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Chapter 1
Introduction

The central topic of this thesis is evolutionary multiobjective optimisation (EMO). This term is the link
between all the different chapters, one special aspect of EMO is addressed in each chapter. But
what does this term mean, what is evolutionary multiobjective optimisation?

1.1 Preliminaries

The by far simplest term within EMO is optimisation. At least it is the simplest part to explain. Each
of us once tried to improve something, to get better in some kind of sports, improve some language
or writing skills, or learn some musical instrument. All these aspects can be expressed as some
kind of optimisation. Mathematically, the most essential aspects within optimisation are a set of
feasible solutions S C R" and a fitness function f(x) expressing the quality of each solution = € S.
Presuming this, an optimisation problem is defined by the task to find the solution z* € S such as

f(@*) < f(x), VzxesS (1.1)

in case of minimisation. The maximisation case is of course defined in an analogous way using ">"
instead of "<” in equation 1.1.

Although explaining or defining optimisation is somehow straightforward, optimisation itself or cor-
responding procedures and algorithms are a large and complex area of research over decades. At
one end, there are first and second order derivative methods for single variable functions, which are
already taught in calculus in school. For a more experienced reader in the field, these may seem
simple again. Of course, many different ends exist and at some other end, there are evolutionary
optimisation techniques. These are also called evolutionary algorithms (EA)'. Such methods try to
mimic the natural process of evolution [Fut90] to improve solutions. The most essential driving force
for such algorithms is the repetition and the interaction of the variation of existing solutions and a
selection process. The interplay of variation and selection leads to an improvement of solutions over
a number of generations. This does not hold necessarily, but in most cases EA have proven to be
very competitive, reliable, and robust optimisation methods. This particularly holds for black-box
optimisation tasks.

For more details on different methods and aspects of optimisation, of course focussing on stochas-
tic techniques, we refer to Schwefel [Sch95]. Advisable, introductory textbooks on EA exist from

' Abbreviations like EMO, EA, EMOA etc. are used in singular as well as their corresponding plural forms throughout
this thesis. To this end, EA might mean a special evolutionary algorithm as well as a set or collection of evolutionary
algorithms.
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Dedong [Ded06] and Eiben and Smith [ES03]. Moreover, two journals are most important in the core
EA field:

1. Evolutionary Computation journal by MIT Press and
2. |IEEE Transactions on Evolutionary Computation by |IEEE Press.

Introductory articles stem from Béack, Hammel, and Schwefel [BHS97] within the IEEE journal as well
as by Beyer and Schwefel [BS02] within the Natural Computing journal by Springer. The latter one
has an expanded spectrum in contrast to the above more focussing on EA.

Evolutionary algorithms receive a remarkable research interest that is also reflected in the numer-
ous contributions to both of its annual major conferences, i.e.

e |EEE Congress on Evolutionary Computation (CEC), an annual event, which is held every two
years in conjunction with the major IEEE conferences on neural networks and fuzzy logic as
part of the World Congress on Computational Intelligence (WCCI),

e the Genetic and Evolutionary Computation Conference (GECCOQO), again an annual conference
of the ACM SIGEVO.

Next to these huge events there are at least two high quality events within the field taking place every
two years, i.e.

e Parallel Problem Solving from Nature (PPSN) and
e Foundations of Genetic Algorithms (FOGA).

1.2 Example and Fundamentals

The missing term in resolving evolutionary multiobjective optimisation is multiobjective, which is pos-
sibly the most complex term inside. One task that accompanied me through the past years working
and researching in the EMO field was airfoil design. A special task from this field is utilised to intro-
duce multiobjective optimisation.

Consider an aircraft wing with a fixed airfoil. For the normal cruising flight conditions, a lift is
needed to counterbalance the weight of the whole aircraft. Of course, this lift should be generated
with a minimum of drag to save fuel and move the aircraft. This means saving energy and conse-
quently save money as well as protect the environment. However, for special flight conditions, in
particular for take-off and landing, other properties of the airfoil are more important. For example,
the drag is neglected to receive a certain amount of lift at a special, reduced velocity to provide sta-
ble flight characteristics. These conditions obviously yield a trade-off. Different fitness functions can
be formulated for the corresponding flight conditions and a good alternative solution for the airfoil is
needed.

A common approach to handle this multiobjective optimisation problem is to define target airfoils
for the corresponding flight conditions and define fithess functions based on the differences of the
current airfoil to these target airfoils.

Examples for such target airfoils are provided in figure 1.1 with an airfoil featuring a high lift value on
the left and one featuring a low drag value on the right hand side. The corresponding fitness functions
J1,2 are defined based on the pressure coefficients of the target airfoil maximising lift C;) ;5,.gc¢(s),

the target airfoil minimising drag C;%,tm'get(s) and the pressure coefficient of the current airfoil C)(s).
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Figure 1.1: The target airfoils for the NACA redesign test case to be introduced in detail by Back et al.
[BHNT99] and Naujoks et al. [NWBH02, NHZB02]: NACA 0012 featuring a high lift (left)
and NACA 4412 featuring a low drag (right). For a better detection of differences within
the designs, the thickness ( y-component in the figures) of the original airfoil is stretched
by a factor of 10.

Here, s is the airfoil arc-length measured around the airfoil and the resulting fitness functions read
! 1 ! 2
fii= [ (€)= Chmgds and foi= [ (Cyl) = Chramgal)is

The task of evolutionary multiobjective optimisation algorithms (EMOA) within the context above
is to determine all solutions that cannot be improved within one aspect without deterioration with
respect to the other aspect. Mathematically, this is Pareto-optimisation [Deb01, CVL02], which has
become a well established technique for detecting interesting solution candidates for multiobjective
optimisation problems. It enables the decision maker to filter efficient solutions and to discover trade-
offs between opposing objectives among these solutions.

Provided a set of objective functions f; 4 : S — R defined on some search space S to be
minimised, in Pareto optimisation the aim is to detect the Pareto-optimal set M = {x € S|x' € S :
x’ < x}. The concept of Pareto dominance relies on a component-wise comparison of vectors. A
vector X is said to dominate a vector y (x < y), if and only if f(x) is better than or equal to f(y) in all
components, i.e.

Vie{l,....,d}: fi(x) < fi(y)

and better than f(y) in at least one component, i.e.

Jje{l,....d}:  fi(x) < fi(y).

The Pareto-front is the set f(M) in the objective space. In the airfoil optimisation example from
above, all alternative designs, where the lift cannot be increased any further without increasing the
drag of the airfoil as well, form this Pareto-front.

A unigue measure for the quality of a non-dominated set is the hypervolume measure or S metric
[ZT98]. In recent years, this measure is utilised within the selection operator in EMOA in order to find
a set of well distributed solutions on the Pareto front [ZK04, EBNO5, BNEO7, IHRO7].

Now that the basics of EMO are explained, two textbooks from the last decade have to be men-
tioned. The first and most well-known one is the book of Deb [Deb01] from 2001. The second book
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was written by Coello Coello, Van Veldhuizen, and Lamont in 2002, a new, revised edition was re-
leased in 2007 [CVLO7]. Next to these introductory books on EMOA in general, Coello Coello and
Lamont [CL04] collected different applications of these algorithms and published these in a book
again.

In addition to major tracks at the annual conference in the evolutionary computation field, there
is a special conference series that started back in 2000. It is called the conference on Evolutionary
Multi-Criterion Optimization (EMO) and takes place every two years in locations all over the world.

1.3 Overview

The work at hand presents approach and enhancements to evolutionary multiobjective optimisation.
It is a cumulative work with each paper included co-authored by me. All these papers have been
published at different conferences and all have been peer-reviewed, which is the normal procedure
within this research field.

Based on these conference articles, different journal articles have been published. These are
not integrated because | preferred to have the original work in here. Moreover, the journal articles
are mostly a condensed version of multiple conference articles and | preferred to have the detailed
versions integrated.

Due to this thesis being a cumulative work, the nomenclature may change from chapter to chapter,
or, but hopefully not, even within one chapter. Moreover, there are different styles of tables, figures
etc. throughout the thesis. This is not the normal way a thesis should be presented, but due to
the incorporation of different, already published articles. The original layout of tables and figures
has intentionally not been changed. Tables and figures may have only been adapted in size to fit
adequately in the layout of the thesis. To better distinguish the integrated articles from other text,
different fonts have been chosen. Integrated articles are set in IATEX standard font, i.e. Computer
Modern Roman, while all other parts are set in Helvetica.

Beside this introduction, the work covers six chapters each but the last one focusing on a special
aspect of an approach, which is presented here. While the last section concludes this work and
presents an outlook to future research tasks, the five chapters in-between present the real scientific
work.

The main approach to evolutionary multiobjective optimisation described here is an EMOA utilising
the hypervolume or S-metric within its selection operator mentioned above (cf. 1.2 on page 7). It is
called S-Metric Selection - Evolutionary Multiobjective Optimisation Algorithm (SMS-EMOA).

The SMS-EMOA is introduced and analysed in the following chapter. Differences to alternative
approaches are worked out and two as well as three dimensional test cases are handled. While
the chapters 4 to 6 all present applications of the new approach, extensions, and add-ons, which
go beyond the original definition of the algorithm, chapter 3 is different. After having presented the
new approach, a more detailed look is taken at the potential and limitations of such Pareto-based
approaches in general. To this end, chapter 3 investigates the correlations between Pareto-sets and
Pareto-fronts and analyses the basic behaviour of standard EMO algorithms on special test cases.
These test cases are built with respect to different correlations of Pareto-sets and Pareto-fronts that
might occur in industrial test cases but have been neglected in standard test case definitions for
EMOA until now.
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Chapter 4 comes back to the potential of the SMS-EMOA in contrast to standard EMO algorithms.
In the case of three to six dimensions of the objective space, only specialised algorithms are able
to provide comparable results to those received with the SMS-EMOA. With increasing objective
space dimension, the SMS-EMOA gets more and more superior to well-known, traditional methods.
However, the time complexity for the hypervolume calculations should not be neglected.

Chapter 5 presents an extension to EMOA in general, that is tested in particular with the SMS-
EMOA. The Online Convergence Detection (OCD) method provides a stopping criterion that suc-
cessfully manages the trade-off between wasting computational resources with useless function
evaluations and loosing solution quality by stopping an optimisation run too early.

The last scientific chapter 6 applies the Sequential Parameter Optimisation (SPO) framework to
EMO algorithms in general and the SMS-EMOA in particular. Next to the general applicability of the
framework to EMO algorithms, it is utilised to investigate the influence of different variation operators
on the performance of the SMS-EMOA.

Discussing the influence of variation operators in the last chapter, all aspects of an EMOA algo-
rithm have been handled within this thesis. The possibly most influential one, the selection operator,
is the core of the presented new approach. Moreover, the influence of the fitness function has been
discussed in chapters 3 (correlations between Pareto-set and Pareto-front) and 4 (many objective
optimisation problems). Last, but not least, a very promising new stopping criterion has been pro-
posed (cf. chapter 5). A short overview on the different aspects within each of the following chapters
is provided in the following paragraphs.

1.3.1 The basic S-Metric Selection - EMOA

This algorithm was first introduced in a joint work with Michael Emmerich and Nicola Beume. The
original idea to use the hypervolume as a selection criterion in EMO the chosen way stems from
Michael Emmerich. Back in 2004, indicator-based selection was not known, although rather shortly
after the first discussions here, a first article on this was published by Zitzler and Kiinzli of the Zurich
EMOA group [ZKO04]. However, the approach followed there was different in many ways.

A basic feature of the SMS-EMOA is its (. + 1)-selection scheme, that was proposed by me.
The main reason to go for such an unusual selection scheme was the high expected runtime for the
hypervolume calculations. The presented selection scheme did not solve the problem, but reduced
the necessary calculations for the selection to a manageable minimum. Other important design
decisions have been taken by the group of authors. While Michael Emmerich provided the first
implementation of the algorithm, Nicola and me experimented on already accessible test functions
to receive first results. These results were summarised and compared to the results of well-known
alternative algorithms in the first paper published at the Evolutionary Multi-Criterion Optimization
(EMO) conference in 2005.

Since | already had a background in aerodynamic applications, the new algorithm was also applied
to a test case from this field. The results received were very promising and have been added to the
paper above as well. Another, higher-dimensional and more complex test function from the field of
aerodynamics was approached in a follow-up paper [NBEO5]. This paper focusses on three dimen-
sional test problems, which have been added to the collection of available test functions. Moreover, it
presents a new approach to efficiently calculate three-dimensional hypervolume contributions, which
was developed and implemented by Michael Emmerich.
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1.3.2 Diversity Preservation in Decision and Objective Space

Comparing single- and multiobjective evolutionary algorithms, a major difference is the meaning and
management of diversity. Within single-objective EA, users try to keep a high diversity in the decision
space not to converge to a local optimum too early. Here, Mike Preuss is an expert with a focus on a
technique called niching [Pre06]. In multiobjective optimisation, users try to keep a high diversity in
the objective space, i.e. a large number of well-spread solutions on the Pareto-front. This way, both
species of EA try to keep diversity, but the space where to keep it, decision or objective space, and
the methods applied are rather different.

Having discussed these differences, Mike Preuss and | agreed that next to keeping diversity in
the objective space in EMQ, it is use- and helpful to preserve decision space diversity within EMOA
as well. A Pareto-optimal solution from a different region of the search space would be much more
valuable for a practitioner than only a very small change within one parameter, that he possibly
cannot adjust on his machine in reality. Together with Glinter Rudolph we decided to have a more
detailed look on situations that might occur. In two successive years we published two papers that
build the core of the corresponding chapter 3.

