 decoding
(4CIF, 30 fps) and wireless communication algorithms (1024-point FFT, 2× 2 STBC and
decoding of quasi-cyclic LDPC codes). The wireless communication algorithms achieve
a throughput of 100Mbps. The total power consumption is 1.347W, the chip area is
25.17mm2.

2.3.6 Research on the scalability of SIMD processing for SDR

While SIMD processing is a technique that has been thoroughly investigated, few re-
search results have been published that discuss the scalability of wide SIMD processor
architectures for SDR algorithms. [WLS+08a] describes the development of the Ardbeg
architecture from SODA. A limited analysis of di�erent SIMD widths and permutation
networks has been done before selecting the �nal SIMD width for Ardbeg. [WLS+08b]
investigates the scalability of SODA for four baseband algorithms.

SIMD scalability analysis during the Ardbeg development

[WLS+08a] includes a SIMD width analysis for the Ardbeg processor in 90 nm technology.
Ardbeg has been synthesized for SIMD widths ranging from 128 to 1024 bit (8 to 64 16-
bit lanes). The synthesized permutation network is not mentioned. Energy consumption,
delay, and area have been measured for a mix of 3G baseband algorithms, including FIR

23

Chapter 2 Overview of software de�ned radio principles and architectures

�ltering, FFT, W-CDMA searcher (based on auto-correlation), and Viterbi decoding. Al-
gorithm parameters (e. g. �lter length, FFT size) are not mentioned. Results are reported
as an average over all algorithms and are normalized to the 128-bit SIMD processor. The
normalized delay �gures show approximately linear speedup.2 The energy consumption
decreases with an increasing SIMD width (60 percent for 64 lanes). The area more than
doubles with a doubling of the SIMD vector length (approximately 10× for 64 lanes). Due
to the signi�cant increase in area, the SIMD width has been set to 32 lanes and not 64
lanes.
After �xing the SIMD width, four di�erent permutation networks have been implemented
and synthesized and normalized energy and energy-delay-product have been measured for
64-point and 2048-point radix-2 and radix-4 FFTs and a Viterbi decoder for constraint
length 9. The implemented permutation networks are SODA's single stage perfect shu�e
exchange / inverse perfect shu�e exchange network with a width of one vector (enabling
permutations on one input vector), the same network topology with a width of two vectors
(enabling permutations on pairs of vectors), a banyan network (multistage interconnect
network - MIN) on two vectors, and a crossbar network on two vectors. More information
on permutation network topologies can be found in chapter 3.1.5. The analysis shows that
the algorithm implementations with permutation networks with a width of two vectors
consume less energy and have a better delay than the implementations with a single-vector
network. The banyan network and the crossbar network achieve similar results, except for
the 64-point radix-2 FFT, which has a much higher energy consumption using the crossbar
network. The double-vector perfect shu�e exchange / inverse perfect shu�e exchange
network achieves the best results for the 64-point radix-2 FFT, as the FFT algorithm is
optimized for this network architecture. The banyan network and the crossbar network
attain the best results for all remaining algorithms. Based on the analysis, Ardbeg has
been realized with a double-vector banyan network.

SIMD scalability analysis based on SODA

The SIMD scalability analysis in [WLS+08b] based on SODA considers four SDR algo-
rithms for MIMO-OFDM for SIMD widths ranging from 512 bit (32 16-bit lanes) to 4096
bit (256 16-bit lanes). The implemented algorithms are a 1024-point radix-2 FFT, space
time block coding (STBC) based on Alamouti for a 2× 2 MIMO system [Ala98, Bau01],
the vertical Bell laboratories layered space-time (V-BLAST) detection algorithm for 4× 4
MIMO [Fos96, WFGV98], and a decoder for a WiMAX LDPC code (z = 96, R = 5/6)
[IEE09b, SMZC07].
First, available data parallelism and workload have been analyzed; the results are sum-
marized in table 2.2. According to Woh et al., the SIMD width should be increased to

2The term linear speedup or ideal speedup means that a doubling of the SIMD width leads to a doubling
of the performance.

24

2.3 Wide SIMD processor architectures and research on the scalability of SIMD processing

be as large as the FFT size NDFT for the maximum performance. STBC and V-BLAST
both operate on small vectors, with one vector per OFDM sub-carrier. As sub-carriers are
orthogonal to each other and can be processed in parallel, data parallelism is only limited
by the number of data carriers in an OFDM symbol, which here is assumed the FFT size.
The LDPC decoder operates on z × z sub-matrices of the LDPC matrix; hence, at most
z elements can be processed in parallel.

Table 2.2: Analysis of data parallelism [WLS+08b]

Algorithm Overhead Scalar SIMD Maximum vector
Workload [%] Workload [%] Workload [%] parallelism

FFT/IFFT 61 5 34 NDFT = 1024
2× 2 STBC 14 5 81 4 ·NDFT

4× 4 V-BLAST 24 6 70 4 ·NDFT

LDPC 3 18 49 z = 96

The workload results categorize the workload on the SIMD processor into scalar workload,
workload for computational SIMD operations on the ALU, multiplier, or shifter (denoted
as SIMD workload), and overhead workload for memory access and vector permutations.
The workload results show a high utilization of the computational SIMD units for STBC
and V-BLAST, the FFT is dominated by overhead workload.
The speedup and energy consumption have been measured and normalized to the results
for 32 16-bit lanes. Normalized speedup results show linear speedup for STBC and slightly
less than linear speedup for FFT. The V-BLAST implementation apparently requires more
scalar operations for wider SIMD widths; hence, the speedup increases slowly (approxi-
mately 5.5× for 256 lanes). The speedup for LDPC decoding also increases slowly and
does not increase at all if the SIMD width is increased from 128 to 256 lanes, as at most 96
elements can be processed in parallel. The maximum speedup is 3.0 for 128 or more paral-
lel lanes. If linear or close to linear speedup can be attained, the energy consumption stays
almost constant. The LDPC decoder requires more energy on wider SIMD architectures,
because most of the SIMD lanes perform useless computations.

Di�erences to the present thesis

The analysis of the scalability of SIMD processing in this thesis di�ers from the work
in [WLS+08b, WLS+08a] concerning the analyzed algorithms and the considered SIMD
architecture.

25

Chapter 2 Overview of software de�ned radio principles and architectures

SODA supports only one vector operation per clock cycle, while Ardbeg supports a re-
stricted LIW instruction format with at most two parallel vector operations. Therefore,
much of the processing time is spent either on scalar or memory access and vector align-
ment operations, as can be seen in table 2.2. This thesis proposes a SIMD processor
architecture with LIW support. Parallel processing of computational SIMD operations
(e. g. addition, multiplication) and memory access and/or vector permutation operations
increases the performance of the SIMD architecture, as overhead operations can be hidden
by LIW execution. One prominent example is the FFT with an overhead workload of 61
percent on SODA. On the proposed SIMD architecture, the overhead operations can be
completely or mostly performed in parallel to useful computational operations (see chapter
4.6.3).

The SIMD processor architecture has also been implemented with four di�erent permuta-
tion network con�gurations (see chapter 3.1.5), enabling to perform a systematic analysis
of the complexity of permutations for di�erent SIMD widths.

From an algorithm perspective, the present thesis considers di�erent algorithm parameters,
a more recent MIMO detection algorithm, and � in part � achieves di�erent results than
the work in [WLS+08b, WLS+08a].

Woh et al. only implemented one FFT size (NDFT = 1024) and one LDPC code (z = 96,
R = 5/6). Hence, the in�uence of algorithm parameters could not be investigated. This
thesis analyzes di�erent FFT sizes, including mixed-radix FFT sizes and LDPC codes.
The results show that the scalability indeed depends on algorithm parameters.

In [WLS+08b], 2× 2 STBC and 4× 4 V-BLAST are implemented as examples for MIMO
algorithms. STBC is an approach that increases the signal quality at the receiver by
sending a signal on multiple transmit antennas in a space-time code [Ala98]. V-BLAST is
a detection algorithm for spatial multiplexing, i. e. multiple data streams are transmitted in
parallel [WFGV98]. This thesis analyzes 4×4 sphere decoding, which is a class of detection
algorithms for spatial multiplexing. V-BLAST has a lower computational complexity than
sphere decoding, but has a poor BER performance, as it does not exploit the full MIMO
diversity [BBW+05]. Sphere decoding algorithms achieve a BER performance close to the
optimum maximum likelihood (ML) solution. Therefore, sphere decoding is a better choice
for 4G systems � and more challenging due to the greater computational complexity.

Woh et al. also arrive at di�erent conclusions concerning the scalability of FFT and LDPC
decoding than this thesis. [WLS+08b] claims that the SIMD width should be increased
to the FFT size, while the LDPC decoder can process at most z elements in parallel.
In chapter 4, it is shown that the FFT size should be at least twice the SIMD width
for radix-2 FFTs. Chapter 6, which describes the LDPC decoder implementation, shows
that LDPC decoding may also be e�ciently done for SIMD widths greater than z, yet a
di�erent implementation is required than for SIMD widths less than or equal to z.

26

2.4 Key algorithms for future 4G SDR systems

2.4 Key algorithms for future 4G SDR systems

The requirements of 4G wireless systems are de�ned by the ITU [Rep08] under the identi-
�er International Mobile Telecommunications-Advanced (IMT-Advanced). IMT-Advanced
de�nes a target data rate of 100Mbps for high and 1Gbps for low mobility environments.
The key technologies that may enable these data rates are orthogonal frequency division
multiple access (OFDM-A), multiple-input, multiple-output (MIMO) transmission and
forward error correction (FEC) coding with turbo codes and LDPC codes.
The future Long Term Evolution-Advanced (LTE-Advanced) standard [Tec09a] is the �rst
candidate for an IMT-Advanced standard and targets a downlink peak data rate of 1Gbps
and an uplink peak data rate of 500Mbps. LTE-Advanced is based on the pre-4G Long
Term Evolution (LTE) standard [Tec09b], which supports up to 4 × 4 MIMO and uses
OFDM-A for downlink and single-carrier frequency division multiple access (SC-FDMA)
for uplink transmission. FEC coding is done by convolutional codes and Turbo codes.
The other major pre-4G wireless transmission standard, Worldwide Interoperability for
Microwave Access (WiMAX, IEEE 802.16) [IEE09b], is also based on MIMO-OFDM and
optionally supports LDPC codes. Hence, a MIMO-OFDM system with turbo or LDPC
codes for channel coding can be identi�ed as the probable foundation for the physical layer
processing of future IMT-Advanced compliant transmission standards. Below, the most
important tasks in a MIMO-OFDM system are established.

2.4.1 MIMO-OFDM system model

OFDM is a block modulation scheme that converts a frequency-selective channel into
many frequency �at sub-carriers [SBM+04, B�06]. The sub-carriers are orthogonal in time
domain, yet overlap in frequency domain, which leads to a good bandwidth e�ciency.
OFDM is realized by an IFFT at the transmitter and an FFT at the receiver. In a
MIMO-OFDM system, OFDM block modulation is used for multiple transmit antennas
and the receiver applies multiple receive antennas. A block diagram of a MIMO-OFDM
system is displayed in �gure 2.12.
From a complexity point of view, the receiver side is the most demanding part of the
physical layer in a MIMO-OFDM system. The major tasks that have to be performed
at the receiver are the OFDM demodulation by an FFT, the detection of the most likely
transmitted MIMO symbols (MIMO detection), the decoding of the FEC code (e. g. a
turbo or LDPC code), time synchronization, frequency o�set estimation and correction,
and the estimation of channel parameters (i. e. channel matrix and SNR) [SBM+04].
Time synchronization, frequency o�set estimation and correction, and channel estima-
tion are usually performed using a preamble consisting of one or several training se-
quences [SBM+04]. Once the necessary parameters have been computed, the receiver

27

Chapter 2 Overview of software de�ned radio principles and architectures

Figure 2.12: Block diagram of transmitter and receiver in a MIMO-OFDM system

tracks changes for the duration of a frame, e. g. using pilot signals. None of these tasks
depends on the incoming data.
OFDM demodulation, MIMO detection, and FEC decoding are tasks that have to be
performed continuously on the incoming data, with the throughput requirements de�ned
by the data rate of the MIMO-OFDM system. Hence, the computational complexity
of the receiver is mostly de�ned by these three tasks. Therefore, OFDM-based block
(de-)modulation, MIMO detection, and LDPC decoding have been selected to assess the
potential performance � and the limitations for SIMD processing � of MIMO-OFDM
systems on an SIMD-based SDR processor platform.
LDPC codes and turbo codes both can achieve error rates close to then Shannon limit.
Yet, LDPC codes have an asymptotically better performance than turbo codes and enable
trade-o�s between decoding complexity and performance [RSU01, RU01]. Furthermore,
LDPC decoding algorithms are well suited for parallel processing. Therefore, LDPC de-
coding has been investigated instead of turbo decoding.

28

2.4 Key algorithms for future 4G SDR systems

MIMO symbol detection is performed based on sphere decoding, because sphere decoding
algorithms o�ers an excellent BER performance (close to the optimum maximum likeli-
hood solution). Furthermore, the high computational complexity of sphere decoding is a
challenge for any baseband processing architecture.

29

Chapter 3

Scalable SIMD processor architecture

This chapter focuses on the development of a scalable SIMD processor architecture for
SDR applications. The scalable SIMD processor architecture is described and design
decisions are explained. Furthermore, the modeling in LISA and the methodology for
evaluating the scalability of the architecture are explained. The scalable architecture has
been synthesized and simulated for four di�erent SIMD vector widths � ranging from 128
bits to 1024 bits per vector � and four di�erent permutation network con�gurations.
In section 3.1, design decisions for the scalable SIMD processor architecture are explained.
The architecture is developed based on an analysis of baseband algorithms that have been
implemented on the EVP [vHM+04, vHM+05, SVPG+10]. Following the description of
the processor architecture, section 3.2 explains the processor modeling using the LISA
language [HNBM01, Hof02, L�04, PHZM99, Pee02]. After brie�y introducing LISA, mod-
eling issues for scalable SIMD models are described and a solution based on the GNU
M4 [SPVB08] macro language is proposed. The section concludes with a discussion of
the e�ectiveness of LISA for the development of large SIMD processors. The following
section (section 3.3) brie�y discusses an alternative for LIW SIMD architectures based on
vertical-horizontal vector operations [GZYC86]. Section 3.4 explains the methodology used
for analyzing area, power, and performance of the di�erent instances of the scalable SIMD
processor architecture. The used tools and technologies are described and limitations of
the methodology are explained.

3.1 Development of the SIMD processor architecture

based on algorithm requirements

The development of any processor architecture requires many design decisions. Instruction
set and data type support have to be de�ned, register �les must be dimensioned, and other
features have to be de�ned as well. These decisions are not arbitrary and require careful
consideration of the hardware complexity and, especially, the demands of the algorithms
that shall be mapped on the processor architecture.

31

Chapter 3 Scalable SIMD processor architecture

Hence, as a �rst step towards the development of a scalable SIMD processor architecture
for SDR, the requirements of typical baseband algorithms have been identi�ed. For this
purpose, baseband algorithms that have been implemented on the EVP during a research
project in cooperation with Nokia Siemens Networks were analyzed. Aspects such as
typical word lengths, data types, useful instructions, conditional execution of operations,
instruction level parallelism (ILP), register �les, and support for permutation operations
have all been considered. The implemented baseband algorithms that are the basis of the
analysis are listed below:

• A linear minimum mean squared error (LMMSE) chip equalizer for single input,
multiple output (SIMO) W-CDMA with two receive antennas and two times over-
sampling at the receiver [WBAHS08b, WBAHS09]

• A spreader for HSDPA, which comprises the modulation mapping, coding by chan-
nelization and scrambling codes, and the combining of di�erent control and data
channels [Tec07, WBAHS08b, WBAHS09]

• Matrix algorithms for MIMO OFDM systems [SM06]: QR decomposition, singular
value decomposition (SVD) and the QRD-M algorithm for MIMO symbol detection

• Radix-2 and mixed-radix FFTs for single carrier frequency division multiple access
(SC-FDMA) and orthogonal frequency division multiple access (OFDM-A) in LTE
[WBAHS08a]

In the following, the results of the algorithm analysis are presented. Based on this analysis,
the scalable SIMD processor architecture has been developed.
In section 3.1.1, word lengths and data types are evaluated. The next section evaluates
instructions and conditional execution modes that are useful for the considered baseband
algorithms; based on the evaluation, the instruction set of the processor architecture is
de�ned and instructions are mapped on processing units. Sections 3.1.3 and 3.1.4 discuss
instruction level parallelism and the dimensioning of the register �les. In section 3.1.5,
alternatives for the vector permutation network are discussed. Section 3.1.6 lists further
DSP features that have been implemented and summarizes the features of the scalable
SIMD processor architecture.

3.1.1 Word lengths and data types

A precision of 16 bits is adequate for the majority of considered algorithms. Some algo-
rithms � for example the chip equalizer algorithm for SIMO W-CDMA � bene�t from
an increased precision for intermediate results of multiply-accumulate (MAC) operations.
However, after accumulation, the result may usually be reduced to a 16 bit word length

32

3.1 Development of the SIMD processor architecture based on algorithm requirements

without distorting the output of the whole algorithm. In some cases, an even smaller pre-
cision than 16 bits is possible. For example, the spreading operation in HSDPA, as well
as the LDPC decoder presented in chapter 6, bene�t from 8-bit data types � allowing a
higher memory density and twice the SIMD parallelism of an implementation with 16-bit
data types.
To avoid erroneous behavior due to over�ow � in case of two's complement data, a wrap
around between positive and negative numbers � saturation arithmetic can be applied.
Furthermore, truncation errors for multiplication operations can be reduced by added
support of rounding.
Most baseband algorithms operate on complex I/Q data with mostly pure fractional data
values. Hence, next to integer data types, baseband processor architectures usually sup-
port Q.15 �xed-point data (one sign bit and 15 fractional bits) to accommodate these
requirements. The overhead for supporting two data types (integer and �xed-point) is
low, as most arithmetical operations (e.g . addition, subtraction) produce the same binary
result for �xed-point and integer inputs. Only multiplication and MAC operation require
di�erent behavior for integer and �xed-point data (di�erent output bit positions).
On a SIMD vector architecture, consecutive data elements occupy consecutive vector ele-
ments. Hence, special treatment of complex data values, where a pair of consecutive ele-
ments represents imaginary part and real part of a complex number, is expedient. Again,
this only concerns the behavior of complex-valued multiplication and complex-valued MAC
operation.
Based on these observations, the arithmetic data types presented in table 3.1 have been
selected and implemented. All scalar and vector processing units support 16-bit data in
general-purpose scalar or vector registers. The vector MAC unit (VMAC) also supports 40-
bit values in a special vector accumulator register �le (according to the de�nition in �gure
3.1). Furthermore, the VMAC supports complex-valued data vectors, where imaginary
and real parts are stored consecutively in pairs of vector elements. Although support of
8-bit data types is useful, a limitation to 16-bit operations, with additional support for 40-
bit accumulation, signi�cantly reduces the complexity of the SIMD processor architecture.

3.1.2 Instruction set

The instruction set of the scalable SIMD processor architecture can be divided into in-
structions on the scalar processing units and instructions on the vector processing units.
The analysis of algorithms on the EVP shows that scalar processing is necessary for two
purposes: control �ow operations and the calculation of scalar parameters that are later
broadcasted to vectors. In rare cases, access to single vector elements (for setting or read-
ing one value at a time) is required. The vector data path requires arithmetical instructions
(addition, subtraction, negation, multiplication, MAC), as well as comparison and maxi-

33

Chapter 3 Scalable SIMD processor architecture

Table 3.1: Supported basic arithmetic data types

Word length Data format Saturation Rounding Description
support support

16 bits integer X default integer data type
1 bit Boolean Boolean data type
16 bits Q.15 X X default �xed-point data type

16+16 bits Q.15 X X complex-valued �xed-point data
type using consecutive vector el-
ements for imaginary and real
part

40 bits Q8.31 X X accumulator data type for multi-
plication and MAC operation

40+40 bits Q8.31 X X complex-valued accumulator
data type

mum/minimum instructions on pairs of data vectors for sorting (e. g. for MIMO detection
and channel decoding). Furthermore, shift instructions for scaling and instructions for de-
termining a shift distance (e. g. by calculating leading bits for two's complement data) are
useful. Permutation instructions are required to perform a reordering of vector elements
and are elaborated in more detail in section 3.1.5.
Next to these basic requirements on the instruction set, instructions and processing units
that accelerate one or several applications are implemented in most SIMD-based pro-
cessor architectures [vHM+05, MG08, SVPG+10, WLS+08a]. Examples for application
independent specialized operations, which can be accelerated, are division, square root,
and reciprocal square root. For example, a reciprocal square root is required for the QR
matrix decomposition [GVL96], which is utilized in di�erent MIMO algorithms, such as
the sphere decoder in chapter 5. An example for a specialized processing unit that ac-
celerates some algorithms is the EVP's intra vector unit (IVU, see section 2.3.1). This
processing unit supports minimum and maximum search over all elements of one data
vector and summation of vector elements. For example, the QRD-M MIMO detection al-
gorithm (section 5.2) bene�ts from minimum search support for the detection of the most
likely transmitted symbols. Although there is a potential performance gain from these
specialized instructions and processing units, the focus of this thesis is on the analysis
and assessment of the bene�t of an increased SIMD vector width and not the design of
accelerators. Therefore, neither specialized instructions nor processing units have been
considered during the design of the scalable SIMD processor architecture.

34

3.1 Development of the SIMD processor architecture based on algorithm requirements

Figure 3.1: De�nitions of arithmetic data types

As an alternative to branch-based control �ow, conditional instruction execution enables
the conditional execution of an instruction based on the value of a Boolean condition reg-
ister. If the value of the condition is true, the instruction is executed normally; otherwise,
the instruction does not execute and the value of the destination register is left unchanged.
Conditional instruction execution of SIMD operations can either be performed using scalar
conditions � referred to as predicated execution or predication � or on an element-by-
element basis using a condition vector. This case is denoted as masked execution or
masking, as � depending on the values of the condition mask � some elements of the
destination vector are updated with newly computed values, while the remaining elements
are left unchanged. Predicated execution is commonly used in processor architectures that
support instruction level parallelism (ILP, see section 3.1.3), because predication allows
avoiding conditional control �ow, which in turn limits ILP. Masked execution is useful for
any kind of SIMD processor architecture as it allows more �exibility during the algorithm
design by enabling the vectorization of conditional code. Furthermore, masking enables to
exclude some SIMD vector elements from a computation. Hence, the SIMD vector length
can be temporarily decreased.

The EVP supports masking and predication for most vector operations and predication
for most scalar operations � enabling to evaluate the implemented algorithms for use
cases of masking and predication. Furthermore, the EVP supports a so-called conditional
add/subtract operation, which performs addition for mask element value true and sub-
traction otherwise. The evaluation showed that predicated execution is never used for
SIMD vector operations. The only use cases are the calculation of scalar parameters and
conditional pointer updates. Masked execution is used for permutation operations during

35

Chapter 3 Scalable SIMD processor architecture

the calculation of radix-2 and mixed-radix FFTs (see chapter 4), as well as for masked
arithmetical operations. The conditional add/subtract operation is repeatedly used in the
HSDPA spreader.
Based on the analysis, six vector and �ve scalar processing units have been implemented
in the scalable SIMD processor architecture. The processing units and their supported

Table 3.2: Vector processing units and supported operation types

Processing unit Abbrev- Masking Description of operation types
iation

Vector arithmetic logic unit VALU X arithmetical and logic op-
erations including shift,
comparison and conditional
add/subtract

Mask arithmetic logic unit MALU logic operations on vector
masks

Vector multiply-accumulate unit VMAC X multiplication, MAC; accumu-
lator & complex-valued data
types

Vector load/store unit VLSU memory access,address updates
Vector permutation unit VPU X vector permutations on a vector

permutation network
Vector move unit VMU move operations for masks / ac-

cumulator registers
Scalar exchange unit SXU vector element access, scalar

broadcast

operation types are listed in tables 3.2 and 3.3. As predicated execution is not necessary
for vector processing units, only the scalar ALU and scalar MAC support predication. The
VALU, VMAC and VPU support masking for all operations; the VALU also includes the
special conditional add/subtract operation. The VMAC supports both complex-valued
data types and 40-bit accumulator data types for intermediate results with increased pre-
cision. Most vector and scalar operations are designed for single cycle latency as dis-
played in table 3.4. Exceptions are control �ow operations, memory access operations,
and complex-valued multiplication and MAC operations. In table 3.4, the initiation inter-
val of an operation is de�ned as the minimum interval between starting the execution of
one operation and starting another operation on the same unit. Hence, operations with
an initiation interval of one cycle can be started every clock cycle. The complex-valued

36

3.1 Development of the SIMD processor architecture based on algorithm requirements

Table 3.3: Scalar processing units and supported operation types

Processing unit Abbrev- Pred- Description of operation types
iation ication

Scalar arithmetic logic unit ALU X arithmetical and logical opera-
tions including shift and compar-
ison

Predicate arithmetic logic unit PALU logic operations on Boolean pred-
icates

Scalar multiply-accumulate unit MAC X multiplication, MAC
Scalar load/store unit LSU memory access,address updates
Branch control unit BU branches, zero-overhead loops

multiplication and MAC operations have an initiation interval of two clock cycles, as the
computation is split into two parts in two consecutive clock cycles (see equation (3.1)),
but the same multipliers are used in both clock cycles to reduce the hardware overhead.

Re {a · b} = Re {a} · Re {b} − Im {a} · Im {b} (3.1)

Im {a · b} = Re {a} · Im {b}︸ ︷︷ ︸
cycle 1

+ Im {a} · Re {b}︸ ︷︷ ︸
cycle 2

Branch and loop operations have an initiation interval equal to the instruction latency,
because only one control �ow operation can be processed at a time.

Table 3.4: Latencies of scalar and vector instructions measured in clock cycles

Operation type On unit Latency Init. interval

Load/store operations VLSU, LSU 3 1
Complex-valued multiplication/ MAC VMAC 2 2
Branch operation BU 4 4
Zero-overhead loop BU 4 4
Other operations all units 1 1

37

Chapter 3 Scalable SIMD processor architecture

3.1.3 Instruction level parallelism

The term instruction level parallelism (ILP) is used for processor architectures that are
able to issue multiple instructions per clock cycle. On a SIMD architecture, ILP support
may hide the overhead for memory access and vector permutations. Furthermore, ILP can
improve the resource utilization of the SIMD processing units.
In principle, architectures that support ILP can be classi�ed into superscalar and long
instruction word (LIW) or very long instruction word (VLIW) architectures, with explic-
itly parallel instruction computing (EPIC) and dynamic VLIW as hybrid types [Smo02].
Superscalar architectures perform all control tasks for issuing multiple instructions in par-
allel in hardware. The control tasks are the grouping of independent instructions, which
potentially can execute in parallel without interfering with each other, the assignment
of instructions to functional units (FUs), and the actual initiation of instructions. On a
LIW or VLIW architecture, all these tasks have to be performed by the programmer or
� if available � compiler. The di�erence between LIW and superscalar architectures is
illustrated in �gure 3.2. LIW and VLIW architectures only di�er in the number of issued
parallel instructions � with no clear de�ned boundary between both terms; the term
VLIW has been introduced by Fisher in 1983 [Fis83].

Figure 3.2: Visualization of ILP architectures based on [Smo02]. Superscalar architectures
perform all control tasks for instruction parallelization in hardware, while LIW
architectures require these tasks to be done by the programmer or compiler.

Due to the hardware overhead of superscalar architectures, only LIW and VLIW archi-
tectures are of interest for modern signal processors. Compared to sequential processor
architectures, LIW architectures require additional register �le ports to support several
functional units and wider instructions that contain multiple slots with operations on dif-
ferent units. In a �xed-length LIW architecture (�gure 3.3 on the left-hand side), slots
simply occupy consecutive segments of the instruction word. Although the instruction

38

3.1 Development of the SIMD processor architecture based on algorithm requirements

decoding for such an architecture is of low complexity, the code size signi�cantly grows if
not all available slots can be �lled with useful operations. If no useful operation can be
scheduled in a slot, the slot has to be �lled with a no-operation (nop). Variable-length
LIW architectures avoid this issue by explicitly encoding the number of used slots in the
instruction. The number of slots can be de�ned by a header or by di�erential encoding of
slots (see �gure 3.3 on the right-hand side). Di�erential encoding requires one additional
stop bit for each slot except for the last one. The value of the stop bit de�nes whether
another slot follows the current slot or the current slot is the last slot. The code word
length can be further reduced by applying code compression techniques, for example based
on Hu�man codes [WC92, BNW98], Markov models [XWL02, XWL06], or lookup tables
[RS03]. Due to the complexity of these code compression techniques, they have not been
considered for the proposed scalable SIMD processor architecture.

Figure 3.3: Fixed-length and variable-length LIW encoding examples for a LIW architec-
ture with four slots

As mentioned above, LIW architectures also require an increased number of register �le
ports to support multiple functional units in parallel. Both area and power consumption of
a register �le with p ports have an asymptotic complexity of O (p2) [RDK+00] (see section
3.1.4). Hence, the maximum number of LIW slots should be set to a moderate value to
limit the number of ports.
In order to select an appropriate number of instruction slots, the algorithm implementa-
tions on the EVP have been analyzed. The EVP supports up to six vector and four scalar
operations in one VLIW instruction. Yet, the average number of parallel operations per
instruction is signi�cantly smaller than that for all considered algorithms. The results of
the analysis are depicted in table 3.5. The results show the best known implementations
of these algorithms. For the radix-2 FFT, similar results have been obtained by other
researchers [SM06].
The average number of parallel operations per instruction Npar. ∅ and the peak value
Npar. peak have been measured for the inner loops of algorithms. Furthermore, the resource
utilization values of both SIMD arithmetic units (RVALU and RVMAC) have been calculated.
Resource utilization describes the relative amount of time the unit has been active. 1 The

1The resource utilization excludes data movement operations, which do not perform useful computations.

39

Chapter 3 Scalable SIMD processor architecture

resource utilization indicates if a speedup is possible. If any processing unit is utilized all
the time, no speedup by LIW is possible without adding further processing units of the
same type.

Table 3.5: Measured ILP on the EVP for inner loops of baseband algorithms

Measured kernel Npar. ∅ Npar. peak RVALU RVMAC

3 radix-2 FFT stages
(with permutations)

3.654 5 92.33% 61.54%

3 radix-2 FFT stages
(without permutations)

2.808 5 92.33% 92.33%

Radix-3 FFT stage 2.467 5 66.67% 93.33%
Radix-6 FFT stage 2.045 4 72.73% 72.73%
Radix-5 FFT stage 2.619 6 61.90% 85.71%
W-CDMA channel estimation 2.600 6 15% 100%
HSDPA channel combiner 2.542 5 25% 58.33%
HSDPA sub frame generation 3.625 5 100% (CGU) 100%

On average, all measured inner loops achieve between two and four parallel operations
per instruction. Except for the HSDPA channel combiner, all inner loops achieve maxi-
mum resource utilization values close to or equal to 100 percent. The HSDPA sub frame
generation kernel does not use the VALU; however, the CGU is active all the time.

Based on these results, the scalable SIMD processor architecture was designed as a LIW
architecture with four parallel slots per instruction, which is more than all achieved values
for Npar. ∅. The peak number of parallel operations has only been achieved for one or two
cycles in each loop, this suggests that similar performance can be achieved by moving one
(or two) operations into subsequent instructions. Hence, a slot number smaller than the
peak number of parallel operations has been selected. A variable-length LIW encoding
based on di�erential encoding has been chosen to guarantee a small code size. The imple-
mentation is based on design examples in [CoW09b]. The number of ports for the register
�les will be discussed in the following section.

The instructions are encoded with a slot size of 24 bits and a variable instruction word
length between 24 and 96 bits. The implemented slot encoding formats for the di�erent
operation types are displayed in �gure 3.4.

40

3.1 Development of the SIMD processor architecture based on algorithm requirements

Figure 3.4: Encoding of 24-bit slots: The �rst bit contains the di�erential encoding of the
instruction length, the remaining bits contain the instruction.

41

Chapter 3 Scalable SIMD processor architecture

3.1.4 Register �les

The register �les (RFs) of a SIMD architecture require a signi�cant amount of the total
energy and area. Lin et al. [LLW+06] report that 7 percent of the area of SODA are needed
for the SIMD register �le (16 × 512 bit); the SIMD register �le consumes 37 percent of
the total power for W-CDMA (2Mbps) and 27 percent for 802.11a (24Mbps). Hence, a
careful dimensioning of the register �les is necessary.
The area, the delay, and the power consumption of a register �le depend on the number of
registers Nreg and the number of register ports p. According to register �le models based
on Rixner et al. [RDK+00], the area of a register �le has an asymptotic complexity of
O (Nreg · p2), the delay of a register �le with a large number of ports has a complexity
of O

(√
Nreg · p

)
, and the power dissipation of a register �le with many ports grows as

O (Nreg · p2). Area, delay, and power dissipation can be reduced by using hierarchical,
distributed, or streaming register �les [RDK+00]. However, these optimizations are beyond
the scope of this thesis.
The most important register �le is the general-purpose SIMD register �le, which is accessed
by the vector arithmetic units (VALU and VMAC). In the following, design decisions for
this register �le are discussed. The number of read and write ports pr and pw depends
on the number of LIW slots (see section 3.1.3) and the port requirements of functional
units. pr and pw can be reduced by sharing ports between functional units. Yet, this
technique prevents the parallel execution of these units. An analysis of algorithms on the
EVP showed that vector element permutations and scalar element access or broadcast
operations very seldom occur in the same clock cycle. Hence, the ports of the VPU and
SXU are shared. Altogether, the port requirements of the SIMD units are as follows:

• Two read ports and one write port for the VALU

• Three read ports and one write port for the VMAC

• One read and one write port for the VLSU

• One read and one write port shared for VPU and SXU if a single-vector permutation
network is utilized (see section 3.1.5) / two read and two write ports shared for VPU
and SXU if a double-vector permutation network is utilized

Figure 3.5 shows the connections between the general-purpose SIMD register �le and the
SIMD units. Assuming a single-vector permutation network, which operates on one input
vector and generates one output vector, seven read and four write ports are required for
the register �le. A double-vector permutation network supports permutations on pairs of
vectors. Therefore, a double vector permutation network requires one additional read port
and one additional write port, as illustrated by the dashed arrows in �gure 3.5.

42

3.1 Development of the SIMD processor architecture based on algorithm requirements

Figure 3.5: Read/write connections between the general-purpose SIMD register �le and
the SIMD units

The number of registers Nreg has been selected based on the algorithm requirements: Nreg

should be su�cient to avoid bottlenecks for spilling values to memory, but the register
�le also should not be too large. As a rule of thumb, Rixner et al. [RDK+00] claim that
four registers are needed per ALU and per cycle of memory latency for a LIW processor.
However, the actual number of required registers depends on the processed algorithms.
The algorithm implementations on the EVP have been analyzed to identify the register
demands of the algorithms. The vector register �le of the EVP contains 16 registers.
Except for a pair of loops in the 1024-point and 256-point FFT implementations2, the
performance of all implemented algorithms is not dominated by memory access due to a
lack of registers. Hence, 16 vector registers are apparently su�cient. On the other hand, a
reduction of the number of registers to eight would signi�cantly degrade the performance
as demonstrated by the exemplary discussion of radix-2 FFT loops below.
One radix-2 butter�y operation requires two input operands (which are stored in vectors)
and (at most) one twiddle factor operand. As consecutive radix-2 butter�y stages operate
on di�erent input operands, four input operands (and twiddle factor operands) need to
be available for computing two consecutive radix-2 butter�y stages without spilling data
to memory. Correspondingly, eight input operands (and twiddle factor operands) need
to be available for grouping three radix-2 butter�y stages together (see �gure 3.6). Each
radix-2 stage requires one operation per vector operand on the VMAC3 and on the VALU,
while memory access always requires two operations (one load and one store operation) per

2These loops contain the processing of two consecutive radix-2 FFT stages and require memory access
for loading twiddle factors on the �y.

3Here, one complex-valued multiplication that occupies the VMAC for two clock cycles is counted as two
operations.

43

Chapter 3 Scalable SIMD processor architecture

vector. Table 3.6 summarizes the impact of the number of registers Nreg on the grouping of
radix-2 butter�y stages: if only eight registers are available, the same number of operations
is necessary for arithmetic operations as for loading and storing data vectors. If vectors
containing twiddle factors need to be loaded from memory, the performance is dominated
by memory access. For Nreg = 16, three radix-2 butter�y stages can be grouped together,
improving the ratio of arithmetic to memory access operations. Hence, memory access for
reading twiddle factor vectors can be hidden by arithmetic operations, which are executed
in the same clock cycle during the LIW execution. An increase to 32 registers further
improves the ratio of arithmetic to memory access operations, yet there is no performance
gain.

Figure 3.6: 8-point decimation in frequency (DIF) FFT

Table 3.6: Evaluation of the grouping of radix-2 butter�y stages for di�erent Nreg. Smax
denotes the maximum number of consecutive radix-2 butter�y stages without
spilling to memory; Nvec describes the number of vectors for the FFT operands
needed to achieve Smax.

Nreg Smax Nvec VALU/VMAC operations Memory operations

8 2 4 8+8 8 + twiddle loads
16 3 8 24+24 16 + twiddle loads
32 4 16 64+64 32 + twiddle loads

44

3.1 Development of the SIMD processor architecture based on algorithm requirements

Based on the analysis above, the general-purpose SIMD register �le (RF) has been im-
plemented with 16 registers. Similar optimizations of register �le sizes, as well as port
sharing, have been done for the other register �les. The attributes of the implemented
register �les are summarized in table 3.7. Most register types support bypassing to avoid
read accesses and to speedup algorithms. Furthermore, the write back to the register �le
can be disabled for some register types on some processing units to reduce register �le
power. In this case, the computed result is only available via bypassing.

Table 3.7: Register �les in the scalable SIMD processor architecture. Nbit and Nreg denote
the register bit-width and the number of registers in the register �le, respec-
tively. For SIMD register �les, Nbit denotes the width of one element of the
distributed register �le. The number of read and write ports is described by pr
and pw. The size of the permutation pattern registers depends on the permu-
tation network and the SIMD width and is not listed. BYP denotes bypassing
support and dis. WB describes optionally disabled write back.

Register �le description Nbit Nreg pr pw BYP dis. WB
General-purpose SIMD RF:
single-vector perm.

16 16 7 4 X X

General-purpose SIMD RF:
double-vector perm.

16 16 8 5 X X

SIMD accumulator RF 40 2 2 2 X X
Vector mask RF: single-vector perm. 1 8 5 2 X X
Vector mask RF: double-vector perm. 1 8 6 2 X X
Permutation pattern RF special 8 1 1
General-purpose scalar RF 16 16 9 5 X X
Scalar predicate RF 1 8 3 1 X X
Pointer RF 16 8 2 3 X
Range, base RFs for modulo addressing 2 · 16 2 2 1
Pointer o�set RF 16 8 2 1 X

3.1.5 Permutation networks

SIMD processor architectures require permutation networks to support a reordering of
vector elements. However, various types of permutation networks exist [Wak68, GL73,
SS78, SMPTM79, Sie79, Par80, Pea77, Dal90, RMR+07]. These networks di�er in com-
plexity, topology, and the number of required operations to perform a desired permutation.

45

Chapter 3 Scalable SIMD processor architecture

As the permutation network should support the permutations that are required for the
considered signal processing algorithms, permutations that occur frequently have been
identi�ed. These permutations should require only one permutation operation so that the
permutation network does not become a performance bottleneck. Furthermore, frequently
occurring permutations should be supported by special instructions that provide the nec-
essary control signals for the permutation network. Otherwise, the performance would be
limited by memory access for loading complex permutation patterns for each permutation
operation.
An analysis of algorithm implementations on the EVP shows that the FFT frequently
requires butter�y permutations on pairs of vectors [WBAHS08a]. The W-CDMA and
HSDPA implementations [WBAHS08b, WBAHS09] also require butter�y permutations
for FFTs and rotations of vector elements. Furthermore, the W-CDMA implementation
requires a reversal of the ordering of vector elements, but this permutation does not occur
frequently. A vector element rotation is also necessary for the decoding of quasi-cyclic
LDPC codes (see section 6). Based on these results, the permutation network should
directly support rotation and butter�y permutations. As the FFT requires permutations
on pairs of vectors, permutation networks with di�erent widths, i. e. one or two vectors,
should be considered.
In principle, there are three relevant classes of permutation networks for SIMD processor
architectures: crossbar networks, multi-stage interconnect networks (MINs), and single-
stage networks. Single-stage networks only support a very limited number of permutations;
more complex permutation operations require multiple consecutive permutations. Hence,
this class of networks has not been considered for implementation.

Crossbar networks

Crossbar networks o�er the greatest �exibility of all permutation networks; they can per-
form arbitrary permutations in one step. A crossbar network connects all inputs to all
outputs in a two-dimensional layout (e.g. inputs in horizontal and outputs in vertical
direction). The connections can be realized either by multiplexers or by using one trans-
mission gate for each crosspoint [DOW96, DWWO96]. A transmission gate based scheme
for a 4×4 crossbar is displayed in �gure 3.7. Both schemes have an asymptotic complexity
of O (N2

SIMD) for an NSIMD-input network.
According to Dutta et al. [DOW96], transmission gate based crossbars should only be
considered for small networks with at most 16 inputs; for larger designs, the performance
is very poor. In the worst-case scenario, one input is broadcasted to all outputs; hence,
one input driver has to overcome the capacitance of many outputs, which limits the perfor-
mance for large network sizes. Furthermore, the area may almost grow with O (N3

SIMD) due
to the signi�cant impact of control lines. Hence, crossbar realizations using log2 (N) : 1
multiplexers for each output should be used for larger networks [DOW96]. Woh et al.

46

3.1 Development of the SIMD processor architecture based on algorithm requirements

Figure 3.7: 4× 4 crossbar network based on transmission gates

[WSM+09] proposed an implementation of crossbar networks based on SRAM cells, which
can reduce the power consumption of wide crossbar networks.
As crossbars directly map inputs on outputs, the control signal generation is simple. Hence,
specialized butter�y and/or rotation instructions can be implemented with negligible over-
head. A crossbar network can be further optimized for speci�c applications by removing
crosspoints [RMR+07] if the full �exibility is not needed.

Multi-stage interconnect networks

MIN-based permutation networks consist of multiple consecutive permutation stages
[dB87, SS78, SMPTM79, Sie79, Par80, Pea77], with each stage performing permutations
on pairs of inputs. A network for NSIMD inputs requires log2 (NSIMD) stages, each con-
sisting of NSIMD/2 switching elements with two inputs and two outputs.4 Two-function
switching elements support swapping the inputs or simply forwarding inputs to outputs
without a permutation. Four-function switching elements also allow broadcasting one of
the inputs. The outputs of one stage of switching elements are the inputs of the next
stage. Due to the multi-stage structure, the delay of MINs is proportional to the number
of stages log2 (NSIMD).
The network topology describes how switching elements in consecutive stages are connected
to each other with di�erent topologies referenced in literature (e. g. [SS78, Sie79]). Figure

4The term interchange box is also used instead of switching element.

47

Chapter 3 Scalable SIMD processor architecture

(a) Indirect binary n-cube network topology

(b) Omega network topology

(c) Butter�y network topology

Figure 3.8: Three MIN topologies based on cube network (a), Omega network (b) and
butter�y network (c) for a network with three stages and eight input values
[SS78, Sie79]

48

3.1 Development of the SIMD processor architecture based on algorithm requirements

3.8 displays three commonly used network topologies: an indirect binary n-cube network,
an Omega network, and a butter�y network. In an indirect binary n-cube network [Pea77],
inputs that only di�er in the i-th bit are connected to the same switching element in
stage i. In case of a three-stage network, this can be visualized by a cube with vertices
representing inputs and edges in di�erent dimensions representing the switching elements.
An Omega network consists of multiple consecutive perfect shu�e permutation stages.
A perfect shu�e operation interleaves the lower and upper half of inputs. A butter�y
network performs butter�y permutations with decreasing block widths in each stage. The
Omega and butter�y networks have the same topology. The Omega network in �gure 3.8b
can be redrawn as in �gure 3.8c by exchanging the positions of switching elements F and
G. Butter�y and cube network have isomorphic topologies that only di�er in the ordering
of stages, i. e. an indirect binary n-cube network is also an inverse butter�y network.
[Par80, SS78, Sie79] show that the di�erent networks are also functionally equivalent.

As there is only one path from each input to each output5, MINs support a limited number
of permutations. For example, the n-cube network cannot map inputs 6 and 7 on outputs 2
and 4 at the same time, because both paths go through the upper output of switching ele-
ment D (see �gure 3.9). Arbitrary permutations require multiple consecutive permutation
operations. According to Parker [Par80], any permutation of NSIMD values can be realized
with min (6, log2 (NSIMD)) passes through an Omega network. Alternatively, a concatena-
tion of a butter�y and an inverse butter�y network with 2 log2 (NSIMD) − 1 stages allows
arbitrary permutations with NSIMD · log2 (NSIMD) − NSIMD/2 switching elements. Such a
network topology is denoted as a Bene² network [Ben65, Bhu09]. Waksman [Wak68] also
demonstrated that the number of switching elements could be further reduced. However,
Bene² networks have almost the double delay of an Omega or cube network. Hence, this
type of network has not been considered.

All MINs support butter�y permutations and rotation operations [SS78, Sie79]. Butter�y
permutations simply require setting one complete stage of switching elements to swapping
inputs. Hence, the control signal generation is simple. Hilewitz and Lee [HL07] developed
a recursive algorithm with low complexity for determining the control bits for rotation
operations on butter�y and inverse butter�y networks. Here, inverse butter�y networks
have a small speed advantage, because the control signals can be calculated in parallel
to the permutation stages. This is possible as the �rst stage of the control algorithm
generates control bits for the �rst stage of an inverse butter�y network. The control bits
for the �rst stage of a butter�y network however are only available after the last stage of
the control algorithm.

5This property de�nes the networks as banyan networks [GL73].

49

Chapter 3 Scalable SIMD processor architecture

Figure 3.9: Example demonstrating the limited permutation support of MINs. Here, in-
puts 6 and 7 shall be mapped on outputs 2 and 4. Yet, a con�ict in switching
element D occurs, because only one input can be mapped on the upper output.

Conclusions on permutation network support

As all presented MINs are functionally and topologically equivalent, there is no need to
implement (and compare) multiple of these networks. Due to the advantages concerning
the generation of control signals, an inverse butter�y network (or indirect binary n-cube
network) topology is most promising as a representative of MINs. Hence, an inverse
butter�y network has been implemented as one alternative for the permutation network in
the VPU. A crossbar network o�ers more �exibility at a greater hardware cost. This type
of network has also been implemented � enabling to compare the gain in performance and
the hardware demands with the inverse butter�y network topology. As the FFT requires
permutations on pairs of vectors, permutation networks with two di�erent widths (one
vector or two vectors) have been implemented. In the following, networks with a width of
one vector or a width of two vectors will be denoted as single-vector networks and double-
vector networks respectively. Table 3.8 summarizes the properties of the implemented
networks.

3.1.6 Overview of the SIMD processor model

Figure 3.10 shows a block diagram of the scalable SIMD processor architecture that has
been realized based on the design decisions explained in the prior sections. The main
features can be summarized as follow: The processor supports operations on 16-bit SIMD
vector elements with additional support for complex-valued multiplications. Up to four
instructions can be issued in parallel in a variable-length LIW format. The SIMD bit

50

3.1 Development of the SIMD processor architecture based on algorithm requirements

Table 3.8: Summary of properties of the four implemented networks. Nstages denotes the
number of required permutation stages, NSIMD is the width of a SIMD vector
in 16-bit elements.

Network description Width Nstages Complexity
Single-vector inverse butter�y 1 vector log2 (NSIMD) O (NSIMD log2 (NSIMD))
Double-vector inverse butter�y 2 vectors log2 (NSIMD) + 1 O (NSIMD log2 (NSIMD))
Single-vector crossbar 1 vector 1 O

(
NSIMD

2
)

Double-vector crossbar 2 vectors 1 O
(
NSIMD

2
)

width is scalable from 128 bits to 1024 bits. Furthermore, four alternative permutation
networks have been implemented. The resulting SIMD architecture design space consists
of 16 di�erent processor con�gurations and is depicted in table 3.9. Scaling is done by
changing the number of 16-bit vector lanes (see �gure 3.10) and adjusting the permutation
network width.
Besides the SIMD architecture properties that already have been explained, the processor
architecture supports some further features common to many DSP architectures. The
branch control unit (BU) supports zero-overhead loops (ZOLs), i. e. special loop instruc-
tions allow to perform loops with a known iteration count without the cycle overhead
of testing and decrementing the loop counter and conditional branching. The processor
architecture supports three nested levels of ZOLs. A ZOL is implemented by a set of three
special registers that contain the loop start and end address and the loop counter. The
loop counter is automatically decremented and tested in hardware.
The address generation units (AGUs), which are part of the scalar and vector load-store
units (LSU and VLSU), support memory access and pointer updates in one instruction.

Table 3.9: Design space for the exploration of the scalability of SIMD processing

Network type Abbreviation
Supported SIMD bit widths

128 bit 256 bit 512 bit 1024 bit
Single-vector inverse butter�y Bfy1 X X X X
Double-vector inverse butter�y Bfy2 X X X X
Single-vector crossbar Cross1 X X X X
Double-vector crossbar Cross2 X X X X

51

Chapter 3 Scalable SIMD processor architecture

Figure 3.10: Block diagram of the scalable SIMD processor architecture

52

3.2 SIMD processor modeling in LISA

Furthermore, modulo address operations have been implemented based on an algorithm
by Prasad and Kolagotla [PK98]. Modulo addressing enables to use a contiguous address
range as a circular bu�er. The circular bu�er is de�ned by a base address register and a
range address register, which speci�es the bu�er size.
As �gure 3.10 shows, the scalable SIMD processor architecture uses separate memories
for scalar and vector data. The separation has been done, because both memories require
di�erent sized read and write ports (16 bit versus NSIMD · 16 bit). Two memories simplify
the design and consume less power than a single big memory [LLW+06].
The SIMD processor architecture has a seven-stage pipeline. However, only operations
that read data from the scalar or vector memories use the last two pipeline stages. The
pipeline is displayed in �gure 3.11.

