
System-level Modeling and Design

with the SpecC Language

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Universit�at Dortmund

am Fachbereich Informatik

von

Rainer D�omer

Dortmund

2000

Tag der m�undlichen Pr�ufung:

Dekan/Dekanin:

Gutachter:

System-level Modeling and Design

with the SpecC Language

Dissertation

for the degree of

\Doktor der Naturwissenschaften"

submitted to the

Department of Computer Science

at University of Dortmund

by

Rainer D�omer

Dortmund, Germany

2000

ii

iii

For Julia

iv

Abstract

The semiconductor roadmap estimates the design complexity for digital systems
to continue to increase according to Moore's law. In the next years, embedded
systems with 10ths of millions of transistors on one chip will be standard technology.
System-on-Chip (SOC) designs will integrate processor cores, memories and special-
purpose custom logic into a complete system �tting on a single die. However, the
increased complexity of SOC designs requires more e�ort, more e�cient tools and
new methodologies. Increasing the design time is not an option due to market
pressures.

System-level design reduces the complexity of the design models by raising the
level of abstraction. Starting from an abstract speci�cation model, the system is
step-wise re�ned with the help of computer-aided design (CAD) tools. Using code-
sign techniques, the system is partitioned into hardware and software parts and
�nally implemented on a target architecture. Established design methodologies for
behavioral synthesis and standard software design are utilized. However, moving to
higher abstraction levels is not su�cient.

The key to cope with the complexity involved with SOC designs is the reuse of
Intellectual Property (IP). The integration of complex components, which are pre-
designed and well-tested, drastically reduces the design complexity and, thus, saves
design time and allows a shorter time-to-market. Since the idea of IP reuse promises
great bene�ts, it must become an integral part in the system design methodology.
Furthermore, the use of IP components must be directly supported by the design
models, the tools and the languages being used throughout the design process. For
example, it must be easy to insert and replace IP components in the design model
(\plug-and-play").

This work addresses the main issues in SOC design, namely the system design
methodology, system-level modeling, and the speci�cation language.

First, an IP-centric system design methodology is proposed which is based on
the reuse of IP. It allows the reuse and integration of IP components at any level
and at any time during the design process. Starting with an abstract executable
speci�cation of the system, architecture exploration and communication synthesis

v

vi

are performed in order to map the design model onto the target architecture. At
any stage, the systems functionality and its characteristics can be evaluated and
validated.

The model being used in the methodology to represent the system must meet
system design requirements. It must be suitable to represent abstract properties
at early stages as well as speci�c details about design decisions later in the design
process. In order to support IP, the model must clearly separate communication
from computation. In this work, a hierarchical model is described which encapsu-
lates computation and communication in separate entities, namely behaviors and
channels. This model naturally supports reuse, integration and protection of IP.

In order to formally describe a design model, a language should be used which di-
rectly represents the properties and characteristics of the model. This work presents
a newly developed language, called SpecC, which allows to map modeling concepts
onto language constructs in a one to one fashion. Unlike other system-level lan-
guages, the SpecC language precisely covers the unique requirements for embedded
systems design in an orthogonal manner. Built on top of the C language, the de-facto
standard for software development, SpecC supports additional concepts needed in
hardware design and allows IP-centric modeling. Recently, the SpecC language has
been proposed as a standard system-level language for adoption in industry by some
of Japan's top-tier electronics and semiconductor companies.

The proposed methodology and the SpecC language have been implemented
in the SpecC design environment. In a graphical framework, the SpecC design
environment integrates a set of CAD tools which support system-level modeling,
design validation, design space exploration, and (semi-) automatic re�nement. The
framework and all tools rely on a powerful, central design representation, the SpecC
Internal Representation (SIR).

Using the SpecC design environment, the IP-centric methodology has been suc-
cessfully applied to several designs of industrial size, including a GSM vocoder used
in mobile telecommunication.

Contents

1 Introduction 1

1.1 System-level Design . 2

1.1.1 Levels of abstraction . 4

1.1.2 The Y-Chart . 5

1.1.3 Models of computation . 7

1.1.4 System design process . 8

1.1.4.1 Speci�cation . 10

1.1.4.2 Validation . 10

1.1.4.3 Re�nement . 11

1.1.4.4 Methodology . 13

1.1.5 Intellectual Property . 13

1.1.5.1 IP components . 14

1.1.5.2 IP reuse . 15

1.1.5.3 IP protection . 16

1.1.5.4 IP requirements . 17

1.2 Related Work . 18

1.2.1 Design systems . 18

1.2.1.1 Homogeneous speci�cation 19

1.2.1.2 Heterogeneous speci�cation 23

1.2.2 Languages . 24

1.2.2.1 Software programming languages 24

1.2.2.2 Hardware description languages 25

1.2.2.3 Codesign languages 26

1.2.2.4 System-level languages 26

1.3 Goals . 27

1.4 Outline . 28

vii

viii CONTENTS

2 IP-centric Modeling 31

2.1 Computation and Communication 32

2.2 The SpecC Model . 34
2.2.1 Basic structure . 34

2.2.2 Test bench . 35
2.3 Computation Models . 35

2.3.1 Algorithmic program . 35

2.3.2 Sequential execution . 37
2.3.3 Concurrent execution . 37

2.3.4 Exceptions . 38
2.3.5 IP model . 38

2.4 Communication Models . 39

2.4.1 Shared memory model . 39
2.4.2 Channel models . 40

2.5 Modeling with IP . 41

2.5.1 Channel model . 42
2.5.2 Wrapper model . 42

2.5.3 Adapter model . 43
2.5.4 Inlining . 43

3 The SpecC Design Methodology 47

3.1 Overview . 47

3.2 Speci�cation Capture . 50
3.2.1 The speci�cation model . 51

3.3 Validation and Analysis . 52
3.3.1 Simulation . 53

3.3.2 Estimation . 54

3.4 Architecture Exploration . 54
3.4.1 Architecture allocation . 55

3.4.2 Architecture mapping . 56
3.4.2.1 Behavior mapping 57

3.4.2.2 Scheduling . 59

3.4.2.3 Variable mapping 61
3.4.2.4 Channel mapping 63

3.4.3 The architecture model . 65

3.5 Communication Synthesis . 67
3.5.1 Protocol selection . 67

3.5.2 Transducer insertion . 68
3.5.3 Protocol synthesis . 69

3.5.4 The communication model 72

CONTENTS ix

3.6 Back end . 73

3.6.1 Hardware synthesis . 74

3.6.2 Software compilation . 74
3.6.3 The implementation model 74

4 The SpecC Language 77

4.1 Language Requirements . 78
4.1.1 Executability . 78

4.1.2 Synthesizability . 78

4.1.3 Modularity . 79
4.1.3.1 Behavioral hierarchy 79

4.1.3.2 Structural hierarchy 80
4.1.4 Completeness . 80

4.1.4.1 Concurrency . 81

4.1.4.2 Synchronization . 81
4.1.4.3 Exception handling 81

4.1.4.4 Timing . 81

4.1.4.5 State transitions . 82
4.1.5 Orthogonality . 83

4.2 Language Comparison . 83
4.3 Foundation . 85

4.3.1 Types and expressions . 85

4.3.1.1 Boolean type . 86
4.3.1.2 Bit vector type . 86

4.3.1.3 Event type . 87
4.3.1.4 Time type . 88

4.3.2 Statements and declarations 89

4.4 Basic Structure . 89
4.5 Behavioral Hierarchy . 91

4.5.1 Sequential execution . 91
4.5.1.1 Imperative program 91

4.5.1.2 Finite state machine 92

4.5.2 Concurrent execution . 93
4.5.2.1 Parallel execution 93

4.5.2.2 Pipelined execution 94

4.6 Structural Hierarchy . 95
4.6.1 Behaviors . 95

4.6.2 Netlists . 97
4.7 Communication . 98

4.7.1 Channels . 98

x CONTENTS

4.7.2 Interfaces . 98

4.8 Synchronization . 100

4.9 Exception Handling . 102

4.9.1 Interrupt . 102

4.9.2 Abortion . 103

4.10 Timing . 103

4.10.1 Exact timing . 103

4.10.2 Timing ranges . 103

4.11 Persistent Annotation . 106

4.12 Library Support . 107

4.13 Summary . 108

4.14 Possible Extensions . 109

4.14.1 Fine tuning . 109

4.14.2 Operator overloading . 109

4.14.3 Object orientation . 110

4.14.4 Templates . 110

5 The SpecC Design Environment 111

5.1 Overview . 111

5.1.1 SpecC release 2.0.4 . 113

5.2 SpecC Internal Representation . 114

5.2.1 SIR File format . 115

5.2.2 SIR library . 116

5.2.3 Application Programming Interface 116

5.2.3.1 Kernel layer . 117

5.2.3.2 Hierarchy layer . 118

5.2.4 Experiment . 118

5.2.4.1 Example application 118

5.2.4.2 Results . 120

5.3 SpecC Compiler . 121

5.4 SpecC Re�nement Tools . 124

5.4.1 SpecC pro�ler . 125

5.4.2 SpecC tool set . 125

6 IP Protection in the SpecC System 127

6.1 Public IP Declaration . 128

6.1.1 Behavior IP . 128

6.1.2 Channel IP . 128

6.2 Secret IP Implementation . 129

6.2.1 Implementation problem . 130

CONTENTS xi

6.2.2 Implementation solution . 131

6.3 Integration with the SpecC compiler 132

6.4 Experiments and Results . 133

6.4.1 RT level IP examples . 133

6.4.2 System level IP examples . 134

7 Conclusion 137

7.1 Contributions . 137

7.1.1 IP-centric model . 137

7.1.2 IP-centric methodology . 138

7.1.3 SpecC language . 139

7.1.4 SpecC design environment . 141

7.1.4.1 SpecC Internal Representation 141

7.1.4.2 SpecC compiler . 141

7.1.5 IP protection . 142

7.1.6 Experience . 142

7.1.7 Impact . 143

7.2 Future Work . 143

7.2.1 SpecC language . 143

7.2.2 Synthesis ow . 143

A SpecC Users Manual 145

A.1 SpecC Compiler scc . 145

A.2 SpecC Pro�ler sprof . 153

A.3 SpecC Tool Set . 157

A.3.1 sir delete . 157

A.3.2 sir list . 159

A.3.3 sir note . 163

A.3.4 sir rename . 167

A.3.5 sir strip . 169

A.3.6 sir tree . 171

B SpecC Design Examples 175

B.1 Tutorial Examples . 175

B.2 Library Example . 176

B.3 Communication Examples . 178

B.4 Controller Examples . 179

B.5 JPEG Encoder . 179

B.6 GSM Vocoder . 180

xii CONTENTS

C SpecC Internal Representation 185
C.1 SIR graph . 185
C.2 Design Trees . 188
C.3 Base Classes . 189
C.4 Error Handling . 189

Bibliography 191

Glossary 201

Index 205

List of Figures

1.1 Abstraction versus complexity . 4

1.2 System-level design in the Y-Chart 6

1.3 Design process using step-wise re�nement 9

2.1 Separation of computation and communication 32

2.2 Communication inlining . 33

2.3 Example of a SpecC model . 34

2.4 Typical test bench model . 35

2.5 Behavior models . 36

2.6 Models of communication . 39

2.7 Channel models . 40

2.8 IP channel model . 42

2.9 IP wrapper model . 43

2.10 IP adapter model . 44

2.11 Wrapper inlining . 44

2.12 Adapter inlining . 45

2.13 Inlining with transducer . 45

3.1 SpecC system design methodology 48

3.2 Speci�cation model . 52

3.3 Generic system architecture . 56

3.4 Example of a system architecture . 57

3.5 Design example S1 before behavior mapping 58

3.6 Design example S1 after behavior mapping 59

3.7 Design example S1 after scheduling 60

3.8 Design example S2, initial speci�cation 61

3.9 Design example S2 before variable mapping 62

3.10 Design example S2 after variable mapping 63

3.11 Design example S3 before channel mapping 64

3.12 Design example S3 after channel mapping 64

xiii

xiv LIST OF FIGURES

3.13 Architecture model . 66
3.14 Design example S4 before communication synthesis 69
3.15 Design example S4 after transducer insertion 70
3.16 Design example S4 after protocol insertion 71
3.17 Design example S4 after protocol inlining 72
3.18 Communication model . 73
3.19 Implementation model . 75

4.1 Behavioral hierarchy . 80
4.2 Exception handling . 82
4.3 Comparison of language features . 84
4.4 Basic structure of a SpecC model . 89
4.5 Timing diagram example . 104

5.1 The SpecC design environment . 112
5.2 Design representation with the SIR 115
5.3 SIR Application Programming Interface 117
5.4 Program ow of the SpecC pro�ling tools 119
5.5 Program ow of the SpecC compiler 122
5.6 Standard debugger use for SpecC programs 123
5.7 Program ow of SpecC re�nement tools 124

B.1 JPEG encoder with test bench . 179

C.1 Generic SIR design tree of level 1 classes 186
C.2 Generic SIR design tree of level 2 classes 187

List of Tables

1.1 System-level design projects in academia 19
1.2 System-level design projects in industry 20

5.1 Source components of the SpecC release 2.0.4 114
5.2 Development and implementation of the pro�ling tools 120

6.1 RT level IP examples . 133
6.2 System level IP examples . 135

B.1 SpecC tutorial examples . 176
B.2 Library example . 177
B.3 Composition of IP library components 177
B.4 Communication examples . 178
B.5 Controller examples . 179
B.6 JPEG encoder example . 180
B.7 GSM vocoder example . 181

xv

xvi LIST OF TABLES

Chapter 1

Introduction

The semiconductor roadmap [SIA97], published by the Semiconductor Industry As-
sociation (SIA), estimates the design complexity for digital systems to continue to
increase according to Moore's law [Ham99]. Applied to the design of embedded
systems, Moore's law estimates the number of transistors on a chip to double every
18 months. The exponential growth of chip capacity is based on the continuing
decrease in geometry size and increase in chip density.

In the next years, deep sub-micron design, dealing with process technologies of
0.18�m and below, will allow to integrate 10ths of millions of logic transistors on
one chip. This makes it possible to implement complex embedded systems entirely
on a single chip. System-on-Chip (SOC) designs will integrate system components
including processor cores, memories and special-purpose custom logic blocks into a
complete system �tting on a single die.

SOC design is desirable especially for multi-media applications and portable
devices where embedded systems save space, power and cost. In contrast to tradi-
tional ASIC design, which implements one sub-system in application-speci�c hard-
ware, SOC design consists of the integration and implementation of special-purpose,
complex components which are interacting with each other. Typically, a SOC in-
cludes one or more microprocessors, several peripheral units, memory blocks, and
application-speci�c logic portions interconnected by on-chip busses.

While the availability of a huge chip capacity enables SOC designs, it, at the same
time, signi�cantly raises the complexity of these systems. The increased complexity
requires substantially more e�ort, more e�cient tools and new methodologies for
building such embedded systems. In fact, the complexity of SOC design is beyond
the size that currently established electronic design automation (EDA) tools and
methodologies can handle.

The SIA roadmap shows that a productivity gap exists between the available

1

2 CHAPTER 1. INTRODUCTION

chip capacity and the current design capabilities. While the chip capacity grows by
58% per year (according to Moore's law), the support provided by computer-aided
design (CAD) tools is estimated to increase by only 21% each year [SIA97]. If this
growing gap cannot be overcome, it will result in under-utilization of the available
chip capacity and thus unnecessarily increase the cost of embedded systems.

In the past, automated hardware synthesis was used to bridge the productivity
gap. Logic synthesis and recently behavioral synthesis, also known as high-level syn-
thesis (HLS) [GDW+91], supported designers in order to increase their productivity.
Unfortunately, the help of hardware synthesis is not su�cient for SOC design, since
embedded systems require more and more software content.

It should be clear that an increase in the design time for embedded systems is
not an option in order to solve the productivity problem. The time-to-market is
critical for the success or failure of a product in the market. Thus, it is necessary to
develop and manufacture the next-generation product (and its embedded system) as
quickly as possible in order to promote \product-on-demand". Ignoring the market
pressures, which require to o�er better products with more features for less money
in shorter periods of time, is not acceptable.

The threatening under-utilization of available chip capacity due to the produc-
tivity gap and the strong market pressures force the electronic industry to search
for new design methodologies. More e�cient EDA support is required in order to
build successful SOC designs. This is the motivation for system-level design which
is de�ned in the following section.

1.1 System-level Design

System-level design (SLD) addresses the problem of the increased complexity of
embedded systems by raising the level of abstraction. In contrast to behavioral
synthesis, which deals with the implementation of algorithms in application-speci�c
hardware (ASIC design), system-level design focuses on the problem of mapping an
abstract speci�cation model of an entire system onto a target architecture (SOC
design). As mentioned earlier, a typical target architecture consists of a set of
processor cores, memories, peripheral units, and custom hardware blocks. These
system components are interconnected by on-chip busses whose implementation is
part of system-level design as well.

The cost-e�ective implementation of complex embedded systems requires a high
software (SW) content. Compared to the high cost of developing dedicated hardware
(HW), a software implementation is inexpensive. In addition, software can easily
be modi�ed if requirements change or new features need to be added. However, a
software implementation may not be possible due to performance constraints. It is

1.1. SYSTEM-LEVEL DESIGN 3

one task of system-level design to trade-o� an inexpensive and exible software so-
lution versus a high-speed hardware implementation. Therefore, system-level design
is also referred to as HW/SW codesign.

Codesign is de�ned as the design of systems involving both hardware and soft-
ware. The main task of codesign is the partitioning of a single system speci�cation
into hardware and software parts. Then, depending on whether a speci�c compo-
nent is to be implemented in software or hardware, standard software technologies
and established hardware design methods, respectively, are used for the �nal imple-
mentation of the component.

In general, any system consists of parts from di�erent domains. Therefore, sys-
tem design often is de�ned as to also include the mechanical domain in addition to
the domain of electronics (see for example [CHM+99] and [Sch99]). The inclusion of
mechanical aspects extends the coverage of the system model compared to the real
system. It also allows trade-o�s to be made between mechanical versus electronic
implementation of certain features.

On the other hand, these orthogonal domains are quite independent in most
cases and thus can be treated separately. This separation signi�cantly simpli�es the
design tasks as well. Hence, in this work, system design is considered exclusively
within the domain of electronics.

Furthermore, some system-level design environments explicitly support the spec-
i�cation and use of analog and mixed signals. While this is useful for sub-systems,
for example in the telecommunication area, the majority of embedded systems is
speci�ed completely digital. Also, the decision whether a signal is implemented as
either analog or digital, can be viewed as an implementation issue that is resolved
later in the design ow by back end tools. Within this work, system-level design
targets on the design of digital systems [Gaj97], including hardware and software
parts.

The system design ow usually starts from a formal, abstract speci�cation of the
intended design. After the speci�cation has been validated for functional correctness,
it is re�ned by a sequence of re�nement tasks which eventually map the initial
speci�cation onto a selected target architecture. Section 1.1.4 discusses in detail the
steps in a typical system design process including architecture selection, partitioning,
scheduling and communication synthesis.

A very important issue in system-level design is the reuse of predesigned, complex
components, often referred to as Intellectual Property (IP). In fact, the reuse of IP
is the main key to cope with the complexity involved with SOC design. In contrast
to redesigning a system completely from scratch, the use and integration of complex
components, which are predesigned (possibly by somebody else) and well-tested,
drastically reduces the design complexity. Thus, reuse of IP saves a great amount
of design and testing time and, hence, allows a shorter time-to-market.

4 CHAPTER 1. INTRODUCTION

While the idea of IP reuse promises great bene�ts for system design, there are
also problems to be solved. In order to allow easy and seamless integration in
a new system, IP components need to be portable to di�erent technologies and
must provide standard or exible interfaces. Good documentation about the IPs
functionality, its requirements with respect to the environment, and its performance
and other metrics are required as well.

The reuse of IP must become an integral part in the system design methodology.
The selection, easy insertion and replacement of IP components (\plug-and-play")
in the system must be directly supported by the design models, the tools and the
languages being used throughout the design process. These and other issues involved
with the reuse of IP are addressed in more detail in Section 1.1.5.

1.1.1 Levels of abstraction

In computer science, a well-known solution for dealing with complexity is to exploit
hierarchy and to move to higher levels of abstraction. This e�ectively reduces the
complexity in terms of the number of objects to be handled at one time.

A
bs

tr
ac

tio
n

A
cc

ur
ac

y

Transistor

Gate

Algorithm

System
1E0

1E6

1E5

1E4

1E3

1E7

1E2

1E1

Level Number of Components

RT

Figure 1.1: Abstraction versus complexity

Figure 1.1 illustrates this for digital systems. An embedded system, which at
the lowest level consists of 10ths of millions of transistors, typically reduces to only
thousands of components at the register-transfer level (RTL). Furthermore, RTL
components are grouped together at the algorithm level. Finally, at the highest, the
so-called system level, the one system is composed of only few components which
include microprocessors, special-purpose hardware, memories and busses. From

1.1. SYSTEM-LEVEL DESIGN 5

Figure 1.1, it is obvious that a complex embedded system is easier to deal with at
the abstract system level than at the detailed gate or transistor level.

The level of abstraction is a trade-o� with the level of accuracy. A high abstrac-
tion level implies low accuracy, and vice versa. The design process of a new system
usually starts from a highly abstract speci�cation model and ends with a highly
accurate implementation model which reects the real system with all its details.

The advantage of such a top-down approach is that all necessary design decisions
can be made at an abstraction level where all irrelevant details are left out in the
model. This allows the design tasks to work with a system model with minimum
complexity.

The concepts of abstraction and hierarchy are closely related. In digital systems,
hierarchy is inherent in the structure of a system. Every system is composed of a set
of components, and each component is a (sub-) system that, again, is composed of
(sub-) components. In other words, the terms system and component are recursively
de�ned.

In order to break the recursion in this de�nition and to clearly identify the
system and its components, it is necessary to name the current abstraction level. The
abstraction level de�nes the type of the components used and, thus, also determines
the system. For example, at the gate level, the components are logic gates and the
system is the composition of such gates. One level below, at the transistor level, a
single gate can represent an entire system that is composed of a set of transistors.

It should be pointed out that the term system, in general, refers to di�erent
things in di�erent contexts. For example, a modern aircraft can be viewed as one
single system or as a collection of thousands of systems. Within this work, unless
stated otherwise, the term system refers to a digital, embedded system which can be
implemented by use of application-speci�c hardware and software running on one
or multiple processors.

Please note that this de�nition of a system is consistent with the term system-
on-chip. It is also well-de�ned with respect to the abstraction level for SOC design,
the system level. A precise de�nition of system-level design will be given in the
following section by use of the Y-Chart.

1.1.2 The Y-Chart

The Y-Chart [GK83], shown in Figure 1.2, is a conceptual framework which coor-
dinates abstraction levels in di�erent domains. This can be used to compare and
classify di�erent design tools and design methodologies.

The Y-Chart distinguishes three domains represented by three axes. A typical
design process starts from the behavioral domain which speci�es the pure behavior of
the system without any implementation details, for example in form of program func-

6 CHAPTER 1. INTRODUCTION

Transistor

Gate

RT

Algorithm

System

Physical

Domain
Behavioral Structural

Domain

Domain

Level

System−level Design

Figure 1.2: System-level design in the Y-Chart

tions or mathematical equations. The design is then mapped onto an architecture
in the structural domain. The structural architecture is composed of components,
for example logic gates or RT components, depending on the level of abstraction.
Finally, an implementation of the design is manufactured in the physical domain.

The level of abstraction, as introduced in Section 1.1.1, is orthogonal to the
domains. Starting from the center of the chart, the abstraction level, indicated by
the dashed, concentric circles, increases from the transistor level up to the system
level.

The Y-Chart allows to illustrate design ows and design tasks as paths on the
chart. For example, a complete system design ow starts on the behavioral axis
at the system level. After step-wise re�nement towards the center of the chart
and mapping onto a structural and physical implementation, it �nally ends on the
physical axis at the transistor level.

On the Y-Chart, synthesis is represented by an arc from the behavioral to the
structural axis. The de�nition of system-level design is indicated by the arrow in
Figure 1.2. The task of system-level design is to synthesize a structural system
architecture from a behavioral system speci�cation.

As another example, high-level synthesis (HLS) is represented by an arc from
the behavioral to the structural axis on the RT level.

1.1. SYSTEM-LEVEL DESIGN 7

Furthermore, the tasks of re�nement and optimization can be demonstrated on
the Y-Chart as well. Re�nement is represented by an arrow on the behavioral axis
from a high to a lower abstraction level. On the other hand, optimization can be
represented as an arrow at any point in the chart which points back to its starting
point. Thus, such optimization is a task that is performed in-place and can occur
at any level in any domain.

Recently, the Rugby model [JKH99] was proposed as a new conceptual frame-
work targeted to represent codesign tasks. In contrast to the Y-Chart, the Rugby
model explicitly separates software and hardware design. Furthermore, the Rugby
model distinguishes �ve orthogonal dimensions, namely time, data, computation,
communication and transformation. As such, the Rugby model is much more com-
plex and not as abstract as the Y-Chart1.

1.1.3 Models of computation

In order to design an embedded system, a formal model of the system is needed.
This section lists the models of computation which are commonly used in system-
level design. For an in-depth discussion of these models, please refer to other sources
in the literature. Good overviews, including detailed comparisons of the models, can
be found in [GVN+94, GZD97c] or [LS96, LSS99], for example.

Models of computation can be classi�ed into language oriented and architecture
oriented models. Among the language oriented models, the control ow graph (CFG)
represents the control ow of a program (for example, if-then-else and loop

statements) in form of a directed graph. A data ow graph (DFG) is a (typically
acyclic) graph used, for example, to represent expression trees. CFG and DFG can
be easily combined into a control data ow graph (CDFG), which is a CFG whose
nodes contain DFGs. A CDFG is commonly used as an intermediate model for
systems speci�ed with imperative programming languages.

Architecture oriented models represent an abstraction of the target architecture
for a system. The basis for these models is the �nite state machine (FSM) model
which is a popular model to describe control. A FSM consists of states and tran-
sitions between the states. The output of a FSM is either state-based (Moore-type
FSM), or input-based2 (Mealy-type FSM). A FSM model can be easily implemented
in hardware as a controller consisting of a state register and a block of combinatorial
logic.

The FSM model has several extensions. Combined with the DFG model rep-
resenting computation, the �nite state machine with datapath (FSMD) is a typical

1The \beauty" of the Y-Chart lies in its simplicity.
2The output of a state-based FSM depends solely on the current state, whereas the output of a

input-based FSM depends on the current state and the current input.

8 CHAPTER 1. INTRODUCTION

target model for behavioral synthesis. The implementation of a FSMD consists of
a controller and a datapath. Very similar to the FSMD model is the �nite state
machine with coprocessors (FSMC) as de�ned in [JDK+97].

In order to represent complete systems consisting of several concurrent process-
ing elements, more complex models are required. For example, the codesign �nite
state machine (CFSM) model, described in [CGH+93], can be used to represent
a set of concurrent executing and communicating FSMs. Alternatively, hierarchy
and concurrency can be explicitly added to the FSMD model. This results in the
hierarchical concurrent �nite state machine with datapath (HCFSMD) which allows
to have sequential or concurrent sub-states in each state of the FSM.

Finally, programming language constructs can also be added. The program state
machine (PSM) model, de�ned in [GVN+94], is a HCFSMD whose leaf states contain
program statements. The PSM is a powerful computational model that is used, for
example, as the underlying model of the SpecCharts language [GVN93].

Many other models exist with focus on di�erent features. The model of communi-
cating sequential processes (CSP), described in [Hoa85], emphasizes communication.
The synchronous data ow (SDF) model is used in [LM87] to represent data ow
intensive applications and digital signal processing. Petri nets, �rst described in
[Pet62], are used in several variants and provide a well-de�ned, formal background
for the static analysis of systems.

The model of computation used for embedded systems design should meet certain
requirements and objectives. First, it should be intuitive to understand so that it is
easy to specify the intended system with the model. Second, it must be executable in
order to allow early system simulation. Furthermore, the model should be veri�able,
in other words, it should provide support for formal veri�cation. Finally, it must be
synthesizable so that an implementation of the model can be obtained.

The models listed in this section achieve these goals more or less. It is not
possible to decide which model of computation is best suited for the design of em-
bedded systems. For the SpecC system, which is described later in this work, the
PSM computational model was chosen. Since the PSM model is close to the target
architecture, it simpli�es the development of CAD tools. The model also is easy
to understand and su�cient powerful for the large complexity of SOC design. The
PSM model is directly supported by the SpecC language, the SpecC CAD tools,
and the SpecC methodology.

1.1.4 System design process

The system design process starts with a speci�cation of the intended design at a
high level of abstraction and ends with an implementation model that accurately
describes the implemented system and its components. In order to obtain the imple-

1.1. SYSTEM-LEVEL DESIGN 9

mentation from the speci�cation, a set of re�nement tasks is applied to the system
model. This section de�nes the necessary tasks in a typical system design process.

A
bs

tr
ac

tio
n

A
cc

ur
ac

y

Design
space

Target
model

Implementation

models
Refinement

Specification
model

Figure 1.3: Design process using step-wise re�nement

Figure 1.3 illustrates a top-down design process using step-wise re�nement.
Starting at the top of the pyramid, the speci�cation model is transformed by a
sequence of design tasks into re�ned models. At each stage, the available design
space, as indicated by the shaded triangles in Figure 1.3, has to be explored. The
goal of this design space exploration is to make a good design decision that will lead
to an implementation model close to the target.

Each design decision a�ects the subsequent one in the way that the available
design space shrinks. Obviously, it is important to choose the right model from
the set of possible alternatives so that the target stays well inside the design space.
Otherwise, if the decision is made in the wrong direction, the implementation will
miss the target.

In general, each design task can be performed manually by designers or auto-
matically by CAD tools. Also, both ways can be combined using semi-automatic
re�nement. Typically, it is up to the designer to make the design decision. Then
automated tools are used to actually perform the tedious re�nement with the design
such that the decision made is reected in the re�ned model.

It should be noted that the terms speci�cation and implementation are relative to
a particular design task or abstraction level. The implementation model generated
by one task usually serves as the speci�cation model for the next task.

10 CHAPTER 1. INTRODUCTION

1.1.4.1 Speci�cation

The speci�cation of the intended system is the starting point for the design process.
The speci�cation must meet several requirements. First, it should be complete. In
other words, it should cover the entire design with all its features, its functionality
and its requirements. On the other hand, the speci�cation should also be abstract.
It should not include any premature implementation details.

Furthermore, it is required that the speci�cation is captured unambiguously in
a formal language so that it can be processed by automated tools. More speci�cally,
the speci�cation must be executable so that simulation can be used to validate the
functionality of the system from the beginning.

The speci�cation is the �rst formal and functional description of the system.
It serves as an initial model against which all subsequent, re�ned models will be
compared.

1.1.4.2 Validation

In order to ensure the correctness of a system model, it has to be validated. Val-
idation can be performed either statically by model analysis or dynamically by
simulation.

As mentioned earlier, simulation requires the system model to be executable.
Simulation validates the functionality of the system model in terms of the outputs
generated for given input vectors. At di�erent levels of accuracy, it can also be used
to check the correctness of communication, synchronization, and timing.

Simulation usually is performed by a software simulator running on a host work
station. However, system simulation in software is typically several orders of mag-
nitude slower than the real system, in particular at low levels of abstraction. Hence,
the system can only be validated for a short period of simulation time and a small
set of test vectors. If this is not su�cient and more e�ort and higher cost are
acceptable, rapid prototyping can be used to increase simulation speed by use of
reprogrammable hardware, for example, �eld programmable gate arrays (FPGA)
[Ros97].

It should be emphasized that simulation only validates a system model for the
given test vectors and therefore, unless exhaustive simulation is performed, does
not cover all possible cases. In contrast to validation, veri�cation yields a 100% test
coverage. Formal veri�cation is a static analysis technique which can be used to
prove certain properties of the system model. Formal veri�cation requires a well-
de�ned, formal model and, because of its complexity, can usually only be applied to
very small systems.

In order to evaluate characteristics of a system which are not directly observable

1.1. SYSTEM-LEVEL DESIGN 11

from the model, estimation techniques can be used. The task of estimation is to
quickly determine critical quality metrics of the system such as performance, power
consumption, size, cost, and others. Estimation can be performed either statically
by analysis of the system model, or dynamically during simulation, for example, by
use of pro�ling.

For estimation, there is a trade-o� of accuracy versus time. The emphasis of
estimation is on fast, rather than exact, system evaluation. Thus, the use of estima-
tion enables the designer to make a reasonable design decision in short time. This
is in contrast to a conservative approach which actually synthesizes all alternatives
in order to make an optimal decision, as proposed in [Nie98], for example.

When �nally a system has been manufactured, it must be tested for full function-
ality and no manufacturing defects. The high complexity of SOC designs requires
that the chip is prepared for its testing already during the design process. Typically,
built-in self-test (BIST) and other techniques are used to allow testing of chips with
IP cores [ZMD99].

1.1.4.3 Re�nement

After the system speci�cation is captured and validated, it is the task of architecture
exploration to allocate the system architecture, to partition the speci�cation into
hardware and software parts, and to map all parts of the design to the components
in the architecture. During architecture exploration, estimation is used to determine
the quality characteristics of the architecture under consideration. If the metric goals
are not satis�ed, the system is repartitioned or a di�erent architecture or di�erent
components are selected. In the worst case, if no acceptable solution is found, the
speci�cation must be changed in terms of goals, constraints, or features.

It is the task of architecture allocation to determine the number and types of the
processing elements (PE) and the connectivity for the system architecture. The com-
ponents in the target architecture typically include processors, application-speci�c
hardware, memories, peripheral units and IP cores. These components are inter-
connected by system or local busses. All components and busses are selected from
the component library.

Most parts in a system speci�cation can be implemented in either software or
hardware. It is the task of HW/SW partitioning to trade o� an inexpensive software
solution versus a high-speed hardware implementation. Typically, only performance-
critical parts of the system are implemented in hardware and all other parts are
compiled into software to be executed on the allocated processors.

In general, scheduling has to be performed for the software parts of the system,
since sequential processors can only execute one thread at a time. Scheduling de-
termines the order of execution for the tasks assigned to a processor. Scheduling

12 CHAPTER 1. INTRODUCTION

can be static or dynamic. A static schedule can be computed at design time if all
constraints, including task execution times, delays, and dependencies, are known
beforehand and do not change at run-time. Otherwise, dynamic scheduling must be
used. In that case, the execution order for all tasks is determined dynamically at
run-time, for example, by use of a real-time operating system (RTOS).

At the end of architecture exploration, each object in the speci�cation is mapped
to a particular hardware or software component. The quality of this mapping de-
pends very much on the granularity of the objects. A coarse grained granularity,
which, for example, considers entire processes as smallest, indivisible units, simpli-
�es the re�nement tasks since less objects need to be handled, but also limits the
implementation options. On the other hand, a �ne granularity enables more options
allowing a possibly better implementation, but also increases the complexity and,
thus, the re�nement time.

After architecture exploration, communication synthesis must be performed.
This includes the selection of communication protocols for the selected busses, hard-
ware interface synthesis, and software driver generation. More speci�cally, accesses
to data, which is assigned to a di�erent PE, must be converted to remote procedure
calls (RPC). Then, the RPCs can be implemented by use of the native bus protocol
provided by the bus connecting the PEs. For hardware, interfaces need to be syn-
thesized, and for software, device drivers must be generated. In case busses with
di�erent protocols need to be connected, protocol transducers must be inserted. In
summary, the task of communication synthesis is to re�ne the abstract communi-
cation between the components in the architectural model into an implementation
using the actual bus protocols.

The system-level design process is completed with the back end. The task of
the back end is to make the re�ned system model available to established design
methodologies for behavioral synthesis and standard software design. In order to
allow a seamless integration, it is important that the output generated by the back
end can be used without modi�cation as input to the subsequent tools.

For the software parts of the system, program code, for example C or assembly
code, is generated so that standard compiler, assembler and linker tools can be used
for the software implementation. If available, a retargetable compiler can generate
code for all the allocated processors. Otherwise, a processor-speci�c tool set is
needed for each type of processor in the system.

For the hardware parts, a synthesizable hardware description is generated, typi-
cally in VHDL or Verilog. This description can then be fed into high-level synthesis
tools in order to implement the custom hardware.

1.1. SYSTEM-LEVEL DESIGN 13

1.1.4.4 Methodology

In the previous sections, the typical tasks used in the system-level design process
have been discussed. It must be emphasized that most of these tasks are interde-
pendent. Moreover, there are cyclic dependencies. For example, the architecture
allocation heavily inuences the partitioning task, and vice versa. Also, timing
constraints are input and output for both scheduling and communication synthesis.
Because of these dependencies, there is no sequence of tasks which guarantees an
optimum solution.

A heuristic solution to this problem uses an iterative approach. A set of tasks is
repeated until an acceptable solution is found. The decision, whether a solution is
\good enough" to proceed to the next task, is made by the system designer based
on estimation data and his experience.

However, the design tasks must be supported by CAD tools and CAD tools place
restrictions on the order they are executed. Thus, the system designer has to follow
the guidelines under which the CAD tools were developed. Such a set of guidelines,
which re�ne the abstract speci�cation model into a detailed implementation model
ready for manufacturing, is called a methodology.

A top-down methodology starts with a speci�cation at the highest level of ab-
straction and moves down to lower levels while step-wise re�ning the model. With
each step, the design model becomes a more accurate representation of the �nal
implementation.

On the other hand, a bottom-up methodology starts from the lowest level, com-
posing components together. These composed components then can be used in the
next step to build even more complex components.

Both methodologies can be combined in order to achieve the best productivity.
Usually, the top-down methodology is used until the system is decomposed into
components which can be selected from the component library. The component
library, on the other hand, is built using the bottom-up strategy.

With this combined approach, only the top-down phase a�ects the crucial time-
to-market for the product, because the component library can be built beforehand.
Thus, the key to a short design time enabling \product-on-demand" is the use of IP
components, which are predesigned and can be easily integrated in order to build
the product. The system design methodology, which is based on the integration of
IP components, is called IP-centric [GDZ99a, GDZ99b].

1.1.5 Intellectual Property

As stated earlier, the reuse of IP is a key issue in SOC design. In fact, it is considered
a paradigm shift that can be compared to the introduction of high-level synthesis a

14 CHAPTER 1. INTRODUCTION

few years ago. This section elaborates on IP components and the bene�ts, problems
and requirements with IP reuse.

1.1.5.1 IP components

At the system level, predesigned components are frequently called IPs. IP compo-
nents are independent processing elements, in other words, they have their own ow
of control and interact with the other system components via the system busses.
Unlike full-custom components, which are synthesized from scratch speci�cally for
the application, IP components are selected from an IP library and are �xed or allow
only limited customization.

Typical IP components include memories, processors, and industry standard cir-
cuits. Memory IPs, like RAM and ROM blocks, can usually be customized in their
size, whereas processor IPs come typically as �xed cores. Processor IPs include
embedded micro-controllers, general-purpose, and digital signal processors (DSP).
Special-purpose IPs implement industry standards, for example, encoding and de-
coding algorithms like MPEG, JPEG, etc., or communication devices like PCI or
VME bus interfaces.

IP components can be categorized into hard and soft IPs. Hard IP components
are developed by use of a standard design process and are fully implemented in a
speci�c technology. In particular, for hard IPs, there is a physical representation of
the layout, for example, in form of a GDS-II �le [KB98]. Since hard IPs are fully
implemented, their performance characteristics and other metrics are very accurate
and predictable. However, hard IPs are inexible and limited to a speci�c target
technology.

Soft IP components, in contrast, are very exible IPs which come typically in
form of synthesizable RTL code. Usually, soft IPs can be parameterized or are user-
con�gurable in terms of data size, features, etc. Since soft IPs are synthesizable,
they can be implemented in any target technology as well. However, the implemen-
tation metrics of soft IPs are not as predictable as for hard IPs, because the �nal
implementation has yet to be synthesized.

IP components can also be classi�ed into internal and external IPs. Since the
process of developing the system is decoupled from the development of the IP com-
ponents, these tasks can be performed independently by separate design teams in
possibly di�erent companies. Internal IPs are developed inside the same company
which builds the system. Typical internal IPs include legacy designs which can be
reused from former products that have been proven to be successful.

The use of external IP is part of a new business model in the EDA industry.
External IP components are developed and provided by IP providers outside the
company building the system. While the system house, also called IP integrator, can

1.1. SYSTEM-LEVEL DESIGN 15

focus on the problem of the system speci�cation, integration and implementation,
IP vendors develop and o�er the required IP components. With this approach,
the system house bene�ts from a large library of optimized, well-tested and well-
documented components which are available when needed. The IP providers, on
the other hand, can take advantage of their expertise in specialized design areas
without the need to build and sell complete systems. This business model works
well because, in many cases, it is cheaper for the system house to purchase an IP
component as to invest time and money to develop it from scratch.

1.1.5.2 IP reuse

The reuse of predesigned components is well-known in the EDA. For example, at
the RT level, reuse includes the instantiation of components from the RTL library,
such as registers, multipliers, arithmetic-logic units (ALU), etc. Similar to IPs,
the components in a RTL library can be internal legacy components or external
components supplied by another company.

The advantages of reuse are similar at the RT and the system level. At both
levels, reuse of components drastically reduces the time and the cost of the de-
sign because the reused components are already designed, optimized, and tested.
However, in order to exploit these bene�ts, several problems have to be overcome.

The main two problems involved with design reuse are component matching
and component integration. First, the task of matching is to �nd a corresponding
counterpart in the component library for a part of the design speci�cation. A
component can only be used in the implementation, if it matches the functionality
and meets the constraints in the speci�cation.