1.3.3 Many-Objective Optimisation

The work of Evan Hughes at the Congress on Evolutionary Computation (CEC) in 2005 mentions
the drawbacks of well-known EMO approaches if the number of objectives is increased [Hug05].
This holds, even if the increase is only marginal, i.e. the number of objectives gets larger than
three. However, no detailed work focusing on this aspect existed at that time. Hughes himself only
compared his new approach to the well-known NSGA-II [DPAMO02] and limited himself to only a short
number of test functions and experiments [HugO05].

Consequently, the idea for a much more detailed look at the potentials of different methods in
this area arised. After some discussions on the topic with Nicola Beume and Tobias Wagner, we
decided to compare different EMOA on multiobjective optimisation problems with an objective space
dimension of three to six. Tobias provided much of the implementations, all other work was shared
between the three authors and the resulting paper was published at the EMO conference in 2007.

1.3.4 Stopping Criteria for EMOA

Within EA, it is always a critical decision, when to stop an optimisation run. On the one hand side,
it is not guaranteed that an optimum found is a global one. To this end, only a few more steps of
the algorithm could yield great improvements. Contrariwise, spending useless effort and wasting
computational resources is not desired, especially when the probability of improvements is very
small.

To answer the question, at which generation an EMOA run can or should be stopped, the online
convergence detection criterion (OCD) was developed. It goes back to the work of Heike Trautmann,
Uwe Ligges, J6rn Mehnen, and Mike Preuss at the PPSN conference in 2008, where an offline
criterion for convergence detection was presented. This criterion provides useful information when
to stop future runs if prior ones have been analysed. The idea to transform this criterion into an online
one emerged right after the conference when continuing to discuss the topic with Heike Trautmann.
The aim was to analyse performance indicators based on prior generations statistically to decide,
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when the probability for further improvements is too small to justify further evaluations. The realised
method was developed in close collaboration with Tobias Wagner again. Heike Trautmann provided
methods and know-how from a statistical point of view and | did so from an EA practitioners one.
Tobias Wagner was able to provide significant input to both fields.

1.3.5 Sequential Parameter Optimisation for MCO

The idea to transfer the framework of sequential parameter optimisation (SPO) of Thomas Bartz-
Beielstein from single- to multiobjective evolutionary optimisation is a rather self-evident as well as
very promising one. The latter especially holds for real-world applications, due to the necessity to
always yield the best results. The idea for this transfer was first formulated together with Thomas
Bartz-Beielstein and Domenico Quagliarella, when discussing possible common research activities.
A technical report [BBN04] and a research proposal were formulated and, the last, examined in a
positive way.

Simon Wessing started his professional career on the resulting research project implementing the
ideas formulated there. We collaborated on the transfer of the SPO framework to multiobjective
optimisation tasks and published a first article on this at the 2010 Congress on Evolutionary Compu-
tation (CEC). A follow-up article more focussing on the influence of variation operators in EMOA was
published in conjunction with Nicola Beume, Glinter Rudplph and Simon Wessing, of course.

Concerning the actual work for the contributions, Simon Wessing provided almost all the imple-
mentation and experimentation work. While all other colleagues helped in managing the work and
writing the paper, | contributed particularly in providing and introducing the aerodynamic applications.
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Chapter 2

The basic S-Metric Selection - EMOA

The S-metric or hypervolume measure was introduced by Zitzler and Thiele in 1998 [ZT98, Zit99] as
a measure for comparing the results of different EMOA. This is due to its still outstanding property
to be a unary measure, which means that changes in the measure can be directly translated to the
quality of the corresponding Pareto front approximation. This property, being a great advantage of
the measure, is discussed next to some drawbacks of it in the first contribution to be included in this
thesis. It stems from the Evolutionary Multi-Criterion Optimization (EMO) Conference in 2005 (cf.
pages 16 to 28):

[EBNO5] M. Emmerich, N. Beume, and B. Naujoks. An EMO algorithm using the hypervolume mea-
sure as selection criterion. In C. A. Coello Coello et al., editors, Evolutionary Multi-Criterion
Optimization (EMO 05), pages 62—-76. Springer, Berlin, 2005.

Since the measure was used to compare different EMO results, incorporating it in the selection
routine of an EA was nearby. However, different aspects, in particular the exponential runtime of the
calculation of the hypervolume, had to be addressed. Some other guidelines for the design of the
algorithm were to propose a simple and transparent algorithm, which should not be too complex to
understand and, maybe more important, to re-implement. Moreover, EA are, by definition, easy to
parallelise. This should also hold for the proposed algorithm. As a consequence, it was planned
to have the algorithm easily extendible to specific features of applications, like the incorporation of
approximate fitness function evaluations.

The last property was already realised in the first article presenting the algorithm. For a two-
objective aerodynamic design problem, the SMS-EMOA was tested and approximate fithess func-
tions evaluations based on Kriging models were incorporated. This was continued with the second
article presenting the SMS-EMOA for applications to three-dimensional solution spaces, which also
builds the second article integrated in this thesis (cf. pages 29 to 42):

[NBEO5] B. Naujoks, N. Beume, and M. Emmerich. Multi-objective optimisation using S-metric
selection: Application to three-dimensional solution spaces. In G. W. Greenwood, editor,
Congress on Evolutionary Computation (CEC 05), Piscataway NJ, 2005. IEEE Press.

Within the publications here, it is demonstrated that the approach is of special elegance for the
biobjective case, since its implementation is quite simple and the update of the population can be
computed in almost linear time. The selection and variation procedures do not interfere with an extra
archive and the number of strategy parameters is very low, i.e. the population size and possibly the
reference point.

Experiments on standard benchmark problems indicate that the SMS-EMOA is also well-suited
for Pareto optimisation with three objectives as well. It clearly outperforms established techniques,




14

Chapter 2

both in convergence and in S-metric values. Examples reveal that results are well-distributed on
the Pareto surface, with a focus in the regions around knee points and at the boundaries of the
non-dominated front.

In addition, different variants of the selection procedure in the SMS-EMOA have been introduced,
e.g. a new scheme, where the rating of a solution depends on the number of solutions that dominate
it (cf. section 2.2). All variants led to better results than conventional strategies, indicating that
the hypervolume selection mechanism, contained in all of them, performs well regardless of the
particular selection scheme.

Besides the comparison on different mathematical test cases, the SMS-EMOA has been tested on
challenging real-world applications, namely the optimisation of airfoils for different flight conditions.
For a two-dimensional test case, the one introduced in the introduction (cf. chapter 1.2 on page 6)
the distribution of solutions could be improved. For a three-dimensional one, solutions that clearly
dominate the current best, baseline design have been found.

For these applications Kriging metamodels have been used to reduce the number of (time con-
suming) precise function evaluations. Coupling the new algorithm to the metamodel turned out to be
rather simple as this was already respected during the design of the algorithm. Here, earlier work
on the coupling to other EMOA and the experience gained there was very helpful [EN04b, EGNO6].
The results indicate that these techniques can be used to further enhance the performance of the
SMS-EMOA in the important area of design optimisation and beyond.

The first article emphasises the correlation to Fleischer’s algorithm [Fle03] for calculating the hy-
pervolume of a Pareto-front. However, While [Whi05] found out that the proposed algorithm is faulty
and therefore, the polynomial runtime cannot be hold. This is a pity on the one hand side but drew a
lot of attention to the problem of hypervolume calculation on the other hand side. To this end, different
groups of researchers around the world concentrate on the hypervolume calculation or alternative
approximation techniques. Strong theoretical results have been received for exact calculation and
very good heuristics as well as approximations have been proposed. For the following paragraphs,
it is useful to know the definition of the big O or Landau notation (cf. e.g. Knuth [Knu97]) and some
classes of computational complexity (cf. e.g. Garey and Johnson [GJ90]).

The most important theoretical results stem from Beume et al. [Beu06, BR06, Beu09, BFLIT09]
and Bringmann and Friedrich [BF08, BF09]. Beume et al. [BFLIT09] proved a lower bound for
the hypervolume calculation of £2(m logm) with m being the number of non-dominated points on
the Pareto-front that is independent of the dimension of the objective space d. While O(m logm)
algorithms for d = 2 (e.g. Knowles et al. [KCF03]) and d = 3 (cf. Emmerich and Fonseca [EF11]) are
already know, for d > 3 Beume and Rudolph [BRO06] proposed the currently most efficient algorithm
for calculating the hypervolume. This algorithm is based on Overmars and Yap’s algorithm for Klee’s
measure problem and is (’)(md/2 logm). More generally, Bringmann and Friedrich [BF08] proved
that the hypervolume calculation is # P-hard, which means that all hypervolume algorithms have
superpolynomial runtime unless P = N P.

One possible way to avoid such high runtimes is to approximate the hypervolume covered by a
Pareto-front. A first Monte-Carlo approach introducing this idea stems from Bader and Zitzler [BZ08,
BZ10]. Bringmann and Friedrich [BF08] developed an approximation scheme for the hypervolume
indicator that is linear in m and d. More precisely it is O(log(1/6) nd/e?) for an e-approximation of
the hypervolume with probability 1 — §. Nevertheless, according to Bringmann and Friedrich [BF09],
approximating the contributing hypervolume of a single point is (still) N P-hard.
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Another possible way to avoid the high runtimes, if not in the worst case behaviour, but at least
in experiments, are heuristics. Most heuristic approaches are based on the hypervolume by slic-
ing objectives (HSO) algorithm, which was independently developed by Knowles [Kno02] and Zitzler
[Zit01]. While et al. [WHBHO06] were the first to compare the HSO approach to previous algorithms
and found that it runs in two to three orders of magnitude faster for randomly generated and bench-
mark data in three to eight objectives.

Bradstreet et al. [BWBO08] proposed a fast heuristic for calculating the hypervolume contributions
of each non-dominated point. They claim to reduce the runtime of HSO for representative data by 25
to 98% with their approach. Moreover, they presented an update procedure for these contributions
to avoid recalculation, if a point is removed from the front. Compared to a full recalculation of the
contributions, the update procedure promises a 77 to 99% runtime reduction [BBW09].

Despite the exponential runtime for exact hypervolume calculations, many real-world applications
allow only a very limited number of evaluations due to costly fithess function evaluations. In such
cases, the fitness function evaluations govern the runtime of the optimisation process. The runtime
of the EMOA can almost be neglected and the SMS-EMOA proved to be a competitive optimiser.

Based on the two integrated conference articles, two journal articles have been published by the
corresponding group of authors. The first one appeared in the European Journal of Operational
Research:

[BNEO7] N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective selection based
on dominated hypervolume. European Journal of Operational Research, 181(3):1653—1669,
2007.

This journal article summarises both conference articles and became the main reference for citing
the SMS-EMOA. It was not incorporated into the thesis, because | decided to incorporate the first
and more detailed appearance of the algorithm.

The second journal article is a German article that appeared in the at-Automatisierungstechnik
journal, which is a well-known German journal on automation. It defines itself to be a guideline for
the transfer of theoretical techniques and potentials to industry.

[BNRO8] N. Beume, B. Naujoks, and G. Rudolph. SMS-EMOA: Effektive evolutionére Mehrzielopti-
mierung. at-Automatisierungstechnik, 56(7):357-364, 2008.
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2.1 An EMO Algorithm Using the Hypervolume Measure as Selection
Criterion

This section (pages 16 to 28) is copied verbatim from

[EBNO5] M. Emmerich, N. Beume, and B. Naujoks. An EMO algorithm using the hypervolume mea-
sure as selection criterion. In C. A. Coello Coello et al., editors, Evolutionary Multi-Criterion
Optimization (EMO 05), pages 62—76. Springer, Berlin, 2005.

Abstract

The hypervolume measure is one of the most frequently applied measures for comparing the
results of evolutionary multiobjective optimization algorithms (EMOA). The idea to use this
measure for selection is self-evident. A steady-state EMOA will be devised, that combines
concepts of non-dominated sorting with a selection operator based on the hypervolume mea-
sure. The algorithm computes a well distributed set of solutions with bounded size thereby
focussing on interesting regions of the Pareto front(s). By means of standard benchmark prob-
lems the algorithm will be compared to other well established EMOA. The results show that
our new algorithm achieves good convergence to the Pareto front and outperforms standard
methods in the hypervolume covered.

We also studied the applicability of the new approach in the important field of design opti-
mization. In order to reduce the number of time consuming precise function evaluations, the
algorithm will be supported by approximate function evaluations based on Kriging metamod-
els. First results on an airfoil redesign problem indicate a good performance of this approach,
especially if the computation of a small, bounded number of well-distributed solutions is
desired.

2.1.1 Introduction

Pareto optimization [Deb01, CVL02] has become a well established technique for detecting
interesting solution candidates for multiobjective optimization problems. It enables the deci-
sion maker to filter efficient solutions and to discover trade-offs between opposing objectives
among these solutions. Provided a set of objective functions fi ., : S — R defined on some
search space S to be minimized, in Pareto optimization the aim is to detect the Pareto-optimal
set M = {x € S|#ix’ € S : X < x}, or at least a good approximation to this set.

In practice, the decision maker wishes to evaluate only a limited number of Pareto-optimal
solutions. This is due to the limited amount of time for examining the applicability of the
solutions to be realized in practice. Typically these solutions should include extremal solutions
as well as solutions that are located in parts of the solution space, where balanced trade-offs
can be found.