Figure 3.11: Pipeline of the scalable SIMD processor architecture

3.2 SIMD processor modeling in LISA

The scalable SIMD processor architecture has been modeled in LISA, which is an acronym
of Language for Instruction Set Architecture. LISA is an architecture description language
(ADL) that allows the behavioral and structural modeling of processor architectures.
Numerous ADLs have been invented, yet most only model the behavior of the processor
core and do not assist the development of register transfer level (RTL) code. Exam-
ples are the ArchC language [ARB+05], developed at the University of Campinas, and
Michigan Technological University's FAST [Ond05]. Target Compiler Technologies de-
veloped the retargetable IP Designer tool chain [PLGG01, GLGVP06], formerly denoted
as Chess/Checkers, which supports RTL code generation from a processor model in the
nML language. The Processor Designer toolkit based on LISA also supports both RTL
code generation and behavioral simulation for ASIPs. Furthermore, LISA has also gained

53

Chapter 3 Scalable SIMD processor architecture

commercial acceptance [KSAF07]. Customizable processor architectures are an alterna-
tive for ASIP modeling using ADLs. Examples for customizable architectures are Ten-
silica's Xtensa template architecture [Ten05, Ten08] and ARC International's ARChitect
Processor Con�gurator [ARC05]. Yet, these architectures only support customizing the
instruction set in a limited way. Hence, LISA has been selected for modeling the scalable
SIMD processor architecture.
The following sections explain and evaluate the modeling capabilities of LISA for SIMD
processors. In section 3.2.1, the Synopsys Processor Designer toolkit, which contains
development tools based on LISA, is introduced and brie�y discussed. The next section
describes basic modeling techniques. Section 3.2.3 explains why scalable SIMD processors
cannot be directly modeled in LISA and describes an extension with a powerful macro
preprocessor, which overcomes the limitations of LISA. Finally, the drawbacks of LISA as
a modeling language for SIMD processors are evaluated in section 3.2.4.

3.2.1 Processor Designer toolkit overview

Processor Designer is a commercial toolkit intended for the development of ASIPs based
on LISA. LISA initially has been developed as a language for fast, cycle-accurate simula-
tion and tool generation for HW/SW co-design [ZPM96, HNBM01, Hof02, L�04, PHZM99,
Pee02]. Later on, support for the automatic generation of synthesizable RTL code has
been added. Hence, the toolkit now enables to perform the complete development of a
processor architecture from a single source description in LISA. The toolkit can automati-
cally generate software development tools (assembler, linker, disassembler), fast simulation
tools (cycle-accurate instruction set simulator (ISS), debugger), and RTL code in Verilog
and VHDL. Furthermore, there is limited support for the automatic generation of an
instruction set manual and a C compiler.
Besides requiring only one common description for the processor model, LISA has some
further advantages concerning the development of processor architectures: Decoding logic
for instructions does not have to be coded by the programmer; instead, the logic is au-
tomatically generated from the binary coding of instructions. This includes the decoding
for LIW and VLIW architectures. Furthermore, resources like register �les and pipeline-
registers only need to be declared and not explicitly programmed. Hence, the architecture
designer can focus on the functional behavior of processing units.

3.2.2 Processor modeling in LISA

LISA models consist of resource declarations and operations [CoW09b, CoW09a]. Re-
sources de�ne storage elements such as registers, memories, and pipelines. Operations
describe behavior, structure, and instruction set of the processor architecture. The at-
tributes of operations are de�ned in several sections:

54

3.2 SIMD processor modeling in LISA

• The DECLARE section contains local declarations, e g. references to child operations.
All operations that are referenced/used inside an operation have to be declared �rst.

• The CODING and SYNTAX sections de�ne the binary coding and the assembly syntax
of instructions respectively. The coding is utilized for the automatic generation of
the instruction decoder; the syntax is used for assembler and disassembler.

• The BEHAVIOR and EXPRESSION sections describe the behavioral model of an oper-
ation as C code. Other operations may be executed inside a BEHAVIOR section in a
mechanism similar to function inlining.

• The ACTIVATION section allows activating further operations from the current oper-
ation. Activations allow to model resource sharing and the execution of operations
across pipeline stages.

Operations are organized in a hierarchy based on a chain of activations. Operations have
either to be activated in the ACTIVATION section or called from the BEHAVIOR section. The
di�erence lies in the generated code structure: Calls copy the operation into the calling
operation; activations use a separate operation, which may be activated from multiple
sources.
A processor can be modeled at di�erent levels of abstraction. At the highest level of ab-
straction, one operation de�nes the complete behavior of one instruction. For RTL code
generation, the model then must be re�ned by introducing pipeline stages, i. e. one LISA
operation de�nes one pipeline stage of an instruction, and by sharing operations (e g. dif-
ferent operations for arithmetic instructions activate one common operation that de�nes
the behavior of an ALU). Figure 3.12 depicts an example of an operation hierarchy for a
processor with a four-stage pipeline. Here, the add and sub operations share the common
ALU operation; all operations share a common write back operation. Furthermore, oper-
ations and resources that belong to the same pipeline stage can be grouped together in a
UNIT. Such an operation hierarchy allows to model functional units (e g. ALU or MAC)
and the sharing of resources. For example, a shared register port can be implemented by
a register access in an operation that is activated from di�erent functional units. Hence,
the hardware structure of a processor can be modeled in LISA [CoW09c].

3.2.3 Extensions for modeling SIMD processors

As depicted by �gure 3.10, a SIMD processor architecture contains many parallel data
lanes that have the same functionality, yet operate on di�erent data. Except for the
permutation network in the VPU, the whole structure of the SIMD data path can be
de�ned by modeling one lane and scaling the number of lanes based on the desired SIMD
width.

55

Chapter 3 Scalable SIMD processor architecture

FE

DC

EX

WB

ALU

writeback

fetch

decode

add sub load

Figure 3.12: Example of an operation hierarchy with a four-stage pipeline. Grey boxes
describe pipeline stages. Arrows describe the activation of operations.

LISA contains language elements for modeling multiple resources or operations that share
a common identi�er � and in case of operations a common behavior. These language
elements are called template resources and template operations. Template operations
and template resources are de�ned using angle brackets; two examples are given be-
low:

1: REGISTER uint16 opnd<1 ..16>;

2: OPERATION alu<index> IN pipe.EX { .. }

Here, the index parameter may be used inside of the operation to index further template
operations � building an operation hierarchy � or to access template resources. Template
resources may only be indexed by constants or by index parameters of template operations.
Identical or similar data paths may be de�ned by template operations; template resources
enable to de�ne resources that are local to these data paths. These two language elements
can be used to model LIW architectures with multiple processing units of the same type6

6This was the original purpose for introducing these language elements.

56

3.2 SIMD processor modeling in LISA

or data paths in a SIMD architecture. However, modeling a SIMD data path is still
di�cult: LISA versions prior to V2009.1.0 do not support activating or calling multiple
instances of the same template operation [WS09b], while newer versions at least support
activations. Yet, the number of template instances that is activated has to be �xed, as each
declaration and activation has to be manually implemented. Hence, a scalable architecture
with a scalable number of lanes cannot be modeled directly. Additionally, permutation
networks have to be programmed manually for each di�erent network size and topology.
Hence, the design of the scalable SIMD architecture in section 3.1, with four SIMD widths
and four network con�gurations, would require maintaining 16 partially di�erent processor
models in LISA.
An approach based on the combination of LISA with GNU M4 [SPVB08, WS09b] has
been chosen to overcome this issue. The M4 language is a macro processing language,
which supports string manipulations, conditional evaluation, and loops. These language
features allow generating a scalable number of data paths by macros that produce LISA
code for template operation declarations and activations (or calls). Hence, M4 is utilized
as a preprocessing step. The extension of the LISA models has been realized in three
steps:

• Necessary macros have been identi�ed, implemented, and tested. The macros can
be grouped into two classes: macros for the generation of permutation networks and
macros for scalable SIMD data paths. Macros for scalable SIMD data paths primarily
generate and control the accessing of multiple instances of template operations and
resources. Macros for permutation networks generate the complete permutation
network from macro calls.

• An M4 macro �le containing de�nitions for all adjustable parameters has been gen-
erated. The parameter �le de�nes the SIMD width, the con�guration of the permu-
tation network (topology and width), and further parameters, such as register �le
sizes and memory con�gurations.

• The M4 macros have been introduced in the LISA model. For ex-
ample, a SIMD data path is added to the LISA model by implement-
ing a template operation, which de�nes the behavior of the data path
(e.g. OPERATION data_path<index> { ...}), and instantiating and acti-
vating the scalable data path using the SIMD_INSTANCE(data_path) and
SIMD_ACTIVATION(data_path) macros in the parent operation.

The preprocessing and compilation of the LISA model have been integrated into make�les
that enable to alter the M4 parameter con�guration by adding parameters to make.
Preprocessing using M4 macros has not only been done for SIMD support � further macros
have been implemented for simplifying the LISA model structure and for circumventing

57

Chapter 3 Scalable SIMD processor architecture

bugs in LISA. For example, the LISA code for operand bypassing and saturation logic7 is
generated from macros. The binary opcode encoding of instructions for one processing unit
(e. g. 0b1001001 for a scalar addition) is generated by de�ning a base opcode and using
opcode o�set or increment macros. Furthermore, macros enable generating di�erent LISA
code for simulation and RTL code generation for features of LISA that are not supported
for both.
The e�ort for developing and maintaining a scalable SIMD model in LISA with and with-
out M4 macro support cannot be measured directly. Yet, the number of source lines of
code (SLOC) can be used as an indicator for the model complexity. Table 3.10 shows
measured SLOC excluding comments and empty lines. The number of lines of code has
been measured before and after macro expansion. The reference value includes the macro
�les. In the best-case scenario (128-bit SIMD processor and single-vector crossbar net-
work), the code size after macro expansion is only approximately 67 percent higher than
before macro expansion. However, in the worst-case scenario (1024 bit SIMD bit width
and double-vector butter�y network), the model requires almost 15 times as many SLOC
after macro expansion.

Table 3.10: Source lines of code measured for LISA model before and after M4 macro
expansion

Measurement SIMD
width

Network SLOC Normal.
SLOC

Before macro expansion all all 7292 1.00
After macro expansion: best case 128 bit cross1 12179 1.67
After macro expansion: worst case 1024 bit bfy2 108986 14.95

3.2.4 Drawbacks of LISA as a modeling language for SIMD

processors

While LISA enables the rapid development of ASIPs, some issues occur when more complex
SIMD processors are modeled. The �rst limitation, the lack of mechanisms that support
scalable data paths, can be overcome by the proposed extension with M4 macro processing.
The remaining major issues are bugs that result in erroneous simulator behavior or RTL
code and the code quality of the generated RTL code.8

7LISA directly supports saturation logic, however the generated VHDL code may contain errors.
8More information about the processor development with LISA can be found on the Synopsys processor
development website (http://www.synopsys.com/Tools/SLD/ProcessorDev).

58

http://www.synopsys.com/Tools/SLD/ProcessorDev

3.3 Vertical-horizontal vector processing as an alternative for LIW

Originally, LISA has been developed as a language for fast and accurate instruction set
simulation (ISS). Support for RTL code generation has been added later. Hence, the sim-
ulation capabilities are more mature than RTL synthesis capabilities. The most important
shortcomings of the RTL model are listed below:

• The LISA processor generation tools apparently do not recognize that template
operations share the same behavior. Therefore, all instances of template operations
are compiled separately. This results in increased runtime and code size for wider
SIMD models.

• The modeling capabilities for hierarchical RTL models, where resources and logic
are grouped locally, are insu�cient. While LISA supports assigning operations and
resources to functional units using the UNIT resource, bugs limit the usefulness of this
mechanism: Register arrays and pipeline registers cannot be assigned to units, while
operations need to belong to the same pipeline stage. All resources and operations
that are not assigned to user-de�ned units are grouped in default units for pipeline
stages. Hence, it is impossible to model a desired RTL hierarchy in LISA. The
impact on gate level synthesis is discussed in section 3.4.3.

• Processor Designer can automatically generate synthesis scripts for commonly used
synthesis tools, such as Synopsys Design Compiler. Yet, the generated scripts use
outdated commands and are not suitable for hardware synthesis.

Despite the above-mentioned shortcomings of the Processor Designer tools, LISA still
is an adequate language for ASIP design and design space exploration (DSE), because
it facilitates a fast development of processor architecture and tools. Furthermore, new
instructions can be added and tested with little programming e�ort. Many of the listed
shortcomings only occur for complex models that use template resources and operations
extensively � like the proposed scalable SIMD processor architecture. The modeling of
such processor architectures obviously is not the design focus of the LISA tool set.

3.3 Vertical-horizontal vector processing as an

alternative for LIW

LIW and especially VLIW architectures have some disadvantages compared to an archi-
tecture that issues one instruction per clock cycle: Firstly, the instruction decoder is more
complex. Secondly, more read and write ports are needed for the register �les, which leads
to increased area and power demands and an increased delay [RDK+00].
An alternative for LIW and VLIW processing based on vertical-horizontal vector process-
ing is sketched in the remainder of this section. Vertical-horizontal vector processing can

59

Chapter 3 Scalable SIMD processor architecture

potentially overcome the above-mentioned shortcomings of LIW processing at the cost of
reduced �exibility.

The term vertical-horizontal vector processing � or more precise vertical-horizontal pro-
cessing pipeline vector computer � has been de�ned by Gao et al. [GZYC86]. The term
describes parallel and time-sequential vector processing in an analogy to two-dimensional
spacial processing. The horizontal component describes the parallel processing of data vec-
tors, i. e. multiple processing units process data in parallel. The vertical component refers
to the iterative processing of data vectors over time, in one instruction. In consequence,
vertical-horizontal processing de�nes a technique, where data vectors that are too long to
be processed in parallel are segmented into blocks that �t into the parallel data path. The
segments are then processed sequentially. The underlying concept has been applied to
early vector supercomputers, such as the Cray-1 [Rus78]. Figure 3.13 illustrates the idea.
In the �rst clock cycle, an operation on the vector MAC unit is started, which runs for
multiple clock cycles. In the next clock cycle, an operation on the vector ALU is initiated.
Both operations run in parallel for the next clock cycles. On a LIW processor architecture,
new vmul and vadd instructions would have to be issued in each cycle to achieve the same
behavior.

Figure 3.13: Example for vertical-horizontal vector processing with two vector units

The concept of a vertical-horizontal vector processing architecture for SDR has been ex-
amined in a diploma thesis [Lec09, in German] and is explained below in section 3.3.1.
Some performance benchmarking based on three SDR algorithms is described in section
3.3.2.

60

3.3 Vertical-horizontal vector processing as an alternative for LIW

3.3.1 Vertical-horizontal vector processing for SDR

The basis for the vertical-horizontal SDR architecture is the scalable SIMD processor
architecture developed in section 3.1. Modi�cations have been done on the instruction
fetch/decode mechanism and the organization of register �les.
ILP is no longer achieved by issuing multiple instructions per cycle in a long instruction
word; instead, one instruction that may iterate for multiple clock cycles is issued in each
cycle. As operations that start successively overlap, parallelism is achieved. The iteration
count of an instruction is explicitly encoded in the instruction word. As an operation
iterates over multiple clock cycles, multiple source and destination registers are required
� assuming that the size of one register remains the same. This can be achieved by
simply incrementing the register address, yet, in this case, the number of required register
�le ports does not decrease compared to a LIW architecture. Instead, the proposed register
�le organization is based on the assumption that successive instruction iterations usually
do not need to access the same data values. Hence, successive iterations may be mapped
on di�erent register �le banks. A small number of register banks is provided; instructions
iterate through these register banks in a cyclic manner (see �gure 3.14). In each clock
cycle, each register bank is accessed by a single functional unit, which reduces the number
of required ports. If data from one register bank is needed for the calculations in a di�erent
bank, it has to be explicitly transferred in an instruction.

Figure 3.14: Cyclic mapping of FUs on register banks: In each cycle, the read and write
ports are mapped to a single units. The FUs iterate through register banks
in a cyclic manner.

The partitioning of the register �le leads to reduced area and power demands. This e�ect is
demonstrated by the following comparison of a four-way LIW architecture and a vertical-
horizontal vector processing architecture with four register banks and, hence, up to four
parallel instructions. The asymptotic area and power complexity for a monolithic register
�le (LIW case) is O (Nreg · p2) [RDK+00], with p denoting the number of ports. The
asymptotic complexity of a partitioned register �le (vertical-horizontal vector processing

61

Chapter 3 Scalable SIMD processor architecture

case) is O (Nreg ·Nb · pb2), with Nb and pb denoting the number of banks and the number
of ports per bank respectively. Nreg describes the number of registers per bank. Table
3.11 shows a comparison of di�erent register �le con�gurations. Normalized energy and
area are computed based on the model of the asymptotic complexity, normalization is done
based on a monolithic register �le for a four-way LIW architecture with 16 registers and 12
ports (four FUs, two read ports and one write port per unit). As energy and area depend
on the squared number of ports, the reduced number of ports for a partitioned register
�le has a signi�cant in�uence. The table also shows a combination of LIW and vertical-
horizontal vector processing with two-way LIW and two register banks (eight registers and
six ports per register bank). This architecture con�guration requires more area and power
than the pure vertical-horizontal vector processing con�gurations, yet in comparison to a
four-way LIW architecture with monolithic register �le, the area and power demands are
still reduced by 75 percent.

Table 3.11: Model-based register �le comparison of monolithic and partitioned register �les

Description Nreg Nb p / pb Normalized area & power
Monolithic register �le, four-way LIW 16 1 12 1.000

Partitioned register �le
4 4 3 0.0625
8 4 3 0.125

Partitioned register �le, two-way LIW 8 2 6 0.250

3.3.2 SDR algorithm performance

While a vertical-horizontal vector processing architecture with a partitioned register re-
quires less power and area for the register �le than a LIW architecture, the processor
architecture is also less �exible as only one instruction can be started in each clock cy-
cle. The e�ects of the reduced �exibility have been studied for three di�erent signal
processing kernels [Lec09]: matrix-vector product, a 16-point FFT, and Viterbi decoding
on a 64-bit SIMD processor. The performance of an architecture without ILP support, a
four-way LIW architecture, and a vertical-horizontal vector processing architecture with
four register banks have been measured. The results are summarized in table 3.12. The
performance of the vertical-horizontal architecture is only slightly worse than the LIW
architecture performance. Furthermore, the number of instructions can be signi�cantly
reduced.
Vertical-horizontal vector processing may o�er performance similar to a LIW architecture
with reduced area and power demands for the register �les and the decoding of instruc-

62

3.4 SIMD architecture analysis methodology

Table 3.12: Performance comparison of LIW and vertical-horizontal vector processing ar-
chitectures: All �gures are normalized to the results of an architecture without
ILP support.

Kernel
Four-way LIW Vertical-horizontal

Speedup Instructions Speedup Instructions
Matrix-vector product 1.143 1.00 1.143 0.33
16-point FFT 1.542 1.00 1.423 0.44
Viterbi Trellis computation 1.714 1.00 1.600 0.56

tions. However, the performance of more complex applications could be much worse,
because there is only a bene�t of vertical-horizontal vector processing if the same oper-
ation can be performed multiple times on di�erent data. If di�erent operations have to
be performed each cycle, the performance degrades to the performance of an architecture
without ILP. This e�ect can partially be compensated by combining LIW execution and
vertical-horizontal vector processing. Yet, further studies are needed to analyze perfor-
mance and area and power demands for this case. Furthermore, other, more complex
applications should be analyzed. However, these studies are beyond the scope of this
thesis.

3.4 SIMD architecture analysis methodology

The analysis and evaluation of the SDR algorithms in chapter 7 is based on performance
and energy consumption of a synthesized gate level model using a standard cell library.
In the following, the used methodology and its limitations are shown. A block diagram of
the analysis methodology is depicted in �gure 3.15.

3.4.1 Processor model synthesis

Power, area, and energy consumption �gures are extracted from a gate level model based on
a 90 nm standard cell library by Taiwan Semiconductor Manufacturing Company (TSMC)
[Tai06]. The synthesis is done using Synopsys Design Compiler (DC) Ultra [Syn09a,
Syn09b]. The input for the synthesis is an RTL model generated from the LISA model
and the switching activity from selected SDR algorithms. The algorithms are listed in
table 3.13. As the cells in the standard cell library are characterized for internal power,
this approach enables to optimize for power consumption during the synthesis process.

63

Chapter 3 Scalable SIMD processor architecture

simulation

LISA model

M4 macros

DC synthesis

RTL model

SAIF files

VCD SAIF

Standard cell
library

Clock
frequency

Run time
(clock cycles) AreaAverage

power

Gate level
model

DC power
estimation

Gate level

RTL

LISA

Figure 3.15: Block diagram showing the synthesis and analysis methodology

The synthesis strategy is based on a top-down approach.9 Top-down synthesis automat-
ically takes care of dependences between sub-designs and enables to ungroup the design
hierarchy generated from LISA. This is necessary, as a desired design hierarchy cannot be
e�ciently model in LISA (see section 3.2.4). The major drawback of a top-down synthesis
is the signi�cantly increased memory requirement, as the complete model has to be kept
in memory during the whole synthesis process.

The synthesis has been done based on a timing analysis for both worst and best case cor-
ners (see table 3.14) with a target clock frequency of 300MHz. The clock frequency was
selected to allow comparing algorithm performance on the proposed scalable SIMD pro-

9In a top-down approach the whole processor model is compiled together. In a bottom-up approach sub-
designs at the bottom of the design hierarchy are compiled �rst with the synthesis process iterating
through the hierarchy levels until a stable solution is found.

64

3.4 SIMD architecture analysis methodology

Table 3.13: SDR algorithms used for power optimization during synthesis

Algorithm Description
FFT 1024 1024-point radix-2 FFT
FFT 256 256-point radix-2 FFT
FSD 16 Fixed-complexity sphere decoder for 16-QAM and 4× 4 MIMO
LDPC 32, 5/6 LDPC decoder with z factor 32 and code rate 5/6
LDPC 64, 5/6 LDPC decoder with z factor 64 and code rate 5/6

cessor architecture and on the EVP, which is designed for a working frequency of 300MHz.
The design is optimized by applying clock gating and operand isolation techniques.

Table 3.14: Standard cell library operating conditions

Corner Voltage Temperature PMOS/NMOS process
Best case 1.32V 0◦C fast/fast
Nominal case 1.2V 25◦C typical/typical
Worst case 1.08V 125◦C slow/slow

Synthesis is done using topographical technology. Topographical technology performs a
virtual layout using both cell library and physical library data. The topographical mode
uses the same placement and optimization technologies used in Synopsys place and route
tools. This approach allows an accurate prediction of post-layout timing, area, and power
[Syn09a]. According to [Syn07], power results from Design Compiler in topographical
mode are usually within 10 percent of the �nal layout results. Traditional synthesis ap-
proaches use simple wire load models to describe interconnect wiring properties, do not
synthesize high fan-out10 nets, and do not model clock trees [Syn09b]. The virtual layout
in topographical layout allows avoiding wire load models and automatically synthesizing
high fan-out nets. Furthermore, the clock tree power is estimated.

3.4.2 Extraction of area, power, energy and performance �gures

Area and timing results can be directly reported from the synthesized gate level processor
model. The area report contains the total cell area in µm2 excluding the area required for

10Fan-out describes the ability of a logic gate to drive a number of inputs.

65

Chapter 3 Scalable SIMD processor architecture

interconnections. Timing analysis reports the path delay of critical paths, which allows
checking whether the desired target frequency can be achieved.
If the frequency constraint is ful�lled, the runtime of applications can be calculated based
on cycle count simulations in LISA. For the implemented SDR algorithms, the cycle count
can also be directly obtained from the assembly code, because none of the algorithms
exhibits data dependent control �ow and the instruction execution on the processor is
deterministic.
Power �gures can be obtained from average power analysis in Design Compiler. The power
analysis requires the gate level model and the switching activity of the algorithms. The
switching activity can be measured during gate level simulations or based on the RTL
switching activity, which has also been used for power optimization during synthesis. RTL
simulation of switching activity requires a name mapping from RTL to gate level signals,
which may lead to inaccuracies due to mapping con�icts, but is signi�cantly faster. As
an accurate power estimation also requires huge amounts of input data, which further
increases the runtime of simulations, the latter approach based on RTL switching activity
has been selected for the power analysis. The power analysis reports dynamic and static
power consumption (see [KFA+07]). Dynamic power contains the switching power for
charging and discharging capacitive loads and the internal power due to short-circuit or
crowbar current, which �ows when both the PMOS and NMOS transistor in a cell are
open. Figure 3.16 visualizes these e�ects. Static power describes power consumed by
leakage currents [KFA+07].

(a) Charging power (b) Discharging power (c) Crowbar current

Figure 3.16: Dynamic power consumption: The dynamic power consumption results from
switching power (a), (b) and internal power (c)

Energy consumption can be calculated from the average power and the algorithm runtime.
In chapter 7, comparisons between di�erently con�gured SIMD processors (i. e. di�erent

66

3.4 SIMD architecture analysis methodology

SIMD widths or interconnect networks) are done using normalized energy, area, and per-
formance. Normalization is done based on the results for a 128-bit SIMD processor with
a single-vector butter�y network, which has the lowest complexity of all considered SIMD
processors.

3.4.3 Limitations of the proposed methodology

The used analysis methodology has some drawbacks that need to be discussed. The
limitations concern the standard cell approach, the accuracy of area and power results,
and the ungrouping of sub-designs.
A standard cell library may not be the most e�cient approach for the design of permutation
networks: A full-custom design based on transmission gates should be more power and
area e�cient for small crossbar sizes [DOW96], while custom multiplexer-based designs
should be better for inverse butter�y and large crossbar networks. However, the focus of
this thesis is on the comparison of di�erent SIMD processor architectures. The additional
e�ort for a full-custom design of multiple di�erent permutation networks is not justi�ed,
as it would only enable slightly more accurate power and area estimates. Considering that
all algorithms in chapters 4, 5 and 6 are optimized for a minimal number of permutation
operations, the overall impact on the energy consumption should be low.
The second drawback of the proposed methodology is the limited accuracy of area and
power estimates, because area and power are estimated at the gate level and not after place
and route. Place and route have been omitted, because neither the required tools nor the
required libraries have been available. Yet, the gap between power and area estimates at
the gate level and results after �nal placement can be reduced by using the topographical
synthesis mode, which produces a virtual layout. According to [Syn07], the errors in
power consumption should be less than 10 percent after synthesis in topographical mode.
Furthermore, a relative comparison of SIMD processors with di�erent SIMD widths should
be even more accurate, as all processors use the same data paths and the synthesized gate
level processor models should therefore be similar � leading to similar power estimation
errors.
The area and power estimates are also inaccurate, because the scalar and vector data
memories and the program memory have not been synthesized. However, this is a conven-
tional approach, because memories are usually designed using special memory generators
and not by synthesizing standard cells. Estimated power and area �gures for memories
based on the on-line tool CACTI [TMAJ08] are presented in chapter 7.1.3.
The third limitation of the selected approach occurs due to the RTL design hierarchy
generated from LISA. As LISA unit de�nitions do not work properly for all resources and
operations, the generated design hierarchy needs to be ungrouped during the synthesis
process. This does not necessarily a�ect the quality of the generated gate level code, yet
estimating power and area for a speci�c functional unit or register �le may be di�cult,

67

Chapter 3 Scalable SIMD processor architecture

because the corresponding sub-design might have been ungrouped; hence, the gates cannot
be attributed to a speci�c functional unit anymore. This behavior is a major drawback of
a modeling approach based on LISA, which cannot be overcome. Yet, there is no impact
on comparisons between di�erent SIMD processors.

68

Chapter 4

Radix-2 and mixed-radix FFTs for

OFDM-A and SC-FDMA

The FFT is the most important processing step of block modulation schemes based on
orthogonal frequency division multiplexing (OFDM). Section 4.1 contains a brief overview
of OFDM-based systems for multiple users and motivates the need for radix-2 and mixed-
radix FFT algorithms. Afterwards, radix-2 and mixed-radix FFT algorithms for SIMD
processors are developed and evaluated. In section 4.2, the matrix representation of the
FFT is explained and vectorizable formulas are introduced. Next, an overview of related
work on vector FFT algorithms is given in section 4.3. Section 4.4 comprises the math-
ematical derivation and discussion of the radix-2 and mixed-radix FFT algorithms. The
radix-2 FFT algorithm enables an e�cient vectorization if the length of the FFT is at least
twice the vector length. The mixed-radix FFT algorithm requires the length of the FFT
to be a multiple of the squared vector length. Both algorithms minimize the number and
complexity of vector element permutation stages. In section 4.5, the implementation of
the FFT algorithms on the scalable SIMD processor architecture is explained. The next
section (section 4.6), comprises an analysis of the performance of the implemented FFTs,
focusing on the scalability, and a comparison to other FFT implementations for OFDM
systems. Conclusions are drawn in section 4.7.

4.1 OFDM-A and SC-FDMA

OFDM is a block modulation scheme that de�nes a signal in frequency domain. At the
transmitter side, the signal is transformed into time domain using an IDFT for each
OFDM symbol; the receiver performs a DFT to recover the symbol. Each OFDM symbol
consists of many sub-carriers, which overlap in frequency domain, but are orthogonal to
each other in time domain. Each sub-carrier represents an independent narrowband �at
fading channel; hence, OFDM is not prone to frequency-selective fading. For an OFDM
symbol size M , each sub-carrier operates at 1/M times the bit rate of the OFDM symbol,

69

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

which leads to robustness in multipath environments [MLG06]. OFDM symbols are usually
preceded by a cyclic pre�x (CP), which prevents intersymbol interference (ISI) [SBM+04].

Due to the orthogonality of sub-carriers, the complexity of channel estimation techniques
or MIMO detection techniques for OFDM systems is signi�cantly lower than, for example,
the complexity for CDMA systems. The main drawback of the OFDM technique is the high
peak-to-average power ratio (PAPR) [MLG06], which results from the fact that the signal
is de�ned in frequency domain, yet transmitted in time domain, leading to �uctuations in
the transmitted waveforms. Due to the high PAPR, ampli�ers with a high dynamic range
are required, which reduces their power e�ciency.

Orthogonal frequency division multiple access (OFDM-A) is a multi-user scheme based
on the OFDM technique � each user is assigned a di�erent subset of sub-carriers. The
orthogonality of sub-carriers enables multiple users to transmit or receive independent
data streams in parallel. Each user operates at a reduced data rate compared with the
maximum data rate for single user transmission.

Figure 4.1: Block diagram of an SC-FDMA transmitter

Single carrier frequency division multiple access (SC-FDMA) is a multi-user scheme based
on OFDM-A with an improved PAPR. Figure 4.1 shows a block diagram of an SC-FDMA
transmitter. An OFDM system consists of the M -point IDFT and the adding of the CP;
in an OFDM-A system, sub-carriers also have to be assigned to di�erent users. SC-FDMA
extends OFDM-A by a preprocessing step with a short N -point DFT (N < M); hence,
SC-FDMA is also denoted as DFT-spread OFDM-A. The signals in SC-FDMA are de�ned
in time domain and later also transmitted in time domain, which limits �uctuations in the
transmitted waveform and reduces the PAPR [MLG06]. Therefore, SC-FDMA is utilized
in the uplink of LTE systems [Tec09b], enabling to reduce the power consumption of mobile
terminals. The LTE downlink uses OFDM-A.

70

4.2 Matrix representation of the FFT

LTE FFT sizes

The FFT sizes and the corresponding bandwidths for OFDM-A in the LTE downlink and
the OFDM-A part of the uplink (i. e. the IDFT at the transmitter and the DFT at the
receiver) are listed in table 4.1. The data carriers are assigned to the users. Information
is transmitted in 10ms frames, which consist of 20 slots. Each 0.5ms slot contains six
OFDM symbols in long CP mode and seven OFDM symbols in short CP mode.

Table 4.1: IDFT sizes at the transmitter side in LTE [Tec10]

Bandwidth [MHz] 1.4 3 5 10 15 20
IDFT size 128 256 512 1024 1536 2048
Data carriers 72 180 300 600 900 1200

The maximum DFT size for the N -point DFT in SC-FDMA is given by the number of
data carriers in table 4.1. Each user is assigned a number of resource blocks NRB; each
resource blocks consists of 12 data carriers. The DFT size is further restricted to powers
of two, three, and �ve to limit the complexity of the DFT [TSG06]:

N = 12 ·NRB = 2a · 3b · 5c (4.1)

Thus, LTE requires algorithms for radix-2 and mixed-radix FFTs.

4.2 Matrix representation of the FFT

Equation (4.2) de�nes an N -point DFT as a sum of the complex-weighted inputs.

yk =
N−1∑
j=0

xj · e−2πi·
jk
N for k = 0, . . . , N − 1 (4.2)

The inverse DFT requires di�erent weights (e+2πi· jk
N) and a scaling factor, but is in principle

identical to the DFT. Hence, the further discussion focuses solely on the DFT. FFT algo-
rithms can be derived from equation (4.2) by decomposing the sum into smaller sums and
by performing index manipulations (e. g. [CT65, Sin67, Rad68]). Yet, this representation
is only appropriate for a DFT decomposition into few factors.
The matrix form of the DFT, de�ned by equation (4.3), is better suited for arbitrary FFT
decompositions and enables a compact notation for FFT algorithms.

y = WN · x (4.3)

71

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

The elements of the N ×N DFT matrix WN are the complex roots of unity:

[WN] (j, k) = ωjkN = e−2πi·
jk
N for j, k = 0, . . . , N − 1 (4.4)

FFT algorithms in matrix form exploit symmetries in the DFT matrix that enable decom-
posing the matrix into a product of multiple sparse matrices.

4.2.1 Basic DFT decomposition for two factors

The basic decomposition of a DFT matrix is de�ned by equation (4.5); the notation is
based on Temperton [Tem83].

Wpq = (Wq ⊗ Ip) ·Pp
q ·Dp

q · (Wp ⊗ Iq) (4.5)

In the following, the elements and operators used in equation (4.5) are explained. The
matrices Ip and Iq de�ne identity matrices of order p and q respectively.
Pp
q de�nes a pq × pq permutation matrix, which contains exactly one non-zero element

(value one) in each row and each column. The elements of the permutation matrix are
de�ned by: [

Pp
q

]
(j, k) =

{
1 for j = r · p+ s, k = s · q + r

0 otherwise (0 ≤ r < q, 0 ≤ s < p)
(4.6)

A multiplication with permutation matrix Pp
q results in a stride by q reordering of ele-

ments [GCT92], i. e. the elements of input vector x = (x0, x1, . . . , xpq−1)
T are reordered as

y = (x0, xq, x2q, . . . , xpq−q, x1, xq+1, . . . , xpq−1)
T .

Dp
q de�nes a pq × pq diagonal matrix containing the roots of unity or twiddle factors.

[
Dp
q

]
(j, k) =

{
ωs·mpq for j = k = s · q +m

0 otherwise (0 ≤ m < q, 0 ≤ s < p)
(4.7)

The operator ⊗ de�nes a Kronecker matrix product (short Kronecker product) by:

A⊗B = (aij ·B) (4.8)

For square matrices A and B of order p and q, respectively, the elements of the output
matrix are de�ned by:

[A⊗B] (jq + l, kq +m) = [A] (j, k) · [B] (l,m) (4.9)

72

4.2 Matrix representation of the FFT

For example, a Kronecker product of an arbitrary 2 × 2 matrix A2 with a 3 × 3 identity
matrix can be written as:

A2 ⊗ I3 =

A1,1 A1,2

A1,1 A1,2

A1,1 A1,2

A2,1 A2,2

A2,1 A2,2

A2,1 A2,2

 (4.10)

4.2.2 Formula manipulation rules for the DFT in matrix form

FFT algorithms for WN can be developed by repeatedly applying equation (4.5), decom-
posing the DFT matrix until the sizes of all smaller DFT matrices Wp, Wq are prime
numbers, and by applying formula manipulations that reorder or transform matrices. Be-
low, important formula manipulation rules are listed [Tem83, FP03, FVP07]. The matrix
A is assumed a p× p matrix and the matrices B and C are assumed q × q matrices.

Ip ⊗ Iq = Ipq (4.11)

(A⊗B) = (A⊗ Iq) · (Ip ⊗B) (4.12)

(A⊗B) = (Ip ⊗B) · (A⊗ Iq) (4.13)

(B⊗ Ip) · (C⊗ Ip) = (B ·C)⊗ Ip (4.14)

A⊗ (B ·C) = (A⊗B) · (A⊗C) (4.15)

Pp
q · (A⊗B) = (B⊗A) ·Pp

q (4.16)

Ppr
q =

(
Pp
q ⊗ Ir

)
·
(
Ip ⊗Pr

q

)
(4.17)

Pp
qr = (Iq ⊗Pp

r) ·
(
Pp
q ⊗ Ir

)
(4.18)

Pp
q ·Pq

p = Ipq (4.19)

(A⊗B)−1 = A−1 ⊗B−1 (4.20)

P1
q = Pq

1 = Iq (4.21)

D1
q = Dq

1 = Iq (4.22)

The following equation de�nes an abbreviation for a similarity transformation by an arbi-
trary permutation matrix P.

P−1 ·A ·P = AP (4.23)

4.2.3 Vectorizable formulas

Developing an FFT algorithm for SIMD processors requires replacing non-vectorizable op-
erations with a series of vectorizable operations. This can be done by identifying formulas

73

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

that can be translated into vector operations and transforming the DFT equation until it
only contains vectorizable formulas.
Matrix operations on full vectors can be represented by a Kronecker product:

A⊗ IV (4.24)

Here, the matrix operation de�ned by matrix A is performed on vectors with V elements.
In the following, the SIMD vector length is always denoted as V . For example, the matrix
product de�ned by equation (4.25) describes a SIMD vector operation on vectors with
four complex-valued elements (see �gure 4.2a). On the other hand, equation (4.26) (�gure
4.2b) cannot be directly vectorized. Hence, the matrix has to be rewritten using the
formulas from section 4.2.2 for mapping the operation e�ciently on a SIMD architecture;
the rewriting introduces permutation operations de�ned by permutation matrices.

y = (W2 ⊗ I4) x (4.25)

y = (I4 ⊗W2) x (4.26)

(a) y = (W2 ⊗ I4)x (b) y = (I4 ⊗W2)x

Figure 4.2: Signal �ow graphs corresponding to Kronecker products with DFT matrices

Any permutation can be mapped on a series of vector permutation operations. Permu-
tations on single vectors can be realized by a single permutation operation. The FFT
algorithms mostly require permutations on pairs of vectors; examples are listed in (4.27).

P2
2 ⊗ IV/2, P2

4 ⊗ IV/4, Pa
b ⊗ IV/ab, IV/ab ⊗Pa

b (4.27)

74

4.3 Related work on SIMD FFT algorithms

The permutation de�ned by PV
V represents a permutation on V vectors. This permuta-

tion can be carried out by log2 (V) permutation stages on pairs of vectors (see section
4.4.3). These permutation stages can be e�ciently vectorized on any of the implemented
permutation networks.
Furthermore, operations of the form IN ⊗ A and A · B can be directly vectorized if A
and B can be vectorized. For example, Pp

q ⊗ IV performs a permutation of complete data
vectors, which can be realized by adjusting the addressing of data vectors � without
vector element permutations. Multiplications with complex-valued diagonal matrices, e. g.
multiplications with twiddle factor matrices, can also be vectorized.

4.3 Related work on SIMD FFT algorithms

Franchetti and Püschel [FP02, FP03, Fra03, FP07, FVP07] developed FFT algorithms for
general-purpose processors (GPPs) with short vector SIMD extensions, such as the MMX
and SSE extensions for Intel processors, 3DNow! for AMD processors, and IBM's VMX
for the Cell BE processor. The FFT algorithms are integrated into the SPIRAL code
generation framework for DSP transforms [PMJ+05]. The proposed algorithms operate
on real-valued data; complex-valued data is stored in an interleaved format in consecutive
vector elements. Hence, every complex-valued matrix element a = Re {a} + i · Im {a} is
replaced by a 2× 2 matrix:

a→
[
Re {a} − Im {a}
Im {a} Re {a}

]
(4.28)

In [FP03, FVP07], an FFT algorithm, based on the Cooley-Tukey FFT, for an m ·n-point
DFT (NDFT = mn) with m and n both divisible by the vector length V is proposed.
The algorithm performs all DFT stages on complete vectors and requires only one vector
permutation, de�ned by PV

V , for reordering elements � and two permutations for accessing
real and imaginary parts of complex values (de�ned by Inm/V ⊗ PV

2): Imaginary and real
parts are stored in distinct vectors during the FFT computation and merged again after the
FFT processing. Aside from the additional permutations for complex values, the algorithm
has the same complexity as the mixed-radix FFT algorithm presented in section 4.4.2.
Yet, the processing of real-valued data e�ectively doubles the vector length. Furthermore,
the proposed FFT decomposition for NDFT = V ·M · V is advantageous for the manual
implementation of multiple FFTs, as the parts of the algorithm that are responsible for
the vectorization can be reused for all DFT sizes. Both algorithms allow to interleave the
log2 (V) permutation stages required for PV

V with the processing stages for smaller-sized
DFTs on complete vectors.
In [FP07], Franchetti and Püschel propose an FFT algorithm that vectorizes arbitrary non-
power of two FFT sizes NDFT = mn . The algorithm applies zero padding to extend both
m and n to be divisible by the vector length V . The required vector element permutation

75

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

operations are the same as in the algorithm for SIMD widths that are multiples of the
squared vector length [FP03, FVP07]. Due to the zero padding, the algorithm does not
utilize the full SIMD width, a scaling of the SIMD width does not necessarily lead to a
performance gain. On a 3.6GHz Pentium 4 processor, the speedup of an 8-way SIMD
implementation compared to a scalar implementation has been measured for FFT sizes up
to 100 [FP07]. For most FFT sizes, the speedup is below a factor of four.

4.4 Derivation of SIMD radix-2 and mixed-radix FFT

algorithms

Below, a short radix-2 FFT algorithm is developed, which shows that radix-2 FFTs can
be e�ciently vectorized if the FFT size is at least twice the vector length. For mixed-
radix FFTs, stricter constraints are necessary: An algorithm is proposed that enables an
e�cient vectorization of FFTs under the constraint that the FFT size is a multiple of the
squared vector length. In this context, e�cient vectorization means that all FFT stages
operate on complete vectors and the number and complexity of permutation stages on
vector elements is minimized.

4.4.1 Short radix-2 FFT algorithm

Vectorizing an FFT requires that all DFT stages are written as Kronecker products of the
DFT matrix with V × V identity matrices (e. g. Wx ⊗ IV). Hence, the smallest radix-2
FFT size that potentially can be vectorized in this manner is NDFT = 2 · V . A vectorized
algorithm for an FFT size that is twice the vector length can be developed by repeatedly
applying equation (4.5):

W2·V = (WV ⊗ I2) ·P2
V ·D2

V · (W2 ⊗ IV) (4.29)

=
(((

WV/2 ⊗ I2
)
·P2

V/2 ·D2
V/2 ·

(
W2 ⊗ IV/2

))
⊗ I2

)
·P2

V ·D2
V · (W2 ⊗ IV)

=
(
WV/2 ⊗ I4

)
·
(
P2

V/2 ⊗ I2
)
·
(
D2

V/2 ⊗ I2
)
· (W2 ⊗ IV) ·P2

V ·D2
V · (W2 ⊗ IV)

=
(((

WV/4 ⊗ I2
)
·P2

V/4 ·D2
V/4 ·

(
W2 ⊗ IV/4

))
⊗ I4

)
·
(
P2

V/2 ⊗ I2
)
·
(
D2

V/2 ⊗ I2
)
· (W2 ⊗ IV) ·P2

V ·D2
V · (W2 ⊗ IV)

=
(
WV/4 ⊗ I8

)
·
(
P2

V/4 ⊗ I4
)
·
(
D2

V/4 ⊗ I4
)
· (W2 ⊗ IV)

·
(
P2

V/2 ⊗ I2
)
·
(
D2

V/2 ⊗ I2
)
· (W2 ⊗ IV)

·P2
V ·D2

V · (W2 ⊗ IV)

= . . .

76

4.4 Derivation of SIMD radix-2 and mixed-radix FFT algorithms

The decomposition in (4.29) leads to the self-sorting decimation in frequency (DIF) FFT
algorithm [Tem83]. The complete algorithm may be written as:

W2·V = T0 ·T1 · · ·Tlog2(V)−1 ·Tlog2(V) =

log2(V)∏
i=0

Ti

with Ti =
(
P2

2i ⊗ IV/2i
) (

D2
2i ⊗ IV/2i

)
(W2 ⊗ IV)

(4.30)

In equation (4.30), all radix-2 FFT stages operate on complete vectors (W2 ⊗ IV). The
algorithm requires log2 (V) permutation stages on pairs of vectors.1 This is the theoretical
minimum number of permutation stages, as every element of each output vector of the
DFT depends on every element of each input vector; the necessary reordering requires at
least log2 (V) permutation operations.
Figure 4.3 displays the signal-�ow graph of an 8-point vectorized self-sorting DIF FFT
for a vector length of four. The matrix representation is shown in equation (4.31). The
di�erent stages of the algorithm are marked by Roman numbers in the equation and the
�gure; the signals �ow from left to right. Data vectors have also been highlighted by light
gray boxes in the radix-2 FFT stages.

Figure 4.3: Signal-�ow graph for a vectorized 8-point FFT for a SIMD width of four
complex-valued elements.

W8 = (W2 ⊗ I4)︸ ︷︷ ︸
VII

·
(
P2

2 ⊗ I2
)︸ ︷︷ ︸

VI

·
(
D2

2 ⊗ I2
)︸ ︷︷ ︸

V

· (W2 ⊗ I4)︸ ︷︷ ︸
IV

· P2
4︸︷︷︸

III

· D2
4︸︷︷︸

II

· (W2 ⊗ I4)︸ ︷︷ ︸
I

(4.31)

1The permutation stage for i = 0 degenerates to a product with an identity matrix:P2
1 ⊗ IV = I2·V .

77

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

Extension to longer radix-2 FFTs

An extension of the FFT algorithm for NDFT = 2 · V to longer radix-2 FFTs can be done
by adding further factors to the FFT and applying equation (4.5) to decompose the FFT.
Equation (4.32) shows the algorithm for an N -point radix-2 FFT for N ≥ 2 · V . The
principle structure of the algorithm stays the same. The number of permutation stages
increases, yet the number and complexity of permutation operations that require vector
element permutations is the same as before; all additional permutation stages perform
permutations on complete vectors.

WN =

log2(N)−1∏
i=0

(
P2

2i ⊗ IN/2i+1

) (
D2

2i ⊗ IN/2i+1

) (
W2 ⊗ IN/2

)
(4.32)

Using equation (4.32), any power of two DFT, whose size is at least twice the vector length,
can be vectorized with all radix-2 FFT stages operating on complete vectors and exactly
log2 (V) permutation stages on pairs of vectors for the reordering of elements during the
FFT.

Vectorization of short mixed-radix FFTs

An extension of the FFT algorithm in equation (4.30) for NDFT = 2 · V to the mixed-
radix case can be done by adding a factor m that contains all non-power of two factors
(e. g. m = 3a · 5b). Using the basic FFT decomposition formula (4.5), the following FFT
algorithm can be derived:

W2·V ·m = (W2·V ⊗ Im) ·Pm
2·V ·Dm

2·V · (Wm ⊗ I2·V) (4.33)

=

log2(V)∏
i=0

Ti

⊗ Im

 ·Pm
2·V ·Dm

2·V · (Wm ⊗ I2·V)

= Pm
2·V ·

Im ⊗
log2(V)∏
i=0

Ti

 ·Dm
2·V · (Wm ⊗ I2·V)

W2·V ·m = Pm
2·V ·

log2(V)∏
i=0

(
Im ⊗P2

2i ⊗ IV/2i
) (

Im ⊗D2
2i ⊗ IV/2i

)
(Im ⊗W2 ⊗ IV)

·Dm

2·V · (Wm ⊗ I2·V) (4.34)

A closer look at equation (4.34) shows that all radix-2 as well as the m-point FFT stage
operate on complete vectors (vector elements at a distance of m vectors for the radix-
2 stages and vector elements at a distance of two vectors for the m-point FFT stage),

78

4.4 Derivation of SIMD radix-2 and mixed-radix FFT algorithms

independent of the further decomposition of the m-point FFT into smaller DFTs. Yet,
the additional factor m introduces a vector element permutation de�ned by Pm

2·V .
The permutation matrix Pm

2·V de�nes a stride by 2 · V permutation on 2 · V ·m vectors.
Figure 4.4 depicts an example for m = 3 and V = 4; the permutation input has a length of
six vectors. In the example, each output vector contains values from three input vectors;
hence, P3

8 can be realized by two separate permutation stages with three input and output
vectors each. In general, the complexity of Pm

2·V depends on m and the ratio of m to the
vector length V .