Then, the task of component selection is to choose one component from the set
of matching components which best meets the design goals. Typical design goals
are minimal cost or best performance.

Finally, when a suitable component is chosen, it must be integrated with the rest
of the design. The task of integration is to ensure that the component is properly
connected and controlled so that it cooperates with the other system components
and works with the right data at the right time.

Component matching and integration are more di�cult at the system level than
at the RT level because of the higher level of abstraction. At the RT level, the
behavioral and structural models of the components are close to the behavioral
speci�cation so that mapping and integration are usually straightforward.

For example, the behavioral model of an adder is simply an add operation in-
dicated by a plus sign. The structural model is a component with two bit vector
input ports and one bit vector output port. With these models, it is easy to map
an addition onto an adder component by feeding the left and right arguments into

16 CHAPTER 1. INTRODUCTION

the input ports and reading the result from the output port3.

At the system level, however, the tasks of component matching and component
integration are not as straightforward because the behavioral and structural models
of system components are much more complex.

The functionality of both, the system speci�cation and the IP components, is
described by algorithms rather than primitive arithmetic operations. Hence, IP
matching essentially has to deal with the comparison of algorithms. Whether two
algorithms match, however, is undecidable in the general case. Therefore, IP match-
ing requires special handling by the tools4 or the help of the designer.

The integration of IPs includes similar problems. Instead through plain ports,
IP components usually communicate via non-trivial interfaces by use of possibly
complex communication protocols. Hence, IP integration typically requires interface
synthesis and protocol translation to be performed.

While the matching, selection and integration of IP components are tasks per-
formed by system integrators, IP providers have to deal with the task of IP protec-
tion which is discussed in the following section.

1.1.5.3 IP protection

Since the business of IP vendors depends on selling their intellectual property to
other companies, IP providers have to protect their IP from being copied, modi�ed,
or reverse-engineered. IP protection addresses the security issues for external IPs.

In general, IP components are covered by a copyright and can be further pro-
tected by legal contracts and non-disclosure or non-distribution agreements. How-
ever, it is usually very di�cult to detect and to prove that an IP is used without
permission. Therefore, technical measures are taken in addition to legal guarantees.

For hard IPs, protection can be easily achieved by keeping the �nal implementa-
tion with the IP provider. This works well if the IP is provided by the same silicon
vendor who also performs the �nal layout and manufacturing of the system. Instead
of the real implementation, the system integrator is supplied with simulation mod-
els and estimation data of the IP. With these models, the system can be developed
without the need for the real IP. Typically, the deliverables for a hard IP include
simulation and timing models at di�erent levels of abstraction, performance, power,
and other metrics, a oor plan model, and comprehensive documentation about the
functionality and interface speci�cation of the IP [KB98].

3Given a properly annotated component library, matching and integration is not signi�cantly
more di�cult for other RTL components.

4For example, the matching of IP components could be indicated by use of a naming convention
or some form of annotation recognized by the CAD tools.

1.1. SYSTEM-LEVEL DESIGN 17

For soft IPs, a di�erent approach is necessary. Since the �nal implementation
will be synthesized by the system integrator, the complete, synthesizable model must
be made available. In order to still hide the implementation or algorithm details,
the IP can be provided in precompiled format without source code. This is basically
the same, well-known idea used in the software business to protect proprietary code
from being reverse-engineered.

Watermarking can also be used for IP protection. This technique inserts a
unique identi�er, a so-called watermark, into the component. Such a watermark
is typically hidden and di�cult to remove. The existence of a watermark ensures
that the component can always be identi�ed. Watermarking can be easily applied
to hard IPs [KLM+98], but is di�cult for soft IPs since it must be ensured that the
watermark is not lost during synthesis.

1.1.5.4 IP requirements

This section summarizes the requirements for successful reuse of IP. Di�erent re-
quirements apply to the components, the methodology, the design model, and the
tools being used in system level design.

In order to be reusable, IP components must provide support for IP matching,
selection and integration. IP matching requires a clearly speci�ed functionality.
For IP selection, accurate quality metrics are needed, such as performance, power
consumption, size and cost. In order to allow seamless IP integration in a system,
IP components must provide standard or exible interfaces. In other words, the IP
interfaces and the communication protocols used must be clearly speci�ed.

Furthermore, IP components need some form of protection and should be highly
optimized and well-tested. In order to increase the reusability, IPs should also be
customizable to di�erent environments and portable to di�erent technologies. The
deliverables for IP components include simulation models at di�erent abstraction
levels, quality metrics and comprehensive documentation [KB98, SK+99].

The system design methodology must be IP-centric. In other words, IP reuse
must be an integral part of the methodology. The methodology must encourage
the reuse of IP by use of guidelines and IP-centric models. Last but not least, the
methodology must be supported by suitable tools.

Well-de�ned, IP-centric models are required for the design and component rep-
resentation throughout the design process. The design model must allow the easy
insertion and replacement of IP components (\plug-and-play") at any time in the
design process. This requires that the model clearly separates communication and
computation in the design. This ensures that communication and computation
portions can be clearly identi�ed and easily replaced with di�erent communication
protocols or computation algorithms.

18 CHAPTER 1. INTRODUCTION

Finally, tools are required to support the user with design maintenance and re-
�nement. System-level tools must recognize and support IP components. While
design decisions usually are made by the system designer, CAD tools are needed
for all tedious and error-prone tasks during the design process, including speci�-
cation capture, architecture exploration, communication synthesis, and hand-o� to
semiconductor manufacturing.

This work addresses the issues of system-level design in general, and, in partic-
ular, the problems involved with the reuse and integration of IP components. An
IP-centric methodology is presented which is based on well-de�ned design models
and a language that speci�cally supports the requirements of system-level synthesis.

1.2 Related Work

This section contains a brief overview about related work in system-level design.

While there are e�orts, such as the virtual socket interface alliance (VSIA)
[BS99], which address general system design issues like the de�nition of SOC de-
sign, system data formats, IP interfaces and modeling guidelines, the majority of
interesting projects resemble actual design systems. A subset of such systems for
codesign and system-level design is presented in the following section.

Furthermore, Section 1.2.2 lists traditional languages which are commonly used
for software, hardware, and system development.

1.2.1 Design systems

For system-level design and codesign, promising approaches and methodologies have
been proposed in the academia as well as in the industry. A set of interesting tools
and design environments has already been developed.

Table 1.1 lists promising system-level design projects developed by universities.
Furthermore, a set of commercial tools and design systems is shown in Table 1.2. It
should be noted that many commercial tools have evolved from university projects.
For example, CoWare and SystemC5 originated in academia

Although it is very di�cult to classify all these approaches, the main emphasis
for each project is noted in Table 1.1 and Table 1.2. Most systems try to cover
many aspects of system-level design, but have their strength in the area indicated
in the tables. Each of these projects really focuses only on a subset of the tasks.
Furthermore, the target architectures addressed by the tools are, in many cases,
quite speci�c and do not cover the whole design space.

5SystemC originally is Scenic.

1.2. RELATED WORK 19

Project University Main Focus

Chinook Univ. of Washington Communication synthesis
Cobra Univ. of T�ubingen Rapid prototyping
Cool Univ. of Dortmund Synthesis
Cosmos TIMA Laboratory Synthesis
Cosyma TU Braunschweig Synthesis
JavaCAD Univ. of Bologna Networked framework
JavaTime UC Berkeley Simulation
Lycos TU Denmark Synthesis
Polis UC Berkeley Formal speci�cation
Ptolemy UC Berkeley Simulation
Scenic UC Irvine Simulation
SpecSyn UC Irvine Exploration
Tosca Politecnico of Milan Synthesis
Vulcan UC Irvine Synthesis
Weld UC Berkeley Networked framework

Table 1.1: System-level design projects in academia

The SpecC design environment described in this work compares well with the
set of academia projects listed in Table 1.1. As described later, the SpecC system
addresses system speci�cation, simulation, as well as synthesis. However, the main
focus of SpecC is design modeling, which is described in detail in Chapter 2.

System-level design and codesign systems can be classi�ed by either homoge-
neous or heterogeneous speci�cation.

� Homogeneous speci�cation: A single language is used for specifying the system
including hardware and software parts.

� Heterogeneous speci�cation: Di�erent languages are used for specifying the
system, for example, VHDL (for hardware) and C (for software).

Examples for both types of systems are given in the next two sections.

1.2.1.1 Homogeneous speci�cation

Chinook: Chinook6 [COB95] is a codesign tool that addresses in particular in-
terface and communication synthesis. Cosimulation and cosynthesis with timing

6Online information about Chinook is available at:
http://www.cs.washington.edu/research/projects/lis/www/chinook/

20 CHAPTER 1. INTRODUCTION

Project Company Main Focus

COSSAP Synopsys, Inc. Capture
CoWare CoWare, Inc. Interface synthesis
Eaglei Synopsys, Inc. Simulation
SystemC Synopsys, Inc. Simulation
Seamless Mentor Graphics Corp. Simulation
SPW Cadence, Inc. Capture
XE Y Explorations, Inc. Reuse

Table 1.2: System-level design projects in industry

constraints are addressed as well. Chinook is targeted at the design of control-
dominated, reactive systems. The system speci�cation is homogeneous since Verilog
is used as the only input language.

Tosca: Tosca7 [BFS95] is a synthesis-oriented system which, just as Chinook, tar-
gets at the design of reactive real-time embedded systems. Tosca is an early, prag-
matic approach to codesign automation of control-dominated systems. The target
architecture consists of a single micro-processor core and several ASICs. Assembly
code is generated for execution by the processor and the ASICs are described in
VHDL.

Cool: In contrast to the control-dominated systems Chinook and Tosca, Cool
[Nie98] is a codesign system for data-ow dominated embedded systems. With
Cool, a system is speci�ed in VHDL. The synthesis result consists of assembly
code for possibly multiple processors and synthesizable VHDL for possibly multiple
ASICs. Cool emphasizes a precise partitioning approach using mixed integer linear
programming (MILP) based on exact cost and performance measures.

Vulcan: Vulcan [GM96] is an early, synthesis-oriented system with homogeneous
speci�cation. HardwareC is used as description language for both hardware and
software. Vulcan starts with a complete hardware solution (everything is imple-
mented in ASICs) and then iteratively moves tasks to a single CPU in order to
reduce the costs while obeying the given performance constraints.

7Online information about Tosca is available at:
http://www.cefriel.it/eda/projects/tosca/html/default.htm

1.2. RELATED WORK 21

Cosyma: Cosyma [EHB93, HE97, �OBE+97] is a synthesis-oriented system focus-
ing on hardware/software partitioning. The system is speci�ed in Cx, a variation
of the C language. The target architecture consists of one RISC processor with a
coprocessor implemented in an ASIC. In contrast to Vulcan, Cosyma starts with an
all-software implementation (the complete system is executed on a single CPU) and
then moves tasks to the ASIC if the performance constraints are not satis�ed.

Lycos: Just as with Cosyma, the target architecture of Lycos [MGK97] is an
embedded micro-architecture consisting of one processor with a coprocessor imple-
mented as an ASIC or FPGA. With Lycos, the system is homogeneously speci�ed
in either VHDL or the C language. The main emphasis of Lycos is the partitioning
task.

Cosmos: Cosmos [VRD+97, IAJ94] targets at the development of multiprocessor
architectures using a set of user-guided transformations on the design. In contrast to
Cosyma and Lycos, the target architecture consists of possibly multiple processors.
In Cosmos, the system is speci�ed in SDL. The generated output consists of VHDL
for the hardware, and C for the software parts of the system. It should be noted
that the Cosmos system has been extended to support cosimulation with parts in
the mechanical domain which are described in Matlab [CHM+99].

SpecSyn: SpecSyn [NVG91, GVN93, GVN+94] is a codesign environment for sys-
tems speci�ed in SpecCharts, which is a front end language for VHDL. The main
focus of the SpecSyn system is design estimation and design space exploration. The
target architecture consists of multiple processors, ASICs and memories, connected
via system busses.

Scenic/SystemC: The academic Scenic project [GL97, LTG97, GKL99] recently
has been commercialized in form of the SystemC8 initiative. In Scenic (or Sys-
temC), the design system is described with the software programming language
C++. Required modeling features not present in the language, like, for example,
concurrency and synchronization, are speci�ed by use of special methods imple-
mented in standard classes provided with the Scenic libraries. Although Scenic
targets also at system synthesis, its main focus is simulation. In other words, Scenic
is a simulation-oriented system, in contrast to the synthesis-oriented systems listed
earlier.

For a more detailed description of Scenic including a comparison with the SpecC
system described in this work, please refer to [DG98].

8Online information about SystemC is available at: http://www.systemc.org/

22 CHAPTER 1. INTRODUCTION

XE: Although hardware oriented, the explorations environment XE9 is a commer-
cial tool for system design. Based on a behavioral synthesis system, the strengths
of XE are design space exploration and reuse of IP components. In XE, the system
is speci�ed with VHDL. The target architecture consists of custom hardware and
reused components including processors.

Polis: The Polis10 system [BGJ+97, CGH+93] is targeted at small reactive em-
bedded systems. Its main focus is a formal approach to codesign enabling formal
veri�cation. Polis internally represents a system by use of the codesign �nite state
machine (CFSM) model. The design speci�cation for Polis is described in Esterel
[BG92]. The output consists of a HDL description (e. g. VHDL) for the hardware
and C for the software parts.

Cobra: Cobra11 [KKR94, Ros97] is a prototyping and emulation environment for
codesign. VHDL is used as speci�cation and implementation language. In Cobra,
the target architecture consists of a set of interconnected �eld programmable gate
arrays (FPGAs).

JavaTime: JavaTime [YMS+99] is a codesign system which focuses on simulation.
The standard software programming language Java is used as modeling language.
As in Scenic, required modeling features not present directly in the language are
speci�ed by use of special methods implemented in a supplied class library. It
should be emphasized that, in the JavaTime system, the Java language is used
to syntactically describe the system. The standard Java classes, for example the
support of internet communication, etc., are not used.

JavaCAD: JavaCAD [DBB99] is another example of a codesign system which uses
Java as the speci�cation language. As JavaTime, JavaCAD focuses on simulation.
However, JavaCAD also is a networked framework for codesign. In other words, it
utilizes the networking capabilities of Java for distributed codesign. In particular,
JavaCAD uses networked simulation for protection of IP components, as mentioned
in Section 1.1.5.3.

9Online information about XE is available at: http://www.yxi.com/
10Online information about Polis is available at:

http://www-cad.eecs.berkeley.edu/Respep/Research/hsc/abstract.html
11Online information about Cobra is available at:

http://www.fzi.de/divisions/sim/projects/cobra.html

1.2. RELATED WORK 23

1.2.1.2 Heterogeneous speci�cation

Ptolemy: Ptolemy12 [LM87, KL93] is a typical example of a system design frame-
work with heterogeneous speci�cation. Multiple languages, such as C, VHDL, and
Java, can be used for the system speci�cation. Furthermore, heterogeneous mod-
els of computation, such as the synchronous data ow (SDF) model, can be mixed
and simultaneously simulated in the system. Ptolemy is a typical representative for
simulation oriented systems.

CoWare: CoWare13 [RVB+96, Arn99] is a commercialized codesign environment
that, similar to Chinook, addresses interface synthesis for hardware/software com-
munication. CoWare also targets at the simulation and design of heterogeneous
DSP systems. Input languages supported include VHDL, Verilog, and C.

SPW: The signal processing work system SPW14 o�ered by Cadence is a com-
mercial framework for heterogeneous system speci�cation and cosimulation. SPW is
data ow oriented. In other words, SPW addresses in particular DSP and commu-
nication systems design. As does CoWare, SPW supports simultaneous simulation
with multiple languages, such as VHDL and Verilog for hardware, and C for soft-
ware.

COSSAP: COSSAP15 is a block diagram based framework o�ered by Synopsys.
COSSAP is very similar to SPW and targeted at DSP applications as well. A system
is speci�ed by use of block diagrams which can be simulated. The output generated
consists of synthesizable HDL for the hardware and C code for the software parts
of the system.

Seamless: The Seamless16 co-veri�cation environment (CVE), o�ered by Mentor
Graphics, is another example for hardware/software cosimulation. As CoWare and
SPW, Seamless CVE supports VHDL and Verilog for the hardware portions of the
system, and C for the software portions.

12Online information about Ptolemy is available at:
http://ptolemy.eecs.berkeley.edu/

13Online information about CoWare is available at: http://www.coware.com/
14Online information about SPW is available at:

http://www.cadence.com/technology/hwsw/cierto spw.html
15Online information about COSSAP is available at:

http://www.synopsys.com/products/dsp/cossap ds.html
16Online information about Seamless CVE is available at:

http://www.mentor.com/seamless/products.html

24 CHAPTER 1. INTRODUCTION

Eaglei: Eaglei17, o�ered by Synopsys, is a cosimulation tool very similar to Seam-
less. Eaglei focuses on hardware/software co-veri�cation from post-partitioning
through a physical prototype. Again, VHDL and Verilog are used for the hard-
ware parts of the system, and C is used for the software.

Weld: The Weld18 project [CSN98] is a networking framework for heterogeneous
systems. It addresses the use of networking in electronic design. The Weld project
de�nes a design environment which enables web-based CAD and supports dis-
tributed operation via the Internet.

1.2.2 Languages

As seen with the systems listed in the previous section, a large set of languages
is currently being used in embedded systems design. The main reason for this is
that the "perfect" language to be used for system-level design has not yet been
determined, and it is doubtful if such a language can actually exist. However, this
indicates the need for research for a possibly new language targeted speci�cally at
system-level design.

In order to determine how well a speci�c language is suited for a given purpose,
the requirements and goals for the language have to be identi�ed. For example,
a typical requirement for languages used in computer science is preciseness. In
contrast to languages for human interaction, such as English, German, or Chinese,
languages used for automated processing must not allow any misunderstandings. In
other words, these languages must be formal and unambiguous.

In addition to these general necessities, many other requirements and goals exist
for a system-level design language. In Chapter 4, these requirements will be dis-
cussed and identi�ed. Furthermore, a new language called SpecC will be proposed
which exactly matches the identi�ed requirements.

In the following sections, some traditional languages used for software design,
hardware design, combined software and hardware design (codesign), and system
design are briey reviewed.

1.2.2.1 Software programming languages

Literally hundreds of software programming languages exist today. For real appli-
cations, mostly imperative programming languages are used. Among these, some

17Online information about Eaglei is available at:
http://www.synopsys.com/products/hwsw/eagle ds.html

18Online information about Weld is available at:
http://www-cad.eecs.berkeley.edu/Respep/Research/weld/index.html

1.2. RELATED WORK 25

also have been used for the design of embedded systems. The most important ones
are the following three languages.

C: The C programming language [X3/90], originally developed and used with the
UNIX operating system, has been o�cially standardized by the ISO and ANSI.
Since then, C has become the de-facto standard for software design.

C++: The C++ programming language [ES90, X3/97, Str97] is an object oriented
extension of the C language. It also has been standardized and is being used widely
for software development.

Java: Java [AG96] is a recently developed language, whose syntax is very similar to
C. Java has gained much of its popularity because it is speci�cally suited for network
applications such as the use of executable code in the world-wide web (WWW).

1.2.2.2 Hardware description languages

Hardware description languages (HDLs) are used for the formal speci�cation and
description of hardware. The following is a list of languages commonly being used
in industry and academia.

VHDL: VHDL [IEEE87, IEEE93] is a hardware description language standard-
ized by the IEEE. Although VHDL is primarily a simulation language, it is being
used widely for synthesis as well19 [JDK+97].

It should be noted that extended versions of VHDL exist. For example, VHDL+
[ICL97], which is developed by ICL, provides language extensions for interfaces and
so-called activities. A comparison of VHDL+ with the SpecC language proposed in
this work can be found in [GZG98].

Verilog: Verilog [IEEE96, TM91] is another hardware description language com-
monly being used for simulation and synthesis20. Verilog also has been standardized
by the IEEE.

HardwareC: HardwareC [KM90] has been developed speci�cally as a language
for hardware design [Mic94]. Syntactically, HardwareC is similar to the C program-
ming language, but provides additional constructs needed for describing hardware.
HardwareC is not as complex and powerful as VHDL or Verilog.

19For synthesis, only a subset of VHDL can be used since some constructs in VHDL are not
synthesizable.

20As for VHDL, only a subset of Verilog is synthesizable.

26 CHAPTER 1. INTRODUCTION

Handel-C: Handel-C [APR+96] is another language used for hardware design
which is syntactically similar to C. Semantically, Handel-C is based on the model of
communicating sequential processes (CSP). In comparison to the previous hardware
description languages, the expressive power of Handel-C is quite limited.

1.2.2.3 Codesign languages

Since codesign consists of the design of systems including both software and hard-
ware, languages combining the features of software programming languages and
hardware description languages are preferably being used. Two early approaches
should be mentioned.

Statecharts: Statecharts [Har87, DH89] is a state-based speci�cation language
for codesign, particularly targeted at the design of reactive systems. Statecharts
uses an extended �nite state machine model with support of hierarchy, concurrency
and other common concepts. Statecharts is based on a visual formalism with a
graphical representation and has been extended in several variations.

SpecCharts: SpecCharts [NVG91, GVN93, GVN+94], a combination of State-
charts and VHDL, is based on the program state machine (PSM) model. SpecCharts
has a textual and an equivalent graphical representation. It is used in the SpecSyn
system for design space exploration and estimation.

1.2.2.4 System-level languages

In addition to the features provided by codesign languages, system-level languages
typically include other aspects of a complete system speci�cation as well, for exam-
ple, constraints in the mechanical domain.

SDL: The speci�cation description language SDL [BHS91, ITU92] is widely used
in the �eld of telecommunication. It is also applied to system design, for example,
in the Cosmos system. SDL has been standardized by the ITU.

SLDL: SLDL21 [Sch99] is a new system-level design language currently being de-
�ned in the EDA industry. SLDL focuses on the formal speci�cation of a systems
requirements and constraints and allows partial (incomplete) descriptions.

21Online information about SLDL is available at: http://www.inmet.com/SLDL/

1.3. GOALS 27

UML: The uni�ed modeling language UML22 [RJB98] is an industry-standard
language for the speci�cation of software systems. UML includes visualization,
construction and documentation. The goal of UML is to simplify the process of
software design.

1.3 Goals

After the review of a set of promising design systems and important speci�cation
and modeling languages in the last two sections, it should be noted that many
weaknesses and limitations exist in these approaches. Rather than pointing out
speci�c weaknesses, two major problems should be emphasized.

First, every system presented in Table 1.1 and Table 1.2 only focuses on a subset
of the system design tasks and hardly addresses the remaining tasks. In order to
cover the whole spectrum of system-level design, it is not even possible to easily
combine a set of approaches because of large di�erences in the methodologies, the
models, and the languages being used.

Second, the languages and the design systems are developed separately. Hence,
they do not match and modi�cations and adjustments are necessary. For all design
systems listed earlier, the languages used were originally developed for di�erent
purposes. Because of this, most systems can only support a subset of the original
language, and also are missing features that the language does not support.

In this work, a new approach is taken. Instead of using an existing language,
that originally was not designed for system-level design, a new language, called
SpecC, is developed that exactly matches the requirements and goals for this task.
In addition, a methodology with well-de�ned design models and explicit support of
IP is proposed. The language, the methodology, the models and the implemented
design environment are all designed and tuned for the speci�c requirements and
goals of system-level design.

In particular, the following issues need to be solved concurrently and consistently
in order to make system-level design successful.

� The system-level language must

{ be executable,

{ be synthesizable,

{ support all hardware-speci�c concepts, and

{ support all software-speci�c concepts.

22Online information about UML is available at: http://www.rational.com/uml/index.jtmpl

28 CHAPTER 1. INTRODUCTION

� The design models must

{ be well-de�ned,

{ separate communication and computation,

{ support IP, and

{ support a general (non-restricted) target architecture.

� The design methodology must

{ be well-de�ned,

{ support highly abstract speci�cation,

{ support validation and veri�cation,

{ support design space exploration,

{ support synthesis, and

{ provide a clear hand-o� for the �nal production.

� The design environment must

{ be a coherent system,

{ contain a complete set of tools, and

{ allow manual and automatic re�nement.

� The system design approach must

{ be proven with a set of real-world examples, and

{ gain wide acceptance, in particular in industry.

All these issues will be addressed in the remainder of this work.

1.4 Outline

In order to employ EDA at the system level, the increased level of abstraction and the
reuse of IP must be reected in the system design methodology and, in particular,
in the design descriptions, the models and languages, the component library, and
the CAD tools. These issues are addressed in the following chapters which present
the SpecC system design approach.

1.4. OUTLINE 29

The rest of this work is organized as follows:

Chapter 2 introduces the SpecC design model which is based on behaviors con-
taining computation and channels encapsulating communication. In particular,
Chapter 2 describes the models and the guidelines for modeling systems with IP
components in the SpecC design environment.

Then, Chapter 3 presents the IP-centric SpecC design methodology. Starting
with an abstract, executable speci�cation of the intended system, the SpecCmethod-
ology uses step-wise re�nement to map the system model onto the target architec-
ture. Using the modeling guidelines de�ned in Chapter 2, the SpecC methodology is
based on four well-de�ned models representing the design at di�erent stages during
the re�nement process. The speci�cation model is transformed into the architecture
model by architecture exploration. Then, communication synthesis is applied gen-
erating the communication model. Finally, the implementation model of the system
is obtained after software compilation and hardware synthesis.

Chapter 4 discusses the requirements and objectives of system design languages
and examines traditional languages regarding their support of the required prop-
erties. Since none of these languages satis�es all requirements, a new language,
called SpecC, is proposed. The SpecC language is used in the SpecC system to
represent the design models throughout the design process. Built on top of C, the
SpecC language was developed to directly support all the concepts needed in em-
bedded systems design, including behavioral and structural hierarchy, concurrency,
state transitions, timing and exception handling. The SpecC language also features
plug-and-play support for the reuse of IP.

The implemented SpecC design environment is described in Chapter 5. The
SpecC system consists of a set of CAD tools for system validation, analysis, and
synthesis, integrated in a graphical user interface (GUI). The main tool in the system
is the SpecC compiler which allows the simulation and debugging of SpecC designs.

Chapter 5 also describes the central design representation which all SpecC tools
rely on. The so-called SpecC Internal Representation (SIR) o�ers an application
programming interface (API) for the SpecC tool developer, which allows to easily
read, write, maintain and transform design models speci�ed with the SpecC lan-
guage. As such, the SIR provides an abstraction layer above the speci�c details of
the SpecC language and allows the quick development of CAD tools for the SpecC
design environment.

Chapter 6 addresses the protection of IP components in the SpecC design en-
vironment. Using the SpecC compiler, an IP provider can automatically generate
public IP interface descriptions and secret IP simulation libraries for any design
model. With this approach, it is ensured that no information about the internal
implementation of the IP is revealed and the IP is fully protected against reverse-
engineering.

30 CHAPTER 1. INTRODUCTION

Finally, Chapter 7 summarizes this work and its contributions and concludes
with a brief discussion of open issues and future work.

Chapter 2

IP-centric Modeling

As described in the introduction, system-level design starts from an initial design
speci�cation which is then transformed, typically by use of several re�nement steps,
into a �nal implementation. Throughout this design process, the intended design is
represented by a design model. A design model is an abstract representation of the
real design. The level of abstraction of this model decreases with every re�nement
step.

The design model itself is typically described by use of a formal language. Many
such languages exist already, and one new language, speci�cally targeted at system-
level design, is described in Chapter 4 later in this work. However, it is important to
understand that the design model being used in the design process is more important
than the design language.

In other words, it must be emphasized that not every description that can be
expressed in the language actually represents an usable model for the design pro-
cess. Rather, the design description must match a well-de�ned model that can be
recognized and processed by the design tools.

More speci�cally, the use of a well-de�ned model will also ensure that the design
description can be e�ciently synthesized. The ability to synthesize a particular
design in an e�cient manner is more a property of the design model rather than a
characteristic of the language.

In order to obtain a well-de�ned model when specifying a system, modeling
guidelines must be followed. Such guidelines will ensure that the described model
matches the requirements of the design tools and also �ts the design methodology.
Modeling guidelines are commonly speci�ed in form of a set of general and also
speci�c rules. For example, please refer to [KB98] or [AG98].

In this and the following chapter, the design models and the modeling guidelines
used in the SpecC design environment are presented. This chapter introduces the

31

32 CHAPTER 2. IP-CENTRIC MODELING

basic models and their characteristics. Then, Chapter 3 describes the methodol-
ogy that, based on these models, consists of a set of well-de�ned transformations
performed with these models.

2.1 Computation and Communication

For the design of embedded systems, the key representation for any design is a block
diagram. Block diagrams consist of a set of blocks and a set of interconnections
between the blocks. Block diagrams can also be hierarchical. Thus, each block in a
block diagram can itself represent an inner block diagram.

The standard interpretation of block diagrams is that blocks represent compo-
nents which perform a particular function or computation. These blocks can also
interact or communicate with each other through the interconnections in the dia-
gram. It is important to note that there are two types of distinct actions performed
by the blocks, namely computation and communication.

B1 B2

P2P1

v1
v2
v3

v1
v2
v3

C1

(a)

(b)

Figure 2.1: Separation of computation and communication

For example, a simple block diagram is shown in Figure 2.1(a). Two blocks,
P1 and P2, are communicating via the interconnections v1, v2 and v3. These in-
terconnections can represent wires in hardware or shared variables in software. By
assigning values to these connections and following a de�ned protocol, e. g. two-way
hand shaking, the blocks can communicate and exchange data.

In this scenario, the blocks P1 and P2 contain code for both communication and
computation. In Figure 2.1(a), the communication in the code is illustrated as a
shaded portion. However, it must be emphasized that there is no way to automat-
ically distinguish the code for communication from the code used for computation.

2.1. COMPUTATION AND COMMUNICATION 33

Because communication and computation are freely intermixed and cannot be iden-
ti�ed, it is neither possible to automatically change the communication protocol,
nor to switch to a new algorithm to perform the computation.

In order to allow automatic replacement of communication protocols and com-
putation algorithms, the separation and encapsulation of communication and com-
putation is needed. This is supported in form of behaviors and channels in the
SpecC model, as shown in Figure 2.1(b). Here, the computation is encapsulated in
the behaviors B1 and B2, and the communication is contained in the channel C1.

More speci�cally, the channel C1 encapsulates the communication protocol in
form of function de�nitions such as read and write or send and receive. These
functions represent the interfaces of the channel. A channel also may contain nec-
essary local functions and the communication media, such as the variables v1, v2
and v3. On the other hand, the behaviors only contain computation. In order to
communicate, the behaviors call the functions provided by the connected channel.

An important di�erence between the functions de�ned in a channel and the func-
tions de�ned in a behavior is that a behavior is an active element, whereas a channel
is passive. In other words, the functions in a behavior specify the functionality of
the behavior itself. On the other hand, the functions in a channel are only executed
when they are called from a connected behavior.

(a)

(b)

B1 B2
v1
v2
v3

C1

B2B1

v2
v3

v1

Figure 2.2: Communication inlining: (a) before, (b) after.

This di�erence is exploited when the model is �nally implemented. For the im-
plementation of a channel, its functions are inlined into the connected behaviors
and the encapsulated communication media are exposed. This is illustrated in Fig-
ure 2.2. After the inlining process, the channel C1 has disappeared. The internal
variables v1, v2 and v3 are exposed and the communication protocol has been inte-
grated into the behaviors B1 and B2. Please note that in this �nal implementation
model communication and computation are no longer separated.

34 CHAPTER 2. IP-CENTRIC MODELING

2.2 The SpecC Model

In the SpecC model, behaviors and channels are used to encapsulate communication
and computation, respectively. Following the style of standard block diagrams,
behaviors and channels can further be composed in form of a structural hierarchy.

2.2.1 Basic structure

The basic structure of a SpecC model is a hierarchical network of behaviors and
channels. A simple example is depicted in Figure 2.3.

b1 b2

c1

p1 p2

v1

B

Figure 2.3: Example of a SpecC model

The example shows a behavior B which has two ports, p1 and p2, through which
it can communicate with its environment. Internally, these ports are connected to
two child behaviors, b1 and b2, which execute concurrently. These child behaviors
can communicate in two ways. First, both are connected to a shared variable v1

which, for example, could be written by b1 and then read by b2.

Second, b1 and b2 can communicate by use of a communication protocol provided
by the channel c1. For example, the behavior b1 could call a function send provided
by the left interface of channel c1. Then, when behavior b2 calls the receive

function provided by the right interface, the communication protocol implemented
in the channel will ensure that the data is transferred correctly, for example, by use
of explicit hand shaking or some speci�c synchronization mechanism and timing.

Please note that Figure 2.3 only shows one level of the structural hierarchy of the
system. The child behaviors b1 and b2 could again consist of a network of behaviors
and channels. On the other hand, the behavior B can be part of a bigger system as
well.

2.3. COMPUTATION MODELS 35

2.2.2 Test bench

For any design model, the root of the hierarchy tree typically represents the test
bench of the system. Since this is the top level, there are no ports for this behavior.
Furthermore, it is a SpecC convention, that this top level behavior is always called
Main.

v1
v2

v3
v4

Main

B_in B_outB_test

Figure 2.4: Typical test bench model

Figure 2.4 shows a typical example of a test bench model. The actual design
model B test is embedded in the test bench Main as a child behavior. It is connected
to two other child behaviors B in and B out. B in represents a stimuli generator
which supplies test vectors to the input ports of the design. The output produced
by the design model is observed and veri�ed with the monitor behavior B out.

2.3 Computation Models

In addition to the structural hierarchy described in the previous section, the SpecC
model also supports behavioral hierarchy. Behavioral hierarchy is the composition
of computation tasks over time. For example, a set of tasks can be executed one at
a time or in parallel.

The SpecC behaviors, which encapsulate the computation tasks to be performed
by a system, can be classi�ed into eight di�erent models. These behavior models
are illustrated in Figure 2.5. Their characteristics are described in the following
sections.

2.3.1 Algorithmic program

A SpecC behavior is called a composite behavior if it contains instantiations of child
behaviors. Otherwise, it is called a leaf behavior. In Figure 2.5, a leaf behavior is
shown in (a). On the other hand, composite behaviors are shown in (b) through (f).

36 CHAPTER 2. IP-CENTRIC MODELING

(a) (b) (c) (d)

(e) (f) (g) (h)

b1

b2

b3

b4

b1

b2

b3

b1

b2

b3

b1

b3

b2

b1

i1 i2

a1 a2

b1

b2

b3

B_sequentialB_leaf B_concurrent B_pipelined

B_mixedB_IPB_exceptionB_fsm

Figure 2.5: Behavior models: (a) leaf behavior, (b) sequential behavior, (c) concur-
rent behavior, (d) pipelined behavior, (e) FSM behavior, (f) exception behavior, (g)
IP behavior, (h) mixed behavior.

The functionality of a leaf behavior is described by an algorithmic program. This
program is started when the leaf behavior is activated and the termination of the
program also determines the completion of the execution of the behavior.

The program in the leaf behavior can contain any type of programming state-
ments, such as assignments, conditional statements, loop statements and function
calls. More speci�cally, the statements provided by the C programming language
can be used in a SpecC leaf behavior. In other words, a leaf behavior is equivalent
to a C program.

A very important property of a leaf behavior is that it is atomic. In other words,
for synthesis and all re�nement tasks involved with it, a leaf behavior represents the
smallest indivisible unit in the SpecC design model. For example, during the task
of partitioning, a leaf behavior will be assigned completely to either hardware or
software. It will not be cut into smaller parts.

The atomicity of the leaf behaviors determines the granularity of the design
model. With a coarse granularity, the design system consists of only few behaviors
and most of the functionality of the system is speci�ed inside the leaf behaviors.
This simpli�es the re�nement tasks which are dealing with only a few objects, but,

2.3. COMPUTATION MODELS 37

at the same time, it heavily restricts the design space and will typically lead to a
sub-optimal solution.

On the other hand, with a �ne granularity, the system is speci�ed with many
behaviors with only simple functionality. As an extreme example, each arithmetic
operation in the design could be speci�ed in a separate leaf behavior. Such a �ne
granularity implies a large design space, but also requires each re�nement task to
handle a large set of objects leading to long run-times.

It is the task of the system designer to specify the system with the right gran-
ularity. In other words, the system designer has to trade-o� a �ne grained model
with a large design space against a coarse grained model with easy re�nement.

2.3.2 Sequential execution

The sequential execution of leaf behaviors can be speci�ed with two types of com-
posite behaviors. First, as shown in Figure 2.5(b), the leaf behaviors b1, b2 and b3

can be executed in a �xed, unconditional order, one at a time. The execution of
the behavior B sequential will start with the execution of b1 and �nally terminate
when b3 has �nished its execution.

Second, sequential execution can be speci�ed in a SpecC model in form of a
�nite state machine (FSM), as shown in Figure 2.5(e). The FSM model allows
arbitrary transitions between the child behaviors and, thus, supports conditional
execution and loops. The execution of a FSM behavior starts with the indicated
initial behavior, such as b1 in Figure 2.5(e). A FSM behavior terminates when a
transition on completion is performed, as shown at b4.

2.3.3 Concurrent execution

For the parallel execution of behaviors, again two types of composite behaviors are
provided. First, the concurrent execution, as shown in Figure 2.5(c), will execute
all child behaviors simultaneously. The execution of B concurrent starts the child
behaviors b1, b2 and b3 at the same time and �nishes as soon as all children have
completed their execution.

Second, as a special form of concurrency, a pipelined behavior, as shown in
Figure 2.5(d), executes its child behaviors in a pipelined fashion. Pipelined execution
implies the iterative execution of the children. For Figure 2.5(d), only b1 will be
executed in the �rst iteration. In the second iteration, b1 and b2 will be executed
concurrently. In the third and all following iterations, all three children are executed
in parallel.

The pipelined behavior also ensures that the data exchanged between the child
behaviors is shifted to the next stage each time a new iteration starts. This is

38 CHAPTER 2. IP-CENTRIC MODELING

described in detail in Section 4.5.2.2.

2.3.4 Exceptions

A special behavior type allows the speci�cation of exceptional execution. As illus-
trated in Figure 2.5(f), an exception behavior contains one child behavior b1 for
standard execution, and several other child behaviors, such as i1, i2, a1 and a2,
for the handling of exceptions. Two types of exceptions are distinguished, namely
interrupt and abortion.

In case of an interrupt, the behavior b1 is stopped immediately in its execution
and an interrupt behavior, such as i1 and i2, is executed. Once the interrupt
behavior �nishes, the main behavior b1 can resume its execution.

In case of abortion, the execution of the behavior b1 is aborted immediately and
will not be resumed. Instead, an abortion behavior, such as a1 and a2, will take
over and �nish the execution.

The execution of an exception behavior starts with the execution of the main
behavior. The execution is terminated when the main behavior completes or an
abortion behavior has been executed.

2.3.5 IP model

In order to model IP components, a special IP behavior is supported. The essential
property of IP components is that their internals are hidden and cannot be seen
from the outside. Therefore, an IP behavior, as shown in Figure 2.5(g), is modeled
as a black box whose contents are not accessable. Furthermore, an IP behavior is
�xed and cannot be modi�ed during synthesis and re�nement.

Because of these restrictions with IP behaviors, special care has to be taken
when design models with embedded IPs are transformed. This is described in detail
in Section 2.5.

For the sake of completeness, a mixed behavior is shown in Figure 2.5(h). As
described later in Chapter 4, the SpecC language allows such behaviors consisting
of a mixture of child behaviors and algorithmic code. However, this behavior model
is depreciated and should not be used in a well-speci�ed design model1.

1It is possible and also straightforward to automatically convert such mixed behaviors into a set
of well-de�ned behaviors by introducing additional child behaviors and levels of hierarchy. However,
currently such a tool has not been implemented yet.

2.4. COMMUNICATION MODELS 39

2.4 Communication Models

The communication models mentioned earlier are reviewed in Figure 2.6. There are
two models of communication, namely the shared memory model and the channel
model.

b1 b2

c1

c2

cn

...

...

b1 b2 ...

...

v1

v2

vn

(b)(a)

bm bm

B1 B2

Figure 2.6: Models of communication: (a) shared memory model, (b) channel model.

2.4.1 Shared memory model

The shared memory communication model is realized by use of variables declared
in the behavior that encapsulates the communicating child behaviors2. As shown in
Figure 2.6(a), the variables v1, v2, . . . , vn are declared in behavior B1 and represent
communication wires which hold their value over time, acting as a memory. The
instantiated child behaviors b1, b2, . . . , bm have access to these wires through their
ports, so that the stored values can be shared among the connected children.

In the shared memory model, the child behaviors communicate by assigning val-
ues to their output ports (send) and observing values at their input ports (receive).
While this basic scheme of communication is su�cient for simple cases, communica-
tion protocols are typically needed in the more general case, involving synchroniza-
tion, timing, bu�ering, error correction, etc. As stated earlier, such communication
protocols should be separated from the computation and should be encapsulated in
channels, which are described next.

2As described in Chapter 4, the SpecC language allows global variables, declared outside of any
behavior, to be accessed from the inside of behaviors. Thus, such global variables could also be
used for a shared memory communication model. However, this is not recommended since there is
no explicit connectivity to these variables. When using local variables in parent behaviors, which
can only be accessed through ports, as shown in Figure 2.6, the connectivity is obvious and the
model becomes less error prone.

40 CHAPTER 2. IP-CENTRIC MODELING

2.4.2 Channel models

In the SpecC model, channels are used to encapsulate communication. Six di�erent
channel models are shown in Figure 2.7.