A measure for the quality of a non-dominated set is the hypervolume measure or S met-
ric [ZT98]. Until now, research mainly focussed on two approaches to utilize the S metric
for multiobjective optimization: Fleischer [Fle03] suggested to recast the multiobjective op-
timization problem to a single objective one by maximizing the & metric of a finite set of
non-dominated points. Knowles et al. utilized the S metric within an archiving strategy for
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EMOA [KC03, KCF03].

Going one step further, our aim was to construct an algorithm in which the § metric governs
the selection operator of an EMOA in order to find a set of solutions well distributed on the
Pareto front. The basic idea of this EMOA is to integrate new points in the population,
if replacing a member increases the hypervolume covered by the population. Moreover, we
aimed at an algorithm that can easily be parallelized and is simple and transparent. It
should be extendable by problem specific features, like approximate function evaluations.
Thus, a steady-state (u + 1)-EMOA, the so-called S metric selection EMOA (SMS-EMOA),
is proposed.

Notice that in contrast to Knowles et al. [KCF03], we do not evaluate an archiving operator
solely, but the dynamics of a complete EMOA based on S metric selection. In our opinion, the
design of an EA suitable for a given problem or a series of test problems is a multiobjective
task again. This way we look at archiving strategies as only one component of the whole
EMOA.

The article is structured as follows: The hypervolume or & metric that is used in the
selection of our algorithm is discussed first (section 2). Afterwards, the integration in an
EMOA as well as some features are described (section 3). Section 4 deals with the performance
on several test problems whereas the results achieved on a real world design problem are the
topic of section 5, including results with approximate function evaluations. In particular,
the coupling of our method to a metamodel assisted fitness function approximation tool is
presented here. We close with a summary and an outlook to implied future tasks (section 6).

2.1.2 The Hypervolume Measure

The hypervolume measure or S metric was originally proposed by Zitzler and Thiele [ZT98],
who called it the size of the space covered or size of dominated space. Coello Coello, Van Veld-
huizen and Lamont [CVL02] described it as the Lebesgue measure A of the union of hypercubes
a; defined by a non-dominated point m; and a reference point x,.:

S(M) == A{| Jailmi € M}) = A {zlm < 2 < 2rep}). (2.1)
i meM

Zitzler and Thiele note that this measure prefers convex regions to non-convex ones [ZT98].
A major drawback was the computational time for recursively calculating the values of S.
Knowles and Corne [KCO03] estimated O(k™*1) with k being the number of solutions in the
Pareto set and n being the number of objectives. Furthermore, an accurate calculation of
the & metric requires a normalized and positive objective space and a careful choice of the
reference point. In [KC03, KC02] Knowles and Corne gave an example with two Pareto fronts,
A and B, in the two dimensional case. They showed either S(4) < S(B) or S(B) < S(A)
depending on the choice of the reference point.

Despite these disadvantages, the S metric is currently the only unary quality measure that is
complete with respect to weak out-performance, while also indicating with certainty that one
set is not worse than another [KCF03]. It was used in several comparative studies of EMOA,
e.g. [Zit99, DMMO03b, DMMO03a]. Quite recently, Fleischer [Fle03] proofed that the maximum
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of § is a necessary and sufficient condition for a finite true Pareto front (|PFirye| < 00):
PFinown = PFirue <= S(PFinown) = maz(S(PFrnown))- (2.2)

Moreover, he developed a method for computing the S metric of a set in polynomial time:
O(k3n?) [Fle03]. This algorithm led to the efficient integration of the S metric in archiving
strategies [KCF03].

In addition, the & metric of a set of non-dominated solutions is suggested as a mapping
to a scalar value. Fleischer proposed the use of metaheuristics to optimize this scalar. His
idea was to try simulated annealing (SA) resulting in a provable global convergent algorithm
towards the true Pareto front [Fle03].

2.1.3 The Algorithm

Our aim was to design an EMOA that covers a maximal hypervolume with a limited number
of points. Furthermore, we wanted to diminish the problem of choosing the right reference
point. Our SMS-EMOA combines ideas borrowed from other EMOA, like the well established
NSGA-II [DPAMO02] and archiving strategies presented by Knowles, Corne, and Fleischer
[KC03, KCF03]. It is a steady-state evolutionary algorithm with constant population size
that firstly uses non-dominated sorting as a ranking criterion. Secondly the hypervolume is
applied as selection criterion to discard that individual, which contributes least hypervolume
to the worst-ranked Pareto-optimal front.

Details of the SMS-EMOA

A Dbasic feature of the SMS-EMOA is that it updates a population of individuals within a
steady-state approach, i. e. by generating only one new individual in each iteration. The basic
algorithm is described in algorithm 1. Starting with an initial population of u individuals, a
new individual is generated by means of random variation operators'. The individual enters
the population, if replacing a member increases the hypervolume covered by the population.
By this rule, individuals may always enter, if they replace dominated individuals and therefore
contribute to a higher quality of the population. Apparently, the selection criterion assures
that no non-dominated individual is replaced by a dominated one.

Before we will further explicate this selection strategy, we will spend a few more words on
the steady-state approach. A steady-state scheme seems to be well suited for our approach,
since it can be easily parallelized, enables the algorithm to keep a high diversity, and allows
for an efficient implementation of the selection based on the hypervolume measure.

In contrast to other strategies that store non-dominated individuals in an archive, the
SMS-EMOA keeps a population of non-dominated and dominated individuals at constant
size. A variable population size might lead to single individual populations in the worst
case and therefore to a crucial loss of diversity for succeeding populations. If the population
size is kept constant, the population may also have to include dominated individuals. In

We employed the variation operators used by Deb et al. for their eeMOEA algorithm [DMMO03a]. These are
the SBX recombination and a polynomial mutation operator, described in detail in [Deb01]. We used the
implementation available on the KanGAL home page http://www.iitk.ac.in/kangal/.
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Algorithm 1 SMS-EMOA

1: Py < init() /* Initialize random start population of p individuals */
2: 14+ 0

3: repeat

4: @41 < generate(F;) /* Generate one offspring by variation operators */
5. P41 < Reduce(P,U{q+1}) /* Select p individuals for the new population */
6: t<t+1
7: until stop criterium reached

order to decide, which individuals are eliminated in the selection, also preferences among the
dominated solutions have to be established.

Algorithm 2 Reduce(Q)

1: {R1,...,Rr} + fast-nondominated-sort(Q)

2: /* all T non-dominated fronts of Q */
3: r < argminger,[As(s, R1)] /* detect element of Ry with lowest As(s,Rr) */
4: Q'+ Q\{r} /* eliminate detected element */
5: return Q'

Algorithm 2 describes the replacement procedure Reduce employed. In order to decide,
which individuals are kept in the population, the concept of Pareto front ranking from the well-
known NSGA-II is be adopted. First, the Pareto fronts with respect to the non-domination
level (or rank) are computed using the fast-nondominated-sort-algorithm [DPAMO02]. Af-
terwards, one individual is discarded from the worst ranked front. If this front comprises
|R7| > 1 individuals, the individual s € R is eliminated that minimizes

As(s,Rr) :=8(Rr) — S(Rr\ {s}). (2.3)
For the case of two objective functions, we take the points of the worst-ranked non-

dominated front and sort them ascending according to the values of the first objective function
f1. We get a sequence that is additionally sorted in descending order concerning the fo val-

ues, because the points are mutually non-dominated. Here for R; = {s1,..., 8\R1|}7 Ag is
calculated as follows:
As(si Rr) = (fi(sit1) — fi(si) - (fa(si—1) — fa(si))- (2.4)

Theoretical Aspects of the SMS-EMOA

The runtime complexity of the hypervolume procedure in the case of two objective functions
is governed by the sorting algorithm. It is O(u-logu), if all points lie on one non-dominated
front. For the case of more than two objectives, we suggest to use the algorithm of Fleischer
to calculate the contributing hypervolume Ag of each point (compare [KCF03]). Here, the
runtime complexity of SMS-EMOA is governed by the calculation of the hypervolume and is
O(3n?).

The advantage of the steady-state approach is that only subsets of size (|R;| —1) have to be
considered. By greedily discarding the individual that minimizes Ags(s, Ry), it is guaranteed
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that the subset which covers the maximal hypervolume compared to all |R;| possible subsets
remains in the population (for a proof we refer to Knowles and Corne [KC03]). With regard
to the replacement operator this also implies that the covered hypervolume of a population
cannot decrease by application of the Reduce operator, i.e. for algorithm 1 we can state the
invariant:

S(P) < S(Pu). (2.5)

Note, that the basic algorithm presented here nearly fits into the generic algorithm scheme
AA;cduce presented by Knowles et al. [KCO03] within the context of archiving strategies. The
archiving strategy called AAg uses the contributing hypervolume of the non-dominated points
to determine the worst and is the most similar one to our algorithm among those presented
in [KCO03].

Knowles et al. showed that the AAg strategy converges to a subset of the true Pareto
front and therefore to a local optimum of the S metric value achievable with a bounded set
of points. A local optimum means that no replacement of an archive solution with a new
one would increase the archive’s § metric net value. Provided that the population size in the
SMS-EMOA equals the archive size in AAg and only non-dominated solutions are concerned,
the AAg strategy is equivalent to our method. If dominated solutions are considered as well,
the SMS-EMOA population contains even more solutions than the AAg archive. Thus, the
proof of convergence holds for our algorithm as well. Knowles et al. analyzed the quality of
local optima and remarked in [KCO03] that the points of local optima of the S metric are “well
distributed”.

Often stated criticisms of the hypervolume measure regard the crucial choice of the reference
point and the scaling of the search space. Our method of determining the solution contributing
least to the hypervolume is actually independent from the choice of the reference point. The
reference point is only needed to calculate the hypervolume of extremal points of a front and
can alternatively be omitted, if extremal solution are to be kept anyway. Furthermore, our
method is independent from the scaling of the objective space, in the sense that the order of
solutions is not changed by multiplying the objective functions with a constant scalar vector.

Comparison of As and the Crowding Distance

The similarity of the SMS-EMOA to the NSGA-II algorithm is noticable. The main differences
between both procedures are the steady-state selection of the SMS-EMOA in contrast to the
(14 ) selection in NSGA-IT and the different ranking of solutions located on the same Pareto
front.

We would like to compare the crowding distance measure, that functions as ranking criterion
for solutions of equal Pareto rank in NSGA-II, to the hypervolume based measure Ag. We
recapitulate the definition of the crowding distance: It is defined as infinity for extremal
solutions and as the sum of side lengths of the cuboid that touches neighboring solutions in
case of non-extremal solutions on the Pareto front. It is meant to distribute solution points
uniformly on the Pareto front. In contrast to this, the hypervolume measure is meant to
distribute them in a way that maximizes the covered hypervolume.

In figure 2.1 a set R of non-dominated solutions is depicted in a two dimensional solution
space. The left hand side figure shows the lines determining the ranking of solutions in
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the NSGA-II. The right hand side figure depicts the same solutions and their corresponding
values of Ag(s, R), which are given by the areas of the attached rectangles. Note that for
the crowding distance, the value of a solution z; depends on its neighbors and not directly
on the position of the point itself, in contrast to As(s, R). In both cases extremal solutions
are ranked best, provided we choose a sufficiently large reference point for the hypervolume
measure. Concerning the inner points of the front, x5 (rank 3) outperforms x4 (rank 4), if the
crowding distance is used as a ranking criterion. On the other hand, z4 (rank 3) outperforms
x5 (rank 4), if Ag(s, R) is employed (right figure). This indicates that good compromise
solutions, which are located near knee-points of convex parts of the Pareto front are given
better ranks in the SMS-EMOA than in the NSGA-II algorithm. Practically, solution x5 is
less interesting than solution x4, since in the vicinity of x5 little gains in objective fo can only
be achieved at the price of large concession in objective f1, which is not what is sought to
be a well-balanced solution. Thus, the new method leads to more interesting solutions with
fair trade-offs. It concentrates on knee-points without losing extremal points. This serves the
practitioner who is mainly interested in a limited number of solutions on the Pareto front.

(2.) @ (e0,) @

f2

1 f1

Figure 2.1: Comparison of crowding distance sorting (left) and sorting by Ag (right).

2.1.4 Test Problems

The SMS-EMOA from the last section was tested on several test problems from literature.
We aimed at comparability to the papers of Deb and his coauthors presenting their e MOEA
approach [DMMO03b, DMMO03a]. That is why we also invoked the variation operators used
for that approach. The test problems named ZDT1 to ZDT4 and ZDT6 from [DMMO03a,
ZDTO00] have been considered. For reasons of a clear overview, we copied the results for the
hypervolume measure and the convergence achieved in [DMMO03a] to table 2.1. This way, we
compared our SMS-EMOA to NSGA-II, C-NSGA-II, SPEA2, and e-MOEA.

Settings

We chose the parameters according to the ones given in [DMMO03b, DMMO03a]. We set =100,
calculated 20000 evaluations and used exactly the same variation operators as used for the
e-MOEA. The results of five runs are considered to create the values in table 2.1.




22

Chapter 2

The hypervolume or § metric of the set of non-dominated points is calculated as described
above, using the same reference point as in [DMMO03b, DMMO03a]. The convergence measure is
the average closest euclidean distance to a point of the true Pareto front as used in [DMMO03a).
Note that the convergence measure is calculated concerning a set of 1000 equally distributed
solution of the true Pareto front. Even an arbitrary point of the true Pareto front does not
have a convergence value of 0, unless exactly equalling one of these 1000 points. Thus, the
values are only comparable up to a certain degree of accuracy.