Figure 4.4: Stride permutation de�ned by P3
8 for a vector length of four elements

The permutation de�ned by Pm
2·V is the last processing stage of the algorithm and cannot be

interleaved with any of the previous processing stages to hide the permutation overhead.
Moving the permutation to the right of the processing step for W2·V would enable an
interleaving of DFT stages and permutation stages, yet moving Pm

2·V also increases the
complexity of permutation stages during the 2 · V -point FFT, as can be seen below:

Pm
2·V ·

log2(V)∏
i=0

(
Im ⊗P2

2i ⊗ IV/2i
) (

Im ⊗D2
2i ⊗ IV/2i

)
(Im ⊗W2 ⊗ IV)

=

log2(V)∏
i=0

(
P2

2i ⊗ Im·V/2i
) (

D2
2i ⊗ Im·V/2i

)
(W2 ⊗ Im·V)

 ·Pm
2·V

(4.35)

The permutations de�ned by P2
2i ⊗ Im·V/2i during the 2 · V -point FFT in equation (4.35)

are more complex than permutations in the radix-2 case. In the radix-2 case (P2
2i ⊗ IV/2i),

permutations are performed on blocks of 1, 2, 4, . . . , V/2 vector elements (P2
V ,P2

V/2 ⊗ I2,
P2

V/4 ⊗ I4, . . . , P2
2 ⊗ IV/2). The vector length is always a multiple of the block size, thus

the alignment on data vectors is preserved.
In the mixed-radix case (P2

2i ⊗ Im·V/2i), permutations are performed on blocks of m, 2 ·m,
4·m, . . . , m·V/2 vector elements (P2

V ⊗Im ,P2
V/2⊗I2·m, P2

V/4⊗I4·m, . . . , P2
2⊗Im·V/2). These

79

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

permutations do not preserve the alignment on vectors, as can be seen by the examples
in �gure 4.5 for m = 3 and V = 4. The �rst permutation stage (�gure 4.5a), de�ned
by P2

4 ⊗ I3, operates on blocks of three vector elements. The permuted blocks have to
be stored across data vectors. The same e�ect occurs for the second permutation stage
(�gure 4.5b), de�ned by P2

2 ⊗ I6.

(a) Permutation on blocks of three elements

(b) Permutation on blocks of six elements

Figure 4.5: Permutations in between radix-2 FFT stages for the mixed-radix FFT with
m = 3 and V = 4: (a) P2

4 ⊗ I3 and (b) P2
2 ⊗ I6

Another reason why the short mixed-radix FFT algorithm has a higher complexity than
the short radix-2 FFT algorithm is the implementation of permutations on the di�erent
permutation networks of the proposed scalable SIMD architecture. Permutations for the
radix-2 FFT can mostly be mapped on simple masked butter�y permutations on pairs of
vectors (see section 4.4.3), yet this is not possible for Pm

2·V . Hence, the mixed-radix FFT
requires a more restrictive constraint on the ratio between SIMD vector length V and FFT
length than the radix-2 FFT. In the radix-2 case, the constraint that the FFT size should
be at least twice the vector length is su�cient.

80

4.4 Derivation of SIMD radix-2 and mixed-radix FFT algorithms

4.4.2 Mixed-radix FFT algorithm

The mixed-radix algorithm in equation (4.34) for NDFT = 2 ·V ·m does not enable e�cient
vector implementations for arbitrary m, due to the complexity of the permutation stage
de�ned by Pm

2·V . If m is a multiple of the vector length V (i. e. m = l · V), the complexity
of the vector element permutation is no longer dependent on the non-power of two factors
in m. This can be shown by applying equation (4.17):

Pl·V
2·V =

(
Pl

2·V ⊗ IV
)
·
(
Il ⊗PV

2·V
)

(4.36)

Therefore, the constraint that the FFT size should be a multiple of the squared vector
length could be a su�cient constraint for the vectorization of mixed-radix FFTs. In the
following, an FFT algorithm is developed, which evidences that an e�cient vectorization
of mixed-radix FFTs is indeed possible if the FFT size ful�lls this constraint.

Mixed-radix FFT algorithm derivation

The proposed mixed-radix FFT algorithm is designed for an FFT size NDFT = V ·M · V .
Here, the factor M contains all non-power of two factors. The DFT matrix WV ·M ·V is
�rst decomposed into three factors by applying the basic FFT decomposition in equation
(4.5) twice:

WVMV = (WVM ⊗ IV) ·PV
MV ·DV

MV · (WV ⊗ IVM)

=
((

(WV ⊗ IM) ·PM
V ·DM

V · (WM ⊗ IV)
)
⊗ IV

)
·PV

MV ·DV
MV · (WV ⊗ IVM)

= (WV ⊗ IM ⊗ IV) ·
(
PM
V ⊗ IV

)
·
(
DM
V ⊗ IV

)
· (WM ⊗ IV ⊗ IV)

·PV
MV ·DV

MV · (WV ⊗ IVM)

(4.37)

Next, the permutation stages can be reordered by applying formula manipulations as
de�ned in section 4.2.2. The permutation de�ned by PM

V ⊗ IV can be moved to the left
by �rst applying formula (4.14) and then formula (4.16).

WVMV =
((

(WV ⊗ IM) ·PM
V

)
⊗ IV

)
·
(
DM
V ⊗ IV

)
· (WM ⊗ IV ⊗ IV)

·PV
MV ·DV

MV · (WV ⊗ IVM)

=
(
PM
V ⊗ IV

)
· (IM ⊗WV ⊗ IV) ·

(
DM
V ⊗ IV

)
· (WM ⊗ IV ⊗ IV)

·PV
MV ·DV

MV · (WV ⊗ IVM)

(4.38)

Permutation PV
MV can also be moved to the left using formula (4.16). The result can be

represented by three consecutive matrix operations TV1 , TM , and TV2 :

WVMV =
(
PM
V ⊗ IV

)
· (IM ⊗WV ⊗ IV) ·

(
DM
V ⊗ IV

)
·PV

MV · (IV ⊗WM ⊗ IV)

·DV
MV · (WV ⊗ IVM) (4.39)

81

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

WVMV =
(
PM
V ⊗ IV

)
· (IM ⊗WV ⊗ IV) ·PV

MV ·
(
IV ⊗DM

V

)
· (IV ⊗WM ⊗ IV) (4.40)

·DV
MV · (WV ⊗ IVM)

WVMV = TV1 ·TM ·TV2 (4.41)

TV1 =
(
PM
V ⊗ IV

)
· (IM ⊗WV ⊗ IV) ·PV

MV (4.42)

TM =
(
IV ⊗DM

V

)
· (IV ⊗WM ⊗ IV) (4.43)

TV2 = DV
MV · (WV ⊗ IVM) (4.44)

The matrix operations de�ned by TV2 and TM (equations (4.43) and (4.44)) can be directly
mapped on vector operations: All DFT stages operate on complete vectors, as evidenced
by the Kronecker products with unity matrices of length V . The multiplications by twiddle
factor matrices are also vectorizable, as the twiddle factor matrices are diagonal matrices.
Formula TV1 in equation (4.42) contains the permutation matrix PV

MV , which cannot be
directly vectorized. Hence, further formula manipulations are necessary. Using formula
(4.18), permutation matrix PV

MV can be split into a pair of permutations. Next, the
matrices are reordered using formula (4.15):

TV1 =
(
PM
V ⊗ IV

)
· (IM ⊗WV ⊗ IV) ·PV

MV

=
(
PM
V ⊗ IV

)
· (IM ⊗WV ⊗ IV) ·

(
IM ⊗PV

V

)
·
(
PV
M ⊗ IV

)︸ ︷︷ ︸
PV

MV

=
(
PM
V ⊗ IV

)
·
(
IM ⊗

(
(WV ⊗ IV) ·PV

V

))
·
(
PV
M ⊗ IV

) (4.45)

Permutation PV
M ⊗ IV performs a reordering of complete data vectors, which is later

reversed by PM
V ⊗ IV . This can be shown by applying formulas (4.19) and (4.20); the

formula can be simpli�ed using (4.23).

TV1 =
((

PM
V ⊗ IV

)−1)−1 · (IM ⊗ ((WV ⊗ IV) ·PV
V

))
·
(
PV
M ⊗ IV

)
=
(
PV
M ⊗ IV

)−1 · (IM ⊗ ((WV ⊗ IV) ·PV
V

))
·
(
PV
M ⊗ IV

)
=
(
IM ⊗

(
(WV ⊗ IV) ·PV

V

))PV
M⊗IV

(4.46)

Matrix TV2 can be rewritten in a similar manner by expanding with
(
PM
V ⊗ IV

)
·
(
PV
M ⊗ IV

)
and applying formulas (4.16), (4.20) and (4.23).

TV2 = DV
MV · (WV ⊗ IVM)

= DV
MV · (WV ⊗ IVM)

(
PM
V ⊗ IV

)
·
(
PV
M ⊗ IV

)︸ ︷︷ ︸
IV MV

= DV
MV ·

(
PM
V ⊗ IV

)
· (IM ⊗WV ⊗ IV) ·

(
PV
M ⊗ IV

)
= DV

MV · (IM ⊗WV ⊗ IV)PV
M⊗IV

(4.47)

82

4.4 Derivation of SIMD radix-2 and mixed-radix FFT algorithms

Using formulas (4.47), (4.43), and (4.46), the complete FFT algorithm may be written as
follows:

WVMV =
(
IM ⊗

(
(WV ⊗ IV) ·PV

V

))PV
M⊗IV

·
(
IV ⊗DM

V

)
· (IV ⊗WM ⊗ IV)

·DV
MV · (IM ⊗WV ⊗ IV)PV

M⊗IV

(4.48)

Mixed-radix FFT algorithm properties

The FFT algorithm de�ned by equation (4.48) can be e�ciently vectorized, independent
of the further decomposition of V -point and M -point DFTs. All FFT stages (WV ⊗ IV
and WM ⊗ IV) operate on complete data vectors. Furthermore, the algorithm contains
only one permutation on vector elements, de�ned by PV

V . The permutation PV
V does not

depend on M , which contains the non-power of two factors, and can be carried out in
log2 (V) permutation stages on pairs of vectors (see section 4.4.3). The number of permu-
tation stages is the same as for the radix-2 FFT algorithm. If the V -point DFT in TV1

(equation (4.46)) is further decomposed into a series of log2 (V) radix-2 butter�y stages,
the permutation stages can be interleaved with the radix-2 butter�y stages. The decom-
position of permutations and the interleaving with radix-2 butter�y stages are explained
in detail in section 4.4.3.
The FFT algorithm consists of two parts, a pair of V -point DFTs, de�ned by TV1 and
TV2 , and an M -point DFT, de�ned by TM . Both TV1 and TV2 share a similar structure.
The only di�erences are that TV1 contains a permutation by matrix PV

V and TV2 com-
prises a twiddle factor multiplication (with DV

MV). The actual processing of the V -point
FFTs is enclosed by a similarity transformation by PV

M ⊗ IV (see formula (4.23)). This
transformation describes the addressing of data vectors: Every M -th data vector is used
as input for one V -point FFT on data vectors, e. g. vectors 0, M , 2 ·M , . . . , (V − 1) ·M
are the input vectors for the �rst V -point FFT. The output of the V -point FFT is stored
at the same positions (every M -th vector). The Kronecker product IM ⊗ . . . means that
M V -point FFTs have to be carried out in this manner on di�erent input vectors. Figure
4.6 illustrates the data �ow between V -point and M -point FFT stages by an example for
M = 3 and V = 4.
The matrix operations de�ned by TV1 and TV2 only depend on the factor M to a minor
degree. M in�uences the values (and the length) of the twiddle factor matrix DV

MV , the
addressing of data vectors (described by PV

M ⊗ IV), and the number of V -point radix-2
FFTs. The twiddle factor matrix can be automatically generated for any value of M ,
the additional e�ort if M changes is negligible. From an implementation point of view,
the addressing of data vectors and the number of FFTs can be adjusted by parametrizing
pointer increments and loop iteration counts with M . Therefore, both TV1 and TV2 can
be computed, implemented, and optimized once and later reused for arbitrary M . This

83

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

Figure 4.6: Block diagram of a 48-point mixed-radix FFT for a vector length of four

is a major advantage in comparison to the FFT algorithm by Franchetti and Püschel
[FP03, FVP07].
The M -point DFT, de�ned by TM , performs V FFTs, each operating on M consecutive
data vectors. All operations are operations on complete data vectors. Hence, any algorithm
can be applied to decompose WM into smaller DFTs. Furthermore, M may take on
arbitrary values; therefore, arbitrary DFTs can be vectorized as long as the constraint
that the DFT size is a multiple of the squared SIMD vector length is satis�ed.

4.4.3 Permutations for the vectorized FFT algorithms

This section consists of two parts. Firstly, it is proven that the permutation PV
V , which

is required for the mixed-radix FFT (with NDFT = V ·M · V), can be decomposed into
the same stride permutations used for the radix-2 FFT (with NDFT ≥ 2 · V) and some
additional permutations, which permute entire vectors. The interleaving of the required
permutations with the radix-2 FFT stages is also demonstrated. Secondly, permutation
operations based on butter�y permutations on pairs of vectors are explained. These per-
mutation operations are better suited for single-vector permutation networks than stride

84

4.4 Derivation of SIMD radix-2 and mixed-radix FFT algorithms

permutations and can be realized by pre-de�ned butter�y permutation instructions on all
implemented permutation networks.

Decomposition of permutations for the mixed-radix FFT

The proposed radix-2 FFT algorithm for NDFT = 2 · V (equation (4.30)) requires log2 (V)
permutation operations that reorder vector elements. These permutation stages operate
on pairs of vectors and can be written as:

P2
2i ⊗ IV/2i ∀i ∈ [1, log2 (V)] (4.49)

The permutation PV
V , which is required for the mixed-radix FFT performs exactly the same

permutations on vector elements (and some permutations on complete vectors). This can
be proven by decomposing PV

V into smaller factors using formula (4.17) and then formula
(4.18). For a vector length of four, the permutation may be decomposed as:

P4
4 =

(
P2

4 ⊗ I2
)
·
(
I2 ⊗P2

4

)
=
(
I2 ⊗P2

2 ⊗ I2
)︸ ︷︷ ︸

A1

·
(
P2

2 ⊗ I4
)︸ ︷︷ ︸

B1

·
(
I2 ⊗P2

4

)︸ ︷︷ ︸
C1

(4.50)

The permutation de�ned by B1 performs a permutation on complete vectors; matrices A1

and C1 perform exactly the same permutations as required for the radix-2 FFT. If the
vector length is doubled (V = 8), the number of permutation stages on vector elements
increases to three, as in the radix-2 case. The decomposition is also done by �rst applying
formula (4.17) and then formula (4.18).

P8
8 =

(
P4

8 ⊗ I2
)
·
(
I4 ⊗P2

8

)
=
(
I2 ⊗P4

4 ⊗ I2
)︸ ︷︷ ︸

A2

·
(
P4

2 ⊗ I8
)︸ ︷︷ ︸

B2

·
(
I2 ⊗P2

8

)︸ ︷︷ ︸
C2

(4.51)

Here, permutation B2 is again a permutation on complete vectors. Matrix C2 de�nes the
�rst permutation stage on vector elements and A2 de�nes the remaining two permutation
stages, which can be computed by extending the permutations de�ned in (4.50) by a
Kronecker product with a 2 × 2 identity matrix. In the same manner, the permutation
stages for an arbitrary vector length V can be computed recursively from the permutations
for P

V/2
V/2:

PV
V =

(
P

V/2
V ⊗ I2

)
·
(
IV/2 ⊗P2

V

)
=
(
I2 ⊗P

V/2
V/2 ⊗ I2

)
·
(
P

V/2
2 ⊗ IV

)
·
(
I2 ⊗P2

V

) (4.52)

85

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

The permutation stages required for PV
V can also be e�ciently interleaved with the pro-

cessing of a V -point FFT, i. e. each permutation stage on pairs of vectors is followed by
a radix-2 FFT stage on the same pairs of vectors. This enables a better scheduling of
instructions on the processor. The principle approach is explained in the following. First,
the V -point DFT matrix and the permutation matrix are decomposed into smaller factors
using formula (4.5) and formula (4.17). Next, the permutation de�ned by P2

V/2 ⊗ IV is
moved to the left using formula (4.16). The same formula is then applied for interleaving
P

V/2
V ⊗ I2 with the two DFT operations.

(WV ⊗ IV) ·PV
V =

(
WV/2 ⊗ I2·V

)
·
(
P2

V/2 ⊗ IV
)
·
(
D2

V/2 ⊗ IV
)
·
(
W2 ⊗ IV ·V/2

)︸ ︷︷ ︸
WV ⊗IV

·
(
P

V/2
V ⊗ I2

)
·
(
IV/2 ⊗P2

V

)︸ ︷︷ ︸
PV

V

=
(
P2

V/2 ⊗ IV
)
·
(
I2 ⊗WV/2 ⊗ IV

)
·
(
D2

V/2 ⊗ IV
)

(4.53)

·
(
W2 ⊗ IV ·V/2

)
·
(
P

V/2
V ⊗ I2

)
·
(
IV/2 ⊗P2

V

)
=
(
P2

V/2 ⊗ IV
)
·
(
I2 ⊗WV/2 ⊗ IV

)
·
(
P

V/2
V ⊗ I2

)
︸ ︷︷ ︸

Ω

·
(
IV/2 ⊗D2

V/2 ⊗ I2
)
·
(
IV/2 ⊗W2 ⊗ IV

)
·
(
IV/2 ⊗P2

V

)
=
(
P2

V/2 ⊗ IV
)
·Ω ·

(
IV/2 ⊗D2

V/2 ⊗ I2
)
·
(
IV/2 ⊗W2 ⊗ IV

)
·
(
IV/2 ⊗P2

V

)

The matrix Ω requires further processing to prove that the permutation stages on vector
elements can always be interleaved with the processing of smaller DFTs. The permutation
matrix P

V/2
V can be decomposed into two permutations using formula (4.18). Next, the

matrices can be reordered by applying formula (4.14).

Ω =
(
I2 ⊗WV/2 ⊗ IV

)
·
(
P

V/2
V ⊗ I2

)
=
(
I2 ⊗WV/2 ⊗ IV

)
·
(
I2 ⊗P

V/2
V/2 ⊗ I2

)
·
(
P

V/2
2 ⊗ IV

)
︸ ︷︷ ︸

P
V/2
V ⊗I2

=
(
I2 ⊗

((
WV/2 ⊗ IV/2

)
·PV/2

V/2

)
⊗ I2

)
·
(
P

V/2
2 ⊗ IV

)
(4.54)

86

4.4 Derivation of SIMD radix-2 and mixed-radix FFT algorithms

Applying Ω to formula (4.53) leads to equation (4.55). The equation has been simpli�ed

by formula (4.23), as
(
P2

V/2 ⊗ IV

)
is the inverse permutation of

(
P

V/2
2 ⊗ IV

)
.

(WV ⊗ IV) ·PV
V =

(
I2 ⊗

((
WV/2 ⊗ IV/2

)
·PV/2

V/2

)
⊗ I2

)(PV/2
2 ⊗IV

)

·
(
IV/2 ⊗D2

V/2 ⊗ I2
)
·
(
IV/2 ⊗W2 ⊗ IV

)
·
(
IV/2 ⊗P2

V

) (4.55)

Formula (4.55) de�nes the radix-2 butter�y stages and the permutation stages recursively
based on

(
WV/2 ⊗ IV/2

)
· PV/2

V/2. Each step of the recursion adds one radix-2 FFT stage
and one permutation stage on elements of pairs of vectors. The permutation de�ned by(
P

V/2
2 ⊗ IV

)
performs a reordering of complete data vectors, which is later reversed.

Permutation stages based on butter�y permutations

The permutations in the above-described algorithms are based on stride permutations on
pairs of vectors (see e. g. �gures 4.4 and 4.5). The required stride permutations have two
drawbacks concerning the implementation on the scalable SIMD processor architecture:
Firstly, none of the implemented permutation networks directly supports stride permuta-
tion by specialized instructions. Hence, stride permutations have to be de�ned manually
using permutation registers to store the stride permutation pattern. Furthermore, some
stride permutations potentially cannot be realized on an inverse butter�y network in one
permutation operation.

Secondly, stride permutations on pairs of vectors are relatively complex, as each output
vector contains permuted elements of both input vectors. This has no impact on the
realization on double-vector networks, yet multiple consecutive permutation operations
are required on a single-vector network. An example for P2

4 and V = 4 is shown in
�gure 4.7. On a single-vector permutation network, P2

4 may be realized by a pair of
masked butter�y permutations (masking is represented by light gray boxes) and a pair of
concluding permutations on single vectors.

Masked butter�y permutations are well suited for an FFT implementation, as they are
directly supported by specialized instructions and enable permuting values from two vec-
tors e�ciently. Each output vector of a masked butter�y permutation contains V/2 non-
permuted elements from one input vector, which are preserved by masking, and V/2 per-
muted elements from the second input. Figure 4.8 shows the possible masked butter�y
permutations on pairs of vectors for a vector length of eight, as well as the corresponding
representation by permutation matrix formulas.

87

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

(a) (b)

Figure 4.7: Stride permutation (a) based on P2
4 for V = 4 and realization on a single-vector

permutation network (b)

Any masked butter�y permutation PB
Bfy on pairs of vector, which permutes blocks of

B elements (B = 2b < V), can be expressed by permutation matrices based on stride
permutations:

PB
Bfy =

log2(V/B)−1∏
i=1

(
I2i−1 ⊗P2

2 ⊗ IV/2i
) · (P2

V/B ⊗ IB
)

(4.56)

A vectorized FFT algorithm applies permutation operations on vector elements to perform
the sorting of elements � for example, a bit-reversal for the pure radix-2 FFT � and
for processing vector elements together during the radix-2 FFT stages. The latter is
necessary, as every output element of the FFT is a weighted sum of all the input elements.
A sequence of log2 (V) masked butter�y permutations with decreasing blocks sizes (B ∈
[V/2, V/4, . . . , 2, 1]), interleaved with radix-2 FFT stages, su�ces for the joint processing
of vector elements during radix-2 stages. The sorting of FFT outputs can be realized by
permutations of complete vectors if the FFT size is a multiple of the squared vector length.
If the FFT size is not a multiple of the squared vector length, a �nal permutation stage is
necessary for the sorting.
This is illustrated by the following example of an 8-point FFT for a vector length of four,
based on formula (4.30). First, the permutation matrix P2

4 is expanded using formula
(4.18). The resulting permutation P2

2⊗I2 is already a butter�y permutation; permutation

I2 ⊗ P2
2 can be moved to the next permutation stage on the left. Here, (D2

2 ⊗ I2)
(I2⊗P2

2)

88

4.4 Derivation of SIMD radix-2 and mixed-radix FFT algorithms

(a) P2
2 ⊗ I4 (b)

(
P2

2 ⊗ I4
) (

P2
4 ⊗ I2

)
(c)
(
P2

2 ⊗ I4
) (

I2 ⊗P2
2 ⊗ I2

)
P2

8

Figure 4.8: Masked butter�y permutations with di�erent block sizes B for a vector length
of eight: (a) B = 4, (b) B = 2, (c) B = 1

results in a modi�ed ordering of twiddle factors (based on formula (4.23)), but does not
in�uence the vectorization.

W8 = (W2 ⊗ I4) ·
(
P2

2 ⊗ I2
)
·
(
D2

2 ⊗ I2
)
· (W2 ⊗ I4) ·P2

4 ·D2
4 · (W2 ⊗ I4)

= (W2 ⊗ I4) ·
(
P2

2 ⊗ I2
)
·
(
D2

2 ⊗ I2
)

· (W2 ⊗ I4) ·
(
I2 ⊗P2

2

)
·
(
P2

2 ⊗ I2
)︸ ︷︷ ︸

P2
4

·D2
4 · (W2 ⊗ I4) (4.57)

W8 = (W2 ⊗ I4) ·
(
P2

2 ⊗ I2
)
·
(
I2 ⊗P2

2

)
·
(
D2

2 ⊗ I2
)(I2⊗P2

2)

· (W2 ⊗ I4) ·
(
P2

2 ⊗ I2
)
·D2

4 · (W2 ⊗ I4) (4.58)

89

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

Next, the formula is expanded by (I2 ⊗P2
2) · (I2 ⊗P2

2). The expression can be simpli�ed
by applying formula (4.18). Finally, permutations are reordered using formula (4.16).

W8 =
(
I2 ⊗P2

2

)
·
(
I2 ⊗P2

2

)︸ ︷︷ ︸
I8

· (W2 ⊗ I4) ·
(
P2

2 ⊗ I2
)
·
(
I2 ⊗P2

2

)
·
(
D2

2 ⊗ I2
)(I2⊗P2

2)

· (W2 ⊗ I4) ·
(
P2

2 ⊗ I2
)
·D2

4 · (W2 ⊗ I4)

=
(
I2 ⊗P2

2

)
· (W2 ⊗ I4) ·

(
I2 ⊗P2

2

)
·
(
P2

2 ⊗ I2
)︸ ︷︷ ︸

P2
4

·
(
I2 ⊗P2

2

)
·
(
D2

2 ⊗ I2
)(I2⊗P2

2)

· (W2 ⊗ I4) ·
(
P2

2 ⊗ I2
)
·D2

4 · (W2 ⊗ I4)

=
(
I2 ⊗P2

2

)
· (W2 ⊗ I4) ·P2

4 ·
(
I2 ⊗P2

2

)
·
(
D2

2 ⊗ I2
)(I2⊗P2

2)

· (W2 ⊗ I4) ·
(
P2

2 ⊗ I2
)
·D2

4 · (W2 ⊗ I4)

=
(
I2 ⊗P2

2

)︸ ︷︷ ︸
�nal perm.

· (W2 ⊗ I4) ·
(
P2

2 ⊗ I2
)
·P2

4︸ ︷︷ ︸
P1
Bfy

·
(
D2

2 ⊗ I2
)(I2⊗P2

2)

· (W2 ⊗ I4) ·
(
P2

2 ⊗ I2
)︸ ︷︷ ︸

P2
Bfy

·D2
4 · (W2 ⊗ I4)

(4.59)

The resulting FFT algorithm comprises two masked butter�y permutations and one �nal
permutation stage that produces the correct ordering of output values. Figure 4.9 depicts
the resulting signal �ow graph, the signal �ow graph for the same FFT size with stride
permutations is shown in �gure 4.3.
The implementations of radix-2 and mixed-radix FFT algorithms in the next section re-
place all stride permutations by butter�y permutations. For FFT sizes that are a multiple
of the squared vector length, log2 (V) masked butter�y permutations are required. Short
radix-2 FFTs (2 ·V ≤ NDFT < V 2) on processors with single-vector permutation networks
require one additional permutation stage at the end of the FFT for sorting the outputs.
On processors with double-vector permutation networks, the sorting can be realized by
replacing the last butter�y permutation stage with a more elaborate permutation stage
on pairs of vectors.

4.5 Radix-2 and mixed-radix FFT implementations

based on LTE

LTE requires FFT sizes between 128 and 2048 for the IDFT at the transmitter (and the
DFT at the receiver). The DFT-spreading in SC-FDMA is done by mixed-radix FFTs
with lengths ranging from 12 to 1200. All required radix-2 FFTs have been implemented.

90

4.5 Radix-2 and mixed-radix FFT implementations based on LTE

Figure 4.9: 8-point SIMD FFT algorithm with butter�y permutations

Furthermore, all remaining short radix-2 FFTs that satisfy the constraint that the length
of the FFT is at least twice the SIMD vector length have been implemented. The short
radix-2 FFTs allow investigating the impact of an increased permutation complexity on
the performance for di�erent permutation networks. Only some mixed-radix FFTs have
been implemented, because the constraint that the FFT size should be a multiple of the
squared vector length prevents an implementation based on the proposed mixed-radix FFT
algorithm for many FFT sizes. Here, the SIMD vector length V refers to the number of
32-bit elements in a vector, as each element of the FFT consists of a 16-bit real part and a
16-bit imaginary part. Table 4.2 summarizes the constraints for di�erent vector lengths.

Table 4.2: Constraints for radix-2 and mixed-radix FFT sizes for di�erent vector lengths

SIMD bit width 128 256 512 1024
Vector length [32-bit elements] 4 8 16 32
Minimum radix-2 FFT size 8 16 32 64
Minimum mixed-radix FFT size 16 ·M 64 ·M 256 ·M 1024 ·M

All mixed-radix FFTs required for SC-FDMA in LTE that satisfy the constraint for a SIMD
bit width of 256 bit have been implemented on the 128-bit and 256-bit SIMD processors.
A 768-point FFT algorithm has also been implemented on the 512-bit SIMD processors.
Hence, the speedup, when the constraint is ful�lled can be measured. Furthermore, 384-

91

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

point FFT algorithms for 512-bit and 1024-bit processors have been implemented, enabling
to measure the performance for the case that the constraint is not ful�lled. Table 4.3 lists
all implemented FFTs.

Table 4.3: Implemented radix-2 and mixed-radix FFTs

FF
T
siz
e

8-
pt
.

16
-p
t.

32
-p
t.

64
-p
t.

12
8-
pt
.

25
6-
pt
.

51
2-
pt
.

10
24
-p
t.

20
48
-p
t.

19
2-
pt
.

38
4-
pt
.

57
6-
pt
.

76
8-
pt
.

96
0-
pt
.

11
52
-p
t.

128 bit X X X X X X X X X X X X X X X
256 bit X X X X X X X X X X X X X X
512 bit X X X X X X X X X
1024 bit X X X X X X X

Before discussing the performance of the implemented FFTs in section 4.6, relevant in-
formation on the implementation is provided. First, the grouping of FFT stages to avoid
memory access is explained. Next, the algorithms for the calculation of basic radix-2,
radix-3, radix-5, and radix-6 butter�y stages are introduced. Afterwards, di�erences be-
tween the implementation of permutation operations on the various permutation networks
are discussed. In the last part of this section, the implementation of short mixed-radix
FFTs that cannot be realized by the mixed-radix FFT algorithm is explained.

4.5.1 Grouping of FFT stages

As the scalable SIMD processor architecture has a limited number of vector registers (16
general-purpose SIMD vector registers, see chapter 3.1.4), not all FFTs can be imple-
mented without spilling data to memory between FFT stages. Short radix-2 FFTs that
require at most eight data vectors2 can be implemented in a single step, without spilling.
The maximum FFT size for processing the FFT in a single step is 8 · V ; hence, the three
shortest implemented radix-2 FFTs can be implemented in one step for all vector lengths.
The FFT sizes are listed in table 4.4.
Longer radix-2 and mixed-radix FFTs have to be split into groups of consecutive FFT
stages, which process a subset of the complete DFT. The complete processing of the
grouped FFT stages is realized by loops on the input data. The grouping of FFT stages is
done to achieve a good ratio between computational operations on the VALU and VMAC
and memory access operations on the VLSU. The computational operations cannot be

2The remaining vector registers are used for twiddle factor vectors and intermediate results.

92

4.5 Radix-2 and mixed-radix FFT implementations based on LTE

Table 4.4: Short radix-2 FFTs that �t into the vector register �le

SIMD width 128 bit 256 bit 512 bit 1024 bit
FFT sizes 8, 16, 32 16, 32, 64 32, 64, 128 64, 128, 256

avoided, as they are necessary for the FFT algorithm. Hence, the utilization of the VALU
and the VMAC is a lower boundary for the runtime of a loop on a LIW processor ar-
chitecture. Useful VALU and VMAC operations and memory access operations can be
performed in parallel in one LIW operation. If the number of memory access operations is
smaller than or equal to the number of useful operations on the VALU or VMAC, an over-
head due to memory access can potentially be avoided by e�cient LIW programming. If
more memory access operations are required than computational operations on the VALU
or VMAC, the runtime is determined by the number of memory access operations.
As each FFT stage operates on complete vectors and consecutive stages process di�erent
data values, the register demand increases with the number of consecutive DFT stages.
Next to the registers for input data, further registers are required for twiddle factors and
intermediate results. In particular, radix-3, radix-5, and radix-6 FFT stages require many
data vectors for intermediate results (see section 4.5.2). Based on these restrictions, at
most three consecutive radix-2 stages can be grouped together (eight input data vectors).
Radix-5 and radix-6 stages cannot be e�ciently grouped together with other FFT stages,
due to the high register demand for intermediate values. Multiple radix-3 stages also
cannot be grouped together, yet a radix-3 stage can potentially be combined with one or
two radix-2 FFT stages (depending on the number of registers required for twiddle factors).
In the majority of cases, consecutive radix-3 and radix-2 stages should be replaced by a
radix-6 stage, which has a lower computational complexity (see section 4.5.2).
In case only two radix-2 FFT stages can be grouped together (i. e. all other stages already
have been grouped together), the number of operations for loading and storing data is the
same as the number of useful operations on the VALU and the VMAC (see section 3.1.4,
table 3.6). In case further memory access is necessary for twiddle factors, the runtime
is dominated by memory access. A single radix-2 FFT stage always requires more clock
cycles on the VLSU than on the VALU or the VMAC.
Table 4.5 lists the decompositions of radix-2 and mixed-radix FFTs into groups of FFT
stages for di�erent SIMD widths. Groups of FFT stages, whose performance is degraded by
memory access, are emphasized by using bold font and underlines (e. .g. 2). In most cases,
the decomposition into groups of FFT stages is the same for all SIMD vector lengths. The
only exceptions are the 1024-point and the 384-point FFTs. The 384-point FFT requires
a di�erent grouping of FFT stages on 512-bit and 1024-bit SIMD processors than on

93

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

processors with a smaller SIMD width, as a di�erent FFT algorithm is used, because the
constraint for the vectorization of the mixed-radix FFT is not satis�ed (see section 4.5.4).

Table 4.5: Decomposition of long radix-2 and mixed-radix FFTs into groups of FFT stages
in loops. The notation 2x means that x radix-2 stages are grouped together.

SIMD bit width 128 bit 256 bit 512 bit 1024 bit
64-pt. FFT 23, 23 short FFT short FFT short FFT
128-pt. FFT 23, 2, 23 23, 2, 23 short FFT short FFT
256-pt. FFT 23, 22, 23 23, 22, 23 23, 22, 23 short FFT
512-pt. FFT 23, 23, 23 23, 23, 23 23, 23, 23 23, 23, 23

1024-pt. FFT 23, 23, 2, 23 23, 23, 2, 23 23, 23, 2, 23 23, 22, 22, 23

2048-pt. FFT 23, 23, 22, 23 23, 23, 22, 23 23, 23, 22, 23 23, 23, 22, 23

192-pt. FFT 23, 3, 23 23, 3, 23 � �
384-pt. FFT 23, 6, 23 23, 6, 23 23, 3 · 2, 23 22, 2 · 3 · 2, 2, 22

576-pt. FFT 23, 3, 3, 23 23, 3, 3, 23 � �
768-pt. FFT 23, 3, 22, 23 23, 3, 22, 23 23, 3, 22, 23 �
960-pt. FFT 23, 5, 3, 23 23, 5, 3, 23 � �
1152-pt. FFT 23, 6, 3, 23 23, 6, 3, 23 � �

The 128-bit, 256-bit, and 512-bit implementations of the 1024-point FFT comprise one
separate radix-2 FFT stage, preceded by a group of three radix-2 FFT stages. The runtime
of the separate radix-2 stages is determined by memory access, while the runtime of the
group of three radix-2 stages is determined by useful computations. If these radix-2 stages
are instead grouped in two pairs of radix-2 stages, the performance of both corresponding
loops is determined by memory access for loading twiddle factors, leading to a slightly worse
performance than with the proposed decomposition. On a 1024-bit SIMD processor, all
required twiddle factor vectors can be stored in registers and no memory access operations
during loops are needed for loading twiddle factors. Hence, a grouping of pairs of radix-2
FFT stages o�ers the best performance on a 1024-bit SIMD processor architecture.
Table 4.5 also shows that only few FFTs su�er from performance degradations due to
memory access. Furthermore, increasing the SIMD width counteracts performance degra-
dations due to memory access, as long as the vectorization constraints on the ratio between
FFT size and SIMD width are still satis�ed.
All implementations of FFTs that satisfy the constraints on the FFT size share common
loops for groups of radix-2 FFT stages that can be reused for all FFT sizes � and in part
also for all SIMD widths: The FFTs start and end with groups of three radix-2 FFT stages.
The �rst group of radix-2 stages is the same for all FFT sizes and SIMD widths, only

94

4.5 Radix-2 and mixed-radix FFT implementations based on LTE

parameters, such as address o�sets and twiddle factors, change. The last group of radix-2
stages performs the reordering of vector elements � or part of the reordering of vector
elements � and can be used for all FFT implementations on the same SIMD processor
architecture3. Radix-3, radix-5, and radix-6 FFT stages can be reused for di�erent SIMD
widths; they can also be reused for di�erent FFT sizes as long as the necessary reordering
of vectors is adjusted.

Memory requirements of the FFT algorithms

All short radix-2 FFTs, which can be realized by a single loop, can be performed in
place, i. e. the input values are overwritten by the �nal output of the FFT. The memory
requirements of longer radix-2 and mixed-radix FFTs depend on the grouping of FFT
stages. An FFT can be implemented in place if the groups of FFT stages can perform the
necessary reordering of data vectors.
FFTs with NDFT = V ·M · V perform the reordering of data vectors during the M -point
FFT.4 If anM -point FFT �ts into the register �le, all necessary permutations of complete
data vectors can be done in place. IfM vectors do not �t into the register �le, the FFT can
only be computed in place if the permutation of data vectors can be split into a series of
smaller permutation operations, which can be performed on the input or output of groups
of FFT stages that �t into the register �le. Otherwise, there is a small memory overhead
for storing intermediate results during the sorting of vectors. The memory overhead can
be avoided by inserting a separate sorting stage, at the cost of an increased runtime of
the FFT, or by smartly overlapping memory read and write access for the same group
of FFT stages on di�erent input data, enabling to perform more complex permutations
of complete vectors without memory access. The latter approach leads to an increased
(doubled, tripled, or quadrupled) code size of the corresponding loop. Yet, the increase in
code size is signi�cantly lower than the decrease in data memory overhead.

4.5.2 Implementation of DFT stages

Next to e�ciently decomposing the FFT into many small DFTs on entire vectors and
grouping them together, the DFT stages also need to be implemented e�ciently. The
basic radix-2 DFT, can be directly implemented by the corresponding matrix operation,
requiring one vector addition and one vector subtraction.

y = W2 · x =

[
1 1
1 −1

]
·
[
x0
x1

]
(4.60)

3The implementation depends on the SIMD width and the selected permutation network.
4In general, the M -point FFT performs the reordering of blocks of X elements for any FFT with
NDFT = X ·M ·X.

95

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

Radix-3, radix-5, and radix-6 DFTs can be realized using the corresponding DFT matrices,
yet more e�cient implementations exist that are brie�y discussed below.
The radix-3 and radix-5 algorithms are based on Temperton [Tem83], with modi�cations to
adjust for the representation of complex-valued data types on the scalable SIMD processor
architecture. The radix-3 DFT y = W3 · x is implemented by the following operations:

t0 = x1 + x2 t1 = x0 −
t0
2

t2 = −i
√

3

2
· (x1 − x2) y0 = x0 + t0

y1 = t1 + t2 y2 = t1 − t2 (4.61)

The radix-3 algorithm occupies the VALU for �ve clock cycles (two vector subtractions
and three vector additions) and the VMAC for three clock cycles (one complex-valued
multiplication, one real-valued MAC operation). Twiddle factor multiplications between
the radix-3 stage and the following DFT stage can be merged with the radix-3 processing,
increasing the number of operations on the VMAC by two complex-valued multiplications
(four clock cycles).
The radix-5 DFT y = W5 · x is implemented as follows:

t0 = x1 + x4 t1 = x2 + x3

t2 = sin (0.4π) · (x1 − x4) t3 = sin (0.4π) · (x2 − x3)
t4 = t0 + t1

t5 =

√
5

4
(t0 − t1) t6 = x0 −

1

4
· t4

t7 = i ·
(
t2 +

sin (0.2π)

sin (0.4π)
· t3
)

t8 = i ·
(
t3 −

sin (0.2π)

sin (0.4π)
· t2
)

t9 = t6 + t5 t10 = t6 − t5
y0 = x0 + t4 y1 = t9 − t7
y2 = t10 + t8 y3 = t10 − t8
y4 = t9 + t7 (4.62)

The radix-5 algorithm occupies the VALU for 13 clock cycles (seven vector additions and
six vector subtractions) and the VMAC for �ve clock cycles (2 real-valued multiplications
and three real-valued MAC operations). As in the radix-3 case, twiddle factor multipli-
cations can be merged with the DFT stage, increasing the number of operations on the
VMAC by four complex-valued multiplications (eight clock cycles).

96

4.5 Radix-2 and mixed-radix FFT implementations based on LTE

The radix-6 DFT consists of two prime-factors; hence, the prime-factor DFT algorithm
by Good [Goo58] can be applied, which avoids twiddle factor multiplications between the
radix-3 and radix-2 stages by smartly reordering inputs and outputs:

y = W6 · x (4.63)

⇔

y0
y4
y2
y3
y1
y5

 =

[
W3 W3

W3 −W3

]
·

x0
x2
x4
x3
x5
x1

 (4.64)

Due to the complexity of the permutations, the algorithm is not practical for bigger FFTs.

4.5.3 Implementation of permutation stages for di�erent

permutation networks

Permutations of vector elements are necessary for the masked butter�y permutation stages
on pairs of vectors and for the �nal permutation stage of short radix-2 FFTs, which is
more elaborate than the masked butter�y permutation stages.

Masked butter�y permutations on pairs of vectors

The implementation of masked butter�y permutations on pairs of vectors depends on the
width of the permutation network. On a SIMD processor with a double-vector permutation
network, a masked butter�y permutation can be realized by one masked permutation
instruction that overwrites the values in the two input registers with permuted values
based on the values of the vector mask.
On a SIMD processor with a single-vector permutation network, the same permutation
requires two consecutive masked butter�y permutations and an additional move operation
to copy one of the input operands. Figure 4.10 contains the assembly code for the equiva-
lent of a masked butter�y permutation on a pair of vectors, implemented by permutations
on a single-vector network. First, the second input vector is moved to a di�erent vector
register to preserve the values for the second permutation. The move operation can be
performed on either the VALU, the VMAC, or the VPU. Next, the values of the �rst input
are permuted; the second input register is overwritten with the permuted values based on
a vector mask. In the third step, the same permutation is performed on the copied second
input, the �rst input register is overwritten with the permuted values based on a second
vector mask5.
5m2 is calculated by negating all elements of m1.

97

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

1: vmov_valu v3 v2

2: vbfy64 v2 v1 m1

3: vbfy64 v1 v3 m2

Figure 4.10: Assembly code for realizing the equivalent of a masked 64-bit butter�y per-
mutation on a pair of vectors by permutations on a single-vector network

The masked butter�y permutation stages on pairs of vectors are interleaved with the
processing of radix-2 FFT stages. On a SIMD processor with a single-vector permutation
network, each permutation stage requires three operations (two permutations on the VPU,
one vector move operation) per pair of vectors, while a radix-2 FFT stage requires two
operations on the VALU and one complex-valued twiddle factor multiplication on the
VMAC6 per pair of vectors. As the permutation stage requires more operations than
the radix-2 FFT stage, permutations cannot be totally hidden by LIW execution and
the performance degrades compared to the performance of radix-2 FFT stages without
permutations. The actual overhead depends on the number of vectors and the number of
permutation stages.
On a SIMD processor with a double-vector permutation network, permutation stages re-
quire only one operation per pair of vectors. Hence, there is no overhead for permutations
on a LIW SIMD processor, the permutations for one pair of vectors can be done in parallel
to the radix-2 FFT butter�y on a di�erent pair of vectors.

Final permutation stage of short radix-2 FFTs

Short radix-2 FFTs (NDFT < V 2) require one permutation stage on pairs of vectors that
is more complex than the usual masked butter�y permutation stages on pairs of vectors
(see section 4.4.3). This permutation stage realizes the correct ordering of output values
of the FFT. The complexity depends on the SIMD width and the FFT size. Di�erent im-
plementations of this permutation stage are required for the various permutation network
types.
On a SIMD processor with a double-vector crossbar network, arbitrary permutations on
pairs of vectors can be done in one permutation operation. Processors with single-vector
networks can only perform masked butter�y permutations on pairs of vectors e�ciently (as
described in the previous paragraph); hence, the permutation stage is decomposed into a
butter�y permutation stage on pairs of vectors (two permutation operations) and two �nal
permutations on single vectors. On a processor architecture with a double-vector inverse
butter�y network, many permutations on pairs of vectors can be realized in one operation.
Yet, the last permutation stage of short radix-2 FFTs is too complex for an inverse butter�y

6Except for the last FFT stage, which does not require a twiddle factor multiplication.

98

4.5 Radix-2 and mixed-radix FFT implementations based on LTE

network. Hence, the permutation is also implemented by two consecutive permutation
stages. The added permutations can be interleaved with the processing of the last radix-2
FFT stage, reducing their overhead. Although, single-vector permutation networks and
double-vector inverse butter�y network both require an additional permutation stage,
the performance of the double-vector network is much better, as it requires only one
operation per pair of vectors. Table 4.6 lists the overhead for additional permutations
for di�erent FFT sizes and SIMD widths. Some short radix-2 FFTs algorithms for 512-
bit and 1024-bit SIMD processors require two additional permutation stages for inverse
butter�y networks as the required permutation cannot be realized in one step. Yet, in this
case, the performance of a double-vector inverse butter�y network is still better than the
performance of a single-vector crossbar network.

Table 4.6: Overview of additional permutation stages for short radix-2 FFTs: Single-vector
and double-vector inverse butter�y networks are denoted as Bfy1 and Bfy2,
respectively, a single-vector crossbar network is denoted as Cross1.

SIMD width FFT size Additional permutation stages
128 bit 8 Bfy1, Bfy2, Cross1: + 1 perm.

256 bit
16

Bfy1, Bfy2, Cross1: + 1 perm.
32

512 bit
32 Bfy1, Bfy2: + 2 perm. Cross1: + 1 perm
64

Bfy1, Bfy2, Cross1: + 1 perm.
128

1024 bit

64
Bfy1, Bfy2: + 2 perm. Cross1: + 1 perm

128
256

Bfy1, Bfy2, Cross1: + 1 perm.
512

4.5.4 Short mixed-radix FFT implementation

Short mixed-radix FFTs with lengths that are not multiples of the squared SIMD vector
length cannot be implemented with the proposed mixed-radix FFT algorithm. Examples
for this case are the 384-point mixed-radix FFTs on 512-bit (V = 16) and 1024-bit (V =
32) SIMD processors.

99

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

384-point FFT on a 512-bit SIMD processor

On a 512-bit SIMD processor, the 384-point FFT may be factorized as NDFT = V/2·2·3·V/2.
The following formula shows the decomposition of an FFT with NDFT = V/2 · 2 ·m · V/2
into three smaller transforms based on the basic FFT decomposition in equation (4.5):

WV/2·m·2·V/2 =
(
WmV ⊗ IV/2

)
·PV/2

mV ·D
V/2
mV ·

(
WV/2 ⊗ ImV

)
=
(
WV/2 ⊗ ImV

)
·
(
P2m

V/2 ⊗ IV/2

)
·
(
D2m

V/2 ⊗ IV/2

)
·
(
W2m ⊗ IV 2

4

)
·PV/2

mV ·D
V/2
mV ·

(
WV/2 ⊗ ImV

) (4.65)

For V ≥ 4, the FFT algorithm in formula (4.65) performs all FFT stages on complete
vectors, yet the algorithm requires more complex permutations on vector elements, which
depend on the factor m, compared to the mixed-radix FFT algorithm for FFT sizes that
are a multiple of the squared vector length. As the performance analysis in section 4.6.2
will show, the increased permutation complexity of the 384-point FFT for a SIMD width
of 512 bits leads to a slightly degraded performance.

384-point FFT on a 1024-bit SIMD processor

The algorithm in formula (4.65) does not work for a 384-point FFT on a 1024-bit SIMD
processor, as the FFT size is too short compared to the vector length V = 32. The only
way to achieve that all FFT stages operate on complete vectors is a technique, which in
the following is denoted as the virtual reduction of the vector length. A virtual reduction
of the vector length is done by additional masked butter�y operations on pairs of vectors,
which perform a block interleaving of independent data vectors, i. e. data from di�erent
FFTs or from already processed FFT stages. Later on, the masked butter�y permutation
has to be reversed. Each reduction stage virtually halves the vector length. An example
for the block-interleaved processing of two FFTs is shown in �gure 4.11.
The main drawback of this approach, besides requiring further permutations, is that inde-
pendent data vectors, which are no longer processed together, have to be merged. During
the mixed-radix FFT algorithm for NDFT = V ·M · V and the radix-2 FFT algorithm for
FFT sizes that are at least twice the SIMD width, masked butter�y permutation stages
always operate on pairs of vectors that are processed together in the following radix-2 FFT
stage. Therefore, permutation stages do not require additional data vectors, which occupy
registers, and do not in�uence the grouping of permutation stages. If a virtual reduction
of the vector length is done, pairs of independent data vectors have to be available in
registers, which reduces the amount of registers available for grouping FFT stages by 50
percent: At most two consecutive radix-2 FFT stages can be grouped together if a virtual
reduction is done (or reversed) in the current step. This leads to a signi�cantly increased
number of memory access dominated loops containing one or two consecutive FFT stages.

100

4.6 Performance analysis

Figure 4.11: Merging of two FFTs for virtually reducing the vector length

In case of the 384-point FFT implementation, the permutations for the virtual reduction
of the vector length can be hidden by LIW execution, a performance degradation (see
section 4.6.2) solely occurs due to an increased number of memory access operations.

4.6 Performance analysis

The analysis of the performance of the implemented radix-2 and mixed-radix FFT algo-
rithms on the scalable SIMD processor architecture is done in multiple steps. First, the
achievable throughputs are reported and compared to the requirements of SISO and MIMO
LTE channels. Next, the scalability of the FFT algorithms is analyzed by a discussion of
speedup results. The parameters of the speedup measurements are adjusted based on the
comparison to LTE requirements. Afterwards, radix-2, radix-3, radix-5, and radix-6 FFT
loops are analyzed regarding LIW resource utilization and performance. In the last part
of this section, the performance results are compared to FFT implementations on other
SDR architectures in the literature.