(a)

v1

v2

C_leaf

c1

(b)

C_hierarchy

(d)

C_mixed

v1

c1

b1 b2

b1

C_wrapper

(e)

C_adapter

p1

p3

p2

(f)

c1

c2

c3

C_group

(c)

Figure 2.7: Channel models: (a) leaf channel, (b) hierarchical channel, (c) grouping
channel, (d) mixed channel, (e) wrapper channel, (f) adapter channel.

A basic or leaf channel, as shown in Figure 2.7(a), consists of a set of local
variables, such as v1 and v2, and a set of communication functions. The functions of
the channel use the local variables to realize the communication. These functions are
made available through the interfaces of the channel and can be called by behaviors
whose ports are connected to these interfaces.

Similar to behaviors, channels can also be hierarchical, as shown in Figure 2.7(b).
A channel is called a hierarchical channel if it contains a child channel. A typical
example for hierarchy in channels is a communication protocol stack. For example,
a channel providing send and receive functions for large blocks of data might use
an internal channel that provides send byte and receive byte functions.

A channel, that instantiates a set of child channels, as shown in Figure 2.7(c), is
called a grouping channel. This channel model can be used to combine a set of chan-
nels into one. For example, a system bus, that is capable of many communication
transactions represented by di�erent channels, can be well-modeled as a grouping
channel.

Two special channel models, namely wrapper and adapter channels, are used
for the communication with �xed behaviors, such as hard IPs, whose ports cannot
be modi�ed. A channel is called a wrapper if the channel instantiates a behavior,
as shown in Figure 2.7(e). Typically, the behavior b1 represents an IP core with
�xed, bit-level ports. In order to raise the abstraction level for the communication,

2.5. MODELING WITH IP 41

a channel C wrapper is wrapped around the behavior. This channel provides a
communication interface which translates high-level operations, such as send and
receive, into the required bit-level transactions. Thus, other components in the
system can easily communicate with the IP via common, high-level functions.

An adapter channel, as shown in Figure 2.7(f), is very similar to a wrapper
channel. However, instead of encapsulating the IP behavior, an adapter channel
provides ports to which the behavior can be connected. Thus, an adapter allows to
drive low-level wires by use of a high-level, functional interface. Since an adapter can
simply be plugged in between incompatible behaviors while leaving both behaviors
on the same level in the structural hierarchy, it is preferred, in this work, over the
wrapper model.

Similar to the mixed behavior model, the SpecC language described later, also
allows mixed channels, as shown in Figure 2.7(d). Although syntactically possible,
the mixed channel model is depreciated and should not be used in a well-de�ned
speci�cation.

2.5 Modeling with IP

For a speci�cation model to be IP-centric, it must naturally and explicitly represent
the reuse and integration of intellectual property (IP). While IP components must
be represented in a way so that they can be easily identi�ed, they must not be used
di�erently than other components. In other words, IP models must not create an
exception.

As discussed in the introduction, IP can usually be classi�ed into soft IP and
hard IP. Soft IP, which comes in form of synthesizable source code, applies to both,
behaviors and channels. For both, the IP models are exactly the same as the non-IP
models in the system speci�cation.

On the other hand, hard IP, which represents a �xed core component whose
internal structure is hidden from the user, only applies to behavior models. There is
no channel model for hard IPs. The reason for this is that channels can only be used
in the system speci�cation and during intermediate re�nement steps, but need to
be inlined for the �nal implementation. The process of inlining requires knowledge
about the internal structure of the channel.

In the following, three models representing IP in a system model are presented,
�rst, the channel model for communication protocol IP, and then, the wrapper and
adapter models representing hard IP cores. With all these three models, \plug-and-
play" with IPs is possible.

42 CHAPTER 2. IP-CENTRIC MODELING

2.5.1 Channel model

A proprietary communication protocol, or a proprietary implementation of a stan-
dard protocol, is represented by an IP channel in SpecC. With one exception, such
a channel is not di�erent from other channels in the system and therefore can be
treated the same way.

The only exception is that an IP channel typically needs to be wrapped by
another channel which performs data type conversion. For example, an IP channel
might provide native functions to send and receive single bytes and also blocks of
512 bytes of data. However, in order to use this channel in an application that needs
to transfer pictures of a certain size, e. g. 1024 by 768 pixels, a data type conversion
is required from the picture type into the transferrable block type, and vice versa.
This conversion can be easily performed by a channel surrounding the IP channel.

v1
v2
v3

C1

(a)

C2

(b)

IP

Figure 2.8: IP channel model: (a) virtual channel, (b) IP protocol channel.

Figure 2.8(b) shows this situation. The channel IP is encapsulated in channel C2
which takes care of the necessary conversions. Assuming that in the initial system
speci�cation a virtual channel C1, shown in Figure 2.8(a), is used to transfer the
picture, the channel C2 can be used as an equivalent replacement at any time. Thus,
it is possible to immediately plug in the IP protocol into the system model once the
decision for its use has been made (\plug-and-play"). Also, this change is only local
and does not a�ect any other channels or behaviors in the system.

2.5.2 Wrapper model

Similar to the IP channel in the previous section, a hard IP core is wrapped in a
channel as well. This IP wrapper model is shown in Figure 2.9(b).

The IP behavior IP1 contains ports which accurately describe the ports of the
real IP core. Typically, these ports are modeled in a bit-exact manner. These
behavior ports are mapped to variables in the channel. Communication with the
IP is established by use of a set of high-level communication functions provided by
the wrapper W1. These functions contain the detailed interface protocol to drive the

2.5. MODELING WITH IP 43

B1

(a)

T1
W1

IP1

(b)

Figure 2.9: IP wrapper model: (a) synthesizable behavior, (b) IP replacement using
a wrapper.

variables connected to the IP. Thus, by using the wrapper functions, other behaviors
can easily communicate with the IP.

In order to allow \plug-and-play", a transducer, such as T1, is required in addi-
tion to the wrapper W1. A transducer is a synthesizable behavior used to connect two
channels. Later, in the implementation model, the tranducer will contain two com-
munication protocols, transforming receive requests from one protocol into send

requests of the other, and vice versa. Note that a transducer can be eliminated in
an optimization step if the two communication protocols are identical.

The reason for the need of a transducer stems from the fact that two channels
cannot be directly connected because they are passive components. In order to
connect passive channels, an active behavior is needed in the middle.

In summary, a synthesizable behavior, such as B1 in Figure 2.9(a), can be re-
placed by an IP wrapper model, shown in Figure 2.9(b), at any time in the design
process without a�ecting any other objects. The wrapper model consists of a trans-
ducer T1 and the IP behavior IP1 encapsulated in the wrapper W1.

2.5.3 Adapter model

The adapter model for incorporation of IP components is essentially the same as the
wrapper model presented in the previous section. However, instead of the wrapper
channel, an adapter channel is used to capture the communication functions.

Figure 2.10 shows the equivalence of a synthesizable behavior B1 and the adapter
model which consists of the IP core IP2, the adapter A1 and the transducer T2.

2.5.4 Inlining

It has been already mentioned that, in order to obtain a �nal implementation model,
the communication functions from the channels are inlined into the behaviors and
the contained variables are exposed, forming the connecting wires. This process

44 CHAPTER 2. IP-CENTRIC MODELING

B1

(a)

T2

A1

(c)

IP2

Figure 2.10: IP adapter model: (a) synthesizable behavior, (b) IP replacement using
an adapter.

of inlining has been demonstrated in Figure 2.2 for two synthesizable behaviors
connected by a standard channel (see page 33).

Although the principles of inlining are the same, the situation is slightly di�erent
when IP behaviors, wrappers, adapters, and transducers are part of the system
model. Wrappers and adapters need to be inlined since they are essentially channels.
IP behaviors are �xed and therefore cannot be modi�ed to incorporate protocols.
Transducers, however, can be treated just as standard behaviors.

B1 IP

v1

v2

B1

IP
v1

v2

W

(a)

(b)

Figure 2.11: Wrapper inlining: (a) before, (b) after.

Three common cases are illustrated in the following. Figure 2.11 shows the
process of inlining with a wrapper model. Before the inlining, the wrapper W is
connected to a synthesizable behavior3 B1. After the wrapper has been inlined,
the IP communication protocol has been integrated into the behavior B1 and the
variables v1 and v2 are exposed, forming the connecting wires to the IP. Note that
the IP behavior has been exposed as well, but was not changed during the process.

3Note that the transducer in the wrapper model is nothing else but a synthesizable behavior.

2.5. MODELING WITH IP 45

B1 IP

v1

v2

A

B1 IP

v1

v2

(a)

(b)

Figure 2.12: Adapter inlining: (a) before, (b) after.

As shown in Figure 2.12, the inlining process is very similar when using an
adapter model. After the inlining, the adapter A has disappeared. Its communication
functions have been incorporated into the behavior B1. Please note that the result
from this inlining process is exactly the same as the one from the wrapper model,
shown in Figure 2.11.

Figure 2.12 also shows that the inlining process for the adapter model does not
change anything at all for the behavior IP and the wires v1 and v2. This is in
contrast to the wrapper model where IP, v1 and v2 are moved up by one level in
the structural hierarchy of the system.

(a)

(b)

B1
v1
v2
v3

C1
IPA

v4

v5

T

B1 IP
v1
v2
v3

T

v4

v5

Figure 2.13: Inlining with transducer: (a) before, (b) after.

Finally, Figure 2.13 illustrates the need for transducers. For example, a processor
core, represented by the behavior IP, needs to be interfaced with the system bus,
represented by channel C1. Because the communication protocol used by the system

46 CHAPTER 2. IP-CENTRIC MODELING

bus C1 is incompatible with the native processor bus, represented by v4 and v5, a
transducer T is necessary. After the inlining of the channel C1 and the adapter A,
the transducer T has incorporated both bus protocols and therefore can translate
between the system bus and the processor.

Chapter 3

The SpecC Design Methodology

In the previous chapter, the basic SpecC models consisting of behaviors, channels
and interfaces, have been introduced. In this chapter, these models are used as build-
ing blocks to form and de�ne the models on which the SpecC design methodology
is based.

As described in the introduction, a design methodology is a speci�c design ow
that, with the help of CAD tools, transforms an initial, functional speci�cation of
the intended design into a detailed, structured implementation. In other words,
a methodology consists of a set of model transformations that step-wise re�ne an
abstract speci�cation model of the design into an implementation model ready for
manufacturing.

The SpecC design methodology is based on four well-de�ned models, namely a
speci�cation model, an architecture model, a communication model, and �nally an
implementation model. These models, and the tasks performed with these models,
are described in detail in the following sections, starting with an overview.

Please note that the SpecC design methodology presented in this chapter is
a re�nement of the generic codesign methodology described in [DGZ98, GAC+98,
GZD97b, GZD97c]. In contrast, the models and tasks de�ned in this chapter are of
much �ner detail and reect the actual status of the SpecC design environment.

3.1 Overview

An overview of the SpecC design methodology is shown in Figure 3.1 as a directed
ow graph. The graph contains two types of nodes, namely tasks, indicated as
rectangular boxes, and models, shown as ellipses. The models represent the input
and output of the tasks, as indicated by the arcs in the graph.

The SpecC design methodology consists of a vertical synthesis ow, a horizontal

47

48 CHAPTER 3. THE SPECC DESIGN METHODOLOGY

Manufacturing

Protocol selection

Communication synthesis

Synthesis flow

Architecture exploration

Library

Validation flow

Communication

model
Specification

Architecture
model

model

Simulation
model

Estimation

Validation
Analysis

Compilation

Comp.

Library
Comp.

Simulation
model

Estimation

Validation
Analysis

Compilation

Simulation
model

Estimation

Validation
Analysis

Compilation

Simulation
model

Estimation

Validation
Analysis

Compilation

Architecture mapping

Implementation

Hardware

synthesis

Software

compilation Library
Comp.

Back end

Capture

model
Implementation

Architecture allocation

Protocol synthesis

Figure 3.1: System design methodology with the SpecC design environment

3.1. OVERVIEW 49

validation ow, and a back end, as indicated by the dashed boxes in Figure 3.1.

The synthesis ow starts with the capture of the intended design, followed by a
series of re�nement steps. The initial speci�cation model of the design is captured
by use of a graphical or textual design entry. It consists of an abstract, executable
description that includes the functionality and the constraints of the intended design.

The speci�cation model is the input of the �rst re�nement task, called archi-
tecture exploration. During architecture exploration, the target architecture of the
system is determined in two major steps. First, a set of components, such as proces-
sors, ASICs, memories and busses, is allocated from the component library, forming
the target architecture. Then, the speci�cation model is mapped onto the selected
architecture and a re�ned architecture model of the design is generated.

The architecture model is further re�ned by the task of communication synthesis.
During communication synthesis, communication protocols are selected, inserted
and re�ned for each bus in the system. Also, interface components will be inserted
and realized in the system, if necessary. The result of communication synthesis is
output as a communication model, which is passed on to the back end.

It is the task of the back end, to actually implement each component in the
system. For software, binary program code has to be compiled for each processor,
using a compiler for the particular instruction set. For hardware, a control unit and
a datapath need to be synthesized for each ASIC, by use of behavioral synthesis, for
example.

After software compilation and hardware synthesis, an implementation model
is generated, representing a clock-cycle accurate description of the system. This
description, in turn, is used by the �nal task of manufacturing.

Note that the abstraction level of the design model decreases with each re�ne-
ment step in the synthesis ow. In other words, the design decisions made by each
task are reected in the generated models, making them a more and more accurate
description of the �nal design.

The validation ow is organized orthogonally to the synthesis ow. For each
of the four design models, validation, analysis and estimation can be performed
statically on the model itself. Furthermore, for each design model, a corresponding
simulation model can be generated by compilation, in order to perform dynamic
validation. The generated simulation model is a program that can be run on the
host computer, simulating the execution of the corresponding model.

The validation ow serves several purposes. First, each design model can be
validated for correctness. This includes the correctness of the functionality, as well as
the correctness of the performance, the timing, etc., if this is applicable to the model.
Second, important characteristics and properties of the model can be obtained,
veri�ed, and also be reported to the designer. Furthermore, these results can be fed
back into the synthesis ow, supplying data for further design decisions.

50 CHAPTER 3. THE SPECC DESIGN METHODOLOGY

Note that the tasks performed in the validation ow are identical for the models
at the four di�erent abstraction levels, and therefore can be implemented by the
same set of tools.

For the SpecC design methodology, two important features should be empha-
sized.

First, the SpecC methodology is homogeneous. All design models in the method-
ology are composed of the basic SpecC models introduced in Chapter 2. Moreover,
all these models are represented by use of the same formal language, called SpecC,
which will be described in detail in Chapter 4.

This is bene�cial in several ways. Not only does this approach avoid cumbersome
and error prone translations between languages with di�erent semantics, it also
yields a minimal number of design representations which use the same semantics
and therefore can be easily compared and veri�ed. Also, this allows for a minimal
number of tools which need to be developed and maintained, and these tools can
even share the same internal design representation and most data structures. Last,
but not least, it makes the use easier for designers, since they only have to learn
and deal with one language and one set of models.

Second, is should be pointed out that the design ow in the SpecC methodology
only contains small loops, locally within the re�nement tasks. This avoids large
design iterations which are expensive in terms of both, design time and money.

In the following sections, the SpecC design methodology is described in detail.
For each task, the input and output models with their particular characteristics
and properties are de�ned, as well as possible intermediate models. In particular,
the four main models are de�ned, namely the speci�cation model, the architecture
model, the communication model, and �nally the implementation model.

Please note that, in the following, the tasks of the SpecC methodology are spec-
i�ed. The algorithms for these tasks, however, are beyond the scope of this work.
In other words, it is described what the tasks do, not how they do it.

3.2 Speci�cation Capture

The synthesis ow of the SpecC methodology begins with the capture of the design
speci�cation. The speci�cation is usually captured textually by use of a standard
text editor. Alternatively, a graphical design entry tool, such as VisualSpec [AIG99],
can be used which allows to enter the speci�cation in form of graphical diagrams
and ow charts.

In both cases, the system speci�cation is eventually represented formally by use
of the SpecC language. The SpecC language has been speci�cally developed to
represent the design models introduced in Chapter 2 and is described in detail in

3.2. SPECIFICATION CAPTURE 51

the next chapter.
The functionality of the intended system is captured in form of an executable

speci�cation. Thus, the speci�cation model can be easily simulated on a host com-
puter in order to verify that the system and its algorithms work as expected.

Along with the functionality, given design constraints are speci�ed as well. Typi-
cal constraints include the required performance, maximal power consumption, max-
imal manufacturing cost, etc. These constraints are speci�ed in form of annotations
to the design description.

It should be emphasized that the speci�cation should be as abstract as possible.
Except for the given constraints, it should not include any details which restrict
the implementation in any way. This will enable a large design space, leading to a
better implementation.

3.2.1 The speci�cation model

In the SpecC methodology, the speci�cation model is the model with the highest
level of abstraction. It is an accurate model of the intended system in terms of pure
functionality, but does not reect its structure or its timing.

Typically, the speci�cation model executes in zero simulation time. Neither the
computation, nor any communication, is modeled with timing. In other words, there
is no waitfor statement in the SpecC description of the speci�cation1.

Communication can be modeled in two ways, either as shared variables, or by use
of channels from the SpecC communication library. For a speci�cation model, useful
communication channels are channels with basic synchronization, such as one-way
or two-way hand shaking, and bu�ered channels, such as blocking and non-blocking
FIFOs. Note that with both types of communication, complex data types may be
used for the exchanged data.

The speci�cation model can be freely composed out of any of the basic SpecC
models discussed in Chapter 2. A typical speci�cation model is shown in Figure 3.2.

The speci�cation model Sa consists of an arbitrary, hierarchical network of be-
havior and channel models. It includes sequential behaviors (s1, f1, f2), concurrent
behaviors (c1, c2, p1), exception behaviors (e1), and program code in leaf behaviors
(l1). Communication is performed via shared variables (v1, v2, . . . , v13) or basic
channels (ch1, ch2, . . . , ch5).

It should be emphasized that all \natural" features, that are inherent in a design,
should be speci�ed explicitly in order to obtain a well-written speci�cation model.
In particular, any potential concurrency should be expressed by use of concurrent
behaviors, since it is di�cult to extract such concurrency later, if it is not modeled
explicitly.

1Please refer to Section 4.10.1 for a description of the SpecC waitfor statement.

52 CHAPTER 3. THE SPECC DESIGN METHODOLOGY

b4

b1

b2

b1

b3

b2 b1

i1 a1

b1 b2 b3

b1 b2 b3

s1

c1

l1 p1e1

c2

v1
v2

ch1
ch2

v3
v4

v5
v6

ch3
ch4

v7
v8

v9
ch5

v10
v11

v12
v13

f1

f2

Sa

Figure 3.2: Speci�cation model

3.3 Validation and Analysis

As shown earlier in Figure 3.1, validation and analysis are performed in the valida-
tion ow for each of the four design models. After the design has been captured,
the speci�cation model is validated for functional correctness in order to ensure that
the captured model actually behaves as intended and the speci�ed algorithms work
correctly. The functionality of each following model is also checked and compared
against the initial speci�cation model.

For each re�ned model, the modi�ed portions and the added features need to be
veri�ed as well. More speci�cally, for the architecture model, the new structural or-
ganization and the introduced synchronization between the concurrent components
must be validated. For the communication model, the inserted communication pro-
tocols must be veri�ed. Finally, the implementation model must be checked whether
it actually meets the given design constraints, such as performance, size, etc.

It has been stated in the introduction that, in contrast to general validation, only
the formal veri�cation of a model guarantees its correctness for all cases. However,
the true veri�cation of a medium sized system model is, as of today, still too complex
and cannot be performed in reasonable time. Because of this, the SpecC design

3.3. VALIDATION AND ANALYSIS 53

methodology relies on validation rather than veri�cation. In particular, simulation
and estimation are performed with each design model.

3.3.1 Simulation

In system-level design, simulation is the most common form of design validation.
In contrast to static analysis, simulation is dynamic and, thus, requires the design
model to be executable.

In the SpecC methodology, simulation is performed in two steps. First, the de-
sign model is compiled into a corresponding simulation model. More speci�cally, the
SpecC compiler takes the design model, together with a corresponding test bench
model, and generates an executable program that is linked with the SpecC simu-
lation library. The simulation library implements the semantics of the simulation.
In particular, it maintains an event queue, advances the simulation time, and also
takes care of concurrent execution and the synchronization facilities.

Then, the generated simulation model can be run on the host computer, simulat-
ing the execution of the corresponding model. Typically, the test bench included in
the simulation model will supply the test vectors, automatically check the computed
output values, and report any problems to the user.

If any problems occur, a debugger can be used to set break points, interrupt the
simulation, and inspect intermediate values, in order to locate and �x the design
errors in the model.

It should be noted that there is a trade-o� between the time and the accuracy
of the simulation. In other words, the length of the simulation time depends on the
accuracy of the design model. For example, compared to the speci�cation model,
the communication model will need longer time for a simulation, because it per-
forms any communication in a clock-cycle accurate manner. The implementation
model will spend even more time for the same simulation, since communication and
computation are both cycle accurate.

However, because of the \plug-and-play" capability of the SpecC models, it is
easily possible to simulate a model at a mixed level of accuracy, saving simulation
time. In particular, only the parts of the system, which need special attention, can be
simulated accurately, whereas all other parts can be executed at the pure functional
level. For example, in order to observe the detailed behavior of a particular bus
transaction, the architecture model can be used where only the particular bus is
replaced with the detailed communication model.

54 CHAPTER 3. THE SPECC DESIGN METHODOLOGY

3.3.2 Estimation

The task of estimation is to obtain quality metrics from a design model. Although
the obtained metrics should be accurate, the main emphasis of estimation is to
deliver these values quickly.

In the SpecC methodology, estimated quality metrics are especially needed for
the task of architecture exploration. In particular, the trade-o� between a software
or a hardware solution for each behavior in the design model requires metrics for
performance and cost.

More speci�cally, the execution time and the area of each behavior is estimated
for a potential hardware implementation. Also, the execution time, code size and
data size will be determined for a potential implementation in software, for each
allocated processor. In addition, metrics, such as bit width and throughput, need
to be determined for all channel and bus models, since these are needed for the task
of communication synthesis.

All these estimation results are annotated in the design model at the particular
behaviors and channels. Thus, they are fed back into the synthesis ow so that this
data is immediately available when it is needed by the synthesis algorithms.

Estimation is typically performed in form of static analysis of the design model.
However, by use of pro�ling, estimation data can also be obtained dynamically
during simulation. In the SpecC system, pro�ling can be used to count the execution
frequency of each behavior. Based on these counter values, branching probabilities
can be determined, for example, for the conditional transitions in FSM behaviors.
These branching probabilities are then used to estimate the average execution time
for such behaviors.

3.4 Architecture Exploration

The �rst major re�nement step in the synthesis ow of the SpecC methodology is
the task of architecture exploration, which includes the traditional design steps of
component allocation, hardware/software partitioning and scheduling. More specif-
ically, architecture exploration consists of architecture allocation and architecture
mapping, as shown in Figure 3.1 at the beginning of this chapter.

Architecture allocation determines the connectivity and the number and the types
of the system components, such as processors, ASICs, memories and busses, which
will be used to implement the speci�ed system. Note that this also includes the reuse
of intellectual property (IP), when IP components are selected from the component
library.

Then, architecture mapping is performed for all behaviors, channels and vari-
ables in the speci�cation, assigning them to processing elements (PEs), busses and

3.4. ARCHITECTURE EXPLORATION 55

memories, respectively. Behavior mapping distributes the behaviors to the allocated
PEs. Variable mapping assigns variables, which cannot be stored locally in the PEs,
to the allocated memories. Finally, channel mapping assigns the non-local commu-
nication channels to the allocated busses. In addition, scheduling is performed to
determine the execution order of the behaviors assigned to sequential processors.

Although architecture exploration is described in the following as a set of tasks
which are only once and sequentially executed, it is free to be implemented as an it-
erative process whose �nal result is the de�nition of the system architecture. In each
iteration, estimation is used to evaluate the satisfaction of the design constraints. As
long as any constraints are not met, component and connectivity reallocation is per-
formed and a new architecture is evaluated, with di�erent components, connectivity,
partitions, or communication.

Such an iterative approach is called design space exploration. It will eventually
result in a better system architecture and an optimized design implementation with
good performance and less cost.

3.4.1 Architecture allocation

Given a library of system components, such as processors, memories and busses, the
task of architecture allocation is de�ned as the selection of the type and number
of these components. The interconnection among the selected components must
also be determined. Further, the system architecture has to be de�ned in a way so
that the functionality of the system can be implemented, all design constraints are
satis�ed, and the objective cost function is minimized.

During architecture allocation in the SpecC methodology, three types of com-
ponents are selected from the component library. First, processing elements (PEs),
including standard processors and custom ASICs, are needed as active elements
performing the systems functions. Second, memories are needed to store the pro-
cessing data, and �nally, busses are allocated for the communication among the PEs
and memories. Note that for each component type, either a synthesizable, custom
component can be selected, or a predesigned component, such as an IP.

The network of selected components is called the target architecture of the sys-
tem. In the SpecC methodology, the target architecture is de�ned by customization
of a generic architecture. In other words, parameters are de�ned for the generic
architecture, so that it becomes a speci�c target architecture for the system.

The generic system architecture is shown in Figure 3.3. The architecture consists
of a set of system ports, a set of system busses, a set of system components, and a
connectivity matrix which determines the interconnections among the ports, busses,
and components.

In order to de�ne a speci�c target architecture, all parameters have to be �xed.

56 CHAPTER 3. THE SPECC DESIGN METHODOLOGY

...

...P2P1 ...P2P1 ...P2P1

...
...

Port1

Port2

Bus1

Bus2

Component1 Component2 Component...

Bus...

Port...

P... P... P...

Figure 3.3: Generic system architecture

For each set, the number of elements and the type of each element must be de�ned.
Then, the connectivity matrix is �lled, determining whether a connection exists
between each component and each bus or port. Note that a connection can only be
set, if the connected elements are of compatible type.

Figure 3.4 shows a typical target architecture created as a result of this cus-
tomization. The architecture consists of two processors, P1 and P2, one ASIC A1

and four memories, M1, M2, M3 and M4. Further, an input/output unit IO1 and three
bus interfaces, I1, I2 and I3, have been allocated. Note that, because of the selected
connectivity, both processors, P1 and P2, and the ASIC A1, each have a dedicated
local memory, whereas M3 serves as a global memory for storage of shared data.

3.4.2 Architecture mapping

After the target architecture has been de�ned, the speci�cation model needs to
be mapped onto the architecture. This mapping process is often referred to as
partitioning2. However, because the term partitioning typically is used to describe
the assignment of parts from the system model to either hardware or software in
general, and not to a particular processing element, the term mapping is preferred
in this work.

2Further, other common terms for the mapping process also include binding, grouping and
assignment.

3.4. ARCHITECTURE EXPLORATION 57

M1 M2P2P1

I1 I2

I3

M3M4

A1IO1

B1 B2

B3

Figure 3.4: Example of a system architecture

Architecture mapping in the SpecC design methodology consists of behavior
mapping, variable mapping, and channel mapping. In addition, scheduling is in-
cluded as well. Note that, technically, these subtasks can be executed in any order,
or even simultaneously. For simplicity, however, they are described sequentially in
the following sections, starting with behavior mapping.

Please note also, that the creation of the mapping itself is beyond the scope
of this chapter. It is assumed that the mapping has been determined by some
optimizing algorithm3. Rather, it is described how the mapping is applied to the
design model in order to reect the design decision.

3.4.2.1 Behavior mapping

The task of behavior mapping assigns each behavior in the speci�cation model to
one of the allocated processing elements and updates the design model according to
this decision. Note that behavior mapping includes the core task of codesign, the
hardware/software partitioning of the system.

The design model after behavior mapping di�ers from the speci�cation model in
the way that an additional level of hierarchy has been introduced. At the top-level of
the structural hierarchy, behaviors are inserted that represent the allocated PEs. In
each PE behavior, only the behaviors from the speci�cation model, that have been
mapped to the particular PE, are included. Behaviors, which have been assigned to
a di�erent PE, are replaced with control behaviors that are used to synchronize the

3For information on such algorithms, please refer to [Wol97] or [YW97], for example.

58 CHAPTER 3. THE SPECC DESIGN METHODOLOGY

execution of such behaviors.
Note that the inserted PE behaviors simply group the behaviors for each PE

together. The correlation of PE behaviors with the allocated components in the
library is established as an annotation of the library and component name at the
PE behavior.

b1

ch2b

d

a

x y

ch1

c

b2

S1a

Figure 3.5: Design example S1 before behavior mapping

The process of behavior mapping is illustrated with the design example S1 shown
in Figure 3.5. The design is speci�ed as two concurrent behaviors x and y, commu-
nicating via channel ch1. The behavior x consists of two sequential child behaviors
a and c, whereas y contains two children b and d. The behavior b, in turn, is com-
posed of the parallel behaviors b1 and b2 which can communicate via the channel
ch2.

For the example, two processing elements, PE1 and PE2, have been allocated.
Furthermore, it is assumed that all behaviors are to be executed by PE1, except for
c and b2 which are assigned to PE2.

Given these assumptions, Figure 3.6 shows one possible design generated as a
result after behavior mapping. The two allocated processing elements PE1 and PE2

have been introduced as top-level, concurrent behaviors reecting the two compo-
nents of the selected system architecture.

Since most of the behaviors were assigned to PE1, its structural composition
is almost the same as the initial design. Only the behaviors c and b2 have been
replaced with c ctrl and b2 ctrl, respectively. These controller behaviors consist
of a start and a wait behavior, e. g. c s and c w, which serve to synchronize PE1

with PE2. PE1 can be seen as a client which sends a start signal to PE2 and then
waits for the behavior c to be completed. The server PE2 waits in a ready state c r

for commands from PE1, and sends a done message back in c d once the behavior c
has been executed.

Note that two new channels, c syn and b2 syn, have been introduced for the

3.4. ARCHITECTURE EXPLORATION 59

b2_ctrl

b1

b

d

a

x y

PE1

c_ctrl

PE2

c_srvr

c

b2_srvr

b2

ch1
ch2

c_s

c_w

b2_s

b2_w

c_r

c_d

b2_r

b2_d

c_syn
b2_syn

S1b

Figure 3.6: Design example S1 after behavior mapping

synchronization between PE1 and PE2 regarding the behaviors c and b2. Further-
more, the channel ch2 has been moved up to the top-level of the hierarchy so that
the behaviors b1 and b2 can still communicate.

Please note also that, after the behavior mapping has been performed, in�nite
loops have been introduced for the behaviors x, y, c srvr and b2 srvr in Figure 3.6.
This reects the fact that processing elements, such as processors and ASICs, never
terminate.

So far in the design process, the behaviors in the design speci�cation have been
grouped into the allocated PEs according to the selected mapping. However, the
behaviors assigned to sequential executing PEs, such as processors, still need to be
serialized. This is the task of scheduling which is described next.

3.4.2.2 Scheduling

The assignment of concurrent behaviors to a sequential PE, for example a processor,
requires scheduling to be performed. The task of scheduling determines the order of
the execution for these behaviors. Hereby, the scheduler ensures that the selected
order does not violate any dependencies or timing constraints imposed by the spec-
i�cation model, while optimizing the execution time and other objectives speci�ed
by the designer.

As mentioned in the introduction, scheduling can be performed either statically
or dynamically. With a static scheduler, the schedule is determined beforehand and

60 CHAPTER 3. THE SPECC DESIGN METHODOLOGY

the behaviors will be executed in a �xed order. On the other hand, a dynamic sched-
uler, determines the execution order at run-time. Typically, this is implemented by
use of a real-time operating system (RTOS). In the SpecC methodology, however, a
static scheduler is used [CG99].

After a satisfactory schedule is determined, the design model is re�ned so that
it reects the sequential execution of the behaviors in the sequential PEs. Note that
the design model is only changed inside the scheduled PEs. Everything else is left
unchanged.

b1

d

a

PE1 PE2

c

b2

ch1
ch2

b2_int

c_srvr

c_s

b2_s
c_w

b2_w

c_r

c_d

b2_d

b2_syn
c_syn

S1c

Figure 3.7: Design example S1 after scheduling

The process of scheduling can be demonstrated continuing the design example
S1 from Figure 3.6, assuming that both, PE1 and PE2, are sequential components.
A scheduled model of this example is shown in Figure 3.7. Note that the top-level
structure of the design has not changed. Only the internal structures of PE1 and
PE2 have been modi�ed so that there is no concurrency left.

In b2 s, PE1 �rst sends a start signal to PE2 in order to initiate the execution
of b2, and then executes behavior a. After that, c is given a start signal in c s

and b1 is executed. Before PE1 can continue with behavior d, it has to wait in b2 w

for b2 to �nish, because performing d in parallel would violate the execution order
speci�ed in Figure 3.6. Finally, PE1 waits for the completion of c and then repeats
the whole sequence.

In contrast to PE1, which executes in a single loop, a solution with use of an
interrupt model has been selected for PE2. The main execution of PE2 consists
of the behavior c srvr including c and its synchronization points c r and c d.

3.4. ARCHITECTURE EXPLORATION 61

However, whenever PE2 receives a signal to start b2, the interrupt handler b2 int

is called which will execute b2 immediately. Once b2 is �nished, PE1 is noti�ed in
b2 d and the execution of c srvr can continue. Please note that the behavior b2 r

from Figure 3.6 has been replaced by this interrupt model.

It should be emphasized that the schedule found for this example takes advan-
tage of scheduling both PEs simultaneously. In other words, a global scheduling
approach for the whole design is used, as opposed to two local schedulers working
independently in PE1 and PE2.

3.4.2.3 Variable mapping

Variables used in the system speci�cation need to be assigned to memories. Such
memories are either standard memory components allocated in the target architec-
ture, or local memories within the PEs. However, local memory space in PEs is
usually quite limited. ASICs can store only a small set of variables in register �les,
and processor cores typically contain only very small built-in memories.

For variables mapped to memories, communication functions, such as Read and
Write, need to be used by the PEs in order to access these variables. The same
applies when a PE needs to read or write a variable stored within another PE.

In the SpecC design model, such variable access functions are represented ex-
plicitly by so-called variable channels, which are introduced and maintained auto-
matically. These variable channels encapsulate the necessary functions which com-
municate with the memory component that actually contains those variables.

Later in the design ow, the variable channels will be grouped into virtual busses
which, in turn, will then be re�ned into the allocated system busses.

int x;

...

...

a = x;

x = b;
b = g(a) + c;

int a, b, c;

inout int x
PE2

...

...

int a, b;

b = f(a);
x = b;

PE1
out int x

S2a

Figure 3.8: Design example S2, initial speci�cation

The re�nement step of variable mapping is illustrated with the simple design

62 CHAPTER 3. THE SPECC DESIGN METHODOLOGY

example S2 shown in Figure 3.8. The design consists of two behaviors, PE1 and PE2,
which initially communicate via a shared integer variable x. More speci�cally, PE1
writes the result of a function f through its output port into the connected variable
x. For simplicity, the output port is named x as well4. On the other hand, PE2 reads
the shared variable x through its port, computes a function g with the value, and
writes the result back into x. Note that the port of PE2, which again is named x, is
bidirectional, allowing both read and write access.

...

...

int a, b;

b = f(a);
x.Write(b);

PE1
W x

...

...

b = g(a) + c;

int a, b, c;

a = x.Read();

x.Write(b);

PE2
RW x

RWW int x;
C1

S2b

Figure 3.9: Design example S2 before variable mapping

In a preprocessing step, the shared variable x is �rst encapsulated in a variable
channel C1, as shown in Figure 3.9. The channel C1 provides a left interface W for
write access, and a right interface RW for bidirectional access to x. These interfaces
are used as the new port types for PE1 and PE2. Furthermore, in order to access x
in the channel C1, the direct assignments to the ports are replaced with the function
calls Read and Write provided by C1.

As a result, the design has been transformed so that all shared variables are
replaced with channels and all communication is performed by explicit Read and
Write function calls. This preprocessing step prepares the next step and is also
needed for communication synthesis performed later in the design process.

Under the assumption that the variable x has been assigned to a memory M1,
the design model can be further re�ned, as shown in Figure 3.10. The memory M1 is
placed into the design as a new behavior in parallel to PE1 and PE2, and the former
shared variable x is declared as a local variable in M1.

The functionality of the memory M1 can be speci�ed as an in�nite loop that
serves incoming requests for reading and writing to the storage x. In Figure 3.10,
the function Cmd is used to determine the type of the request. For a read request R,

4In the SpecC language, the scope of a port name is limited to the behavior body. Thus, there
is no naming conict between the port x and the external variable x.

3.4. ARCHITECTURE EXPLORATION 63

while(true)
int x;

case W:
case R:{

}

{

}

break;
break;p.Put(x);

x = p.Get();

M1

...

...

int a, b;

b = f(a);
x.Write(b);

PE1

...

...

b = g(a) + c;

int a, b, c;

a = x.Read();

x.Write(b);

PE2
RW x

RW
C2

PG

PG pRW x

S2c

switch(p.Cmd())

Figure 3.10: Design example S2 after variable mapping

the value of x is output by use of the function Put. For a write request W, x is set
to a new value obtained with Get.

The functions Cmd, Put and Get are provided by a new channel C2 which replaces
the former channel C1. C2 contains two interfaces. The interface PG connects to the
memory M1, and the interface RW connects to the behaviors PE1 and PE2. Note that
PE1 and PE2 need not to be changed, because the interface RW is the same as before5.

3.4.2.4 Channel mapping

After behavior mapping and variable mapping have been performed, the design
model consists of a set of PE and memory behaviors connected by a typically large
set of variable channels. In particular, there is one channel for every variable in the
design that is transferred between any of the PE and memory components.

In order to obtain the architecture model, the variable channels need to be
mapped onto the allocated busses in the target architecture. More speci�cally,
the variable channels are combined by use of grouping channels, as de�ned in Sec-
tion 2.4.2. Each grouping channel is called a virtual bus, representing a particular
bus in the system architecture.

Later, during communication synthesis, these virtual busses will be replaced with
cycle-accurate models of the allocated busses. For the architecture model, however,
the virtual busses are only annotated with the real bus name.

The re�nement step of channel mapping is illustrated with the design example
S3 shown in Figure 3.11. The design consists of two processing elements, PE1 and
PE2, and two memories, M1 and M2. For simplicity, only three variables, a, b and

5For space reasons, the interface W is ignored and RW is connected to both behaviors PE1 and
PE2.

64 CHAPTER 3. THE SPECC DESIGN METHODOLOGY

PE2

b xx

PE1

x

M1 M2

a b

RW

RW

RW

Ca

Cb

Cx

a

PG

PG

PG

S3a

Figure 3.11: Design example S3 before channel mapping

x, are used in the design. Variables a and b are stored in memory M1, whereas x is
stored in M2. For each variable, there exists a corresponding channel that contains
the required access functions Read, Write, Put and Get, as discussed earlier with
Figure 3.10. PE1 can access the variables a and x by use of the channels Ca and Cx,
whereas PE2 has access to b and x via channels Cb and Cx, respectively.

Since this is a small design, one single bus is su�cient to connect all four com-
ponents. In other words, it is assumed that all three channels, Ca, Cb and Cx, are
to be mapped onto the same bus.

PE2

x

RWRW

b

b x

C2

x

RWRW

x

PE1

C1

a x

x

M1 M2

a b

a b

C3 C4

RW

RW

RW

Ca

Cb

Cx

a

B1

M SPG

PG

PG

PG PG PG

S3b

Figure 3.12: Design example S3 after channel mapping

3.4. ARCHITECTURE EXPLORATION 65

The result of channel mapping for this example is shown in Figure 3.12. The
allocated bus B1, represented as a grouping channel, has been inserted into the
design, containing the channels Ca, Cb and Cx. The bus B1 provides two interfaces,
a master interface M for use by PE1 and PE2, and a slave interface S for the memories
M1 and M2.

The bus B1 introduces a new communication layer that references each variable
in the design by a unique ID. More speci�cally, the master interface M provides Read
and Write functions similar to the RW interfaces of the internal channels. However,
these functions take a variable ID as an additional argument in order to identify
which one of the internal channels is to be used. For example, the function call
B1.Read(IDx) will in turn call Cx.Read(), and the call B1.Write(42,IDa) will in
turn call Ca.Write(42). The same scheme is used for the memory interface S with
the functions Put and Get.

The added communication layer is also reected by the newly introduced compo-
nent models C1, C2, C3 and C4, which encapsulate PE1, PE2, M1 and M2, respectively.
Furthermore, in order to compensate the change in the communication protocol,
adapter channels have been inserted for each component port. These adapters es-
sentially provide the reverse functionality of the channel B1. In other words, the
adapters will supply the required ID to each function call. For example, an adapter
a will convert the function call Read() into Read(IDa) and the call Write(27) into
Write(27,IDa).

Please note that the level of hierarchy added to the design model due to the
bus grouping channels, component behaviors and adapters, does not imply any
decrease in performance of the �nal system. The process of inlining will eliminate
the structural overhead.

Please note also that the design model obtained after channel mapping has been
performed, accurately reects the system architecture. Each component and each
bus in the real system is represented by a corresponding top-level behavior or top-
level channel in the design model.

3.4.3 The architecture model

After behavior, variable, and channel mapping have been performed, the task of
architecture exploration is complete. As a result, the initial speci�cation model of
the design has been re�ned into the architecture model.

The architecture model is an abstract model of the system under design, that
accurately reects the functionality and the overall structure of the �nal implementa-
tion. However, the model is not accurate yet in terms of timing and communication.

Communication is performed by use of channels representing virtual busses. As
such, communication still uses the original, possibly complex data types and takes

66 CHAPTER 3. THE SPECC DESIGN METHODOLOGY

zero time.