Results

The SMS-EMOA is ranked best concerning the & metric in all functions except for ZDT6.
Concerning the convergence measure, it has two first, two second and one third rank. Ac-
cording to the sum of ranks of the two measures on each function, one can state that the
SMS-EMOA provides best results on all considered functions, except for ZDT6, where it is
outperformed by SPEA2. Building the sum of the achieved ranks of each measure shows
that our algorithm obtains best results concerning both the convergence measure (with 9)
and the S metric (with 6). So in conjunction, concerning this bundle of test problems, the
SMS-EMOA can be regarded as the best one.

ZDT1 has a smooth convex Pareto front where the SMS-EMOA is ranked best on the S
metric and near to the best concerning the convergence measure. ZDT4 is a multi-modal
function with multiple parallel Pareto fronts, whereas the best front is equivalent to that
of ZDT1. On the basis of the given values from [DMMO03b, DMMO03a], we assume that all
algorithms achieved to jump above the second front with most solutions and aimed at the
first front, like our SMS-EMOA. The worse values of the other algorithms seem to stem from
disadvantageous distributions. ZDT2 has a smooth concave front and the SMS-EMOA covers
most hypervolume, despite the criticism that the S metric favors convex regions. ZDT3 has a
discontinuous Pareto front that consists of five slightly convex parts. Here, the SMS-EMOA is
a little bit better concerning the S metric than the second ranked e-MOEA and really better
concerning the convergence. ZDT6 has a concave Pareto front that is equivalent to that of
ZDT2, except for the differences that the front is truncated to a smaller range and that points
are non-uniformly spaced. Here, the SMS-EMOA is ranked second on both measures, only
outperformed by SPEA2, which shows apparently bad results on the other easier functions.

The outstanding performance concerning the S metric is a very encouraging result even
though good results seem to be natural because of the use of the & metric as selection
criterion. Omne should appreciate that our approach is a rather simple one with only one
population and it is steady-state, resulting in a low selection pressure. Neither there are any
special variation operators fitted to the selection strategy, nor it is tuned for performance in
any way. All these facts would normally imply not that good results.

The good results in the convergence measure are maybe more surprising. Especially on the
function that are supposed to be more difficult, the SMS-EMOA achieves very good results.
A possible explanation might be that a population of well distributed points is able to sample
individuals with larger improvement. Further investigations are required to clarify this topic.
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Table 2.1: Results

Test- Convergence measure S metric
function | Algorithm Average \ Std. dev. \ Rank || Average \ Std. dev. \ Rank
ZDT1 NSGA-II 0.00054898 | 6.62¢-05 3 0.8701 | 3.85e-04 5
C-NSGA-IT 0.00061173 | 7.86e-05 4 0.8713 | 2.25e-04 2
SPEA2 0.00100589 | 12.06e-05 5 0.8708 | 1.86e-04 3
e-MOEA 0.00039545 1.22e-05 1 0.8702 8.25e-05 4
SMS-EMOA 0.00044394 | 2.88e-05 2 0.8721 | 2.26e-05 1
7ZDT2 NSGA-II 0.00037851 | 1.88e-05 1 0.5372 | 3.01e-04 5
C-NSGA-II 0.00040011 1.91e-05 2 0.5374 4.42e-04 3
SPEA2 0.00082852 | 11.38e-05 5 0.5374 | 2.61e-04 3
e-MOEA 0.00046448 | 2.47e-05 4 0.5383 | 6.39e-05 2
SMS-EMOA 0.00041004 | 2.34e-05 3 0.5388 | 3.60e-05 1
7ZDT3 NSGA-II 0.00232321 | 13.95e-05 3 1.3285 | 1.72¢-04 3
C-NSGA-IT 0.00239445 | 12.30e-05 4 1.3277 | 9.82e-04 5
SPEA2 0.00260542 | 15.46e-05 5 1.3276 | 2.54e-04 4
e-MOEA 0.00175135 | 7.45e-05 2 1.3287 | 1.31e-04 2
SMS-EMOA || 0.00057233 | 5.81e-05 1 1.3295 | 2.11e-05 1
7ZDT4 NSGA-II 0.00639002 0.0043 4 0.8613 0.00640 2
C-NSGA-IT 0.00618386 0.0744 3 0.8558 0.00301 4
SPEA2 0.00769278 0.0043 5 0.8609 0.00536 3
e-MOEA 0.00259063 0.0006 2 0.8509 0.01537 5
SMS-EMOA || 0.00251878 0.0014 1 0.8677 0.00258 1
7ZDT6 NSGA-II 0.07896111 0.0067 4 0.3959 0.00894 5
C-NSGA-IT 0.07940667 0.0110 5 0.3990 0.01154 4
SPEA2 0.00573584 0.0009 1 0.4968 0.00117 1
e-MOEA 0.06792800 0.0118 3 0.4112 0.01573 3
SMS-EMOA 0.05043192 0.0217 2 0.4354 0.02957 2
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Figure 2.2: This study visualizes results on the EBN problem family with Pareto fronts of
different curvature computed by SMS-EMOA for a 20-dimensional search space.

Distribution of Solutions

In order to get an impression of how the SMS-EMOA distributes solutions on Pareto fronts
of different curvature, we conducted a study on simple but high dimensional test functions.
The aim is to observe the algorithms behavior on convex, concave and linear Pareto fronts.
For the study, we devised the following family of simple generic functions:

d d
f) = Q) d™, fox) = O |z —1)7d77, x€[0,1)4, (2.6)
i=1 =1

with d being the number of object variables. The ideal criterion vectors for these bicriterial
problems (which we will abbreviate EBN) are given by x} = (0,...,0), f(x%) = (0,1)T and
x5 = (1,...,1), f(x3) = (1,0)7. By the choice of the parameter v the behavior of these
functions can be adjusted. Parameter v = 1 leads to a linear Pareto front, while v > 1 yields
convex fronts and v < 1 concave ones.

Figure 2.2 shows that the solutions are not equally distributed on the Pareto front. The
results demonstrate that the SMS-EMOA concentrates solutions in regions where the Pareto
front has knee-points and captures the regions with fair trade-offs between different objectives.
The regions with unbalanced trade-offs, located on the flanks of the Pareto front, are covered
with less density, although extremal solutions are always maintained. On the linear Pareto
front the points get uniformly distributed. In case of a concave Pareto front the regions
with fair trade-offs are emphasized. These are located near the angular point of the Pareto
front. The results can be explained by the way the contributing hypervolume is defined and
is discussed in the previous sections.

2.1.5 Design Optimization

A frequently addressed multiobjective design problem is the two-dimensional NACA redesign
of an airfoil [NWBHO02, EN0O4b]. Here, two target airfoils are given, each almost optimal
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for predefined flow conditions. A computational fluid dynamics (CFD) tool based on the
solutions of Navier-Stokes equations calculates the properties, e.g. the pressure distribution
of airfoils proposed by the coupled optimization technique. From these results, the differences
in pressure distribution to the target airfoils are calculated and serve as the two objectives
to minimize. The computation of objective function values based on CFD calculations are
usually very time consuming with one evaluation typically taking several minutes, hence only
a limited number of evaluations can be afforded. Here, we allow 1000 evaluations to stay
comparable to previous studies on this test problem.

Integration of Fithess Function Approximations

We use Kriging metamodels [SWMW89] as fitness function approximation tools to accelerate
the SMS-EMOA. The Kriging methods allows for a prediction of the objective function values
for new design points x’ from previously evaluated points stored in a database. Basically,
Kriging is a distance based interpolation method. In addition to the predicted value, Kriging
also provides a confidence value for each prediction. Based on the statistical assumption
of Kriging, the predicted result y(x’) and the confidence value s(x’) can be interpreted as
the mean value and standard deviation of a one-dimensional gaussian distribution describing
the probability for the 'true’ outcome of the evaluation. We refer to [SWMW89] for technical
details of this procedure and the statistical assumptions about the continuous random process
that — as it is assumed — generated the landscape y(x).

As Kriging itself tends to be time consuming for a large number of training points, Kriging
models are only build from the 2d nearest neighbors of each point, where d denotes the
dimension of the search space.

Algorithm 3 Metamodel-assisted SMS-EMOA

1: Py < init() /* Initialize and evaluate start population of p individuals */
2: D+ Py /* Initialize database of precisely evaluated solutions */
3: 10

4: repeat

5. Draw s; randomly out of P,

6: a; < mutate(s;),i=1,...,A /* Generate \ solutions via mutation */
7. approximate(D,aq,...,ay) /* Approzimate results with local metamodels */
8 quy1 < filter(ag,...,ay) /* Detect 'best’ approximate solution */
9:  evaluate qry1 /* Evaluate selected solution precisely */
10: D+~ Du {qt+1}

11:  Piy1 < Reduce(P U {qi+1}) /* Select new population of p individuals */

12: t+—t+1
13: until stop criterion reached

The new method is depicted in algorithm 3. In order to make extensive use of approximate
evaluations, it proved to be a good strategy, to produce a surplus of A individuals by mutation
of the same parent individual. For these new individuals an approximation is computed by
means of the local metamodel. The filter procedure selects the most promising solution then.
The chosen solution gets evaluated precisely and is considered for the Reduce method in the
SMS-EMOA. This ensures that only precisely evaluated solutions enter the population P and
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@ Precise Evaluations on the Pareto front

® Mean values of approximations

O Lower bound edges of approximations

20

Figure 2.3: Filtering of approximate solutions: Within the mean value criterion only z3 is
pre-selected while within the lower bound criterion the contributing hypervolume
values of x1 and z3 are computed.

that the amount of approximations employed can be scaled by the user. All precisely evaluated
solutions enter a database, so they can subsequently be considered for the metamodeling
procedure.

The basic idea of the filter algorithm is to devise a criterion based on the approximate
evaluation of a search point. Criteria for the integration of approximations in EMOA have
already been suggested in [ENO4b]. Here, confidence interval boxes in the solution space
were calculated as I; = §; — w$; and uw; = §; + wS;, i = 1,...,n, where n is the number of
objectives and w is a confidence factor that can be used to scale the confidence level. An
illustrative example for approximations with Kriging and confidence interval boxes in a 2-D
solution space is given in figure 2.3.

Among the criteria introduced in [EN04b], two criteria seemed to be of special interest:
First, the predicted result from the Kriging method, the mean value of the confidence interval
box, is considered as a surrogate for the objective function value. This corresponds to the
frequently employed approach to use merely the estimated function values as surrogates for the
true objective functions and thus ignore the degree of uncertainty for these approximations.
The second criterion goes one step further and upvalues those points with a high degree of
uncertainty, by using the lower bound edge ¥ — w$ of the interval boxes instead of its center
y for the prediction. This offers us a best case estimation for the solution.

Both surrogate points are employed to evaluate a criterion based on the & metric that is
used for sorting the candidate solutions. For the mean value surrogate this is the most likely
improvement (MLI) in hypervolume for population P when selecting x:

MLI(x) = S(P, U{y(x)}) — S(P) (2.7)

and for the lower bound edge this is the potential improvement in hypervolume (LBI), that
reads:
LBI(x) = S(P,U{y —ws(x)}) — S(P,). (2.8)

It may occur that all values of the criterion are zero, if all surrogate points are dominated by
the old population. In that case, the Pareto fronts of lower dominance level are considered
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for computing the values of MLI or LBI, respectively.

For the metamodel-assisted SMS-EMOA the user has to choose the parameters w and A. If
the lower bound criterion is used, the choice of w determines the degree of global search by
the metamodel. For high values of w the search focuses more on the unexplored regions of
the search space.

Results

Like on the test problems, the SMS-EMOA provided very good and encouraging results on
the design optimization problem. For this test series, we collected five runs for each setting
again. We considered SMS-EMOA without fitness function approximation as well as the
metamodel-assisted SMS-EMOA with mean value and lower bound criterion as described
above.

For reasons of comparability, we utilized a method to average Pareto fronts from [NWBHO02].
In short, parallel lines are drawn through the corresponding region of the search space. From
the Pareto front of each run, the points with the shortest distance to these lines are considered
for the calculation of the averaged front.

SMS-EMOA-NOKRIG un2 ¢ ) " SMS-EMOA-1B ——
SMS-EMOA-NOKRIG un 3+ ] SMS EMOA AL, e
0.16 I'g SMS-EMOA-NOKRIG un4 [ 1 016 [ 3 SMS-BEMOA-NOKRIG -~ .

o © SMS-EMOA-NOKRIG average 3 NSGA2-LB '
012} 012}
" oost 1% oost
0.04 | 0.04

0 e ¢ 0 . . ) .
0.16 0 0.04 0.08 0.12 0.16

f1

Figure 2.4: The left hand side shows three of five runs used for averaging and the corre-
sponding averaged front. The right hand side part compares SMS-EMOA without
Kriging, using Kriging with lower bound (LB) and mean value (MEAN) criterion,
next to NSGA-IT using Kriging with lower bound criterion.

In the left hand part of figure 2.4 the different dotted sets describe three of the five Pareto
fronts received from the different runs utilizing SMS-EMOA without Kriging. The line repre-
sents the received averaged Pareto front. This front is additionally copied to the right hand
side figure for the reason of easier comparability. That figure compares the averaged fronts
received using SMS-EMOA with and without fitness function approximations. In addition, a
prior result, the best one from the investigation presented in [EN04b] coupling metamodeling
techniques with multiobjective optimization is also included in the figure. This result stems
from NSGA-II runs with Kriging and lower bound criterion within 1000 exact evaluations as
well.