4.6.1 Overview of throughput results

Table 4.7 lists the peak throughput of the FFT algorithms for SIMD processors clocked
at 300MHz. The throughput is measured in FFTs per second. The nomenclature of

101

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

permutation networks is based on table 3.9 (chapter 3). The peak throughput is achieved
if a processor is only performing FFT computations and the initialization of parameters can
be neglected. For LTE-based systems, this assumption is not reasonable as a comparison
to the required throughput shows.
LTE de�nes a short (seven OFDM symbols per slot) and a long CP (six OFDM symbols
per slot) mode. Each slot has a duration of 0.5ms. Hence, a throughput of 1.4 · 104 FFTs
per second is required for a SISO system in short cyclic-pre�x mode, in long cyclic-pre�x
mode the required throughput is 1.2 · 104 FFTs per second. For MIMO systems, the
throughput requirement increases linearly with the number of antennas, as FFTs have to
be computed for each antenna. Hence, the highest throughput requirement is 5.6 · 104

FFTs per second for a 4× 4 MIMO system in short CP mode.
All FFT implementations in table 4.7 achieve better throughputs than required for LTE.
Furthermore, the di�erence between the possible throughput on the SIMD processor and
the required throughput can reach two orders of magnitude for short FFT lengths and/or
long vector lengths. Hence, the SIMD processors might perform other useful computations
in between the FFT processing for one slot. Therefore, throughput and speedup should
be measured for a single slot. In this case, the overhead for initializing parameters cannot
be neglected, especially for short FFTs. The worst-case scenario is the long CP mode for
SISO transmission, which requires only six FFTs per slot. Therefore, this scenario has been
selected for the speedup calculations in the following section. The achieved throughputs
for this scenario are listed in table 4.8 for the sake of completeness.

4.6.2 Speedup results

Figure 4.12 contains speedup results for the implemented radix-2 and mixed-radix FFTs.
The speedup is measured by normalizing throughput results to the throughput of a 128-
bit SIMD processor with a single-vector inverse butter�y permutation network. Figure
4.12a contains speedup results based on the peak throughput measurement (without the
overhead for initialization) and �gure 4.12b shows the speedup based on performance
results for one slot (long CP, SISO transmission). FFT sizes are displayed on the abscissa.
Radix-2 FFTs are displayed on the left-hand side and mixed-radix FFTs on the right-hand
side. Both diagrams show four groups of curves for 128-bit (speedup approximately one),
256-bit (speedup approximately two), 512-bit (speedup approximately four) and 1024-bit
(speedup approximately eight) SIMD processors with di�erent permutation networks.
Di�erences between �gures 4.12a and 4.12b are mainly visible for short FFT sizes (e. g.
the 64-point FFTs for 1024-point SIMD processors). The initialization overhead does not
scale with the SIMD width; hence, the speedups for wider SIMD widths are reduced. The
overhead for the initialization of parameters is insigni�cant compared to the runtime of
FFT loops for longer FFTs.

102

4.6 Performance analysis
T
ab
le
4.
7:
P
ea
k
th
ro
ug
hp
ut

in
F
F
T
s
p
er

se
co
nd

w
it
ho
ut

ov
er
he
ad

fo
r
in
it
ia
liz
at
io
n

F
F
T
si
ze

1
2
8
-b
it
S
IM

D
:
F
F
T
s/
s

2
5
6
-b
it
S
IM

D
:
F
F
T
s/
s

B
fy
1

C
ro
ss
1

B
fy
2

C
ro
ss
2

B
fy
1

C
ro
ss
1

B
fy
2

C
ro
ss
2

8
4.

50
·1

07
4.

50
·1

07
5.

00
·1

07
5.

00
·1

07

1
6

1.
88
·1

07
1.

88
·1

07
1.

88
·1

07
1.

88
·1

07
3.

33
·1

07
3.

33
·1

07
3.

75
·1

07
3.

75
·1

07

3
2

7.
50
·1

06
7.

50
·1

06
7.

50
·1

06
7.

50
·1

06
1.

43
·1

07
1.

43
·1

07
1.

50
·1

07
1.

50
·1

07

6
4

3.
06
·1

06
3.

06
·1

06
3.

13
·1

06
3.

13
·1

06
6.

00
·1

06
6.

00
·1

06
6.

25
·1

06
6.

25
·1

06

1
2
8

1.
15
·1

06
1.

15
·1

06
1.

17
·1

06
1.

17
·1

06
2.

27
·1

06
2.

27
·1

06
2.

34
·1

06
2.

34
·1

06

2
5
6

5.
77
·1

05
5.

77
·1

05
5.

86
·1

05
5.

86
·1

05
1.

14
·1

06
1.

14
·1

06
1.

17
·1

06
1.

17
·1

06

5
1
2

2.
57
·1

05
2.

57
·1

05
2.

60
·1

05
2.

60
·1

05
5.

07
·1

05
5.

07
·1

05
5.

21
·1

05
5.

21
·1

05

1
0
2
4

1.
05
·1

05
1.

05
·1

05
1.

07
·1

05
1.

07
·1

05
2.

08
·1

05
2.

08
·1

05
2.

13
·1

05
2.

13
·1

05

2
0
4
8

5.
27
·1

04
5.

27
·1

04
5.

33
·1

04
5.

33
·1

04
1.

04
·1

05
1.

04
·1

05
1.

07
·1

05
1.

07
·1

05

1
9
2

7.
39
·1

05
7.

39
·1

05
7.

50
·1

05
7.

50
·1

05
1.

46
·1

06
1.

46
·1

06
1.

50
·1

06
1.

50
·1

06

3
8
4

3.
42
·1

05
3.

42
·1

05
3.

47
·1

05
3.

47
·1

05
6.

76
·1

05
6.

76
·1

05
6.

94
·1

05
6.

94
·1

05

5
7
6

1.
87
·1

05
1.

87
·1

05
1.

89
·1

05
1.

89
·1

05
3.

82
·1

05
3.

82
·1

05
3.

91
·1

05
3.

91
·1

05

7
6
8

1.
47
·1

05
1.

47
·1

05
1.

49
·1

05
1.

49
·1

05
2.

95
·1

05
2.

95
·1

05
3.

02
·1

05
3.

02
·1

05

9
6
0

1.
07
·1

05
1.

07
·1

05
1.

08
·1

05
1.

08
·1

05
2.

12
·1

05
2.

12
·1

05
2.

17
·1

05
2.

17
·1

05

1
1
5
2

9.
09
·1

04
9.

09
·1

04
9.

19
·1

04
9.

19
·1

04
1.

80
·1

05
1.

80
·1

05
1.

84
·1

05
1.

84
·1

05

F
F
T
si
ze

5
1
2
-b
it
S
IM

D
:
F
F
T
s/
s

1
0
2
4
-b
it
S
IM

D
:
F
F
T
s/
s

B
fy
1

C
ro
ss
1

B
fy
2

C
ro
ss
2

B
fy
1

C
ro
ss
1

B
fy
2

C
ro
ss
2

3
2

2.
25
·1

07
2.

65
·1

07
3.

00
·1

07
3.

00
·1

07

6
4

1.
18
·1

07
1.

18
·1

07
1.

25
·1

07
1.

25
·1

07
1.

91
·1

07
2.

20
·1

07
2.

50
·1

07
2.

50
·1

07

1
2
8

4.
76
·1

06
4.

76
·1

06
5.

36
·1

06
5.

36
·1

06
8.

96
·1

06
1.

00
·1

07
1.

07
·1

07
1.

07
·1

07

2
5
6

2.
27
·1

06
2.

27
·1

06
2.

34
·1

06
2.

34
·1

06
4.

17
·1

06
4.

17
·1

06
4.

62
·1

06
4.

69
·1

06

5
1
2

1.
01
·1

06
1.

01
·1

06
1.

04
·1

06
1.

04
·1

06
1.

76
·1

06
1.

76
·1

06
2.

08
·1

06
2.

08
·1

06

1
0
2
4

4.
17
·1

05
4.

17
·1

05
4.

26
·1

05
4.

26
·1

05
8.

72
·1

05
8.

72
·1

05
9.

38
·1

05
9.

38
·1

05

2
0
4
8

2.
08
·1

05
2.

08
·1

05
2.

13
·1

05
2.

13
·1

05
3.

99
·1

05
3.

99
·1

05
4.

26
·1

05
4.

26
·1

05

3
8
4

1.
28
·1

06
1.

28
·1

06
1.

34
·1

06
1.

34
·1

06
2.

21
·1

06
2.

21
·1

06
2.

33
·1

06
2.

33
·1

06

7
6
8

5.
81
·1

05
5.

81
·1

05
6.

05
·1

05
6.

05
·1

05

103

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

T
ab
le
4.
8:
T
hr
ou
gh
pu
t
in

F
F
T
s
p
er

se
co
nd

w
it
h
ov
er
he
ad

fo
r
in
it
ia
liz
at
io
n
(l
on
g
C
P
m
od
e)

F
F
T
si
ze

1
2
8
-b
it
S
IM

D
:
F
F
T
s/
s

2
5
6
-b
it
S
IM

D
:
F
F
T
s/
s

B
fy
1

C
ro
ss
1

B
fy
2

C
ro
ss
2

B
fy
1

C
ro
ss
1

B
fy
2

C
ro
ss
2

8
3.

40
·1

07
3.

40
·1

07
3.

67
·1

07
3.

83
·1

07

1
6

1.
68
·1

07
1.

68
·1

07
1.

68
·1

07
1.

68
·1

07
2.

61
·1

07
2.

61
·1

07
2.

90
·1

07
3.

00
·1

07

3
2

7.
14
·1

06
7.

14
·1

06
7.

14
·1

06
7.

14
·1

06
1.

25
·1

07
1.

25
·1

07
1.

36
·1

07
1.

36
·1

07

6
4

2.
96
·1

06
2.

96
·1

06
3.

02
·1

06
3.

02
·1

06
5.

77
·1

06
5.

77
·1

06
6.

00
·1

06
6.

00
·1

06

1
2
8

1.
14
·1

06
1.

14
·1

06
1.

16
·1

06
1.

16
·1

06
2.

21
·1

06
2.

21
·1

06
2.

28
·1

06
2.

28
·1

06

2
5
6

5.
71
·1

05
5.

71
·1

05
5.

80
·1

05
5.

80
·1

05
1.

11
·1

06
1.

11
·1

06
1.

15
·1

06
1.

15
·1

06

5
1
2

2.
56
·1

05
2.

56
·1

05
2.

59
·1

05
2.

59
·1

05
5.

02
·1

05
5.

02
·1

05
5.

16
·1

05
5.

16
·1

05

1
0
2
4

1.
05
·1

05
1.

05
·1

05
1.

06
·1

05
1.

06
·1

05
2.

08
·1

05
2.

08
·1

05
2.

12
·1

05
2.

12
·1

05

2
0
4
8

5.
26
·1

04
5.

26
·1

04
5.

32
·1

04
5.

32
·1

04
1.

04
·1

05
1.

04
·1

05
1.

06
·1

05
1.

06
·1

05

1
9
2

7.
30
·1

05
7.

30
·1

05
7.

41
·1

05
7.

41
·1

05
1.

42
·1

06
1.

42
·1

06
1.

46
·1

06
1.

46
·1

06

3
8
4

3.
41
·1

05
3.

41
·1

05
3.

45
·1

05
3.

45
·1

05
6.

68
·1

05
6.

68
·1

05
6.

86
·1

05
6.

86
·1

05

5
7
6

1.
86
·1

05
1.

86
·1

05
1.

89
·1

05
1.

89
·1

05
3.

79
·1

05
3.

79
·1

05
3.

88
·1

05
3.

88
·1

05

7
6
8

1.
46
·1

05
1.

46
·1

05
1.

48
·1

05
1.

48
·1

05
2.

93
·1

05
2.

93
·1

05
3.

01
·1

05
3.

01
·1

05

9
6
0

1.
07
·1

05
1.

07
·1

05
1.

08
·1

05
1.

08
·1

05
2.

11
·1

05
2.

11
·1

05
2.

16
·1

05
2.

16
·1

05

1
1
5
2

9.
07
·1

04
9.

07
·1

04
9.

17
·1

04
9.

17
·1

04
1.

79
·1

05
1.

79
·1

05
1.

83
·1

05
1.

83
·1

05

F
F
T
si
ze

5
1
2
-b
it
S
IM

D
:
F
F
T
s/
s

1
0
2
4
-b
it
S
IM

D
:
F
F
T
s/
s

B
fy
1

C
ro
ss
1

B
fy
2

C
ro
ss
2

B
fy
1

C
ro
ss
1

B
fy
2

C
ro
ss
2

3
2

1.
96
·1

07
2.

17
·1

07
2.

40
·1

07
2.

54
·1

07

6
4

1.
05
·1

07
1.

05
·1

07
1.

13
·1

07
1.

15
·1

07
1.

65
·1

07
1.

86
·1

07
2.

05
·1

07
2.

14
·1

07

1
2
8

4.
58
·1

06
4.

58
·1

06
5.

13
·1

06
5.

17
·1

06
8.

22
·1

06
9.

09
·1

06
9.

84
·1

06
1.

00
·1

07

2
5
6

2.
19
·1

06
2.

19
·1

06
2.

26
·1

06
2.

26
·1

06
4.

02
·1

06
4.

02
·1

06
4.

43
·1

06
4.

52
·1

06

5
1
2

9.
95
·1

05
9.

95
·1

05
1.

02
·1

06
1.

02
·1

06
1.

71
·1

06
1.

71
·1

06
2.

01
·1

06
2.

01
·1

06

1
0
2
4

4.
13
·1

05
4.

13
·1

05
4.

23
·1

05
4.

23
·1

05
8.

55
·1

05
8.

55
·1

05
9.

18
·1

05
9.

18
·1

05

2
0
4
8

2.
07
·1

05
2.

07
·1

05
2.

12
·1

05
2.

12
·1

05
3.

95
·1

05
3.

95
·1

05
4.

22
·1

05
4.

22
·1

05

3
8
4

1.
25
·1

06
1.

25
·1

06
1.

31
·1

06
1.

31
·1

06
2.

11
·1

06
2.

11
·1

06
2.

22
·1

06
2.

22
·1

06

7
6
8

5.
74
·1

05
5.

74
·1

05
5.

97
·1

05
5.

97
·1

05

104

4.6 Performance analysis

5

6

7

8

9

vs
. 1

28
 B

it,
 B

fy
1

1024-Bit Bfy1
1024-Bit Cross1
1024-Bit Bfy2
1024-Bit Cross2
x
512-Bit Bfy1
512-Bit Cross1
512-Bit Bfy2
512-Bit Cross2

0

1

2

3

4

8 16 32 64 128 256 512 1024 2048 192 384 576 768 960 1152

Sp
ee

du
p

FFT size

y
256-Bit Bfy1
256-Bit Cross1
256-Bit Bfy2
256-Bit Cross2
z
128-Bit Bfy1
128-Bit Cross1
128-Bit Bfy2
128-Bit Cross2

(a) Speedup without initialization

5

6

7

8

9

vs
. 1

28
 B

it,
 B

fy
1

1024-Bit Bfy1
1024-Bit Cross1
1024-Bit Bfy2
1024-Bit Cross2
z
512-Bit Bfy1
512-Bit Cross1
512-Bit Bfy2
512-Bit Cross2

0

1

2

3

4

8 16 32 64 128 256 512 1024 2048 192 384 576 768 960 1152

Sp
ee

du
p

FFT size

y
256-Bit Bfy1
256-Bit Cross1
256-Bit Bfy2
256-Bit Cross2
x
128-Bit Bfy1
128-Bit Cross1
128-Bit Bfy2
128-Bit Cross2

(b) Speedup for processing of one slot (long CP)

Figure 4.12: Speedup for radix-2 and mixed-radix FFTs on di�erent SIMD processors mea-
sured versus a 128-bit SIMD processor with a single-vector butter�y network

105

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

If the constraints for the e�cient vectorization of radix-2 and mixed-radix FFTs are satis-
�ed, linear or close to linear speedup can be achieved. Deviations occur for small radix-2
FFTs, which require additional permutation stages (see section 4.5.3, table 4.6), and the
128-point and 1024-point FFTs.
The last permutation stage of short radix-2 FFTs has an increased complexity and is
decomposed into di�erent permutation operations on the various permutation networks.
On a double-vector crossbar network, no additional permutation is necessary and the
highest throughput is achieved. The double-vector inverse butter�y network outperforms
the single-vector networks and the single-vector crossbar network outperforms the single-
vector inverse butter�y network. The impact of increasing the network width is more
signi�cant than the impact of changing from inverse butter�y to crossbar network.
Better than linear speedup is achieved for the 128-bit FFT on 512-bit and 1024-bit SIMD
processors, because of a di�erent grouping of FFT stages (see section 4.5.1). On processors
with a SIMD width less than 512 bits, the 128-point FFT contains one loop that comprises
just a single radix-2 FFT stage. The runtime of this loop on a LIW processor is determined
by the number of memory access operations (two clock cycles per vectors), and not by the
number of computational operations (one clock cycle per vector). On processors with a
SIMD width of at least 512 bits, all seven FFT stages can be processed in one loop without
any overhead for memory access. The 1024-point FFT implementations on 1024-bit SIMD
processors also achieve better than linear speedups, because FFT stages can be grouped
together more e�ciently than on smaller SIMD processors.
The speedup results for the 384-point FFT on 512-bit and 1024-bit SIMD processors
demonstrate the case of short mixed-radix FFTs, which do not satisfy the constraint that
the FFT size should be a multiple of the squared SIMD vector length. The speedup on the
512-bit SIMD processors is only slightly worse than linear speedup, as the increased com-
plexity can be e�ciently compensated by LIW execution. On 1024-bit SIMD processors,
the drop-o� from linear speedup is signi�cant, as permutations for the virtual reduction
of the vector length prevent an e�cient grouping of FFT stages, leading to an overhead
for memory access operations.

4.6.3 Resource utilization and performance of FFT loops

Table 4.9 describes the utilization of LIW processing in radix-2, radix-3, radix-5, and
radix-6 FFT loops. Loops whose performance is determined by memory access have been
omitted, as an analysis of resource utilization and throughput is mood in this case. The
average number of operations per LIW instruction (Npar. ∅), depends on SIMD operations
and scalar operations for loop dependent pointer update calculations. The pointer update
calculations vary for di�erent FFTs, leading to di�erent values for Npar. ∅. The range of
values has been stated in this case.

106

4.6 Performance analysis

Table 4.9: Overview of the LIW performance of FFT loops: Npar. ∅ denotes the aver-
age number of parallel operations per instruction, the resource utilization of
the VMAC and the VALU is denoted as RVMAC and RVALU respectively. The
throughput is measured in clock cycles per output vector.

Description SIMD proc. Npar. ∅ RVMAC RVALU Cycles/ vector
3 radix-2 stages all 2.92 100% 100% 3.00
2 radix-2 stages all 2.56�3.3 100% 100% 2.00

128 bit,
single-vector

3.12 64% 96% 3.13

3 radix-2 stages
with perm.

256 � 1024 bit,
single-vector

3.5 61.5% 92.3% 3.25

double-vector 2.75�3 66.7% 100% 3.00
Radix-3 stage all 2.86�3.29 100% 71.4% 2.33
Radix-5 stage all 2.82�3.16 87.5% 81.3% 3.20
Radix-6 stage all 2.39�2.67 88.9% 88.9% 3.00

Radix-2 FFT loops without vector permutations achieve a throughput of one vector per
clock cycle and radix-2 FFT stage. Both the VALU and the VMAC are utilized in each
clock cycle. Radix-2 FFT loops with vector permutations achieve slightly lower through-
puts on SIMD processors with single-vector permutation networks: The overhead for vector
permutations cannot be completely mitigated by LIW execution (see section 4.5.3), which
also leads to decreased resource utilization values, while the average number of parallel
operations increases compared to a loop without permutations. The utilization of the
VMAC is also reduced, because the last radix-2 FFT stage does not require twiddle factor
multiplications. On a SIMD processor with a double-vector permutation network, permu-
tations can be realized with fewer operations � and mitigated by LIW execution. The
throughput is the same as in loops without permutations; the VALU is utilized all the
time. Therefore, the runtime of arbitrary long radix-2 FFTs on SIMD processors with
double-vector networks can be directly computed from the number of required operations
on the VALU as one clock cycle per vector and radix-2 FFT stage.

Radix-3, radix-5, and radix-6 FFT stages have an increased complexity compared to radix-
2 FFT stages (see section 4.5.2). Therefore, the throughput is reduced compared to the
radix-2 loops. High values for RVALU and RVMAC are achieved for all loops, indicating an
e�cient implementation of the FFT stages.

107

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

4.6.4 Comparison to other SDR FFT implementations

Table 4.10 compares the achieved performance on the proposed SIMD processor architec-
ture to other SDR implementations on SIMD-based processors (EVP, SBX) and optimized
FFT processors. The throughput of FFT implementations is measured in FFTs per sec-
ond. All throughput measurements are peak throughput measurements. The comparison
is based on the proposed 256-bit SIMD processor with a single-vector inverse butter�y
permutation network7, as both referenced SIMD processors also support 256-bit SIMD
operations.

Table 4.10: Comparison of SDR implementations of radix-2 and mixed-radix FFTs

Processor 256-Bit EVP SBX core TTA ASP PFFT-M
SIMD Bfy1 [WBAHS08a] [Beh09] [PT09] [AG09]

64-pt. FFTs/s 6.00 · 106 6.00 · 106 5.35 · 106 1.20 · 106 �
256-pt. FFTs/s 1.14 · 106 1.07 · 106 1.34 · 106 � 1.17 · 106

512-pt. FFTs/s 5.07 · 105 4.81 · 105 � � �
1024-pt. FFTs/s 2.08 · 105 2.11 · 105 2.72 · 105 4.84 · 104 2.93 · 105

2048-pt. FFTs/s 1.04 · 105 9.77 · 104 1.26 · 105 � �
192-pt. FFTs/s 1.46 · 106 1.39 · 106 ≈ 8 · 105 N/A �
384-pt. FFTs/s 6.76 · 105 6.15 · 105 ≈ 4 · 105 N/A �
576-pt. FFTs/s 3.82 · 105 3.55 · 105 ≈ 2.7 · 105 N/A �
768-pt. FFTs/s 2.95 · 105 2.71 · 105 ≈ 2.5 · 105 N/A �
960-pt. FFTs/s 2.11 · 105 1.85 · 105 ≈ 1.2 · 105 N/A �
1152-pt. FFTs/s 1.80 · 105 1.69 · 105 ≈ 1.4 · 105 N/A �
Frequency 300MHz 300MHz 600MHz 250MHz 300MHz
Power 74.7mW

+ memories
≈150mW
[SVPG+10]

≈120mW
[San09]

60.4mW �

Technology 90 nm 45 nm 65 nm 130 nm �
Area 0.83mm2

+ memories
≈ 3mm2 � 280 kgates �

The implementations on the EVP (see section 2.3.1) are based on the radix-2 and mixed-
radix FFT algorithms in sections 4.4.1 and 4.4.2 [WBAHS08a, WS09a]. The EVP supports
vector move operations on any vector unit; hence, the performance of the masked butter�y
permutation stages on pairs of vectors can potentially be better than on the proposed
scalable SIMD processor architecture. Yet, the throughput on the EVP is lower than

7Area and power consumption �gures exclude memories.

108

4.7 Conclusion

the throughput of the 256-bit SIMD processor for almost all FFT sizes (exceptions are
the 64-point and 1024-point FFTs). The performance on the EVP is worse due to the
programming approach: The EVP is programmed in EVP-C, a programming language
based on C-code for scalar operations and control �ow and intrinsic vector operations for
SIMD operations. The vectorization of algorithms is done by the programmer, yet the
assignment of variables to registers and the scheduling of LIW instructions is done by a
compiler. The compiler-generated code is usually less e�cient than hand-coded assembly
code.
The Sandblaster SB3500 processor architecture (see section 2.3.2) comprises three SBX
processor cores. Each SBX processor core operates on 256-bit SIMD vectors and supports
LIW execution. The performance results for one SBX core [Beh09] in table 4.10 are based
on the maximum clock frequency of 600MHz, which corresponds to four hardware threads
at 150MHz. Hence, the SBX core can perform twice as many MAC or multiply operations
per second as the EVP and the proposed 256-bit SIMD processor at 300MHz. However,
the higher theoretical peak performance does not lead to signi�cantly better throughput
results, possibly due to a less e�cient SIMD implementation of FFT algorithms. The
throughput for radix-2 FFTs (except for the 64-point FFT) is between 17 and 30 per-
cent higher than the throughput on the 256-bit SIMD processor. The mixed-radix FFT
throughput is signi�cantly worse than on the 256-bit SIMD processor.
The next processor architecture in table 4.10 is an application-speci�c processor (ASP)
[PT09] based on the transport-triggered architecture (TTA). In a TTA, transfers of values
are explicitly programmed in instructions and processing units are triggered by writing
data to their input ports. Assuming multiple processing units and parallel connections,
this approach achieves ILP. The proposed ASP supports power of two FFTs and contains
complex-valued adder and multiplier units optimized for a radix-4 FFT algorithm. For
the reported FFT sizes, the ASP achieves approximately one-�fth of the throughput of
the 256-bit SIMD processor.
The PFFT-M processor [AG09] is an IP processor core for pipelined mixed-radix FFTs,
specially designed for SDR applications, such as SC-FDMA in LTE. Radix-2, radix-3,
radix-4, and radix-5 FFT stages are supported. The reported throughputs for 256-point
and 1024-point FFTs are slightly better than the throughput results for the 256-bit SIMD
processor.

4.7 Conclusion

In the previous sections, the development, the implementation, and the performance of
radix-2 and mixed-radix FFT algorithms for SIMD processors have been discussed. The
radix-2 FFT algorithm enables a vectorization with minimal overhead for vector element

109

Chapter 4 Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA

permutations for FFT sizes that are at least twice the vector length. The mixed-radix
FFT algorithm requires the FFT size to be a multiple of the squared SIMD width.
The performance results show that support for LIW execution e�ciently mitigates the
overhead for vector permutation operations. In the majority of cases, the throughput is
determined by the computational complexity of FFT stages and not by overhead due to
the vectorization. Performance degradations occur due to FFT loops that are dominated
by memory access.
The achieved throughput performance is competitive to dedicated FFT processors. The
mixed-radix FFT implementations, based on the proposed algorithm, also outperform
mixed-radix FFT implementations on the multi-threaded SIMD SBX processor.
The main drawback of the proposed mixed-radix FFT algorithm is that many of the FFTs
for SC-FDMA cannot be vectorized using this algorithm on wide SIMD processors. Hence,
the throughput for these FFTs will be reduced. However, the required throughput for LTE
(SISO and MIMO transmission) can still be attained. Assuming that all FFT sizes, which
are required for SC-FDMA in LTE, should be supported, enough resources (processing
time on a SIMD processor) for achieving the required throughput for all FFTs should be
allocated to the FFT processing. Short or e�ciently vectorized FFTs will not require the
full time slot, allowing either to perform other useful computations or to save power, e. g.
by reducing the clock frequency and the supply voltage.

110

Chapter 5

Sphere decoding for MIMO detection

In the following, algorithms for symbol detection in spatial multiplexing multiple-input,
multiple-output (MIMO) systems are explained. The discussion focuses on the �xed-
complexity sphere decoder (FSD), which has been implemented on the scalable SIMD
processor architecture.
Firstly, the MIMO system model and the sphere decoding principle are explained. In
section 5.2, two modi�ed sphere search algorithms with �xed-complexity are presented.
Sections 5.3 and 5.4 focus on the FSD algorithm and its implementation for MIMO-OFDM
on the scalable SIMD processor architecture. The next section contains an analysis of the
achievable performance on the SIMD processor architecture and a comparison to other
SDR and hardware implementations. Conclusions are drawn in section 5.6.

5.1 MIMO system model

Figure 5.1 shows a general MIMO system model. At the transmitter side, a signal or
multiple signals are transmitted on nT transmit antennas. The receiver receives nR signals
on di�erent receive antennas. MIMO detection describes the task of reconstructing the
transmitted signal or signals from the received signals.
In principle, three di�erent MIMO techniques exploit multiple antennas to improve sig-
nal quality or spectral e�ciency [B�06, SBM+04]: Diversity coding aims at improved link
reliability. One signal is transmitted over multiple antennas through � in the ideal case
� independently fading channels. The receiver compensates the fading by combining the
received signals. An example for diversity coding is space-time block coding based on the
Alamouti scheme [Ala98]. Precoding is a generalized beam-forming approach that requires
knowledge of the MIMO channel: At the transmitter side, the signals that are emitted
on the di�erent antennas are weighted independently to maximize the signal power at
the receiver side. This approach leads to an improved average signal-to-noise ratio (SNR)
at the receiver. In spatial multiplexing MIMO systems, independent data streams are
transmitted on the di�erent antennas. The remainder of this section focuses on spatial

111

Chapter 5 Sphere decoding for MIMO detection

Figure 5.1: Channel model for a MIMO system with nT transmit and nR receive antennas

multiplexing, as the obtainable capacity gain [FG98, Tel99] is necessary for high data rates
in current and future wireless communication systems.
Assuming a �at fading channel1, a spatial multiplexing MIMO system can be modeled
by equation (5.1). Here, H is the channel matrix with i. i. d. complex-valued Gaussian
elements, r and s are the received and transmitted signal vectors, respectively, and n is
an additive white Gaussian noise vector.

rj =

nT∑
i=1

hi,j · si + nj j ∈ [1, nR]

r = H · s + n (5.1)

Spatial multiplexing o�ers a signi�cant gain in channel capacity compared to a single-
input, single-output (SISO) channel [FG98, Tel99]. For a SISO channel, the channel
capacity CSISO increases by 1 bps/Hz, if the SNR increases by 3 dB (see equation (5.2)).
The capacity of a �at fading MIMO channel with perfect channel knowledge at the receiver
(and no channel knowledge at the transmitter) is instead given by equation (5.3).

CSISO = log2

(
1 + SNR · |H|2

)
(5.2)

CMIMO = log2

(
det

∣∣∣∣InR
+
SNR

nT
·HHH

∣∣∣∣) (5.3)

In principle, the channel capacity is determined by the minimum number of transmit
and receive antennas min (nT , nR) [Bau01] with the SISO channel capacity as the lower
boundary for nT = nR = 1. LTE [Tec06] supports spatial multiplexing transmission with
nT = nR = 2 (2×2 MIMO) and optionally nT = nR = 4 (4×4 MIMO), WiMAX supports

1On a �at fading channel, all frequency components of the signal undergo the same magnitude of fading.
OFDM can be used to decompose a frequency-selective channel into multiple �at fading channels [B�06].

112

5.1 MIMO system model

up to 4 × 4 MIMO [IEE09b]. In the following, the number of receive antennas and the
number of transmit antennas are assumed to be the same. The implementation results in
sections 5.4 and 5.5 are based on a 4× 4 MIMO system.

5.1.1 Maximum likelihood detection

The maximum likelihood (ML) detector for spatial multiplexing, determines the most likely
transmitted signal vector ŝML by minimizing the squared Euclidean distance of possible
symbols transmitted over the channel to the received signal vector:

ŝML = arg min
s∈MnT

||r−H · s||22 (5.4)

Here, M denotes the modulation size, e. g. 16 for 16-QAM or four for QPSK. The ML
detector achieves the optimum symbol detection results. Yet, in its direct implementation,
the detector requires testing all valid symbols for each transmit antenna leading to a
complexity of O (MnT).

5.1.2 Sphere decoding

The sphere decoder (SD) calculates the ML solution with reduced computational com-
plexity. Sphere decoding has been originally invented by Pohst [Poh81, FP85] and has
its origin in �nding the shortest vector in a lattice Λ (H) [SE94, VB99, HtB03], de�ned
by Λ (H) = H · s. The sphere decoder limits the minimum search in equation (5.4) to
solutions within a sphere of radius d:

ŝSD = arg

(
min

s∈MnT
||r−H · s||22 ≤ d2

)
(5.5)

The SD algorithm consists of two steps: a transformation of the channel matrix into
upper-triangular form and the sphere search.
The transformation of the channel matrix into an upper-triangular matrix can for example
be done by a Cholesky factorization or a QR-decomposition. The QR-decomposition of
a complex-valued channel matrix H (see equation (5.7)) decomposes the matrix into a
unitary matrix Q and an upper-triangular matrix R [GVL96]. A unitary matrix is a
complex-valued matrix that satis�es the condition:

QH ·Q = InT
(5.6)

H = Q ·R (5.7)

A QR-decomposition can for example be computed by successive Givens rotations, with
each Givens rotation zeroing one channel matrix element [GVL96].

113

Chapter 5 Sphere decoding for MIMO detection

Using equation (5.7), the calculation of symbol vectors in a sphere can be rewritten as:

d2 ≥ ||r−Q ·R · s||22
⇔ d2 ≥

∣∣∣∣QH · r−QH ·Q ·R · s
∣∣∣∣2
2

⇔ d2 ≥
∣∣∣∣QH · r−R · s

∣∣∣∣2
2

⇔ d2 ≥ ||y −R · s||22
with y = QH · r

(5.8)

The squared Euclidean distance in formula (5.8) can be calculated by accumulating partial
(squared) Euclidean distances (PEDs) di (s) de�ned by the following equation:

di (s) = di+1 (s) +

∣∣∣∣∣
∣∣∣∣∣yi −

nT∑
j=i

Ri,j · sj

∣∣∣∣∣
∣∣∣∣∣
2

2

= di+1 (s) + ei (s)

with 0 =dnT+1 (s)

(5.9)

The total squared Euclidean distance is given by d1 (s). At each decoding level, the PED
is incremented by ei (s). The sphere decoder requires the squared Euclidean distance to lie
within a sphere de�ned by d2. Hence, also the PED increments at level i must lie within
the same sphere.

d2 ≥ d1 (s)

⇔ d2 ≥
nT∑
i=1

ei (s)

⇒ d2 ≥ ei (s) for i ∈ [1, nT]

(5.10)

Due to the upper-triangular structure of R, a partial Euclidean distance at the i-th level
depends only on transmitted symbols on antennas i, i+1, . . . , nT . This enables to perform
the search for the most likely transmitted symbol vector by a tree search, with each level
of the tree corresponding to one antenna symbol. The tree nodes represent PEDs, the
edges between nodes from di�erent tree levels represent the PED increments ei (s). For
M -QAM, there are M branches at each level of the tree.
An example for sphere decoding in a 4×4 MIMO system with QPSK modulation is shown
in �gure 5.2. The PED increments at each decoding level are:

e4 (s) = ||y4 −R4,4 · s4||22 (5.11)

e3 (s) = ||y3 −R3,4 · s4 −R3,3 · s3||22 (5.12)

e2 (s) = ||y2 −R2,4 · s4 −R2,3 · s3 −R2,2 · s2||22 (5.13)

e1 (s) = ||y1 −R1,4 · s4 −R1,3 · s3 −R1,2 · s2 −R1,1 · s1||22 (5.14)

114

5.1 MIMO system model

Figure 5.2: Sphere search in a 4× 4 MIMO system for QPSK. The numbered search steps
show the course of a possible SD tree search. Paths with thick lines have
been pursued during the tree search; paths with thin lines have been excluded,
because their PEDs are bigger than the sphere search radius.

The SD algorithm performs a depth-�rst tree search. In its most e�cient realization
based on the Schnorr-Euchner enumeration of candidate paths [SE94], the best candidate
is detected, its PED calculated, and the path is expanded to the next tree level. After
reaching a tree leaf, the search moves up through the tree levels and pursues other possible
symbol vectors at each level. During the tree search, paths with PEDs bigger than the
search radius de�ned by d2 are ignored. The search radius is initially unde�ned (i. e.
d2 →∞), whenever a tree leaf is reached, the search radius is updated with the Euclidean
distance of the new path [SE94]. The sphere search concludes, when no more unprocessed
paths within the search sphere remain.
The sphere search algorithm is guaranteed to �nd the ML solution with an average com-
plexity signi�cantly lower than that of a full search of the symbol space. However, the
SD algorithm is a sequential algorithm and the number of required search iterations may
vary. Mennenga et al. [MMF09] report the probability distribution of the sphere search
complexity for the list sphere detector algorithm [HtB03], which computes further paths
to determine soft-decision output. The probability distribution is of Gaussian shape with
an average of approximately 45 searched paths and a signi�cant variance (the exact value
of the variance is not reported). For a real-time system with a �xed time budget, variable

115

Chapter 5 Sphere decoding for MIMO detection

complexity means that the search needs to be terminated after a �xed number of searched
paths, which potentially leads to a degraded performance.
Several modi�ed sphere decoding algorithms that �x the number of searched paths and en-
able parallel processing have been proposed [BT06a, BT08b, WTW09, TSFB07, LBL+08,
WTCM02, GM05, WEL09]. The principle approach is shown by two example algorithms
in section 5.2: the K-best SD and the SSFE MIMO detector. Section 5.3 contains the
description of the MIMO detection algorithm that has been implemented on the scalable
SIMD processor architecture.

5.1.3 Soft-decision MIMO detection

The SD algorithm in the previous paragraph produces hard-decision output. A soft-output
decoder computes the a posteriori probability (APP) of each signal bit based on the
received signal vector r. The probability of bit bk can be expressed by the log-likelihood
ratio (LLR) L (bk |r) (see equation (5.15)). The sign bit is the maximum a posteriori
probability (MAP) estimate of bk and the magnitude describes the reliability of the bit.
LLRs are for example used in turbo decoders [BGT93] and LDPC decoders [Wib96].

L (bk |r) = ln
P (bk = +1|r)

P (bk = −1|r)
(5.15)

For MIMO spatial multiplexing systems, the log-likelihood ratio can be estimated by
equation (5.16) [HtB03, MZBF09].

L (bk |r) ≈ 1

N0

· min
sbk=−1

||r−H · s||22 −
1

N0

min
sbk=+1

||r−H · s||22 (5.16)

One of the squared Euclidean distance minima in equation (5.16) corresponds to the hard-
decision minimum, the other value requires the processing of further tree paths. As the
log-likelihood ratio has to be computed for each bit, computing the exact minima is too
complex for a real-time implementation. Instead, usually only a limited list with good
paths is computed. If no path for a bit value bk = +1 or bk = −1 is available2, this bit
value is apparently not probable and the corresponding minimum in equation (5.16) is
replaced by an extreme value for the squared Euclidean distance. Soft-decision algorithms
for the FSD MIMO detector are discussed below in section 5.3.3.

5.2 Breadth-�rst search MIMO decoders

All relevant SD algorithms in literature that �x the number of searched paths [BT06a,
BT08b, WTW09, TSFB07, LBL+08, WTCM02, GM05, WEL09] replace the depth-�rst

2The bit values −1 and 1 correspond to the binary values 1 and 0, respectively, the notation is based on
BPSK modulation.

116

5.2 Breadth-�rst search MIMO decoders

tree search of the original SD by a breadth-�rst tree search. This enables parallelizing
the processing of paths, yet other criteria than the sphere radius are necessary to exclude
paths and �nally terminate the tree search. In the following, two examples are brie�y
discussed.

5.2.1 The K-best sphere decoder

The K-best sphere decoder limits the number of surviving paths at each tree level to K
[WTCM02, GM05, GN06]. The decoder uses the M-algorithm for tree search after the
QR-decomposition; therefore, it is also denoted as the QRD-M decoder. At each tree
level, PEDs for all possible paths are computed and sorted. The K best paths are pursued
in the next tree level, all other paths are discarded (see �gure 5.3).

Figure 5.3: K-best tree search in a 4×4 MIMO system for QPSK: At each decoding level,
the K paths with the best PEDs survive.

The main drawbacks of the K-best sphere decoder are the overhead for sorting PEDs,
non-deterministic control �ow, and the algorithm complexity O (KnT), which depends
on the number of surviving paths K at each level. Guo and Nilsson [GN06] compare the
complexity and the BER of the K-best MIMO decoder using Schnorr-Euchner enumeration

117

Chapter 5 Sphere decoding for MIMO detection

to the original Schnorr-Euchner SD [SE94] in a 4 × 4 MIMO system with 16-QAM. K-
best decoder and SD achieve similar BERs for K = 5, yet the complexity of the K-best
decoder is higher than the average complexity of the SD. However, Joham et al. [JBL+08]
demonstrate that the K necessary for close to ML performance can be reduced to values
that are better manageable by using an unbiased MMSE metric.

5.2.2 Selective spanning with fast-enumeration

The selective spanning with fast-enumeration (SSFE) MIMO decoder [LBL+08, LFN+09,
FLN+09] is another example of a breadth-�rst search sphere decoder with a �xed-number
of paths. The SSFE algorithm is characterized by a vector m = [m1,m2, . . . ,mnT

] which
describes the number of surviving branches for each incoming path at each tree level; this
part of the algorithm is called the selective spanning of nodes. The underlying concept
originally has been introduced by Barbero and Thompson [BT06b]. The complexity of the

tree search is O
(∏nT

j=imj

)
. Exemplary search trees based on di�erent spanning vectors

are displayed in �gure 5.4 for a 4× 4 MIMO system.

(a) m = [1, 1, 2, 2] (b) m = [1, 1, 1, 4]

Figure 5.4: 4× 4 MIMO SSFE search trees for two di�erent spanning vectors

Fast enumeration describes the algorithm for the enumeration of candidates at the tree
levels. As the nodes in tree level i are processed independently (i. e. there is no need
to compare PEDs from di�erent nodes), it is not necessary to know the exact PEDs of
all branches to determine the mi surviving paths. Instead of calculating PED increments

118

5.2 Breadth-�rst search MIMO decoders

ei (s) for all possible symbols, the received signal is mapped into the constellation space
of symbol si:

ei (s) =

∣∣∣∣∣
∣∣∣∣∣yi −

nT∑
j=i

Ri,j · sj

∣∣∣∣∣
∣∣∣∣∣
2

2

⇔ ei (s) =

∣∣∣∣∣
∣∣∣∣∣yi −

(
nT∑

j=i+1

Ri,j · sj

)
−Ri,i · si

∣∣∣∣∣
∣∣∣∣∣
2

2

⇔ ei (s)

Ri,i

=

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
(
yi −

nT∑
j=i+1

Ri,j · sj

)
/Ri,i︸ ︷︷ ︸

ξi

−si

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2

2

= ||ξi − si||22

(5.17)

A geometrical interpretation for mi = 2 is displayed in �gure 5.5: Based on the computed
value of ξi, the two closest constellation points are calculated and expanded to the next
tree level. PEDs only have to be computed for these nodes.

Figure 5.5: Fast enumeration of the two closest nodes based on distance to computed ξi
for 16-QAM modulation

119

Chapter 5 Sphere decoding for MIMO detection

According to Fasthuber et al. [FLN+09], near optimal detection performance can be
achieved using the spanning vector m = [1, . . . , 1,M] for modulation size M (e. g. as
in �gure 5.4b for QPSK modulation). For MIMO systems with up to four transmit and
receive antennas, this spanning vector de�nes the same search tree as the tree of the FSD
algorithm [BT06a, BT06c, BT08b]. Furthermore, the complete tree search is equivalent
to the FSD algorithm, which is discussed in the following section.

5.3 The �xed-complexity sphere decoder

The �xed-complexity sphere decoder (FSD) is a breadth-�rst tree search MIMO decoder,
which enables parallel processing, �xes the number of visited tree nodes, and achieves
quasi-ML performance. The algorithm has been proposed by Barbero and Thompson
[BT06a, BT06c, BT08b] and mapped on a �eld-programmable gate array (FPGA) plat-
form. It consists of two major parts: a novel channel matrix ordering based on noise
ampli�cation and a tree search through a �xed subset of the complete symbol space. Al-
though, the channel matrix ordering has to be done before the QR-decomposition and the
tree search, the requirements for the channel matrix ordering follow from the topology of
the tree search. Hence, the tree search is explained �rst. Afterwards, the algorithm for
the FSD ordering of the channel matrix is discussed.

5.3.1 FSD tree search

The FSD tree search is based on the ML detection, yet the number of searched candidates
is limited to a subset S:

ŝFSD = arg min
s∈S
||r−H · s||22 (5.18)

The solution of equation (5.18) can be computed by a tree search starting with the nT -th
channel matrix row � evaluating only paths in S. The subset of paths is created by �xing
the number of branches in each tree level for a given modulation size M as follows:

• In the �rst p levels, all M branches are expanded. This part of the search is denoted
as full expansion (FE).

• For the remaining levels of the tree, only one branch with the best PED metric is
expanded, denoted as single expansion (SE).

The number of branches in each tree level can be summarized by the node distri-
bution vector nS = (n1, n2, . . . , nnT

)T . The overall complexity of the tree search is
O (Mp) � O (MnT). Barbero and Thompson [BT06b] show that quasi-ML performance
can be obtained for 4 × 4 and 8 × 8 MIMO by setting the number of FE stages p to one

120

5.3 The �xed-complexity sphere decoder

(nS = (1, 1, 1,M)T) and two (nS = (1, 1, 1, 1, 1, 1,M,M)T), respectively. Figure 5.6 shows
the FE and SE stages of the tree search for nS = (1, 1, 1, 4)T (corresponding to 4 × 4
MIMO with QPSK modulation). For 16-QAM, the performance degradation from the
ML solution at BER = 10−3 is only 0.03 dB for a 4 × 4 and 0.25 dB for a 8 × 8 MIMO
system and a Rayleigh fading channel. Jaldén et al. [JBOT09] also theoretically proved
that the FSD tree search algorithm, combined with the channel ordering described below,
achieves the same diversity as the ML detector for p ≥ √nT − 1. Furthermore, the FSD
asymptomatically provides ML performance for high SNRs.

Figure 5.6: FSD tree search for QPSK and a 4× 4 MIMO system: In full expansion (FE)
stages all branches are evaluated, while only the best path is pursued in single
expansion (SE) stages.

5.3.2 FSD ordering of the channel matrix

As shown by Jaldén et al. [JBOT09], the ordering of the channel matrix has a signi�cant
impact on the possible performance. The FSD channel matrix ordering algorithm reorders
the matrix columns based on noise ampli�cation; hence, the order in which the components
of vector s are detected is changed. In FE stages, the noise ampli�cation is irrelevant, as
all possible paths are evaluated. Hence, the signals with the largest post-processing noise
ampli�cation should be processed in these stages. In SE stages, high noise ampli�cation

121

Chapter 5 Sphere decoding for MIMO detection

may lead to detection errors, therefore signals with the smallest post-processing noise
ampli�cation should be processed in these stages.
The ordering of channel matrix columns, and hence the components of the transmitted
signal vector, is done based on the properties of the product of the channel matrix with
its conjugate transpose:

A = HH ·H (5.19)

The ordering algorithm iterates through the channel matrix columns starting with the last
column (nT). Each iteration has two steps:

1. The next signal component ŝk, which shall be detected, is determined by selecting
the kth column of the channel matrix according to:

k =

{
arg maxj [A−1]j,j if ni = M

arg minj [A−1]j,j if ni = 1
(5.20)

2. The matrix A is updated by removing its kth row and its kth column. This corre-
sponds to removing the kth column from the channel matrix H.

Although the FSD ordering algorithm requires a matrix inversion in each step, only the
diagonal elements of the inverse matrix are required for solving equation (5.20). Hence,
the complexity can be reduced by calculating just these elements.

5.3.3 Soft-decision MIMO detection based on the FSD

As explained in section 5.1.3, soft-decision sphere decoding is done by calculating a list
containing candidate symbol vectors s and their Euclidean distance metrics. For each bit
bk, the di�erence between the Euclidean distances of the best candidate with bk = −1 and
the best candidate with bk = 1 has to be computed (see equation (5.16)), if no candidate
for a certain bit value is available, the Euclidean distance is assumed to be very big and
the bit value is assumed to be unlikely. In order to prevent signi�cant errors due to
missing candidates, the number of candidates in the list should be increased compared
to the hard-decision FSD, so that enough alternative paths with di�erent bit values are
available.

List FSD

Barbero and Thompson [BT08a] proposed a list extension of the FSD. The list FSD
(LFSD) can also be described by the node distribution vector nS = (n1, n2, . . . , nnT

)T . nS
is initialized to the hard-decision FSD node distribution vector (e. g. nS = (1, 1, 1,M)T for
4× 4 MIMO). Then, starting with tree level i = nT − p (the �rst single expansion stage)

122

5.3 The �xed-complexity sphere decoder

and proceeding down level by level, the number of evaluated branches at a tree level is
doubled until a desired number of searched vectors NS is attained. If the last level i = 1
is reached, the algorithm continues with level i = nT − p. Figure 5.7 shows an example
for QPSK modulation with node distribution vector nS = (1, 1, 2, 4)T . Table 5.1 displays
node distribution vectors, obtained from this algorithm, for di�erent numbers of searched
vectors in a 4× 4 MIMO system with 16-QAM modulation. The list for the soft-decision
detection is generated by selecting the NL best paths (NL ≤ NS).

Table 5.1: Number of searched paths and node distribution vectors for the LFSD and a
4× 4 MIMO system with 16-QAM modulation

Number of vectors NS = 64 NS = 128 NS = 256

Node distribution nS = (1, 2, 2, 16)T nS = (2, 2, 2, 16)T nS = (2, 2, 4, 16)T

Figure 5.7: LFSD tree search for QPSK and a 4× 4 MIMO system with NS = 8

The main drawback of the proposed approach is the increased complexity of the tree
search. In [BT08a], NS = 64 is used for 4 × 4 MIMO and 16-QAM modulation, which
means a quadrupling of the number of paths.

Smart candidate adding for QRD-M MIMO detection

Milliner, Zimmermann, Barry and Fettweis [MZBF09] proposed a di�erent soft-decision
MIMO symbol detection algorithm with a reduced complexity, which adds further candi-

123

Chapter 5 Sphere decoding for MIMO detection

dates in a smart manner. The proposed algorithm is based on theM -algorithm, where the
M best paths survive at each tree level (see section 5.2.1). The di�erence to the original
M -algorithm is that further candidates are added at each tree level and the parameter
M may change from tree level to tree level. At each tree level k, the proposed algorithm
determines the node with the minimum PED, denoted as partial MAP node. For this
node, additional candidates are generated by �ipping bits: For a symbol bit width ω, ω
new candidates are generated by �ipping each of the bits of the symbol vector compo-
nent sk, the remaining symbol vector components sk+1, . . . , snT

are left unchanged. After
the expansion by bit-�ipping, the number of paths may be pruned to the M -best paths,
yet the newly added counter-hypotheses for the best path should be protected. This
approach guarantees that at least one counter-hypothesis is available for each bit from
symbol component sk of the current best path. If the best path is the same at all tree
levels, counter-hypotheses are available for each bit.