For the computation parts, execution times have been estimated for all behaviors
in the PEs. Assuming that the estimated execution times for the leaf behaviors have
been inserted into their code in form of waitfor6 statements, the architecture model
will reect these timing delays in the simulation when it is executed.

b4

b1

b3

b2

SW1 HW1 IP1

b1

PE1 PE2 PE3

IP

M1

PE4

b2

B2

B1

Sb

v1
v2
v3
v4

s1 s2

s3 s4

v5 v6
v7

v8
a

T1

c1 c2

c3 c4c5

c6

Figure 3.13: Architecture model

A typical architecture model is shown in Figure 3.13. The architecture model
Sb consists of four components, namely a processor SW1, an ASIC HW1, an IP core
IP1, and a memory M1. Internally, each of these components consists of a set of
adapters for the added communication layer discussed with Figure 3.12, and a PE
behavior which, in turn, contains a set of behaviors describing the functionality of
the particular component.

Communication is performed via the virtual busses B1 and B2. B1 serves as a
system bus, connecting all four components. On the other hand, B2 is a local bus
between the processor SW1 and the ASIC HW1.

Note that, in contrast to the speci�cation model shown earlier in Figure 3.2, the
architecture model clearly reects the structure of the target architecture.

6Please refer to Section 4.10.1 for a description of the SpecC waitfor statement.

3.5. COMMUNICATION SYNTHESIS 67

3.5 Communication Synthesis

In the SpecC methodology, it is the task of communication synthesis7 to further
re�ne the generated architecture model into the communication model. The com-
munication model will accurately reect the detailed communication between the
components in the design, including cycle accurate timing. Thus, the purpose of
communication synthesis is to resolve the abstract communication in the architec-
ture model into an implementation.

During communication synthesis, the virtual communication protocol used in
the architecture model is replaced with real communication protocols implemented
on the system busses. In other words, the virtual busses in the architecture model
are replaced with the actual busses selected during architecture allocation. On top
of the native bus protocols, an application layer communication protocol is selected
and inserted in the design model. For incompatible bus protocols, transducers are
further inserted into the system model which bridge the gap between the protocols
by translating the transactions between those busses. Finally, the communication
protocols are implemented in the PEs by use of inlining.

Communication synthesis includes the interfacing of hardware and software com-
ponents. For synthesizable hardware components, the ports of the components can
be easily adapted to di�erent busses. This, however, is not true for software compo-
nents, because processor ports are �xed. In order for software to communicate with
connected hardware, processor speci�c device drivers are needed. Since the imple-
mentation of device drivers is a special problem in communication synthesis, it is
ignored in this section. Two case studies with the SpecC methodology, which involve
the communication between a processor and an ASIC, can be found in [GZG+99]
and [KG98].

In the SpecC methodology, communication synthesis is separated in three tasks,
namely protocol selection, transducer insertion and protocol synthesis. These are
described next.

3.5.1 Protocol selection

Communication synthesis deals with communication protocols which, in general, are
organized in several layers. A communication protocol stack typically starts at the
lowest level with the physical layer and extends over several intermediate layers up
to the application layer at the highest level.

In the SpecC methodology, two communication layers are distinguished. The
low-level layer, called the bus layer, is dependent on a particular bus. It contains
the native communication functions provided by the bus. The bus layer is stored

7In the literature, communication synthesis is sometimes referred to as interface synthesis.

68 CHAPTER 3. THE SPECC DESIGN METHODOLOGY

in form of a channel in the bus library and is selected for the design as part of the
architecture allocation.

On the other hand, the high-level layer, called the application layer, is inde-
pendent from the allocated busses. Rather, it consists of an application speci�c
communication protocol, built on top of the bus layer.

As the �rst step of communication synthesis, it is the task of protocol selection
to select and customize the application layer for the particular design.

The application layer essentially provides two necessary services which enable
the PEs in the design to exchange data of any data type, including user-de�ned
records and multi-dimensional arrays.

The �rst service, called sizing, converts the data types used in the application
into blocks that can be transported via the busses. For example, assuming that a
native bus protocol only supports the transfer of single bytes and small blocks of
256 bytes, an array of 1024 integers could be transferred as a sequence of 16 blocks8.

The second service, called addressing, basically replaces the ID mechanism dis-
cussed with Figure 3.12. In order to identify particular variables during the com-
munication and in the memories, unique addresses are assigned to each of them.
Each variable is then referenced by its address, identifying a particular PE and the
location in the PE.

In the design model, the application layer is represented by a hierarchical channel
that encapsulates a low-level bus channel.

3.5.2 Transducer insertion

After the communication protocols have been determined for each bus in the de-
sign, it is possible that the selected protocols conict with the built-in protocols
of some components. In particular, this situation occurs often times with hard IP
components, processors and memories, when these are connected to the system bus.

In case of a protocol mismatch, a transducer needs to be inserted. As discussed
in Chapter 2, the transducer then acts as a translator for the two protocols.

Please note that the creation and insertion of a transducer can be easily auto-
mated, because of the \plug-and-play" feature of the SpecC model.

The re�nement step of transducer insertion is illustrated with the design example
S4 shown in Figure 3.14. The design consists of a behavior PE1 and a memory M1,
connected by a virtual bus VB1, as discussed earlier with Figure 3.12. For simplicity,
the adapters known from Figure 3.12 have been left out in Figure 3.14. Instead, the
code shown in the behaviors uses the virtual bus protocol provided by the interfaces

8This assumes that the size of integer is 4 bytes.

3.5. COMMUNICATION SYNTHESIS 69

...

...

int a, b, c;
while(true)

case W:

case R:{

}

{

}

break;

break;

PE1 M1

VB1

c = f(a) + g(b);

int id, m[N];

M SS4a

p p

p.Put(m[id]);

m[id] = p.Get();

switch(p.Cmd(&id))a = p.Read(IDx);
b = p.Read(IDy);

p.Write(IDz, c);

Figure 3.14: Design example S4 before communication synthesis

M and S directly9.

Assuming that architecture exploration has already been performed for the de-
sign, PE1 has been assigned to a synthesizable ASIC and the memory M1 has been
allocated as a standard memory core. Also, the virtual bus VB1 is to be implemented
as a particular system bus. Further, it is assumed that the native bus of the selected
memory M1 di�ers from the allocated system bus. Thus, a transducer is required to
translate the transactions on the system bus into requests on the memory bus, and
vice versa.

Figure 3.15 shows the design S4 after the required transducer has been intro-
duced. The transducer T1 has been inserted as a new, synthesizable component,
running concurrently with PE1 and M1. The virtual bus VB1 has been reconnected
and another virtual bus VB2 has been inserted, so that any communication between
PE1 and M1 is performed through the transducer T1.

Please note that PE1 and M1 have not been modi�ed during the transducer
insertion and, up to this point, all three components still communicate via the
virtual bus protocol. The real protocol for the selected system bus and the selected
memory will be inserted next during the task of protocol synthesis.

3.5.3 Protocol synthesis

After the transducers have been inserted, the virtual communication protocol used
so far in the design model can �nally be replaced with the actual bus protocols

9The code shown in the behaviors can actually be obtained by inlining of the adapters in Fig-
ure 3.12.

70 CHAPTER 3. THE SPECC DESIGN METHODOLOGY

p2.Write(id, p1.Get());

p1.Put(p2.Read(id));

while(true)

case W:

case R:{

}

{

}

break;

break;

p1 p2T1

int id;
...

...

int a, b, c;
while(true)

case W:

case R:{

}

{

}

break;

break;

PE1 M1

c = f(a) + g(b);

int id, m[N];

M SS4b

p p

p.Put(m[id]);

m[id] = p.Get();

a = p.Read(IDx);
b = p.Read(IDy);

p.Write(IDz, c);

switch(p1.Cmd(&id)) switch(p.Cmd(&id))

M SVB1 VB2

Figure 3.15: Design example S4 after transducer insertion

embedded in the added application layer.

In the design model, this change is just a matter of \plug-and-play". For each
bus, the grouping channel, that represents the virtual bus, is replaced with the
hierarchical channel that contains the application layer with the encapsulated real
bus channel. At the same time, the adapter channels, that were used to supply the
ID for each variable, are replaced with new adapters that now provide the addressing
for the variables.

Note that the intermediate design model obtained at this point is fully functional
and also features bus-cycle accurate communication. However, the application layer
communication protocol, in particular the operations necessary for sizing and ad-
dressing, are still performed in zero time. In order to obtain accurate execution
times for these functions, they need to be inlined into the connected PEs.

Inlining is the last step of communication synthesis. As described in Chapter 2,
inlining is performed for each channel in the design. It moves the functions contained
in the channel into the connected behaviors and exposes the encapsulated variables
which then represent wires.

The process of protocol synthesis can be demonstrated continuing the design
example S4 from Figure 3.15. Note that in Figure 3.15, the components PE1, T1
and M1 still communicate via the initial protocol provided by the virtual busses VB1
and VB2. More speci�cally, PE1 uses the Read and Write functions of the interface
M, whereas M1 calls Put and Get of the interface S. Further, all these functions use
an ID to identify the particular variable being accessed.

Figure 3.16 shows the example S4 after the actual bus protocols SB and MB

have been inserted, replacing the virtual busses VB1 and VB2, respectively. Please

3.5. COMMUNICATION SYNTHESIS 71

p1 p2T1

...

...

int a, b, c;
while(true)

case W:

case R:{

}

{

}

break;

break;

PE1 M1

S4c

int adr, m[N];

c = f(a) + g(b);

p1.Recv2(&cmd, &adr);
while(true)
{
switch(cmd)

case W:

case R:{

}
}

break;

break;

p1.Recv1(&data);
p2.Write(data);

int cmd, adr, data;

p1.Send1(data);
data = p2.Read(adr);

p.Send2(R, ADRx);
p.Recv1(&a);
p.Send2(R, ADRy);
p.Recv1(&b);

p.Send3(W, ADRz, c);

p p

switch(p.Cmd(&adr))
p.Put(m[adr]);

m[adr] = p.Get();

M S
w1
w2
w3

v1
v2
v3

I1 I1

MBSB

Figure 3.16: Design example S4 after protocol insertion

note that in Figure 3.16, the application layer has already been inlined into the
behaviors in order to demonstrate the change in the communication protocol10.
Thus, the code shown in the behaviors uses the native communication functions of
the selected busses. For this example, the bus SB is assumed to provide the functions
Send1, Send2, Send3, as well as the equivalent Recv functions, whereas the memory
bus MB provides Put and Get functions in the same manner as the virtual protocol
before.

Note that, while sizing has been ignored, address assignment is shown with the
example. Instead of the IDs in Figure 3.15, the memory addresses ADRx, ADRy and
ADRz are used in Figure 3.16 to identify the variables.

The result of the �nal inlining process with the example is shown in Figure 3.17.
The channels SB and MB have disappeared. Instead, the former encapsulated vari-
ables v1, v2, v3, and w1, w2, w3 are used as communication wires. The ports of
the components PE1, T1 and M1 have changed accordingly. Also, the code in the
behaviors has been changed so that the low-level bus protocols become visible11.

10Without inlining, the protocol change would have been invisible, since the code in the channel
is not shown.

11For space reasons, only very small code fragments are shown.

72 CHAPTER 3. THE SPECC DESIGN METHODOLOGY

T1

int a, b, c;

PE1 M1

int adr, m[N];int cmd, adr, data;

w1
w2
w3

v1
v2
v3

S4d

v1 v2 v3 v1 v2 v3 w1 w2 w3 w1 w2 w3

v2 = true;
notify v3;

notify v3;

while (!v2)
wait v3;

v2 = false;
wait v3;

while (v2)

v1 = ADRx;

adr = v1;
wait 10;

while (!w1)
wait w2;

adr[7:0] = w3;

adr[15:8] = w3;
...

...

...

...

...

...

Figure 3.17: Design example S4 after protocol inlining

3.5.4 The communication model

After the communication functions have been inlined into the behaviors, the task
of communication synthesis is complete. As a result, the architecture model of the
design has been re�ned into the communication model.

The communication model is a design model at a medium level of abstraction.
As the architecture model, it is an accurate representation of the design in terms of
functionality and overall structure. In addition, the communication model features
bit-exact, bus-cycle accurate communication.

More speci�cally, the communication model is a bus functional model. The
transactions on the system busses are represented accurately in great detail, bit
by bit and cycle by cycle. On the other hand, the components in the system are
still represented at a high abstraction level, allowing fast simulation. However, the
execution times of the components are not exact, rather they are only estimated
values.

A typical communication model is shown in Figure 3.18. Compared to the
architecture model shown earlier in Figure 3.13, the two virtual busses B1 and B2

have been implemented, represented by the wire variables B1a, B1b, B1c, and B2a,
B2b, respectively. Further, three transducers have been introduced. T1 bridges the
system bus B1 to the native bus B4 of the IP component. Similar, the system bus
is connected to the processor SW1 and the memory M1 by the transducers T2 and
T3, respectively. On the other hand, the ASIC HW1 connects to the system bus B1
and the processor bus B2 directly, since the necessary communication protocols have
been inlined into the ASIC.

In order to emphasize the inlined communication protocols in Figure 3.18, the

3.6. BACK END 73

M1HW1SW1

B1a
B1b
B1c

PE1 PE2

D2 D2 D1 D3

B3B4

m1

Sc

B2b
B2a

T1 T3T2

IP

Figure 3.18: Communication model

application layer and the bus protocols are combined and shown as explicit adapters,
called bus drivers. D1, D2 and D3 drive the busses B1, B2 and B3, respectively. Please
note that there is no driver shown for the bus B4, since this is the native bus of the
IP with a built-in protocol.

3.6 Back end

The communication model is also the resulting model of the synthesis ow in the
SpecC methodology, as shown in Figure 3.1. It is handed-o� to the back end of the
design ow.

It is the task of the back end to implement each particular component in the
design model by use of standard EDA tools. More speci�cally, the components
assigned to application speci�c hardware need to be implemented by a hardware
synthesizer and the software components need to be compiled for the particular
processor.

Please note that there is no need for a special interface synthesis tool any more,
since the transducers in the system are standard hardware components which can
be synthesized the same way as the allocated ASIC components.

74 CHAPTER 3. THE SPECC DESIGN METHODOLOGY

3.6.1 Hardware synthesis

For each component in the design model, that is to be implemented as custom
hardware, hardware synthesis has to be performed.

Since currently the SpecC language is not accepted directly by any hardware
synthesizer, the SpecC code in the particular behavior needs to be translated into
an acceptable language, such as a synthesizable VHDL subset, for example. Note
that this translation should be straightforward, since there are no constructs in the
component model left, which are not acceptable for hardware synthesis.

After this translation, traditional behavioral or high-level synthesis (HLS)
[Mic94, Mar93, LMD94] can be performed, producing a netlist of RTL components
as a result. Please note that the generated RTL netlist can be translated back into
a SpecC model, since the SpecC language is capable of describing a hardware design
model at this level of abstraction as well.

3.6.2 Software compilation

For the processor components in the design model, the according SpecC code is
�rst translated into the standard C++ language, by use of the SpecC compiler.
Then, any standard C++ compiler for the particular target processor can be used
to produce the �nal machine code. Alternatively, a retargetable compiler, such as
the GNU C/C++ compiler12, that is capable of compiling C++ code for several
target processors, can be used as well [LP97, MG95, Lie97].

In order to create a �nal SpecC implementation model of the design, the gen-
erated machine code can be used with an instruction set simulator of the target
processor. Provided, that the instruction set simulator supports a suitable pro-
gramming interface, for example in C, then this simulator can be easily hooked to
the SpecC simulator.

As a result, a cycle-accurate simulation of the instruction set architecture (ISA)
of the processor is possible for each software component in the SpecC implementation
model.

3.6.3 The implementation model

As a result of hardware synthesis and software compilation for each component in
the communication model, the �nal implementation model of the design has been
generated.

The implementation model is the model with the lowest level of abstraction in the
SpecC methodology. It is an accurate model of the design implementation in terms of

12Online information about the GNU C/C++ compiler is available at:
http://www.gnu.org/software/gcc/gcc.html

3.6. BACK END 75

functionality, structure, communication and timing. Note that the implementation
model reects both, bus-cycle accurate timing for the communication, as well as
clock-cycle accurate timing for the computation performed in the system.

The implementation model di�ers from the previous communication model only
within the synthesizable components. A software component is described in form of
an instruction set architecture. On the other hand, a hardware component consists
of a network of RTL components, forming a control unit and a data path.

In summary, the implementation model is ready for manufacturing.

M1HW1SW1

B1a
B1b
B1c

B2a
B2b

T3

D3

B3B4

m1

IP1d1c1ISA1

Sd

T2 T1

Figure 3.19: Implementation model

A typical implementation model is shown in Figure 3.19. In contrast to the
communication model in Figure 3.18, only the processor SW1 and the ASIC HW1 have
changed. The software component SW1 is modeled as an instruction set architecture
ISA1. On the other hand, the hardware component HW1 consists of a controller
behavior c1 and a data path behavior d1.

In this chapter, the SpecC design methodology was described, which is based
on four well-de�ned design models, namely the speci�cation model, the architecture
model, the communication model, and the implementation model.

Please note that, because of the modularity of the SpecC model (\plug-and-
play"), a design can also be easily represented as a mixture of these models. This
is especially useful if parts of a design are further re�ned as others, or if accuracy is
only required for speci�c portions in the design model.

76 CHAPTER 3. THE SPECC DESIGN METHODOLOGY

Chapter 4

The SpecC Language

For the system design methodology presented in Chapter 3, it is desirable that a
single language is used for all models at all stages. Such a homogeneous methodol-
ogy does not su�er from language interfacing problems or cumbersome translations
between languages with di�erent semantics. Instead, all models are consistent and
one set of tools can be used for all models at all stages. Also, synthesis tasks are
merely transformations from one program into a more detailed one speci�ed with
the same language.

Using a single language throughout the design process is bene�cial for reuse
of IP as well. Design models from the component library can be reused in the
system without modi�cation (\plug-and-play") and a new design can be inserted
immediately as a library component.

As stated already in the introduction, a general requirement for any system lan-
guage is that it is formal and unambiguous. In order to employ automated re�ne-
ment and synthesis tools, the design process must start from a formal speci�cation.

These, and other similar requirements are satis�ed by many languages, but this
does not imply that all these languages are well-suited for the purpose of system-
level design. The real quality of a language is determined by its expressive power.
The expressive power of the language must match the purpose it is used for and
must be su�cient to precisely describe the models and concepts needed during the
design process. In other words, it is critical that the selected language meets the
goals and requirements, but does not include unneeded features.

The goal of this chapter is the identi�cation of a minimal and orthogonal set of
properties which are necessary to specify and model embedded systems on di�erent
levels of abstraction. Once these properties have been identi�ed and characterized,
a language can be chosen or developed which explicitly supports these properties of
embedded systems.

77

78 CHAPTER 4. THE SPECC LANGUAGE

In the following section, the unique requirements and objectives for system-
level languages are analyzed. Then, some of the traditional languages listed in the
introduction are compared to these requirements in Section 4.2.

Since none of these commonly used languages completely meets the identi�ed re-
quirements, a new language called SpecC [GZD97a, ZDG97b, ZDG97a] is proposed.
It is also shown that SpecC precisely covers the requirements of system-level design
in an orthogonal manner.

4.1 Language Requirements

The major requirements for a language being used for system-level design are easily
identi�ed. In particular, such a language must be

� executable,

� synthesizable,

� modular, and

� complete.

In addition, a well-de�ned language should be

� orthogonal,

� minimal, and

� easy to understand.

4.1.1 Executability

Executability of the language is of crucial importance for simulation. The system
speci�cation must be validated to assure that exactly the intended functionality is
captured. Then, simulation is also necessary for the intermediate design models
during the synthesis process. Here, the functionality of the re�ned design can be
compared against the behavior of the model before the re�nement.

4.1.2 Synthesizability

Synthesizability is a requirement whose importance cannot be ignored. In general,
every construct provided by the modeling language should have at least one possible
implementation. If this is not the case, a synthesizable subset of the language must

4.1. LANGUAGE REQUIREMENTS 79

be de�ned and only constructs from this subset can be used. Such a language subset,
however, is essentially another language.

In other words, the requirement of synthesizability places a limitation on the
descriptive and expressive power of the language being used. For example, many
languages, such as VHDL, o�er features which are simulatable but not synthesizable.

It should be obvious that, for a codesign language, it is desirable that the pro-
vided constructs can be implemented in either hardware or software. This makes
it possible to trade-o� a hardware implementation against a software implemen-
tation, and vice versa. However, it is also acceptable to have only one possible
implementation. For example, the implementation of general pointers is only pos-
sible in software. On the other hand, parallel execution, in general, can only be
implemented in hardware.

Furthermore, it is acceptable if the language contains constructs which need to
be re�ned into a set of lower-level constructs in order to be implementable. Such
constructs allow a highly abstract system speci�cation without the loss of synthe-
sizability.

4.1.3 Modularity

Modularity is required to clearly separate functionality from communication. It also
enables the decomposition of a system into a hierarchical network of components.
Behavioral hierarchy is used to decompose a system's behavior into sequential or
concurrent child behaviors, whereas structural hierarchy decomposes a system into
a set of interconnected components [GZD97c].

Modularity is also required to support design reuse and the incorporation of IP.
During re�nement, modularity helps to keep changes in the system description local
so that other parts of the design are not a�ected. For example, communication
re�nement should only replace abstract channels with more detailed ones without
modifying the components using these channels. The locality of changes makes
re�nement tools simpler and the generated results more understandable.

4.1.3.1 Behavioral hierarchy

The speci�cation of behavioral hierarchy is de�ned as the process of decomposing a
behavior into distinct child behaviors, which can be either sequential or concurrent.

The sequential decomposition of a behavior can be represented as either an algo-
rithmic program or a state machine. On the other hand, the concurrent decomposi-
tion of behaviors allows child behaviors to run in parallel or in pipelined fashion.

Figure 4.1 shows a behavior X consisting of three child behaviors A, B and C. In
Figure 4.1(a), the child behaviors are running sequentially, one at a time, in the

80 CHAPTER 4. THE SPECC LANGUAGE

A

B

C

X

A

B

C

X

Sequential Concurrent Pipelined

(b) (c)

A

B

C

X

(a)

Figure 4.1: Behavioral hierarchy

order indicated by the arrows. In Figure 4.1(b), A, B and C run in parallel. In other
words, they all will start when X starts, and X will �nish when all of them have
completed. In Figure 4.1(c), A, B and C run in pipelined mode, which means that
they represent pipeline stages which concurrently process a stream of data, passing
the data through all stages.

4.1.3.2 Structural hierarchy

With structural hierarchy, a system speci�cation is represented as a set of intercon-
nected components. Each of these components, in turn, can have its own internal
structure, which is speci�ed with a set of lower-level interconnected components,
and so on. Structural hierarchy is typically represented as a set of block diagrams.

4.1.4 Completeness

Completeness is an obvious requirement that needs to be further re�ned. For a sys-
tem language, completeness implies that all concepts commonly found in embedded
systems design need to be supported.

The concepts needed for modeling embedded systems have been studied for sev-
eral years. An in-depth discussion and de�nitions of these concepts can be found,
for example, in [GVN+94] and [GZD97c, GZD97b]. In addition to behavioral and
structural hierarchy, which have been discussed in the previous section, the impor-
tant concepts include concurrency, synchronization, exception handling, timing, and
explicit state transitions. These are briey reviewed in the following sections.

4.1. LANGUAGE REQUIREMENTS 81

4.1.4.1 Concurrency

Concurrency is a necessary feature of any system-level language. Concurrency can be
classi�ed into two groups, data-driven or control-driven, depending on how explicitly
the concurrency is indicated in the language. Furthermore, a special class of data-
driven concurrency, called pipelined concurrency, is of particular importance to
signal processing applications. For more details about these concurrency classes,
please refer to [GZD97c].

4.1.4.2 Synchronization

Concurrent behaviors usually need to be synchronized in order to be able to com-
municate or to cooperate. For example, one behavior may generate data that needs
to be received by another behavior, or several behaviors have to execute some task
simultaneously. In such cases, these behaviors need to be synchronized in such a
way that one is suspended until the other reaches a certain point in its execution.

Common synchronization methods can be classi�ed into two schemes, namely
control-dependent and data-dependent synchronization. One example of control-
dependent synchronization is the use of fork and join constructs for processes
or threads. An example of data-dependent synchronization is the use of shared
variables acting as valid-ags for exchanged data.

4.1.4.3 Exception handling

Often, the occurrence of a certain event requires that a behavior is interrupted
immediately, prohibiting the behavior from further processing. This is called an
exception. The behavior, to which the control will be transferred in such an event,
is called an exception handler.

Exceptions can be divided into two groups, abortion and interrupt, as illustrated
in Figure 4.2. In the case of abortion, the current behavior is terminated immediately
and the exception handler will �nish the execution. In the case of an interrupt,
the control is transferred only temporarily to the handler. As soon as the interrupt
handler terminates, the control is transferred back to the interrupted behavior which
can resume its execution.

Typical examples of such exceptions are resets and interrupts in standard com-
puter systems.

4.1.4.4 Timing

Although many computational models do not explicitly contain timing, there is often
a need to include detailed timing information in the system speci�cation. This is

82 CHAPTER 4. THE SPECC LANGUAGE

X

Y Z

e1 e2

e1 e2

X

Y Z

e1 e2

e1 e2

(a) (b)

Figure 4.2: Exception handling: (a) abortion, (b) interrupt.

particularly true for real-time systems where the tasks have to be executed within
the speci�ed time periods.

Timing can be speci�ed either exactly or in form of minimum or maximum con-
straints. For embedded systems, timing is typically measured in units of nanosec-
onds.

In general, a timing relation between two events can be described by a 4-tuple
T = (e1; e2;min;max), where the event e1 preceeds the event e2 by at least min
time units and at most max time units. Such timing relations can be used for both
timing delays and timing constraints.

Such timing information is especially important for describing parts of the sys-
tem which interact with the environment according to a prede�ned protocol. In
this case, the protocol de�nes the set of timing relations between signals, which
both communicating parties have to respect. Such protocols are typically described
graphically in form of timing diagrams.

4.1.4.5 State transitions

In order to model �nite state machines, for example the FSM, FSMD and PSM
models, explicit state transitions have to be supported. Such systems are often
best conceptualized as having various modes, or states, of behavior. For example, a
tra�c-light controller might incorporate di�erent modes for day and night operation
and for the status of the tra�c light itself.

In systems with various states, the transitions between these states typically
occur in an unstructured manner. Such arbitrary transitions are similar to the use
of goto statements in programming languages.

Transitions between states can be triggered by the detection of certain events or

4.2. LANGUAGE COMPARISON 83

certain conditions. Depending on the actual FSM model, actions can be associated
with each transition, and each particular state can have a behavior or computation
associated with it.

4.1.5 Orthogonality

In addition to the requirements listed in the previous sections, there are additional
goals and objectives for system-level languages. For example, an obvious objective
is that a language is easy to understand.

Another important goal is the orthogonality of the concepts because this sig-
ni�cantly simpli�es the development of the tools working with the language. More
speci�cally, it is desirable that all the concepts listed in Section 4.1.4 are organized
in an orthogonal way. In other words, these concepts should be implemented inde-
pendently from each other.

VHDL can serve as a counter example. In VHDL, signals incorporate synchro-
nization, data storage and timing. This makes it very hard to identify for which
purpose a particular signal is actually used, and thus an e�cient implementation is
hardly possible.

It should be noted that orthogonality implies minimality. If the concepts are
organized in an orthogonal manner, only a minimal set of constructs is required.

4.2 Language Comparison

A fair amount of work has already been done in research about languages. How-
ever, much of previous work has focused on either languages for software design
(programming languages) or languages for hardware simulation (hardware descrip-
tion languages). It can be expected that software languages are not suitable for
describing hardware, and vice versa. Despite this, several system-level design ap-
proaches are using traditional languages, such as C, C++ and VHDL, for modeling
embedded systems, as described in the introduction.

In this section, some of the traditional languages are analyzed and compared
against the set of required concepts discussed in the previous sections. More specif-
ically, C [X3/90], C++ [X3/97], Java [AG96], VHDL [IEEE93], Verilog [TM91],
HardwareC [KM90], StateCharts [Har87], and SpecCharts [NVG91] are compared.
In addition, SpecC [ZDG97b], which is described in the sections following this one,
is included as well.

Figure 4.3 summarizes the results of the analysis1. For each language, it is shown

1Similar tables with language comparisons can be found, for example, in [GVN+94], [JRV+97]
and [Nie98].

84 CHAPTER 4. THE SPECC LANGUAGE

Concurrency

Synchronization

Timing

Java
C++

VHDL

Verilog

SpecCharts

SpecC

Statecharts

HardwareC

C

not supported partially supported supported

Composite data types

State transitions

Structural hierarchy

Behavioral hierarchy

Exception handling

Figure 4.3: Comparison of language features

which requirements it supports and which are missing. Note that some concepts are
only partially supported by some languages, as indicated by the half-�lled circle.
Please note also, that such a classi�cation is only a rough characterization of a
language. However, it indicates quite well which problems a language incorporates
if it is considered for system-level design.

In addition to the features discussed earlier, the support of composite data types,
which is a typical software language property, has been included in the last row of
the table. Composite data types are user-de�ned data types such as arrays and
records. These are often not supported by hardware languages, but are de�nitely
needed for modeling systems containing software portions.

As shown in Figure 4.3, all the traditional languages lack one or more of the
requirements. Hence, these languages cannot be used without problems for model-
ing embedded systems. In order to model systems containing both hardware and
software, new languages need to be developed.

The SpecC language [DZG98] has been proposed as a new language that supports
all the required concepts, as shown in the last column of Figure 4.3. SpecC is
described in detail in the following sections.

4.3. FOUNDATION 85

4.3 Foundation

Accepting the fact, that a new language needs to be developed in order to meet all
the requirements of embedded systems design, it has to be determined how the new
language is being built. More speci�cally, the new language can either be developed
from scratch, or can be built based upon an existing language. While the �rst
approach o�ers the advantage of total freedom in terms of syntax and semantics, the
second approach can easily leverage knowledge that is already present in the given
language. Because it is obviously bene�cial not to `reinvent the wheel' (and possibly
making mistakes while doing so), this approach was chosen for the development of
the SpecC language.

When starting from an existing language, the features of this language are inher-
ited by the new language. Hence, it is desirable to select a language which contains
no unwanted characteristics which then would have to be taken out. For example,
no constructs should be inherited which are not synthesizable.

Usually, it is easier to add a missing concept to a language, than taking an
unwanted feature out. A language extension also has the advantage that existing
programs for the base language will usually still work without modi�cation when
used with the new language.

For the SpecC language, several languages were considered as starting point,
including C, C++, and Java. Eventually, C, or more precisely ANSI-C [X3/90],
was selected because of its maturity and its large amount of already existing code.
Although both, C++ and Java, o�er advanced software features not present in C,
the C language is still the de-facto standard for software development.

It should be emphasized that with the selection of C all requirements for software
design are already satis�ed. Furthermore, there are no features in the C language
which cannot be implemented in an embedded system since, in the worst case,
everything can be implemented in software. However, the missing concepts required
for hardware design have to be added. This is described next.

The following sections introduce the SpecC language based on ANSI-C. For a
fully detailed description, please refer also to the SpecC Language Reference Manual
[DZG98], which includes a formally de�ned SpecC grammar using lex and yacc

notation.

4.3.1 Types and expressions

The SpecC language is a true superset of ANSI-C [X3/90]. In other words, every C
program that follows the ANSI-C standard can be used without modi�cation as a
SpecC program. The only exception is that the newly introduced SpecC keywords
cannot be used for identi�ers such as variable names. A complete list of these

86 CHAPTER 4. THE SPECC LANGUAGE

keywords is included in [DZG98].

Types and expressions supported by SpecC are mostly inherited from the C
language. SpecC supports all the standard basic types, such as int, float, double,
etc., and all aggregate and composite types, such as pointers, arrays and records
(struct, union), together with the traditional operations known in C. In addition
to these, SpecC provides explicit support for boolean, event, and bit vector types,
as described next.

4.3.1.1 Boolean type

Similar to C++, the SpecC language explicitly supports a boolean data type bool
for the representation of truth values.

1 bool f (bool b1 , int a)
2 f
3 bool b2 ;
4

5 i f (b1 == true)
6 f b2 = b1 j j (a > 0) ;
7 g
8 else

9 f b2 = ! b1 ;
10 g
11 return (b2) ;
12 g

A boolean value can have only one of two values, true or false. As illustrated in
the example above, boolean values are used to express the result of logical operations
such as comparisons. In expressions, a boolean type is converted implicitly to the
integer type int whenever necessary. In this case, true is converted to 1 and false

becomes 0.

4.3.1.2 Bit vector type

In order to model hardware, explicit support for bit vectors of arbitrary length
is required. SpecC provides a built-in bit vector type bit[l:r] with arbitrary
precision speci�ed by left (l) and right (r) bounds.

A bit vector can be thought of as a parameterized type whose bounds are de�ned
with the name of the type. SpecC semantics require that the left and right bounds
of any bit vector are constant expressions which can be evaluated statically. Hence,
the length of any bit vector expression is constant and known at compile time. It
should be emphasized that this is a synthesis requirement which, for example, is
missing in VHDL.

4.3. FOUNDATION 87

A bit vector is either signed or unsigned and can be used as any other inte-
gral type within expressions. For example, the type bit[sizeof(int)*8-1:0] is
equivalent to the integer type int. Implicit promotion to integral types, such as
int, long, or double, is automatically performed when necessary. Furthermore,
automatic conversion, i. e. extension or truncation, is supported as with any other
integral type. No explicit type casting is necessary.

Bit vector constants are noted as a sequence of zeros and ones immediately
followed by a su�x b or ub indicating signed or unsigned bit vector constants,
respectively.

1 typedef bit [3 : 0] n ibb l e type ;
2 n ibb l e type a ;
3 unsigned bit [15 : 0] c ;
4

5 void f (n ibb l e type b , bit [16 : 1] d)
6 f
7 a = 1101B ; // vec tor assignment
8 c = 1110001111100011ub ;
9 c [7 : 4] = a ; // s l i c e assignment
10

11 b = c [2 : 5] ; // b i t vec tor s l i c i n g
12 c [0] = c [16] ; // s i n g l e b i t access
13 d = a @ b @ c [0 : 15] ; // concatenat ion
14 b += 42 + a � 12 ; // ar i t hme t i c
15 d = ~(b j 10101010B) ; // l o g i c operat ions
16 g

As shown in the example above, a concatenation operation, noted as @, and a
bit slice operation, noted as [l:b], are supported in SpecC. Both operations can be
applied to bit vectors as well as to any other integral type. In this case, the integral
type will be treated as a bit vector of suitable length.

In addition, a bit access operation, noted as an array access [b], is provided as
a short-hand for accessing a single bit ([b:b]) in a bit vector. Please note that, in
this case, it is not required that the bit selector b is a constant expressions which
can be statically evaluated, since the length of the resulting bitvector is always 1

and, thus, synthesis is possible.

4.3.1.3 Event type

In SpecC, events serve as the mechanism that supports synchronization and excep-
tion handling.

Events are represented by variables of the built-in type event. An event does
not have a value. Therefore, events cannot be used within any expressions.

88 CHAPTER 4. THE SPECC LANGUAGE

Events are used exclusively in two cases. First, they can used with the wait and
notify statements in order to specify the synchronization of concurrent behaviors.
For example, the following code shows a very simple example which coordinates the
access to a shared variable d with send and receive functions.

1 int d ;
2 event e ;
3

4 void send (int x)
5 f
6 d = x ;
7 notify e ;
8 g
9

10 int r e c e ive (void)
11 f
12 wait e ;
13 return (d) ;
14 g

Synchronization in SpecC is explained in more detail later in Section 4.8.

The second case, in which events are used, is exception handling supported by
the try-trap-interrupt construct, which is described in Section 4.9.

4.3.1.4 Time type

In order for the SpecC language to support timing, a time type is used. However,
strictly speaking, time is not an explicit type. Moreover, time is an implementation
dependent integral type. For example, the current SpecC implementation uses long
long int, a 64 bit integer type, for the representation of simulation time.

The SpecC language supports timed and untimed behavior, as de�ned in
[ZDG97b]. Typically, timed behavior is used to model hardware, and untimed be-
havior is used to model software for which the execution time is not known.

In timed program sections, the time type is used with the waitfor statement
to represent exact timing, and with the do-timing construct to represent timing
ranges. Both, waitfor and do-timing, are described later in Section 4.10.

For untimed program sections, a special time variable delta is provided. The
delta variable is of type time and is measured in implementation dependent units
(e. g. nanoseconds). During simulation, delta evaluates to the elapsed real-time
spent for executing the current behavior. For example, waitfor(delta) can be used
to advance the simulation time by the actual amount spent on the host machine.
In other words, assuming a software portion of a system is to be implemented on

4.4. BASIC STRUCTURE 89

c1

c2

b1 b2

B
p1 p2

p1 p2 p3

L R

p1 p2 p3

Figure 4.4: Basic structure of a SpecC model

the host machine, it can be synchronized easily with a simulated, timed hardware
portion.

4.3.2 Statements and declarations

Similar to types and expressions, the majority of statements, declarations and de�-
nitions in the SpecC language are the ones inherited from C. These are assumed to
be known and are not described in this work.

The statements and declarations, that were added to the C language, are de-
scribed separately in the following sections. However, �rst the basic structure of a
SpecC program is explained with a small example.

4.4 Basic Structure

As introduced in Chapter 2, a SpecC design model is captured as a hierarchical net-
work of behaviors interconnected by channels with interfaces. The SpecC language
reects this model in a one-to-one fashion. Syntactically, a SpecC program consists
of a set of behavior, channel and interface declarations.

A behavior is a class that can contain ports, component instantiations, and
local variable and method de�nitions. Every behavior also has a public mainmethod
which speci�es its functionality.

A channel is a class that encapsulates a set of local variables and methods.
Hierarchical channels contain instantiations of child channels as well.

An interface class is used to declare the methods which are public in chan-
nels. Interface classes consist solely of method declarations. The associated method
de�nitions are implemented in channels.

90 CHAPTER 4. THE SPECC LANGUAGE

For example, the following SpecC description speci�es the system illustrated in
Figure 4.4:

1 interface L
2 f
3 void Write (int x) ;
4 g ;
5 interface R
6 f
7 int Read(void) ;
8 g ;
9

10 channel C implements L, R
11 f
12 int Data ;
13 bool Valid ;
14

15 void Write (int x)
16 f Data = x ;
17 Valid = true ;
18 g
19 int Read(void)
20 f while (! Valid)
21 waitfor (10) ;
22 return (Data) ;
23 g
24 g ;
25

26 behavior B1(in int p1 , L p2 , in int p3)
27 f
28 void main (void)
29 f / � . . . � /
30 p2 . Write (p1) ;
31 g
32 g ;
33

34 behavior B2(out int p1 , R p2 , out int p3)
35 f
36 void main (void)
37 f / � . . . � /
38 p3 = p2 . Read () ;
39 g
40 g ;
41

42 behavior B(in int p1 , out int p2)

4.5. BEHAVIORAL HIERARCHY 91

43 f
44 int c1 ;
45 C c2 ;
46 B1 b1 (p1 , c2 , c1) ;
47 B2 b2 (c1 , c2 , p2) ;
48

49 void main (void)
50 f par f b1 . main () ;
51 b2 . main () ; g
52 g
53 g ;

The example speci�es a behavior B consisting of two child behaviors b1 and
b2. The child behaviors are executing concurrently, speci�ed by the par statement.
Furthermore, b1 and b2 communicate via an integer variable c1 and a channel c2
which are connected to the ports of the child behaviors.

The SpecC constructs used in this example are described in detail in the following
sections.

4.5 Behavioral Hierarchy

Behavioral hierarchy is the composition of child behaviors in time. In SpecC, child
behaviors can either be executed sequentially or concurrently. Sequential execution
can be speci�ed by standard imperative statements, or as a �nite state machine
(FSM) model with explicit state transitions. On the other hand, concurrent execu-
tion is either parallel or pipelined.

4.5.1 Sequential execution

Syntactically, behavioral hierarchy is speci�ed in the main method of the composite
behavior. For sequential execution, the main method can either consist of an imper-
ative program calling the child behaviors in a speci�c order, or of an explicit FSM
in which the child behaviors take the role of states.

4.5.1.1 Imperative program

In the simplest case, child behaviors are executed in a �xed sequential order. For
example, a behavior B consisting of three sequentially executed child behaviors can
be speci�ed as follows.

1 behavior B;
2

3 behavior B seq (void)

92 CHAPTER 4. THE SPECC LANGUAGE

4 f
5 B b1 , b2 , b3 ;
6

7 void main (void)
8 f
9 b1 . main () ;
10 b2 . main () ;
11 b3 . main () ;
12 g
13 g ;

In a more general case, a conditional control-ow can be speci�ed in a straight-
forward manner by use of standard C statements, such as if-then-else, for, and
while. However, this is not a recommended modeling style since the mixture of
programming statements with child behavior calls is di�cult to analyze and thus
aggravates the use of automated re�nement tools. Such a model represents the case
(h) in Figure 2.5 discussed earlier in Section 2.3.

In order to clearly specify a conditional, sequential control ow among child
behaviors, the FSM model should be preferred.

4.5.1.2 Finite state machine

The SpecC language provides the fsm statement to specify �nite state machines
(FSMs) with explicit state transitions. Both Mealy and Moore type FSMs can be
modeled with the fsm construct.