The points on the Pareto fronts achieved using fitness function approximations are much
better distributed than the ones obtained without. In the left figure, each received Pareto front
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is biased towards one special region. In the runs utilizing fitness function approximations no
focuses can be recognized. The solutions are more equally distributed all over the Pareto front,
with the aspired higher density in regions with fair trade-offs as discussed above. The reason
are the thousands of preevaluations that are used to find promising regions of the search space
to place exact evaluations. Compared to the results with Kriging the runs without Kriging
seem not to tap their full potential due to the too small amount of evaluations.

A clear superiority of the algorithms utilizing metamodels can be recognized. The averaged
front without metamodel integration is the worst front all over the search space except for the
upper left corner, the extreme fs flank of the front. In most other regions the SMS-EMOA
with lower bound criterion seems to be better than the other algorithms shortly followed by
the old results from NSGA-IT with lower bound criterion. The SMS-EMOA with mean value
criterion yielded the worst front with metamodel integration.

In the extreme fy flank of the front the results seem to be turned upside down. Here, the
averaged front from runs without model integration achieved the best results. The left hand
side of the figure, however suggests that this might be an effect of the averaging technique.
It seems to be that one run achieves outstanding results here, which leads to an unbalanced
average point that is better than the averaged points of the other algorithms. This extreme
effect could be avoided by averaging over more than five runs which is a small and statistically
not significant number of course.

Notice, that the lower bound approximation technique yielded better results than the mean
value approximation again. This was also observed in [EN04b] and seems to be a general
achievement, where more attention should be drawn to.

2.1.6 Summary and Outlook

The SMS-EMOA has been devised in this work, which is a promising algorithm for Pareto
optimization, especially if a small, limited number of solutions is desired and areas with
balanced trade-offs shall be emphasized. The results on academic test problems show that
the algorithm is rather competitive to established EMO algorithms like SPEA2 and NSGA-II
regarding the convergence measure. It clearly outperforms these methods, if the S metric is
considered as performance measure.

Compared to many other EMOA the new approach is simple and efficient for the two
objective case. The selection and variation procedures do not interfere with an extra archive
and the number of strategy parameters is very low (population size and reference point).
Instead of specifying a reference point the SMS-EMOA can also work with an infinite reference
point.

The focus of the performance assessment was on the two objective case. We demonstrated
for this case that the approach is of special elegance, since its implementation is quite simple
and the update of the population can be computed efficiently. Future research will have
to deal with the performance assessment for three and more objectives and for constraint
problems.

For a real world airfoil design problem Kriging metamodels have been employed to save
time consuming precise function evaluations. The results indicate that these techniques can
be used to further enhance the performance of the SMS-EMOA.
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2.2 Multi-objective Optimisation using S-metric Selection: Application
to three-dimensional Solution Spaces

This section (pages 29 to 42) is copied verbatim from

[NBEO5] B. Naujoks, N. Beume, and M. Emmerich. Multi-objective optimisation using S-metric
selection: Application to three-dimensional solution spaces. In G. W. Greenwood, editor,
Congress on Evolutionary Computation (CEC 05), IEEE Press, Piscataway, NJ, 2005.

Abstract

The S-metric or hypervolume measure is a distinguished quality measure for solution sets in
Pareto optimisation. Once the aim to reach a high S-metric value is appointed, it seems to be
promising to directly incorporate it in the optimisation algorithm. This idea has been imple-
mented in the SMS-EMOA, an evolutionary multi-objective optimisation algorithm (EMOA)
using the hypervolume measure within its selection operator. Solutions are rated accord-
ing to their contribution to the dominated hypervolume of the current population. Up to
now, the SMS-EMOA has only been applied to functions with two objectives. The work at
hand extends these studies, by surveying the behaviour of the algorithm on three-objective
problems. Additionally, a new efficient algorithm for the computation of the contributions
to the dominated hypervolume in three-dimensional solution spaces is presented. Different
variants of selection operators are proposed. Among these, a new one is presented that rates
a solution concerning the number of solutions dominating it. So, solutions in less explored re-
gions are preferred. This rating is an efficient alternative to the S-metric criterion whenever
a selection among dominated solutions has to be made. Comparative studies on standard
benchmark problems show that the SMS-EMOA clearly outperforms other well established
EMOA. First results on a challenging real-world problem have been obtained, namely the
multi-point design of an airfoil involving three objectives and nonlinear constraints. Not only
a clear improvement of the baseline design, but a good coverage of the Pareto front with a
small, limited number of points has been achieved.

2.2.1 Introduction

Multi-objective optimisation is getting more and more important in technical optimisation.
Decision makers prefer the a posteriori approach actualised by Pareto techniques to the a
priori one, the standard over the past years. In Pareto optimisation [CVL02, Deb01], the
decision maker is provided a set of equally ranked, non-dominated solutions to choose from,
instead of preliminary deciding for weights or search directions before first optimisation runs
are performed.

Among the a posteriori approaches, EMOA established themselves in leading position con-
cerning research interest and progress. Due to their general applicability and their population
based approach of keeping an inherent set of best qualified solutions, they are an eminently
suitable method.

New approaches in the EMOA field utilise so called quality indicators for the selection step
in the underlying evolutionary algorithm (EA). Quality indicators or performance measures




30

Chapter 2

are functions to map Pareto front approximations to real numbers. Binary quality indicators
can be utilised to compare two Pareto front approximations. Examples for such indicators
that have been used within the selection of EMOA are the binary additive e-indicator or the
indicator based on the hypervolume [ZK04]. The first algorithm to incorporate the hyper-
volume indicator was ESP (Evolution Strategy with Probabilistic Mutation), proposed by
Huband, Hingston, While, and Barone [HHWBO03|. Zitzler and Kiinzli presented a general
indicator-based evolutionary algorithm (IBEA) where different quality indicators can be in-
corporated. A more detailed comparison with the SMS-EMOA (S-metric selection EMOA)
proposed by Emmerich, Beume, and Naujoks [EBNO05] is given in the following section.

An assumed drawback of the algorithms incorporating quality indicators for selection is
the potentially high computational effort needed to calculate such measures. While the worst
case complexity for calculating the hypervolume of a set with k elements in a two-dimensional
solution space can be upper bounded by O(k?), this run time is supposed to grow exponentially
with increasing solution space dimension. This was shown by While [Whi05] for Fleischer’s
algorithm [Fle03]. Nevertheless, the repeated execution of this algorithm is the state-of-
the-art approach to determine the hypervolume contribution of each individual to the net
value of the hypervolume. The integration of this algorithm in SMS-EMOA and an efficient
algorithm for the two-objective case have been discussed in [EBNO5]. A specialised algorithms
for the three-objective case with lower run time complexity is dealt with in Section 2.2.3. In
Section 2.2.4, results for SMS-EMOA are extended to three-objective test problems, namely
DTLZ1 to DTLZ4 [DTLZ02]. Here, results from other publications [DMMO03b, DMMO03a] are
considered for comparison purposes. The airfoil design optimisation is presented in Section
2.2.5. Finally, Section 2.2.6 recapitulates main aspects of this work.

2.2.2 Previous Work

Recall, that a decision vector a is said to dominate a vector b (a < b), iff fi(a) < fi(b)
for all i and fj(a) < f;(b) for at least one j with i,j € {1,...,n}, f : R™ — R" and
a,b € R™. The set of non-dominated decision vectors in R is called a Pareto(-optimal) set.
The corresponding image under f in the solution space is called the Pareto front.

One measure to compare the performance of EMO algorithms is the hypervolume or S-
metric value of the resulting Pareto front. Let A denote the Lebesgue measure, then the
S-metric value of a set U is defined as

SWU) = A( U {zlu <z < zpef}). (2.9)
uelU
Here, z,cf = (71,...,7n) € R™ denotes a reference point being dominated by all valid candi-

date solutions.

ESP

Huband et al. [HHWBO03| incorporated the two-dimensional hypervolume calculation into
a selection operator resembling SPEA2 [ZLT02], replacing the common nearest neighbour
criterion. They involved the ”product of the one-dimensional lengths to the next worse
objective function value in the front for each objective” [HHWBO03]. In the two-objective case
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(n = 2), this exactly corresponds to the S-metric value added to the value of the front by the
current solution.

In case of more than two dimensions, this procedure provides only a lower bound for the
hypervolume value. The great advantage of this procedure is the reduced run time of O(k)
with k£ being the number of solutions on the Pareto front. The calculation of the exact
hypervolume value according to the algorithm of Fleischer [Fle03] was determined by While
[Whi05] and is O(k™).

The selection is performed using a (u + A)-ES selection scheme, setting © = A = 100.
Selection with equal numbers of parents and offsprings is becoming more and more commonly
in evolutionary multi-objective optimisation. Hints for any advantage of this setting or first
comparative studies are missing until now. As variation operator, the ESP algorithm employs
usual operators from evolution strategies coupled with a mutation probability p. Huband et
al. choose for each decision variable p = 1/m as the probability to apply a mutation on it.

ESP has been compared to several well-known EMOA like NSGA-II and SPEA2 on a set
of ZDT test functions [ZDT00] (ZDT1 to ZDT4 and ZDT6). In [HHWBO03], they account the
probabilistic mutation operator to be responsible for the obtained quality of ESP.

IBEA

The indicator based EA (IBEA) is a more general framework to incorporate quality indicators
in EMOA. It was proposed by Zitzler and Kiinzli [ZK04]. Next to a hypervolume based
indicator, they also incorporated a binary additive e-indicator. Furthermore, they utilised
ordinary EMOA variation operators for different test functions, i.e. SBX recombination and
polynomial mutation on the real valued test functions. These have been ZDT6, KUR, DTLZ2
and DTLZ6.

Again, a (pu+ p) selection scheme and a specially scaled value of the objective and indicator
values were incorporated in the improved adaptive IBEA. Both proposed variants yielded
results ”significantly better than SPEA2 and NSGA-II with respect to the performance indi-
cators” [ZK04].

SMS-EMOA

The S-metric selection (SMS-) EMOA has been developed by the authors of the article at
hand [EBNO5]. Due to the computational complexity of the hypervolume calculation, a (u+1)
selection scheme has been proposed. This seems adequate for incorporating the hypervolume
calculation in the selection process, because adding or removing one point from the Pareto
front affects the S-metric values of all neighbouring points. Within, the steady-state selection,
k (at most p, if all solutions are non-dominated) S-metric values have to be computed. A
(1 4+ A) selection scheme would require the calculation of (“:)‘) possible S-metric values to
identify an optimally composed population, which maximises the S-metric net value.

To test this approach in comparison to other EMOA approaches like NSGA-II, SPEA2, and
e-MOEA, the same set of ZDT test functions has been considered as for the ESP approach.
Furthermore, a real-world design optimisation problem has been studied. For the variation
operator, SBX recombination and polynomial mutation have been implemented in order to be
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Figure 2.5: Three-dimensional hypervolume.

comparable with the algorithms studied in Deb et al. [DMMO03a]. The SMS-EMOA provided
promising results, outperforming all other algorithms on all theoretical test function, except
for SPEA2 on ZDT6. The results on the real-world problem have been better than the
ones received by alternative methods as well. This encouraged us to further investigate this
approach on problems with more than two objectives.

2.2.3 Selection Criteria and EMOA framework
Hypervolume Computation in 3-D Solution Spaces

The computation of the contribution of each point to the hypervolume has been discussed in
[EBNO5]. For the case of two objective functions, an efficient algorithm with a run time of
O(k?) has been presented. In the case of more objectives, the algorithm of Fleischer [Fle03]
was proposed. This algorithm is executed for each of the k points and thus the computation
of the contributions has a runtime complexity of O(k"*!). Due to this high run time, we
developed an algorithm for the case of three objectives which calculates the contributions in
O(Kk3). A survey of it is given in Algorithm 4 and described in the following.

Here, As(s, Q) denotes the contribution of solution s to the S-metric value of the whole
set Q). The algorithm first considers the values in two objectives. Concerning these values,
a grid is developed in the fi-fo-plane (cf. Fig. 2.5). For each cell, the third objective is
regarded as the 'height’ of the cuboid. A solution x; is termed to weakly dominate a cell,
if it dominates its lower right corner. Those weakly dominating solutions are considered to
calculate the ’'height’ of the cuboid. The best and the second best f3 values are identified
within the first part. The height is the difference of those values. The volume of particular
cuboids are accumulated, respectively, to calculate the exclusive contributions of solutions.
A cuboid is attributed to a solution x;, whenever two conditions are fulfilled, meaning that
the cuboid is dominated exclusively by z;. First, x; must weakly dominate the cell in the
fi-fo-plane. Second, the best f3 value of the cell must stem from x;. For each solution, the
accumulated hypervolume of its cuboids corresponds to its contribution to the hypervolume
of the whole population.
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Algorithm 4 Ag(Q)

Lk« |Q Q={s1,...,s1}

2: (ai,...,a) < sortAscending(fi(s1),..., fi(sk))

3: (b1,...,bg) < sortAscending(fa(s1),. .., fa(sk))

4 Ay < 715 bpyr <12

5: bestl_f3(i,7) < 13 ; best2_f3(i, j) + r3 ; for all (i,j) € [k]?