Smart candidate adding for the FSD algorithn

The bit �ipping strategy can also be applied to the FSD algorithm. In each single expansion
stage of the tree search, ω additional alternatives for the node with the smallest PED are
generated by bit-�ipping. A pruning of the candidate list, as done by the M -algorithm, is
not performed. The resulting number of candidates depends on the number of antennas
and the modulation size (see table 5.2). The topology of the bit-�ipping soft-decision FSD
tree depends on the PEDs, as additional candidates are only added for the best path at
the current tree level. Figure 5.8 shows an example search tree for the case that the best
path is the same at each tree level.

Table 5.2: Number of candidates for the soft-decision FSD with bit-�ipping at each tree
level for 4× 4 MIMO

Modulation Bit width Candidates
level 4

Candidates
level 3

Candidates
level 2

Candidates
level 1

General case ω 2ω 2ω + ω 2ω + 2 · ω 2ω + 3 · ω
QPSK 2 4 6 8 10
16-QAM 4 16 20 24 28

Compared to the hard-decision FSD, the bit-�ipping soft-decision FSD variant leads to
an increased processing complexity: The bit-�ipping algorithm requires determining the
best path at each SE stage of the algorithm. Hence, tree levels have to be processed
sequentially and a minimum search is necessary. In the hard-decision case, there is no

124

5.4 SIMD implementation of the FSD for MIMO-OFDM

Figure 5.8: Example search tree for FSD with bit-�ipping for generating additional paths
(4× 4 MIMO with QPSK modulation)

need for sequential processing of tree levels, i. e. one path can be processed from tree root
to tree leaf before the next path is processed. Furthermore, soft-decision output requires
keeping all paths in a list � including additional paths generated by bit-�ipping. For
hard-decision, it is su�cient to save the path minimum and the path that is currently
processed. Additionally, the soft-decision bit-�ipping FSD requires computing LLRs (see
equation (5.16)) after the tree search has been �nished.

5.4 SIMD implementation of the FSD for

MIMO-OFDM

The FSD algorithm � as discussed in the previous section � has been implemented on the
scalable SIMD processor architecture instead of the other presented algorithms for various
reasons. As already discussed, the original sphere detector is a sequential algorithm with
a variable decoding complexity. Therefore, the SD algorithm is ill suited for real-time
processing on a SIMD processor, as e. g. shown by Mennenga et al. [MMF09].
The other presented MIMO detection algorithms enable parallel processing by applying
a breadth-�rst tree search strategy and �x the complexity of the tree search by limiting

125

Chapter 5 Sphere decoding for MIMO detection

the number of candidates. The K-best sphere decoder, or QRD-M algorithm, calculates
the K best paths at each tree level. Hence, the algorithm requires the sorting of PEDs,
which may hinder e�cient SIMD processing. Janhunen, Silvén and Juntii [JSJ09] report
that the sorting prevents the e�cient utilization of SIMD processing for the K-best sphere
decoder on the Sandblaster SB3500 processor (see section 2.3.2).
Both the SSFE and the FSD algorithm do not require a sorting of PEDs for hard-decision
decoding3; hence, these algorithms can be more easily parallelized on a SIMD processor
architecture. Both algorithms perform a similar tree search; in fact, the SSFE MIMO
detector achieves the best performance if the FSD search tree is used [FLN+09]. Yet,
the FSD algorithm also smartly reorders the channel matrix, which improves the diversity
and the decoding performance of the system [JBOT09]. Hence, the FSD algorithm enables
SIMD processing without sacri�cing decoder performance.
The following paragraphs explain the implementation of the FSD algorithm for a 4 × 4
MIMO-OFDM system on the scalable SIMD processor architecture, as well as the encoun-
tered challenges. First, channel ordering and QR-decomposition are discussed. Then, the
tree search for hard-decision output is explained. The last part of this section addresses
the soft-decision tree search based on the bit-�ipping algorithm for computing additional
paths and the calculation of LLRs.

5.4.1 Channel ordering

The FSD channel ordering requires calculating the matrix A = HH · H. The channel
ordering is then computed iteratively; each iteration requires a matrix inversion and a
reduction of A by removing one row and one column (see equation (5.20)). Afterwards,
the channel matrix needs to be reordered based on the new channel ordering. As the
channel matrix is a 4 × 4 matrix and the iterations of the ordering algorithm lead to
a further reduction of the matrix size, there are only limited opportunities for parallel
processing for the channel ordering of one matrix. However, in an OFDM system, there
is one channel matrix, one received vector, and one transmit vector for each OFDM sub-
carrier. As the sub-carriers are orthogonal to each other, they may be processed in parallel
during the channel ordering stage, as well as the QR-decomposition and the tree search.
The principle approach is depicted by �gure 5.9. Parallelism in this case is only limited
by the number of data carriers in an OFDM symbol, which is su�ciently large for wide
SIMD processing (e. g. 1200 data carriers for 20MHz bandwidth in LTE).
The main challenges of the channel ordering implementation are reducing the complexity
of the matrix operations and avoiding roundo� errors due to the limited 16-bit �xed-point
precision � especially during the matrix inversions.

3The proposed soft-decision FSD algorithm with bit-�ipping requires a minimum search in the single
expansion stages of the algorithm.

126

5.4 SIMD implementation of the FSD for MIMO-OFDM

Figure 5.9: Parallel processing of the FSD algorithm by parallel processing of OFDM sub-
carriers for a SIMD width of four elements

Calculation of A = HH ·H

The �rst step of the channel ordering, the calculation of matrix A can be simpli�ed due
to the properties of the matrix. A is a Hermitian matrix, which means that the matrix
is equal to its own conjugate transpose. The diagonal elements of A are real-valued and
positive, as is the determinant of A.

A = HH ·H =

a1,1 a∗2,1 a∗3,1 a∗4,1
a2,1 a2,2 a∗3,2 a∗42
a3,1 a3,2 a3,3 a∗4,3
a4,1 a4,2 a4,3 a4,4

 ai,i ∈ R+ , ai,j ∈ C ∀ i 6= j (5.21)

Hence, only the diagonal elements and the elements below the diagonal need to be com-
puted, the remaining six elements are given by symmetry. This reduces the computational
complexity of the matrix product and the required memory for storing A, as only ten
matrix elements need to be saved. Furthermore, the property that diagonal elements are
always real-valued allows to replace complex-valued multiplications by real-valued multi-
plications for operations involving one of these elements, which improves the performance,
as a real-valued multiplication or MAC operation takes only one clock cycle, while a
complex-valued operation requires two clock cycles.

127

Chapter 5 Sphere decoding for MIMO detection

Determining the channel ordering based on matrix-inversion

The next step of the channel ordering is calculating the index of the next channel ma-
trix column from equation (5.20). The equation requires computing the position of the
minimum or the maximum of the diagonal elements of A−1. Therefore, neither is there
a need to compute the complete matrix inverse, nor a necessity to compute the exact
values, as only the relative ordering of diagonal elements of the inverse matrix is required
to determine the minimum or maximum position. Hence, equation (5.20) can be solved
by computing the diagonal elements of the adjugate matrix of A instead of the inverse
matrix:

A−1 =
1

det (A)
· adj (A)

⇒ arg min
j

[
A−1

]
j,j

= arg min
j

[adj (A)]j,j

(5.22)

Computing the diagonal elements of the adjugate matrix instead of the inverse of A reduces
the computational complexity of the channel ordering, because a division by the matrix
determinant can be avoided. Furthermore, the dynamic range of values is reduced, which
reduces the impact of errors due to rounding and especially the saturation of values. The
adjugate matrix of an n×n matrix is de�ned by the following equation, where Aij denotes
the sub-matrix that is generated by removing the ith row and jth column from A:

adj (A) =

det (A11) − det (A12) . . . (−1)n+1 det (A1n)

− det (A21) det (A22) . . . (−1)n+2 det (A2n)
...

...
...

(−1)n+1 det (An1) (−1)n+2 det (An2) . . . det (Ann)

 (5.23)

Consequently, the channel ordering requires calculating and comparing four 3 × 3 deter-
minants (4 × 4 input matrix), three 2 × 2 determinants (A reduced to 3 × 3), and one
scalar comparison (A reduced to 2 × 2). The reduction of matrix A into smaller matri-
ces by removing rows and columns for index k is visualized by �gure 5.10. The required
determinants can be directly computed, e. g. using the rule of Sarrus for 3×3 sub-matrices.
As the input data has a limited precision, due to the 16-bit word length, the proposed algo-
rithm implementation has been tested for saturation or rounding errors. Rounding errors
are insigni�cant, as the computed sub-matrix determinants are only used in comparison
operations. Comparison errors will only occur if the values of two sub-matrix determi-
nants are very close to each other. In this case, the relative ordering of the corresponding
channel matrix columns is unimportant, as both columns su�er from a similar amount of
post-processing noise-ampli�cation.
Errors due to saturation are more signi�cant, because a comparison of two saturated values
is impossible. Furthermore, saturation of intermediate results (e. g. during the calculation

128

5.4 SIMD implementation of the FSD for MIMO-OFDM

Figure 5.10: Example for the reduction of matrix A during the channel ordering. The
relabeling of matrix elements is done to simplify the �gure.

of matrix A) also leads to signi�cant errors. Saturation can be avoided, by scaling the
input values before or during the calculation of matrix A and by avoiding the division by a
matrix determinant as in equation (5.22). Simulation results obtained from Matlab show
that right shifting the input values by two bits is su�cient to prevent saturation under
the assumption that the input channel matrix requires the full dynamic range provided by
a 16-bit word length. If the channel estimation produces a channel matrix estimate with
less than 15 bits precision, the scaling by right shifting may be avoided.

Reordering of channel matrix elements

The reordering of the channel matrix elements describes the removal of elements from A,
as in �gure 5.10, and the ordering of the columns of the channel matrix H after the new
column indices have been computed.

129

Chapter 5 Sphere decoding for MIMO detection

On a scalar processor architecture, both ordering operations can be e�ciently implemented
by memory access: The matrix elements are read from memory and stored in a di�erent
order, using the computed channel ordering for o�set addressing. The overall complexity
is one memory read and one memory write access per matrix element.
On a SIMD processor architecture, a di�erent approach is necessary, as multiple OFDM
sub-carriers � with potentially di�ering orderings � are processed in parallel in a vector.
Hence, the ordering has to be done by conditionally swapping elements of two vectors,
with masks de�ning the desired order of the channel matrix columns. The ordering of one
matrix row with four elements requires six consecutive swapping operations, each swapping
operation can be realized by a pair of parallel vector move operations (see �gure 5.11).

vmov_vmac v0 v1 m1 || vmov_valu v1 v0 m1

Figure 5.11: Swapping of data vectors v0 and v1 based on vector mask m1 using two parallel
masked move operations

Yet, although the channel reordering on vectors requires more operations than a channel
reordering on scalars on the scalable SIMD processor architecture, the execution time is
the same, as the overhead for swapping values can be e�ciently hidden by LIW execution
(see table 5.3). The runtime is determined by memory access operations.

Table 5.3: Complexity comparison of scalar and vector channel matrix reordering for a
4× 4 matrix

Description Load/Store Swap Runtime
operations operations [Cycles]

Scalar: reordering by memory access 16+16 � 32
Vector: reordering by swapping values 16+16 24 32

5.4.2 QR-decomposition by Givens rotations

The next part of the FSD is the transformation of the (ordered) channel matrix into
upper triangular form using a QR-decomposition by six successive complex-valued Givens
rotations [GVL96]. A complex-valued givens matrix G is de�ned by:

G ·
[
a
b

]
=

[
c∗ s∗

−s c

]
·
[
a
b

]
=

[
r
0

]
(5.24)

130

5.4 SIMD implementation of the FSD for MIMO-OFDM

c =
a√

a∗ · a+ b∗ · b
(5.25)

s =
b√

a∗ · a+ b∗ · b
(5.26)

r =
√
a∗ · a+ b∗ · b (5.27)

The required processing consists of two parts: the generation of the Givens rotation matri-
ces and matrix products with the computed Givens matrices. The latter part can be easily
realized by a series of complex-valued multiplications and MAC operations. Furthermore,
each Givens rotation produces one real-valued output r; hence, further operations involv-
ing this matrix element can be performed using real-valued instead of complex-valued
vector multiplications and MAC operations.
The generation of the Givens rotation matrices is more complicated, as it requires a re-
ciprocal square root operation (1/

√
x), which is necessary to guarantee the numerical

stability of the QR-decomposition.4 In principle, the reciprocal square root can be com-
puted using a lookup table (LUT), digit recurrence algorithms, iterative approximation by
Newton-Raphson or Goldschmidt iterations, polynomial approximation, or a combination
of multiple of these approaches. For a SIMD implementation, a lookup table is not a fea-
sible approach. Jeannerod et al. [JKMR07] report that a polynomial approximation using
a piecewise de�ned polynomial achieves the lowest cycle count for a 32-bit square-root op-
eration on a LIW architecture compared to digit recurrence and iterative approximation
algorithms. Hence, a reciprocal square root approximation based on a piecewise de�ned
polynomial with two subintervals has been implemented for the Givens rotation algorithm.
The implementation is a variation of the reciprocal square root algorithm used in the FLIP
library for 32-bit �oating-point calculations [Rai06].

Reciprocal square root algorithm

As a �rst step, the input 16-bit �xed-point data x is transformed into a pseudo-�oating
point format x = mx · 2ex . The exponent is computed based on the number of leading
zeros of the input value. The mantissa is then generated by shifting the input value, so
that the value of the mantissa is between 0.5 and 1.0. The new mantissa my is calculated
using two degree 3 polynomials:

my =

{
a3,0 ·m3

x + a2,0 ·m2
x + a1,0 ·mx + a0,0 for 0.5 ≤ mx < 0.75

a3,1 ·m3
x + a2,1 ·m2

x + a1,1 ·mx + a0,1 for 0.75 ≤ mx < 1.0
(5.28)

The polynomial coe�cients are listed in table 5.4. In the implementation, the coe�cients
are all scaled by 1/4 to map them on Q.15 �xed-point values. The correct polynomial can be

4Square root (and division) free variants of the Givens rotation algorithm also exist [Gen73, GS91].

131

Chapter 5 Sphere decoding for MIMO detection

selected by masked move operations. The polynomial evaluation can be realized by three
MAC operations, one multiplication, and one shift operation to revert the pre-scaling of
polynomial coe�cients.

Table 5.4: Polynomial coe�cients for reciprocal square root approximation

Input range for mantissa a3 a2 a1 a0
0.5 ≤ mx < 0.75 1.9802. . . -3.2286. . . 3.1369. . . 1.2011. . .
0.75 ≤ mx < 1.0 1.6636. . . -1.9195. . . 1.3242. . . 0.3613. . .

Next, the new exponent ey has to be calculated and the mantissa has to be updated based
on the new exponent:

y =
1
√
mx

· 1√
2ex

= my · 2−ex/2

= my · cy · 2ey with ey = b−ex/2c

(5.29)

The correction term cy is necessary to compensate for rounding errors during the cal-
culation of the new exponent ey. For even exponents no rounding error occurs, while
compensation is necessary for odd exponents:

cy =

{
1 for even ex
1√
2

for odd ex
(5.30)

SIMD parallelization of the QR-decomposition

Like the channel ordering, the QR-decomposition can only be e�ciently vectorized on a
wide SIMD processor architecture by processing multiple OFDM sub-carriers in paral-
lel. Furthermore, the performance of the QR-decomposition can be improved by speed-
ing up the reciprocal square root calculation, which is the most complex part of the
QR-decomposition algorithm from an implementation point of view. A speedup can be
achieved by calculating reciprocal square roots for two input vectors in parallel: The recip-
rocal square root operation is a real-valued operation, yet data vectors contain elements
for the real and the imaginary part of a value. As only one of the two components is
needed, another reciprocal square root operation can be performed in parallel by merg-
ing two data vectors. The principle approach is depicted by �gure 5.12. The merging
and the separation of data values from di�erent vectors can be realized by simple masked
permutation operations, e. g. 16-bit butter�y permutations or rotation operations.

132

5.4 SIMD implementation of the FSD for MIMO-OFDM

Figure 5.12: Merging of data vectors for the parallel computation of reciprocal square
roots.

5.4.3 Hard-decision FSD tree search

The hard-decision FSD tree search can be parallelized by processing up to M paths in
parallel (with M de�ning the modulation size, i. e. M = 4 for QPSK and M = 16
for 16-QAM) and by processing multiple OFDM sub-carriers in parallel. Due to the
regular structure of the FSD tree, the latter approach produces no overhead at all and
requires the least programming e�ort, as mostly the same assembly code can be used for
all permutation network types and SIMD widths. Furthermore, as parallel processing of
OFDM sub-carriers is also done during the channel ordering and the QR-decomposition,
there is no need for data reordering. Hence, an implementation based on the parallel
processing of OFDM sub-carriers has been realized. The processing of paths in the FSD
tree is performed sequentially and the best path is always updated after reaching a tree
leaf. The processing of the tree consists of the processing of the full expansion stage
(symbol s4) and the single expansion stages (symbols s3, s2, and s1), as discussed below.

Full expansion stage

In the full expansion stage, all possible values of s4 have to be sequentially enumerated
and the PED d4 = ||y4 −R4,4 · s4||22 has to be calculated. The enumeration of symbols
has been realized by storing all symbol values in a vector (two vectors for 16-QAM and
a 128-bit SIMD bit width) in a compressed form and rotating the symbol vector between
tree search iterations.

133

Chapter 5 Sphere decoding for MIMO detection

Single expansion stages

In single expansion stages, only the best path survives. Therefore, there is no need to
calculate all PEDs. Instead, the best candidate can be determined by mapping the received
signal vector component ri into the constellation space of symbol si, similar to the fast
enumeration in the SSFE algorithm (see section 5.2.2). Based on equation (5.17), the best
candidate for si can be computed as:

si = arg min
sk∈M

∣∣∣∣∣
∣∣∣∣∣
(
yi −

nT∑
j=i+1

Ri,j · sj

)
/Ri,i − sk

∣∣∣∣∣
∣∣∣∣∣
2

2

(5.31)

⇔ si = arg min
sk∈M

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
(
yi −

nT∑
j=i+1

Ri,j · sj

)
︸ ︷︷ ︸

χi

−Ri,i · sk

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2

2

(5.32)

Here, sk enumerates all possible symbol values. The second equation avoids the costly
division by Ri,i.
For rectangular modulation schemes, such as the QPSK and 16-QAM modulation schemes
used in LTE [Tec09b], the distance minimization can be done in parallel for the in-phase
and quadrature symbol components by one or multiple threshold comparisons. Figure
5.13 visualizes the approach for 16-QAM modulation. Assuming in-phase and quadrature
symbol component values in [−3,−1, 1, 3]5, the detection of the closest symbol can be
performed by two threshold comparisons6:

Re {χi} ≥ 0, Im {χi} ≥ 0 (5.33)

|Re {χi}| ≥ 2 ·Ri,i, |Im {χi}| ≥ 2 ·Ri,i (5.34)

For QPSK, only the sign bit of χi has to be detected. After detecting the symbol com-
ponent si in this manner, the algorithm proceeds to the next single expansion stage and
the PED for the current path is updated.

5.4.4 Soft-decision FSD tree search extension by bit-�ipping

The soft-decision FSD tree search extension by bit-�ipping (see section 5.3.3) requires
keeping a list of candidate paths, instead of only retaining the best path. Furthermore,

5This is a simpli�cation, which is done for better illustration of the approach.
6Note that after the QR-decomposition, the diagonal matrix elements Ri,i with i ∈ [1, 2, 3] are real-valued
and positive.

134

5.4 SIMD implementation of the FSD for MIMO-OFDM

Figure 5.13: Symbol detection by threshold comparisons in the scaled constellation dia-
gram for 16-QAM

all nodes and PEDs at a tree level i have to be computed before proceeding to the next
tree level i − 1 and the current minimum path has to be computed to determine where
additional paths have to be added by bit-�ipping. The candidate list leads to an increased
memory requirement for storing 28 (16-QAM) or 10 (QPSK) paths instead of one best
path. The sequential processing of tree levels leads to a loss in performance compared to
the hard-decision FSD implementation, where complete tree paths are processed sequen-
tially: During the hard-decision FSD tree search, paths are expanded by the described
thresholding approach, the PEDs are only needed at the tree leafs for updating the best
path. Hence, the PED calculation for a tree level can be done in parallel to the processing
of the next tree level, reducing the overhead for computing the Euclidean distance norm.
During the bit-�ipping soft-decision FSD, PEDs are needed at each tree level to compute
the candidate for bit-�ipping.

Bit-�ipping

The �ipping of sign bits for QPSK and 16-QAM can be realized by one masked vector
negation for the in-phase component and one masked vector negation for the quadrature

135

Chapter 5 Sphere decoding for MIMO detection

component. For 16-QAM, a �ipping of the amplitude bits is also required. Assuming that
the valid symbol amplitudes are sym1 and sym2, the amplitude �ipping can be realized
by pre-computing s̃ = sym1 ⊕ sym2 and performing one masked exclusive or operation
with s̃ for the in-phase component and one for the quadrature component. Hence, the
bit-�ipping requires only one clock cycle per �ipped bit and vector.

5.4.5 LLR calculation for soft-decision MIMO decoding

After generating a list of candidates during the tree search with bit-�ipping, LLR values
have to be computed from the list of candidate symbol vectors and Euclidean distances.
The output of the soft-decision tree search is the hard-decision minimum (de�ned by
symbol vector smin and squared Euclidean distance metric dmin) and the unsorted list of
candidates L. The LLR for bit bk (see equation (5.16)) can be estimated by computing:

L (bk |r) ≈ 1

N0

· (−1)(smin,bk
==1) ·

dmin − min
s∈L

sbk 6=smin,bk

||r−H · s||22

 (5.35)

Each LLR calculation requires one subtraction, one masked negation (based on the bit
value of smin,bk), a multiplication by 1/N0, and a minimum search on list elements, whose
bit bk di�ers from the hard-decision minimum. The minimum search is the most complex
task, as the list is not sorted and the bit values are not ordered. Hence, all elements in
the list have to be compared with smin and the minimum has to be updated based on the
comparison result7. The comparison with smin can be e�ciently parallelized by storing
all symbol bits in one vector element8 and performing a bitwise exclusive or operation
(smin ⊕ s). The resulting bit values are then converted into vector masks and utilized
to update the minimum with a masked minimum operation. The proposed minimum
update algorithm requires nine clock cycles per list candidate for 16-QAM modulation
(one exclusive or and eight minimum operations on the VALU) and �ve clock cycles per
list candidate for QPSK modulation (one exclusive or and four minimum operations on
the VALU).

5.5 Performance analysis

In the following, the performance of the FSD on the scalable SIMD processor architecture
is analyzed. First, the overall e�ciency of the di�erent FSD algorithm parts is assessed.
Next, the throughput of the hard-decision and soft-decision FSD implementations is eval-
uated based on the requirements for future 4G wireless systems. The analysis concludes

7The initial minimum is set to the maximum 16-bit integer value (32767).
8In-phase and quadrature components are still stored separately.

136

5.5 Performance analysis

with a performance comparison to other SDR, ASIC, and FPGA implementations of sim-
ilar sphere-based MIMO detectors. At the end of this section, approaches to improve the
algorithm performance with custom instructions are discussed.

5.5.1 Overview of FSD results

Table 5.5 gives an overview of the implementation results on the scalable SIMD processor
architecture and � for comparison purposes � on the EVP (see section 2.3.1). Columns
two and three display the runtime of the di�erent algorithm parts in clock cycles per
vector on the scalable SIMD processor architecture and the EVP respectively. The QR-
decomposition loop processes two vectors in parallel and requires 421 clock cycles on the
SIMD architecture, which explains the normalized runtime of 210.5 clock cycles. The
runtime per processed channel matrix depends on the number of 32-bit elements (16-bit
imaginary part, 16-bit real part) in a vector. The runtime does not depend on the SIMD
width. Hence, linear speedups can be obtained by increasing the SIMD width.
The runtimes on the scalable SIMD processor architecture are lower than the runtimes on
the EVP, although the EVP potentially o�ers more LIW parallelism and a slightly richer
instruction set9. The di�erence results from the used programming approach: The EVP
is programmed in EVP-C, a C-based language with extensions for vector operations; the
scheduling of operations and the register assignment is done by a compiler. On the other
hand, the scalable SIMD processor architecture is programmed in assembly code, which
leads to a more e�cient scheduling of instructions. The soft-decision FSD algorithm
with bit-�ipping has not been implemented on the EVP, as a license for the software
development tools has not been available.
Table 5.5 also shows the average number of parallel operations in a LIW instruction
(Npar. ∅) for the inner loops of the algorithm parts, as well as the resource utilization
of the vector MAC unit (VMAC, RVMAC) and the vector ALU (VALU, RVALU). The
soft-decision FSD tree search consists of multiple loops; hence, average values for Npar. ∅,
RVMAC, and RVALU are shown. LIW parallelism does not depend on the SIMD width,
yet there are minimal di�erences (±1 vector permutation operation per loop iteration)
for permutation networks with di�erent widths for the soft- and hard-decision tree search
for 16-QAM. For these algorithm parts, the average value Npar. ∅ for all permutation
networks is listed.
Both the channel ordering and the QR-decomposition utilize the VMAC almost all the
time, as these algorithms are based on matrix multiplications on complex-valued matrices.
The high resource utilization values indicate the e�ciency of the implementation; higher
values for RVMAC have not been obtained, because some algorithm parts do not require the

9For example, the scalable SIMD processor architecture supports vector move operations on three dif-
ferent units, while the EVP supports move operations on any vector unit.

137

Chapter 5 Sphere decoding for MIMO detection

Table 5.5: Overview of FSD implementation results. Columns two and three show the
runtime in clock cycles per vector on the scalable SIMD architecture and the
EVP. The remaining columns contain the average number of parallel operations
per instruction (Npar. ∅) and the VMAC and VALU resource utilization.

Algorithm part SIMD pro. EVP Npar. ∅ RVMAC RVALU

[Cycles/vector] [%] [%]
Channel ordering 193 203 1.89 88.12 47.67
QR-decomposition 210.5 250 1.78 91.21 32.54
Hard-decision FSD search (QPSK) 127 148 2.125 89.29 60.71
Hard-decision FSD search (16-QAM) 503 640 2.61 87.30 69.84
Soft-decision FSD search (QPSK) 231 � 2.80 76.67 83.33
LLR calculation (QPSK) 65 � 3.40 0.00 100
Soft-decision FSD search (16-QAM) 855 � 2.76 78.44 82.54
LLR calculation (16-QAM) 281 � 3.22 0.00 100

VMAC. During the channel ordering, the VALU is mostly used for scaling operations (to
avoid errors due to the �xed word length) and the computation of the new channel ordering.
The QR-decomposition algorithm requires operations on the VALU for the calculation of
Givens rotation matrices. The average number of parallel operations per instruction is
relatively low, because most of the time, only the VMAC is used for complex-valued MAC
operations and multiplications. The instruction count is low, because complex-valued
operations require two clock cycles.

In the FSD tree search implementation, the VMAC is mostly utilized for PED calculations,
while the VALU is required for the symbol candidate selection, the minimum update,
and the bit-�ipping in the soft-decision FSD. During the hard-decision tree search, PED
calculations on the VMAC and symbol selection operations on the VALU can be e�ciently
parallelized, leading to a low runtime and a high VMAC utilization. The soft-decision
FSD with bit-�ipping requires sorting at each tree level, which increases the number of
operations on the VALU and prevents an e�cient parallelization of PED calculations and
symbol selection operations. Hence, the VALU resource utilization increases, while the
VMAC resource utilization decreases.

The soft-decision LLR calculation implementations achieve a very high degree of LIW
parallelism and a 100 percent utilization of the VALU for masked minimum operations
and exclusive or operations. The VMAC unit is not required for the calculation of the
best paths for a desired bit-value.

138

5.5 Performance analysis

5.5.2 Analysis of the achievable throughput

The FSD throughput can be calculated from the number of detected transmit vectors per
second, with each transmit vector containing four elements with four (16-QAM) and two
(QPSK) data bits. Table 5.6 lists the achieved throughputs on a 128-bit SIMD processor
architecture at a clock frequency of 300MHz for hard-decision and soft-decision decod-
ing. Two di�erent throughputs are listed: the worst-case throughput and the best-case
throughput.

Table 5.6: 4× 4 FSD throughput on 128-bit SIMD processor architectures

Algorithm Worst-case [Mbps] Best-case [Mbps]
Hard-decision FSD, QPSK modulation 18.10 54.86
Hard-decision FSD, 16-QAM modulation 21.18 34.85
Soft-decision FSD, QPSK modulation 13.72 28.91
Soft-decision FSD, 16-QAM modulation 12.47 16.21

The worst-case calculation assumes a fast fading channel, i. e. the channel matrix coef-
�cients change during the transmission of one frame. Hence, the channel ordering and
the QR-decomposition have to be recomputed for each OFDM symbol. Therefore, the
runtime is calculated by adding up the channel ordering, QR-decomposition, and sphere
search runtime (and � for soft-decision MIMO detection � the LLR calculation runtime).
The best-case throughput calculation assumes a slow fading channel, i. e. the channel
matrix is assumed constant for the duration of one frame. In this case, the runtime for
channel ordering and QR-decomposition can be neglected, only the transformation of the
received vector based on the Q matrix has to be computed:

y = QH · r (5.36)

In the following, the best-case results are used for the throughput, as this is the usual
procedure in literature and MIMO transmission on a slow fading channel is more realistic
than MIMO transmission on a fast fading channel.
Figure 5.14 displays the (best-case) throughput for hard-decision and soft-decision MIMO
detection for di�erent SIMD widths in a logarithmic scale. The throughput scales lin-
early with the SIMD width. For hard-decision MIMO detection (�gure 5.14a), a maxi-
mum throughput of 438.86Mbps for QPSK and 278.77Mbps for 16-QAM is achieved on
1024-bit SIMD processors. The soft-decision throughput is approximately half as much,
with a maximum of 223.26Mbps for QPSK and 129.73Mbps for 16-QAM on a 1024-bit
SIMD processor. The soft-decision throughput is signi�cantly lower than the hard-decision

139

Chapter 5 Sphere decoding for MIMO detection

throughput, because additional paths have to be calculated by bit-�ipping and because of
the additional overhead for the LLR calculation.

54.86

109.71

219.43

438.86

34.85

69.69

139.38

278.77

10.00

100.00

128 bit 256 bit 512 bit 1024 bit

Th
ro

ug
hp

ut
 [M

bp
s]

QPSK

16-QAM

128 bit 256 bit 512 bit 1024 bit

(a) Hard-decision

27.91

55.81

111.63

223.26

16.22

32.43

64.86

129.73

10.00

100.00

128 bit 256 bit 512 bit 1024 bit

Th
ro

ug
hp

ut
 [M

bp
s]

QPSK

16-QAM

128 bit 256 bit 512 bit 1024 bit

(b) Soft-decision

Figure 5.14: Best-case 4× 4 MIMO FSD throughput for di�erent SIMD widths for hard-
decision (a) and soft-decision (b) decoding

Throughput requirements for 4× 4 MIMO based on the LTE frame structure

The future 4G standard LTE-Advanced is based on LTE. Therefore, the following through-
put analysis assumes a frame structure based on LTE with 4×4 MIMO support for higher
data rates. An LTE frame has a duration of 10ms [Tec09b], each frame consists of 20
slots. In short CP mode, seven OFDM symbols are transmitted per slot. Assuming a

140

5.5 Performance analysis

bandwidth of 20MHz, one OFDM symbol comprises 2048 sub-carriers, with 1200 of these
carriers containing data. The required maximum throughput is given by:

Throughputmax =
NFFT/slot ·Ndata carrier · 4 · log2 (M)

tslot
(5.37)

For the assumed frame structure, a maximum throughput of 134.4Mbps is required for
QPSK modulation (M = 4) and a throughput of 268.8Mbps is required for 16-QAM
modulation (M = 16).
The implemented hard-decision FSD algorithm can meet these requirements. The required
throughput for QPSK modulation can be reached on a single 512-bit processor running at a
signi�cantly reduced clock frequency of less than 185MHz, the required throughput for 16-
QAM modulation can be reached on a 1024-bit SIMD processor running at approximately
290MHz. The required performance can also be reached by using multiple smaller SIMD
processors.
The bit-�ipping soft-decision FSD algorithm achieves a signi�cantly lower throughput.
A 1024-bit SIMD processor is required for QPSK modulation (at a clock frequency of
approximately 180MHz). Soft-decision FSD decoding for 16-QAM is not possible on a
single SIMD processor core for a 20MHz channel with 1200 data carriers. However, these
are only the throughput requirements for the maximum channel bandwidth and the case
that all data carriers are allocated to one user. Other channel bandwidths, with di�erent
numbers of data carriers are also supported by LTE [Tec10]. Table 5.7 lists the parameters
for di�erent channel bandwidths and the required SIMD width to decode all data carriers
for 16-QAM modulation. Table 5.8 lists the maximum number of resource blocks that can
be decoded in real-time; one resource block consists of 12 sub-carriers.

Table 5.7: Throughput requirements for di�erent channel bandwidths for 4×4 MIMO with
16-QAM modulation

Bandwidth FFT size Data carriers Required throughput Min. SIMD width
1.4MHz 128 72 16.13Mbps 128 bit
3MHz 256 180 40.32Mbps 256 bit (hard.) /

512 bit (soft.)
5MHz 512 300 67.2Mbps 256 bit (hard.) /

1024 bit (soft.)
10MHz 1024 600 134.4Mbps 512 bit (hard.)
15MHz 1536 900 201.6Mbps 1024 bit (hard.)
20MHz 2048 1200 268.8Mbps 1024 bit (hard.)

141

Chapter 5 Sphere decoding for MIMO detection

Table 5.8: Maximum number of resource blocks that can be decoded in real-time for 4× 4
MIMO with 16-QAM modulation

SIMD width Resource blocks Data carriers Resource blocks Data carriers
Hard-decision FSD Soft-decision FSD

128 bit 12 144 6 72
256 bit 25 300 12 144
512 bit 51 612 24 288
1024 bit 103 1236 48 576

5.5.3 Comparison to SDR and hardware-based sphere decoders

Table 5.9 lists sphere decoders implemented as ASICs or on FPGA. The implemented
sphere decoders all apply a breadth-�rst search strategy with a �xed search tree. Guo and
Nilsson [GZMC06] designed an ASIC based on a modi�ed K-best sphere decoder (K = 5)
using the Schnorr-Euchner enumeration for soft-decision sphere decoding. Barbero and
Thompson [BT06c] implemented the FSD algorithm on a Xilinx FPGA. Fasthuber et al.
proposed a scalable ASIC for soft-decision MIMO detection based on the SSFE algorithm,
the search tree is the same as the FSD tree.

Table 5.9: Performance of sphere decoding algorithms with �xed-complexity in ASICs and
on FPGA

[GN06] [BT06c] [FLN+09]
MIMO system 4× 4
Modulation 16-QAM
Algorithm Modi�ed K-best

(soft-decision, K = 5)
FSD SSFE (soft-decision,

m = (1, 1, 1, 16))
Platform ASIC

(1.07mm2 @ 0.13µm)
Xilinx XC2VP70
FPGA

ASIC
(0.29mm2 @ 65nm)

Clk. frequency 200MHz 100MHz 400MHz
Throughput 106.6Mbps 400Mbps 400Mbps

Power � � 28mW

The proposed implementation on the scalable SIMD processor architecture achieves a bet-
ter soft-decision throughput (129.73Mbps on a 1024-bit SIMD processor) than the K-best

142

5.5 Performance analysis

sphere decoder and about two-thirds of the throughput of the FPGA FSD implementation
(278.77Mbps for 1024-bit SIMD width) for hard-decision decoding.
The MIMO detection ASIC based on the SSFE algorithm by Fasthuber et al.[FLN+09]
o�ers the highest throughput with very low area and power consumption. This chip clearly
de�nes the state-of-the-art for dedicated MIMO detection accelerators. Compared to the
1024-bit SIMD implementation, the soft-decision throughput is approximately three times
higher on the SSFE ASIC. The SIMD processor requires approximately 10 times as much
power and area as the ASIC.
Table 5.10 lists performance �gures for MIMO detection algorithms on programmable
processor architectures for SDR. Li, Bougard et al. [LBL+08] implemented the SSFE
algorithm for spanning vector m = (1, 1, 2, 4)T on a high-performance �xed-point DSP
core. The TMS320C6416 processor is a LIW processor with six ALUs and two multipliers.
Each unit can perform two 16-bit operations in parallel. The implementation realizes
hard-decision MIMO detection for 4× 4 MIMO and 64-QAM modulation.

Table 5.10: Performance of sphere decoding algorithms with �xed-complexity on SDR pro-
cessors

[LBL+08] [LFN+09] [JSJ09]
MIMO system 4× 4 2× 2
Modulation 64-QAM 16-QAM 64-QAM
Algorithm SSFE

(m = (1, 1, 2, 4))
SSFE (soft-decision,
unknown m)

K-best (K = 8)

Processor TMS320C6416
VLIW DSP

ASIP based
on ADRES
(2× 4 256-bit SIMD)

SB3500
(3 SBX cores)

Clk. frequency 720MHz 400MHz 600MHz
Throughput 37.4Mbps 368Mbps 3.42Mbps

Power ≈1.7W [Hie03] � ≈360mW

Li, Fasthuber et al. [LFN+09] implemented the SSFE algorithm for soft-decision MIMO de-
tection on an ASIP based on the ADRES recon�gurable array (e. g. [MVV+03, SVPG+10])
with a 2× 4 array con�guration and 256-bit SIMD processing units as array elements and
application-speci�c instructions. The used spanning vector is not reported, the results for
16-QAM modulation assume a 2× 2 MIMO system.
Janhunen, Silvén and Juntii [JSJ09] implemented a K-best sphere decoder for K = 8 on
the SB3500 processor (see section 2.3.2) for 2× 2 MIMO and 64-QAM modulation.

143

Chapter 5 Sphere decoding for MIMO detection

The proposed implementation of the FSD algorithm outperforms the SSFE implementation
on the TMS320C6416 processor and the K-best sphere decoder on the SB3500 processor,
while the SSFE implementation on the ASIP based on ADRES achieves apparently a higher
throughput. Yet, the throughput results are only for 2 × 2 MIMO, which is signi�cantly
less complex than 4×4 MIMO. Fasthuber et al. [FLN+09] report that there is a quadratic
growth in complexity for the LLR calculation from 2× 2 to 4× 4 for the SSFE algorithm;
the complexity of the tree level processing grows linearly. Hence, the performance for 4×4
MIMO will be signi�cantly lower. Furthermore, the high throughput can only be reached
with eight 256-bit SIMD processors and application-speci�c instruction set extensions.
If eight 256-bit SIMD cores are available for soft-decision MIMO detection based on the
FSD, a throughput of 259.46Mbps can be reached for a MIMO system with four receive
and transmit antennas.

5.5.4 Improving the FSD performance

The performance results for the FSD algorithm on the proposed scalable SIMD processor
architecture have been obtained without any application-speci�c modi�cations or exten-
sions to the processor architecture. Yet, during the implementation of the FSD algorithm,
performance bottlenecks that can be �xed with small extensions to the instruction set have
been identi�ed. Below, these bottlenecks and potential solutions are brie�y discussed.
The calculation of the squared Euclidean norm (||·||22) is a major performance bottleneck,
as the calculation requires multiple operations and lies in the critical path of the FSD
algorithm. The hard-decision FSD algorithm requires at least 16 squared Euclidean norm
computations and the soft-decision algorithm requires at least 72 squared Euclidean norm
computations for 16-QAM modulation. Each norm computation requires three consecu-
tive operations on the scalable SIMD processor architecture (see �gure 5.15): First the
real and imaginary parts are squared using a multiplication operation. Next real and
imaginary parts are swapped using a permutation operation. In the last step, both values
are accumulated.

1: vmul_f16_rdnsat v0 v0 v0

2: vswap v1 v0

3: vaddsat v0 v0 v1

Figure 5.15: Assembly code fragment for the calculation of the squared Euclidean distance

A specialized squared Euclidean norm operation could possibly perform the same operation
on the VMAC unit in one clock cycle by �rst squaring real and imaginary parts using the
multipliers and then accumulating the results for real part and imaginary part.

144

5.5 Performance analysis

The computation of the best symbol candidate by thresholding (see �gure 5.13) during
the single expansion stages of the FSD is a further performance bottleneck, especially for
16-QAM modulation.

Assembly code for 16-QAM thresholding is displayed in �gure 5.16: First, the absolute
value of the input vector v0 is calculated and the symbol value sym2 is broadcasted to
v4. Next, the absolute value is compared to the threshold for the amplitude of the symbol
vector and sym1 is broadcasted to v5. Then, the amplitude is updated, while the sign is
determined by comparing v0 to zero. In the fourth clock cycle, the sign of the symbol
vector is updated. The VALU is occupied all the time.

1: vabs v2 v0 || vbcst16 v4 r2

2: vcmpgte m1 v2 v1 || vbcst16 v5 r1

3: vcmpgte m2 v2 v3 || vmov_vmac v4 v5 m1

4: vneg v4 v4 m2

Figure 5.16: Assembly code fragment for the thresholding operation during SE stages for
16-QAM modulation

The thresholding is a performance bottleneck if no other useful operations can be done in
parallel, e. g. PED computations on the VMAC. During the soft-decision FSD, PED com-
putations cannot always be done in parallel to the thresholding; hence, the performance
can be improved by speeding up the thresholding operation. The thresholding can be re-
alized using small programmable lookup tables (LUTs) that are distributed to the 16-bit
SIMD lanes. Each LUT contains the possible symbol values; the address is generated from
the MSBs of the data values.

The thresholding requires two operations on the VALU for QPSK modulation; hence, there
is less room for improvement. Yet, QPSK thresholding could also be implemented using
small LUTs.

A further performance bottleneck is the minimum-search during the LLR calculation for
the soft-decision FSD, which requires one vector minimum operation per pair of bits
(in the in-phase and quadrature signal components) and soft-decision list element. The
performance could be improved by computing the required minimum for multiple bits in
parallel. As the channel decoding algorithm (e. g. a turbo decoder or an LDPC decoder)
does not require the LLR values in 16-bit precision, the LLR calculation could be performed
on 8-bit data types, with two 8-bit elements stored in one 16-bit vector element, potentially
leading to a runtime reduction by 50 percent.

145

Chapter 5 Sphere decoding for MIMO detection

5.6 Conclusion

Sphere decoding can be e�ciently realized on arbitrary wide SIMD processor architectures
if two prerequisites are satis�ed. Firstly, a breadth-�rst search strategy has to be applied
to the tree search instead of the original sequential depth-�rst sphere search algorithm.
The FSD algorithm ful�lls this requirement and still achieves close to ML bit error rates.
Secondly, parallel processing of multiple sphere searches has to be enabled, as parallelism
in one sphere search is limited by the size of the modulation symbol alphabet (e. g. four
di�erent symbols for QPSK modulation). Future MIMO systems will probably use OFDM
block modulation. Hence, this requirement is ful�lled, as orthogonal OFDM sub-carriers
can be processed in parallel.
The hard-decision FSD implementation can meet the throughput requirements of 4× 4
MIMO systems based on the LTE frame structure (up to 278.77Mbps for 16-QAM mod-
ulation on a 1024-bit SIMD processor). Due to the signi�cantly increased complexity, the
implemented soft-decision FSD algorithm based on bit-�ipping achieves approximately
half the throughput of the hard-decision FSD algorithm.
The FSD implementation on the scalable SIMD processor architecture achieves approxi-
mately 32 percent of the soft-decision throughput of the best known hardware implemen-
tation [FLN+09], while also consuming more power and requiring more area. Compared
to other SDR implementations, the achieved performance for both hard-decision and soft-
decision MIMO detection is very good.

146

Chapter 6

Decoding of quasi-cyclic low density

parity check codes

The decoding of quasi-cyclic low-density parity check (LDPC) codes on the proposed
scalable SIMD processor architecture is evaluated in this chapter. Section 6.1 describes
the basics of LDPC coding, such as the representation by Tanner graphs and the properties
of quasi-cyclic LDPC codes. The following section (section 6.2) explains the decoding of
LDPC codes by message-passing algorithms. SIMD implementations of WiMAX LDPC
codes are discussed in section 6.3 and their performance is evaluated in section 6.4. Finally,
conclusions are drawn in section 6.5.

6.1 Fundamentals

LDPC codes are parity check codes based on very sparse matrices. The BER performance
of LDPC codes can be close to the Shannon limit [MN97, RSU01, CFRU01]. LDPC codes
have been invented by Gallager and �rst published in his dissertation in 1960 [Gal63].
Yet, interest in LDPC codes only developed after the advent of turbo codes, which were
invented by Berrou and Glavieux in 1993 [BGT93]. LDPC codes were �nally rediscovered
independently by MacKay and Neal [MN95] and by Wiberg [Wib96].

6.1.1 De�nition of LDPC codes

LDPC codes are block codes that are de�ned by a parity check matrix H in GF (2).1 H
is a (N −K)×N matrix, N is the code word length and K is the number of information
bits. The parity check matrix de�nes M = N − K parity check bits. The code rate is
R = K/N . A codeword c = [c1, c2, . . . , cN] is valid if a multiplication with the check
matrix produces the zero vector:

H · cT = 0 (6.1)

1LDPC codes can also be de�ned in GF (q) [DM98, BD03], yet so far these codes have not been considered
in wireless standards.

147

Chapter 6 Decoding of quasi-cyclic low density parity check codes

Each row of the parity check matrix de�nes a parity check condition.
The encoding of a bit sequence b = [b1, b2, . . . , bK] is done by a product with a K × N
generator matrix G:

c = b ·G (6.2)

The generator matrix can be calculated from the parity check matrix in systematic form,
which can be obtained by elementary matrix transformations:

H̃ =
(
−AT IN−K

)
A : K × (N −K) (6.3)

G =
(
IK A

)
(6.4)

In general, the encoding of LDPC codes has a complexity of O (N2), yet Richardson and
Urbanke [RU01] developed a method based on the triangulation of the check matrix that
enables encoding with almost linear complexity.
LDPC codes can be described by the Hamming weights of rows wr and columns wc. In
the graphical representation by Tanner graphs, these values describe the check node and
bit node degrees (see section 6.1.2). A sparse parity check matrix satis�es the conditions
wr � M and wc � N . Codes with a constant row and column weight are called regular
codes. Irregular codes allow di�erent row and column weights in each row and column and
usually achieve better BER performance than regular codes [CFRU01]. Irregular codes
can be described by maximum and minimum row/column weights and the distribution of
weights. Codes for a desired block length can be computed using a method called density
evolution [RSU01].

6.1.2 Representation by Tanner graphs

An LDPC code can be represented by a bipartite graph, whose nodes are divided into two
disjoint sets called bit nodes (or variable nodes) and check nodes. Every edge connects a
bit node to a check node. Bipartite graphs for block codes have been proposed by Tanner
[Tan81] and therefore are denoted as Tanner graphs.
Figure 6.1 shows a Tanner graph for a (7,4)-Hamming code, which is de�ned by the
following parity check matrix:

H =

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

 (6.5)

The check nodes represent the rows and the bit nodes the columns of the parity check
matrix. Edges between bit nodes and check nodes represent the non-zero entries in the
parity check matrix. Hence, a set of bit nodes connected to a check node describes one
parity check equation. Decoding of LDPC codes is done by passing messages along the
edges of the Tanner graphs (see section 6.2).

148

6.1 Fundamentals

Figure 6.1: Tanner graph of a (7,4) Hamming code

6.1.3 Quasi-cyclic LDPC codes

In general, the placement of ones in an LDPC matrix is unstructured, which complicates
the e�cient design of encoders and decoders (in hardware or on a programmable archi-
tecture). Quasi-cyclic LDPC codes are a class of structured codes [TSS+04, Fos04]; the
regular structure simpli�es both encoding and decoding.

A quasi-cyclic LDPC matrix is build from structured sub-matrices. A parity check matrix
H of sizeM×N is de�ned by a block matrix Hb of size mb×nb, which describes z×z sub-
matrices of the parity check matrix. The factor z is called the expansion factor. Di�erent
codes, with di�erent parity check matrix sizes (M = mb · z, N = nb · z), can be de�ned by
using di�erent expansion factors.

The sub-matrices de�ned by block matrix Hb are either empty matrices or circular shifted
identity matrices. The entries of Hb de�ne the circular right shift distance (values between
0 and z − 1) and the position of empty sub-matrices (symbolized by −). The example
below shows the construction of the parity check matrix from a given block matrix Hb for
z = 3.2 Zero elements have been omitted.

2The block matrix Hb has been arbitrarily chosen, the only purpose is demonstrating the construction
of the parity check matrix.

149

Chapter 6 Decoding of quasi-cyclic low density parity check codes

Hb =

[
0 − 2
− 1 1

]
(6.6)

H =

1

1
1

1
1

1
1

1
1

1
1

1

 (6.7)

The regular structure of quasi-cyclic LDPC codes enables an encoding with linear com-
plexity O (N) [SYM08]. Furthermore, z × z sub-matrices can be processed in parallel in
the decoder, as independent pairs of check nodes and bit nodes are processed. Quasi-cyclic
LDPC codes are de�ned in the WiMAX [IEE09b] and IEEE 802.11n [IEE09a] standards.

6.2 Decoding of LDPC codes

The decoding of LDPC codes using Tanner graph is done by iterative message-passing
from bit nodes to check nodes and vice versa. One decoding iteration exchanges messages
between all bit nodes and all check nodes. The decoding iterates either until all parity
check conditions are ful�lled or a maximum number of iterations is reached. Hard-decision
decoding is done using the bit �ipping algorithm [Gal63]. Below, the focus is on soft-
decision decoding. Soft-decision decoders operate on log-likelihood ratios (LLRs), which
describe the probability of bit values (see chapter 5.1.3, equation (5.15)). At the end of
the LDPC decoding, hard-decision output can be generated by returning the sign bits of
the LLR values.
The decoding of LDPC codes by message-passing can be described by the decoding sched-
ule and the applied iterative decoding algorithm.