1 behavior B;
2

3 behavior B fsm (in int a , in int b)
4 f
5 B b1 , b2 , b3 ;
6

7 void main (void)
8 f
9 fsmf b1 : f i f (b < 0) break ;
10 i f (b >= 0) goto b2 ;
11 g
12 b2 : f i f (a > 0) goto b1 ;
13 goto b3 ;
14 g
15 b3 : f break ;
16 g
17 g
18 g
19 g ;

4.5. BEHAVIORAL HIERARCHY 93

As shown in the example above, the fsm construct speci�es a list of condi-
tional state transitions among states which are represented by instantiated child be-
haviors. A state transition is a triple hcurrent state; condition; next statei, where
current state and next state take the form of labels denoting child behavior in-
stances. The condition expression determines whether the transition is valid.

The execution of a fsm construct starts with the execution of the behavior that
is listed �rst in the transition list (b1). Once this behavior has �nished, its state
transition determines the next behavior to be executed. The conditions of the tran-
sitions are evaluated in the order they are speci�ed and, as soon as one condition is
true, the behavior speci�ed after the goto statement is started. A break statement
terminates the execution of the fsm construct.

Please note that the body of the fsm construct does not allow arbitrary state-
ments. The SpecC syntax limits the state transitions to well-de�ned triples. This
ensures that the fsm construct can be easily analyzed and re�ned by automated
tools.

4.5.2 Concurrent execution

In SpecC, concurrent execution is either parallel or pipelined.

4.5.2.1 Parallel execution

Parallel execution of behaviors is speci�ed with the par construct, as shown in the
following example.

1 behavior B;
2

3 behavior B par (void)
4 f
5 B b1 , b2 , b3 ;
6

7 void main (void)
8 f
9 par f b1 . main () ;
10 b2 . main () ;
11 b3 . main () ;
12 g
13 g
14 g ;

Every statement in the compound statement block following the par keyword
forms a new thread of control and is executed in parallel. The execution of the par
statement itself completes when each thread of control has �nished its execution. In

94 CHAPTER 4. THE SPECC LANGUAGE

other words, the par construct forks the control ow into a set of parallel threads
which are joined again when the par statement is completed.

The example shows the behavioral hierarchy of three child behaviors b1, b2 and
b3 which are executed in parallel. The parent behavior B par will terminate as soon
as all three children have completed their execution.

Note that for simulation on a sequentially executing host, the par construct is
not really executed in parallel. Instead, the scheduler, which is part of the SpecC
simulation library, executes one thread at a time and decides when to suspend
and when to resume a particular thread depending on the simulation time and
synchronization points.

4.5.2.2 Pipelined execution

The SpecC language provides explicit support for the speci�cation of pipelines.
Pipelined execution is a special form of concurrent execution. Similar to the par

construct, pipelined execution is speci�ed with a pipe construct, as shown in the
following example.

1 behavior B(in int p1 , out int p2) ;
2

3 behavior B pipe (in int a , out int b)
4 f
5 int x ;
6 piped int y ;
7 B b1(a , x) ,
8 b2(x , y) ,
9 b3(y , b) ;
10

11 void main (void)
12 f
13 pipe f b1 . main () ;
14 b2 . main () ;
15 b3 . main () ;
16 g
17 g
18 g ;

Each statement in the compound statement block after the pipe keyword forms
a new thread of control. The set of control threads is then executed in a pipelined
fashion. The pipe statement itself implies an in�nite loop of execution and thus
never �nishes.

In the example, the child behaviors b1, b2 and b3 form a three-stage pipeline
of behaviors. In the �rst iteration, only b1 is executed. When b1 completes, the

4.6. STRUCTURAL HIERARCHY 95

second iteration starts and b1 and b2 are executed in parallel. In the third and
every following iteration, all three child behaviors are executed in parallel.

Note that such an execution scheme could also be speci�ed by iterated use of
the par construct. However, in addition to the execution order, the pipe construct
supports explicitly bu�ered communication between the pipeline stages which other-
wise is di�cult to specify and typically is not recognizable for automated re�nement
tools.

To specify bu�ered communication, the special storage class piped is used for
variables connecting two pipeline stages. A variable with a piped storage class can
be thought of as a variable with two storages. A write access to such a variable
always writes to the �rst storage. A read access, on the other hand, reads from the
second storage. The contents of the �rst storage are shifted to the second storage
whenever a new iteration starts in the pipe construct.

In the example, a standard variable x connects the �rst pipeline stage (b1) with
the second (b2). This variable is not bu�ered, in other words, every access to x

from stage 1 is immediately visible in stage 2. On the other hand, the variable y

connecting the second (b2) and the third stage (b3) is speci�ed as piped. A value
computed by behavior b2, that is stored in y, will be available for processing by b3

in the next pipeline iteration when b2 already produces new data.

Note that the piped storage class can be speci�ed n times de�ning a variable
with n bu�ers. This can be used to transfer data over n stages synchronously with
the pipeline.

4.6 Structural Hierarchy

Structural hierarchy is represented in form of a hierarchical block diagram where the
blocks have ports and are interconnected via communication channels. In SpecC,
these blocks are called behaviors.

4.6.1 Behaviors

A SpecC behavior is an object for the speci�cation of active functionality. Typically,
behaviors are used to encapsulate computation. In terms of structure, a behavior
has ports through which it can communicate with other behaviors.

Syntactically, a SpecC behavior is speci�ed by use of a behavior declaration or
de�nition. A behavior de�nition is a class that consists of a set of ports, a set of
local variables and methods, and a mandatory main method. If the behavior is a
composite behavior, a set of child behavior instantiations is included as well. For
example, the following speci�es a simple leaf behavior B.

96 CHAPTER 4. THE SPECC LANGUAGE

1 behavior B(in int p1 , out int p2)
2 f
3 int a , b ;
4

5 int f (int x)
6 f
7 return (x � x) ;
8 g
9

10 void main (void)
11 f
12 a = p1 ; /� read data from the input port �/
13 b = f (a) ; /� compute �/
14 p2 = b ; /� wri te data to the output port �/
15 g
16 g ;

Except for the main method, which is public, all local methods and variables in
the behavior are private. In other words, a behavior resembles a black box whose
contents are not visible from the outside2.

Local variables and methods, such as a, b, and f in the example above, can
be used to conveniently program the functionality of the behavior. Similar to the
main function in a C program, the main method of a behavior is the root of the
behaviors execution. It is called whenever an instantiated behavior is executed and
its completion determines the completion of the behavior.

A SpecC program starts with the execution of the main method of the root
behavior. The root behavior is identi�ed by its name which is de�ned as Main.
Usually, the behavior Main is a composite behavior resembling the test bench for
the speci�ed system. In this test bench, the top behavior, that speci�es the actual
system, is then instantiated. Please note that main and Main are names which need
to be recognized by automated tools. However, these names are not keywords of the
SpecC language.

A behavior declaration consists of the behavior name and the declaration of its
ports. For a behavior de�nition, the behavior body is required. For example, a
declaration for the behavior de�ned above is as follows.

behavior B(in int p1 , out int p2) ;

A behavior is compatible with another behavior if the number and the types of their
ports match. Compatibility of behaviors is important for the reuse and replacement

2By use of interfaces implemented by a behavior, it is possible to make selected local methods
of the behavior public. Since this is rarely necessary, it is ignored in this context. Please refer to
the SpecC Language Reference Manual [DZG98] for further information.

4.6. STRUCTURAL HIERARCHY 97

of components (\plug-and-play"). Please note that a behavior declaration is su�-
cient to determine compatibility. The behavior body is not required.

4.6.2 Netlists

Structural connectivity among components in a block diagram is typically repre-
sented by connectors and wires. In SpecC, connectors are represented by ports and
wires by variables. In order to specify connectivity, the variables are then mapped
onto the ports as part of the behavior instantiation.

Ports are de�ned with the declaration of the behavior, very much like arguments
to functions are de�ned in a function declaration. A port can be of any SpecC type
and includes a port direction as a type modi�er. A port direction is either in, out
or inout, and is handled as an access restriction to that port. Inside a class, an in

port allows only read-access, and an out port only allows write-access. An inout

port can be accessed in either way. When connecting ports, the port types and port
directions must be compatible.

Port mapping lists are used to speci�es the connectivity of the ports, as shown
in the following example.

1 behavior B1(in event clk , out int p1 , out bit [15 : 0] p2) ;
2

3 behavior B2(in event clk , in int p1 , in bit [31 : 0] p2) ;
4

5 behavior B(in event clk , in bit [31 : 0] p1)
6 f
7 int i ;
8 bit [15 : 0] b ;
9

10 B1 b1(clk , i , b) ;
11 B2 b2(clk , i , p1 [31 : 16] @ b) ;
12

13 void main (void)
14 f
15 par f b1 . main () ;
16 b2 . main () ;
17 g
18 g
19 g ;

In the example, two child behaviors b1 and b2 are instantiated in the behavior
B. The three ports of b1 are connected to the clock input port clk of B, the wire i
and the internal bus b, respectively. Similar, b2 is connected to clk and i as well.

SpecC also supports bus splitting in port mapping lists. Concatenated bit slices
are used to represent sliced busses. In the example, this is demonstrated with the

98 CHAPTER 4. THE SPECC LANGUAGE

32 bit wide port p2 of b2. It is wired to the upper half of the incoming bus p1 of B
and the internal bus b.

4.7 Communication

In addition to netlists, which essentially allow communication through shared vari-
ables as described in the last section, the SpecC language supports a much more
powerful concept for communication, namely channels and interfaces.

4.7.1 Channels

A SpecC channel is an object designed for the speci�cation of complex communi-
cation. Typically, a channel encapsulates a (possibly hierarchical) communication
protocol. In contrast to behaviors, channels are passive objects. In other words,
channels serve as container for common methods used for communication. These
methods are made available to be used by behaviors so that these can communicate.

Syntactically, a channel is speci�ed by use of a channel declaration or de�nition,
very similar to the behavior construct. A channel de�nition is a class, that consists
of a channel declaration and a channel body, which contains a set of local variables
and methods. In case of a hierarchical channel, child channel instantiations are part
of the channel body as well.

Like behaviors, channels can have ports. For channel ports, the same semantics
apply for channels as described earlier for behaviors.

However, much more important than ports are the interfaces of a channel, which
are listed after the ports in the channel declaration. The interfaces determine the
set of public methods which are provided by the channel. Interfaces are described
in the following section.

By default, the local variables and methods de�ned in a channel are private,
in other words, they cannot be accessed from outside the channel. However, the
methods that are declared as implemented interfaces, are public and may be used
by behaviors to perform communication via the channel.

Similar to behaviors, the compatibility of channels is required when a channel
is to be replaced with another one. A channel is compatible with another channel,
if the number and the types of the channel ports, and the list of the implemented
interfaces, match.

4.7.2 Interfaces

Interfaces represent the missing link between behaviors and channels. As shown
in the following example, an interface is a class which speci�es the set of public

4.7. COMMUNICATION 99

methods implemented in a channel.

1 interface I
2 f
3 void send (int x) ;
4 int r e c e ive (void) ;
5 g ;
6

7 channel C implements I
8 f
9 int data ;
10

11 void send (int x)
12 f
13 data = x ;
14 g
15 int r e c e ive (void)
16 f
17 return (data) ;
18 g
19 g ;

The example speci�es a channel C that provides a simple communication protocol
via an encapsulated integer variable. The interface I, which the channel implements,
contains the declarations of the public methods send and receive.

Interfaces are used to connect behaviors with channels in such a way that both,
the behaviors and the channels, are easily exchangeable with compatible replace-
ments. Interfaces essentially enable the \plug-and-play" feature of the SpecC lan-
guage.

For example, consider two behaviors, b1 and b2, which communicate via an
instance of the channel C declared above.

1 behavior B1(I p1)
2 f
3 void main (void)
4 f int x ;
5 . . .
6 p1 . send (x) ;
7 g
8 g
9

10 behavior B2(I p1)
11 f
12 void main (void)
13 f int y ;

100 CHAPTER 4. THE SPECC LANGUAGE

14 . . .
15 y = p1 . r e c e ive () ;
16 g
17 g
18

19 behavior B(void)
20 f
21 C c1 ;
22 B1 b1(c1) ;
23 B2 b2(c1) ;
24

25 void main (void)
26 f
27 . . .
28 g
29 g ;

In the example, both behaviors B1 and B2 have ports of interface type I. Because
channel C implements the interface I, the ports of b1 and b2 can be mapped to the
channel c1. This way, b1 and b2 can communicate via the send and receive

methods.

Now, if another channel C2 is available with the same interface I, i. e.

channel C2 implements I ;

then the protocol speci�ed with channel C can be switched to the protocol provided
by channel C2 simply by replacing line 21 with

C2 c1 ;

Note that neither the replaced channels nor the connected behaviors have to be
modi�ed for this change. Please note also that the same easy replacement is possible
for the behaviors B1 and B2.

It should be mentioned that some communication protocols require the use of
call-back functions. In such a case, some methods speci�ed in a channel need to
call-back methods provided by the behavior that initiated the communication. In
order to support this, the SpecC language allows interfaces for behaviors as well.
In addition, a keyword this is provided for a behavior to be able to identify itself.
Please refer to [DZG98] for further documentation.

4.8 Synchronization

In order to allow controlled cooperation among concurrent executing behaviors, a
synchronization mechanism is required. In SpecC, the built-in type event serves as
the basic unit of synchronization, as stated in Section 4.3.1.3. To specify synchro-

4.8. SYNCHRONIZATION 101

nization, events are used with the wait, notify and notifyone statements which
all take a list of events as arguments.

A wait statement suspends the current behavior from execution until one of
the events speci�ed with the wait statement is triggered by another behavior. The
execution of the waiting behavior then resumes.

The notify statement triggers all speci�ed events so that all the behaviors
waiting on one of these events can resume their execution. If no behavior is waiting
on the triggered events at the time of the notify statement, the noti�cation is
ignored.

The notifyone statement acts similar as the notify statement. However,
notifyone allows only one behavior from the set of currently waiting behaviors
to resume its execution.

For example, the following code speci�es a channel C2 that can be used as a
replacement for the channel C presented in the previous section.

1 channel C2 implements I
2 f
3 int data ;
4 bool va l id = false ;
5 event wakeup ;
6

7 void send (int x)
8 f
9 data = x ;

10 va l id = true ;
11 notify wakeup ;
12 g
13 int r e c e ive (void)
14 f
15 while (! va l id)
16 f wait (wakeup) ;
17 g
18 va l id = false ;
19 return (data) ;
20 g
21 g ;

Compared to the primitive channel C on page 99, the channel C2 uses the syn-
chronization statements wait and notify to prevent the reading of uninitialized
data. It also avoids that the same data is read multiple times. In other words, this
channel ensures that the consumer always receives valid data.

102 CHAPTER 4. THE SPECC LANGUAGE

4.9 Exception Handling

The SpecC language provides support for both types of exceptions discussed in
Section 4.1.4.3, namely interrupt and abortion. The occurence of such exceptions is
represented by events. The notify statement introduced in the previous section is
used again to trigger such events.

In order for exceptions to be handled during the execution of a behavior, the
behavior has to be made sensitive to a set of events. In SpecC, this is speci�ed with
the try construct, as shown in the following example.

1 behavior B0;
2 behavior B1;
3 behavior B2;
4

5 behavior B(in event IRQ, in event RST)
6 f
7 B0 b0 ;
8 B1 b1 ;
9 B2 b2 ;
10

11 void main (void)
12 f
13 try f b0 . main () ; g
14 interrupt (IRQ) f b1 . main () ; g
15 trap (RST) f b2 . main () ; g
16 g
17 g ;

In the example, the behavior B consists of three child behaviors b0, b1 and b2.
The execution of behavior B will try to execute b0 and, if no exception occurs, the
completion of b0 will also terminate the execution of B. However, if one of the events
IRQ or RST occurs while the child behavior b0 is executing, the execution will be
interrupted or even aborted.

4.9.1 Interrupt

An interrupt is speci�ed with the interrupt keyword as shown in line 14 in the ex-
ample. The events, which will trigger a speci�c interrupt, are speci�ed as arguments,
i. e. IRQ.

If the event IRQ occurs during the execution of b0, the behavior b0 will be
stopped immediately in its execution and the interrupt handler b1 will be started to
service the interrupt. After b1 has completed its execution, the control is transferred
back to behavior b0 which can resume its execution right from the point where it
was stopped.

4.10. TIMING 103

4.9.2 Abortion

Abortion is speci�ed with the trap keyword. This also is followed by a list of events,
i. e. RST, that will trigger the abortion, as shown in line 15 in the example.

If the event RST is noti�ed while behavior b0 is executing, it will be terminated
immediately and the control is transferred to b2 which will take over the execution.
In contrast to an interrupt, b0 will not regain control after b2 is completed. Instead,
the behavior B will terminate.

4.10 Timing

As discussed earlier, the notion of time is an important requirement for speci�ca-
tion languages. Typical timing information includes the execution time or delay of
components, and timing constraints for the system performance or communication
protocols.

The SpecC language supports both types of timing speci�cation discussed in
Section 4.1.4.4, namely exact timing and timing ranges.

4.10.1 Exact timing

Exact timing, such as delay or execution time, is speci�ed by use of the waitfor

statement. The required time value is given in form of an argument and must be of
the integral time type introduced in Section 4.3.1.4.

The semantics of the waitfor statement are as follows. Whenever a waitfor

statement is executed, the current behavior is suspended from further execution
for the speci�ed simulation time. Any concurrent running behaviors will then be
executed until they are suspended as well, due to waitfor or wait. Once all ac-
tive behaviors are suspended, the simulation time will be increased such that the
behaviors with the least amount of waiting time can resume their execution.

Please note that the simulation time is only increased by use of the waitfor

statement. All other statements in the SpecC language execute in zero time.

4.10.2 Timing ranges

In order to specify timing constraints, timing ranges are supported in SpecC. A
timing range is speci�ed as a 4-tuple T = hL1; L2; Tmin; Tmaxi, where L1 and L2 are
speci�c points in time. The time period between L1 and L2 is limited to a minimum
of Tmin and a maximum of Tmax time units.

Syntactically, the range statement is provided for such timing ranges and L1

and L2 take the form of labels. Furthermore, Tmin and Tmax can be left unspeci�ed,
indicating the values �1 and +1, respectively. For example, the statement

104 CHAPTER 4. THE SPECC LANGUAGE

range (l1 ; l2 ; 10 ; 20) ;

speci�es at a time period of at least 10 but not more than 20 time units between
the labels l1 and l2. On the other hand,

range (l3 ; l4 ; 0 ;) ;

simply states that the statements speci�ed at label l4 must not be executed before
the statements at l3.

a

t1 t2 t4 t5 t6

d

t7

10/200/

10/20 10/20

5/100/0/

t3

in ABus

in RMode

in WMode

out DBus

Figure 4.5: Timing diagram example: SRAM read protocol.

Timing ranges are most useful for the speci�cation of timing diagrams. Consider,
for example, the timing diagram of the read protocol of a static RAM, as shown in
Figure 4.5. When reading a word from the SRAM, the address of the requested data
is supplied with the address bus ABus. Then, the read operation is selected by setting
RMode to high and WMode to low. After the speci�ed time period, the requested value
can �nally be accessed from the data bus DBus. The timing constraints throughout
this protocol are explicitly speci�ed in form of annotated arcs in the timing diagram.
All these constraints must be satis�ed for a successful read access.

In SpecC, it is straightforward to capture such a timing diagram. The diagram
shown in Figure 4.5 can be speci�ed as follows.

1 bit [7 : 0] ReadByte (bit [15 : 0] Address)
2 f
3 bit [7 : 0] MyData;
4

5 do f t1 : f ABus = Address ;
6 waitfor (2) ;
7 g

4.10. TIMING 105

8 t2 : f RMode = 1 ; WMode = 0 ;
9 waitfor (12) ;
10 g
11 t3 : f waitfor (5) ;
12 g
13 t4 : f MyData = DBus;
14 waitfor (5) ;
15 g
16 t5 : f ABus = 0 ;
17 waitfor (2) ;
18 g
19 t6 : f RMode = 0 ; WMode = 0 ;
20 waitfor (10) ;
21 g
22 t7 : f
23 g
24 g
25 timing

26 f range (t1 ; t2 ; 0 ;) ;
27 range (t1 ; t3 ; 10 ; 20) ;
28 range (t2 ; t3 ; 10 ; 20) ;
29 range (t3 ; t4 ; 0 ;) ;
30 range (t4 ; t5 ; 0 ;) ;
31 range (t5 ; t7 ; 10 ; 20) ;
32 range (t6 ; t7 ; 5 ; 10) ;
33 g
34 return (MyData) ;
35 g

The do-timing construct, as shown in this example, is used to encapsulate a
timing diagram representation. In the do part, the value changes at speci�c points
in time are speci�ed as labeled assignment statements. The range constraints are
then listed in the following timing block.

The execution semantics of a do-timing construct are basically the same as for
any sequence of compound statements. The labeled statements are simply executed
in the order speci�ed.

However, the attached timing constraints are validated during the execution of
the construct by the simulation run-time system. A typical simulator will maintain
a list of time stamps when executing a timing diagram. For each label, its execution
time will be noted. Then, when the execution of the do block is completed, these
time stamps are used to check whether the speci�ed range constraints hold. Any
violation of the constraints should be reported to the user.

The current implementation of the SpecC simulator, for example, will, by de-

106 CHAPTER 4. THE SPECC LANGUAGE

fault, generate a run-time error message for each violated range constraint and then
abort the simulation. However, this behavior can be overwritten by the user3.

The range check performed by the simulator, makes it necessary to use waitfor
statements within the timing diagram, as shown in the example. Without such
waitfor statements, the speci�ed timing constraints would not hold and, thus, the
construct would fail its execution. Please note that the waitfor statements only
specify one instance out of a typically in�nite set of legal time periods.

4.11 Persistent Annotation

For the purpose of practicality in use with a set of separate tools, the SpecC language
o�ers support for persistent annotation. Persistent annotation allows to attach any
type of constants to any named symbol in a SpecC program. This annotation
mechanism eliminates in many cases the need for separate �les exchanged between
subsequent tools working on the same design.

More speci�cally, persistent annotation can be used for convenient information
interchange between the tools working with a shared SpecC design description. For
example, an estimation tool can easily annotate its results with each behavior in
the design so that these estimation results are available for use in an exploration
or synthesis tool that is called afterwards. Moreover, such annotations are also
available to the user.

The semantics of persistent annotations are out of the scope of the SpecC lan-
guage. In particular, annotations do not change the execution semantics of a SpecC
program. As such, they can be seen of as a special type of comments in a SpecC
description.

Syntactically, the note declaration speci�es persistent annotations, as shown in
the following example.

1 /� C s t y l e comment , not p e r s i s t en t �/
2 // C++ s t y l e comment , not p e r s i s t en t
3

4 note Author = "Rainer Doemer" ;
5 note Date = "Fri Dec 10 09 : 52 : 07 PST 1999" ;
6

7 const int x = 42 ;
8 note x . Bits = sizeof (x) � 8 ;
9

10 behavior B(in int a , out int b)

3In order to overwrite the default behavior for handling time constraint violations, a function
called scc range check needs to be de�ned by the user. If this function is present in the SpecC
program, it will be called instead of the default handler.

4.12. LIBRARY SUPPORT 107

11 f
12 note Version = 1 . 2 ;
13

14 void main (void)
15 f
16 l1 : b = 2 � a ;
17 waitfor (10) ;
18 l2 : b = 3 � a ;
19

20 note NumOps = 3 ;
21 note l1 . OpID = 1 ;
22 note l2 . OpID = 3 ;
23 g
24 g ;
25 note B. Area = 12030 ;

The SpecC language allows comments in the source code in form of C++ syntax.
More speci�cally, comments are either enclosed by /* and */ delimiters, or start
with // and last up to the end of the line, as shown with lines 1 and 2 in the example.
Comments are simply ignored by the compiler, thus, they are not persistent.

The note declaration attaches a persistent note to the speci�ed symbol, label or
user-de�ned type. Such notes are named and their value is a constant or constant
expression that can be evaluated at compile time.

There are two ways to de�ne an annotation. First, a note can be attached to
the current scope, such as global notes (lines 4 and 5 in the example) and notes
at classes (line 12). Second, the annotated object can be named explicitly. In the
example, this style is used to de�ne the notes at variable x (line 8), the labels l1
and l2 (lines 21, 22), and the behavior B (line 25).

4.12 Library Support

Similar to the library and package concept provided in VHDL, the SpecC language
supports the incorporation of pre-compiled design libraries into the speci�cation
description. This simpli�es the handling of complex component libraries and also
speeds up the compilation.

Syntactically, the import declaration speci�es the inclusion of a binary library
into the current design. This is also called binary import. In addition, the #include
construct inherited from the C language supports the inclusion of source code (non-
binary) �les. An example of both constructs is shown next.

1#include < s td io . h>
2#include < s t d l i b . h>
3

108 CHAPTER 4. THE SPECC LANGUAGE

4 import " In t e r f a c e s / I1 " ;
5 import " In t e r f a c e s / I2 " ;
6 import "Channels /PCI Bus" ;
7 import "Components/MPEG II" ;

An #include declaration is evaluated in a preprocessing step. The C prepro-
cessor, which can be used without modi�cation for SpecC programs as well, simply
replaces the #include construct with the contents of the named �le.

Similar, the import declaration e�ciently incorporates pre-compiled, binary
SpecC �les. Any SpecC source description can be pre-compiled into a binary �le
with the SpecC compiler. Such �les are typically named with the su�x .sir, in-
dicating that these �les contain the SpecC Internal Representation (SIR). SIR �les
can also be used to transfer designs in an e�cient way between separate tools. The
SpecC Internal Representation is described in more detail in Section 5.2.

4.13 Summary

Built on top of ANSI-C, the SpecC language is designed for the executable speci-
�cation of embedded systems. To the well-known set of requirements for software
languages, speci�c constructs needed for hardware design have been added.

SpecC is synthesizable. Every construct supported by the language has at least
one straightforward implementation in either software or hardware.

Furthermore, the SpecC language supports modularity in form of both, behav-
ioral and structural hierarchy. SpecC also satis�es the requirement of completeness.
It provides support for all requirements for system-level design, namely concurrency,
hierarchy, communication, synchronization, exception handling and timing, as dis-
cussed in Section 4.1.

It must be emphasized that the SpecC language provides orthogonal constructs
for these orthogonal concepts. In other words, the identi�ed, independent concepts
are implemented with independent constructs in a one-to-one fashion. This allows
to model embedded systems clearly and unambiguously.

The orthogonality also allows minimality. The SpecC language covers the com-
plete set of system concepts with a minimal set of constructs. This makes the
language easy to learn and easy to understand.

Last, but not least, it should be emphasized that the SpecC language has gained
acceptance in the industry. Recently, SpecC has been proposed as a standard
system-level language for the adoption in industry by some of Japan's top-tier elec-
tronics and semiconductor companies [CGC+99].

4.14. POSSIBLE EXTENSIONS 109

4.14 Possible Extensions

The SpecC language has been proven to work for system-level design. Several ex-
amples have already been successfully speci�ed, simulated, and re�ned, as listed
in Appendix B. However, this experience with the real use of the SpecC language
has also shown that minor adjustments and some extensions are desirable to make
system-level design even easier and more convenient. These issues, which could be
implemented in a future version of the SpecC language, are addressed briey in this
section.

4.14.1 Fine tuning

Events, which are used for synchronization and exception handling, are currently
only supported as plain, non-aggregate types. The reason for this is that events do
not have a value and therefore cannot be used in expressions. However, it is desirable
to support arrays and records of events. This could, for example, be introduced by
allowing event expressions which can be evaluated at compile time and solely consist
of access operations to arrays and records.

In particular for data stream processing applications, such as the vocoder de-
scribed in Appendix B.6, it is desirable to pass sub-arrays through ports of behaviors
and channels. Currently, this is only supported for bit vectors in form of bit slices.
An equivalent scheme for general arrays can only be speci�ed by passing pointers
to sub-arrays through the ports. Such pointer-arithmetic could be easily avoided if
the language provides a speci�c construct for this case.

The pipe statement in its current form never �nishes. In other words, it contains
an implicit endless loop and thus cannot be used in a nested form. An extension to
this construct could, for example, allow the ushing of the pipeline after a speci�ed
number of iterations.

The persistent annotation of a SpecC program is currently limited to constant
values. This could easily be extended to allow general expressions.

4.14.2 Operator overloading

Operator overloading, as supported for example by VHDL and C++, is desirable for
the speci�cation of operations such as vector additions and matrix multiplications,
because it makes the source code easier to read. In addition, it allows experiments
with the arithmetic precision used in computations. For example, saturated opera-
tions could be used instead of the default, non-saturated arithmetic.

Since operator overloading is currently not supported by the SpecC language,
explicit function calls must be used for such cases. Operator overloading could easily

110 CHAPTER 4. THE SPECC LANGUAGE

be added to the SpecC language in very much the same way as C++ added this
feature to the C language.

4.14.3 Object orientation

In a similar way, the SpecC language could also be extended to become object
oriented. Object oriented features, such as object inheritance, could be easily applied
to the SpecC behaviors, channels and interfaces. The implementation of inheritance
for these classes in a C++ style would be straightforward.

4.14.4 Templates

The concept of templates, such as provided in C++, also would be applicable to
SpecC. However, maybe a restricted form would be su�cient. For example, an
equivalent for the VHDL generate and generic constructs would serve most pur-
poses.

Chapter 5

The SpecC Design Environment

The SpecC approach presented in the previous chapters has been implemented in
the SpecC design environment which is described in the following sections.

First, an overview about the SpecC design environment and its tools and li-
braries is given. Then, the major system components of the SpecC release 2.0.4
are described, which have been implemented by the author of this work. These
components include the central design representation, called SpecC Internal Repre-
sentation, the SpecC compiler, a pro�ler and a tool set.

5.1 Overview

The SpecC design environment has been built according to the methodology pre-
sented in Chapter 3. As shown in Figure 5.1, the SpecC tools reect the design and
validation ow shown earlier in Figure 3.1.

The tool ow starts with the design capture by use of the SpecC editor. The
SpecC editor, called VisualSpec [IG98], is a graphical editor for SpecC models. Visu-
alSpec allows to capture and modify a design by use of block diagrams, connectivity
tables, hierarchy displays and ow charts. Only leaf behaviors and channels are
speci�ed in textual form in the SpecC language by use of a standard text editor.

VisualSpec also includes the graphical user interface (GUI) of the SpecC design
environment. The GUI allows to call and control the SpecC tools directly from the
graphics. Since design models can be captured, compiled, and executed very quickly,
VisualSpec can also be seen as a rapid prototyping environment [AIG99] based on
the SpecC approach.

Throughout the SpecC design environment, the design models are represented
by the SpecC Internal Representation (SIR). The SIR is a complex data structure
used internally by all SpecC tools to maintain the design models. The SIR is also a

111

112 CHAPTER 5. THE SPECC DESIGN ENVIRONMENT

Debugger

SpecC Compiler

SpecC Editor

Backend

SIR Executable

Communication
Synthesizer

Architecture
Explorer

SIR

SIR

Profiler

Debugger

SpecC Compiler

Executable

Profiler

Debugger

SpecC Compiler

Executable

Profiler

Figure 5.1: The SpecC design environment

binary �le format, equivalent to SpecC source code stored in a text �le. Section 5.2
describes the SIR in more detail.

The SpecC compiler is primarily used to compile SpecC design models into exe-
cutable programs. As shown in Figure 5.1, the SpecC compiler can be used at any
stage in the design ow to create an executable �le for simulation. Furthermore, the
SpecC compiler is also used to convert design �les from their textual representation
into SIR �les, and vice versa. The SpecC Compiler is described in Section 5.3.

For simulation, the SpecC compiler links the executable �le with the simulation
library. The simulation library maintains the event queue and the simulation time
during simulation. It also takes care of concurrent threads and their synchronization
according to the execution semantics of the SpecC language. In other words, it
implements the SpecC simulator.

Once an executable �le has been created, the design can be simulated simply by
running the SpecC program on the host computer. In case of problems, a standard
debugger can be attached to the program. With the debugger, SpecC programs can
be executed step by step, break points can be set, and data values can be inspected

5.1. OVERVIEW 113

easily by the designer.

The SpecC pro�ler can be used to obtain run-time information about a design.
In particular, during the execution of the simulation model, branching probabilities
are obtained by the pro�ler by use of counters inserted into the design model. The
branching probabilities are then back-annotated to the design model so that they
can be used by the estimators, for example.

The synthesis ow is implemented by three main tools according to the SpecC
methodology. First, the architecture explorer re�nes the speci�cation model of the
design into the architecture model, as discussed in Section 3.4. The architecture
explorer itself consists of several smaller tools, including estimators for software and
hardware, an allocator that determines the system architecture, a partitioner that
computes and performs the architecture mapping, and a scheduler that sequentializes
the behaviors assigned to processors.

The second major re�nement tool is the communication synthesizer which takes
the SIR �le produced by the architecture explorer and performs communication
synthesis as described in Section 3.5.

The generated communication model, in form of a SIR �le, is then passed on
to the back end. In the back end, speci�c compilers for each of the selected proces-
sors are called to implement the software portion of the system. Also, automatic
synthesis tools are run for each custom hardware component, generating the �nal
implementation model of the design.

5.1.1 SpecC release 2.0.4

The SpecC design environment consists of a large set of complex tools. Some of these
tools, in particular the major re�nement tools, architecture explorer, communication
synthesizer and the back end, are, at the time of this writing, still under active
development and have not been released yet. On the other hand, the tools for the
speci�cation capture and the validation ow have been released and are already in
evaluation and use in industry and academia.

While the graphical editor VisualSpec [IG98] and the integrated prototyping en-
vironment [AIG99] are commercially developed and distributed, the tools for the
SpecC validation ow have been made freely available on the world-wide web1

(WWW).

The components of the SpecC system, which have been developed and imple-
mented by the author of this work, are included in the public SpecC release 2.0.4.
Table 5.1 lists the components of the release 2.0.4, along with the author and the

1The SpecC web pages are online at http://www.ics.uci.edu/�specc/. The most recent SpecC
system can be downloaded from http://www.ics.uci.edu/�specc/download.html.

114 CHAPTER 5. THE SPECC DESIGN ENVIRONMENT

Source component Author Lines of code Size [kB]

System setup R. D�omer 3251 88.6
SpecC Internal Representation R. D�omer 57522 1466.3
Bit vector library A. Gerstlauer 2992 74.9
Simulation library J. Zhu 14002 274.8
SpecC compiler R. D�omer 13390 346.8
SpecC pro�ler R. D�omer 2549 63.7
SpecC tool set R. D�omer 5401 143.4
Design examples SpecC team 6326 131.1

Total 105433 2589.6

Table 5.1: Source components of the SpecC release 2.0.4

size of the source �les for each of the components of the SpecC system2.

The main components developed by the author of this work, namely the SpecC
Internal Representation, the SpecC compiler, the pro�ler and the tool set, are de-
scribed in the following sections.

5.2 SpecC Internal Representation

The SpecC Internal Representation (SIR) is the common design representation in
the SpecC design environment. All tools in the SpecC system use the SIR to read,
write, store, maintain and modify the SpecC design models.

The SIR is three-fold. First, it is a binary �le format for designs speci�ed with
the SpecC language. Second, it is a complex data structure with a well-de�ned
Application Programming Interface (API). Third, it is provided as a shared library
for use by any SpecC tool developer.

The motivation for the development of the SIR is based on the fact that the
design models used in the SpecC design methodology are all represented by the
SpecC language. Each tool working with a design model needs procedures for input,
access and output of the model. Since these procedures are essentially the same for
every tool, a shared library can be used to implement the required functions.

The bene�t of the SIR as a common representation is that new tools can be
developed very quickly since all functions dealing with the design representation
are already prepared. There is no need any more to develop and implement these
functions, which otherwise would require a signi�cant amount of time. With the SIR,

2Recently, the version 2.0.5 of the SpecC system has been released. In addition to the components
of release 2.0.4, the new version includes a set of tools for static system-level scheduling [CG99].

5.2. SPECC INTERNAL REPRESENTATION 115

the SpecC tool developer can focus solely on the algorithm of the tool, knowing that
the design representation and its access have already been taken care of.

In following sections, the SIR �le format, the SIR data structure and the SIR
API are briey described. Then, the bene�t of quick tool development with the SIR
is demonstrated by the implementation of the SpecC pro�ler.

5.2.1 SIR File format

SpecC design models are stored in binary �les, called SIR �les. The SIR �le format
is an external representation of the internal SIR data structure. By use of SIR �les,
design models can be easily passed from one SpecC tool to another, without the
need for a special interface between the tools. Also, every tool can read the output
of every other tool so that, technically, re�nement tools can be applied to a design
model in any order.

Deparser

Design.sc DesignExecutable

Compiler

Design.sirSIR File

Importer

SIR

Design.sir

Exporter

SIR File

Parser

SpecC Source Design.sc

Refinement

SpecC Code

Figure 5.2: Design representation with the SIR

Figure 5.2 shows the di�erent formats and the conversions between these formats
for a design model in the SpecC system. In this star topology, the internal SIR is
the central representation.

Initially, a speci�cation model of any design is given in form of SpecC source
code, typically stored in a �le with su�x .sc. This textual representation is read

116 CHAPTER 5. THE SPECC DESIGN ENVIRONMENT

by the parser, generating the internal SIR data structure. From the internal data
structure, a binary SIR �le can be created by use of the exporter. Typically, such a
SIR �le has the extension .sir.

The SIR �le format is then used by all re�nement tools. Each tool reads the SIR
by use of the importer, performs its re�nement on the internal data structure, and
�nally generates a new SIR �le with the help of the exporter.

For inspection or textual modi�cations by the user, a binary SIR �le can also be
converted into a readable text �le. The deparser creates SpecC program code from
the internal representation, which, after any modi�cation, can be translated back
into the SIR by use of the parser.

Please note that the functionality of the parser, deparser, importer and exporter
is part of the SIR implementation, whereas the boxes re�nement and compiler are
implemented as separate tools. However, the compiler, whose program ow is de-
scribed later in Section 5.3, can be instructed to only perform the �le conversions
shown in Figure 5.2, instead of the default function to generate an executable �le
from SpecC source code.

5.2.2 SIR library

From the point of view of a programmer, the SpecC Internal Representation is a
shared library that implements a complex data structure.

The SIR library is provided as a binary, shared library which can be linked to
any tool developed for the SpecC system. In addition to the binary library, a set
of C++ header �les is provided. The header �les contain the declarations of the
functions and classes implemented by the SIR library.

The data structure implemented by the SIR library consists of a hierarchy of
C++ classes. The organization of these classes, forming a hierarchical graph of ob-
jects, is included in Appendix C. However, for fully detailed information about the
SIR data structure, its classes and methods, please consult the reference documen-
tation [D�om98, D�om99]. In these documents, all SIR classes are listed and described
in detail with their data members and API methods. In addition, the source code
of example programs is listed which use the SIR API to build, modify and store
SpecC design models.

5.2.3 Application Programming Interface

The SpecC Internal Representation o�ers a comprehensive Application Program-
ming Interface (API) to the SIR data structure. The SIR API is embedded in the
four interface layers to a SpecC design, as shown in Figure 5.3.

5.2. SPECC INTERNAL REPRESENTATION 117

Tools

System

"Kernel"

"Application Layer"

"Transformation Layer"

"Hierarchy Layer"
Layer 2

Layer 1

GUI

CLI

SIR API

Figure 5.3: SIR Application Programming Interface

At the highest level, the so-called application layer, a Graphical User Interface
(GUI) is used for the interaction with the user. In the SpecC design environment,
this is implemented with the SpecC editor.

Alternatively, the SpecC tools can be used at the transformation layer. The
transformation layer o�ers a textual interface, called Command Line Interface (CLI),
to the SpecC tools in form of shell commands. For the advanced user, such shell
commands allow the use of scripting languages to work on SpecC designs.

The API of the SpecC Internal Representation is shown with the white inner
circles in Figure 5.3. For access to the in-memory representation, the SIR API o�ers
two interface layers, namely the hierarchy layer and the kernel layer.

5.2.3.1 Kernel layer

The SIR kernel, as the innermost design representation, represents the lowest level of
abstraction. The design model is represented basically as a parse tree created from
the SpecC language description. Although symbol and type tables are maintained
by the kernel, there is no representation of connectivity or any hierarchical relations
among the symbols.

The use of kernel API methods requires detailed knowledge about the internals

118 CHAPTER 5. THE SPECC DESIGN ENVIRONMENT

of the SIR data structure. No semantic or syntactic error checking is performed.
It is in the responsibility of the user to correctly perform memory allocation and
deallocation when inserting or removing objects. The user is completely in charge
of maintaining the consistency of the data structure, such as pointers, links, etc.

Because of these di�culties, the direct use of the SIR kernel API should be
avoided. Instead, the API of the hierarchy layer can be used which is built on top
of the SIR kernel.

5.2.3.2 Hierarchy layer

For the SpecC tool developer, the hierarchy layer provides a safe API for the mainte-
nance and re�nement of SpecC design models. As the name indicates, the hierarchy
layer explicitly represents hierarchical relations between the objects. The behavioral
and structural hierarchy of the SpecC design model is reected in the data structure
in a one-to-one fashion.

The API of the hierarchy layer o�ers convenient methods for the whole data
structure that guarantee the consistency of the design representation even in the
case of errors. In other words, the hierarchy layer ensures that the design model is
a syntactically and semantically valid SpecC model at any time.

The hierarchy layer also simpli�es transformations on the data structure signi�-
cantly. In addition, memory allocation and deallocation are performed automatically
with the creation and deletion of objects.