6: for all (i,7) € [k]? do

7. for all k do

8: if fl(sk) < a; and fg(sk) < bj then

9: /* s dominates cell (i,j) conc. fi, fa */
10: if fg(Sk) < bestl,fg(i,j) then

11: best2_f3 < best2_fs ; bestl_fs < f3(sk)

12: else if fg(Sk) < bGStQ,fg(i,j) and fg(sk)' = bestl,fg(i,j) then
13: best2_fs < best2_fs ; bestl_fs + f3(sk)

14: end if

15: end if

16: end for

17: end for

18: for all (i, j) € [k]? do
19:  owner Number <+ 0; owner < —1
20. for all k£ do

21: if fl(Sk) < a; and fg(sk) < bj then

22: /* s, dominates cell (i,j) conc. fi,fa */
23: owner Number++; owner < k

24: end if

25:  end for

26:  if owner Number == 1 then

27: /* cell (i,7) is dominated disjoint */

28: A(Sowner) < A(Sowner) + (CL/L'JFl — ai) . (bj+1 — b]) . (bestl,fg (Z,]) — b65t2,f3(i,j))
29: end if

30: end for

31: return Ag(s1,Q),...,As(sk, Q)

Selection Criteria

Within the SMS-EMOA framework, several selection modi have been tested competitively.
The selection methods base on three fundamental concepts, namely non-dominated sorting
(NDS), counting the number of dominating solutions (DP) and calculating the contributing
hypervolume (HV).

NDS means, identifying subsets of solutions that are mutually non-dominated. These sub-
sets are called the fronts of the solution set and are sorted hierarchically by assigning a
domination index to each front. Non-dominated solutions are assigned index one; the set that
is only dominated by solutions of the first front is assigned index two and so on. NDS is used
within several selection criteria mainly to identify the worst front, the set of non-dominated
solutions or to calculate the number of fronts.
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Figure 2.6: Two-dimensional comparison of selection modi. The dashed lines visualise the
area containing dominating solutions (4 solutions for xg and 1 for xg). The at-
tached rectangles depict the contributing hypervolume and the lines display the
values of the crowding distance measure.

The contributing hypervolume (HV) is calculated as described in Algorithm 4, where it is
denoted Ag. The measure is applied to reach a good convergence and to get a well-distributed
set in particular.

The number of dominating points (DP) is counted for each selection candidate. The in-
dividual having the highest number of solutions dominating it, is rejected. The motivation
for developing this measure is the smaller runtime complexity compared to the hypervolume
measure. Besides, the new selection scheme decides differently from the one based on the hy-
pervolume. The contributing hypervolume — just like the crowding distance used in NSGA-II
— is applied to distribute solutions well on the front they are lying on. Concerning this, we
see some room for improvement, that the new measure takes advantage of. Though the final
purpose is to distribute solutions well on the non-dominated first front, it is not an end in
itself on the other fronts. The DP measure favours solutions located in those areas, where
the first front is sparsely populated. The idea is that emanating offspring solutions may rise
onto better fronts and fill those vacancies. In areas where the non-dominated front is densely
populated, it is of no use to keep individuals on dominated fronts. The measure is visualised
by means of an example in Fig. 2.6. It is demonstrated that the crowding distance from
NSGA-II and the contributing hypervolume measure would favour zg over xg. The metric
due to the number of dominating points would favour xg9 as there is only one dominating
point and the solution is obviously much more interesting as there is a big vacancy on the
first front.

Of course, the number of dominating solutions is zero for non-dominated points. Thus, the
measure is only applicable to distinguish between dominated solutions. It is not necessary
that the compared solutions belong to the same front. Note, that the number of dominating
solutions of a point z; can be higher than the one of a point z; located on a worse front as the
solutions may lie in quite different areas. The number of dominating points can be calculated
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easily: The selection candidates are compared with each solution on better fronts to check
the dominance. This is possible in time O(nk?), with n being the number of objectives and
k denoting the population size.

In the following, the different applied modi of the steady-state selection are presented.
The entitling concepts of the operators are listed in the order of their application in each
generation.

(1) NDS, HV Non-dominated sorting is applied to identify the worst front of the population.
The solution contributing least to the hypervolume of the worst ranked front is rejected.
This selection corresponds to the SMS-EMOA presented in [EBN05]. The run time
complexity is governed by the calculation of the hypervolume.

(2) NDS, DP or HV Having identified the fronts by NDS, the selection operator applies the DP
or the HV selection scheme. If the population consists of more than one front, selection
is done according to the DP modus among the solutions of the worst ranked front. If
the whole population consist of non-dominated solutions, the DP-selection cannot be
applied and therefore, the HV-selection is used. The expected run time complexity is
lower than the one of operator (1). The worst case complexity is the same, because it is
possible that the population always consists of non-dominated solutions only and thus
the DP-selection scheme is never applied. The average case complexity is assumed to
be much better.

(3) Dominance or HV To accelerate the convergence towards the Pareto front, this operator
only considers non-dominated solutions. It works with two parameters for the popu-
lation size, namely the initial population size and a maximal one. In each generation,
dominated solutions are discarded. If the number of non-dominated solutions exceeds
the maximal population size, one individual is selected for rejection according to the
HV-selection scheme. This approach seems to be promising whenever only a very small
number of evaluations can be afforded.

(4) Dominance; NDS, HV (2 phases) This operator works in two phases. The first phase of
heading towards the Pareto front is executed like in operator (3). The second phase
starts when the maximal populations size is reached for the first time. Thereafter,
the population size is kept constant and the HV-selection is applied to select among
the worst ranked front. This phase is intended to spread non-dominated solutions and
distribute them well. It differs from operator (3), because it is possible to get more
fronts again, after having a population of non-dominated solutions only. The maximal
population size is expected to be helpful for the process of spreading. Note, that in the
second phase, operator (1) is applied.

Handling of Extremal Solutions

The hypervolume of the dominated space is calculated concerning a reference point being
dominated by all valid solutions. The relevance of the reference point differs in the case of two
or three objective functions. In a two-dimensional search space, the contributing hypervolume
of all solutions is defined by their two neighbouring points. Only the two boundary points
make an exception to this, since they have only one neighbouring solution and the bound
of the other dimension is defined by the reference point. In the case of a three-objective
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functions, it is possible that the hypervolume contribution calculations of all points refer
to the reference point. The hypervolume is bounded in each dimension by the next worse
solution value or the reference point if the point itself has the worst value in the considered
objective. All points may have equal values in one objective without being dominated. Thus,
all points may lie on one plane and hence are extremal solutions.

As there can be a large number of extremal solutions, their impact on the population shall
be decreased. This is realised by a dynamic adaptation of the reference point according to
the current highest individual values. For each objective, the maximal value is identified and
added by one. The contributing hypervolume of the solutions containing maximal values is
defined by the product of the remaining objectives as the contributing factor in the maximal
dimension is equal to one. This way, good non-extremal solutions might outperform extremal
ones concerning the hypervolume. First observation advised, that this dynamic handling of
the reference point is preferable to the formerly static one.

2.2.4 Results on Test Problems
Settings

The results of SMS-EMOA using different selection variants are compared with previous
benchmark results. To compare our algorithm with the well-established EMOA e-MOEA,
NSGA-II, C-NSGA-II, SPEA2 and PESA, we applied the functions DTLZ1 to DTLZ4 [DTLZ02].
The same parameter settings as in the benchmark from Deb et al. [DMMO03b, DMMO03a] are
taken up. The SMS-EMOA disposes the same variation operators as e-MOEA, namely SBX
recombination and polynomial mutation with the same parametrisation. 20,000 function eval-
uation are calculated on all functions but DTLZ3, where 100,00 are used respectively. The
population size is set to 100 for all functions, unlike [DMMO03a] where a size of 200 individuals
was applied for DTLZ3. For DTLZ4 ten runs are executed and five for the other functions.
Like in [DMMO03b], only ’successful’ runs are used to calculated the metric values. A run is
termed successful, if the solution set is distributed over the whole Pareto front. The quality of
the algorithms is compared considering the convergence measure and the S-metric value (hy-
pervolume). The convergence is calculated with respect to a reference set of Pareto-optimal
solutions. The S-metric value is computed concerning a reference point, which is chosen as
(0.7,0.7,0.7)T for DTLZ1 and as (1.1,1.1,1.1) for the other functions [DMMO03a]. For the
selection variants (3) and (4), the initial population size is attached to the corresponding
entries in Tab. 2.2. The maximal population size is 100 again.

Results and Interpretation

Results are presented in Table 2.2. For easier comparison, the best value from those published
in [DMMO3b] are copied into the table. The abbreviation 'NC’ stands for 'not computed’.
In the referenced study, the hypervolume has been calculated for DTLZ1 only. Later on, an
adapted quality measure was applied. In case of failures, the numbers in brackets show how
many of the computed runs have been successful.

The results show, that all SMS-EMOA variants outperform the aforementioned EMOA con-
cerning the S-metric values on DTLZ1. Nearly the same holds for the convergence, where only
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Table 2.2: Results of SMS-EMOA with SBX, poly. mutation, and adaptive reference point

Test- S-metric Convergence measure
function | Algorithm Average \ Std. dev. Average \ Std. dev.
DTLZ1 | SPEA2 0.315981 | 6.977e-04 0.0033377 | 3.54084e-02
e-MOEA 0.298487 | NC 0.00245 9.519e-05
SMS 1 0.316930 | 5.30602e-05 || 0.0029175 | 1.724e-04
SMS 2 0.316936 | 8.38185e-05 || 0.0028909 | 1.05773e-04
SMS 3 10 0.316820 | 2.13082e-04 || 0.0030666 | 4.20951e-04
SMS 3 100 (4/5) 0.316874 | 2.48597e-04 || 0.0030102 | 4.30756e-04
SMS 4 10 0.316794 | 1.53194e-04 || 0.0030478 | 2.38774e-04
DTLZ2 | C-NSGA-II NC NC 0.00986 8.8e-04
SMS 1 0.757911 | 4.48856e-05 || 0.0063652 | 3.20383e-04
SMS 2 0.757994 | 4.74011e-05 || 0.0065383 | 5.1234e-04
SMS 3 10 0.757982 | 3.01332¢-05 || 0.0066861 | 3.3253e-04
SMS 3 100 0.757958 | 6.52224e-05 || 0.0063915 | 4.16001e-04
SMS 4 10 0.757983 | 8.61492¢-05 || 0.0062994 | 4.42165e-04
DTLZ3 | eMOEA NC NC 0.0122290 | 2.23e-03
SMS 1 0.755294 | 2.21814e-03 || 0.0071626 | 5.94017e-04
SMS 2 0.755443 | 7.94005e-04 || 0.0069858 | 4.27853e-04
SMS 3 10 (4/5) 0.756580 | 6.57059¢-04 || 0.0068254 | 1.63978e-04
SMS 3 100 0.756128 | 1.04812e-03 || 0.0068458 | 3.17841e-04
SMS 4 10 (4/5) 0.755904 | 1.92956e-03 || 0.0068524 | 4.35787e-04
DTLZ4 | «MOEA (6/10) NC NC 0.0097755 | 2.0e-04
SMS 1 (4/10) 0.757949 | 8.65084¢e-05 || 0.0065006 | 3.3875e-04
SMS 2 (5/10) 0.757967 | 3.8652e-05 0.0065193 | 4.41919e-04
SMS 3 100 (2/10) [| 0.757960 | 3.31319e-05 || 0.0065887 | 1.65456e-04
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the eeMOEA applied to DTLZ1 is better than some SMS-EMOA variants. The comparison of
the SMS-EMOA variants shows no significant differences. It depends on the function, which
variant achieves best results. Thus, the good news is that the hypervolume-based selection
is successful within different frameworks. The SMS-EMOA solutions of the functions DTLZ1
and DTLZ2 are visualised in Fig. 2.7. The median run concerning the S-metric values is
shown, respectively. As there are no observably differences between the selection variants,
only the results for selection modus (1) are displayed.

Figure 2.7: Solutions of SMS-EMOA with selection (1) for DTLZ1 (upper figure) and DTLZ2
(lower figure).

The Pareto front of DTLZ1 is a bevelled plane in the first quadrant. The solutions of the
SMS-EMOA variants lie exactly on the optimal plane and well-distributed. The selection
variants (1) and (2) achieve the best values. The solutions are distributed uniformly and
extremal solutions at the edges of the plane are maintained (cf. Fig. 2.7). The functions
DTLZ2 to DTLZ4 have the same Pareto front, which is the eighth of the unit sphere, bounded
by the planes of the axis in the first quadrant. There are no major differences between the
results of the SMS-EMOA variants, again. Fig. 2.7 shows that the solutions for DTLZ2
are not equally distributed over the whole Pareto front. Many extremal solutions on the
border of the eighth sphere are contained. The remaining solutions are uniformly distributed
over the inner part of the sphere area, leaving an obvious gap to the boundary solutions.
Solutions within this gap can not contribute an adequate amount of hypervolume due to the
number of solutions on the boundary of the Pareto front. The function DTLZ3 has several
local fronts parallel to the global one. Nearly all runs of the SMS-EMOA variants reached the
global Pareto front and their convergence values are substantially better than the best EMOA
studied in previous work (cf. Tab. 2.2). The selection variants (3) and (4) with dynamic
population sizes achieved the best results. The distribution of solutions corresponds to the
one on DTLZ2. The difficulty of the function DTLZ4 is that the first two object variables
are raised to the power of 100. Hence, there is a bias toward the solutions with two leading
zeros resulting in solution sets located solely in the fi-fo-plane or the fi-fs-plane. Selection
methods (3) and (4) fail due to the small and therefore less diverse initial populations. None
of the runs using selection (3) or (4) with initial population size 10 was successful.