6.2.1 Decoding schedules

The default schedule for message-passing is the �ooding schedule [Gal63, KF98]. The
�ooding schedule �rst sends messages from all bit nodes to all check nodes. Then, all
check nodes send messages to all bit nodes. Figure 6.2a shows the �ooding schedule for
the (7,4)-Hamming code from �gure 6.1. A �ooding schedule allows parallel processing
of all nodes. The main drawback of the �ooding schedule is its slow convergence rate
[SLG07].
Serial message-passing schedules update check nodes and bit nodes in a serial manner,
which leads to a faster convergence. A variable node serial schedule processes variable

150

6.2 Decoding of LDPC codes

(a) Flooding schedule

(b) Check node serial schedule

Figure 6.2: LDPC decoding with (a) �ooding schedule and (b) check node serial schedule

151

Chapter 6 Decoding of quasi-cyclic low density parity check codes

nodes serially. For each variable node v, messages are sent from v to all check nodes
connected to v. Next, messages are sent from all check nodes connected to v back to the
variable node v. The remaining variable nodes are processed in the same manner.
A check node serial schedule processes check nodes serially. For each check node c, messages
are sent from all bit nodes connected to c to the check node. Then, the check node sends
back messages to all connected bit nodes. Afterwards, the other check nodes are processed
in the same manner. Figure 6.2b shows a check node serial schedule for the (7,4)-Hamming
code.
A serial schedule has a faster convergence rate than the �ooding schedule, as bit node and
check node information is updated during decoding iterations. Sharon, Litsyn and Gold-
berger [SLG04, SLG07] show that serial schedules converge twice as fast as the �ooding
schedule. Hence, the number of decoding iterations can be halved and the throughput of
a decoder potentially doubles. A serial schedule does not allow parallel processing of all
nodes, but the processing may be partially parallelized. In a check node serial schedule,
all bit nodes connected to a check node can be processed in parallel. The decoding of
quasi-cyclic LDPC codes using a serial schedule can also be done by processing z × z
sub-matrices of the parity check matrix in parallel. Furthermore, serial schedules require
less memory than the �ooding schedule (section 6.3, [SLG04]).

6.2.2 Iterative decoding algorithms

Decoding algorithms de�ne the messages that are exchanged between check nodes and bit
nodes. The input for the decoding are the LLRs obtained from demodulation (In). These
LLR values de�ne the intrinsic bit node information Lin of bit node n in the �rst decoding
iteration. The message from bit node n to check node m is denoted as Lin,m. The state of
the check nodes is de�ned by the extrinsic information Ei

m,n for all incoming edges. The set
of bit nodes connected to check node m is denoted as N (m). During the message-passing,
the extrinsic check node information for the currently processed edge from bit node n is
computed from all other incoming edges, except the edge from node n. The reduced set of
bit nodes is denoted as S (m,n) = N (m) \ {n}. The notation is summarized in table 6.1.
The most popular algorithms for soft-decision LDPC decoding are the sum-product or
belief propagation (BP) algorithm [Gal63, Mac99] and various algorithms based on the
min-sum algorithm [Wib96, CDE+05]. Both algorithms can be described by the following
three equations:

Lin,m = Ln − Ei
m,n (6.8)

Ei+1
m,n = f

(
Lin′,m|n′ ∈ N (m) \ {n}

)
(6.9)

Li+1
n = Lin,m + Ei+1

m,n (6.10)

152

6.2 Decoding of LDPC codes

Table 6.1: Notation for LDPC decoding

Notation De�nition

n Bit node index
m Check node index
In Input LLR for bit node n
Lin Intrinsic information of bit node n (in decoding iteration i)
Lin,m Message from bit node n to check node m
Ei
m,n Extrinsic information from check node m to bit node n
N (m) Set of bit nodes connected to check node m
M (n) Set of check nodes connected to bit node n
S (m,n) Set of bit nodes connected to check node m, excluding node n (N (m) \ {n})

The message to the check node Lin,m is calculated by subtracting the old extrinsic check
node information for node n from the intrinsic information Lin of the bit node, later the
new extrinsic check node information is added to Lin,m. Figure 6.3 shows the complete
decoding algorithm for a check node serial schedule.
The min-sum algorithm and the BP algorithm di�er in the update function for the check
node information, as can be seen in the following equations:

fBP
(
Lin′,m|n′ ∈ S (m,n)

)
=

∏
n′∈S(m,n)

sign
(
Lin′,m

)
·Ψ

 ∑
n′∈S(m,n)

Ψ
(
Lin′,m

) (6.11)

with Ψ (x) = − log2 (|tanh (x/2)|)

fmin-sum

(
Lin′,m|n′ ∈ S (m,n)

)
=

∏
n′∈S(m,n)

sign
(
Lin′,m

)
· min
n′∈S(m,n)

∣∣Lin′,m∣∣ (6.12)

The BP algorithm (equation (6.11)) has a signi�cantly higher computational complexity
than the min-sum algorithm (equation (6.12)). Furthermore, the min-sum algorithm re-
quires much less memory [ZC09]. Therefore, the min-sum algorithm has been chosen for
the LDPC decoder implementation on the scalable SIMD processor architecture.
The memory requirements of the min-sum algorithm are low, as it only requires the sign
bits of messages from bit nodes and the minimum of all messages n′ ∈ N (m) \ {n}.
The minimum is either the absolute minimum or the second smallest value (the second
minimum), depending on the value of n. Hence, it is su�cient to store these two minima,
the position of the absolute minimum (for comparing with the node position n), and the
sign bits of all messages.

153

Chapter 6 Decoding of quasi-cyclic low density parity check codes

1: Initialization
2: i← 0
3: E0

m,n ← 0, L0
n ← In ∀n ∈ [1, N] ,∀m ∈M (n)

4: Decoding iteration
5: while i ≤ imax and parity check fails do
6: Loop on check nodes
7: for s = 1 to M do
8: Messages to check node
9: for all n ∈ N (m) do
10: Lin,m ← Lin − Ei

m,n

11: end for
12: Messages to bit nodes
13: for all n ∈ N (m) do
14: Ei+1

n,m ← f
(
Lin′,m|n′ ∈ S (m,n)

)
15: Li+1

n ← Lin,m + Ei+1
n,m

16: end for
17: end for
18: i← i+ 1
19: end while

Figure 6.3: Check node serial iterative decoding algorithm for M ×N LDPC codes

6.3 SIMD implementation of LDPC decoding for

WiMAX

Decoding algorithms for quasi-cyclic LDPC codes de�ned in the WiMAX standard
[IEE09b] have been implemented on the proposed SIMD processor architecture to ana-
lyze the scalability of SIMD processing for LDPC decoding. WiMAX de�nes multiple
codes with di�erent expansion factors z from the same block matrices Hb. The values of
the expansion factor range from 24 to 96 with a stride of four. Codes for z factors 32,
64, and 96 and code rates R = 2/3 and R = 5/6 have been implemented. Code parameters
are listed in table 6.2, the underlying block matrices are shown in table 6.3, empty sub-
matrices are symbolized by gray boxes. The block matrices Hb de�ne cyclic shift distances
for expansion factor z = 96, the shift distance for other values of the expansion factor z is
calculated as:

[Hb,z] (i, j) =

⌊
[Hb] (i, j) · z

96

⌋
(6.13)

154

6.3 SIMD implementation of LDPC decoding for WiMAX

Table 6.2: Implemented WiMAX codes [IEE09b]

N [bit] z factor K [bit] Number of slots
R = 2/3 R = 5/6 QPSK 16-QAM 64-QAM

768 32 512 640 8 4 �
1536 64 1024 1280 16 8 �
2304 96 1536 1920 24 12 8

Di�erent z factors and code rates have been selected to analyze the in�uence of chang-
ing parameters. The codes with expansion factor z = 96 are the computationally most
challenging codes, as they process the biggest matrices and require the most memory for
storing check node information.

The implemented LDPC decoders use 16-bit vector elements for the LLRs, as the scalable
SIMD architecture only supports 16-bit operations. Hardware implementations of LDPC
decoders (e. g. [MS03, RdBKC06, SC08, KW08, MB06]) usually use word lengths between
four and eight bits for LLRs. Hence, one way to achieve better throughput is implementing
support of shorter vector element types on the scalable SIMD architecture.

The implemented LDPC decoders apply a check node serial schedule and use the min-sum
algorithm for decoding. Due to the quasi-cyclic structure of LDPC codes for WiMAX,
z× z sub-matrices of the parity check matrix can be processed in parallel (i. e. z bit nodes
and z check nodes). The serial schedule also allows processing multiple sub-matrices in a
row of Hb in parallel, as all corresponding bit nodes are connected to the same z check
nodes. For SIMD widths less than 1024 bit and SIMD width 1024 bit with z factor 64, the
parallel processing of one sub-matrix is su�cient, as the expansion factor z is a multiple
of the number of 16-bit elements in a vector. The remaining codes require the parallel
processing of multiple z × z sub-matrices on a 1024-bit SIMD processor architecture to
utilize all SIMD lanes e�ciently.

Below, the basic algorithm for min-sum decoding and its memory requirements are ex-
plained �rst. Next, the algorithm implementation for the parallel processing of one sub-
matrix is presented. In the last subsection, the extension to the parallel processing of
multiple sub-matrices and the limitations of this approach are discussed. The imple-
mented LDPC decoders perform a �xed number of iterations and generate hard-decision
output afterwards.

155

Chapter 6 Decoding of quasi-cyclic low density parity check codes

Table 6.3: Block matrices for WiMAX [IEE09b]

Hb for code rate R = 5/6
1 25 55 47 4 91 84 8 86 52 82 33 5 0 36 20 4 77 80 0

6 36 40 47 12 79 47 41 21 12 71 14 72 0 44 49 0 0 0 0
51 81 83 4 67 21 31 24 91 61 81 9 86 78 60 88 67 15 0 0
68 50 15 36 13 10 11 20 53 90 29 92 57 30 84 92 11 66 80 0

Hb for code rate R = 2/3
3 0 2 0 3 7 1 1 1 0

1 36 34 10 18 2 3 0 0 0
12 2 15 40 3 15 2 13 0 0
19 24 3 0 6 17 8 39 0 0

20 6 10 29 28 14 38 0 0 0
10 28 20 8 36 9 21 45 0 0

35 25 37 21 5 0 4 20 0 0
6 6 4 14 30 3 36 14 1 0

6.3.1 Algorithm for min-sum decoding

The min-sum decoding algorithm based on equations (6.8), (6.10), and (6.12) consists of
two processing steps: calculating messages and updating the check node state based on
incoming messages. The check node state can be described by the parameters in table 6.4.
The algorithms for calculating messages and updating the check node state are shown in
�gure 6.4 and �gure 6.5 respectively.

1: if n 6= M i
m,pos then

2:
∣∣Ei

m,n

∣∣←M i
m,min

3: else
4:

∣∣Ei
m,n

∣∣←M i
m,min2

5: end if
6: s← pisign,m ⊕ sin,m
7: Lin,m ← Lin − (−1)s ·

∣∣Ei
m,n

∣∣
Figure 6.4: Message calculation for message from bit node n to check node m using the

min-sum algorithm

156

6.3 SIMD implementation of LDPC decoding for WiMAX

Table 6.4: Notation for min-sum decoding

Notation De�nition

pisign,m Product of sign bits of incoming messages at check node m
M i

m,min Minimum of incoming messages at check node m
M i

m,min2 Second minimum (second smallest value) of incoming messages at
check node m

M i
m,pos Bit node position of the minimum of incoming messages at check

node m
sin,m Sign bit for message form bit node n to check node m

During the calculation of message Lin,m from bit node to check node, the sign of Ei
m,n is

calculated by an exclusive or of the sign sin,m for the message from the current bit node
to the current check node and the sign product of all messages from bit nodes pisign,m.
The amplitude is selected based on the position of the current node n and the minimum
position M i

m,pos. Based on the calculated sign s,
∣∣Ei

m,n

∣∣ has either to be subtracted or
added to the intrinsic information Lin of the bit node. This can be implemented by a
conditional add/subtract operation, using the sign bit as condition. The update of the bit
node based on the extrinsic information of the check node can be calculated in a similar
manner.

The update of the check node state (�gure 6.5), consists of updating the minimum, second
minimum (the second smallest value), minimum position, and sign product. The sign bit
of the incoming message also has to be saved.

The memory requirements of the min-sum algorithm are low. The signs sin,m and the sign
product pisign,m can be computed using mask vectors and later merged in 16-bit values to
reduce the memory requirements. Overall, the min-sum algorithm requires saving minima
(M i

m,min, M
i
m,min2), minimum position M i

m,pos, signs, and the messages from the bit nodes
(Lin,m), which are needed for the following update of the bit nodes. If a serial schedule is
applied to the decoding process, the intrinsic bit node information Lin can be overwritten
with the message to the check node Lin,m, which further reduces the memory requirements.
For N bit nodes, M check nodes and a regular code with constant row weight wr the total
memory requirement in 16-bit values is:

MEM = N +M ·
(

3 +

⌈
wr + 1

16

⌉)
(6.14)

157

Chapter 6 Decoding of quasi-cyclic low density parity check codes

1: M i+1
m,min ← MAXINT

2: M i+1
m,min2 ← MAXINT

3: pi+1
sign,m ← 0

4: for all n ∈ N (m) do
5: si+1

n,m ← sign
(
Lin,m

)
6: pi+1

sign,m ← pi+1
sign,m ⊕ si+1

n,m

7: if
∣∣Lin,m∣∣ < M i+1

m,min then

8: tmp←M i+1
m,min

9: M i+1
m,min ←

∣∣Lin,m∣∣
10: M i+1

m,pos ← n
11: else
12: tmp←

∣∣Lin,m∣∣
13: end if
14: if tmp < M i+1

m,min2 then

15: M i+1
m,min2 ← tmp

16: end if
17: end for

Figure 6.5: Check node update based on incoming message for min-sum algorithm

6.3.2 Implementation for the parallel processing of one sub-matrix

The min-sum algorithm can be applied to z × z sub-matrices in parallel for quasi-cyclic
LDPC codes. The cyclic shift can be implemented by one or several vector rotation
operations depending on the number of vectors required for z bit nodes. If multiple
vectors are required, data from consecutive vectors has to be merged by masked move
operations. An example for z = 12 and V = 4 elements in a vector is shown in �gure 6.6.
The vector masks for moving data can be computed from the rotation distance using a
special instruction, which sets the �rst k mask elements to one based on a scalar input k.
The rotation operations enclose the processing of messages from bit nodes to check nodes
and, later on, from check nodes back to bit nodes: Before calculating the messages from
bit nodes to check nodes for one z × z sub-matrix, the intrinsic bit node data vectors
are right shifted. After �nishing the calculations for the bit node updates with the new
extrinsic check node information, the shift operation is reversed by a rotation to the left.
The check node or bit node update and cyclic shift or inverse cyclic shift are performed in
one loop or split into a pair of loops dependent on the number of data vectors required for
the processing of a z × z sub-matrix. For each vector with intrinsic bit node information
Lin, three vectors for the old extrinsic check node information Ei

m,n (minimum, second
minimum, and minimum position) and three vectors for the new extrinsic check node

158

6.3 SIMD implementation of LDPC decoding for WiMAX

Figure 6.6: Cyclic right shift by two for z = 12 and V = 4: First, all vectors are rotated,
next values from distinct vectors are merged by masked move operations.

information Ei+1
m,n are required. All these values have to be stored in general-purpose

vector registers (signs are stored in mask registers). As only 16 general-purpose vector
registers are available, at most two bit node vectors can be processed in parallel. Yet, the
cyclic shift operation requires all bit node vectors. Therefore, the check node or bit node
update has to be split into two loops if the expansion factor z is greater than twice the
vector length: One loop performs the cyclic shift of z bit nodes; the other loop performs the
check node or bit node update. Table 6.5 lists combinations of SIMD width and expansion
factor that require separate loops.

Table 6.5: Decomposition of check node/bit node update operations and cyclic shifts into
loops: Table entries marked by Xdo not require separate permutation loops.

SIMD width z = 32 z = 64 z = 96
128-bit separate separate separate
256-bit X separate separate
512-bit X X separate
1024-bit X X separate

After �nishing a �xed number of decoding iterations, hard-decision output is generated
from the LLR values by selecting the sign bits of LLR values as the hard bits.

159

Chapter 6 Decoding of quasi-cyclic low density parity check codes

6.3.3 Implementation for the parallel processing of multiple

sub-matrices

A parallel processing of multiple sub-matrices is necessary if the expansion factor is not
a multiple of the vector length (z = 32 and z = 96, SIMD width 1024 bit, V = 64
elements in a vector). Parallel processing of multiple sub-matrices can be done either
by processing multiple sub-matrices in one row of the block matrix Hb in parallel or by
processing multiple code words in parallel.

Parallel processing of sub-matrices in a row of Hb

Parallel processing of multiple sub-matrices in one row of Hb is possible, because the
same z check nodes are processed for di�erent bit nodes. Yet, this approach has several
disadvantages. Firstly, the parallel processing of sub-matrices requires vector rotation
operations on segments of vectors, as di�erent cyclic shifts are necessary for the various sub-
matrices. An example is shown in �gure 6.7 on the left-hand side. Rotation operations on
sub-matrices can be performed on any of the implemented permutation networks; however,
these permutations are not supported by rotation instructions. Hence, the permutation
patterns have to be manually de�ned and stored in permutation registers. This approach
is laborious and requires a lot of memory for storing the permutation patterns. Secondly,

Figure 6.7: Parallel processing of sub-matrices in a row of Hb for z = 4, V = 8: The values
of the elements of Hb in the example are 1, 3, 1,−, 2,−.

empty sub-matrices require merging data from several data vectors, which introduces
further overhead. An example is shown on the right-hand side of �gure 6.7. The third
disadvantage is that, after processing all non-empty sub-matrices in a row of Hb during the
message-passing from bit nodes to check nodes, the check node information from di�erent
vector segments has to be combined, because all segments contain information for the same

160

6.3 SIMD implementation of LDPC decoding for WiMAX

z bit nodes. The combining of check node information from di�erent vector segments leads
to a further performance degradation.

Parallel processing of code words

The parallel processing of sub-matrices from di�erent code words is done by merging input
data from di�erent code words before the LDPC decoding, e. g. half of the elements in
a vector are taken from the �rst code word and half of the elements are taken from the
second code word. Compared to the parallel processing of sub-matrices in a row of Hb, this
approach requires more memory, for storing the check node information of two code words,
and has a higher initial latency. Yet, an overhead due to empty sub-matrices as well as the
combining of check node information from di�erent vector segments can be avoided. The
parallel processing of code words also requires rotations on segments of a vector, but the
rotation distance is the same for all segments. Dependent on the permutation network,
the rotations still can be realized by (modi�ed) vector rotation operations. The parallel
processing of code words introduces an overhead for merging and later separating data
from di�erent code words. The merging and separating have to be done once per pair of
code words; hence, the overhead does not depend on the number of decoding iterations.
Furthermore, the separation of code words can be done in one step with the generation
of hard-decision output. Overall, the merging and separation of code words increases the
runtime by two clock cycles per input vector, as the results in section 6.4 will show, this
overhead is negligible.
As the parallel processing of code words has some advantages compared to the parallel
processing of sub-matrices in a row of the block matrix Hb, this approach has been selected
for the LDPC decoders for expansion factors 32 and 96 on the 1024-bit SIMD processors.
Di�erent implementations have been chosen for crossbar and inverse butter�y permutation
networks.
On a crossbar network, the merging of code words can be done by interleaving values from
code words. The basic approach is shown in �gure 6.8a. An interleaving of values enables
to perform cyclic shifts by simply doubling the rotation distance. No further changes are
necessary for any part of the processing.
On an inverse butter�y network, the interleaving of code words is not a viable approach,
as the required permutation is too complex and requires log2 (V + 1) permutation stages
(on pairs of vectors). Therefore, a block interleaving (see �gure 6.8b) has instead been im-
plemented for the processing on inverse butter�y networks. In a block-interleaved format,
cyclic shifts have to be performed by rotations on vector segments. The permutations
are de�ned by permutation patterns in permutation registers. For the LDPC codes with
expansion factor z = 96, vector masks for the merging of rotated values from di�erent
values also have to be stored in memory, as the masks cannot be automatically generated.
Figure 6.9 illustrates the required operations for a cyclic shift for an example with z = 12

161

Chapter 6 Decoding of quasi-cyclic low density parity check codes

(a) Crossbar network (b) Inverse butter�y network

Figure 6.8: Merging of code words for parallel processing

and V = 8. The required memory for storing permutation patterns and vector masks is
listed in table 6.6.

Figure 6.9: Cyclic right shift by two for z = 12 and V = 8 for block-interleaved parallel
processing of code words

6.4 Performance analysis

In the following, the performance of the decoding of quasi-cyclic LDPC codes for WiMAX
on the scalable SIMD processor architecture is analyzed. First, throughput and speedup
results are presented. Then, the LIW resource utilization and the performance of bit node
and check node update loops are examined. The section concludes with a comparison of the
results to other LDPC decoder implementations for WiMAX and an overview of possible
application-speci�c instruction set extensions, which could improve the performance of
LDPC decoding.

162

6.4 Performance analysis

Table 6.6: Required memory for permutation patterns and masks for cyclic shifts on seg-
ments of vectors on a 1024-bit SIMD processor with an inverse butter�y network

z factor No. of patterns Memory
32 80 5 kB
96 80 5 kB + 1kB for masks

6.4.1 Throughput and speedup results

Throughput results for the implemented LDPC decoders have been obtained under the
assumption that 10 decoding iterations are done, which is an appropriate value for decoding
with a serial schedule3. The throughput results only contain the user data bits, as parity
check bits are no longer needed after the LDPC decoding. The number of user data bits
is given by the code rate R and the number of columns in the parity check matrix.
The obtained throughput results are listed in table 6.7. The maximum throughput that
can be achieved is 36.58Mbps for R = 5/6 and z = 64 on a 1024-bit SIMD processor.
The throughput is su�cient for 3G systems, yet nowhere close to the requirements of 4G
systems. The throughput for R = 2/3 is lower as the number of user data bits is reduced
and as a di�erent LDPC matrix is used. The LDPC matrices for R = 2/3 have twice as
many rows and half as many ones per row as the LDPC matrices for R = 5/6. Hence, the
overall complexity is the same, except for the initialization of check nodes (i. e. M i

m,min,
M i

m,min2), which requires twice as many operations for R = 2/3.
Variations in throughput results for di�erent expansion factors occur due to di�erent
implementations of cyclic shift operations, i e. if the cyclic shift operations have to be
done in a separate loop from the check node/bit node processing, the performance is
reduced.
Speedup results for the LDPC decoding are presented in �gure 6.10. The speedup is
measured in comparison to the performance on a 128-bit SIMD processor (all 128-bit SIMD
processors achieve the same throughput). The speedup results show minimal di�erences
between codes with rate R = 5/6 and codes with rate R = 2/3.
Speedups better than linear speedup can be achieved if an increasing SIMD width leads to
a more e�cient decomposition of the processing stages. For example, the LDPC decoder
implementation for z = 32 on a 128-bit SIMD processor architecture requires separate
loops for the cyclic shift permutations (see table 6.5). The pair of loops for the cyclic shift
and the inverse cyclic shift requires four clock cycles per vector for loading and storing
data vectors, which leads to a decreased performance. If the SIMD width is increased from

3The referenced architectures in section 6.4.3 also use at most 10 decoding iterations.

163

Chapter 6 Decoding of quasi-cyclic low density parity check codes

Table 6.7: Throughput of LDPC decoding with 10 decoding iterations

SIMD architecture Throughput [Mbps], R = 5/6 Throughput [Mbps], R = 2/3
z = 32 z = 64 z = 96 z = 32 z = 64 z = 96

128-bit 3.93 4.05 3.94 3.11 3.20 3.04
256-bit Bfy1/Cross1 8.84 7.87 7.88 6.82 6.21 5.87
256-bit Bfy2/Cross2 9.16 7.87 7.88 7.04 6.21 5.87
512-bit Bfy1/Cross1 18.29 17.85 15.12 14.04 13.88 11.63
512-bit Bfy2/Cross2 18.29 18.50 15.12 14.04 14.35 11.63
1024-bit Bfy1 36.42 36.59 29.39 27.95 28.07 22.62
1024-bit Cross1 36.41 36.59 30.13 27.94 28.07 23.17
1024-bit Bfy2 36.28 36.59 29.39 27.75 28.07 22.62
1024-bit Cross2 36.41 36.59 30.13 27.94 28.07 23.17

128 to 256 bit, the permutations can be combined with the check node and the bit node
update, leading to a better performance.
On a 1024-bit SIMD processor architecture, the decoding for expansion factors z = 32
and z = 96 is done by processing sub-matrices from two code words in parallel, because
the expansion factors are no longer multiples of the SIMD vector length. The speedup
results for parallel processing of code words are similar to the speedup results for the
parallel processing of one z× z sub-matrix. Hence, the expansion factor z is no hard limit
for parallel SIMD processing. For z = 96, the speedup on inverse butter�y networks is
degraded (for 1024-bit SIMD processors), because vector masks and permutation patterns
for the cyclic shift operation on segments of vectors have to be read from memory. The
memory access cannot be hidden by LIW processing, as the performance of the loops that
realize the cyclic shift operations is already determined by memory access. For z = 32,
permutation patterns can be loaded in parallel to the processing of messages from bit node
to check node or vice versa � vector masks are not required at all for z = 32.

6.4.2 LIW resource utilization

Table 6.8 describes resource utilization and throughput of check node and bit node update
loops for all SIMD processors and all implemented expansion factors. The performance
of permutation loops is not discussed. Separate permutation loops for cyclic shifting of z
bit nodes always require two clock cycles per vector for loading and storing the bit nodes.
The permutations can be done in parallel to memory access.

164

6.4 Performance analysis

1

2

3

4

5

6

7

8

9
Sp

ee
du

p
vs

. 1
28

-B
it

B
fy

1/
C

ro
ss

1

z=32, R=5/6 z=32, R=2/3 z=64, R=5/6 z=64, R=2/3 z=96, R=5/6 z=96, R=2/3
1024-Bit Cross1 9.25 8.99 9.04 8.76 7.64 7.61
1024-Bit Bfy1 9.25 8.99 9.04 8.76 7.45 7.43
1024-Bit Cross2 9.25 8.99 9.04 8.76 7.64 7.61
1024-Bit Bfy2 9.22 8.93 9.04 8.76 7.45 7.43
512-Bit Bfy1/Cross1 4.65 4.52 4.41 4.34 3.83 3.82
512-Bit Bfy2/Cross2 4.65 4.52 4.57 4.48 3.83 3.82
256-Bit Bfy1/Cross1 2.25 2.20 1.94 1.94 2.00 1.93
256-Bit Bfy2/Cross2 2.33 2.27 1.94 1.94 2.00 1.93
128-Bit Bfy1/Cross1 1.00 1.00 1.00 1.00 1.00 1.00
128-Bit Bfy2/Cross2 1.00 1.00 1.00 1.00 1.00 1.00

0

1

Figure 6.10: Speedup of LDPC decoding compared to a 128-bit SIMD processor with a
single-vector inverse butter�y network

In table 6.8, the column marked with Rot. distinguishes loops with combined bit/check
node update and cyclic shift (marked byX) from loops without cyclic shift (i. e. the shifting
is done in separate loops). The table lists the average number of parallel operations in
one instruction (Npar.∅) and the resource utilization of the VALU (RVALU). The resource
utilization of the VMAC is not listed, as the LDPC decoding does not require MAC
operations or multiplications. The last column lists the processing time per bit node
vector in clock cycles.

A check node update loop without permutations requires eight clock cycles per vector
for calculating the messages from bit nodes to check nodes and updating check node

165

Chapter 6 Decoding of quasi-cyclic low density parity check codes

Table 6.8: LIW resource utilization of bit node and check node update loops

SIMD width z Description Rot. Npar.∅ RVALU Cycles/
vector

256-bit Bfy1/Cross1
32

Check node update
X

2.667 88.89% 9
Bit node update 3.875 75% 4

256-bit Bfy2/Cross2
Check node update

X
2.588 94.12% 8.5

Bit node update 3.375 75% 4

512-bit Bfy1/Cross1
32

Check node update
X

2.875 100% 8
Bit node update 3.333 66.67% 4.5

512-bit Bfy2/Cross2
Check node update

X
3.000 100% 8

Bit node update 3.556 66.67% 4.5

512-bit Bfy1/Cross1
64

Check node update
X

2.667 88.89% 9
Bit node update 3.875 75% 4

512-bit Bfy2/Cross2
Check node update

X
2.588 94.12% 8.5

Bit node update 3.375 75% 4

1024-bit Bfy1

32

Check node update
X

2.706 94.12% 8.5
Bit node update 3.5 75% 4

1024-bit Cross1
Check node update

X
2.875 100% 8

Bit node update 3.33 66.67% 4.5

1024-bit Bfy2
Check node update

X
2.647 94.12% 8.5

Bit node update 3.375 75% 4

1024-bit Cross2
Check node update

X
3.000 100% 8

Bit node update 3.56 66.67% 4.5

1024-bit Bfy1/Cross1
64

Check node update
X

2.875 100% 8
Bit node update 3.333 66.67% 4.5

1024-bit Bfy2/Cross2
Check node update

X
3.000 100% 8

Bit node update 3.556 66.67% 4.5
Other combinations of z Check node update 2.625 100% 8

and SIMD width Bit node update 3.833 100% 3

minima and sign bits. The resource utilization of the VALU is 100 percent; hence, a faster
processing is not possible. A bit node update loop without permutations takes three clock
cycles per vector for calculating the messages from check nodes to bit nodes and updating
the bit nodes. Again, the VALU is performing useful computations in each clock cycle.
Furthermore, the average number of parallel operations per LIW instructions is close to
the number of available instruction slots. In sum, the check node and bit node updates
require 11 clock cycles per vector if the cyclic shift of bit nodes is done in a separate loop.

166

6.4 Performance analysis

In case permutations for cyclic shifts are performed in the bit node and check node update
loops, the processing of both loops requires on average between 12.5 and 13 clock cycles
per vector, which is an increase of between 1.5 and 2 clock cycles. As performing cyclic
shifts in separate loops requires 4 clock cycles per vector, the throughput is higher if cyclic
shifts can be combined with the check node and the bit node update loops.

6.4.3 Comparison to other architectures

Table 6.9 lists the performance and parameters of selected ASIC implementations and one
SDR implementation of LDPC decoding for WiMAX. The ASIC implementations with
the highest throughputs and the greatest �exibility have been listed.

Table 6.9: Overview of LDPC decoder implementations for WiMAX

[KW08] [SC08] [SZLW07] [SMZC07]
ASIC ASIC ASIC SODA PE

Technology 0.18µm 90nm 0.13µm 0.18µm
Parallel units 24 96 � 32
Frequency 100MHz 400MHz 83.3MHz 400MHz
Code rate all all 1/2 5/6
z factor all all all 96

Quantization 5 bit 8 bit � 16 bit
Max. iterations 10 10 8 10

Algorithm min-sum BP min-sum min-sum
Max. throughput 68Mbps 1Gbps 30.3Mbps 18.3Mbps /

30.4Mbps (ASP)
Area 55 kgates 13.5mm2 8.29mm2 ≈ 5.1mm2

Power [mW] 165 410 52 ≈730

The LDPC decoders implemented by Kuo and Willson [KW08] and by Sun and Cavallaro
[SC08] support all WiMAX code rates and expansion factors. The decoder in [SC08] also
supports all quasi-cyclic LDPC codes de�ned by IEEE 802.11n. The LDPC decoder chip
by Shih et al. [SZLW07] supports all rate 1/2 codes de�ned by WiMAX.
The decoder by Sun and Cavallaro achieves the highest throughput of all ASIC implemen-
tations with a maximum throughput of 1Gbps, at the cost of high power consumption.
The decoder by Shih et al. achieves the lowest power consumption � and the lowest
throughput.

167

Chapter 6 Decoding of quasi-cyclic low density parity check codes

In comparison to these architectures, the throughput results on the scalable SIMD proces-
sor architecture are close to the throughput results on the low-power LDPC decoder chip
by Shih et al. (max. 36.59Mbps on a 1024-bit SIMD processor for z = 64 and R = 5/6),
while the power consumption is closer to the high-performance LDPC decoder by Sun
and Cavallaro (≈ 287mW on a 1024-bit SIMD processor with a single-vector permutation
network for z = 64 and R = 5/6 without memories, see chapter 7.1). One reason for the
low throughput on the scalable SIMD processor architecture is the used quantization of
LLRs. As the SIMD processor architecture only supports 16-bit vector elements, LLRs
are represented by 16-bit values. LDPC decoding in ASICs is usually done with LLRs
values quantized to between four and eight bits.
Seo et al. [SMZC07] implemented LDPC decoding for one WiMAX code (z = 96, R =
5/6) on one 512-bit SIMD SODA PE. At the maximum clock frequency of 400MHz, a
decoding throughput of 18.3Mbps is achieved, which is approximately 21 percent higher
than the throughput on one of the proposed 512-bit SIMD processors at 300MHz. Seo et
al. also presented an LDPC decoding ASP based on SODA. The ASP contains LDPC
accelerator units, which perform the processing of the extrinsic check node information
Ei
m,n. Furthermore, memory units perform the cyclic shifting of z× z sub-matrices during

memory access. Hence, there is no need for vector permutations. As a third optimization,
bu�ers have been designed, which store messages between check nodes and bit nodes as
well as the extrinsic check node information. Special instructions allow accessing these
bu�ers. The optimizations lead to an increased throughput of 30.4Mbps.

6.4.4 Improving the LDPC decoding performance

In the following, possible modi�cations on the scalable SIMD processor architecture that
could potentially lead to signi�cant performance gains are discussed. Modi�cations for
improving the SIMD scalability (i. e. for SIMD widths greater than the expansion factor
z) are discussed in chapter 7.3 and not considered in this section.

Quantization of LLR values

Assuming that the z factor is su�ciently large compared to the SIMD vector length, the
LDPC decoding throughput could be doubled by adding support for 8-bit data types
in the VALU and the VPU and performing two 8-bit operations instead of one 16-bit
operation. Changes on the other SIMD processing units are not required. 8-bit support
increases the complexity of the permutation network (e. g. one additional permutation
stage for an inverse butter�y network) and requires some small modi�cations on the VALU.
Furthermore, mask values also need to be provided for each 8-bit vector element.

168

6.4 Performance analysis

In principle, the word length of LLR values could be further reduced to four bits, leading to
a potential quadrupling of the throughput. However, the quantization leads to a degraded
BER performance.

Instruction set extensions for LDPC decoding

The performance of LDPC decoding on the scalable SIMD architecture is limited by the
utilization of the VALU, which is required for computing messages from bit nodes to
check nodes (and vice versa) and the update of the extrinsic check node information. The
runtime of both processing steps could potentially be reduced by custom instructions.
The message computations can be sped up by a custom instruction for the calculation of
Ei
m,n (and Ei+1

m,n), which implements the algorithm segment in �gure 6.11. The custom
instruction selects the absolute value of the extrinsic check node information based on a
comparison of the current node position n and the minimum position. The sign bit of
Ei
m,n is computed by an exclusive or operation of the sign product and the sign bit for the

current position.

1: if n 6= M i
m,pos then

2:
∣∣Ei

m,n

∣∣←M i
m,min

3: else
4:

∣∣Ei
m,n

∣∣←M i
m,min2

5: end if
6: Ei

m,n ← (−1)(p
i
sign,m⊕sin,m) ·

∣∣Ei
m,n

∣∣
Figure 6.11: Calculation of Ei

m,n during the message-passing

The performance of the check node update could be improved by adding a custom instruc-
tion for the update of the minimumM i

m,min and its position based on an incoming message
x =

∣∣Lin,m∣∣. The custom instruction in �gure 6.12 compares and conditionally swaps the
incoming message x and the minimum M i

m,min. Furthermore, the minimum position is
updated.

1: if x < M i
m,min then

2: x←M i
m,min

3: M i
m,min ← x

4: M i
m,pos ← n

5: end if

Figure 6.12: Update of minimum and minimum position during the check node update

169

Chapter 6 Decoding of quasi-cyclic low density parity check codes

Both proposed instructions require additional register ports for accessing all operands. The
number of register ports could be reduced by adding local state registers to the processing
units, which contain the check node state, i. e. the minima M i

m,min and M i
m,min2, the

minimum position M i
m,pos and the required sign bits sin,m and pisign,m. In this case, further

instructions have to be added for initializing and reading the local registers.

6.5 Conclusion

Parallel SIMD processing of quasi-cyclic LDPC codes can be e�ciently done by processing
z×z sub-matrices in parallel. Yet, the results in section 6.4 also demonstrate that parallel
SIMD processing is not limited by the expansion factor z. If the expansion factor z is not
equal to or a multiple of the SIMD width, close to linear speedup can still be achieved
by processing multiple code words in parallel. However, this approach requires more
complex permutation patterns for cyclic shift operations on vector segments. Hence, the
expansion factor z can be seen as a soft limit for the scalability of the SIMD vector length:
performance gains are possible for vector lengths greater than z, yet the vector length
should not be set to arbitrarily large values.
While LDPC decoding can be done on the proposed scalable SIMD architecture, through-
put and power consumption are signi�cantly worse than in state-of-the-art LDPC decoding
ASICs. One reason for the low throughput and the high power consumption is the quanti-
zation of LLR values (16 bits). A reduced word length of eight bits for LLR values would
not lead to a signi�cant performance degradation and enable to either achieve higher
throughput (by processing twice as many bit nodes in parallel) or reduce the power con-
sumption (by reducing the SIMD bit width). The throughput is further limited by the
instruction set, as message-passing and check node update have to be done by a series of
operations on the VALU.
If the �exibility of a programmable processor architecture is desired for LDPC decod-
ing, the proposed SIMD processor architecture should be replaced by an optimized ASIP
based on SIMD processing. Such an ASIP could implement custom instructions for LDPC
decoding (e. g. as in section 6.4.4) and possibly the decoding of turbo codes as well.
Furthermore, unused processing units (e. g. the VMAC) could be removed, reducing the
processor area and power consumption (by reducing the number of register �le ports and
possibly LIW instruction slots).

170

Chapter 7

Evaluation of the SIMD architecture

e�ciency

The previous chapters focused on the mapping of key physical layer algorithms on SIMD
processors with LIW support and the scalability of the performance of these algorithms.
This chapter completes the evaluation of the scalability of SIMD processing by a discussion
of its costs: energy consumption and chip area. Power and energy consumption and chip
area estimates have been obtained from the gate level SIMD processor models, using the
methodology described in chapter 3.4.
Section 7.1 discusses area and power consumption �gures for the implemented SIMD pro-
cessors. Area and power consumption estimates for data and program memory based
on the on-line tool CACTI [TMAJ08] are also presented. The following section (section
7.2) focuses on the energy and area e�ciency of SIMD processing. Results show that
wide SIMD processors achieve better energy e�ciency than SIMD processors with a small
number of parallel data paths. Section 7.3 addresses possible architectural changes, which
could further improve the scalability by overcoming the limitations of SIMD processing for
the discussed algorithms. The last section (section 7.4) addresses another cost of SIMD
processing � the parallel programming model. In this context, vectorization techniques
for compilers are brie�y discussed.

7.1 Area and power consumption results

Table 7.1 summarizes area and average power consumption �gures for all synthesized
SIMD processor architectures. The average power consumption has been computed by
averaging the power consumption of all implemented FFT, sphere decoding, and LDPC
decoding algorithms. Next to columns listing chip area in square millimeters and power
consumption in milliwatts, the table also contains columns with normalized area and power
consumption �gures. Area and power have been normalized to a 128-bit SIMD processor
with a single-vector inverse butter�y network for vector permutations. This processor

171

Chapter 7 Evaluation of the SIMD architecture e�ciency

architecture has the lowest complexity and achieves the worst throughput results for all
implemented algorithms.

Table 7.1: Area and power consumption results for the scalable SIMD processor architec-
ture

SIMD
width

Network Area [mm2] Norm. area Power [mW] Norm. power

128 bit

Bfy1 0.456 1.00 42.14 1.00
Cross1 0.456 1.00 41.98 1.00
Bfy2 0.497 1.09 45.17 1.07
Cross2 0.508 1.11 45.36 1.08

256 bit

Bfy1 0.831 1.82 74.68 1.77
Cross1 0.842 1.85 75.49 1.79
Bfy2 0.914 2.00 81.51 1.93
Cross2 0.968 2.12 81.46 1.93

512 bit

Bfy1 1.575 3.45 141.89 3.37
Cross1 1.627 3.57 142.38 3.38
Bfy2 1.768 3.88 158.32 3.76
Cross2 1.973 4.33 158.41 3.76

1024 bit

Bfy1 3.140 6.88 289.12 6.86
Cross1 3.334 7.31 291.75 6.92
Bfy2 3.507 7.69 321.79 7.64
Cross2 4.370 9.58 325.44 7.72

Normalized power consumption and area have also been plotted in �gure 7.1 and �gure 7.2,
respectively. The diagrams show four di�erent curves for SIMD processors with single-
vector inverse butter�y networks, single-vector crossbar networks, double-vector inverse
butter�y networks, and double-vector crossbar networks.

7.1.1 Average power consumption

The power consumption results show minimal di�erences between processors with cross-
bar and inverse butter�y networks if network width and SIMD width are the same. The
di�erence between crossbar network and inverse butter�y network increases with the
SIMD width. A 1024-bit SIMD processor with a double-vector crossbar network consumes
3.65mW more power than the same processor with a double-vector inverse butter�y net-
work. For 1024-bit SIMD processors with single-vector networks the di�erence in power

172

7.1 Area and power consumption results

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

128 Bit 256 Bit 512 Bit 1024 Bit

N
or

m
al

iz
ed

 p
ow

er

Cross2

Bfy2

Cross1

Bfy1

128 Bit 256 Bit 512 Bit 1024 Bit

Figure 7.1: Normalized power consumption

consumption between crossbar and inverse butter�y networks is 2.63mW. Processors with
double-vector networks require approximately 10 percent more power than processors with
single-vector networks. The increased power consumption results from the greater com-
plexity of the permutation network and the increased number of register �le ports, which
leads to an increased register �le complexity.
Figure 7.1 and table 7.1 show that the power consumption does not double with a doubling
of the SIMD width. This can be explained by the overhead for the scalar data path and
especially for the LIW decoding: A doubling of the SIMD width leads to double the
number of SIMD lanes and an increased complexity of the permutation network, yet area
and power consumption of the scalar data path and the instruction decoding logic do not
scale at all. Hence, wide SIMD processors are more energy and area e�cient than SIMD
processors that process narrow vectors � assuming the performance of algorithms scales
with the SIMD width.
Table 7.1 and �gure 7.1 also show a jump in power consumption from 512-bit to 1024-bit
SIMD processors. The power consumption increases due to ine�cient RTL code generated
from LISA for the distribution of control signals from instruction decoder to SIMD pro-
cessing lanes: Control signals for the processing in the EX pipeline stage, such as opcodes
and register addresses, are distributed to pairs of 16-bit lanes in the RF pipeline stage.
Hence, for 64 16-bit lanes a fan-out of 32 is expected. Yet, the RTL code generated by

173

Chapter 7 Evaluation of the SIMD architecture e�ciency

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

128 Bit 256 Bit 512 Bit 1024 Bit

N
or

m
al

iz
ed

 a
re

a

Cross2

Bfy2

Cross1

Bfy1

128 Bit 256 Bit 512 Bit 1024 Bit

Figure 7.2: Normalized area

LISA contains enable signals for some of the control signals, which are connected to all
signal bit lines. The high fan-out for the enable signals (32× the number of bits for the
control signal) leads to an increased power consumption of the synthesized model. There-
fore, wide SIMD processors that are intended as components of actual SDR systems and
not just for a design space exploration (as in this thesis) should not be modeled in LISA.

7.1.2 Area

The SIMD processor chip area does not double from 128-bit to 256-bit SIMD, because
of the constant overhead for the scalar data path and especially the instruction decoding
logic (more than 25 % of the total area for 128-bit SIMD processors). If the SIMD width
is further increased, the relative overhead for instruction decoding and scalar data path
is reduced and the slope of the area curves in �gure 7.2 is mostly determined by the
complexity of the permutation network.
Table 7.2 lists total area and normalized area of the vector permutation unit (VPU) for
all implemented permutation networks. Results for the 128-bit SIMD processor with a
single-vector crossbar network have not been obtained, because the design hierarchy has
been ungrouped during synthesis. The area of the permutation networks depends on the
number of 16-bit input elements N and the network topology. Theoretically (see chapter

174

7.1 Area and power consumption results

3.1.5), the area of crossbar networks grows as O (N2), while the area of inverse butter�y
networks grows as O (N log2 (N)). The results in table 7.2 deviate from the expected area
growth, because the VPU comprises the permutation network and further control logic
for selecting operands and permutation patterns as well as logic for bypassing.

Table 7.2: Permutation network area

SIMD width Network Area VPU [mm2] Norm. VPU area

128 bit

Bfy1 0.009 1.00
Cross1 � �
Bfy2 0.016 1.86
Cross2 0.022 2.54

256 bit

Bfy1 0.019 2.15
Cross1 0.024 2.71
Bfy2 0.034 3.83
Cross2 0.069 7.80

512 bit

Bfy1 0.039 4.40
Cross1 0.073 8.25
Bfy2 0.076 8.64
Cross2 0.239 27.02

1024 bit

Bfy1 0.087 9.80
Cross1 0.246 27.82
Bfy2 0.157 17.80
Cross2 0.875 98.97

7.1.3 Power consumption and area estimates for memories

The results in table 7.1 do not include power consumption and area of program memory and
scalar and SIMD data memories as these memories have not been synthesized. Yet, mem-
ories contribute to the power consumption and especially the chip area. Therefore, area
and power consumption of memories have been estimated using the on-line tool CACTI
[TMAJ08], developed by HP Labs. CACTI models the access time, cycle time, area, leak-
age power, and dynamic power of integrated caches and memories. Di�erent technologies
are modeled based on the International Technology Roadmap for Semiconductors (ITRS).
Memories have been modeled in 90 nm technology using ITRS low operating power tran-
sistor models for a worst-case temperature of 400Kelvin. The obtained area results are
listed in table 7.3, power consumption results are listed in table 7.4. The program memory

175

Chapter 7 Evaluation of the SIMD architecture e�ciency

Table 7.3: Area of processor core and memories

SIMD width Network Core
area

Scalar
mem.
(4 kB)

Program
mem.
(24 kB)

SIMD
memory
(128 kB)

Total
area

128 bit

Bfy1 0.46mm2 0.13mm2 0.98mm2 4.56mm2 6.13mm2

Cross1 0.46mm2 0.13mm2 0.98mm2 4.56mm2 6.13mm2

Bfy2 0.50mm2 0.13mm2 0.98mm2 4.56mm2 6.17mm2

Cross2 0.51mm2 0.13mm2 0.98mm2 4.56mm2 6.18mm2

256 bit

Bfy1 0.83mm2 0.13mm2 0.98mm2 6.85mm2 8.79mm2

Cross1 0.84mm2 0.13mm2 0.98mm2 6.85mm2 8.80mm2

Bfy2 0.91mm2 0.13mm2 0.98mm2 6.85mm2 8.87mm2

Cross2 0.97mm2 0.13mm2 0.98mm2 6.85mm2 8.93mm2

512 bit

Bfy1 1.57mm2 0.13mm2 0.98mm2 6.56mm2 9.24mm2

Cross1 1.63mm2 0.13mm2 0.98mm2 6.56mm2 9.30mm2

Bfy2 1.77mm2 0.13mm2 0.98mm2 6.56mm2 9.44mm2

Cross2 1.97mm2 0.13mm2 0.98mm2 6.56mm2 9.64mm2

1024 bit

Bfy1 3.14mm2 0.13mm2 0.98mm2 11.87mm2 16.12mm2

Cross1 3.33mm2 0.13mm2 0.98mm2 11.87mm2 16.31mm2

Bfy2 3.51mm2 0.13mm2 0.98mm2 11.87mm2 16.49mm2

Cross2 4.37mm2 0.13mm2 0.98mm2 11.87mm2 17.35mm2

is modeled as a 24 kB memory with one read port and one write port. The write port
is intended for an external control processor or DMA controller, which transfers program
code and data to the SIMD processor. The scalar and the SIMD memory are modeled with
two combined read/write ports, one for accessing the memory from the SIMD processor,
one for an external control processor/DMA controller. The scalar and SIMD memory sizes
are 4 kB and 128 kB, respectively.

The results in table 7.3 show that the memories require signi�cantly more area than the
processor core. The area of the SIMD memory depends on the SIMD width, as the number
of elements in a vector determines the bit width for memory access. Surprisingly, the SIMD
memory area decreases from 256-bit to 512-bit. Yet, there is no clear explanation for this
behavior in CACTI's area report.

The power consumption �gures in table 7.4 contain leakage power and the theoretical maxi-
mum dynamic power consumption. The dynamic power consumption assumes one memory
access per clock cycle (at 300MHz). The access rates of scalar and SIMD memories are
signi�cantly lower for all implemented algorithms; hence, the actual power consumption

176

7.2 Energy e�ciency analysis

Table 7.4: Power consumption of processor core and memories

SIMD width Network Core
power

Scalar
mem.
(4 kB)

Program
mem.
(24 kB)

SIMD
memory
(128 kB)

Total
power

128 bit

Bfy1 42.14mW 2.22mW 11.95mW 38.04mW 94.35mW
Cross1 41.98mW 2.22mW 11.95mW 38.04mW 94.19mW
Bfy2 45.17mW 2.22mW 11.95mW 38.04mW 97.39mW
Cross2 45.36mW 2.22mW 11.95mW 38.04mW 97.58mW

256 bit

Bfy1 74.68mW 2.22mW 11.95mW 59.77mW 148.62mW
Cross1 75.49mW 2.22mW 11.95mW 59.77mW 149.43mW
Bfy2 81.51mW 2.22mW 11.95mW 59.77mW 155.45mW
Cross2 81.46mW 2.22mW 11.95mW 59.77mW 155.40mW

512 bit

Bfy1 141.89mW 2.22mW 11.95mW 76.74mW 232.80mW
Cross1 142.38mW 2.22mW 11.95mW 76.74mW 233.29mW
Bfy2 158.32mW 2.22mW 11.95mW 76.74mW 249.23mW
Cross2 158.41mW 2.22mW 11.95mW 76.74mW 249.32mW

1024 bit

Bfy1 289.12mW 2.22mW 11.95mW 131.62mW 434.91mW
Cross1 291.75mW 2.22mW 11.95mW 131.62mW 437.54mW
Bfy2 321.79mW 2.22mW 11.95mW 131.62mW 467.58mW
Cross2 325.44mW 2.22mW 11.95mW 131.62mW 471.23mW

should be less than the listed power consumption. The power consumption of the SIMD
memory increases with the SIMD width, as the port width increases.
As the area and power consumption �gures obtained from CACTI's models are only rough
estimates, the energy e�ciency analysis in the following section is done without considering
the power requirements of memories.