5.2.4 Experiment

In order to demonstrate the value of the SIR for the quick development of new tools
in the SpecC design environment, the following experiment has been conducted.
The development and implementation of a set of tools for the SpecC system has
been timed. The tools chosen for this experiment use the SIR library for design
input, modi�cation and output. Therefore, a short implementation time for the
tools is expected, since the time for the implementation of the functions provided
by the SIR can be saved.

5.2.4.1 Example application

As an example application, a set of simple pro�ling tools has been selected. The
pro�ling tools are well-suited for this experiment, as they represent simple re�nement
tools which read a design model and create a modi�ed version of the model. Also,
the tasks of the tools are simple enough, so that not much time needs to be spent
on the development and implementation of the algorithms.

5.2. SPECC INTERNAL REPRESENTATION 119

In particular, four pro�ling tools have been implemented, whose tool ow is
shown in Figure 5.4.

Design.sir

Profile.dat

Execution

SpecC Compiler

Design Executable

Profiling Data

Design.sir

De−Annotator

Annotator

Design.sirOriginal

Instrumented

Annotated Design.sir

Instrumentor

De−Instrumentor

Instrumented
Annotated

Profiling LibraryProfiling.lib

Figure 5.4: Program ow of the SpecC pro�ling tools

First, the task of the instrumentor is to insert counters into in the design model
so that the execution of the methods and functions in the design is pro�led when
the design is simulated. In addition, the instrumentor inserts function calls which
read the initial counter values in the beginning and write the �nal counter values
out into a �le at the end of the simulation. The functions for reading and writing
of the pro�le values are provided by a pro�ling library which will be linked to the
executable �le by the SpecC compiler.

The second pro�ling tool is the annotator which will take the counter values
obtained after the simulation and back-annotate them to the design model. As a
result, every function and method in the design model will be annotated with the
number of its executions.

In order to complete the set of pro�ling tools, two tools are needed which

120 CHAPTER 5. THE SPECC DESIGN ENVIRONMENT

undo the changes of the instrumentor and the annotator. It is the task of the
de-instrumentor to take out all counters and function calls inserted by the instru-
mentor. Similar, the de-annotator removes any counter annotations inserted by the
annotator.

It should be noted that the four tools implemented in this experiment have been
later combined into the pro�ler that is part of the standard SpecC distribution. The
SpecC pro�ler is described in Section 5.4.1.

5.2.4.2 Results

The development and implementation times for the four tools, including the pro�ling
library, are shown in Table 5.2.

Task Time Lines of code

Speci�cation 3 h, 28 min 259
Pro�ling library 1 h, 32 min 75
Template 0 h, 59 min 354
Instrumentor 1 h, 54 min 124
De-Instrumentor 1 h, 15 min 99
Annotator 1 h, 6 min 99
De-Annotator 0 h, 19 min 42

Total 10 h, 33 min 1052

Table 5.2: Development and implementation of the pro�ling tools

Most of the development time was spent for the detailed speci�cation of the four
tasks. In particular, this includes the manual generation of code fragments which
show the exact changes to be performed by the tools.

Since all four tools have a similar program ow, consisting of reading, modifying
and writing, a program template was developed �rst. The template then was used
as a starting point for the four programs3.

Table 5.2 shows that all four tools have been developed, implemented and tested
in a very short time. In fact, the complete set of all four pro�ling tools has been
developed within one working day.

This result clearly shows the value of the SpecC Internal Representation. With-
out the SIR, the implementation of the pro�ling tool set would have required much
more time.

3In order to obtain the actual size of a program, the lines of code written for the program
template need to be added to the lines of code listed for the particular tool.

5.3. SPECC COMPILER 121

5.3 SpecC Compiler

The SpecC compiler, called scc, is the main tool in the validation ow of the SpecC
methodology. The main purpose of the SpecC compiler is to generate an executable
program for simulation from a design model. However, the SpecC compiler also
serves as a converter between the di�erent SpecC �le formats, as mentioned earlier.

The program ow of the SpecC compiler is shown in Figure 5.5. By default, the
SpecC compiler reads SpecC source code and generates, after several intermediate
steps, an executable �le. This default ow starts at the top of the graph and goes
straight down to the bottom. The compiler can also be instructed to follow any
other paths in the graph, performing di�erent tasks, i. e. �le conversions or only
partial compilation.

The generation of a simulation model from source code in the SpecC language
is performed in �ve steps. First, the source code is processed by the preprocessor
which performs header �le inclusion and other preprocessing directives in the code.
Because the SpecC language contains no special preprocessor commands other than
those de�ned by the C programming language, a standard C preprocessor is used
for this task.

Second, the preprocessed code is read by the parser which builds the SpecC
Internal Representation in the memory and, at the same time, performs syntax and
semantic checking.

In order to create executable code, a C++ program is generated in the next
step by the translator. The generated C++ program consists of two �les, a header
�le with variable, function and class declarations, and a main �le, containing the
implementation of the declarations.

The generated program is then compiled by a standard C++ compiler into bi-
nary object code. Finally, the linker creates the executable program, combining
the compiled object code with the SpecC simulation library and any other system
libraries.

It should be emphasized that the SpecC compiler takes special care of debug-
ging support when creating the C++ program from a SpecC model. As a result,
any standard C/C++ debugger can be used to debug SpecC programs. In other
words, the SpecC debugger is implemented by any standard debugger provided on
the simulation host.

The debugging support of the SpecC compiler is achieved through two features.
First, the C++ program is generated in such a way, that it reects the original
SpecC program line by line. Thus, each line of SpecC code has a corresponding line
of generated C++ code. In addition, SpecC constructs are implemented by C++
constructs following a one-to-one mapping. For example, behaviors and channels are
implemented by C++ classes, bit vectors are represented by C++ templates, and

122 CHAPTER 5. THE SPECC DESIGN ENVIRONMENT

Deparser

Design.scSpecC Source Code

Preprocessor

Design.si

Design.cc

Design.o

Design

Design.h

Parser

Translator

Linker

Executable

Design.sirSIR File

Design.sir C++ Code

Exporter

Importer

Preprocessed Code

SIR

Design.scSpecC Code

C++ Compiler

C++ Object Code

SIR File

Shared Library Library.so

Shared Library Library.so

Figure 5.5: Program ow of the SpecC compiler

5.3. SPECC COMPILER 123

Figure 5.6: Standard debugger use for SpecC programs

124 CHAPTER 5. THE SPECC DESIGN ENVIRONMENT

statements like par and pipe are implemented by function calls to the simulation
library.

Further, line directives are inserted into the generated C++ program, linking
the program code with the SpecC source. As a result, any tool processing the C++
program will refer to the original SpecC code. For example, error and warning
messages issued by the C++ compiler will point to the line in the SpecC source
where the problem originated from.

Finally, if the generated executable program is run by a source level debugger,
the debugger will display the original SpecC program in the source code window. As
an example, Figure 5.6 shows the debugger ddd running the SpecC pipeline example
that is part of the SpecC distribution.

5.4 SpecC Re�nement Tools

The program ow of typical SpecC re�nement tools is shown in Figure 5.7.

Design.sirSIR File

Design.sir

Exporter

Importer

SIR
Refinement

SIR File

Design.sirSIR File

Design.sir

Exporter

Importer

Refinement

SIR File

(a) (b)

SIR

SIR

Input SIR

Output SIR

Figure 5.7: Program ow of typical SpecC re�nement tools: (a) modi�cation of the
SIR, (b) creation of a new SIR from the input SIR.

5.4. SPECC REFINEMENT TOOLS 125

A re�nement tool inputs a design model from a SIR �le, performs its re�nement
on the internal representation by use of the SIR API, and �nally creates a new
SIR �le for the re�ned design model. The re�nement itself can be performed by
modi�cation of the input SIR, as shown in Figure 5.7(a), or by creating a new
output SIR from data in the input SIR, as shown in Figure 5.7(b).

Please note that, in both cases, a new re�nement tool can be based on a sig-
ni�cant amount of implementation that is already existing, since the importer, the
exporter and the internal data structure with the API, are provided by the SIR
library. The re�nement tool developer can pay his full attention to the algorithms
of the re�nement task.

An initial set of simple re�nement tools has been developed by the author of this
work. These tools are briey described in the next two sections.

5.4.1 SpecC pro�ler

The SpecC pro�ler has been developed based on the four pro�ling tools described
earlier in Section 5.2.4.1. The SpecC pro�ler, which is part of the standard SpecC
distribution, combines the four tools into one single program, but still follows the
pro�ling ow described in Figure 5.4.

Since the pro�ling tool set has been described already, a further description
of the SpecC pro�ler is redundant. For more details, however, please refer to the
pro�ler manual which is listed in Appendix A.2.

5.4.2 SpecC tool set

The SpecC tool set consists of six utility programs which simplify the work with
binary SIR �les. Manual pages for these tools can be found in Appendix A.3.

The SpecC tool set includes the following tools.

� sir delete allows to delete named objects from a SIR �le.

� sir list lists the objects contained in a SIR �le with their type and classi�-
cation.

� sir note allows to attach and remove arbitrary annotations at objects in a
SIR �le.

� sir rename allows to rename any named objects in a SIR �le.

� sir strip strips o� line numbers and source �le names from SIR �les.

� sir tree displays the behavioral hierarchy in a SIR �le as a tree of behaviors
and channels.

126 CHAPTER 5. THE SPECC DESIGN ENVIRONMENT

Chapter 6

IP Protection

in the SpecC System

As discussed in the introduction, it is in the strong interest of IP providers to protect
their intellectual property from being used without permission or being reverse-
engineered. In particular, external IPs require technical measures for protection.

In order to protect hard IPs, the IP provider typically keeps the �nal implemen-
tation of the components in-house. Only simulation models of the IPs with di�erent
levels of accuracy are made available to the system integrator. For soft IPs, on the
other hand, complete synthesizable models are needed by the system integrator. In
both cases, these models (still) contain implementation and algorithm details of the
IP which the IP vendor does not want to reveal to his customers. Therefore, the
models are usually provided in binary format without source code. For example,
many VHDL or Verilog simulators allow to precompile the description of an IP into
object code, so that the source code is hidden, but the model is still simulatable
[KB98].

Such an approach is well-known for software reuse and software protection. Soft-
ware components usually consist of a set of public function and variable declarations
whose implementation is supplied in form of a precompiled library. When produc-
ing an executable program, this library is integrated with the compiled code by the
linker. All the necessary information to use such a software package is contained
in the declaration of the API and the accompanying documentation. The actual
implementation is hidden from the user in the object code and therefore protected.

In the SpecC system, IP protection is based on this software approach [DG00]. IP
components are provided in form of a public interface declaration, speci�ed in SpecC
source code, and a linker library, containing the secret implementation supplied in
binary object code.

127

128 CHAPTER 6. IP PROTECTION IN THE SPECC SYSTEM

However, special care has to be taken to make sure that an IP component cannot
be reverse-engineered from the data made available. The following sections describe
this problem and the solution taken in the SpecC system.

6.1 Public IP Declaration

As described in Section 2.5, IP components are modeled as behaviors or channels,
depending on whether they contain computation or communication. The model of
an IP assumes that the internals of these behaviors and channels are unknown.

Syntactically, the SpecC language distinguishes the declaration and the de�nition
of behaviors and channels. A declaration only speci�es the ports and interfaces,
whereas a de�nition also contains the actual implementation. Thus, IP components
can be naturally represented by a behavior or channel class, which is declared, but
not de�ned.

6.1.1 Behavior IP

Computational IP components are speci�ed as behavior declarations. A typical
declaration consists of the name of the behavior and the number and the type of its
ports. For example:

behavior IP1 (in int p1 ,
in bit [255 : 0] p2 ,
out bit [127 : 0] p3) ;

This speci�es an IP component IP1 with three ports, p1, p2 and p3. p1 and p2

are input ports of integer and bit vector type, respectively, and p3 is a 128 bit wide
output port. Since no behavior body is de�ned, this declares the component IP1 as
a black box whose internal structure is unknown. Please note, however, that this
declaration is su�cient in order to instantiate a component of type IP1 in a design.

Since the internals of such IPs are unspeci�ed, it is necessary for the IP provider
to supply additional information, for example estimation data, together with the IP
declaration. This can be done easily with annotations. For example:

note IP1 . Version = 1 . 2 ;
note IP1 . Area = 118000 ;
note IP1 . ExecTime = 42 . 5 ;
note IP1 . Power = 0 . 32 ;

6.1.2 Channel IP

Channels can be used to specify communication IP, for example, proprietary com-
munication protocols. A typical channel declaration consists of the name of the

6.2. SECRET IP IMPLEMENTATION 129

channel and the list of the implemented interfaces which have to be de�ned �rst.

For example, a channel IP2, which implements two interfaces with send and
receive methods for bytes and words of data, can be de�ned as follows.

1 typedef bit [7 : 0] byte ;
2 typedef bit [63 : 0] word ;
3

4 interface I1
5 f
6 void SendByte (byte B) ;
7 byte ReceiveByte (void) ;
8 g
9

10 interface I2
11 f
12 void SendWord(word W) ;
13 word ReceiveWord (void) ;
14 g
15

16 channel IP2 implements I1 , I2 ;

Again, this IP declaration does not reveal anything about the actual implemen-
tation of the protocol, but still allows to instantiate and use channels of IP2 type.
Also, the channel IP2 and its interfaces I1 and I2 could be annotated in the same
way as the IP component IP1 in Section 6.1.1.

It should be mentioned that, as de�ned in Chapter 4, the SpecC language allows
ports and interfaces for both, behaviors and channels. The assumption, that be-
haviors have ports and channels have interfaces, is made in this chapter simply for
easier understanding. Please note that this makes no di�erence to the applicability
of the IP protection mechanism discussed in this chapter.

6.2 Secret IP Implementation

As mentioned before, the implementation of an IP behavior or IP channel is sup-
plied as a precompiled library. In order to build such a library, the IP provider
�rst speci�es the IP implementation (or an accurate simulation model) as a class
de�nition according to the IP declaration. Then, this SpecC source code will be
compiled by the SpecC compiler in order to create the library. For example, for the
behavior IP1 in Section 6.1.1, a shared library libIP1.so will be created.

However, the generation of such a library is not trivial because of the way be-
haviors and channels are implemented in the SpecC system.

130 CHAPTER 6. IP PROTECTION IN THE SPECC SYSTEM

6.2.1 Implementation problem

From the source code, the SpecC compiler �rst generates intermediate C++ code.
Then, this C++ code can be compiled by a standard C++ compiler in order to
produce the shared library required for the IP.

In the SpecC compiler, behaviors and channels are implemented as C++ classes,
and behavior and channel instances are naturally represented by C++ objects.
Among other reasons, which are beyond the scope of this chapter, this implemen-
tation was chosen because it keeps the generated code very similar to the original
SpecC code and, thus, signi�cantly simpli�es source-level debugging of SpecC pro-
grams, as explained in Section 5.3.

For example, the following code de�nes a behavior B which consists of two child
behaviors b1 and b2 connected by a channel c1 and a variable v1. Right next to
the SpecC code, a fragment of the generated C++ code for this behavior de�nition
is shown.

behavior B(class B : public behav ior
in int p1 , f int &p1 ;
out int p2) int &p2 ;

f
int l1 ; int l1 ;
C c1 ; C c1 ;
B1 b1(p1 , l1 , c1) ; B1 b1 ;
B2 b2(p2 , l1 , c1) ; B2 b2 ;

void main (void) public :
f void main (void) ;
parf b1 . main () ;

b2 . main () ; g B(int &p1 , int &p2) ;
g virtual ~B(void) ;

g ; g ;

In C++, in order to instantiate a class, the size of the class must be known so
that su�cient memory can be allocated for the new object before the constructor
of the class is called to initialize the memory. While the constructor is provided in
the class itself, the memory must be allocated by the instantiator. C++ semantics
[ES90] enforce that a class is de�ned (not just declared) before it can be instantiated.
This ensures that the size of the required memory is known when an object of a
class is created.

In the case of an IP component, which is supplied in a library, the size of the
class still must be known by the user code. Therefore, in the C++ user code, a
class declaration as in SpecC, is not su�cient. Instead, a class de�nition is required.
This is a problem for the IP user because he does not know the internals of the IP

6.2. SECRET IP IMPLEMENTATION 131

class and thus cannot create a proper class de�nition.

6.2.2 Implementation solution

The problem can be solved if the size of the class is known. With this information,
the IP user can create a pseudo class which only contains known contents and leaves
enough space for the secret internals. In particular, this pseudo IP class consists of
the known ports, the public interfaces and su�cient space reserved for the secret
parts of the IP.

For example, a pseudo class for the behavior B discussed above can be de�ned
as follows.

behavior B(class B : public behav ior
in int p1 , f int &p1 ;
out int p2) int &p2 ;

f
int l1 ; char Reserved [X] ;
C c1 ;
B1 b1(p1 , l1 , c1) ;
B2 b2(p2 , l1 , c1) ;

void main (void) public :
f void main (void) ;
parf b1 . main () ;

b2 . main () ; g B(int &p1 , int &p2) ;
g virtual ~B(void) ;

g ; g ;

In this pseudo class, the dummy array Reserved[X] replaces the internal IP
components l1, c1, b1, and b2. The size X of the reserved array must be equal to
(or greater than) the size of all the replaced components.

Please note that such a class replacement is highly compiler dependent because
the C++ language leaves some freedom for the implementation of classes [Str97].
Therefore, when this approach is implemented, it must be integrated with the com-
piler being used.

With this solution, the IP component can be used just as any other component,
given that the reserved size X is provided along with the component declaration and
the IP library.

The value of X can be computed by the IP provider from the IP implemen-
tation. The reserved size basically is the sum of the sizes of the local variables,
the instantiated channels and child behaviors, plus any implementation dependent
overhead.

132 CHAPTER 6. IP PROTECTION IN THE SPECC SYSTEM

More formally, the size of an IP class C is computed as

sizeof(C) = Xpublic +Xsecret

where

Xpublic =
X

p2Ports(C)

sizeof(p) +
X

i2Interfaces(C)

sizeof(i)

Xsecret =
X

l2Locals(C)

sizeof(l) +
X

c2Channels(C)

sizeof(c)

+
X

b2Behaviors(C)

sizeof(b) + �

Here, � represents the implementation dependent size needed for base classes,
data alignment, etc.

Please note that, although the equation is recursively de�ned, it can be eas-
ily computed by the SpecC compiler because language semantics require that the
sizeof() operator can always be evaluated at compile time.

6.3 Integration with the SpecC compiler

The approach for IP protection described in this chapter has been implemented and
integrated with the SpecC compiler scc, which was presented in Section 5.3.

In order to support IP, the SpecC compiler has been extended with an IP mode
(enabled by option -ip) which changes the behavior of the exporter, the deparser,
the translator and the underlying C++ compiler and linker (please refer to Figure 5.5
on page 122).

In IP mode, the compiler recognizes special annotations (scc Public) which the
user attaches to behaviors and channels to mark them as IPs with public ports and
interfaces. All objects not marked public will be treated as secret implementation
by the compiler and will be hidden in the output.

In particular, the exporter and the deparser will only generate code for the public
objects. All other objects will be omitted. From the implementation of an IP, the
IP provider can use this to automatically generate the �les describing the public
interfaces of the IP.

Furthermore, when these public �les are generated, the behavior and channel
declarations of IP components will be automatically annotated with the reserved IP
size (scc ReservedSize), as discussed in Section 6.2. This annotation will later be
used by the IP user as the value X in the IP pseudo classes, which are generated by
the compiler when the IP component is instantiated.

6.4. EXPERIMENTS AND RESULTS 133

The compilation ow is also a�ected by the IP mode. When generating C++
code, the SpecC compiler ensures that only objects marked public will have external
linkage. In other words, all non-public objects will have internal linkage and are
therefore not visible outside the �le scope.

Furthermore, in IP mode, the underlying C++ compiler and the linker are in-
structed to create a shared library instead of an executable �le. In the library, all
symbols internal to the IP are stripped o�. This ensures that the symbol table in
the library is minimal and does not reveal any internal methods of the IP.

In summary, using the IP mode, the IP provider can automatically create the
public IP interface and the IP library while being sure that no information about
the secret implementation will be available to the IP user. On the other hand, the
IP user can simply include the annotated interface declarations in his design and use
the IP components just as his own behaviors and channels by linking his executable
�le against the provided IP libraries.

6.4 Experiments and Results

The IP support of the SpecC system has been successfully tested with a set of design
examples. First, a simple example using di�erent RT level components as IPs is
presented. Then, the SpecC IP protection scheme is applied to several industrial-
size examples at the system level.

6.4.1 RT level IP examples

As the �rst experiment, a generic adder, speci�ed at the gate and the RT level, has
been modeled as an IP component. For three di�erent bit widths, namely 8, 16 and
32 bits, adder components have been created as a set of public IP declarations and
shared libraries (see also Section B.2).

Adder example Internal components Reserved size

RTL model, 8 bit 1 12
RTL model, 16 bit 1 12
RTL model, 32 bit 1 16
Gate model, 8 bit 65 2428
Gate model, 16 bit 131 5020
Gate model, 32 bit 261 10052

Table 6.1: RT level IP examples

134 CHAPTER 6. IP PROTECTION IN THE SPECC SYSTEM

For each generated adder, Table 6.1 shows the number of the hidden, internal
components and the minimum reserved size X. It is obvious that the RTL models
are much less complex than the models composed of logic gates.

Please note that, in order to not reveal the complexity of the IP implementation
through these numbers, the IP provider is free to choose any number greater than
the minimum size computed by the compiler. For example, the reserved size 12000
works well for all the adders.

Using the IP-enabled SpecC compiler, a public interface and a shared library
have been automatically created to allow the adders being used as IP components.
For example, the public interface generated for the 32 bit adder is shown next.

1 //
2 // SpecC source code generated by SpecC V2. 0 . 4
3 // Design : ADD32 GTL
4 // Fi le : ADD32. sc
5 // Time : Thu Jun 17 15 : 46 : 30 1999
6 //
7

8 behavior ADD32(in bit [0 : 0] c in ,
9 in bit [31 : 0] a ,
10 in bit [31 : 0] b ,
11 out bit [31 : 0] s ,
12 out bit [0 : 0] c out) ;
13

14 note ADD32. BitWidth = 32 ;
15 note ADD32. s c c Rese rvedS i z e = 10052u ;
16

17 //

6.4.2 System level IP examples

Four system-level designs have also been modeled as IP components. The examples
consist of two controller components, namely an elevator controller and a tra�c
light controller (see Section B.4), and two data compression IPs, namely a JPEG
encoder (see Section B.5) and a GSM vocoder (see Section B.6).

Table 6.2 shows the characteristics of the IP models. Again, the number of
internal components hidden in the IP, and the reserved size X for each IP are listed.

Considering the complexity of these designs (for example, the GSM vocoder
consists of about 13.000 lines of SpecC source code [GZG+99]), these results show
that the IP approach implemented in the SpecC system works very well with large
IP models at the system level.

Although the system level components are internally much more complex, the

6.4. EXPERIMENTS AND RESULTS 135

IP example Internal components Reserved size

Elevator controller 91 4248
Tra�c light ctrlr. 24 892
JPEG encoder 4 2728
GSM vocoder 84 12020

Table 6.2: System level IP examples

public IP interface is as simple as the adder interface shown earlier. For example,
the interface declaration of the GSM vocoder IP is shown next.

1 //
2 // SpecC source code generated by SpecC V2. 0 . 4
3 // Design : GSM Vocoder
4 // Fi le : GSM Vocoder public . sc
5 // Time : Tue Jun 22 10 : 42 : 36 PDT 1999
6 //
7

8 behavior GSM Vocoder(
9 in bit [12 : 0] Sample ,
10 out unsigned bit [243 : 0] Frame ,
11 in bool DTX Mode,
12 out unsigned bit [5 : 0] DTX Ctrl ,
13 in event NewSample ,
14 out event FrameReady) ;
15

16 note GSM Vocoder . Comment = "GSM EFR speech encoder " ;
17 note GSM Vocoder . Version = "GSM 06 . 60" ;
18 note GSM Vocoder . s c c Rese rvedS i z e = 12020u ;
19

20 //

136 CHAPTER 6. IP PROTECTION IN THE SPECC SYSTEM

Chapter 7

Conclusion

The increasing complexity of SOC design requires higher design e�ort, more e�cient
tools and new methodologies. Due to market pressures, increasing the design time
is not an option.

System-level design reduces the complexity of the SOC design process by raising
the level of abstraction. In addition, system-level design takes advantage of the reuse
of pre-designed, complex components, called IPs. In order to enable the reuse of IP
components, IP must become an integral part of the system design methodology. In
particular, IP reuse must be supported by the design language, the design models,
the methodology, and the tools used in the design process.

In this work, the SpecC approach to system-level design with explicit support of
IP reuse has been presented. The SpecC approach is based on an IP-centric design
model, an IP-centric design methodology, and the SpecC language which has been
speci�cally developed for the purpose of embedded systems design.

7.1 Contributions

The contributions of this work are summarized in the following sections.

7.1.1 IP-centric model

The SpecC model meets the goals and requirements of system-level design. It is
suitable to represent abstract properties of the intended system in early stages of
the design process, as well as speci�c and detailed design characteristics later in the
implementation.

As described in Chapter 2, the SpecC design model consists of a hierarchical
network of behaviors and channels. In this model, computation and communication

137

138 CHAPTER 7. CONCLUSION

are clearly separated in the way that the behaviors contain the computation and
functionality, whereas the channels encapsulate the communication in the system.
This separation is essential in order to support IP reuse.

The support of IP is a major bene�t of the SpecC model. IP components are
integrated in a SpecC design model the same way as any other components in the
system. Moreover, IP components can be easily inserted or replaced in the system
model, at any time in the design process. In other words, the SpecC model is
IP-centric, as it allows \plug-and-play" with IP components.

For design speci�cation with SpecC, modeling guidelines have been set up in
Chapter 2. Following these guidelines will ensure that a design model is well-de�ned.
A well-de�ned SpecC model will work well with the SpecC tool set, since it is
synthesizable, supports IP, and in particular meets the requirements of the SpecC
methodology.

Well-de�ned composite behaviors, supporting sequential, concurrent, pipelined,
FSM-style and exceptional execution, are organized hierarchically, forming struc-
tural and behavioral hierarchy in the system model. At the lowest level in the
hierarchy, the leaf behaviors, speci�ed as arbitrary algorithmic programs, and the
IP behaviors, whose internal composition is hidden, represent the smallest indivisible
units in the model.

Communication is modeled by use of explicitly connected shared variables, or by
channels, which also support hierarchy. Channels encapsulate the communication
protocols, hiding the details of the communication, while providing an abstract,
high-level interface to the connected behaviors. This encapsulation mechanism is
exploited speci�cally for the wrapper concept used with IPs.

7.1.2 IP-centric methodology

Based on the modeling guidelines de�ned for SpecC design models, the SpecC design
methodology has been presented in Chapter 3. The SpecC methodology is IP-centric
and features a set of well-de�ned design models and well-de�ned re�nement tasks,
which transform an abstract, executable speci�cation of the design into a detailed
implementation.

The SpecC methodology consists of a horizontal validation ow, allowing sim-
ulation, estimation and analysis at any abstraction level. In addition, the vertical
exploration and synthesis ow re�nes the initial design speci�cation in several steps
into a �nal implementation architecture ready for manufacturing.

In particular, the synthesis ow is based on four well-de�ned models, namely
the speci�cation model, the architecture model, the communication model, and the
implementation model.

The speci�cation model is the most abstract model in the design ow. It contains

7.1. CONTRIBUTIONS 139

an accurate description of the �nal implementation only in terms of the functional-
ity. The next model, the architecture model, adds the structure of the �nal system
to the model, so that it accurately reects the target architecture. Then, the com-
munication model mirrors the communication performed in the �nal system in an
bit-exact and cycle-exact manner. Finally, the implementation model re�nes the
internal structure of the components in the model, allowing clock-cycle accurate
simulation of the implemented design.

The four models clearly specify the input and output of the tasks in the design
ow. In other words, the four models serve as a detailed speci�cation for the tools in
the SpecC design environment. This applies in particular to architecture exploration
and communication synthesis, which have been described with their intermediate
re�nement steps by use of detailed examples.

Architecture exploration includes the traditional tasks of architecture allocation,
hardware/software partitioning and system-level scheduling. After the target archi-
tecture has been selected, architecture exploration maps the speci�cation model onto
the allocated architecture by assigning behaviors to processing elements, variables
to memories and channels to the system busses.

Then, communication synthesis re�nes the architecture model into the commu-
nication model, performing protocol selection, transducer insertion and protocol
synthesis. Finally, the back end utilizes behavioral synthesis and software compi-
lation to create the implementation model, providing a clear hand-o� for design
manufacturing.

Since the reuse of IP is integrated with the design ow, the SpecC design method-
ology is IP-centric. It supports the easy insertion and replacement of IP components,
allowing quick design space exploration.

The SpecC methodology promises a large productivity gain and a signi�cant
reduction of design time and design costs, due to less and smaller iterations in the
design process. With the SpecC methodology, the designers can focus on the design
space exploration, making design decisions based on their experience. The tedious
and error prone re�nement tasks with the design models are performed automatically
by the tools.

7.1.3 SpecC language

In Chapter 4, the requirements and objectives for system-level design languages
have been discussed and identi�ed. A language suitable for the design of embedded
systems must be executable and synthesizable. Further, it must completely sup-
port software and hardware-speci�c concepts. More speci�cally, in addition to the
well-known software concepts, hardware-speci�c concepts are required, including be-
havioral and structural hierarchy, concurrency, timing, synchronization, exception

140 CHAPTER 7. CONCLUSION

handling and state transitions. Finally, all these concepts should be represented in
an independent and straightforward manner.

A set of traditional languages has been examined and compared against these
requirements and goals. Since none of these languages satis�es all the requirements,
a new language, called SpecC [DZG98], has been proposed. The SpecC language
has been targeted speci�cally to support the identi�ed concepts needed in embedded
systems design.

The SpecC language, which has been described in detail in Chapter 4, has been
developed and implemented. Compared to the set of traditional languages, SpecC
is the only language that supports all the required concepts. Also, when compared
to recent system-level languages, SpecC turns out to be a superior speci�cation and
modeling language1.

Built on top of the ANSI-C language, the de-facto standard for software develop-
ment, SpecC inherits the bene�ts of a popular and successful software programming
language. Moreover, since SpecC is a true superset of C, a large library of already
existing algorithms can immediately be used. Also, the similarity with C makes it
easy to learn and easy to understand for everyone familiar with the C language.

SpecC combines the features found in software and hardware design, as it is
based on a software language and adds all concepts needed for hardware models. In
particular, the SpecC language contains special constructs to represent the needed
hardware concepts, including communication, concurrency, hierarchy, synchroniza-
tion, exception handling, state transitions and timing.

The SpecC language provides a complete set of constructs which, at the same
time, is also minimal. SpecC maps the modeling concepts onto independent language
constructs in a one to one fashion. As a result, SpecC precisely covers the unique
requirements for embedded systems design in an orthogonal manner.

The SpecC language also encourages the reuse of IP. Directly following the IP-
centric SpecC model discussed in Chapter 2, the SpecC language features \plug-
and-play" support for IP components.

In summary, the contribution of this task is the development and implementation
of a new speci�cation and modeling language, called SpecC, which precisely covers
the requirements for the design of embedded systems. The SpecC language satis�es
all the requirements and goals, as is executable and synthesizable, and supports all
hardware- and software-speci�c concepts needed for modeling embedded systems.

1A comparison of the SpecC language with the Scenic approach, which has recently been renamed
to SystemC, can be found in [DG98]. Further, a comparison with VHDL+, an extension of VHDL,
can be found in [GZG98].

7.1. CONTRIBUTIONS 141

7.1.4 SpecC design environment

The SpecC methodology and the SpecC language have been implemented in the
SpecC design environment, which has been described in Chapter 5. The SpecC
design environment consists of a set of CAD tools for system validation, analysis,
and synthesis, integrated in a graphical user interface (GUI).

Since the SpecC design environment, the SpecC models, the SpecC language
and the SpecC methodology have been developed concurrently and consistently, they
represent a coherent system. The SpecC language matches the SpecC model, and the
implemented programs reect the SpecC methodology. All the components forming
the SpecC design environment are designed and tuned for the speci�c requirements
and goals of system-level design.

The validation ow of the design environment has been implemented with the
SpecC release 2.0.4. This release has been made freely available on the world-wide
web (WWW) and is currently in evaluation and use in academia and industry. The
release includes the tools developed by the author of this work, in particular, the
SpecC compiler, the SpecC Internal Representation, a pro�ler and a tool set.

7.1.4.1 SpecC Internal Representation

The SpecC Internal Representation (SIR) is the central design representation used
by all SpecC tools for input, output, access and modi�cation of SpecC design models.

The SIR is a complex data structure, embedded in a comprehensive, well-de�ned
and well-documented API. As such, the SIR provides an abstraction layer above the
speci�c details of the SpecC language.

The bene�t of the SIR as a common design representation is that new tools can
be developed very quickly, which has been proven with the implementation of a set of
pro�ling tools. The SIR provides all required functions to access the design model.
Without the SIR library, the development and implementation of such functions
would require a signi�cant amount of time. With the SIR, the SpecC tool developer
can focus solely on the algorithms of his task.

In conclusion, the SIR and its API provide a solid base for the quick development
of new tools for the SpecC design environment.

7.1.4.2 SpecC compiler

The SpecC compiler is the main tool in the validation ow of the SpecCmethodology.
Its main purpose is the generation of an executable simulation model from a SpecC
design model, at any stage in the design ow. The SpecC compiler also serves as a
converter between the di�erent �le formats used in the SpecC design environment.

142 CHAPTER 7. CONCLUSION

Together with the SpecC simulation library, the SpecC compiler essentially sat-
is�es the requirement of executability for any SpecC design model. Hence, it enables
dynamic validation and analysis of the design model, simply by execution on the
host computer.

The SpecC compiler provides special support for debugging and pro�ling. As a
result, any standard C/C++ debugger can be used for debugging SpecC programs,
furnishing the SpecC simulation with single-stepping, break points, and data inspec-
tion capabilities.

Finally, the SpecC compiler has been extended to provide automatic IP protec-
tion, as summarized in the next section.

7.1.5 IP protection

IP reuse and IP protection have been implemented in the SpecC design environ-
ment. In particular, the SpecC compiler has been extended in order to support the
recognition, the use and the generation of IP components.

For IP protection, the SpecC compiler allows the automatic creation of public IP
interfaces and secret IP libraries from the IP source code. Using the implemented
IP mode, the IP provider can automatically create the public interface and the
IP library, being sure that no information about his secret implementation will be
available to the IP user. On the other hand, the IP user can simply include the
IP interface declaration in his design model and use the IP component just as any
other behavior or channel. For simulation, the IP user simply links his executable
�le against the provided IP library.

With the SpecC IP protection, any IP is fully protected against reverse-
engineering, and the use of IPs is just a matter of \plug-and-play".

7.1.6 Experience

Using the SpecC design environment, the IP-centric methodology has been success-
fully applied to several designs of industrial size.

In Appendix B, a set of example designs is listed, which have been modeled
according to the SpecC modeling guidelines, and have been speci�ed with the
SpecC language. After successful compilation, simulation and debugging, the SpecC
methodology has been manually applied to a subset of the examples, generating de-
tailed implementation models.

As a result, the SpecC approach has been proven with real-world examples,
including a JPEG encoder [CPC+99] and a GSM vocoder [GZG+99].

7.2. FUTURE WORK 143

7.1.7 Impact

As of today, the SpecC approach is evaluated and already in use in academia and
industry. The SpecC methodology and the SpecC language have gained wide ac-
ceptance, in particular, in the industry.

Recently, the SpecC language has been proposed as a standard system-level
language for adoption in industry by some of Japan's top-tier electronics and semi-
conductor companies [CGC+99].

In conclusion, the SpecC approach presented in this work has a signi�cant impact
on the future of SOC design and the deep sub-micron era.

7.2 Future Work

In addition to support and maintenance of the current SpecC design environment,
future work will focus on the SpecC language and the implementation of the SpecC
synthesis ow.

7.2.1 SpecC language

The experience with the real use of the SpecC language has shown that minor
adjustments and some extensions are desirable in order to make the language more
convenient. These issues, which have been outlined in Section 4.14, need to be
addressed in a possible new release of the SpecC language.

At the same time, future work will emphasize on the standardization of the
SpecC language.

7.2.2 Synthesis ow

For the synthesis ow, e�cient algorithms need to be developed and implemented
in order to support the system designer with the re�nement of the design models.

In particular, the tasks of architecture exploration and communication synthesis
require research on their algorithms, and the implementation of automated tools.

144 CHAPTER 7. CONCLUSION

Appendix A

SpecC Users Manual

For quick reference, the manual pages of the SpecC programs and tools, developed
and implemented for this work, are listed in the following sections.

A.1 SpecC Compiler scc

NAME

scc { SpecC Compiler

SYNOPSIS

scc {h

scc design [command] [options]

DESCRIPTION

scc is the compiler for the SpecC language. The main purpose of scc is
to compile a SpecC source program into an executable program for simu-
lation. Furthermore, scc serves as a general tool to translate SpecC code
from various input to various output formats which include SpecC source
text, SpecC binary �les in SpecC Internal Representation format, and other
compiler intermediate �les.

Using the �rst command syntax as shown in the synopsis above, a brief
usage information and the compiler version are printed to standard output
and the program exits. Using the second command syntax, the speci�ed

145

146 APPENDIX A. SPECC USERS MANUAL

design is compiled. By default, scc reads a SpecC source �le, performs
preprocessing and builds the SpecC Internal Representation (SIR). Then,
C++ code is generated, compiled and linked into an executable �le to be
used for simulation. However, the subtasks performed by scc are controlled
by the given command so that, for example, only partial compilation is
performed with the speci�ed design.

On successful completion, the exit value 0 is returned. In case of errors
during processing, an error code with a brief diagnostic message is written
to standard error and the program execution is aborted with the exit value
10.

For preprocessing and C++ compilation, scc relies on the availability of an
external C++ compiler which is used automatically in the background. By
default, the GNU compiler gcc/g++ is used.

ARGUMENTS

design speci�es the name of the design; by default, this name is used as
base name for the input �le and all output �les;

COMMAND

The command has the format - su�x1 2 su�x2, where su�x1 and su�x2
specify the format of the main input and output �le, respectively. This
command also implies the compilation steps being performed. By default,
the command {sc2out is used which speci�es reading a SpecC source �le
(e.g. design.sc) and generating an executable �le (e.g. a.out) for simula-
tion. All necessary intermediate �les (e.g. design.cc, design.o) are generated
automatically.

Legal command su�xes are:

sc SpecC source �le (default: design.sc)

si preprocessed SpecC source �le (default: design.si)

sir binary SIR �le in SpecC Internal Representation format (default: de-
sign.sir)

cc C++ simulation source �le (default: design.cc)

h C++ simulation header �le (default: design.h)

A.1. SPECC COMPILER SCC 147

cch both, C++ simulation source �le and C++ header �le (default: de-
sign.cc and design.h)

o linker object �le (default: design.o)

out executable �le for simulation (default: design); however, with the {ip
option, a shared library will be produced (default: libdesign.so)

OPTIONS

{v j {vv j -vvv increase the verbosity level so that all tasks performed are
logged to standard error (default: be silent); at level 1, in-
formative messages for each task performed are displayed;
at level 2, additionally input and output �le names are
listed; at level 3, very detailed information about each
executed task is printed;

{w j {ww j -www increase the warning level so that warning messages are
enabled (default: warnings are disabled); four levels are
supported ranging from only important warnings (level
1) to pedantic warnings (level 4); for most cases, warning
level 2 is recommended ({ww);

{g enable debugging of the generated simulation code (de-
fault: no debugging code); this option disables optimiza-
tion;

{O enable optimization of the generated simulation code (de-
fault: no optimization); this option disables debugging;

{ip enable intellectual property (IP) mode; when generating
a SIR binary or SpecC text �le, only declarations of sym-
bols marked public will be included (the public interface
of an IP is created); when generating C++ code, non-
public symbols will be output so that they will be in-
visible outside the �le scope; when compiling or linking,
the compiler and linker are instructed to create a shared
library instead of an executable �le (creation of an IP
simulation library);

{sl suppress source line information (preprocessor directives)
when generating SpecC or C++ source code (default: in-
clude source line directives);

148 APPENDIX A. SPECC USERS MANUAL

{sn suppress all annotations when generating SpecC source
code (default: include annotations);

{i input �le specify the name of the input �le explicitly (default: de-
sign.su�x1); the name '-' can be used to specify reading
from standard input;

{o output �le specify the name of the �nal output �le explicitly (default:
design.su�x2); the name '-' can be used to specify writing
to standard output;

{D do not de�ne any standard macros; by default, the macro
SPECC is de�ned automatically (it is set to 1); fur-

thermore, implementation dependent macros may be de-
�ned; this option suppresses the de�nition of all these
macros;

{Dmacrodef de�ne the preprocessor macro macrodef to be passed to
the preprocessor;

{U do not unde�ne any macros; by default, few macros are
unde�ned automatically (in order to allow C/C++ stan-
dard header �les to be used); this option is implementa-
tion dependent;

{Uundef unde�ne the preprocessor macro undef which will be
passed to the preprocessor as being unde�ned; the
macro undef will be unde�ned after the de�nition of all
command-line macros; this allows to selectively suppress
macros from being de�ned in the preprocessing stage;

{I clear the standard include path; by default, the standard
include path consists of the directory $SPECC/inc; this
option suppresses the default include path;

{Idir append dir to the include path (extend the list of direc-
tories to be searched for including source �les); include
directories are searched in the order of their speci�cation;
unless suppressed by option {I, the standard include path
is automatically appended to this list; by default, only the
standard include directories are searched;

A.1. SPECC COMPILER SCC 149

{L clear the standard library path; by default, the standard
library path consists of the directory $SPECC/lib; this
option suppresses the default library path;

{Ldir append dir to the library path (extend the list of directo-
ries to be searched for linker libraries); the library path
is searched in the speci�ed order; unless suppressed by
option {L, the standard library path is automatically ap-
pended to this list; by default, only the standard library
path is searched;

{l when linking, do not use any standard libraries; by de-
fault, the standard libraries libbit, libsim, libqt, and
libprof are used for linking the executable �le; this op-
tion suppresses linking against theses standard libraries;

{llib pass lib as a library to the linker so that the executable is
linked against lib; libraries are linked in the speci�ed or-
der; unless suppressed by option {l, the standard libraries
are automatically appended to this list; by default, only
standard libraries are used;

{P reset the import path; clear the list of directories to be
searched for importing binary �les; by default, only the
current directory is searched; this option suppresses this
standard import path;

{Pdir append dir to the import path (extend the list of direc-
tories to be searched for importing binary �les); import
directories are searched in the order of their speci�cation;
unless suppressed by option {P, the standard search path
is automatically appended to this list; by default, only
the standard import path is searched;

{xpp preprocessor call rede�ne the command to be used for calling the C pre-
processor (default: "g++ -E -x c %p %i -o %o"); in the
speci�ed string, every occurence of %p will be replaced
with a preprocessor option; additional options will be ap-
pended; also, %i and %o will be replaced automatically
with the actual input and output �lename, respectively;

150 APPENDIX A. SPECC USERS MANUAL

{xcc compiler call rede�ne the command to be used for calling the C/C++
compiler (default: "g++ -c %c %i -o %o"); in the spec-
i�ed string, every occurence of %c will be replaced with
a compiler option; additional options will be appended;
also, %i and %o will be replaced automatically with the
actual input and output �lename, respectively;

{xld linker call rede�ne the command to be used for calling the linker
(default: "g++ %i -o %o %l"); in the speci�ed string,
every occurence of %l will be replaced with a linker op-
tion; additional options will be appended; also, %i and
%o will be replaced automatically with the actual input
and output �lename, respectively;

{xp preprocessor option pass an option directly to the C/C++ preproces-
sor; for every %p in the preprocessor call (see above), an
option has to be speci�ed (default: none);

{xc compiler option pass an option directly to the C/C++ compiler; for
every %c in the compiler call (see above), an option has
to be speci�ed (default: none);

{xl linker option pass an option directly to the linker; for every %l in the
linker call (see above), an option has to be speci�ed (de-
fault: none);

ENVIRONMENT

The environment variable SPECC is used to determine the home directory
of the SpecC system where SpecC standard include �les and SpecC system
libraries are located.