Two additional selection variants have been studied as objects of comparison to analyse
the performance of the basic concepts introduced above. In each selection operator, one
sophisticated concept has been replaced by a random selection to demonstrate a degradation.
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One operator uses the DP rating for dominated solutions and a random selection instead of
the hypervolume selection in case of a population of non-dominated individuals. This anomaly
of selection method (2) achieved very poor results. The other modification of selection (2)
uses a random selection instead of the DP-selection. This operator performs worse than the
other selection schemes, but still better than the other EMOA studied in [DMMO03b].

2.2.5 Design Optimisation

The RAE 2822 airfoil is a standard airfoil suggested by the Royal Aircraft Establishment
(RAE). The flow around the baseline design is calculated with respect to three different
flow conditions, yielding different values for drag, lift and pitching moment for each of the
flow conditions, described in detail in [ENO4a]. The task is to minimise the drag values C?,
while not losing lift and keeping the pitching moment within a 2% range. Here, i € {1,2,3}
corresponds to the three given flow conditions, one for cruising and two off-design conditions.
Moreover, geometrical constraints have been defined:

e The thickness of the airfoil at 5% should be greater or equal the thickness at 5% of the
baseline geometry.

e The maximum thickness should be greater or equal the maximum thickness of the
baseline geometry.

e The leading edge radius should be at least 90% of the leading edge radius of the baseline
geometry.

e The trailing edge angle should be at least 80% of the trailing edge angle of the baseline
geometry.

The geometrical information about a proposed airfoil can be received from the simulation
software just after the airfoil shape has been generated. The whole time-consuming procedure
of grid generation, solving the flow describing equations, and all post-processing tasks are not
required to receive this information. Therefore, the geometrical constraints are treated differ-
ently from the aeronautical ones, namely lift and pitching moment, which require the costly
evaluation. Variation operators are applied up to 1000 times unless a feasible solution subject
to the geometrical constraints has been obtained. This has been done in both strategies —
NSGA-IT and SMS-EMOA — in order to achieve a higher ratio of feasible solutions.

The airfoil parameterisation is done using Bezier weighting points. For each surface of the
airfoil, five Bezier weighting points have been considered, two fixed ones next to three that
allow for the variation in vertical direction. This results in an optimisation problem with six
degrees of freedom, three for the upper as well as three for the lower surface of the airfoil.

The results obtained by SMS-EMOA using selection (1) are compared with results from an
earlier publication, where a standard NSGA-II implementation has been considered [EN04a).
In both studies, five runs with a limited amount of 1000 fitness function evaluations and a
population size of 20 have been performed. Fig. 2.8 presents the final population received
with NSGA-II in the left hand part. The right hand part shows all non-dominated solu-
tions collected from the final population received with SMS-EMOA. Scatter plots have been
chosen to present the results because the different results can hardly be distinguished in a
3-dimensional plot showing only clouds of points.
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Figure 2.8: Scatter plots from the RAE 2822 drag minimisation test case. The final popu-
lations after 1000 evaluations and a population size of 20 individuals are shown.
The pictures on the left hand side stem from [EN04a] and have been received
with NSGA-II. The pictures on the right hand side have been obtained using
SMS-EMOA with selection (1).
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In the upper row, the projections of the solutions in the fi-fo-plane are shown. Here,
nearly all solutions appear to improve the baseline design (marked with a circle in the upper
right corner). Comparing the results from the different algorithms, the ones received from
SMS-EMOA more tend to the lower left corner, where better results are localised, and are
more widely spread over the solution space.

In the f1-f3-plane (medium row in Fig. 2.8), the variance in the results received from NSGA-
IT is much lower than the one from SMS-EMOA again. Single solutions from SMS-EMOA
perform very good and dominate the baseline design (located in the lower right corner here).
The results from SMS-EMOA show a much wider distribution, which is strictly in accordance
with the guidelines followed within the development of the algorithms.

The results within the fo- f3 projections resemble the ones of the fi-fs-plane. Again, NSGA-
IT yields a smaller variance of results whereas SMS-EMOA yields a better distribution. In
particular, some solutions of SMS-EMOA dominate the baseline design.

Finding solutions dominating the baseline design has not been possible using standard
NSGA-II. Only one such results has been calculated until now, using a metamodel assisted
NSGA-IT [ENO4a]. Here, all 5 runs obtained such solutions. The huge amount of pre-
evaluations has been made responsible for the ability to receive such good results. Here,
this result can only be explained by the favourable hypervolume selection incorporated in
SMS-EMOA.

2.2.6 Summary and Outlook

In this paper, the SMS-EMOA, formerly studied only on two-objective problems, has been
adapted and tested for three-objective applications. In order to decrease the immense compu-
tational effort for computing the hypervolume contributions, an algorithm has been proposed
that allows for an efficient computation.

Averaged runs on standard benchmark problems indicate that the SMS-EMOA is also
well-suited for Pareto optimisation with three objectives. It clearly outperforms established
techniques like SPEA2, e MOEA, and NSGA-II, both in convergence and in S-metric values.
The examples reveal that results are well-distributed on the Pareto surface, with a focus in
the regions around knee points and also at the boundaries of the non-dominated front.

Different variants of the selection procedure in the SMS-EMOA have been identified and
opposed to each other. Within one new scheme, the rating of a solution depends on the
number of solutions that dominate it. Moreover, it has been proposed to start with a strat-
egy which focuses on convergence to some Pareto-optimal point, and as soon as the number
of non-dominated solutions gets sufficiently large, shift to a strategy that aims at spreading
the population across the entire Pareto front. All variants led to better results than conven-
tional strategies, indicating that the hypervolume selection mechanism, shared by all of them,
performs well regardless of the particular selection scheme.

Besides the comparison on state-of-the-art benchmarks, the SMS-EMOA has been tested on
a challenging real-world application, namely the optimisation of an airfoil for three different
flight conditions. Not only the distributions of solutions could be improved, but also solutions
that clearly dominate the baseline design have been found.

Future research should envisage the study of further algorithmic variants and a deepened
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analysis of strategy parameters. By now, the computational effort to compute the S-metric
values is very high for more than three objectives. Therefore, the SMS-EMOA is not applicable
to problems which need a large number of function evaluations. Nevertheless, many real-world
applications allow only a very limited number of evaluations due to costly simulations, that
govern the runtime of the optimisation process. In these cases, the runtime of the EMOA can
almost be neglected and the SMS-EMOA is proven to be a suitable optimiser.
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Diversity Preservation in Decision and Objective
Space

The main topic of this chapter is diversity. It plays a major role in EA in general, but, as mentioned
already in the introduction (cf. chapter 1.3.2 on page 10), there is a major difference between diversity
in single- and multiobjective evolutionary computation.

First, the formulation of some easy biobjective test case is presented, where the positions of the
optima of each singleobjective function can easily be controlled (cf. pages 45 to 53). Based on
this, some interesting effects have been detected and the behaviour of EMOA on this function has
been studied. The results were reported in a paper at the PPSN 2006 conference and build the
background for the corresponding section of this thesis:

[PNRO6] M. Preuss, B. Naujoks, and G. Rudolph. Pareto Set and EMOA Behavior for Simple Mul-
timodal Multiobjective Functions. In T. P. Runarsson et al., editors, Parallel Problem Solving
from Nature (PPSN I1X), pages 513-522. Springer, Berlin, 2006.

The TWO-On-ONE test function defined in there consists of one unimodal function and one bi-
modal function. The bimodal function is scalable so that both optima are either on the same level
or the function yields a local and a global optimum. Different cases are investigated, where the uni-
modal function is moved between the optima of the bimodal one or either towards the global or the
local optimum.

The second part of this chapter (cf. pages 54 to 67) is a follow-up work to the paper above. While
the first paper in this chapter is common work of all authors, the work for the second paper has
been split. The implementation of the test function including all instances of it was provided by Mike
Preuss. | implemented the interface between the test function and the algorithms and provided the
experiments. The final chapter of the paper presenting a multi-start approach to really detect and
preserve all subsets was added by Glinter Rudolph.

[RNPO7] G. Rudolph, B. Naujoks, and M. Preuss. Capabilities of EMOA to Detect and Preserve
Equivalent Pareto Subsets. In S. Obayashi et al., editors, Evolutionary Multi-Criterion Opti-
mization (EMO 07), pages 36-50. Springer, Berlin, 2007.

Here, another test function is defined with the special property that multiple Pareto-subsets map to
the same Pareto-front in objective space. The SYM-PART function is defined on nine tiles with one
Pareto subset placed in each tile and all map to the same Pareto front. A rotation and a transforma-
tion are incorporated to receive three instances of the SYM-PART test function. In a first experiment,
the transformation as well as the defining size the search space are detected to be the most influen-
tial factors to determine the hardness of the problem. The interesting task for EMOA is to find and
preserve not only one, but all existing Pareto-subsets. To this end, the SYM-PART test function was
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selected for the Competition on Performance Assessment of Multi-Objective Optimization Algorithms
[HQD™07] during the IEEE Congress on Evolutionary Computation (CEC 2007) in Singapore in the
year of its publication.

For each of the test functions, two special measures are defined to investigate how EMOA perform
on the functions. The measure fair for TWO-ON-ONE investigates if a population is fairly distributed
over a symmetric Pareto set with two subsets mapping to the same Pareto front. Within this situation,
EMOA turned out to keep both subsets. However, large gaps in the distribution on each of the subset
exist, while the approximation of the Pareto front is fine.

Within the situation, where the unimodal function is located near the local optimum of the bimodal
one, the Pareto set as well as the Pareto front split in two disconnected parts. The measure /eft was
designed to identify the fraction of solutions of a population that keep the left, smaller part of the
Pareto (sub)set that belongs to the local optimum.

For SYM-PART, the two new measures determine a) the number of discovered Pareto subsets by
the current population and b) the spread of the population on one Pareto subset. Standard EMOA
loose Pareto subsets discovered at the beginning of an optimisation run. A specialised algorithm is
able to recover subsets after these are lost in the beginning similarly to the behaviour of the standard
EMOA. However, during the experiments not all subsets are recovered within all optimisation runs.
The number of recovered subsets is also depending on the problem hardness.

The behaviour of standard EMOA is not surprising, as they have not been designed for the purpose
to preserve decision space diversity Moreover, the ability to do so is not required in most mathemat-
ical EMO test cases. As a consequence, special purpose EMOA are to be designed. To this end,
one special algorithm is presented based on a multi-start strategy that is able to detect and preserve
all Pareto subsets.
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3.1 Pareto Set and EMOA Behavior for Simple Multimodal
Multiobjective Functions

This section (pages 45 to 53) is copied verbatim from

[PNRO6] M. Preuss, B. Naujoks, and G. Rudolph. Pareto Set and EMOA Behavior for Simple Mul-
timodal Multiobjective Functions. In T. P. Runarsson et al., editors, Parallel Problem Solving
from Nature (PPSN 2006), pages 513-522. Springer, Berlin, 2006.

Abstract

Recent research on evolutionary multiobjective optimization has mainly focused on Pareto-
fronts. However, we state that proper behavior of the utilized algorithms in decision/search
space is necessary for obtaining good results if multimodal objective functions are concerned.
Therefore, it makes sense to observe the development of Pareto-sets as well. We do so on a
simple, configurable problem, and detect interesting interactions between induced changes to
the Pareto-set and the ability of three optimization algorithms to keep track of Pareto-fronts.

3.1.1 Introduction

In recent years, evolutionary multiobjective optimization (EMO) [Deb01, CVL02] has de-
veloped from a marginal into one of the most actively pursued areas within evolutionary
computation (EC). Many new algorithms and measures have been suggested, and, with them,
concepts like Pareto set and Pareto front have entered the common EC vocabulary [Coe06].
Increasing interest in multiobjective techniques has even evoked new theoretical approaches
that employ multiple objectives to simplify an originally singleobjective problem [NWO5].
However, most of the current EMO research concentrates on processes observed in the ob-
jective space, which consists of the possibly obtainable value combinations of the considered
objective functions. Undoubtedly, approximating the Pareto-front well is the final aim of
EMO algorithms (EMOAs), and the Pareto-set distribution may be of minor interest for
estimating their performances. Nevertheless, for improving these algorithms, as well as for
attaining guidelines on which of the solutions contained in the approximated Pareto-set shall
eventually be implemented in a real-world situation, a well-founded understanding of Pareto-
set distributions is supposed to be a major advantage.

Research on singleobjective algorithms largely focuses on population behavior in the deci-
sion space, or simplified models thereof, e.g. using basins of attraction as means of abstraction
[PSE05]. Especially for multimodal problems, numerous techniques have been invented to pre-
vent the populations from converging to a single point too soon. Some of these, as crowding
[DeJ75], are also applied in EMOAs. But diversity maintenance is only sought in objective
space, to ensure good coverage of the Pareto-front. However, for at least one of the objective
functions being multimodal, it is clear that this coverage cannot normally be achieved when
the whole population is clustered around one local minimum of this function. We thus conjec-
ture that a) there are situations—and these are not uncommon—where the Pareto-set does
not share the aspired nice properties of the received Pareto-front the user normally focusses
the attention on, and b) that diversity maintenance is not only needed in objective but also
in decision space for successfully treating multiobjective optimization problems (MOPs): The
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product designer is mainly interested in a thorough covering of the Pareto-front for maximum
wide scope in selecting solutions according to the (conjectured) customers’ desires. This is the
situation which contemporary EMOAs are designed for. But the product engineer is mainly
interested in a thorough covering of the Pareto-set since it is important to know if a certain
design can be realized by different parameters of the production process: Solutions may differ
in sensitivity or in shorter tooling times and the like. Evidently, contemporary EMOAs are
not geared toward product engineers yet.