7.2 Energy e�ciency analysis

Energy consumption is a better processor architecture metric than power consumption,
because it takes into account that wider SIMD processors can achieve greater throughputs.
The energy consumption of all implemented algorithms on all synthesized SIMD processors
has been calculated.
As the energy consumption depends on the power consumption and the algorithm per-
formance, the speedup results obtained in the previous three chapters are summarized in
�gure 7.3. The implemented algorithms are listed on the abscissa of the diagram: FFT

177

Chapter 7 Evaluation of the SIMD architecture e�ciency

4

5

6

7

8

9

ee
du

p
vs

. 1
28

 B
it,

 B
fy

1

1024 Bit, Bfy1

1024 Bit, Cross1

1024 Bit, Bfy2

1024 Bit, Cross2

z

512 Bit, Bfy1

512 Bit, Cross1

512 Bit, Bfy2

512 Bit, Cross2

y

256 Bit, Bfy1

256 Bit Bfy2

0

1

2

3

8-pt. FFT

16-pt. FFT

32-pt. FFT

64-pt. FFT

128-pt. FFT

256-pt. FFT

512-pt. FFT

1024-pt. FFT

2048-pt. FFT

192-pt. FFT

384-pt. FFT

576-pt. FFT

768-pt. FFT

960-pt. FFT

1152-pt. FFT

4x4 FS
D

, Q
P

S
K

4x4 FS
D

, 16-Q
A

M

4x4 S
FS

D
, Q

P
S

K

4x4 S
FS

D
, 16-Q

A
M

LD
P

C
 z=32, R

=5/6

LD
P

C
 z=32, R

=2/3

LD
P

C
 z=64, R

=5/6

LD
P

C
 z=64, R

=2/3

LD
P

C
 z=96, R

=5/6

LD
P

C
 z=96, R

=2/3

Sp
e 256 Bit, Bfy2

256 Bit, Cross1

256 Bit, Cross2

x

128 Bit, Bfy1

128 Bit, Cross1

128 Bit, Bfy2

128 Bit, Cross2

Figure 7.3: Speedup of algorithms compared to 128-bit SIMD processor with single-vector
inverse butter�y network

results on the left-hand side, sphere decoding results in the middle, and LDPC decod-
ing results on the right-hand side. The �gure shows four groups of curves for 128-bit
(speedup approximately one), 256-bit (speedup approximately two), 512-bit (speedup ap-
proximately four), and 1024-bit (speedup approximately eight) SIMD processors. The
FFT performance has been measured including the overhead for the initialization of pa-
rameters.

Table 7.5 (128-bit, 256-bit SIMD) and table 7.6 (512-bit, 1024-bit SIMD) show the energy
consumption results. For radix-2 and mixed-radix FFT implementations, the energy re-
quired for processing one FFT has been calculated. The results for hard-decision (FSD)
and soft-decision (SFSD) �xed-complexity sphere decoding have been computed for the

178

7.2 Energy e�ciency analysis

processing of one OFDM sub-carrier. LDPC decoding energy consumption �gures corre-
spond to the decoding of one code word with 10 decoding iterations.

7.2.1 Normalized energy consumption

The results in table 7.5 and table 7.6 show that the total energy consumption usually
decreases with an increasing SIMD width. Yet, as the energy consumption also depends
on the algorithm complexity, a direct comparison of results is di�cult. Therefore, the
normalized energy consumption has been calculated as an appropriate indicator for the
energy e�ciency. The normalized energy consumption is shown in �gure 7.4. The �gure
is split into four parts with normalized energy consumption results for 128-bit, 256-bit,
512-bit, and 1024-bit SIMD processors. The diagrams show the normalized deviation of
the energy consumption from the energy consumption of a 128-bit SIMD processor with
a single-vector inverse butter�y network, i. e. normalized energy consumption values less
than one indicate that less energy is required. Results for di�erent permutation networks
for the same SIMD width are grouped together. As in the speedup diagram (�gure 7.3),
the implemented algorithms are listed on the abscissae of the diagrams. Hence, normalized
energy consumption values should be compared in the vertical direction of the �gure for
assessing the impact of a scaling of the SIMD width.
The normalized energy consumption results correlate to the speedup results: If linear
speedup or close to linear speedup can be achieved, the energy consumption decreases
with an increasing SIMD width. The best energy consumption results have been obtained
for the algorithms with the highest speedups, i. e. LDPC decoders for z = 32 and z = 64
and the 128-point FFT for SIMD widths greater than 256 bits. Algorithms that do not
scale as well, e. g. short radix-2 and mixed-radix FFTs, achieve the worst normalized
energy consumption �gures. In some cases, the energy consumption even increases with
an increasing SIMD width.
The normalized energy consumption results for 1024-bit SIMD processors are slightly worse
than the results for 512-bit SIMD processors due to the increased power consumption for
high fan-out nets (see section 7.1.1). If the LISA generated RTL code would be replaced
by hand-optimized RTL code, the energy consumption should steadily decrease with an
increasing SIMD width.
A comparison of di�erent permutation networks in �gure 7.4 shows that double-vector
permutation networks usually require more energy than single-vector networks. The in-
creased energy consumption results mostly from the increased register �le complexity, as
double-vector networks require one additional read port and one additional write port for
the general-purpose SIMD register �le. Across all SIMD widths, the power consumption
of the register �les for double-vector networks is on average twice the power consumption
for single-vector networks. Double-vector networks only consume less energy than single-

179

Chapter 7 Evaluation of the SIMD architecture e�ciency

T
ab
le
7.
5:
T
ot
al
en
er
gy

co
ns
um

pt
io
n
fo
r
th
e
im
pl
em

en
te
d
al
go
ri
th
m
s
on

12
8-
bi
t
an
d
25
6-
bi
t
SI
M
D
pr
oc
es
so
rs
.

A
lg
o
ri
th
m

1
2
8
-b
it
S
IM

D
2
5
6
-b
it
S
IM

D
B
fy
1

C
ro
ss
1

B
fy
2

C
ro
ss
2

B
fy
1

C
ro
ss
1

B
fy
2

C
ro
ss
2

8-
pt
.
F
F
T

1.
24

nJ
1.
24

nJ
1.
23

nJ
1.
10

nJ
16
-p
t.
F
F
T

2.
51

nJ
2.
50

nJ
2.
69

nJ
2.
69

nJ
2.
86

nJ
2.
89

nJ
2.
81

nJ
2.
71

nJ
32
-p
t.
F
F
T

5.
91

nJ
5.
89

nJ
6.
34

nJ
6.
34

nJ
5.
97

nJ
6.
04

nJ
5.
97

nJ
6.
01

nJ
64
-p
t.
F
F
T

14
.2
6
nJ

14
.2
1
nJ

14
.9
9
nJ

15
.0
0
nJ

12
.9
4
nJ

13
.0
8
nJ

13
.5
8
nJ

13
.5
8
nJ

12
8-
pt
.
F
F
T

37
.1
0
nJ

36
.9
7
nJ

39
.1
8
nJ

39
.2
1
nJ

33
.8
3
nJ

34
.2
0
nJ

35
.7
5
nJ

35
.7
6
nJ

25
6-
pt
.
F
F
T

73
.9
3
nJ

73
.6
6
nJ

78
.0
5
nJ

78
.1
2
nJ

67
.0
1
nJ

67
.7
3
nJ

70
.8
7
nJ

70
.8
8
nJ

51
2-
pt
.
F
F
T

16
5.
05

nJ
16
4.
44

nJ
17
4.
54

nJ
17
4.
70

nJ
14
8.
61

nJ
15
0.
22

nJ
15
7.
75

nJ
15
7.
79

nJ
10
24
-p
t.
F
F
T

40
1.
62

nJ
40
0.
16

nJ
42
5.
76

nJ
42
6.
16

nJ
35
9.
62

nJ
36
3.
53

nJ
38
3.
70

nJ
38
3.
80

nJ
20
48
-p
t.
F
F
T

80
2.
57

nJ
79
9.
64

nJ
85
0.
80

nJ
85
1.
59

nJ
71
8.
24

nJ
72
6.
05

nJ
76
6.
40

nJ
76
6.
61

nJ
19
2-
pt
.
F
F
T

57
.8
4
nJ

57
.6
3
nJ

61
.1
0
nJ

61
.1
6
nJ

52
.5
3
nJ

53
.1
1
nJ

55
.6
2
nJ

55
.6
3
nJ

38
4-
pt
.
F
F
T

12
3.
95

nJ
12
3.
50

nJ
13
1.
08

nJ
13
1.
21

nJ
11
1.
79

nJ
11
3.
00

nJ
11
8.
65

nJ
11
8.
68

nJ
57
6-
pt
.
F
F
T

22
6.
38

nJ
22
5.
55

nJ
23
9.
99

nJ
24
0.
21

nJ
19
7.
16

nJ
19
9.
31

nJ
21
0.
20

nJ
21
0.
26

nJ
76
8-
pt
.
F
F
T

28
8.
48

nJ
28
7.
43

nJ
30
5.
67

nJ
30
5.
95

nJ
25
4.
42

nJ
25
7.
19

nJ
27
1.
06

nJ
27
1.
14

nJ
96
0-
pt
.
F
F
T

39
4.
66

nJ
39
3.
22

nJ
41
8.
60

nJ
41
8.
99

nJ
35
3.
44

nJ
35
7.
28

nJ
37
7.
50

nJ
37
7.
60

nJ
11
52
-p
t.
F
F
T

46
5.
33

nJ
46
3.
63

nJ
49
3.
46

nJ
49
3.
91

nJ
41
6.
63

nJ
42
1.
16

nJ
44
4.
83

nJ
44
4.
95

nJ
4
×

4
F
SD

,
Q
P
SK

18
.6
6
nJ

18
.6
0
nJ

20
.0
1
nJ

20
.1
8
nJ

16
.5
0
nJ

16
.6
8
nJ

18
.0
0
nJ

17
.9
7
nJ

4
×

4
F
SD

,
16
-Q
A
M

31
.8
9
nJ

31
.7
8
nJ

34
.1
9
nJ

34
.4
9
nJ

28
.1
9
nJ

28
.5
0
nJ

30
.7
7
nJ

30
.7
1
nJ

4
×

4
SF

SD
,
Q
P
SK

24
.3
3
nJ

24
.2
4
nJ

26
.0
7
nJ

26
.2
9
nJ

21
.7
5
nJ

21
.9
8
nJ

23
.7
4
nJ

23
.6
8
nJ

4
×

4
SF

SD
,
16
-Q
A
M

53
.7
6
nJ

53
.5
4
nJ

57
.6
1
nJ

58
.1
1
nJ

48
.2
1
nJ

48
.6
8
nJ

52
.6
9
nJ

52
.5
2
nJ

L
D
P
C
z

=
32
,
R

=
5/

6
6.
83
8
µ
J

6.
81
4
µ
J

7.
33
2
µ
J

7.
39
4
µ
J

5.
41
5
µ
J

5.
47
5
µ
J

5.
70
3
µ
J

5.
69
0
µ
J

L
D
P
C
z

=
32
,
R

=
2/

3
6.
92
3
µ
J

6.
89
5
µ
J

7.
42
3
µ
J

7.
48
6
µ
J

5.
60
8
µ
J

5.
66
7
µ
J

5.
92
4
µ
J

5.
91
6
µ
J

L
D
P
C
z

=
64
,
R

=
5/

6
13
.2
88
µ
J

13
.2
43
µ
J

14
.2
49
µ
J

14
.3
69
µ
J

12
.1
76
µ
J

12
.3
10
µ
J

13
.2
89
µ
J

13
.2
57
µ
J

L
D
P
C
z

=
64
,
R

=
2/

3
13
.4
40
µ
J

13
.3
83
µ
J

14
.4
11
µ
J

14
.5
34
µ
J

12
.3
09
µ
J

12
.4
40
µ
J

13
.4
33
µ
J

13
.4
15
µ
J

L
D
P
C
z

=
96
,
R

=
5/

6
20
.4
56
µ
J

20
.3
86
µ
J

21
.9
35
µ
J

22
.1
20
µ
J

18
.2
38
µ
J

18
.4
39
µ
J

19
.9
06
µ
J

19
.8
57
µ
J

L
D
P
C
z

=
96
,
R

=
2/

3
21
.2
07
µ
J

21
.1
17
µ
J

22
.7
40
µ
J

22
.9
33
µ
J

19
.5
28
µ
J

19
.7
35
µ
J

21
.3
11
µ
J

21
.2
82
µ
J

180

7.2 Energy e�ciency analysis

T
ab
le
7.
6:
T
ot
al
en
er
gy

co
ns
um

pt
io
n
fo
r
th
e
im
pl
em

en
te
d
al
go
ri
th
m
s
on

51
2-
bi
t
an
d
10
24
-b
it
SI
M
D
pr
oc
es
so
rs
.

A
lg
o
ri
th
m

5
1
2
-b
it
S
IM

D
1
0
2
4
-b
it
S
IM

D
B
fy
1

C
ro
ss
1

B
fy
2

C
ro
ss
2

B
fy
1

C
ro
ss
1

B
fy
2

C
ro
ss
2

32
-p
t.
F
F
T

7.
26

nJ
6.
58

nJ
6.
61

nJ
6.
23

nJ
64
-p
t.
F
F
T

13
.5
8
nJ

13
.6
3
nJ

14
.0
0
nJ

13
.7
5
nJ

17
.5
5
nJ

15
.7
8
nJ

15
.7
7
nJ

15
.2
1
nJ

12
8-
pt
.
F
F
T

31
.0
2
nJ

31
.1
4
nJ

30
.9
1
nJ

30
.4
7
nJ

35
.2
6
nJ

32
.2
2
nJ

32
.8
0
nJ

32
.5
1
nJ

25
6-
pt
.
F
F
T

64
.9
6
nJ

65
.2
1
nJ

70
.1
9
nJ

70
.0
7
nJ

72
.1
3
nJ

72
.9
0
nJ

72
.7
8
nJ

72
.4
8
nJ

51
2-
pt
.
F
F
T

14
2.
78

nJ
14
3.
34

nJ
15
4.
92

nJ
15
4.
65

nJ
16
9.
23

nJ
17
1.
03

nJ
16
0.
61

nJ
16
0.
69

nJ
10
24
-p
t.
F
F
T

34
3.
65

nJ
34
4.
99

nJ
37
4.
83

nJ
37
4.
17

nJ
33
8.
94

nJ
34
2.
54

nJ
35
1.
34

nJ
35
3.
97

nJ
20
48
-p
t.
F
F
T

68
5.
09

nJ
68
7.
76

nJ
74
7.
37

nJ
74
6.
06

nJ
73
3.
10

nJ
74
0.
89

nJ
76
4.
35

nJ
77
0.
06

nJ
38
4-
pt
.
F
F
T

11
3.
50

nJ
11
3.
94

nJ
12
1.
19

nJ
12
0.
97

nJ
13
7.
18

nJ
13
8.
64

nJ
14
5.
20

nJ
14
6.
28

nJ
76
8-
pt
.
F
F
T

24
7.
44

nJ
24
8.
40

nJ
26
5.
36

nJ
26
4.
89

nJ
4
×

4
F
SD

,
Q
P
SK

15
.7
0
nJ

15
.7
6
nJ

17
.5
2
nJ

17
.5
8
nJ

16
.0
2
nJ

16
.1
9
nJ

17
.8
3
nJ

18
.0
3
nJ

4
×

4
F
SD

,
16
-Q
A
M

26
.8
3
nJ

26
.9
4
nJ

29
.9
4
nJ

30
.0
4
nJ

27
.3
7
nJ

27
.6
6
nJ

30
.4
7
nJ

30
.8
1
nJ

4
×

4
SF

SD
,
Q
P
SK

20
.5
9
nJ

20
.6
7
nJ

22
.9
6
nJ

23
.0
1
nJ

21
.0
2
nJ

21
.1
7
nJ

23
.4
2
nJ

23
.7
6
nJ

4
×

4
SF

SD
,
16
-Q
A
M

45
.4
2
nJ

45
.5
7
nJ

50
.6
4
nJ

50
.8
1
nJ

46
.2
5
nJ

46
.4
0
nJ

51
.2
8
nJ

52
.0
5
nJ

L
D
P
C
z

=
32
,
R

=
5/

6
4.
95
0
µ
J

4.
96
9
µ
J

5.
52
2
µ
J

5.
54
1
µ
J

5.
08
8
µ
J

5.
08
8
µ
J

5.
69
2
µ
J

5.
72
0
µ
J

L
D
P
C
z

=
32
,
R

=
2/

3
5.
17
3
µ
J

5.
19
3
µ
J

5.
77
1
µ
J

5.
78
6
µ
J

5.
30
0
µ
J

5.
32
0
µ
J

5.
93
2
µ
J

5.
98
2
µ
J

L
D
P
C
z

=
64
,
R

=
5/

6
10
.1
51
µ
J

10
.2
28
µ
J

10
.9
32
µ
J

10
.9
66
µ
J

10
.0
29
µ
J

10
.1
23
µ
J

11
.1
79
µ
J

11
.3
35
µ
J

L
D
P
C
z

=
64
,
R

=
2/

3
10
.4
79
µ
J

10
.3
98
µ
J

11
.3
08
µ
J

11
.3
39
µ
J

10
.4
56
µ
J

10
.5
80
µ
J

11
.6
26
µ
J

11
.8
24
µ
J

L
D
P
C
z

=
96
,
R

=
5/

6
17
.9
71
µ
J

18
.0
38
µ
J

20
.0
63
µ
J

20
.1
26
µ
J

18
.9
02
µ
J

18
.7
52
µ
J

21
.0
65
µ
J

20
.7
89
µ
J

L
D
P
C
z

=
96
,
R

=
2/

3
18
.7
67
µ
J

18
.8
41
µ
J

20
.9
31
µ
J

20
.9
90
µ
J

19
.6
33
µ
J

19
.2
99
µ
J

21
.8
16
µ
J

21
.6
50
µ
J

181

Chapter 7 Evaluation of the SIMD architecture e�ciency

1

1.2

0.8

1

1.2

0.8

1

1.2

rm
al

iz
ed

 e
ne

rg
y

1024 Bit

512 Bit

256 Bit

0.8

1

1.2

0.8

8-
pt

. F
FT

16
-p

t.
FF

T

32
-p

t.
FF

T

64
-p

t.
FF

T

12
8-

pt
. F

FT

25
6-

pt
. F

FT

51
2-

pt
. F

FT

10
24

-p
t.

FF
T

20
48

-p
t.

FF
T

19
2-

pt
. F

FT

38
4-

pt
. F

FT

57
6-

pt
. F

FT

76
8-

pt
. F

FT

96
0-

pt
. F

FT

11
52

-p
t.

FF
T

4x
4

FS
D

, Q
P

S
K

4x
4

FS
D

, 1
6-

Q
A

M

4x
4

S
FS

D
, Q

P
S

K

4x
4

S
FS

D
, 1

6-
Q

A
M

LD
P

C
 z

=3
2,

 R
=5

/6

LD
P

C
 z

=3
2,

 R
=2

/3

LD
P

C
 z

=6
4,

 R
=5

/6

LD
P

C
 z

=6
4,

 R
=2

/3

LD
P

C
 z

=9
6,

 R
=5

/6

LD
P

C
 z

=9
6,

 R
=2

/3

Av
er

ag
e

N
o r

1024 Bit, Cross2 1024 Bit, Bfy2 1024 Bit, Cross1 1024 Bit, Bfy1
512 Bit, Cross2 512 Bit, Bfy2 512 Bit, Cross1 512 Bit, Bfy1
256 Bit, Cross2 256 Bit, Bfy2 256 Bit, Cross1 256 Bit, Bfy1
128 Bit, Cross2 128 Bit, Bfy2 128 Bit, Cross1

128 Bit

Figure 7.4: Normalized energy consumption of the implemented algorithms

vector networks if the wider permutation network leads to better speedups (e. g. for short
radix-2 FFTs).
The di�erences in the power consumption of crossbar and inverse butter�y networks for
the same network width and the same SIMD width are minimal for most algorithms.

7.2.2 Energy-delay product analysis

The normalized energy-delay product is another metric that can be used to assess the
e�ciency of a processor architecture [GH96]. The normalized energy-delay product is a
product of the normalized runtime and the normalized energy consumption. Normalization
is again done by the results for a 128-bit SIMD processor with a single-vector inverse
butter�y network.
The diagrams in �gure 7.5, �gure 7.6, and �gure 7.7 show normalized energy-delay product
and normalized area. The normalized energy-delay product is shown on the left ordinate
and the normalized area on the right ordinate. SIMD widths are shown on the abscissa.
The various curves represent di�erent permutation networks.

182

7.2 Energy e�ciency analysis

4 00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

0 40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

N
or

m
al

iz
ed

 a
re

a

ze
d

en
er

gy
-d

el
ay

 p
ro

du
ct

1.00

2.00

3.00

4.00

0.10

0.20

0.30

0.40

128 bit 256 bit 512 bit 1024 bit

N
or

m
al

iz

SIMD width
Energy-delay (Bfy1) Energy-delay (Cross1)
Energy-delay (Bfy2) Energy-delay (Cross2)
Area (Bfy1) Area (Cross1)
Area (Bfy2) Area (Cross2)

Figure 7.5: Normalized energy-delay product and area for radix-2 and mixed-radix FFTs

Figure 7.5 shows normalized energy-delay curves for FFTs. The energy-delay product has
been calculated by averaging energy and runtime for all FFT sizes. Figure 7.6 depicts
normalized results for �xed-complexity sphere decoding, which also have been obtained by
averaging. The normalized average energy-delay product for LDPC decoding is displayed
in �gure 7.7.

The normalized energy-delay product curves in �gure 7.5 show that more complex per-
mutation networks achieve better energy-delay products for the FFT processing on wider
SIMD processors. Single-vector networks outperform double-vector networks for a 128-
bit SIMD width, yet for wider SIMD widths, the double-vector networks achieve better
energy-delay products. The smallest energy-delay product is achieved for a 1024-bit SIMD
processor with a double-vector crossbar network. Yet, this processor also has the largest
chip area.

The FSD and LDPC decoding results in �gures 7.6 and 7.7 show a di�erent behavior: As
there is no performance gain for double-vector permutation networks compared to single-
vector permutation networks, the energy-delay products for double-vector networks are
always worse than the energy-delay products for single-vector networks.

183

Chapter 7 Evaluation of the SIMD architecture e�ciency

4 00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

0 40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

N
or

m
al

iz
ed

 a
re

a

ze
d

en
er

gy
-d

el
ay

 p
ro

du
ct

1.00

2.00

3.00

4.00

0.10

0.20

0.30

0.40

128 bit 256 bit 512 bit 1024 bit

N
or

m
al

iz

SIMD width
Energy-delay (Bfy1) Energy-delay (Cross1)
Energy-delay (Bfy2) Energy-delay (Cross2)
Area (Bfy1) Area (Cross1)
Area (Bfy2) Area (Cross2)

Figure 7.6: Normalized energy-delay product and area for soft-decision and hard-decision
FSD

Based on the analysis of all three algorithm classes, a single-vector network probably
achieves the best e�ciency in a wide SIMD LIW architecture for physical layer processing.
The di�erences in the energy-delay products of crossbar and inverse butter�y networks are
negligible, yet crossbar networks require more area, but also o�er more �exibility. Hence, a
decision between single-vector crossbar network and single-vector inverse butter�y network
should be taken based on the requirements of algorithms.

7.3 Possible approaches for improving the scalability

SIMD processing can be limited by available data parallelism, the overhead for aligning
data on vectors, and the need for intra-vector calculations on segments of data vectors.
Limited data parallelism cannot be compensated by changes on the processor architecture,
but the other two issues can be addressed by modi�cations on the SIMD data path. These
modi�cations do not provide unlimited scalability, yet the range of SIMD widths that still

184

7.3 Possible approaches for improving the scalability

4 00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

0 40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

N
or

m
al

iz
ed

 a
re

a

ze
d

en
er

gy
-d

el
ay

 p
ro

du
ct

1.00

2.00

3.00

4.00

0.10

0.20

0.30

0.40

128 bit 256 bit 512 bit 1024 bit

N
or

m
al

iz

SIMD width
Energy-delay (Bfy1) Energy-delay (Cross1)
Energy-delay (Bfy2) Energy-delay (Cross2)
Area (Bfy1) Area (Cross1)
Area (Bfy2) Area (Cross2)

Figure 7.7: Normalized energy-delay product and area for the decoding of quasi-cyclic
LDPC codes

allows close to linear speedups can be extended and/or the algorithm complexity can be
reduced.
The following two sections discuss indirect SIMdD processing, which can improve the vector
alignment for short mixed-radix FFTs and LDPC decoding, and support of operations on
vector segments, which is useful for the parallel processing of multiple z × z sub-matrices
in LDPC decoding.

7.3.1 Vector alignment with indirect SIMdD processing

Indirect SIMdD processing, as discussed in chapter 2.3.5, extends a normal SIMD data path
with independent memory access capabilities for �xed vector segments with VS elements
(V = k · VS). Independent memory access is enabled by supporting multiple parallel
address generation units and splitting one wide memory port into multiple smaller ports.
Indirect SIMdD support is useful for LDPC decoding, when multiple sub-matrices in a row
of the block matrix Hb are processed in parallel. One issue that limits the e�ectiveness of
the parallel processing of multiple sub-matrices is the presence of empty sub-matrices (see

185

Chapter 7 Evaluation of the SIMD architecture e�ciency

chapter 6.3.3). If the expansion factor z of the quasi-cyclic LDPC code is a multiple of or
equal to the segment size VS in an indirect SIMdD architecture, memory access for empty
sub-matrices can be avoided. Furthermore, if sub-matrices from independent code words
are processed in parallel, the required block interleaving of data in vectors can be done by
memory access instead of requiring an additional permutation stage.
As discussed in section 4.5.4, short mixed-radix FFTs can be parallelized by virtually
reducing the vector length, i. e. data values that do not have to be processed together in the
next FFT stages or data values from di�erent FFTs are block-interleaved in vectors. The
required permutations have a low complexity, yet many registers are required for storing
independent data vectors, which reduces the number of consecutive FFT stages that can
be processed without memory access. On an indirect SIMdD processor architecture, the
block interleaving can be done during the memory access; hence, the processing of FFT
stages is no longer limited by available registers and the performance does not degrade.
The constraints for e�cient SIMD processing of mixed-radix FFTs can be relaxed: If
independent FFTs can be processed in parallel, the constraint that the FFT size is a
multiple of the squared segment size (NDFT = k · V 2

S) is su�cient. If the virtual reduction
of the vector length is done by block interleaving independent parts of one FFT, the
additional constraint that the FFT size is a multiple of twice the vector length (as in
the radix-2 FFT case) also must be ful�lled. If the whole mixed-radix FFT �ts into the
available SIMD registers, the block interleaving still has to be performed by permutation
operations on the VPU.

7.3.2 Support for operations on vector segments

The parallel processing of multiple sub-matrices during the LDPC decoding is limited by
the necessary reordering of vector elements. As cyclic shifts on sub-matrices have to be
performed, independent permutations on vector segments have to be realized. On an SIMD
processor with an inverse butter�y permutation network, the required permutations have
to be de�ned by permutation patterns that are stored in memory. If the expansion factor z
is greater than � yet not a multiple of � the vector length, data from multiple consecutive
vectors also has to be merged on a vector segment basis, which requires complex vector
masks that also have to be stored in memory. If the required operations on vector segments
are directly supported by instructions, the memory requirements can be reduced and the
performance improves.
If sub-matrices from independent code words are processed in parallel in vector segments,
the same operations (permutations, merging by masked move operations) have to be done
for all vector segments. The required changes are supporting rotations on vector segments,
with the same rotation distance for all segments, and supporting an instruction, which
initializes all segments in a vector mask by setting the �rst k bits to one. The latter can
be implemented with some additional control logic compared to an instruction, which sets

186

7.4 Software development for LIW SIMD processors

the �rst k bits of the complete vector to one. A rotation on vector segments can also
be easily implemented on an inverse butter�y network. On an inverse butter�y network,
rotations are computed recursively by rotations on parts of a vector. For example, the
�rst log2 (V)− 1 perform the same rotation operation on the two halves of a vector. The
last butter�y stage permutes elements from both vector halves to compute the rotation
on V element. Hence, rotations on vector segments can be computed by disabling the last
butter�y stage or stages, e. g. by simply setting all control signals to zero. An example
for a vector length of 16 elements and a cyclic shift of three elements is displayed in �gure
7.8.

Figure 7.8: Cyclic shift operation on an inverse butter�y network. The complete cyclic
shift is computed from cyclic shifts on smaller vector segments.

If sub-matrices from one code word are processed in parallel in vector segments, the cyclic
shift distances are no longer the same for all vector segments. Therefore, rotation opera-
tions that take multiple scalar rotation distances as an input, one for each vector segment,
are required, which increases the hardware complexity. Hence, a parallel processing of
independent code words is the preferred solution for LDPC decoding on wide SIMD pro-
cessors for SIMD widths beyond the expansion factor of the quasi-cyclic code.

7.4 Software development for LIW SIMD processors

One important issue for the development of SDR systems based on SIMD processors is
mapping applications on the processor architecture. In the best case, the software should
be written in a high-level language (e. g. C) and mapped on the processor by an optimizing

187

Chapter 7 Evaluation of the SIMD architecture e�ciency

compiler. According to a commonly used rule of thumb, compiler assisted software devel-
opment should ideally lead to 80 percent of the performance of hand-optimized assembly
code with 20 percent of the e�ort.
In the context of SIMD processors for SDR with LIW support, the task of the compiler
can be characterized by three subtasks:

1. Operations in a high-level language have to be mapped on DSP instructions. De-
pendent on the instruction set and data types, this task includes the mapping on
complex multi-stage instructions, for example an add-compare-select instruction for
Viterbi decoding, and the detection of rounding and saturation logic.

2. Vectorizable program segments have to be recognized and e�ciently mapped on
SIMD instructions, the di�culties of this crucial optimization step are discussed in
the following.

3. Operands have to be assigned to registers and instructions have to be scheduled in
LIW instructions. The e�ciency of this task depends largely on the partitioning of
the algorithm into loops and functions.

All three subtasks still require programmers with detailed knowledge about the processor's
instruction set architecture (ISA). Furthermore, the input programs have to be written in
a manner that the compiler can understand.
For a SIMD processor architecture, the vectorization of algorithms is the most impor-
tant � and most challenging � issue. Compiler-based vectorization, e. g. for GPPs with
short SIMD extensions [NZ06, NRZ06] is usually done by analyzing inner program loops.
Data dependencies of array variables, which might prevent vectorization, are analyzed
and prede�ned loop structures, e. g. reduction operations that sum up array elements,
are recognized. If an inner loop is vectorizable, the code is replaced by vector operations.
Due to the complexity of data access patterns in DSP algorithms, this approach is in-
su�cient for wide SIMD SDR processors. For example, vectorizing an FFT requires �rst
choosing a vectorizable algorithm (see chapter 4). On the other hand, the FSD algorithm
allows di�erent vectorization strategies, which have di�erent overheads for vector permu-
tation operations. Yet, the optimal strategy cannot be detected by analyzing inner loops
separately.
Regular transforms, like the FFT, can be vectorized using a representation by Kronecker
products [Pit97]. For example, the SPIRAL compiler [PMJ+05, FP02] uses a mathe-
matical description of algorithms as its input. The algorithm is vectorized using formula
manipulations and the design space of possible algorithm decompositions is automatically
explored. Yet, this approach is not applicable to arbitrary algorithms.
One possible approach for vectorizing algorithms that cannot be expressed by regular
transforms is extending the traditional approach for the vectorization of inner loops with

188

7.4 Software development for LIW SIMD processors

an analysis of the vector data alignment for the complete program [WSK07, WSK08]: As
a �rst step, all options for parallelizing nested loops are explored. Next, the costs for
aligning data (i. e. the overhead for vector permutations) in loops and realigning data
between loop nests have to be estimated. The cost estimation is a complex task for
LIW SIMD processors, as the performance is only degraded by permutation operations
if the permutations cannot be done in parallel to useful arithmetical operations in LIW
instructions. Yet, the mapping of loop code on LIW instructions in turn depends on the
vectorization. If an accurate cost model for data alignment is available, the mapping
on vector operations can be done by solving an optimization problem on a graph that
describes the di�erent possible vectorization strategies and their costs.
As the complexity of the design of an optimizing compiler for SIMD SDR processors is
very high, most wide SIMD processor architectures only support some subtasks of the
software development by automatic tools, the remaining tasks have to be done by the
programmers: The EVP is programmed in EVP-C [vHM+04]; a C-based language with
specialized commands, called intrinsics, for SIMD vector operations and DSP instructions,
the compiler only performs register allocation and optimization for VLIW processing. The
Ardbeg processor's instruction set is based on the ARM NEON SIMD instruction set
[WLS+08a]. The NEON instructions are supported by intrinsics in the compiler [ARM08].
The Sandblaster processor is the only SIMD SDR processor with a complete vectorizing
compiler, which also supports multi-threading [JGKM04]. However, as reported in [JSJ09],
the vectorization does not always work.
The programming model that has been selected for the EVP o�ers performance that is close
to the performance of hand-coded assembly code. Yet as the vectorization, the mapping
on intrinsics, and the decomposition of the algorithm into loops that can be e�ciently
processed by the VLIW compiler still have to be done manually, the required programming
e�ort and knowledge of the processor architecture are still high. The performance of
the EVP-C compiler has been evaluated by comparing the results to the performance of
hand-coded assembly code on the proposed SIMD processor architecture for FFT and
sphere decoding algorithms. Performance results for the same vector length and the same
permutation network topology have been compared. As the EVP supports more LIW
slots, the comparison is not 100 percent accurate. The results are listed in table 7.7.
For most considered algorithms, the performance degradation due to the compiler is less
than 10 percent. Only complex loops, e. g. the radix-5 DFT stage in the 960-point FFT
and the FSD tree search, achieve signi�cantly worse performance.

189

Chapter 7 Evaluation of the SIMD architecture e�ciency

Table 7.7: Comparison of compiler generated code on the EVP and hand-optimized as-
sembly code on the proposed SIMD architecture (256 bit SIMD width, cross-
bar network). FFT throughput is measured in FFTs per second, while FSD
throughput is measured in OFDM sub-carriers per second.

Algorithm Throughput
on SIMD core

Throughput on EVP Di�erence [%]

64-pt. FFT 6.00 · 106 FFTs/s 6.00 · 106 FFTs/s ±0%
256-pt. FFT 1.14 · 106 FFTs/s 1.07 · 106 FFTs/s -6.1%
512-pt. FFT 5.07 · 105 FFTs/s 4.81 · 105 FFTs/s -5.1%
1024-pt. FFT 2.08 · 105 FFTs/s 2.11 · 105 FFTs/s +1.4%
2048-pt. FFT 1.04 · 105 FFTs/s 9.77 · 104 FFTs/s -6.1%
192-pt. FFT 1.46 · 106 FFTs/s 1.39 · 106 FFTs/s -4.8%
384-pt. FFT 6.76 · 105 FFTs/s 6.15 · 105 FFTs/s -9.0%
576-pt. FFT 3.82 · 105 FFTs/s 3.55 · 105 FFTs/s -7.1%
768-pt. FFT 2.95 · 105 FFTs/s 2.71 · 105 FFTs/s -8.1%
960-pt. FFT 2.11 · 105 FFTs/s 1.85 · 105 FFTs/s -12.3%
1152-pt. FFT 1.80 · 105 FFTs/s 1.69 · 105 FFTs/s -6.1%
FSD channel ordering 1.24 · 107 FFTs/s 1.18 · 107 FFTs/s -4.8%
QR-decomposition 1.14 · 107 FFTs/s 9.60 · 106 FFTs/s -15.8%
QPSK FSD search 1.89 · 107 FFTs/s 1.62 · 107 FFTs/s -14.3%
16-QAM FSD search 4.77 · 106 FFTs/s 3.75 · 106 FFTs/s -21.4%

190

Chapter 8

Conclusion

4G SDR systems come with steep requirements on the e�ciency of programmable architec-
tures. SIMD processors can potentially achieve a good ratio between energy consumption
and throughput performance. Yet, SIMD processors require algorithms that can utilize
all parallel data lanes e�ciently. Therefore, the scalability of SIMD processing for key
algorithms of 4G wireless systems has been investigated in this thesis.

Overview of results

A scalable SIMD processor architecture has been proposed in chapter 3, which enables
an exploration of SIMD widths ranging from 128 bit to 1024 bit as well as four di�er-
ent permutation networks for vector element permutations. The considered permutation
networks are single-vector inverse butter�y, single-vector crossbar, double-vector inverse
butter�y, and double-vector crossbar networks. Supplying di�erent permutation networks
allows investigating how the support of more complex permutations in�uences the algo-
rithm performance and the complexity of the processor architecture. LIW execution has
also been implemented, as the parallel processing of computational operations (e. g. a
vector addition) and overhead operations (e. g. vector element permutations) improves
the scalability by hiding overhead operations. Synthesized gate level processor models for
all SIMD processors allow estimating chip area, maximum frequency, power consumption,
and energy consumption.
Radix-2 and mixed-radix FFT algorithms for SIMD processors have been investigated
in chapter 4. FFT algorithms that enable e�cient SIMD processing have been derived
from the matrix representation of the FFT. The radix-2 FFT algorithm requires that the
FFT size is at least twice the SIMD vector length V , yet the mixed-radix FFT algorithm
only enables e�cient vector processing for FFT sizes that are a multiple of the squared
vector length. Both algorithms perform all FFT stages (e. g. radix-2 butter�y stages) on
complete data vectors and require only log2 (V) permutation stages that can mostly be
realized by simple masked butter�y permutations on pairs of vectors. If the constraints are
satis�ed, close to linear speedup can be achieved. The achieved throughput performance
is competitive to the performance of dedicated FFT processors.

191

Chapter 8 Conclusion

Sphere decoding, which is a technique for ML detection in spatial multiplexing MIMO
systems, has been studied in chapter 5. The original sphere decoder (SD) algorithm is
a sequential algorithm with a variable complexity, i. e. the number of required iterations
depends on the input data. Hence, the SD algorithm is neither suited for real-time hard-
ware implementations nor for SIMD processing. Therefore, sphere decoding algorithms
that combine a �xed-complexity with a parallelizable structure have emerged. The �xed-
complexity sphere decoder (FSD) has been mapped on the scalable SIMD processor archi-
tecture, as the algorithm has a relatively low computational complexity and achieves a BER
performance close to the ML performance [BT06a, BT06c, BT08b]. The FSD algorithm
also has been extended to a soft-decision algorithm, which computes log-likelihood ratios.
The algorithm performance scales linearly with the SIMD width if multiple sub-carriers
of an OFDM symbol are processed in parallel. The achieved throughput for soft-decision
output on a 1024-bit SIMD processor is greater than 100Mbps for a 4× 4 MIMO-OFDM
system with 16-QAM modulation; hence, the throughput should be su�cient for most
battery-powered mobile devices in future 4G systems. The throughput performance is
better than the performance of other reported SDR sphere decoding implementations, but
SIMD processors achieve neither the high throughput nor the high energy e�ciency of a
state-of-the-art MIMO detection ASIC.
The decoding of quasi-cyclic LDPC codes has been investigated in chapter 6. Quasi-cyclic
codes are a class of structured LDPC codes, which are described by z × z sub-matrices
that are either empty or cyclic shifted unity matrices. The decoding of LDPC codes is
done by message-passing algorithms on a graph-representation of the parity check matrix,
which consists of bit nodes and (parity) check nodes. The regular structure of quasi-cyclic
codes enables processing z bit nodes and z check nodes in parallel. Implementation results
show that linear or close to linear speedups can be achieved on wider SIMD processors
even for SIMD widths greater than the expansion factor. Yet, in this case, the process-
ing is more elaborate, as cyclic shifts on segments of data vectors are necessary. The
maximum throughput that has been achieved is 36.59Mbps for a rate 5/6 WiMAX code
with z = 64 on a 1024-bit SIMD processor. The throughput could be easily improved by
supporting 8-bit data types next to 16-bit data types for vector elements and by adding
custom instructions for the check node processing. In the current state, both throughput
performance and energy consumption are signi�cantly worse than throughput performance
and energy consumption of ASIC solutions for LDPC decoding.
The energy e�ciency and the chip area of the proposed scalable SIMD processor architec-
ture have been analyzed in chapter 7. Results for energy consumption and energy-delay
product show that the energy e�ciency increases with the SIMD width, as the relative
amount of energy spent on the decoding of instructions and the scalar data path de-
creases. Single-vector permutation networks achieve the best energy-delay product results
for sphere decoding and LDPC decoding. Double-vector permutation networks achieve
slightly better energy-delay products than single-vector permutation networks for FFTs

192

on 512-bit and 1024-bit SIMD processors. Overall, single-vector permutation networks
appear to be the best option for SIMD processors with LIW support for SDR algorithms.
Networks with inverse butter�y and crossbar topologies achieve similar energy e�ciency
results. Crossbar networks o�er more �exibility at the cost of more chip area.

Selection of SIMD width and permutation network topology

The optimal combination of SIMD width and permutation network topology depends on
the targeted application(s). Yet, some basic guidelines can be derived from the design
space exploration in this thesis. The main criterion for selecting the SIMD width is the
desired throughput performance of an application. The achievable throughput depends on
the computational complexity of algorithms on the SIMD architecture. The complexity
of FFT algorithms is the lowest of all three considered algorithm classes. Yet, radix-2
and especially mixed-radix FFTs also require the most complex data alignment. The
most complex task is LDPC decoding, which is more than one order of magnitude more
complex than FFT processing. The complexity of sphere decoding using the FSD algorithm
is somewhere in the middle between the other two algorithm classes.
Due to the high complexity of LDPC decoding, a SIMD-based architecture for LDPC
decoding and MIMO-OFDM should be a multi-core processor architecture. Such an ar-
chitecture would comprise at least one SIMD processor dedicated to MIMO-OFDM pro-
cessing, i. e. sphere decoding and FFT processing, as well as other less demanding tasks,
and several SIMD processors optimized for LDPC decoding.
The SIMD width for LDPC decoding should be as wide as possible, as wide SIMD proces-
sors in principle achieve the best energy e�ciency �gures. If quasi-cyclic LDPC codes with
expansion factors that are not multiples of the SIMD width shall be decoded, a crossbar
network topology o�ers better performance than an inverse butter�y network topology.
Alternatively, a modi�ed inverse butter�y network with support for permutations on vec-
tor segments could be used (see section 7.3.2). Compared to single-vector permutation
networks, double-vector permutation networks o�er no performance gain, but they re-
quire more energy for the register �les. Therefore, the permutation network should be a
single-vector network.
For MIMO-OFDM processing, the optimal SIMD architecture depends on the concrete
algorithm mix and the desired throughput. In principle, the alternatives are using many
SIMD cores with short SIMD widths or few wide SIMD cores. Wide SIMD processors
potentially o�er better energy e�ciency, but also are less �exible concerning the alignment
of data values, as longer data vectors are processed. In the following, an example for a
hypothetical cellular MIMO-OFDM transmission system using OFDM-A for the downlink
(DL) and SC-FDMA for the uplink (UL) channel is used to illustrate the decision process
for the design of a SIMD-based architecture for a mobile device. The scenario assumes
4 × 4 MIMO with 16-QAM modulation, an OFDM symbol size of 1024 sub-carriers, and

193

Chapter 8 Conclusion

10,000 OFDM symbols per second. In the DL channel (OFDM-A), at most 600 sub-
carriers are assigned to one user, while at most 384 sub-carriers are assigned to one user
in the UL channel (SC-FDMA). This corresponds to peak throughputs of 96Mbps in
the DL and 61.44Mbps in the UL channel. The main tasks that have to be performed
on the SIMD-based architecture are radix-2 and mixed-radix FFTs for UL SC-FDMA
modulation, radix-2 FFTs for DL OFDM-A demodulation and sphere decoding using the
FSD algorithm in the DL channel.
Figures 8.1 and 8.2 list processor utilization1 and total energy consumption results, respec-
tively, for di�erent multi-core SIMD architectures that can meet the required throughput
performance. The energy consumption �gures include only the processor cores, but neither
interconnect nor memories.

0
10
20
30
40
50
60
70
80
90

100

4x 128

4x 128

4x 128

4x 128

2x 256

2x 256

2x 256

2x 256

512-b

512-b

512-b

512-b

1024-

1024-

1024-

1024-

Pr
oc

es
so

r u
til

iz
at

io
n

[%
]

UL FFTs
DL FFTs
DL MIMO FSD

8-bit, B
fy1

8-bit, C
ross1

8-bit, B
fy2

8-bit, C
ross2

6-bit, B
fy1

6-bit, C
ross1

6-bit, B
fy2

6-bit, C
ross2

bit, B
fy1

bit, C
ross1

bit, B
fy2

bit, C
ross2

-bit, B
fy1

-bit, C
ross1

-bit, B
fy2

-bit, C
ross2

Figure 8.1: Processor utilization for the example MIMO-OFDM transmission scenario

As �gure 8.1 shows, a single 512-bit SIMD processor can achieve the required throughput
performance at a total processor utilization of about 90 percent, the same performance
can be reached with two 256-bit SIMD processors or four 128-bit SIMD processors. One
1024-bit SIMD processor can also achieve the required throughput performance at approx-
imately 45 percent processor utilization. However, a 1024-bit SIMD processor is oversized
for this scenario, as illustrated by the area curve in �gure 8.3.

1The processor utilization describes the relative amount of time spend on a task on the multi-core
architecture. At a processor utilization of 100 percent, all processor cores are occupied all the time
and no further tasks can be executed without adding further processor cores.

194

0
20
40
60
80

100
120
140
160
180

4x 128

4x 128

4x 128

4x 128

2x 256

2x 256

2x 256

2x 256

512-b

512-b

512-b

512-b

1024-

1024-

1024-

1024-

To
ta

l e
ne

rg
y

[m
J]

UL FFTs
DL FFTs
DL MIMO FSD

8-bit, B
fy1

8-bit, C
ross1

8-bit, B
fy2

8-bit, C
ross2

6-bit, B
fy1

6-bit, C
ross1

6-bit, B
fy2

6-bit, C
ross2

bit, B
fy1

bit, C
ross1

bit, B
fy2

bit, C
ross2

-bit, B
fy1

-bit, C
ross1

-bit, B
fy2

-bit, C
ross2

Figure 8.2: Total energy consumption for the example MIMO-OFDM transmission sce-
nario

Figure 8.2 shows that the 512-bit SIMD processor architectures are the most energy ef-
�cient processors for this scenario.2 Single-vector permutation networks require signi�-
cantly less energy and achieve almost the same performance as double-vector permutation
networks. Therefore, a single-vector permutation network should be selected. Single-
vector inverse butter�y and crossbar networks achieve similar processor utilization and
energy consumption results, but inverse butter�y networks require less area (see �gure
8.3). Hence, for this scenario, a 512-bit SIMD processor architecture with a single-vector
inverse butter�y network is an adequate solution. If increased �exibility for vector data
alignment is desired, two 256-bit SIMD processors could instead be used at the cost of
increased energy consumption.

Possible topics for future research

The performance of short mixed-radix FFTs, whose sizes are not multiples of the squared
vector length, and the LDPC decoding for vector lengths greater than the expansion
factor z is limited due to the complexity of the required permutations and memory access
patterns. As discussed in chapter 7.3, indirect SIMdD processing and e�cient support
for parallel permutation operations on segments of vectors are two techniques that could

2The 1024-bit SIMD results are slightly worse due to the RTL code automatically generated from LISA.

195

Chapter 8 Conclusion

1.500

1.700

1.900

2.100

2.300

2.500

0.700

0.800

0.900

1.000

1.100

1.200

rm
al

iz
ed

 a
re

a

en
er

gy
-d

el
ay

 p
ro

du
ct

0.700

0.900

1.100

1.300

0.300

0.400

0.500

0.600

4x 128-bit 2x 256-bit 512-bit 1024-bit

N
or

N
or

m
al

iz
ed

SIMD architecture
Energy-delay (Bfy1) Energy-delay (Cross1)
Energy-delay (Bfy2) Energy-delay (Cross2)
Area (Bfy1) Area (Cross1)
Area (Bfy2) Area (Cross2)

Figure 8.3: Normalized energy-delay product and area for the described scenario

improve the scalability and reduce the complexity of algorithm implementations. Hence,
these techniques merit further investigation in future research.
Another open topic for research is the development of e�cient vectorizing compilers for
wide SIMD processors. Currently, the most appropriate approach is performing the vec-
torization and the mapping of operations on DSP instructions manually by programming
in a high-level language with support of vector operation intrinsics (e. g. as in EVP-C, the
programming language for the EVP). Yet, the availability of good vectorizing compilers
would reduce the complexity of the software development and improve the acceptance of
wide SIMD processors.

196

Bibliography

[AG09] Inc. Athena Group. FFT Cores - FFTs for Communications and Signal
Processing. Online, http://www.athena-group.com/external/FFT_PB_
Book.pdf, 2009.

[Ala98] S. M. Alamouti. A Simple Transmit Diversity Technique for Wireless Com-
munications. IEEE J. Select. Areas Commun., 16(8):1451�1458, 1998.