ANNOTATIONS

The following SpecC annotations are recognized by the compiler:

scc ReservedSize for external behaviors and channels (IP components),
this indicates the size reserved in the C++ class for in-
ternal use; the annotation type is unsigned int; if found
at class de�nitions, this annotation is checked automat-
ically for reasonable values; for IP declarations, the

A.1. SPECC COMPILER SCC 151

annotation can be created automatically with the {ip
option;

scc Public for global symbols, this annotation indicates whether
the symbol is public and will be visible in a shared
library; the annotation type is bool; this annotation
only is recognized with the {ip option;

VERSION

The SpecC compiler scc is version 2.0.4.

AUTHOR

Rainer Doemer <doemer@ics.uci.edu>

COPYRIGHT

Copyright (c) 1997, 1998, 1999 CECS, University of California, Irvine.

SEE ALSO

gcc(1), g++(1), sprof(l), sir tools(l)

BUGS, LIMITATIONS

Semantic type checking of certain expressions is not fully implemented.

152 APPENDIX A. SPECC USERS MANUAL

A.2. SPECC PROFILER SPROF 153

A.2 SpecC Pro�ler sprof

NAME

sprof { SpecC Pro�ler

SYNOPSIS

sprof {h

sprof command [options] design in design out

DESCRIPTION

sprof is the pro�ler of the SpecC system. Pro�ling of SpecC programs
consists of three phases. First, a design is instrumented by the pro�ler
with a set of counters. These counters are incremented by counting state-
ments which the pro�ler inserts at the beginning of each function and class
method. Also, the main method of the behavior Main is instrumented with
a function call to the pro�ling run-time library, so that pro�ling is enabled
when the design is simulated.

Second, an executable pro�ling model of the design is created with the
SpecC compiler. Each time the pro�ling model is executed, the number of
executions for each function and each method are counted. The pro�ling
counters are stored in a �le, called pro�le of the design. This �le is read
whenever the execution of a pro�ling model starts and is written when the
execution ends.

The third pro�ling phase consists of back-annotation of the counter values
from the pro�le to the design and de-instrumentation of the design. This
is also performed by the SpecC pro�ler.

Using the �rst command syntax shown in the synopsis above, a brief usage
information including the pro�ler version is printed to standard output. Us-
ing the second command syntax, the pro�ling task speci�ed with command
is performed. For all tasks, sprof reads the SpecC design �le speci�ed
with design in, performs the speci�ed task and then writes the modi�ed
design into a new �le speci�ed with design out. Both design �les are bi-
nary �les containing the SpecC Internal Representation (SIR) of the design.
The SpecC compiler scc may be used to convert the binary SIR �les into
readable source code (and vice versa).

154 APPENDIX A. SPECC USERS MANUAL

On successful completion, sprof returns the exit value 0. In case of errors,
an error code with a brief diagnostic message is written to standard error
and the program execution is aborted with the exit value 10.

COMMAND

The pro�ler is controlled by the given command which is one of +i , {i ,
+b , {b .

+i instrument the design with counters and counting statements for pro-
�ling;

{i de-instrument the design; remove all inserted pro�ling counters and
counting statements;

+b back-annotate the counter values from the pro�le to the instrumented
design in form of annotations;

{b remove the back-annotated pro�le from the design (remove all pro-
�ling annotations);

OPTIONS

{a when back-annotating (command +b), add the counter values from
the pro�le to the current annotated values (default: current pro�ling
annotation must not exist);

{h print a short usage and version information and then quit;

{v enable verbosity mode; all tasks performed are logged to standard
error;

{i input �le specify the input SIR �le explicitly; the name '-' can be used
to specify reading from standard input (default: design in with su�x
.sir);

{o output �le specify the output SIR �le explicitly; the name '-' can be used
to specify writing to standard output (default: design out with su�x
.sir);

{p pro�le specify the �le name for the pro�le explicitly (default:
specc pro�le);

A.2. SPECC PROFILER SPROF 155

ARGUMENTS

design in speci�es the name of the input design; by default, this name
is used as base name for the input �le;

design out speci�es the name of the output design; by default, this name
is used as base name for the output �le;

ANNOTATIONS

The following SpecC annotations are recognized by the pro�ler:

sprof Instrumented a global annotation of type bool, indicating that the
design has been instrumented by the pro�ler;

sprof Pro�led a global annotation of type bool, indicating that the
design already has been pro�led;

sprof ExecCountIndex for every function or method, this annotation indi-
cates the index of its counter in the global counter
array; the annotation type is unsigned int; this an-
notation is used only in an instrumented design;

sprof ExecCount for every function or method, this annotation spec-
i�es the number of executions during pro�ling; the
annotation type is unsigned int; this annotation in
created as the result of pro�ling;

VERSION

The SpecC pro�ler sprof is version 2.0.4.

AUTHOR

Rainer Doemer <doemer@ics.uci.edu>

COPYRIGHT

Copyright (c) 1999 CECS, University of California, Irvine.

156 APPENDIX A. SPECC USERS MANUAL

SEE ALSO

scc(l), sir tools(l)

BUGS, LIMITATIONS

Advanced pro�ling features such as support for call graphs, etc. are not supported.
However, standard C pro�ling tools can be used instead.

A.3. SPECC TOOL SET 157

A.3 SpecC Tool Set

For the SpecC system, several tools have been developed and implemented, which
directly work with binary SIR �les. With these tools, it is not necessary to convert
given SIR �les to text �les in order to look up information about their contents or
to apply simple changes.

A.3.1 sir delete

NAME

sir delete { part of the SpecC SIR tool set

SYNOPSIS

sir delete [options] design [object name...]

DESCRIPTION

sir delete allows to delete objects in a SIR �le. A SIR �le is a binary �le
containing the SpecC Internal Representation of a design. sir delete reads
the SIR �le speci�ed with design and deletes all objects speci�ed with the
object name list. When done, sir delete writes back the modi�ed design
into the same �le, unless the {i or {o options are used.

On successful completion, the exit value 0 is returned. In case of errors,
an error code with a diagnostic message is written to standard error and
the program execution is aborted with the exit value 10. In this case, no
output is produced, in other words, the speci�ed design is left unchanged.

ARGUMENTS

design speci�es the design to work with; if no {i or {o options are spec-
i�ed, the su�x '.sir' will be appended to this name in order to
obtain the SIR �le to read and write, respectively;

object name speci�es the symbol to be deleted; for global symbols, ob-
ject name is simply the symbol name; for class members and
methods, object name is the class name followed by a '.' and
the member or method name; for local symbols in functions and

158 APPENDIX A. SPECC USERS MANUAL

methods, the same syntax is used, the symbol name follows after
a '.' appended to the function or method speci�er;

OPTIONS

{h prints a short usage and version information and then quits;

{i input �le speci�es the name of the input �le explicitly; the name '-' can
be used to specify reading from standard input;

{o output �le speci�es the name of the output �le explicitly; the name '-'
can be used to specify writing to standard output;

{v enables verbosity mode; all actions performed are logged to standard
error;

VERSION

The SpecC SIR tool set is version 2.0.4.

AUTHOR

Rainer Doemer <doemer@ics.uci.edu>

COPYRIGHT

Copyright (c) 1998, 1999 CECS, University of California, Irvine.

SEE ALSO

scc(l), sir list(l), sir note(l), sir rename(l), sir strip(l), sir tree(l)

BUGS, LIMITATIONS

sir delete can only delete global symbols and local symbols at class level or func-
tion/method level. Symbols de�ned locally within compound statements or user-
de�ned types are not accessable due to the limited syntax used for object name.

A.3. SPECC TOOL SET 159

A.3.2 sir list

NAME

sir list { part of the SpecC SIR tool set

SYNOPSIS

sir list [options] sir �le [[options] sir �le...]

DESCRIPTION

sir list lists the contents of one or more SIR �les. A SIR �le is a binary
�le containing the SpecC Internal Representation of a design. For each
speci�ed sir �le, sir list reads the SIR �le and prints a list of the global
and local symbols contained in the �le to standard output, along with
additional information depending on the options given. The symbols are
listed in alphabetical order.

On successful completion, the exit value 0 is returned. In case of errors, an
error code with a diagnostic message is written to standard error and the
program execution is aborted with the exit value 10.

ARGUMENTS

sir �le speci�es the SIR �le whose contents will be listed; if sir �le does
not exist, the su�x '.sir' will be appended; the name '-' can be
used to specify reading from standard input;

OPTIONS

{a enables printing of all symbol lists (equivalent to +BCDFINPSV);

{c lists behaviors, channels and interfaces only; this ist the default
(equivalent to +BCI {DFNPSV);

{h prints a short usage and version information and then quits;

{l speci�es a long listing; for each symbol, a set of ags (as de�ned
below) is listed;

160 APPENDIX A. SPECC USERS MANUAL

{r recursively lists the contents of behaviors, channels and interfaces
(instantiated behaviors and channels, local variables and methods);

{t prints the type information with each symbol;

{v speci�es verbosity mode; for each sub-list, a section header is printed;

{x includes external de�nitions in the lists; external de�nitions are dec-
larations of functions, classes without body and variables of storage
class extern;

+B j {B speci�es whether to include or exclude the list of behaviors;

+C j {C speci�es whether to include or exclude the list of channels;

+D j {D speci�es whether to include or exclude the design name;

+F j {F speci�es whether to include or exclude the list of functions;

+I j {I speci�es whether to include or exclude the list of interfaces;

+N j {N speci�es whether to include or exclude the list of annotations for
each listed symbol;

+P j {P speci�es whether to include or exclude the list of imported �les;

+S j {S speci�es whether to include or exclude the list of source �les;

+V j {V speci�es whether to include or exclude the list of variables;

FLAGS

With the {l option, a set of ags is printed with each symbol. From the
ags, the symbol class, the storage class and the symbol classi�cation can
be determined; the ags are de�ned as follows:

symbol type is one of [BCDFINPSVbcfv], indicating behavior (B), chan-
nel (C), design (D), global function (F), interface (I), an-
notation (N), import �le (P), source �le (S), global vari-
able (V), behavior instance (b), channel instance (c), class
method (f), or class variable (v);

storage class is intern or extern (one of [ix]), indicating internal de�nition
(i), or external declaration (x);

A.3. SPECC TOOL SET 161

classi�cation is one of [acefhilnoprstwx], indicating for behaviors: con-
current (c), FSM (f), leaf (l), pipeline (p), sequential (s),
exception (t), external (x), or other (o); for channels: leaf
(l), hierarchical (h), wrapper (w), external (x), or other (o);
for interfaces: internal (i) or external (x); otherwise stor-
age class: auto (a), extern (e), none (n), register (r), static
(s), typedef (t), or piped (p followed by the number of pipe
stages);

VERSION

The SpecC SIR tool set is version 2.0.4.

AUTHOR

Rainer Doemer <doemer@ics.uci.edu>

COPYRIGHT

Copyright (c) 1998, 1999 CECS, University of California, Irvine.

SEE ALSO

scc(l), sir delete(l), sir note(l), sir rename(l), sir strip(l), sir tree(l)

BUGS, LIMITATIONS

sir list can only list global symbols and symbols at class level (with option {r). Sym-
bols and annotations de�ned locally within compound statements or user-de�ned
types are not included.

162 APPENDIX A. SPECC USERS MANUAL

A.3. SPECC TOOL SET 163

A.3.3 sir note

NAME

sir note { part of the SpecC SIR tool set

SYNOPSIS

sir note [options] design [object name] [annotation...]

DESCRIPTION

sir note allows to annotate objects in a SIR �le. A SIR �le is a binary �le
containing the SpecC Internal Representation of a design. sir note reads
the SIR �le speci�ed with design and, when done, writes back the modi�ed
design into the same �le, unless the -i or -o options are used.

sir note annotates the object speci�ed with object name or, if no ob-
ject name is speci�ed, annotates the design itself with global annotations.
For each annotation that is speci�ed, sir note attaches, modi�es or re-
moves the annotation, depending on whether such an annotation already
exists and a new value is speci�ed.

On successful completion, the exit value 0 is returned. In case of errors,
an error code with a diagnostic message is written to standard error and
the program execution is aborted with the exit value 10. In this case, no
output is produced, in other words, the speci�ed design is left unchanged.

ARGUMENTS

design speci�es the design to work with; if no {i or {o options are spec-
i�ed, the su�x '.sir' will be appended to this name in order to
obtain the SIR �le to read and write, respectively.

object name speci�es the symbol to be annotated; for global symbols, ob-
ject name is simply the symbol name; for class members and
methods, object name is the class name followed by a '.' and
the member or method name; for local symbols in functions and
methods, the same syntax is used, the symbol name follows after
a '.' appended to the function or method speci�er;

164 APPENDIX A. SPECC USERS MANUAL

annotation speci�es the new annotation to be attached to the speci�ed ob-
ject; syntactically, annotation is composed of the name of the note
followed by an assignment character ('=') and optionally the new
value; for the value, the standard SpecC syntax for constants ap-
plies; if no new value is given, the speci�ed annotation will be
removed;

OPTIONS

{h prints a short usage and version information and then quits;

{i input �le speci�es the name of the input �le explicitly; the name '-' can
be used to specify reading from standard input;

{o output �le speci�es the name of the output �le explicitly; the name '-'
can be used to specify writing to standard output;

{v enables verbosity mode; all actions performed are logged to standard
error;

VERSION

The SpecC SIR tool set is version 2.0.4.

AUTHOR

Rainer Doemer <doemer@ics.uci.edu>

COPYRIGHT

Copyright (c) 1998, 1999 CECS, University of California, Irvine.

SEE ALSO

scc(l), sir delete(l), sir list(l), sir rename(l), sir strip(l), sir tree(l)

A.3. SPECC TOOL SET 165

BUGS, LIMITATIONS

sir note can only annotate global symbols and local symbols at class level or func-
tion/method level. Symbols de�ned locally within compound statements or user-
de�ned types are not accessable due to the limited syntax used for object name.

166 APPENDIX A. SPECC USERS MANUAL

A.3. SPECC TOOL SET 167

A.3.4 sir rename

NAME

sir rename { part of the SpecC SIR tool set

SYNOPSIS

sir rename [options] design in design out [object name new name] [
object name new name...]

DESCRIPTION

sir rename allows to rename objects in a SIR �le; a SIR �le is a binary
�le containing the SpecC Internal Representation of a design. sir rename
reads the SIR �le speci�ed with design in and generates a modi�ed design
in a new SIR �le speci�ed with design out. For each pair object name and
new name, sir rename renames the speci�ed object to the new name.

On successful completion, the exit value 0 is returned. In case of errors,
an error code with a diagnostic message is written to standard error and
the program execution is aborted with the exit value 10. In this case, no
output is produced.

ARGUMENTS

design in speci�es the input design; if no -i option is speci�ed, the su�x
'.sir' will be appended in order to obtain the SIR �le to read;

design out speci�es the output design; if no -o option is speci�ed, the
su�x '.sir' will be appended in order to obtain the SIR �le to
write;

object name speci�es the symbol to be renamed; for global symbols, ob-
ject name is simply the symbol name; for class members and
methods, object name is the class name followed by a '.' and
the member or method name; for local symbols in functions
and methods, the same syntax is used, the symbol name fol-
lows after a '.' appended to the function or method speci�er.

168 APPENDIX A. SPECC USERS MANUAL

new name speci�es the new name of the object; new name must be a legal
SpecC identi�er; also, further semantic restrictions apply;

OPTIONS

{h prints a short usage and version information and then quits;

{i input �le speci�es the name of the input �le explicitly; the name '-' can
be used to specify reading from standard input;

{o output �le speci�es the name of the output �le explicitly; the name '-'
can be used to specify writing to standard output;

{v enables verbosity mode; all actions performed are logged to standard
error;

VERSION

The SpecC SIR tool set is version 2.0.4.

AUTHOR

Rainer Doemer <doemer@ics.uci.edu>

COPYRIGHT

Copyright (c) 1998, 1999 CECS, University of California, Irvine.

SEE ALSO

scc(l), sir delete(l), sir list(l), sir note(l), sir strip(l), sir tree(l)

BUGS, LIMITATIONS

sir rename can only rename global symbols and local symbols at class level or func-
tion/method level. Symbols de�ned locally within compound statements or user-
de�ned types are not accessable due to the limited syntax used for object name.

A.3. SPECC TOOL SET 169

A.3.5 sir strip

NAME

sir strip { part of the SpecC SIR tool set

SYNOPSIS

sir strip [options] sir �le...

DESCRIPTION

With sir strip, source location and import �le information can be stripped
from a SIR �le. A SIR �le is a binary �le containing the SpecC Internal
Representation of a design. sir strip reads the speci�ed SIR �le, removes
the source �le and import �le entries from the design data structure and
writes the SIR �le back, thus, reducing the �le size.

Please note that the stripped information cannot be restored without access
to the original source �les. Therefore, stripping is recommended for binary
�les which are to be distributed without source code.

On successful completion, the exit value 0 is returned. In case of errors,
an error code with a diagnostic message is written to standard error and
the program execution is aborted with the exit value 10. In this case, no
output is produced, in other words, the speci�ed sir �le is left unchanged.

ARGUMENTS

sir �le speci�es the SIR �le to be stripped; if the speci�ed �le does not
exist, the su�x '.sir' will be appended to the �le name; the name
'-' can be used to specify reading from standard input and writing
to standard output, thus working as a �lter;

OPTIONS

{h prints a short usage and version information and then quits;

{i disables stripping of import �le entries; only source location informa-
tion is removed;

170 APPENDIX A. SPECC USERS MANUAL

{s disables stripping of source �le entries; only import �le information
is removed;

{v enables verbosity mode; all actions performed are logged to standard
error;

VERSION

The SpecC SIR tool set is version 2.0.4.

AUTHOR

Rainer Doemer <doemer@ics.uci.edu>

COPYRIGHT

Copyright (c) 1998, 1999 CECS, University of California, Irvine.

SEE ALSO

scc(l), sir delete(l), sir list(l), sir note(l), sir rename(l), sir tree(l)

BUGS, LIMITATIONS

None.

A.3. SPECC TOOL SET 171

A.3.6 sir tree

NAME

sir tree { part of the SpecC SIR tool set

SYNOPSIS

sir tree [options] sir �le [class name...]

DESCRIPTION

sir tree graphically lists the instantiation hierarchy of behaviors and chan-
nels contained in a SIR �le. A SIR �le is a binary �le containing the SpecC
Internal Representation of a design. sir tree reads the speci�ed SIR �le
and prints the tree of behavior and channel instances to standard output,
along with additional information depending on the options given.

If there are no class names speci�ed, sir tree automatically determines the
root behaviors and channels and prints a tree for each of them. Otherwise,
sir tree prints a tree for each speci�ed class name in the given order.

ARGUMENTS

sir �le speci�es the SIR �le whose contents will be displayed; if sir �le
does not exist, the su�x '.sir' will be appended; the name '-' can
be used to specify reading from standard input;

class name speci�es the name of a behavior or a channel whose instantiation
tree will be printed;

OPTIONS

{b graphically displays the branches of the tree; otherwise, by default,
simple tabulators will be used for tree indentation;

{f prints a attened tree, in other words, no indentation will be used;

{h prints a short usage and version information and then quits;

172 APPENDIX A. SPECC USERS MANUAL

{l speci�es a long listing; for each behavior or channel, a set of ags (as
de�ned below) is listed;

{t prints the type information with each behavior and channel;

{B excludes behaviors from being displayed;

{C excludes channels from being displayed;

FLAGS

With the {l option, a set of ags is printed with each behavior and channel.
From the ags, the class type, the storage class and the class classi�cation
can be determined; the ags are de�ned as follows:

class type is one of [BC], indicating behavior (B) or channel (C).

storage class is intern or extern (one of [ix]), indicating internal class with
known body (i), or external class with unknown body (x).

classi�cation is one of [cfhlopstwx], indicating for behaviors: concurrent (c),
FSM (f), leaf (l), pipeline (p), sequential (s), exception (t),
external (x), or other (o); for channels: leaf (l), hierarchical
(h), wrapper (w), external (x), or other (o).

VERSION

The SpecC SIR tool set is version 2.0.4.

AUTHOR

Rainer Doemer <doemer@ics.uci.edu>

COPYRIGHT

Copyright (c) 1998, 1999 CECS, University of California, Irvine.

SEE ALSO

scc(l), sir delete(l), sir list(l), sir note(l), sir rename(l), sir strip(l)

A.3. SPECC TOOL SET 173

BUGS, LIMITATIONS

None.

174 APPENDIX A. SPECC USERS MANUAL

Appendix B

SpecC Design Examples

Numerous design examples have been developed and successfully been used with the
SpecC system, including a discrete cosine transformation (DCT) [AG98], an ATM
packet �lter [KZG97], a JPEG encoder [CPC+99], and a GSM vocoder [GZG+99].
A set of selected examples is presented in the following sections.

B.1 Tutorial Examples

The set of tutorial examples, as listed in Table B.1, is part of the SpecC standard
distribution1. These small examples demonstrate speci�c features of SpecC and can
serve as a tutorial for the SpecC language. Since all ten examples are complete
and fully functional, they can be compiled with the SpecC compiler and simulated
\out-of-the-box".

� Adder.sc describes a simple 8 bit adder built from logic gates.

� Behaviors.sc lists the types of SpecC behaviors as described in Section 2.3.

� BitVectors.sc demonstrates the use of SpecC bit vectors as de�ned in Sec-
tion 4.3.1.2.

� Callback.sc contains a call-back communication between a sender and a re-
ceiver as mentioned in Section 4.6.1.

� DataTypes.sc lists the basic data types supported by SpecC as speci�ed in
Section 4.3.1.

1In the SpecC distribution, these examples can be found in the examples/simple/ directory.

175

176 APPENDIX B. SPECC DESIGN EXAMPLES

Example Behaviors Channels Lines of code

Adder.sc 7 0 165
Behaviors.sc 8 0 113
BitVectors.sc 6 0 143
Callback.sc 3 1 231
DataTypes.sc 1 0 113
FSM.sc 9 0 168
HelloWorld.sc 1 0 23
Notes.sc 2 1 127
Pipeline.sc 6 0 132
Timing.sc 3 1 245

Table B.1: SpecC tutorial examples

� FSM.sc describes a clock-driven �nite state machine as discussed in Sec-
tion 4.5.1.2.

� HelloWorld.sc contains the famous \Hello World!" example in SpecC.

� Notes.sc demonstrates the use of annotations as described in Section 4.11.

� Pipeline.sc contains a three-stage pipeline design as presented in Sec-
tion 4.5.2.2.

� Timing.sc demonstrates the speci�cation of timing diagrams as discussed in
Section 4.10.2.

More detailed information on these examples is contained in the distribution of the
SpecC system.

B.2 Library Example

In order to demonstrate library management and IP support with SpecC, the so-
called library example was developed. This example is also part of the SpecC stan-
dard distribution2. Using adders as example components, the example shows, how
components from a library of gates can be composed and made available as IP
components.

Please note that this example demonstrates library and IP issues at low ab-
straction levels, the gate and RT level. This is done only for the purpose of using

2In the SpecC distribution, this example can be found in the examples/library/ directory.

B.2. LIBRARY EXAMPLE 177

well-known components, namely adders composed of gates, so that the design itself
does not need any explanation. For the library and IP issues, the same principles
and characteristics apply to all levels of abstraction.

The library example resembles the following scenario: An IP vendor develops
a set of IP adder components based on his own (or somebody elses) gate library.
In order to sell these components, he creates the public interfaces and ports of
the components using the IP mode of the SpecC compiler. The IP provider also
generates two simulation libraries, one RT-level library for fast simulation, and one
gate-level library, which accurately models the components behavior. Furthermore,
the IP provider develops a test bench for the implemented components, as well as
for the IPs, in order to validate the correct functionality.

Library example Behaviors Lines of code

Gate library 6 95
Adder library 11 365
Test bench 2 118

Total 19 578

Table B.2: Library example

The library example consists of a total of 19 di�erent behaviors, as shown in
Table B.2.

Components Gate level RT level

Adder, 8 bit 65 1
Adder, 16 bit 131 1
Adder, 32 bit 261 1

Table B.3: Composition of IP library components

The example IP library consists of a total of six adder models, as shown in
Table B.3. The three RT level models consist of a single behavior instance each,
whereas the three gate level models are composed of a large set of gates.

The composition of the gate level adders can be illustrated by use of the hierarchy
tree. The (shortened) hierarchy tree3 of the 8 bit adder model is shown below. For
more information, please consult the source code of the example.

3The hierarchy tree was created with the SIR tool set: sir tree -blt Adder/ADD08 GTL.sir

178 APPENDIX B. SPECC DESIGN EXAMPLES

B i s behavior ADD08
B i s |------ FA fa0
B i s | |------ HA ha1
B i l | | |------ AND2 and
B i l | | \------ XOR2 xor
B i s | |------ HA ha2
B i l | | |------ AND2 and
B i l | | \------ XOR2 xor
B i l | \------ OR2 or1
B i s |------ FA fa1
B i s | |------ HA ha1
B i l | | |------ AND2 and
B i l | | \------ XOR2 xor
B i s | |------ HA ha2
B i l | | |------ AND2 and
B i l | | \------ XOR2 xor
B i l | \------ OR2 or1
B i s |------ FA fa2
...
B i s \------ FA fa7
B i s |------ HA ha1
B i l | |------ AND2 and
B i l | \------ XOR2 xor
B i s |------ HA ha2
B i l | |------ AND2 and
B i l | \------ XOR2 xor
B i l \------ OR2 or1

B.3 Communication Examples

Two di�erent communication schemes are demonstrated by the examples shown in
Table B.4. The �rst example consists of a sender and a receiver component which
communicate via a noisy bit channel. In order to account for transmission errors,
Forward Error Correction (FEC) is applied.

Communication Behaviors Channels Lines of code

Send & Receive, FEC 12 3 711
Client & Server, FIFO 5 2 271

Table B.4: Communication examples

The second example models a client-server communication where the server ex-
ecutes requests from the client in FIFO order. Both examples are contained in the

B.4. CONTROLLER EXAMPLES 179

SpecC standard distribution4. For more details, please refer to [GZG98].

B.4 Controller Examples

Two controller models were developed as examples for control-dominated systems,
as shown in Table B.5. The �rst example resembles a central elevator controller
for three elevators in a building with ten oors. The second example speci�es a
controller for a tra�c light at a road junction. Again, both examples are contained
in the SpecC standard distribution5.

Controller Behaviors Channels Lines of code

Tra�c light 28 0 527
Elevator 16 3 2035

Table B.5: Controller examples

B.5 JPEG Encoder

As an example for multi-media applications, a JPEG picture encoder was modeled
with the SpecC language [CPC+99]. Figure B.1 shows the JPEG encoder embedded
in its test bench.

Main

outputjpeginput

pixel data
head

Figure B.1: JPEG encoder with test bench

The encoder component jpeg reads the header and pixel information of a photo
by use of the channels head and pixel, respectively. It then encodes the picture
and sends the generated bit stream out via the channel data.

4In the SpecC distribution, these examples can be found in the examples/fec/ and
examples/fifo/ directories, respectively.

5In the SpecC distribution, these examples can be found in the examples/elevator/ and
examples/tlc/ directories, respectively.

180 APPENDIX B. SPECC DESIGN EXAMPLES

The SpecC model of the JPEG encoder with the test bench consists of a total
of 7 di�erent behaviors and 10 channels, as shown in Table B.6.

JPEG encoder Behaviors Channels Lines of code

JPEG 4 7 1123
Test bench 3 3 341

Total 7 10 1464

Table B.6: JPEG encoder example

Internally, the JPEG encoder is composed of four concurrent behaviors which
perform data handling, DCT, data quantization, and Hu�man encoding. These four
tasks communicate via internal channels. This structural composition of the system
can be illustrated with the hierarchy tree6, which is shown next.

B i o behavior Main
B i l |------ Input input
B i c |------ Jpeg jpeg
B i l | |------ DCT dct
B i l | |------ HandleData handledata
B i l | |------ HuffmanEncode huffmanencode
B i l | |------ Quantization quantization
C i l | |------ cSyncBlock d_q_ch
C i l | |------ cSyncInt ddone
C i l | |------ cSyncBlock h_d_ch
C i l | |------ cSyncInt hddone
C i l | |------ cSyncInt hdone
C i l | |------ cSyncBlock q_h_ch
C i l | \------ cSyncInt qdone
B i l |------ Output output
C i l |------ cSyncByte data
C i l |------ cSyncInt header
C i l \------ cSyncByte pixel

B.6 GSM Vocoder

As an industrial-strength application, a GSM enhanced full rate speech encoder,
also called GSM vocoder, was modeled and successfully simulated with the SpecC
system [GZG+99].

The GSM vocoder is used in wireless, digital telecommunication for highly e�-
cient speech compression. With the GSM encoder, speech data is sampled at a rate

6The hierarchy tree was created with the SIR tool set: sir tree -blt tb.sir

B.6. GSM VOCODER 181

of 8 kHz and packed into frames of 160 samples with 13 bit precision. Each frame
is then encoded into 244 bits resulting in a compression rate greater than 8.

GSM vocoder Behaviors Lines of code

Coder 67 12382
Test bench 4 606

Total 71 12988

Table B.7: GSM vocoder example

As shown in Table B.7, the speci�cation model of the vocoder consists of a total
of 71 di�erent behaviors, speci�ed in about 13000 lines of SpecC source code.

The complex structural composition of the GSM vocoder is shown as a hierarchy
tree7 as follows.

B i o Main
B i l |------ arg_handler_exec
B i o |------ coder_exec
B i o | |------ coder_12k2_exec
B i o | | |------ codebooks_exec
B i o | | | |------ adap_codebook_exec
B i l | | | | |------ convolve_exec
B i l | | | | |------ enc_lag6_exec
B i o | | | | |------ find_targetvec_exec
B i l | | | | | |------ CN_excitation_gain
B i l | | | | | |------ residu_1
B i l | | | | | |------ residu_2
B i l | | | | | |------ syn_filt_1
B i l | | | | | \------ syn_filt_2
B i l | | | | |------ g_pitch_exec
B i o | | | | |------ imp_resp_exec
B i l | | | | | |------ syn_filt_1
B i l | | | | | \------ syn_filt_2
B i c | | | | |------ par_weight_exec
B i l | | | | | |------ weight_1
B i l | | | | | \------ weight_2
B i l | | | | |------ pitch_fr6_exec
B i l | | | | |------ pred_lt_6_exec
B i l | | | | \------ q_gain_pitch_exec
B i o | | | |------ inno_codebook_exec
B i l | | | | |------ build_cn_code_exec
B i o | | | | \------ codebook_exec
B i s | | | | |------ code_10i40
B i l | | | | | |------ build_code

7The hierarchy tree was created with help of the SIR tool set: sir tree -bl testbench.sir

182 APPENDIX B. SPECC DESIGN EXAMPLES

B i l | | | | | |------ cor_h
B i l | | | | | |------ cor_h_x
B i l | | | | | |------ q_p
B i l | | | | | |------ search10i40
B i l | | | | | \------ set_sign
B i l | | | | |------ filter_c
B i l | | | | |------ filter_h
B i l | | | | |------ g_code
B i l | | | | |------ upd_res
B i l | | | | \------ upd_target
B i o | | | \------ update_exec
B i o | | | |------ ex_syn_upd_sh_exec
B i l | | | | |------ excitation_exec
B i l | | | | |------ syn_filt_exec
B i l | | | | \------ upd_mem_exec
B i l | | | \------ q_gain_code_exec
B i o | | |------ lp_analysis_exec
B i s | | | |------ find_1
B i l | | | | |------ autocorrelation
B i l | | | | |------ lag_windowing
B i l | | | | \------ levinson_durbin
B i s | | | |------ find_2
B i l | | | | |------ autocorrelation
B i l | | | | |------ lag_windowing
B i l | | | | \------ levinson_durbin
B i l | | | |------ int_lpc2_exec
B i l | | | |------ lsp_1
B i l | | | |------ lsp_2
B i l | | | |------ no_speech_upd_exec
B i f | | | |------ q_plsf_and_intlpc_exec
B i l | | | | |------ int_lpc_exec
B i l | | | | |------ q_plsf_5_exec
B i l | | | | \------ update_lsps_exec
B i f | | | \------ vad_lp_exec
B i l | | | |------ TX_dtx_exec
B i l | | | |------ VAD_computation_exec
B i l | | | |------ nodtx_setflags_exec
B i l | | | \------ nop_exec
B i o | | |------ open_loop_exec
B i o | | | |------ ol_lag_estimate
B i l | | | | |------ minmax_1
B i l | | | | |------ minmax_2
B i l | | | | |------ periodicity_update
B i l | | | | |------ pitch_openloop_1
B i l | | | | \------ pitch_openloop_2
B i l | | | |------ residual
B i l | | | |------ syn_filter
B i l | | | |------ weight_ai_1
B i l | | | \------ weight_ai_2
B i l | | \------ shift_signals_exec

B.6. GSM VOCODER 183

B i o | |------ post_process_exec
B i l | | |------ cn_encoder_exec
B i l | | |------ prm2bits_12k2_exec
B i l | | \------ sid_codeword_encoder_exec
B i o | \------ pre_process_exec
B i l | |------ encoder_homingframe_test_exec
B i l | |------ filter_and_scale_exec
B i l | \------ ser2par_exec
B i l |------ monitor_exec
B i l \------ stimulus_exec

184 APPENDIX B. SPECC DESIGN EXAMPLES

Appendix C

SpecC Internal Representation

The SpecC Internal Representation (SIR) is a �le format and a data structure. The
organization of the SIR data structure is described in the following sections.

For more detailed information, such as the contents of each particular SIR class,
please refer to [D�om99].

C.1 SIR graph

The internal representation of a SpecC design is a complex data structure, which
can be viewed as a graph. The nodes of the graph are represented by C++ class
objects, whereas the edges are represented by C++ pointers.

The nodes in the SIR graph are of di�erent type. For example, a node repre-
senting a behavior declaration is of type SIR Behavior, whereas nodes representing
statements and expressions are of type SIR Statement and SIR Expression, re-
spectively. For each type, a C++ class de�nes the data members and API methods
available for the node. These SIR class declarations are listed in detail in [D�om99].

Furthermore, the nodes in any SIR graph can be classi�ed into two groups,
called levels. The nodes at level 1 contain all basic data contained in a SIR �le,
whereas the level 2 nodes represent a higher-level view of the SIR data. In other
words, the SIR classes at level 1 contain all the information the SpecC language
can express, whereas the level 2 classes o�er an additional, more abstract view of
that information. For example, the behavioral hierarchy in a SpecC program, which
is not directly visible at level 1, is represented explicitly at level 2 (by the classes
SIR Behavior, SIR BhvrInst, etc.). Level 2 classes are built automatically on top
of the level 1 classes. As such, they rely on the data stored at level 1.

Figure C.1 lists the classes of SIR level 1, whereas the level 2 classes are listed
in Figure C.2.

185

186 APPENDIX C. SPECC INTERNAL REPRESENTATION

SIR_Design
SIR_FileList

SIR_Types

SIR_Symbols

SIR_Notes

SIR_FileInfo

SIR_Import

SIR_Type
SIR_TypePtrs

SIR_TypePtr

SIR_UserTypes

SIR_Symbol

SIR_Note
SIR_Constant

SIR_Initializer

SIR_Parameters

SIR_Symbols...

SIR_Labels

SIR_Statement
SIR_SymbolPtrs

SIR_Notes
...

SIR_Constant

SIR_Initializer
...

SIR_Parameter

...

SIR_Label
SIR_Notes

...

SIR_SymbolPtr

SIR_UserType
SIR_Members

SIR_Member
SIR_Symbols

...
SIR_Notes

...

SIR_Constant

SIR_Expression

SIR_Statement
...

SIR_Symbols
...

SIR_Statements
SIR_Statement

...
SIR_SymbolPtrs

...
SIR_Exceptions

SIR_Constraints

SIR_Exception

SIR_Transitions
SIR_Transition

SIR_Constraint

SIR_Expression
...

SIR_SymbolPtrs

SIR_Statement
...

...

SIR_Constant

SIR_Statement

SIR_PortMaps
SIR_PortMap

SIR_BitSlices
SIR_BitSlice

SIR_ImportList

SIR_Initials

...

SIR_Expressions
SIR_Expression

...
SIR_Expression

SIR_Constant

Figure C.1: Generic SIR design tree of level 1 classes

C.1. SIR GRAPH 187

SIR_Design
SIR_Behaviors

SIR_Behavior

SIR_ChnlInsts

SIR_BhvrInsts

SIR_ChnlInst

SIR_BhvrInst

SIR_Channels
SIR_Channel

SIR_PortVars

SIR_Ports

SIR_ImplIfs

SIR_Port

SIR_PortVar

SIR_ImplIf

...

...

SIR_Variables

SIR_Functions

SIR_ChnlInsts

SIR_BhvrInsts

SIR_ChnlInst

SIR_BhvrInst

SIR_PortVars

SIR_Ports

SIR_ImplIfs

SIR_Port

SIR_PortVar

SIR_ImplIf

...

...

SIR_Variables

SIR_Functions

...
SIR_Functions

SIR_Interfaces
SIR_Interface

SIR_Variables
SIR_Variable

SIR_Functions
SIR_Function

SIR_Arguments
SIR_Argument

SIR_ArgVars
SIR_ArgVar

...
SIR_Variables

SIR_Channel

Figure C.2: Generic SIR design tree of level 2 classes

188 APPENDIX C. SPECC INTERNAL REPRESENTATION

The edges in the SIR graph, representing relations among the nodes, can also
be classi�ed into two groups, which will be called pointers and links. Although all
edges are implemented as standard C++ pointers, it is important to distinguish
these two in the SIR data structure.

A pointer represents a containment relation of two objects. For example, a
compound statement contains a list of statements. Therefore, there exists a pointer
from the compound statement object to the header of the statement list. There is
a pointer from the header of the list to the elements of the list as well.

A link represents a loose connection between two objects, which does not imply
any containment. For example, expressions and symbols have a link to a node
representing their type.

C.2 Design Trees

The classi�cation of SIR nodes into two levels and the separation between pointers
and links allows to view the SpecC data structure as a generic tree. The SIR graph
becomes a tree, if the edges classi�ed as links are ignored and only pointer edges are
counted, building the arcs between the nodes. Such a graph is called a design tree.

Using the level classi�cation for the nodes, the two generic SIR design trees are
shown in Figure C.1 (level 1) and Figure C.2 (level 2). The roots of both trees are
represented by an object of class SIR Design, which is the only class belonging to
both levels.

For level 1, the root object contains a list of source �les (SIR FileList), a
list of imported binary �les (SIR ImportList), the global type table (SIR Types),
the global symbol table (SIR Symbols), and an optional list of global annotations
(SIR Notes).

For level 2, a design consists of a list of behaviors (SIR Behaviors), a list of chan-
nels (SIR Channels), a list of interfaces (SIR Interfaces), a list of global variables
(SIR Variables), and a list of global functions (SIR Functions).

In both cases, the lists then can contain list elements, which again can contain
objects, and so on.