[ARB+05] R. Azevedo, S. Rigo, M. Bartholomeu, G. Araujo, C. Araujo, and E. Barros.
The ArchC architecture description language and tools. Int. J. Parallel
Program., 33(5):453�484, October 2005.

[ARC05] ARC International. ARChitect Processor Con�gurator: The Power of
Con�gurable Processing At Your Fingertips. Whitepaper, online http:

//www.arc.com/configurablecores/architect/, 2005.

[ARM08] ARM. ARM NEON support in the ARM compiler. White paper, http:
//www.arm.com/files/pdf/NEON_Support_in_the_ARM_Compiler.pdf,
Sept. 2008.

[B�06] Helmut Bölcskei. MIMO-OFDM wireless systems: Basics, perspectives, and
challenges. IEEE Wireless Communications, 13:31�37, August 2006.

[Bau01] G. Bauch. Introduction to multi-antenna systems and space-time codes. In
Proc. of the 3rd International Workshop on Commercial Radio Sensors and
Communication Techniques, 2001.

[BBW+05] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H Bölcskei. VLSI implementation of MIMO detection using the sphere
decoding algorithm. IEEE J. Solid-State Circuits, 40(7):1�12, July 2005.

[BD03] L. Barnault and D. Declercq. Fast decoding algorithm for LDPC over
GF(2q). In Information Theory Workshop, 2003. Proceedings. 2003 IEEE,
pages 70 � 73, 31 2003.

197

http://www.athena-group.com/external/FFT_PB_Book.pdf
http://www.athena-group.com/external/FFT_PB_Book.pdf
http://www.arc.com/configurablecores/architect/
http://www.arc.com/configurablecores/architect/
http://www.arm.com/files/pdf/NEON_Support_in_the_ARM_Compiler.pdf
http://www.arm.com/files/pdf/NEON_Support_in_the_ARM_Compiler.pdf

Bibliography

[BDT08] BDTi. An Independent Evaluation of the picoChip PC102 Software Devel-
opment Tools and Programming Model. Technical report, Berkeley Design
Technology, Inc., 2008.

[Beh09] B. Beheshti. On performance of LTE UE DFT and FFT implementations
in �exible software based baseband processors. In Systems, Applications
and Technology Conference, 2009. LISAT '09. IEEE Long Island, pages 1
�4, 1-1 2009.

[Ben65] V. E. Bene². Mathematical theory of connecting networks and telephone
tra�c. Academic Press, 1965.

[BGT93] C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit error-
correcting coding and decoding: Turbo-codes. 1. In Communications, 1993.
ICC 93. Geneva. Technical Program, Conference Record, IEEE Interna-
tional Conference on, volume 2, pages 1064�1070, 23-26 1993.

[Bhu09] M. R. Bhujade. Parallel Computing. New Age Publications (Academic),
2nd edition, 2009.

[BNW98] M. Bene², S. M. Nowick, and A. Wolfe. A Fast Asynchronous Hu�man
Decoder for Compressed-Code Embedded Processors. In ASYNC '98: Pro-
ceedings of the 4th International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pages 43�56, Washington, DC, USA, 1998.
IEEE Computer Society.

[BT06a] L. G. Barbero and J. S. Thompson. A Fixed-Complexity MIMO Detector
Based on the Complex Sphere Decoder. In IEEE International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC '06),
Cannes, France, Jul. 2006.

[BT06b] L.G. Barbero and J.S. Thompson. Performance Analysis of a Fixed-
Complexity Sphere Decoder in High-Dimensional MIMO Systems. In Acous-
tics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006
IEEE International Conference on, volume 4, 14-19 2006.

[BT06c] L.G. Barbero and J.S. Thompson. Rapid Prototyping of a Fixed-
Throughput Sphere Decoder for MIMO Systems. In Communications, 2006.
ICC '06. IEEE International Conference on, volume 7, pages 3082 �3087,
June 2006.

198

Bibliography

[BT08a] L.G. Barbero and J.S. Thompson. Extending a Fixed-Complexity Sphere
Decoder to Obtain Likelihood Information for Turbo-MIMO Systems. Ve-
hicular Technology, IEEE Transactions on, 57(5):2804 �2814, Sept. 2008.

[BT08b] L.G. Barbero and J.S. Thompson. Fixing the Complexity of the Sphere De-
coder for MIMO Detection. Wireless Communications, IEEE Transactions
on, 7(6):2131�2142, June 2008.

[CDE+05] J. Chen, A. Dholakia, E. Eleftheriou, M.P.C. Fossorier, and X.-Y. Hu.
Reduced-Complexity Decoding of LDPC Codes. Communications, IEEE
Transactions on, 53(8):1288�1299, Aug. 2005.

[CEV09] CEVA, Inc. CEVA-XC Communications Processor. Online, http://www.
ceva-dsp.com/products/system/pdf/ceva-xc_datasheet.pdf, 2009.

[CFRU01] S.-Y. Chung, Jr. Forney, G.D., T.J. Richardson, and R. Urbanke. On the
design of low-density parity-check codes within 0.0045 dB of the Shannon
limit. Communications Letters, IEEE, 5(2):58 �60, Feb. 2001.

[CoW09a] CoWare. CoWare Processor Designer Product Family: LISA Language Ref-
erence Manual. CoWare Inc., product version v2009.1.1 edition, April 2009.

[CoW09b] CoWare. CoWare Processor Designer Product Family: Processor Design
Guide. CoWare Inc., product version v2009.1.1 edition, April 2009.

[CoW09c] CoWare. CoWare Processor Designer Product Family: Processor Generator
Reference Manual. CoWare Inc., product version v2009.1.1 edition, April
2009.

[CT65] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation
of complex Fourier series. Math. Comput., 19:297�301, 1965.

[CTC+04] A. Chun, E. Tsui, I. Chen, H. Honary, and J. Lin. Application of the
Intel reg; recon�gurable communications architecture to 802.11a, 3G and
4G standards. In Emerging Technologies: Frontiers of Mobile and Wireless
Communication, 2004. Proceedings of the IEEE 6th Circuits and Systems
Symposium on, volume 2, pages 659 � 662, 31 2004.

[Dal90] W. J. Dally. Performance Analysis of k-ary n-cube Interconnection Net-
works. IEEE Trans. Comput., 39(6):775�785, June 1990.

[dB87] V. L. de Buen. Multistage Interconnection Networks In Multiprocessor Sys-
tems. A Simulation Study. Quaderns d'Estadística i Investigació Operativa,
11(3):73�86, 1987.

199

http://www.ceva-dsp.com/products/system/pdf/ceva-xc_datasheet.pdf
http://www.ceva-dsp.com/products/system/pdf/ceva-xc_datasheet.pdf

Bibliography

[DM98] M.C. Davey and D.J.C. MacKay. Low density parity check codes over
GF(q). In Information Theory Workshop, 1998, pages 70 �71, 22-26 1998.

[DM03] J.H. Derby and J.H. Moreno. A high-performance embedded DSP core
with novel SIMD features. In Acoustics, Speech, and Signal Processing,
2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on,
volume 2, pages 301�304, 6-10 2003.

[DMW03] J. H. Derby, J. H. Moreno, and M. S. Ware. A low-power high-performance
embedded DSP core with novel SIMD features. In GSPx Conference 2003,
2003.

[DOW96] S. Dutta, K. J. O'Connor, and A. Wolfe. High-performance crossbar inter-
connect for a VLIW video signalprocessor. In Proceedings., Ninth Annual
IEEE International ASIC Conference and Exhibit, pages 45�49, Sep. 1996.

[DWWO96] S. Dutta, A. Wolfe, W. Wolf, and K.J. O'Connor. Design issues for very-
long-instruction-word VLSI video signal processors. In VLSI Signal Pro-
cessing, IX, 1996., [Workshop on], pages 95�104, 1996.

[FG98] G. J. Foschini and M. J. Gans. On limits of wireless communications in
a fading environment when using multiple antennas. Wireless Personal
Communications, 6:311�335, 1998.

[Fis83] J. A. Fisher. Very Long Instruction Word architectures and the ELI-512.
In ISCA '83: Proceedings of the 10th annual international symposium on
Computer architecture, pages 140�150, New York, NY, USA, 1983. ACM.

[FLN+09] R. Fasthuber, M. Li, D. Novo, P. Raghavan, L. Van Der Perre, and
F. Catthoor. Novel energy-e�cient scalable soft-output SSFE MIMO de-
tector architectures. In Systems, Architectures, Modeling, and Simulation,
2009. SAMOS '09. International Symposium on, pages 165 �171, 20-23
2009.

[Fly66] M. J. Flynn. Very high-speed computing systems. Proceedings of the IEEE,
54(12):1901�1909, 1966.

[Fly72] M. J. Flynn. Some Computer Organizations and Their E�ectiveness. Com-
puters, IEEE Transactions on, C-21(9):948 �960, Sept. 1972.

[For07] SDR Forum. SDRF Cognitive Radio De�nitions, Nov. 2007.

200

Bibliography

[Fos96] G. J. Foschini. Layered space-time architecture for wireless communication
in a fading environment when using multi-element antennas. Bell Labs
Technical Journal, pages 41�59, 1996.

[Fos04] M.P.C. Fossorier. Quasicyclic low-density parity-check codes from circu-
lant permutation matrices. Information Theory, IEEE Transactions on,
50(8):1788 � 1793, Aug. 2004.

[FP85] U. Fincke and M. Pohst. Improved methods for calculating vectors of short
length in a lattice, including a complexity analysis. Mathematics of Com-
putation, 44(170):463�471, Apr. 1985.

[FP02] F. Franchetti and M. Püschel. A SIMD vectorizing compiler for digital signal
processing algorithms. In IPDPS '02: Proceedings of the 16th International
Parallel and Distributed Processing Symposium, 2002.

[FP03] F. Franchetti and M. Püschel. Short Vector Code Generation for the Dis-
crete Fourier Transform. In International Parallel and Distributed Process-
ing Symposium (IPDPS'03), 2003.

[FP07] F. Franchetti and M. Püschel. SIMD vectorization of non-two-power sized
FFTs. In Proceedings of International Conference on Acoustics, Speech, and
Signal Processing (ICASSP) 2007, 2007.

[Fra03] F. Franchetti. Performance Portable Short Vector Transforms. PhD thesis,
Vienna University of Technology, 2003.

[FVP07] F. Franchetti, Y. Voronenko, and M. Püschel. A rewriting system for the
vectorization of signal transforms. High Performance Computing for Com-
putational Science - VECPAR 2006, 4395/2007:363�377, 2007.

[Gal63] R. G. Gallager. Low Density Parity Check Codes. M.I.T. Press, 1963.

[GCT92] J. Granata, M. Conner, and R. Tolimieri. Recursive Fast Algorithms and the
Role of the Tensor Product. IEEE Trans. Signal Processing, 40(12):2921�
2930, Dec. 1992.

[Gen73] W. M. Gentleman. Least Squares Computations by Givens Transformations
Without Square Roots. IMA Journal of Applied Mathematics, 12(3):329�
336, 1973.

[GH96] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose micro-
processors. Solid-State Circuits, IEEE Journal of, 31(9):1277 �1284, Sept.
1996.

201

Bibliography

[GI06] J. Glossner and D. Iancu. The Sandbridge SB3011 SDR platform. In Pro-
ceedings of the Symposium on Trends in Communications (SympoTIC'06),
Bratislava, Slovakia, 2006.

[GL73] L. R. Goke and G. J. Lipovski. Banyan networks for partitioning multipro-
cessor systems. SIGARCH Comput. Archit. News, 2(4):21�28, 1973.

[GLGVP06] G. Goossens, D. Lanneer, W. Geurts, and J. Van Praet. Design of ASIPs in
multi-processor SoCs using the Chess/Checkers retargetable tool suite. In
System-on-Chip, 2006. International Symposium on, pages 1 �4, Nov. 2006.

[GM05] Y. Guo and D. McCain. Reduced QRD-M detector in MIMO-OFDM sys-
tems with partial and embedded sorting. In Global Telecommunications
Conference (GLOBECOM '05), 2005.

[GN06] Z. Guo and P. Nilsson. Algorithm and implementation of the K-best sphere
decoding for MIMO detection. Selected Areas in Communications, IEEE
Journal on, 24(3):491 � 503, Mar. 2006.

[Goo58] T. J. Good. The interaction algorithm and practical Fourier analysis. Jour-
nal of the Royal Statistical Society, Series B (Methodological), 20(2):361�
372, 1958.

[GRS07] C. Grassmann, M. Richter, and M. Sauermann. Mapping the physical layer
of radio standards to multiprocessor architectures. In Design, Automation
Test in Europe Conference Exhibition, 2007. DATE '07, pages 1 �6, April
2007.

[GS91] J. Götze and U. Schwiegelshohn. A square root and division free Givens
rotation for solving least squares problems on systolic arrays. SIAM J. Sci.
Stat. Comput., 12(4):800�807, 1991.

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix computations (3rd ed.).
Johns Hopkins University Press, Baltimore, MD, USA, 1996.

[GZMC06] Y. Guo, J. Zhang, D. McCain, and J. R. Cavallaro. An e�cient circulant
MIMO equalizer for CDMA downlink: Algorithm and VLSI architecture.
EURASIP J. Appl. Signal Process., 2006:1�18, 2006.

[GZYC86] Q. Gao, X. Zhang, S. Yang, and S. Chen. Vector computer 757. Journal of
Computer Science and Technology, 1(3):1�14, Sept. 1986.

[Hie03] T. Hiers. TMS320C6414/5/6 Power Consumption Summary - Application
Report. Technical report, Texas instruments, 2003.

202

Bibliography

[HL07] Y. Hilewitz and R.B. Lee. Performing Advanced Bit Manipulations E�-
ciently in General-Purpose Processors. In Proceedings of the 18th IEEE
Symposium on Computer Arithmetic (ARITH-18), pages 251�260, Mont-
pellier, France, 2007.

[HM03] H. C. Hunter and J. H. Moreno. A new look at exploiting data parallelism
in embedded systems. In CASES '03: Proceedings of the 2003 international
conference on Compilers, architecture and synthesis for embedded systems,
pages 159�169, New York, NY, USA, 2003. ACM Press.

[HNBM01] A. Ho�mann, A. Nohl, G. Braun, and H. Meyr. A survey on modeling
issues using the machine description language LISA. In Acoustics, Speech,
and Signal Processing, 2001. Proceedings. (ICASSP '01). 2001 IEEE Inter-
national Conference on, volume 2, pages 1137�1140, 2001.

[Hof02] A. Ho�mann. Architecture Exploration for Embedded Processors with LISA.
PhD thesis, RWTH Aachen, 2002.

[HtB03] B. M. Hochwald and S. ten Brink. Achieving near-capacity on a multiple-
antenna channel. IEEE Trans. Commun., 51(3):389�399, March 2003.

[IEE09a] IEEE. IEEE Standard for Information technology�Telecommunications
and information exchange between systems�Local and metropolitan area
networks�Speci�c requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Speci�cations Amendment 5:
Enhancements for Higher Throughput. IEEE Std 802.11n-2009 (Amend-
ment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008,
IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std 802.11w-
2009), pages c1 �502, 29 2009.

[IEE09b] IEEE Computer Society and IEEE Microwave Theory and Techniques Soci-
ety. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air
Interface for Broadband Wireless Access Systems, IEEE Std 802.16-2009
edition, May 2009.

[JBL+08] M. Joham, L.G. Barbero, T. Lang, W. Utschick, J. Thompson, and T. Rat-
narajah. FPGA implementation of MMSE metric based e�cient near-ML
detection. In Smart Antennas, 2008. WSA 2008. International ITG Work-
shop on, pages 139 �146, 26-27 2008.

[JBOT09] J. Jaldén, L.G. Barbero, B. Ottersten, and J.S. Thompson. The Error
Probability of the Fixed-Complexity Sphere Decoder. Signal Processing,
IEEE Transactions on, 57(7):2711�2720, July 2009.

203

Bibliography

[JGKM04] S. Jintukar, J. Glossner, V. Kotlyar, and M. Moudgill. The Sandblaster au-
tomatic multithreaded vectorizing compiler. In 2004 Global Signal Process-
ing Expo (GSPx) and International Signal Processing Conference (ISPC),
Santa Clara, California, 2004.

[JKMR07] C.-P. Jeannerod, H. Knochel, C. Monat, and G. Revy. Faster �oating-point
square root for integer processors. In Industrial Embedded Systems, 2007.
SIES '07. International Symposium on, pages 324 �327, 4-6 2007.

[JSJ09] J. Janhunen, O. Silvén, and M. Juntti. Comparison of the Software De�ned
Radio Implementations of the K-best List Sphere Detection. In 17th Eu-
ropean Signal Processing Conference (EUSIPCO 2009), pages 2396�2400,
Glasgow, Scotland, August 24-28 2009. EURASIP.

[KF98] F.R. Kschischang and B.J. Frey. Iterative decoding of compound codes by
probability propagation in graphical models. Selected Areas in Communi-
cations, IEEE Journal on, 16(2):219 �230, Feb. 1998.

[KFA+07] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shih. Low Power
Methodology Manual: For System-on-Chip Design (Integrated Circuits and
Systems). Springer, 2007.

[Kno05] S. Knowles. The SoC Future is Soft. IEE Cambridge Branch
Seminar 2005 http://devel.iee-cambridge.org.uk/arc/seminar05/

slides/SimonKnowles.pdf, Dec. 2005.

[KSAF07] R. Klemm, J.P. Sabugo, H. Ahlendorf, and G. Fettweis. Using LISATek
for the Design of an ASIP Core including Floating-Point Operations. In
Proceedings of the 10th GI/ITG/GMM Workshop "Methoden und Beschrei-
bungssprachen zur Modellierung und Veri�kation von Schaltungen und Sys-
temen" (MBMV'07), Mar. 2007.

[KW08] T.-C. Kuo and A.N. Willson. A �exible decoder IC for WiMAX QC-LDPC
codes. In Custom Integrated Circuits Conference, 2008. CICC 2008. IEEE,
pages 527 �530, 21-24 2008.

[L�04] O. Lüthje. A Methodology for Automated Anaylsis of Application Speci�c
Processor Models with Respect to Test Generation. PhD thesis, RWTH
Aachen, 2004.

[LBL+08] M. Li, B. Bougard, E.E. Lopez, A. Bourdoux, D. Novo, L. Van Der Perre,
and F. Catthoor. Selective Spanning with Fast Enumeration: A Near
Maximum-Likelihood MIMO Detector Designed for Parallel Programmable

204

http://devel.iee-cambridge.org.uk/arc/seminar05/slides/SimonKnowles.pdf
http://devel.iee-cambridge.org.uk/arc/seminar05/slides/SimonKnowles.pdf

Bibliography

Baseband Architectures. In Communications, 2008. ICC '08. IEEE Inter-
national Conference on, pages 737�741, May 2008.

[LCB+06] A. Lodi, A. Cappelli, M. Bocchi, C. Mucci, M. Innocenti, C. De Bartolomeis,
L. Ciccarelli, R. Giansante, A. Deledda, F. Campi, M. Toma, and R. Guer-
rieri. XiSystem: a XiRisc-based SoC with recon�gurable IO module. Solid-
State Circuits, IEEE Journal of, 41(1):85 � 96, Jan. 2006.

[LCM09] H. Lee, C. Chakrabarti, and T. Mudge. A Low-Power DSP for Wire-
less Communications. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, PP(99):13, 2009.

[Lec09] M. Lechtenberg. Modellierung eines SIMD-DSPs mit kon�gurierbarer Vek-
torlänge. Diploma thesis (German), Technische Universität Dortmund, Cir-
cuits and Systems Lab, Oct. 2009.

[LFN+09] M. Li, R. Fasthuber, D. Novo, B. Bougard, L. Van Der Perre, and
F. Catthoor. Algorithm-architecture co-design of soft-output ML MIMO
detector for parallel application speci�c instruction set processors. In De-
sign, Automation Test in Europe Conference Exhibition, 2009. DATE '09.,
pages 1608 �1613, 20-24 2009.

[Lin08] Y. Lin. Realizing Software De�ned Radio � A Study in Designing Mobile
Supercomputers. PhD thesis, University of Michigan, 2008.

[LLW+06] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti,
and K. Flautner. SODA: A Low-power Architecture For Software Radio.
In Proc. 33rd Intl. Symposium on Computer Architecture (ISCA), 2006.

[LLW+07] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti,
and K. Flautner. SODA: A High-performance DSP Architecture for
Software-De�ned Radio. IEEE Micro, 27(1):114�123, Jan/Feb 2007.

[LTC03] A. Lodi, M. Toma, and F. Campi. A pipelined con�gurable gate array for
embedded processors. In FPGA '03: Proceedings of the 2003 ACM/SIGDA
eleventh international symposium on Field programmable gate arrays, pages
21�30, New York, NY, USA, 2003. ACM.

[Mac99] D.J.C. MacKay. Good error-correcting codes based on very sparse matrices.
Information Theory, IEEE Transactions on, 45(2):399 �431, Mar. 1999.

[MB06] T. Mohsenin and B.M. Baas. Split-Row: A Reduced Complexity, High
Throughput LDPC Decoder Architecture. In Computer Design, 2006.
ICCD 2006. International Conference on, pages 320�325, Oct. 2006.

205

Bibliography

[MG08] M. Moudgill and J. Glossner. The Sandblaster 2.0 Architecture and SB3500
Implementation. In Proceedings of the Software De�ned Radio Technical
Forum (SDR Forum '08), Oct. 2008.

[MLG06] H. G. Myung, J. Lim, and D. J. Goodman. Single carrier FDMA for uplink
wireless transmission. Vehicular Technology Magazine, IEEE, 1(3):30�38,
2006.

[MMF09] B. Mennenga, E. Matus, and G. Fettweis. Vectorization of the sphere de-
tection algorithm. In Circuits and Systems, 2009. ISCAS 2009. IEEE In-
ternational Symposium on, pages 2806�2809, May 2009.

[MN95] D. J. C. MacKay and R. M. Neal. Good Codes based on Very Sparse
Matrices. In Cryptography and Coding, 5th IMA Conference, number 1025
in Lecture Notes on Computer Science, pages 100�111, 1995.

[MN97] D.J.C. MacKay and R.M. Neal. Near Shannon limit performance of low
density parity check codes. Electronics Letters, 33(6):457 �458, 13 1997.

[MS03] M.M. Mansour and N.R. Shanbhag. High-throughput LDPC decoders. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, 11(6):976�
996, Dec. 2003.

[MVV+03] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins. ADRES:
An Architecture with Tightly Coupled VLIW Processor and Coarse-
Grained Recon�gurable Matrix. In Field-Programmable Logic and Applica-
tions 13th International Conference, FPL 2003, 2003.

[MZBF09] D.L. Milliner, E. Zimmermann, J.R. Barry, and G. Fettweis. A Fixed-
Complexity Smart Candidate Adding Algorithm for Soft-Output MIMO
Detection. IEEE Journal of Selected Topics in Signal Processing, 3(6):1016
�1025, Dec. 2009.

[MZS+03] J. H. Moreno, V. Zyuban, U. Shvadron, F. D. Neeser, J. H. Derby, M. S.
Ware, K. Kailas, A. Zaks, A. Geva, S. Ben-David, S. W. Asaad, T. W.
Fox, D. Littrell, M. Biberstein, D. Naishlos, and H. Hunter. An innova-
tive low-power high-performance programmable signal processor for digital
communications. IBM Journal of Research and Development, 47(2.3):299
�326, Mar. 2003.

[Neu04] Y. Neuvo. Cellular phones as embedded systems. IEEE International Solid-
State Circuits Conference, 2004. Digest of Technical Papers. ISSCC. 2004,
1:32 � 37, Feb. 2004.

206

Bibliography

[Nil07] A. Nilsson. Design of programmable multi-standard baseband processors.
PhD thesis, Linköping University, Department of Electrical Engineering,
2007.

[NRZ06] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization of interleaved data
for SIMD. In PLDI '06: Proceedings of the 2006 ACM SIGPLAN conference
on Programming language design and implementation, pages 132�143, New
York, NY, USA, 2006. ACM Press.

[NTL09] A. Nilsson, E. Tell, and D. Liu. An 11mm2 , 70mW Fully Programmable
Baseband Processor for Mobile WiMAX and DVB-T/H in 0.12µm CMOS.
Solid-State Circuits, IEEE Journal of, 44(1):90 �97, Jan. 2009.

[NZ06] D. Nuzman and A. Zaks. Autovectorization in GCC � two years later. In
Proceedings of the GCC Developers' Summit, June 2006.

[Ond05] S. Onder. An introduction to Flexible Architecture Simulation Tool (FAST)
and Architecture Description Language ADL. Technical Report Technical
Report TR 05-01, Michigan Technological University, 2005.

[Par80] D. S. Parker. Notes on Shu�e/Exchange-Type Switching Networks. IEEE
Trans. Comput., 29(3):213�222, 1980.

[Pea77] M. C. Pease. The Indirect Binary n-Cube Microprocessor Array. IEEE
Trans. Comput., 26(5):458�473, 1977.

[Pee02] S. L. A. Pees. Modeling Embedded Processors and Generating Fast Simu-
lators Using the Machine Description Language LISA. PhD thesis, RWTH
Aachen, 2002.

[PHZM99] S. Pees, A. Ho�mann, V. Zivojnovic, and H. Meyr. LISA�machine de-
scription language for cycle-accurate models of programmable DSP archi-
tectures. In DAC '99: Proceedings of the 36th ACM/IEEE conference on
Design automation, pages 933�938, New York, NY, USA, 1999. ACM.

[Pit97] N. P. Pitsianis. A Kronecker Compiler for Fast Transform Algorithms.
In Proceedings of the Eighth SIAM Conference on Parallel Processing for
Scienti�c Computing, PPSC 1997, January 1997.

[PK98] M. K. Prasad and R. K. Kolagotla. Modulo address generators for DSPs.
IEE Electronics Letters, 34(17):1653�1654, Aug. 1998.

207

Bibliography

[PLGG01] J. Van Praet, D. Lanneer, W. Geurts, and G. Goossens. Processor Modeling
and Code Selection for Retargetable Compilation. ACM Transactions on
Design Automation of Electronic Systems, 6(3):1�30, 2001.

[PMJ+05] M. Püschel, J.M.F. Moura, J.R. Johnson, D. Padua, M.M. Veloso, B.W.
Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R.W.
Johnson, and N. Rizzolo. SPIRAL: Code Generation for DSP Transforms.
Proceedings of the IEEE, 93(2):232 �275, Feb. 2005.

[Poh81] M. Pohst. On the computation of lattice vectors of minimal length, succes-
sive minima and reduced bases with applications. SIGSAM Bull., 15(1):37�
44, 1981.

[PT09] T. Pitkanen and J. Takala. Low-power application-speci�c processor for
FFT computations. In Acoustics, Speech and Signal Processing, 2009.
ICASSP 2009. IEEE International Conference on, pages 593 �596, 19-24
2009.

[Pul08] D. Pulley. Multi-core DSP for base stations: Large and small. In Design Au-
tomation Conference, 2008. ASPDAC 2008. Asia and South Paci�c, pages
389 �391, 21-24 2008.

[Rad68] C. M. Rader. Discrete Fourier transforms when the number of data samples
is prime. Proc. IEEE, 56(6):1107�1108, June 1968.

[Rai06] S. K. Raina. FLIP: A Floating-Point Library for Integer Processors. PhD
thesis, l'École Normale Superieure de Lyon, 2006.

[Ram07] U. Ramacher. Software-de�ned radio prospects for multistandard mobile
phones. Computer, 40(10):62�69, 2007.

[RdBKC06] P. Radosavljevic, A. de Baynast, M. Karkooti, and J. R. Cavallaro. High-
Throughput Multi-rate LDPC Decoder based on Architecture-Oriented
Parity Check Matrices. In European Signal Processing Conference 2006
(EUSIPCO 2006), 2006.

[RDK+00] S. Rixner, W.J. Dally, B. Khailany, P. Mattson, U.J. Kapasi, and J.D.
Owens. Register organization for media processing. In High-Performance
Computer Architecture, 2000. HPCA-6. Proceedings. Sixth International
Symposium on, pages 375�386, 2000.

[Rep08] Rep. ITU-R M.2134. Requirements related to technical performance for
IMT-Advanced radio interface(s). Technical report, International Telecom-
munication Union - Radiocommunication, 2008.

208

Bibliography

[RMR+07] P. Raghavan, S. Munaga, E. Rey Ramos, A. Lambrechts, M. Jayapala,
F. Catthoor, and D. Verkest. A Customized Cross-Bar for Data-Shu�ing in
Domain-Speci�c SIMD Processors. In Proc. of Architecture and Computing
Systems (ARCS), 2007.

[RS03] M. Ros and P. Sutton. Compiler Optimization and Ordering E�ects on
VLIW Code Compression. In International Conference on Compilers, Ar-
chitecture and Synthesis for Embedded Systems, 2003.

[RSU01] T.J. Richardson, M.A. Shokrollahi, and R.L. Urbanke. Design of capacity-
approaching irregular low-density parity-check codes. Information Theory,
IEEE Transactions on, 47(2):619 �637, Feb. 2001.

[RU01] T.J. Richardson and R.L. Urbanke. E�cient encoding of low-density parity-
check codes. Information Theory, IEEE Transactions on, 47(2):638 �656,
Feb. 2001.

[Rus78] R. M. Russell. The CRAY-1 computer system. Commun. ACM, 21(1):63�
72, 1978.

[San09] Sandbridge Technologies. Sandbridge announces certi�ed BDTI Commu-
nications Benchmark (OFDM) results for its Sandblaster SB3500. Press
release http://www.sandbridgetech.com/pdf/sb_PR_BDTI_v1_8_FINAL.
pdf, Jan. 2009.

[SBM+04] G. L. Stüber, J. R. Barry, S. W. McLaughlin, L. Ye, M. A. Ingram, and
T. G. Pratt. Broadband MIMO-OFDM wireless communications. Proc.
IEEE, 92(2):271� 294, Feburary 2004.

[SC08] Y. Sun and J.R. Cavallaro. A low-power 1-Gbps recon�gurable LDPC de-
coder design for multiple 4G wireless standards. In SOC Conference, 2008
IEEE International, pages 367 �370, 17-20 2008.

[SE94] C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Mathematical Programming,
66(1):181 � 199, 1994.

[SE09] ST-Ericsson. Low-power embedded vector DSP � EVP VD32041 32-bit
embedded-vector processor for SoCs. Online http://www.stericsson.

com/sales_marketing_resources/VD32041BR_1.pdf, Feb. 2009.

[Sie79] H. J. Siegel. Interconnection Networks for SIMD Machines. Computer,
Special Issue on Circuit Switching, 12(6):57�69, 1979.

209

http://www.sandbridgetech.com/pdf/sb_PR_BDTI_v1_8_FINAL.pdf
http://www.sandbridgetech.com/pdf/sb_PR_BDTI_v1_8_FINAL.pdf
http://www.stericsson.com/sales_marketing_resources/VD32041BR_1.pdf
http://www.stericsson.com/sales_marketing_resources/VD32041BR_1.pdf

Bibliography

[Sin67] R. C. Singleton. On computing the fast Fourier transform. Commun. ACM,
10(10):647�654, 1967.

[SLG04] E. Sharon, S. Litsyn, and J. Goldberger. An e�cient message-passing sched-
ule for LDPC decoding. In Electrical and Electronics Engineers in Israel,
2004. Proceedings. 2004 23rd IEEE Convention of, pages 223�226, Sept.
2004.

[SLG07] E. Sharon, S. Litsyn, and J. Goldberger. E�cient Serial Message-Passing
Schedules for LDPC Decoding. Information Theory, IEEE Transactions
on, 53(11):4076�4091, Nov. 2007.

[SM06] L. Schwoerer and K. Moerman. Benchmarking MIMO OFDM algorithms
on the EVP. In Proceedings of the GSPx 2006 Pervasive Signal Processing
Conference, Santa Clara, CA, USA, Oct.-Nov. 2006.

[SMN+09] V. Surducan, M. Moudgill, G. Nacer, E. Surducan, P. Balzola, J. Glossner,
S. Stanley, Meng Yu, and D. Iancu. The Sandblaster Software-De�ned
Radio Platform for Mobile 4G Wireless Communications. International
Journal of Digital Multimedia Broadcasting, 2009:9, 2009.

[Smo02] M. Smotherman. Understanding EPIC Architectures and Implementations.
In 40th Annual ACM Southeast Conference, Raleigh, pages 71�78, April
2002.

[SMPTM79] H. J. Siegel, R. J. McMillen, and Jr. P. T. Mueller. A Survey of Intercon-
nection Methods for Recon�gurable Parallel Processing Systems. In AFIPS
Conference Proceedings Volume 48: 1979 National Computer Conference,
1979.

[SMZC07] S. Seo, T. Mudge, Y. Zhu, and C. Chakrabarti. Design and analysis of
LDPC decoders for software de�ned radio. In Signal Processing Systems,
2007 IEEE Workshop on, pages 210�215, Oct. 2007.

[SPVB08] R. Seindal, F. Pinard, G. V. Vaughan, and E. Blake. GNU M4, version
1.4.12 - A powerful macro processor, 1.4.12 edition, Sept. 2008.

[SS78] H. J. Siegel and S. D. Smith. Study of multistage SIMD interconnection net-
works. In ISCA '78: Proceedings of the 5th annual symposium on Computer
architecture, pages 223�229, New York, NY, USA, 1978. ACM.

[SVPG+10] A. Squires, B. Van Poucke, J. Glossner, K. Moerman, K. van Berkel,
and M. Uhm. Commercial Baseband Technology Overview: The Current

210

Bibliography

State of Technology Development and Future Directions. Technical Report
WINNF-09-P-0009-V1.0.0, Wireless Innovation Forum, Feb. 2010.

[SYM08] X. Shi, S. Yoshizawa, and Y. Miyanaga. Performance evaluation of quasi-
cyclic LDPC codes for IEEE802.11n based MIMO-OFDM systems. In Com-
munications, Control and Signal Processing, 2008. ISCCSP 2008. 3rd In-
ternational Symposium on, pages 1330 �1333, 12-14 2008.

[Syn07] Synopsys. Synopsys Low-Power Solution. White Paper, avail-
able at http://electronics.wesrch.com/pdf_file/SE1_1191538495/

low-power-design-solution.pdf, June 2007.

[Syn09a] Synopsys. Design Compiler User Guide, C-2009.06 edition, June 2009.

[Syn09b] Synopsys. Power Compiler User Guide, C-2009.06-SP2 edition, Sept. 2009.

[SZLW07] X.-Y. Shih, C.-Z. Zhan, C.-H. Lin, and A.-Y. Wu. A 19-mode 8.29mm2

52-mW LDPC Decoder Chip for IEEE 802.16e System. In VLSI Circuits,
2007 IEEE Symposium on, pages 16 �17, 14-16 2007.

[Tai06] Taiwan Semiconductor Manufacturing Company, Ltd. TCBN90GTHP
TSMC 90nm Core Library Databook, 1.1 edition, Dec. 2006.

[Tan81] R. Tanner. A recursive approach to low complexity codes. Information
Theory, IEEE Transactions on, 27(5):533 � 547, Sept. 1981.

[Tec06] Technical Speci�cation Group Radio Access Network. TR 25.913 Require-
ments for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN)
(Release 7) . Technical Report V7.3.0, 3rd Generation Partnership Project,
Mar. 2006.

[Tec07] Technical Speci�cation Group Radio Access Network. TS 25.213 Spread-
ing and modulation (FDD) (Release 7). Technical Report Release 7, 3rd
Generation Partnership Project, Sept. 2007.

[Tec09a] Technical Speci�cation Group Radio Access Network. TR 36.913 Require-
ments for further advancements for Evolved Universal Terrestrial Radio
Access (E-UTRA) (LTE-Advanced) (Release 9). Technical Report V9.0.0,
3rd Generation Partnership Project, Dec. 2009.

[Tec09b] Technical Speci�cation Group Radio Access Network. TS 36.211 Evolved
Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Mod-
ulation (Release 8). Technical Report V8.9.0, 3rd Generation Partnership
Project, Dec. 2009.

211

http://electronics.wesrch.com/pdf_file/SE1_1191538495/low-power-design-solution.pdf
http://electronics.wesrch.com/pdf_file/SE1_1191538495/low-power-design-solution.pdf

Bibliography

[Tec10] Technical Speci�cation Group Radio Access Network. TS 36.101 Evolved
Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) ra-
dio transmission and reception (Release 8). Technical Report V8.9.0, 3rd
Generation Partnership Project, Mar. 2010.

[Tel99] I. E. Telatar. Capacity of multi-antenna Gaussian channels. European
Transactions on Telecommunications, 10(6):585�596, 1999.

[Tem83] C. Temperton. Self-sorting mixed-radix fast Fourier transforms. Journal of
Computational Physics, 52(1):1�23, Oct 1983.

[Ten05] Tensilica. Xtensa Architecture and Performance. Tensilica White
Paper, online http://www.tensilica.com/products/literature-docs/

white-papers.htm, Oct. 2005.

[Ten08] Tensilica. The What, Why, and How of Con�gurable Processors.
Tensilica White Paper, online http://www.tensilica.com/products/

literature-docs/white-papers.htm, Oct. 2008.

[TMAJ08] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACTI 5.1.
Technical Report HPL-2008-20, HP Laboratories, Palo Alto, Palo Alto,
April 2008.

[TSFB07] A. Tomasoni, M. Siti, M. Ferrari, and S. Bellini. Turbo-LORD: A MAP-
Approaching Soft-Input Soft-Output Detector for Iterative MIMO Re-
ceivers. In Global Telecommunications Conference, 2007. GLOBECOM '07.
IEEE, pages 3504 �3508, 26-30 2007.

[TSG06] TSG-RAN WG1 (Ericsson). DFT size for uplink transmissions. 3GPP
Technical Document R1-062852, Oct. 2006.

[TSS+04] R.M. Tanner, D. Sridhara, A. Sridharan, T.E. Fuja, and Jr. Costello, D.J.
LDPC block and convolutional codes based on circulant matrices. Infor-
mation Theory, IEEE Transactions on, 50(12):2966 � 2984, Dec. 2004.

[VB99] E. Viterbo and J. Boutros. A universal lattice code decoder for fading
channels. IEEE Trans. Inform. Theory, 45(5):1639�1642, July 1999.

[vHM+04] C. H. van Berkel, F. Heinle, P. P. E. Meuwissen, K. Moerman, and M. Weiss.
Vector processing as an enabler for software-de�ned radio in handsets from
3G+WLAN onwards. In Proceedings of the 2004 software-de�ned radio
technical conference (SDR'04), Scottsdale, Arizona, U.S.A., Sept. 2004.

212

http://www.tensilica.com/products/literature-docs/white-papers.htm
http://www.tensilica.com/products/literature-docs/white-papers.htm
http://www.tensilica.com/products/literature-docs/white-papers.htm
http://www.tensilica.com/products/literature-docs/white-papers.htm

Bibliography

[vHM+05] K. van Berkel, F. Heinle, P. P. E. Meuwissen, K. Moerman, and M. Weiss.
Vector processing as an enabler for software-de�ned radio in handheld de-
vices. EURASIP Journal on Applied Signal Processing, 16:2613�2625, 2005.

[Wak68] A. Waksman. A permutation network. J. ACM, 15(1):159�163, 1968.

[WBAHS08a] P. Westermann, G. Beier, H. Ait-Harma, and L. Schwoerer. Developing
FFTs for SC-FDMA on the Embedded Vector Processor. In Proceedings of
the 13th International OFDM-Workshop (InOWo'08), 2008.

[WBAHS08b] P. Westermann, G. Beier, H. Ait-Harma, and L. Schwoerer. Performance
Analysis of W-CDMA Algorithms on a Vector DSP. In Proceddings of the
4�th European Conference on Circuits and Systems for Communications
(ECCSC'08), July 10�11 2008.

[WBAHS09] P. Westermann, G. Beier, H. Ait-Harma, and L. Schwoerer. Performance
Analysis of Wireless Communication Algorithms on a Vector Signal Proces-
sor. Rev. Roum. Sci. Techn.� Éectrotechn. et Énerg., 54(3):291�300, 2009.

[WC92] A. Wolfe and A. Chanin. Executing compressed programs on an embedded
RISC architecture. In MICRO 25: Proceedings of the 25th annual inter-
national symposium on Microarchitecture, pages 81�91, Los Alamitos, CA,
USA, 1992. IEEE Computer Society Press.

[WEL09] D. Wu, J. Eilert, and D. Liu. Evaluation of MIMO Symbol Detectors
for 3GPP LTE Terminals. In 17th European Signal Processing Conference
(EUSIPCO 2009), pages 2431�2435, Glasgow, Scotland, August 24-28 2009.
EURASIP.

[WFGV98] P.W. Wolniansky, G.J. Foschini, G.D. Golden, and R.A. Valenzuela. V-
BLAST: an architecture for realizing very high data rates over the rich-
scattering wireless channel. In Signals, Systems, and Electronics, 1998.
ISSSE 98. 1998 URSI International Symposium on, pages 295 �300, 29
1998.

[Wib96] N. Wiberg. Codes and Decoding on General Graphs. PhD thesis, Linköping
University, Sweden, 1996.

[WLS+08a] M. Woh, Y. Lin, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, R. Bruce,
Kershaw, A. D. Reid, M. Wilder, and K. Flautner. From SODA to Scotch:
The Evolution of a Wireless Baseband Processor. In Proc. 41st Intl. Sym-
posium on Microarchitecture (MICRO), pages 152�163, Nov. 2008.

213

Bibliography

[WLS+08b] M. Woh, Y. Lin, S. Seo, T. Mudge, and S. Mahlke. Analyzing the scal-
ability of SIMD for the next generation software de�ned radio. In IEEE
International Conference on Acoustics, Speech and Signal Processing 2008,
ICASSP 2008., pages 5388�5391, March 31 2008�April 4 2008 2008.

[WMMC10] M. Woh, S. Mahlke, T. Mudge, and C. Chakrabarti. Mobile Supercomputers
for the Next-Generation Cell Phone. Computer, 43(1):81 �85, Jan. 2010.

[WS09a] P. Westermann and H. Schröder. Constraints on the SIMD Vectorization
of Radix-2 and Mixed-Radix FFTs. In 17th European Signal Processing
Conference (EUSIPCO 2009), pages 1274�1278, Glasgow, Scotland, August
24-28 2009. EURASIP.

[WS09b] P. Westermann and H. Schröder. Modeling Scalable SIMD DSPs in LISA.
In K. Bertels et al., editor, SAMOS 2009, LNCS 5657, pages 160�169.
Springer-Verlag Berlin Heidelberg, 2009.

[WSK07] P. Westermann, L. Schwoerer, and A. Kaufmann. Applying Data Mapping
Techniques to Vector DSPs. In Proceedings 2007 International Conference
on Embedded Computer Systems: Architectures, Modeling and Simulation
(IC-SAMOS 2007), pages 1�8, Samos, Greece, July 2007.

[WSK08] P. Westermann, L. Schwoerer, and A. Kaufmann. Applying Data Mapping
Techniques to Vector DSPs. Journal of VLSI Signal Processing Systems,
Special Issue on SAMOS'2007:57�72, 2008.

[WSL+07] M. Woh, S. Seo, H. Lee, Y. Lin, S. Mahlke, T. Mudge, C. Chakrabarti,
and K. Flautner. The next generation challenge for software de�ned ra-
dio. In Proc. 7th Intl. Workshop on Systems, Architectures, Modeling, and
Simulation (SAMOS), 2007.

[WSM+09] M. Woh, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flautner.
AnySP: anytime anywhere anyway signal processing. In Proc. 36th Intl.
Symposium on Computer Architecture (ISCA), volume 37, pages 128�139,
New York, NY, USA, 2009. ACM.

[WSM+10] M. Woh, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flaut-
ner. AnySP: Anytime Anywhere Anyway Signal Processing. Micro, IEEE,
30(1):81 �91, Jan.-Feb. 2010.

[WTCM02] K.-W. Wong, C.-Y. Tsui, R.S.-K. Cheng, and W.-H. Mow. A VLSI ar-
chitecture of a K-best lattice decoding algorithm for MIMO channels. In

214

Bibliography

Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium
on, volume 3, pages III�273 � III�276 vol.3, 2002.

[WTW09] X. Wu, J. S. Thompson, and A. M. Wallace. An Improved Sphere Decoding
Scheme for MIMO Systems using an Adaptive Statistical Threshold. In 17th
European Signal Processing Conference (EUSIPCO 2009), pages 2668�2672,
Glasgow, Scotland, August 24-28 2009. EURASIP.

[XWL02] Y. Xie, W. Wolf, and H. Lekatsas. Code Compression for VLlW Processors
Using Variable-to-�xed Coding. In Proceedings of Fifteenth International
Symposium on System Synthesis (ISSS 2002), 2002.

[XWL06] Y. Xie, W. Wolf, and H. Lekatsas. Code Compression for Embedded
VLIW Processors Using Variable-to-Fixed Coding. IEEE Trans. VLSI
Syst., 14(5):525�536, May 2006.

[ZC09] Y. Zhu and C. Chakrabarti. Architecture-aware LDPC code design for mul-
tiprocessor software de�ned radio systems. IEEE Trans. Signal Processing,
57(9):3679�3692, 2009.

[ZPM96] V. Zivojnovic, S. Pees, and H. Meyr. LISA-machine description language
and generic machine model for HW/SW co-design. In VLSI Signal Process-
ing, IX, 1996., [Workshop on], pages 127 �136, Oct. /Nov. 1996.

215

Lebenslauf

Persönliche Daten

Name: Westermann

Vorname: Peter

Wissenschaftlicher Werdegang

2001 Abitur am Franz-Stock-Gymnasium Neheim-Hüsten

2001-2006 Studium der Elektrotechnik an der Universität Dortmund

03/2006 Abschluss des Studiums mit dem Diplom

2006-2010 Wissenschaftlicher Mitarbeiter an der Technischen Universität Dortmund

14.02.2011 Promotion an der Technischen Universität Dortmund

	Abstract
	Table of contents
	List of figures
	List of tables
	Notation
	Introduction
	Overview of software defined radio principles and architectures
	Software defined radio
	Reconfigurable SDR architectures
	SIMD-based architectures for SDR

	Basic principles of SIMD processing
	SIMD vector processing
	Advantages and disadvantages of SIMD processing

	Wide SIMD processor architectures and research on the scalability of SIMD processing
	The Embedded Vector Processor
	The Sandblaster SB3500 architecture
	The Signal-processing On-Demand Architecture
	The Ardbeg architecture based on SODA
	Processor architectures based on SIMdD processing
	Research on the scalability of SIMD processing for SDR

	Key algorithms for future 4G SDR systems
	MIMO-OFDM system model

	Scalable SIMD processor architecture
	Development of the SIMD processor architecture based on algorithm requirements
	Word lengths and data types
	Instruction set
	Instruction level parallelism
	Register files
	Permutation networks
	Overview of the SIMD processor model

	SIMD processor modeling in LISA
	Processor Designer toolkit overview
	Processor modeling in LISA
	Extensions for modeling SIMD processors
	Drawbacks of LISA as a modeling language for SIMD processors

	Vertical-horizontal vector processing as an alternative for LIW
	Vertical-horizontal vector processing for SDR
	SDR algorithm performance

	SIMD architecture analysis methodology
	Processor model synthesis
	Extraction of area, power, energy and performance figures
	Limitations of the proposed methodology

	Radix-2 and mixed-radix FFTs for OFDM-A and SC-FDMA
	OFDM-A and SC-FDMA
	Matrix representation of the FFT
	Basic DFT decomposition for two factors
	Formula manipulation rules for the DFT in matrix form
	Vectorizable formulas

	Related work on SIMD FFT algorithms
	Derivation of SIMD radix-2 and mixed-radix FFT algorithms
	Short radix-2 FFT algorithm
	Mixed-radix FFT algorithm
	Permutations for the vectorized FFT algorithms

	Radix-2 and mixed-radix FFT implementations based on LTE
	Grouping of FFT stages
	Implementation of DFT stages
	Implementation of permutation stages for different permutation networks
	Short mixed-radix FFT implementation

	Performance analysis
	Overview of throughput results
	Speedup results
	Resource utilization and performance of FFT loops
	Comparison to other SDR FFT implementations

	Conclusion

	Sphere decoding for MIMO detection
	MIMO system model
	Maximum likelihood detection
	Sphere decoding
	Soft-decision MIMO detection

	Breadth-first search MIMO decoders
	The K-best sphere decoder
	Selective spanning with fast-enumeration

	The fixed-complexity sphere decoder
	FSD tree search
	FSD ordering of the channel matrix
	Soft-decision MIMO detection based on the FSD

	SIMD implementation of the FSD for MIMO-OFDM
	Channel ordering
	QR-decomposition by Givens rotations
	Hard-decision FSD tree search
	Soft-decision FSD tree search extension by bit-flipping
	LLR calculation for soft-decision MIMO decoding

	Performance analysis
	Overview of FSD results
	Analysis of the achievable throughput
	Comparison to SDR and hardware-based sphere decoders
	Improving the FSD performance

	Conclusion

	Decoding of quasi-cyclic low density parity check codes
	Fundamentals
	Definition of LDPC codes
	Representation by Tanner graphs
	Quasi-cyclic LDPC codes

	Decoding of LDPC codes
	Decoding schedules
	Iterative decoding algorithms

	SIMD implementation of LDPC decoding for WiMAX
	Algorithm for min-sum decoding
	Implementation for the parallel processing of one sub-matrix
	Implementation for the parallel processing of multiple sub-matrices

	Performance analysis
	Throughput and speedup results
	LIW resource utilization
	Comparison to other architectures
	Improving the LDPC decoding performance

	Conclusion

	Evaluation of the SIMD architecture efficiency
	Area and power consumption results
	Average power consumption
	Area
	Power consumption and area estimates for memories

	Energy efficiency analysis
	Normalized energy consumption
	Energy-delay product analysis

	Possible approaches for improving the scalability
	Vector alignment with indirect SIMdD processing
	Support for operations on vector segments

	Software development for LIW SIMD processors

	Conclusion
	Bibliography