The design trees are used mainly for two purposes. First, whenever some sort
of traversal is performed over the SIR data structure, the traversal is done on the
design trees. All iterators provided by the classes operate on the design tree only.
They follow all pointers, but never follow a link. For example, when reading or
writing a SIR �le, it is the level 1 design tree1 that is traversed in depth-�rst-search
(DFS) order. This ensures that each object exists exactly once in the SIR �le.

1SIR �les only contain data from level 1 classes. Since all level 2 classes can be constructed
automatically from the level 1 classes, there is no need to store them in a SIR �le.

C.3. BASE CLASSES 189

Second, many methods o�ered by the classes operate not only on the object
itself, but also on the subtree below. For example, all Delete() methods behave
this way. When, for example, a behavior is deleted, all its local variables and
functions, including their contents, are deleted as well. In particular, when the root
node of a design is deleted, all the memory occupied by the SIR data structure for
this design is freed.

C.3 Base Classes

In order to keep the amount of source code for the SIR data structure implementa-
tion minimal, base classes are used whenever the same functionality is provided by
di�erent standard classes.

Almost all classes in the design trees are derived from the template classes
SIR List or SIR ListElem. SIR List represents a double-linked list containing
objects of class SIR ListElem.

For level 1, all classes are derived from class SIR Unit which provides basic
services for binary input and output. Furthermore, almost all level 1 classes are
based on class SIR Node, which allows to store source code location information,
such as the �le name and the line number, with each object.

For level 2, almost all classes are derived from class SIR Definition which
provides basic support for creation, deletion and renaming of objects. Furthermore,
behaviors and channels are based on class SIR Class. Finally, behavior and channel
instances are derived from class SIR Instance.

C.4 Error Handling

An important issue in program design is error handling. Errors during program
execution must be detected and handled in a well-de�ned way. It is not acceptable
to ignore error conditions, nor to simply abort the program when an error is detected.

This is true in particular for libraries that are to be linked with a larger pro-
gram. Errors occurring in any library function must be detected and reported to
the main program, which solely can decide whether to report the error to the user,
and whether to handle and go on with the error, or to abort the program execution.
Also, it is important that, even in error conditions, all data structures are being
kept in a clean and well-de�ned state.

In general, error conditions can be classi�ed into several categories. For example,
there are warnings, recoverable errors, and fatal errors.

In terms of error handling, errors can be detected and handled locally in a
program module, can be reported to the caller, or can be taken care of globally.

190 APPENDIX C. SPECC INTERNAL REPRESENTATION

As an example for the latter, an out-of-memory condition is best handled globally,
so that standard program modules can just assume to always have enough memory
available.

In the SpecC Internal Representation, error handling is based on the conventions
and functions de�ned in the header �le GL Global.h. The SIR automatically takes
care of out-of-memory conditions. Every allocation and deallocation of dynamic
memory is handled here. If no memory is available, the program is aborted with an
error message, since out-of-memory is a fatal error condition.

For recoverable errors, the SIR reserves a set of error codes which identify each
particular error. More speci�cally, the SIR uses the error codes in the range from
SIR ERROR BASE up to SIR ERROR BASE + SIR ERROR RANGE. With this scheme, each
error condition in a SpecC program can be uniquely identi�ed and handled in the
right way. As a special case, the no-error condition NO ERROR is de�ned as 0.

With the SIR, errors are reported in two di�erent ways. First, a library function
may return an error code directly as its return value. In this case, the return value
is either NO ERROR, or one error code from the set of numbers reserved for the SIR.

For library functions returning pointers, the second method is used. In case of
an error, the function returns NULL, indicating an error condition. The actual error
code can then be obtained from the global variable SIR Error which is exported by
the SIR.

In order for a main program to report errors to the user in a suitable manner,
error codes must be combined with a descriptive error message. In most cases, such
a message can only be generated by the library which detects the error condition.
Because of this, the SIR provides a function SIR ErrorText which takes an error
code as argument and returns a character string describing the error.

Bibliography

[AG96] K. Arnold, J. Gosling. The Java Programming Language. Addison-
Wesley, 1996.

[AG98] G. Aggarwal, D. Gajski. Modeling Guidelines for ASIC Reuse. Techni-
cal Report ICS-TR-98-03, University of California, Irvine, Mar. 1998.

[AIG99] D. Araki, T. Ishii, D. Gajski. \Rapid Prototyping with HW/SW Code-
sign Tool". In Proceedings of the IEEE Engineering of Computer Based
Systems Symposium and Workshop, Mar. 1999.

[APR+96] M. Aubury, I. Page, G. Randall, J. Saul, R. Watts. \Handel-C Lan-
guage Reference Guide". Oxford University Computing Laboratory,
Aug. 1996.

[Arn99] G. Arnout. \C for System Level Design". In Conference Proceedings of
Design, Automation and Test in Europe, Munich, Germany, Mar. 1999.

[BFS95] A. Balboni, W. Fornaciari, D. Sciuto. \Tosca: A Pragmatic Approach
to Co-Design Automation of Control-dominated Systems". In Hard-
ware/Software Co-Design. Edited by M. Sami, G. De Micheli. Kluwer
Academic Publishers, 1995.

[BG92] G. Berry, G. Gonthier. \The Esterel Synchronous Programming Lan-
guage: Design, Semantics, Implementation. In Science of Computer
Programming, vol. 19, no. 2, 1992.

[BGJ+97] F. Balarin, P. Giusto, A. Jurecska, C. Passerone, E. Sentovich, B. Tab-
bara, M. Chiodo, H. Hsieh, L. Lavagno, A. Sangiovanni-Vincentelli,
K. Suzuki. Hardware-Software Co-Design of Embedded Systems, The
POLIS approach. Kluwer Academic Publishers, Apr. 1997.

[BHS91] F. Belina, D. Hogrefe, A. Sarma. SDL With Applications From Protocol
Speci�cation. Prentice Hall, 1991.

191

192 BIBLIOGRAPHY

[BS99] M. Birnbaum, H. Sachs. \How VSIA Answers the SOC Dilemma". In
IEEE Computer, Jun. 1999.

[CG99] E. Chang, D. Gajski. SpecC System-level Static Scheduling. Technical
Report ICS-TR-99-23, University of California, Irvine, May 1999.

[CGC+99] A. Cataldo, R. Goering, P. Clarke, Y. Hara. \Japanese propose system-
level lingua franca". In Electronic Engineering Times, CMPMedia, New
York, Nov. 15, 1999.

[CGH+93] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
A. Sangiovanni-Vincentelli. \A Formal Speci�cation Model for Hard-
ware/Software Codesign". In Proceedings of the International Workshop
on Hardware/Software Codesign, IEEE, Oct. 1993.

[CHM+99] P. Coste, F. Hessel, P. Le Marrec, Z. Sugar, M. Romdhani, N. Zer-
gainoh, A. Jerraya. \Multilanguage Design of Heterogeneous Systems".
In Proceedings of the International Workshop on Hardware/Software
Codesign, IEEE, May 1999.

[COB95] P. Chou, R. Ortega, G. Borriello. \The Chinook Hardware/Software
Co-Synthesis System". In International Symposium on System Synthe-
sis, Cannes, France, Sep. 1995.

[CPC+99] L. Cai, J. Peng, C. Chang, A. Gerstlauer, H. Li, A. Selka, C. Siska,
L. Sun, S. Zhao, D. Gajski. Design of a JPEG Encoding System. Tech-
nical Report ICS-TR-99-54, University of California, Irvine, Nov. 1999.

[CSN98] F. Chan, M. Spiller, R. Newton. \WELD { An Environment for Web-
Based Electronic Design". In Proceedings of the Design Automation
Conference, San Francisco, 1998.

[DBB99] M. Dalpasso, A. Bogliolo, L. Benini. \Speci�cation and validation of
distributed IP-based designs with JavaCAD". In Conference Proceed-
ings of Design, Automation and Test in Europe, Munich, Germany,
Mar. 1999.

[DG98] R. D�omer, D. Gajski. Comparison of the Scenic Design Environment
and the SpecC System. Internal Report, University of California, Irvine,
May 1998.

[DG00] R. D�omer, D. Gajski. \Reuse and Protection of Intellectual Prop-
erty in the SpecC System". Regular paper accepted for the Asia and

BIBLIOGRAPHY 193

South Paci�c Design Automation Conference 2000, Yokohama, Japan,
Jan. 2000.

[D�om98] R. D�omer. The SpecC Internal Representation. Internal Technical Re-
port, University of California, Irvine, June 1998.

[D�om99] R. D�omer. The SpecC Internal Representation, SpecC V2.0.3. Inter-
nal Technical Report, 2nd edition, University of California, Irvine,
Jan. 1999.

[DGZ98] R. D�omer, D. Gajski, J. Zhu. \Speci�cation and Design of Embed-
ded Systems". In Informationstechnik und Technische Informatik, it+ti
magazine 3/98, Oldenbourg Verlag, Germany, June 1998.

[DH89] D. Drusinsky, D. Harel. \Using Statecharts for Hardware Description
and Synthesis". In IEEE Transactions on Computer Aided Design,
1989.

[DZG98] R. D�omer, J. Zhu, D. Gajski. The SpecC Language Reference Man-
ual. Technical Report ICS-TR-98-13, University of California, Irvine,
Mar. 1998.

[EHB93] R. Ernst, J. Henkel, T. Benner. \Hardware-Software Cosynthesis for
Microcontrollers". In IEEE Design and Test, Vol. 12, 1993.

[ES90] M. Ellis, B. Stroustrup. The annotated C++ Reference Manual.
Addison-Wesley, 1990.

[GAC+98] D. Gajski, G. Aggarwal, E. Chang, R. D�omer, T. Ishii, J. Kleinsmith,
J. Zhu.Methodology for Design of Embedded Systems. Technical Report
ICS-TR-98-07, University of California, Irvine, Mar. 1998.

[Gaj97] D. Gajski. Principles of Digital Design. Prentice Hall, 1997.

[GCM92] R. Gupta, C. Coelho., G. De Micheli. \Synthesis and Simulation of
Digital Systems Containing Interacting Hardware and Software Compo-
nents". In Proceedings of the Design Automation Conference, Anaheim,
1992.

[GDW+91] D. Gajski, N. Dutt, C. Wu, Y. Lin. High-Level Synthesis: Introduction
to Chip and System Design. Kluwer Academic Publishers, 1991.

[GDZ99a] D. Gajski, R. D�omer, J. Zhu. \IP-centric Methodology and Design with
the SpecC Language". In System Level Synthesis, edited by A. Jerraya,
J. Mermet. Kluwer Academic Publishers, May 1999.

194 BIBLIOGRAPHY

[GDZ99b] D. Gajski, R. D�omer, J. Zhu. \IP-centric Methodology and Speci�cation
Language". In Distributed and Parallel Embedded Systems, edited by
F. Rammig. Kluwer Academic Publishers, Sep. 1999.

[GK83] D. Gajski, R. Kuhn. \Guest Editor's Introduction: New VLSI Tools".
In IEEE Computer, Dec. 1983.

[GKL99] A. Ghosh, J. Kunkel, S. Liao. \Hardware Synthesis from C/C++".
In Conference Proceedings of Design, Automation and Test in Europe,
Munich, Germany, Mar. 1999.

[GL97] R. Gupta, S. Liao. \Using a Programming Language for Digital System
Design". In IEEE Design & Test of Computers, IEEE, 1997.

[GM96] R. Gupta, G. De Micheli. \A Co-Synthesis Approach to Embedded Sys-
tem Design Automation". InDesign Automation for Embedded Systems,
vol. 1, no. 1-2, 1996.

[GVN93] D. Gajski, F. Vahid, S. Narayan. \SpecCharts: A VHDL Front-End
for Embedded Systems". Technical Report ICS-TR-93-31, University
of California, Irvine, June 1993.

[GVN+94] D. Gajski, F. Vahid, S. Narayan, J. Gong. Speci�cation and Design of
Embedded Systems. Prentice Hall, 1994.

[GZD97a] D. Gajski, J. Zhu, R. D�omer. The SpecC+ Language. Technical Report
ICS-TR-97-15, University of California, Irvine, Apr. 1997.

[GZD97b] D. Gajski, J. Zhu, R. D�omer. Essential Issues in Codesign. Technical
Report ICS-TR-97-26, University of California, Irvine, June 1997.

[GZD97c] D. Gajski, J. Zhu, R. D�omer. \Essential Issues in Codesign". In
Hardware/Software Co-Design: Principles and Practice. Edited by
J. Staunstrup, W. Wolf. Kluwer Academic Publishers, 1997.

[GZG98] A. Gerstlauer, S. Zhao, D. Gajski. VHDL+/SpecC Comparisons { A
Case Study. Technical Report ICS-TR-98-23, University of California,
Irvine, May 1998.

[GZG+99] A. Gerstlauer, S. Zhao, D. Gajski, A. Horak. Design of a GSM Vocoder
using SpecC Methodology. Technical Report ICS-TR-99-11, University
of California, Irvine, Feb. 1999.

[Ham99] S. Hamilton. \SRC: Taking Moore's Law Into the Next Century". In
IEEE Computer, Jan. 1999.

BIBLIOGRAPHY 195

[Har87] D. Harel. \Statecharts: a Visual Formalism for Complex Systems". In
Science of Computer Programming, 8, 1987.

[Hoa85] C. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[HE97] J. Henkel, R. Ernst. \A Hardware-Software Partitioner Using a Dynam-
ically Determined Granularity". In Proceedings of the Design Automa-
tion Conference, Anaheim, 1997.

[IAJ94] T. Ismail, M. Abid, A. Jerraya. \COSMOS: A Codesign Approach for
Communicating Systems". In Proceedings of the International Work-
shop on Hardware/Software Codesign. IEEE, 1994.

[ICL97] ICL Inc. Extensions to VHDL for System Speci�cation: VHDL+ Ver-
sion 3.0. ICL, Manchester, United Kingdom, Nov. 1997.

[IEEE87] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE
Std. 1076-1987, IEEE, 1987.

[IEEE93] IEEE. IEEE Standard VHDL Language Reference Manual, Revision
1993. IEEE Std. 1076-1993, IEEE, 1993.

[IEEE96] IEEE. Hardware Description Language Based on the Verilog Hardware
Description Language. IEEE Std. 1364-1996, IEEE, 1996.

[IG98] T. Ishii, D. Gajski. \Visual Speci�cation Environment: An Author-
ing Tool for Embedded Systems Co-Design". In Proceedings of the
Workshop on Synthesis and System Integration of Mixed Technologies,
Sendai, Japan, Oct. 1998.

[ITU92] ITU. Recommendation Z.100: Speci�cation and Description Language
SDL, volume X.R25-X.R32. ITU, 1992.

[JDK+97] A. Jerraya, H. Ding, P. Kission, M. Rahmouni. Behavioral Synthesis
and Component Reuse with VHDL. Kluwer Academic Publishers, 1997.

[JKH99] A. Jantsch, S. Kumar, A. Hemani. \The Rugy Model: A Conceptual
Frame for the Study of Modelling, Analysis and Synthesis Concepts of
Electronic Systems". In Conference Proceedings of Design, Automation
and Test in Europe, Munich, Germany, Mar. 1999.

[JRV+97] A. Jerraya, M. Romdhani, C. Valderrama, P. Le Marrec, F. Hessel,
G. Marchioro, J. Daveau. \Languages for System-Level Speci�cation

196 BIBLIOGRAPHY

and Design". In Hardware/Software Co-Design: Principles and Prac-
tice. Edited by J. Staunstrup, W. Wolf. Kluwer Academic Publishers,
1997.

[KB98] M. Keating, P. Bricaud. Reuse Methodology Manual for System-on-a-
Chip Designs. Kluwer Academic Publishers, 1998.

[KG98] J. Kleinsmith, D. Gajski. Communication Synthesis for Reuse. Techni-
cal Report ICS-TR-98-06, University of California, Irvine, Feb. 1998.

[KKR94] G. Koch, U. Kebschull, W. Rosenstiel. \A Prototyping Environment for
Hardware/Software Codesign in the COBRA Project". In Proceedings
of the International Workshop on Hardware/Software Codesign, IEEE,
1994.

[KL93] A. Kalavade, E. Lee. \A Hardware/Software Codesign Methodology for
DSP Applications". In IEEE Design and Test, Sep. 1993.

[KLM+98] A. Kahng, J. Lach, W. Mangione-Smith, S. Mantik, I. Markov,
M. Potkonjak, P. Tucker, H. Wang, G. Wolfe. \Watermarking Tech-
niques for Intellectual Property Protection". In Proceedings of the De-
sign Automation Conference, San Francisco, 1998.

[KM90] D. Ku, G. De Micheli. \HardwareC { A Language for Hardware Design,
Version 2.0". Technical Report CSL-TR-90-419, Stanford University,
Apr. 1990.

[KZG97] J. Kleinsmith, J. Zhu, D. Gajski. ATM Modeling Example for SpecGen
Evaluation. Technical Report ICS-TR-97-47, University of California,
Irvine, Oct. 1997.

[Lie97] C. Liem. Retargetable Compilers for Embedded Core Processors: Meth-
ods and Experiences in Industrial Applications. Kluwer Academic Pub-
lishers, 1997.

[LM87] E. Lee, D. Messerschmidt. \Static Scheduling of Synchronous Data
Flow Programs for Digital Signal Processing". In IEEE Transactions
on Computers, 1987.

[LMD94] B. Landwehr, P. Marwedel, R. D�omer. \OSCAR: Optimum Simultane-
ous Scheduling, Allocation and Resource Binding Based on Integer Pro-
gramming". In Proceedings of the European Design Automation Con-
ference, 1994.

BIBLIOGRAPHY 197

[LP97] C. Liem, P. Paulin. \Compilation Techniques and Tools for Embedded
Processor Architectures". In Hardware/Software Co-Design: Principles
and Practice. Edited by J. Staunstrup, W. Wolf. Kluwer Academic Pub-
lishers, 1997.

[LS96] E. Lee, A. Sangiovanni-Vincentelli. \Comparing Models of Compu-
tation". In Proceedings of the International Conference on Computer
Aided Design, San Jose, 1996.

[LSS99] L. Lavagno, A. Sangiovanni-Vincentelli, E. Sentovich. \Models of Com-
putation for Embedded System Design". In System Level Synthesis.
Edited by A. Jerraya, J. Mermet. Kluwer Academic Publishers, 1999.

[LTG97] S. Liao, S. Tjiang, R. Gupta. \An E�cient Implementation of Reac-
tivity for Modeling Hardware in the Scenic Design Environment". In
Proceedings of the Design Automation Conference, Anaheim, 1997.

[Mar93] P. Marwedel. Synthese und Simulation von VLSI-Systemen. Hanser Ver-
lag, Germany, 1993.

[MG95] P. Marwedel, G. Goossens. Code Generation for Embedded Processors.
Kluwer Academic Publishers, 1995.

[MGK97] J. Madsen, J. Grode, P. Knudsen. \Hardware/Software Partitioning
using the LYCOS System". In Hardware/Software Co-Design: Princi-
ples and Practice. Edited by J. Staunstrup, W. Wolf. Kluwer Academic
Publishers, 1997.

[Mic94] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw
Hill, 1994.

[Mic99] G. De Micheli. \Hardware Synthesis from C/C++ Models". In Confer-
ence Proceedings of Design, Automation and Test in Europe, Munich,
Germany, Mar. 1999.

[Nie98] R. Niemann. Hardware/Software Co-Design for Data Flow Dominated
Embedded Systems. Kluwer Academic Publishers, 1998.

[NVG91] S. Narayan, F. Vahid, D. Gajski. \System Speci�cation and Synthesis
with the SpecCharts Language". In Proceedings of the International
Conference on Computer Aided Design, 1991.

[�OBE+97] A. �Osterling, T. Benner, R. Ernst, D. Herrmann, T. Scholz, W. Ye.
\The Cosyma System". In Hardware/Software Co-Design: Principles

198 BIBLIOGRAPHY

and Practice. Edited by J. Staunstrup, W. Wolf. Kluwer Academic Pub-
lishers, 1997.

[Pet62] C. Petri. Kommunikation mit Automaten. Dissertation, Bonn, Ger-
many, 1962.

[RJB98] J. Rumbaugh, I. Jacobson, G. Booch. The Uni�ed Modeling Language
Reference Manual. Addison-Wesley, 1998.

[Ros97] W. Rosenstiel. \Prototyping and Emulation". In Hardware/Software
Co-Design: Principles and Practice. Edited by J. Staunstrup, W. Wolf.
Kluwer Academic Publishers, 1997.

[RVB+96] K. Rompaey, D. Verkest, I. Bolsens, H. De Man. \CoWare { A design
environment for heterogeneous hardware/software systems". In Pro-
ceedings of the European Design Automation Conference, 1996.

[Sch99] S. Schulz. \Towards A New System Level Design Language { SLDL".
In System Level Synthesis. Edited by A. Jerraya, J. Mermet. Kluwer
Academic Publishers, 1999.

[SIA97] Semiconductor Industry Association. The National Technology
Roadmap for Semiconductors. SEMATECH, 1997.

[SK+99] R. Seepold, A. Kunzmann (editors), et. al. Reuse Techniques for VLSI
Design. Kluwer Academic Publishers, 1999.

[SM98] L. Semeria, G. De Micheli. \SpC: Synthesis of Pointers in C: Application
of Pointer Analysis to the Behavioral Synthesis from C". In Proceedings
of the International Conference on Computer Aided Design, 1998.

[Str97] B. Stroustrup. The C++ Programming Language, 3rd edition. Addison-
Wesley, 1997.

[TM91] D. Thomas, P. Moorby. The Verilog Hardware Description Language.
Kluwer Academic Publishers, 1991.

[VRD+97] C. Valderrama, M. Romdhani, J. Daveau, G. Marchioro, A. Changuel,
A. Jerraya. \Cosmos: A Transformational Co-design tool for Multi-
processor Architectures". In Hardware/Software Co-Design: Principles
and Practice. Edited by J. Staunstrup, W. Wolf. Kluwer Academic Pub-
lishers, 1997.

BIBLIOGRAPHY 199

[WL95] R. Wilson, M. Lam. \E�cient Context-Sensitive Pointer Analysis for
C Programs". In Proceedings of the Conference on Programming Lan-
guages Design and Implementation, June 1995.

[Wol97] W. Wolf. \Hardware/Software Co-Synthesis Algorithms". In Hard-
ware/Software Co-Design: Principles and Practice. Edited by
J. Staunstrup, W. Wolf. Kluwer Academic Publishers, 1997.

[X3/90] X3 Secretariat. Standard { The C Language. X3J11/90-013, ISO Stan-
dard ISO/IEC 9899. Computer and Business Equipment Manufacturers
Association, Washington, 1990.

[X3/97] X3 Secretariat. Draft Standard { The C++ Language. X3J16/97-14882,
Information Technology Council, Washington, 1990.

[YMS+99] J. Young, J. MacDonald, M. Shilman, A. Tabbara, P. Hil�nger, R. New-
ton. \The JavaTime Approach to Mixed Hardware-Software System
Design". In System Level Synthesis. Edited by A. Jerraya, J. Mermet.
Kluwer Academic Publishers, 1999.

[YW97] T. Yen, W. Wolf. Hardware-software Co-synthesis of Distributed Em-
bedded Systems. Kluwer Academic Publishers, 1997.

[ZDG97a] J. Zhu, R. D�omer, D. Gajski. Syntax and Semantics of the SpecC+ Lan-
guage. Technical Report ICS-TR-97-16, University of California, Irvine,
Apr. 1997.

[ZDG97b] J. Zhu, R. D�omer, D. Gajski. \Syntax and Semantics of the SpecC
Language". In Proceedings of the Workshop on Synthesis and System
Integration of Mixed Technologies, Osaka, Japan, Dec. 1997.

[ZMD99] Y. Zorian, E. Marinissen, S. Dey. \Testing Embedded Core-Based Sys-
tem Chips". In IEEE Computer, Jun. 1999.

200 BIBLIOGRAPHY

Glossary

ALU Arithmetic Logic Unit

ALAP As Late As Possible

ANSI American National Standards Institute

API Application Programming Interface

ASAP As Soon As Possible

ASIC Application Speci�c Integrated Circuit

ATM Asynchronous Transfer Mode

BIST Built-In Self-Test

CAD Computer-Aided Design

CDFG Control Data Flow Graph

CECS Center for Embedded Computer Systems

CFG Control Flow Graph

CFSM Codesign Finite State Machine

CLI Command Line Interface

CSP Communicating Sequential Processes

DCT Discrete Cosine Transformation

DFG Data Flow Graph

DFS Depth First Search

201

202 GLOSSARY

DMA Direct Memory Access

DSP Digital Signal Processor

EDA Electronic Design Automation

EOF End Of File

FEC Forward Error Correction

FIFO First In First Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

FSMC Finite State Machine with Coprocessors

FSMD Finite State Machine with Datapath

GSM Global System for Mobile communication

GUI Graphical User Interface

HCFSMD Hierarchical Concurrent Finite State Machine with Datapath

HDL Hardware Description Language

HLS High Level Synthesis

HW Hardware

IEEE Institute of Electrical and Electronics Engineering

IP Intellectual Property

ISA Instruction Set Architecture

ISO International Standards Organisation

ITU International Telecommunication Union

JPEG Joint Photographic Experts Group

MILP Mixed Integer Linear Programming

MPEG Motion Picture Expert Group

GLOSSARY 203

PCI Peripheral Component Interconnect

PE Processing Element

PSM Program State Machine

RAM Random Access Memory

ROM Read Only Memory

RPC Remote Procedure Call

RT Register Transfer

RTL Register Transfer Level

RTOS Real-Time Operating System

SDF Synchronous Data Flow

SDL Speci�cation Description Language

SIA Semiconductor Industry Association

SIR SpecC Internal Representation

SLD System-Level Design

SLDL System-Level Design Language

SOC System On Chip

SPW Signal Processing Work system

SRAM Static Random Access Memory

SRC Semiconductor Research Corporation

SW Software

TIMA Techniques of Informatics and Microelectronics for computer Archi-
tecture

TU Technical University

UC University of California

UML Uni�ed Modeling Language

204 GLOSSARY

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integration

VLIW Very Large Instruction Word

VME Versa Module Eurocard

VSIA Virtual Socket Interface Alliance

WWW World Wide Web

Index

Abortion, 38, 81, 103

Abstraction, 2

Abstraction level, 4{6

Academia, 19

Accuracy, 5

Adapter, 41, 43, 45

Addressing, 68

Algorithm, 35

Algorithm level, 4

Allocation, 11, 55

Architecture, 54
Allocator, 113

Analysis, 49, 52, 54

Annotation, 106

ANSI, 25

ANSI-C, 85

API, 29, 114, 116, 127

Application Programming Interface,
116

Architecture

Allocation, 11, 55

Exploration, 11

Generic, 56

Mapping, 56

Architecture exploration, 49, 54

Architecture explorer, 113

Architecture model, 65, 66

ASIC, 1

ASIC design, 2

ATM, 175

Back end, 12, 49, 73, 113

Base class, 189

Basic model, 34

Behavior, 33{35, 95

Composite, 35

Concurrent, 37

Exception, 38

FSM, 37
IP, 38

Leaf, 35

Mapping, 57

Mixed, 38

Models, 36

Pipeline, 37

Sequential, 37

behavior, 89, 95

Behavior mapping, 55, 58, 59

Behavioral hierarchy, 79, 80

Behavioral synthesis, 2

Binary import, 107

BIST, 11

bit, 86

Bit access, 87
Bit slice, 87

Bit vector, 86

Black box, 96

Block diagram, 32

bool, 86

Boolean type, 86

C, 12, 21{26, 83, 85

Cx, 21

C++, 21, 25, 74, 83, 85, 116, 130

205

206 INDEX

Code, 130
CAD, 2
Capture, 49, 50
CDFG, 7

CFG, 7
CFSM, 8, 22
Channel, 33, 34, 40, 98

Adapter, 41
Grouping, 40
hierarchical, 40
Leaf, 40
Mapping, 63
Mixed, 41
Model, 42
Models, 40
Wrapper, 40

channel, 89, 98
Channel mapping, 55, 64
Chinook, 19
CLI, 117
Cobra, 19, 22
Codesign, 3
Codesign FSM, 8
Comment, 107
Communicating sequential processes,

8
Communication, 32, 98

Layer, 67
Library, 51

Memory, 62
Model, 72, 73
Models, 39
Shared variable, 62
Synthesis, 67
Synthesizer, 113

Communication synthesis, 49, 69
Compilation, 49
Completeness, 80
Complexity, 4
Component, 5

Integration, 15

Matching, 15
Selection, 15

Component library, 13

Computation, 32, 35
Computer-aided design, 2

Concatenation, 87
Concurrency, 37, 81

control-driven, 81
data-driven, 81

pipelined, 81
Constraint, 51

Timing, 103
Constructor, 130

Control data ow graph, 7

Control ow graph, 7
Controller, 7

Cool, 19, 20
Cosmos, 19, 21, 26

COSSAP, 20, 23
Cosyma, 19, 20

CoWare, 20, 23
CSP, 8, 26

Data ow graph, 7
Datapath, 8

DCT, 175, 180
Debugger, 53, 112, 121

Declaration, 89
Decomposition

concurrent, 79

sequential, 79
Deep sub-micron, 143

De�nition, 89
delta, 88

Deparser, 116, 132
Design

Deep sub-micron, 1
Process, 9

Space, 9

INDEX 207

System-level, 2

Design decision, 9
Design process, 8

Design space, 9

Design tree, 188
Level 1, 186

Level 2, 187
Device driver, 12, 67

DFG, 7
DFS, 188

do, 105
Domain, 3, 5

Behavioral, 5
Electronic, 3

Mechanical, 3

Physical, 6
Structural, 6

Driver, 73
DSP, 14

Eaglei, 20, 24
EDA, 1, 14

Electronic Design Automation, 1
Electronics, 3

Embedded system, 1, 2
Encapsulation, 32, 33

Error
fatal, 189

recoverable, 189
Error handling, 189

Estimation, 11, 49, 54

Hardware, 54
Software, 54

Estimator, 113
Event, 87, 109

event, 87, 100
Exact timing, 103

Example, 175
Adder, 133, 175

Annotation, 106

Behavior, 95
Behavior mapping, 58{60
Behaviors, 175
Bit vector, 87, 175
Boolean type, 86

C++ code, 130, 131, 134, 135
Call-back, 175
Channel, 99, 129
Channel mapping, 64
Communication, 178
Communication synthesis, 69{72
Concurrent execution, 93
Controller, 179
Data types, 175
Event, 88
Exception handling, 102
FSM, 92, 176
GSM vocoder, 180, 181
Hello World, 176
Import, 107
Interface, 99, 129
JPEG encoder, 179, 180
Library, 176, 177
Netlist, 97
Notes, 176
Pipeline, 176
Pipelined execution, 94
Plug-and-play, 99

Sequential execution, 91
Structure, 90
Synchronization, 101
System architecture, 57
Timing, 104, 176
Tutorial, 175
Variable mapping, 61{63

Exception, 38, 81
Handler, 81

Exception handling, 81, 87, 102
Executability, 78
Executable speci�cation, 51

208 INDEX

Execution

concurrent, 93

sequential, 91

Execution delay, 103

Execution time, 103
Experiment, 118

Exploration, 9

Design space, 55

Exporter, 116, 132

Expression, 85

Expressive power, 77

false, 86

FEC, 178

FIFO, 51, 178
File format, 115

Finite State Machine, 91, 92

Finite state machine, 7

Flow

Synthesis, 49

Validation, 49
Formal veri�cation, 10, 52

FPGA, 10

FSM, 7, 37, 82, 91, 92

Mealy-type, 7

Moore-type, 7

with coprocessors, 8
with datapath, 7

fsm, 92

FSMC, 8

FSMD, 7, 82

concurrent hierarchical, 8

Gate level, 5

generate, 110

generic, 110
Granularity, 12, 36

coarse, 36

�ne, 37

GSM, 134, 180

GSM vocoder, 134, 180

GUI, 29, 111, 117

Handel-C, 26

Hard IP, 14, 16, 41

Hardware, 2

Synthesis, 74

HardwareC, 20, 25, 83

HCFSMD, 8
HDL, 25

Hierarchy, 5

Behavioral, 35, 79, 91

Structural, 5, 80, 95

Hierarchy tree, 177

Adder, 178
High-level synthesis, 2, 6

HLS, 2, 6, 74

HW, 2

IEEE, 25

Implementation, 9

Implementation model, 74, 75

implements, 99

import, 107
Importer, 116

in, 97

include, 107

Industry, 20

Inheritance, 110

Inlining, 33, 41, 43, 70
Adapter, 45

Channel, 33

Communication, 33

Transducer, 45

Wrapper, 44

inout, 97
Instantiation, 97

Integration, 15

Intellectual Property, 3, 41

Interface, 98

INDEX 209

Synthesis, 67

interface, 89
Interface synthesis, 12

Interrupt, 38, 102

interrupt, 102
IP, 3, 13, 38, 41, 54, 77

Adapter model, 44
Behavior, 128

Business model, 14
Channel, 128

Channel model, 42
Component, 14

Declaration, 128
External, 14

Hard, 14, 16, 41

Implementation, 129
Integration, 16

Integrator, 14
Interface, 134

Internal, 14
Library, 14, 129, 177

Matching, 16
Memory, 14

Mode, 132

Processor, 14
Protection, 16, 127, 142

Provider, 14, 16, 127
Requirements, 17

Reuse, 4, 13, 15
Size, 133, 135

Soft, 14, 17, 41
Vendor, 15

Wrapper model, 43

IP-centric methodology, 13
ISA, 74

ISO, 25
ITU, 26

Java, 22, 23, 25, 83, 85

JavaCAD, 19, 22

JavaTime, 19, 22

JPEG, 14, 134, 179

JPEG encoder, 134, 179

Language

Comparison, 84

Objectives, 78

Requirements, 78

Layer, 116, 117
Application, 68, 117

Bus, 67

Hierarchy, 118

Kernel, 117

Transformation, 117

Level
Algorithm, 4

Gate, 5

Register-transfer, 4

RT, 6

System, 4, 6

Transistor, 5, 6
lex, 85

Library

Channel, 51

Pro�ling, 119

Simulation, 53, 112

Library support, 107
Linkage, 133

Linker, 121

Logic synthesis, 2

Lycos, 19, 21

Main, 96

main, 91, 96

Manual page

scc, 145
sir delete, 157

sir list, 159

sir note, 163

sir rename, 167

210 INDEX

sir strip, 169
sir tree, 171
sprof, 153

Mapping, 12, 56
Architecture, 54

Behavior, 57{59
Channel, 63, 64
Variable, 61{63

Market pressure, 2
Matching, 15
Matlab, 21
Mealy machine, 92
Mechanics, 3
Memory, 62
Memory allocation, 130
Methodology, 13, 47, 48

Bottom-up, 13
IP-centric, 13, 138
Overview, 47
Top-down, 13

Metric, 11
MILP, 20
Model, 31, 47

Adapter, 43
Architecture, 49, 65, 66
Basic, 34
Behavior, 35, 36
Channel, 40, 42

Communication, 39, 49, 72, 73
Computation, 35
Computational, 7
concurrent, 37
Design, 31
Exception, 38
Guidelines, 31
Implementation, 49, 74, 75
Inlining, 43
IP, 38, 41
IP Adapter, 44
IP channel, 42

IP wrapper, 43
IP-centric, 41
Mixture, 75
sequential, 37
Shared memory, 39
Simulation, 53
SpecC, 34
Speci�cation, 49, 51, 52
Test bench, 35
Wrapper, 42

Model of computation, 7
Modeling, 31

IP-centric, 31, 137
Modularity, 75, 79
Moore machine, 92
Moore's law, 1, 2
MPEG, 14

Netlist, 97
Network, 34
note, 106
notify, 88, 101
notifyone, 101

Object orientation, 110
Optimization, 7
Orthogonality, 83, 108
out, 97
Overloading, 109

par, 93
Parser, 116, 121
Partitioner, 113
Partitioning, 3, 11, 56
PCI, 14
PE, 11
Persistent annotation, 106
Petri net, 8
pipe, 94, 109
piped, 95
Pipeline, 94

INDEX 211

Plug-and-play, 4, 17, 29, 41{43, 70, 75,
77, 97, 99

Adapter, 44
Channel, 42

Wrapper, 43
Polis, 19, 22

Port, 97

Mapping, 97
Preprocessor, 121

Processing element, 11
Product-on-demand, 2, 13

Productivity, 13
Productivity gap, 1

Pro�ler, 120, 125

Implementation, 120
Pro�ling, 54

Annotator, 119
De-annotator, 120

De-instrumentor, 120
Instrumentor, 119

Library, 119

Program, 35
Program ow

SpecC compiler, 122
SpecC re�nement, 124

Program state machine, 8
Protection, 16, 127

Protocol
Inlining, 72

Insertion, 71

Selection, 67
Synthesis, 69

Prototyping, 10
PSM, 8, 26, 82

Ptolemy, 19, 23

RAM, 104

range, 103
Rapid prototyping, 10, 111

Real-time operating system, 12

Re�nement, 7, 9, 11

Register-transfer level, 4
Release, 113

Remote-procedure call, 12

Retargetable compiler, 12
Reuse, 3, 15, 41, 77

Roadmap, 1
RPC, 12

RTL, 4
Library, 15

RTOS, 12, 60

scc, 121, 132, 145

scc Public, 132
scc ReservedSize, 132

Scenic, 19, 21
Scheduler, 113

Scheduling, 11, 55, 59, 60
dynamic, 12, 60

global, 61

local, 61
static, 12, 59

SDF, 8, 23
SDL, 21, 26

Seamless, 20, 23
Selection, 15

Separation, 32, 33
Sequentiality, 37

Shared memory, 39
Shared variable, 62

SIA, 1

Signal
analog, 3

digital, 3
mixed, 3

Simulation, 10, 53, 78
Library, 112

Time, 88
SIR, 29, 108, 111, 114, 115, 141, 185

API, 117

212 INDEX

Base class, 189
Class, 116
Design tree, 188
Error handling, 189

File, 115, 188
File format, 115
Graph, 185
Kernel, 117
Layer, 116
Level, 185
Library, 116
Link, 188
Pointer, 188

sir delete, 125, 157
sir list, 125, 159
sir note, 125, 163
sir rename, 125, 167
sir strip, 125, 169
sir tree, 125, 171
Sizing, 68
SLD, 2
SLD projects, 19, 20
SLDL, 26
SOC, 1

SOC design, 2
Soft IP, 14, 17, 41
Software, 2

Compilation, 74
SpecC, 83

Allocator, 113
Architecture explorer, 113
Back end, 113
Basic structure, 34
Communication synthesizer, 113
Compiler, 74, 112, 121, 122, 132,

141
Debugger, 121, 123
Design environment, 29, 111, 112,

141
Editor, 111

Estimator, 113
Example model, 34
Internal Representation, 29, 111,

114, 185
Internal representation, 141
Language, 29, 50, 77, 139
Methodology, 29, 47, 48, 138

Model, 29, 34, 137
Partitioner, 113
Pro�ler, 113, 120, 125
Re�nement tools, 124
Release, 113, 114
Scheduler, 113
Simulator, 112
Structure, 89
System, 111
Tool set, 125
Tutorial, 176

SpecCharts, 21, 26, 83
Speci�cation, 9, 10, 50

Executable, 10
heterogeneous, 19, 23
homogeneous, 19
Model, 51, 52

SpecSyn, 19, 21, 26
sprof, 153
SPW, 20, 23
SRAM, 104
State, 7

State transition, 82, 92
Statecharts, 26, 83
Statement, 89
Structural hierarchy, 79, 80
SW, 2
Synchronization, 81, 87, 100

control-dependent, 81
data-dependent, 81

Synchronous Data Flow, 8
Synthesis, 2, 6

Behavioral, 2, 8

INDEX 213

Communication, 12, 67, 69

Flow, 49
Hardware, 74

High-level, 2, 6

Interface, 12, 67
Logic, 2

Software, 74
Synthesizability, 31, 78

System, 5
System architecture, 56

System house, 14
System integrator, 16

System level, 4
System-level design, 2, 6, 19, 20

System-on-Chip, 1

SystemC, 20, 21

Target architecture, 2, 11, 55
Task, 47

Template, 110

Test bench, 35, 179
this, 100

Time-to-market, 2, 3, 13
Timed behavior, 88

Timing, 81, 103
Diagram, 104

exact, 103
range, 103

timing, 105
Timing range, 103

Tool set, 125

Tosca, 19, 20
Transducer, 12, 43, 45, 68

Insertion, 68, 70
Transistor level, 5

Transition, 7
Translator, 121

trap, 103
true, 86

try, 102

Tutorial, 175
Examples, 176

Type, 85
Aggregate, 86
Basic, 86
Bit vector, 86
Boolean, 86
Composite, 86

Event, 87
Time, 88

UML, 27
Untimed behavior, 88
Users manual, 145

Validation, 10, 49, 52
Flow, 49

Variable
Mapping, 61

Variable channel, 61
Variable mapping, 55, 62, 63
Veri�cation, 10, 52
Verilog, 12, 20, 23{25, 83
VHDL, 12, 20{26, 83, 86
VHDL+, 25
Virtual bus, 63
VisualSpec, 111
VME, 14
VSIA, 18
Vulcan, 19, 20

wait, 88, 101
waitfor, 88, 103
Warning, 189
Watermarking, 17
Weld, 19, 24
while, 92
Wrapper, 40, 42, 44
WWW, 25, 113

XE, 20, 22

214 INDEX

Y-Chart, 5, 6
yacc, 85

		2000-04-11T13:56:17+0000
	Dortmund
	Universitaetsbibliothek Dortmund - Eldorado
	<Keine>