These both sides of one medal (Pareto-front in the objective space, Pareto-set in the deci-
sion space) and the conjunction between them has not been studied in detail before. Only
few theoretical results for special classes of search spaces and multiobjective functions were
presented before, cf. Ehrgott [Ehr05]. But the handled cases are restricted in a way that no
generalization can be foreseen. Some effort has been made in the development of test func-
tions not only with regard to a nice behaving Pareto-front, but also with aspired properties
in the decision space, cf. Okabe et al. [0JOS04]. Zhou et al. [ZZJT05] propose a specialized
EA to implicitly handle and profit from regularities in the objective as well as in the decision
space. Such regularities stem from the test functions proposed by Okabe et al. [0JOS04] and
cannot be expected generally.

3.1.2 Aims and Methods

Our approach is constructive; on a minimalist bimodal bicriteria test problem, we study
structural changes of true Pareto-set and Pareto-front on a set of targeted modifications.
These are derived both analytically and empirically, the latter employing grid-based and
stochastic enumerators. Furthermore, we observe how different EMOAs cope with the original
problem and the changes. More detailed, we try to answer the following questions:

e How do Pareto-set distributions change when the problem is modified? Are there un-
expected outcomes?

o Are different EMOAs able to cover Pareto-set and Pareto-front well?

e Are there consistent similarities/dissimilarities in the behavior of different EMOAs due
to problem modifications that hint to distinct capabilities of these?

3.1.3 A Simple Test Problem: TWO-ON-ONE

To deepen the insight in behavior and structure of Pareto-sets mapping onto Pareto-fronts,
we define the plainest bimodal/unimodal test problem we could think of. It consists of a
polynomial function f; of degree four with two optima, and the sphere function fs, which is
of degree two:

f=0f,1f):RE=R:: fi(x,20) =] + 28 — 23 + 23 — cry2o + dog + 20,
fo(w1,x9) = (21 — k) + (22 — 1)°

The level (niveau) of the optima of f; can be adjusted smoothly via parameter d. With d
positive, the optimum in the positive 21 domain is lifted up in comparison to the optimum in
the negative 1 domain. Consequently, the former becomes a local optimum, while the latter
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Table 3.1: Parameter setting for the five cases of TWO-ON-ONE, ¢ was set to 10.

Cases 1 2 3 4 5
Parameters d 0 0 0.25 0.25 0.25
k 0 1 0 1 0
1 0 0 0 0 1

remains a global optimum (asymmetric optima). With parameter ¢ = 0, both minimizers are
located on the x7 axis, but for increasing c, their connecting line is rotated counterclockwise,
until its gradient is nearly 1.

The function fs is unimodal, the location of its minimizer determined by parameters k£ and
[. For k =1 = 0 it is located in the origin, right between the minimizers of the bimodal
function f;. By variation of k£ and [ the minimizer is moved away from the connecting line of
the minimizers of f;. Next to changing the Pareto-front, this also effects the Pareto-set.

In order to allow for a theoretical analysis of the problem, five parameter settings have been
fixed (Table 3.1, Figure 3.1). These result in different placements of the minimizers in search
space, two for the symmetric case (both optima of f; identical), three for the asymmetric
case (optima distinct). While all these settings are expected to lead to ordinary (generic)
Pareto-fronts, the Pareto-sets are expected to look more complex.

The coordinates of the minimizers of f; can be determined analytically to

1 1
(a:*{m, m§1’2) = <i2 (V101 + 1), 12—0(\/ 101 — 1)4/ (V101 + 1)) .
In cases 1 and 2, both optima of f; are on the same level, ensured by d = 0. In 1, the
minimizer of the sphere function is located in the origin, where f; has a saddle point. In 2,
the optimum is moved right on the x; axis by one unit.

Cases 3 and 4 repeat the same configuration, with asymmetric optima of fi; the global
optimum resides in the negative x; and x2 domain, and the local optimum in the positive
domain. It is expected that the Pareto-set now establishes a connection between the global
optima of fi and of fo. This is due to the solutions in the global optimum of f; being mapped
to the extremal part of the Pareto-front. Consequently, solutions from the local optimum of
f1 may be lost.

The same situation is expected for case 5, which is similar, except for a movement of the
minimizer of fo towards the global minimizer of fy, whereas in case 4, it is brought nearer to
the local minimizer.

3.1.4 Experimental Investigation of Pareto Sets

Our expectation is that for all symmetrical cases, the Pareto-sets consist of two curves, con-
necting either peak with the minimizer of the sphere function fs. For the asymmetric cases, it
seems reasonable that Pareto-sets contain only points on a curve between the global minimiz-
ers of f1 and fy. But this expectation stems from thought experiments rather than empirical
or analytical facts.
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Figure 3.1: Superposition of functions f; and fy (sphere) of TWO-ON-ONE for cases 1 to
5. The optima of f; are symmetrical (equal fitness) in cases 1 4 2, asymmetrical
in 344+ 5, with the right minimizer shifted slightly upwards and the left one
downwards.

We employ two simple tools, a grid based and a stochastic enumerator, for obtaining a first,
rough impression of structure and location of the Pareto-sets. Either one samples points from
a given interval and keeps a list of the Pareto-optimal solutions found. Tried points are either
taken from a pre-specified grid or determined randomly. As we shall see, it sometimes makes
sense to use both, as the obtained results can subtly differ.

Experiment 1: Determine Pareto sets and fronts of TWO-ON-ONE.

Pre-experimental planning: First experiments were performed with a grid-based enumera-
tor only. They revealed an unexpectedly wide Pareto-set (Fig. 3.2, left). We thus additionally
sampled by means of a stochastic enumerator.

Task: Find location of the Pareto-sets, detect deviations from the expected.

Setup: For each of the 5 cases specified in Table 3.1, we sample points in the interval
x1,x9 € [—3,3]. The grid-based enumeration consists of 300 x 300 = 90,000 points each,
the stochastic enumeration of 500,000 points each. The difference is intended as we hope
for a better resolution with the latter method, to shed light on the bar-shaped artifacts. All
non-dominated points are archived.

Experimentation/Visualization: Figures 3.2 and 3.3 show the most interesting of the
obtained Pareto sets and fronts. All others largely comply with the previously stated expec-
tations and are omitted due to space limitations.

Observations: The figures clearly show that neither grid nor stochastic sampling produces
a clear-cut picture of the true Pareto-sets. Roughly, case 1 yields a smeared areal, propeller-
like structure (Fig. 3.2) instead of the expected single curve. However, the Pareto-set appears
narrower under stochastic enumeration.
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grid: case 1, set random: case 1, set
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Figure 3.2: Pareto-sets of case 1, obtained with grid and stochastic enumerator.

For case 4 (sphere function fs moved towards local optimum of f;), the Pareto-front splits
into two parts at f; = 8, as visualized in Fig. 3.3. Accordingly, the Pareto-set breaks up into
two distinct fragments. Note that no connection exists between the location of the sphere
and the global optimum of f;. At the left edge of its right part, the grid-based approximated
Pareto-set reveals a strange curl which is not visible in the stochastically approximated Pareto-
set. Pareto-fronts of cases 4 and 5 both contain pieces of very low point densities, at 17 <
f1 <19 in the former, and 15 < f; < 17 in the latter case.

Discussion: We regard the obtained Pareto-set approximations for case 1 as rather mis-
leading, and analytical investigation in §3.1.5 supports this view. However, considering the
amount of sampled points (90 k£ and 500 k), and taking into account that the latter (stochas-
tically approximated) Pareto-set is much tighter, one may conclude even from our empirical
data that the true Pareto-set indeed is most likely located on a curve and non-areal. The
enumerators are probably misguided by the huge difference in gradients of f; and fs in di-
rection of the connecting line between the two optima of f; and orthogonal to it. Following
from that, any EMOA will experience the same situation: Practically identical values of the
objective functions can have a large set of preimages and thus spread in search space.

Results obtained for case 4 show that contrary to our expectation, by far the larger Pareto-
set portion resides in the range between the local optimum of f; and the optimum of f,. Only
where function values for f; are better than may be attained at the local optimum, points
from the left fragment can enter the Pareto-set, resulting in a stepped Pareto-front. The curl
found near x; = 1 seemingly corresponds to the low density part of the Pareto-front which
must be located in proximity of the sphere center as values for fs are near 0. The stochastic
Pareto-set approximation is again tighter than the grid-based one, leading to the conjecture
that the true Pareto-set is non-areal as in case 1.

Two more conclusions may be drawn from the case 4 results. Firstly, search space distances
between optima of separate objective functions play a major role for the composition of Pareto-
sets, and secondly, it is necessary to keep the population of EMOAs spread over several local
optima of the treated objective functions during an optimization run.
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Figure 3.3: Surprising Pareto sets and fronts for cases 4 and 5.

3.1.5 Analytical Derivation of Pareto Sets

The Pareto-set for case 1 can be derived analytically but its analytic expression is too complex
and space-consuming to be presented here. Instead, we suggest the linear approximation

V101 — 1 Y m—— '
(ml,loﬂ?l fOI' T € |:—2\/ 101+1,2\/m+1J

whose deviation from the true convex-concave curve is less than 0.045 for all ; above. In any
case, the Pareto-set is a 1-dimensional connected set and not an areal set of higher dimension
as the output of the grid or stochastic enumerator might suggest (see fig. 3.2).

As can be seen from the symmetry f(z1,22) = f(—21, —22) the entire Pareto-front can be
built solely by positive (or negative) points of the Pareto-set. Thus, it may happen that an
EMOA approximating the Pareto-front quite well with regard to the S-metric has found only
points in the decision space with, say, positive components. As a consequence, a good value
for the S-metric tells only half the story.

The Pareto-sets of the other cases are also amenable to an analytic solution but the expres-
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sions are far away from being manageable easily. This observation is quite counter-intuitive
given the pretended simple expressions and structural design of the objective functions.

3.1.6 Behavior of EMOAs on TWO-ON-ONE

Whereas Pareto-sets and fronts of problem TWO-ON-ONE have been explored in §3.1.4 and
determined analytically in §3.1.5, we now turn to the behavior of different EMOAs in a second
experiment. Note that it is not intended to argue in favor of or against any algorithm here,
but rather to detect possible differences.

Algorithms We invoke two standard techniques next to a new development within the field.
The Pisa framework! is used to conduct the referred optimization runs. Here, the TWO-
ON-ONE problem has been implemented as a variator, which can be optimized with respect
to different objectives and multiple selectors. Among the set of available selectors, NSGA-
IT and SPEA2 are chosen, because these appear to be the currently most well-known and
commonly used algorithms in the field [Deb01, CVL02]. Additionally, the more recent SMS-
EMOA [EBNO05, NBEO05] is tested within this framework. The SMS-EMOA was designed for
featuring a performance measure, namely the hypervolume or S-metric, as secondary ranking
criterion in a NSGA-IT like manner. The additional effort for a third algorithm in the study
seems to be justified, because the SMS-EMOA was found to spread solutions more nicely
over Pareto-fronts than the other two algorithms. This aspired behavior is purchased by a
runtime of O (s log 1+ %%+ log 11) of the SMS-EMOA, with z denoting the population size
and d the number of objectives (cp. Beume [Beu06]). In contrast, the runtime of NSGA-II
and SPEA2 is quadratic in the population size and polynomial in the number of objectives.

Measures To detect differences in algorithm behaviors on the most interesting cases, we
define two simple measures. For case 1, we measure if the resulting population P is fairly
distributed over the left and right wings of the Pareto-set by taking the fraction on the less
crowded wing into account:

1 min(|{individual € P : individual € P : 21 >
fair(P) = 5 - min(|{individual € P : 21 < ?}i‘|’|{m ividual € P : 21 > 0}])

(3.1)

For case 4, we are interested in the fraction of points in proximity of the global optimum
of f1, corresponding to the search points in the left half of the search space:

_ |{individual € P : z1 < 0}|
- 1P|

left(P) (3.2)

Experiment 2: Search Space Behavior of EMOAs on function TWO-ON-ONE.

Pre-experimental planning: First runs indicated that results on cases 2, 3, and 5 are
comparable for all three algorithms. We thus focused on cases 1 and 4. For case 1 it was

'PISA - Platform and Programming Language Independent Interface for Search Algorithms, ETH Zurich,
www.tik.ee.ethz.ch/pisa/
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Figure 3.4: Pareto-front (left) and Pareto-set (right) of a single SPEA2 run on case 1.

found that at least 50 runs are necessary to get a detailed picture of differences in measure
fair(P), for case 4, 20 runs seemed sufficient.

Task: Detect differences in the obtained Pareto-sets and fronts that may be related to test
problem properties. We employ bootstrap permutation tests with 49,999 replicates and sig-
nificance level 5% for the measured data.

Setup: The decision space was limited to fi, fa € [—50,50], thereby enclosing the region
around the optima of f; and f2, and a certain amount of space the algorithms have to
bypass to get there. All three algorithms, NSGA-II, SPEA2, and SMS-EMOA, are run with
a population size of 100 for 30,000 evaluations, otherwise utilizing default parametrizations.
For case 1 and 4, 50 and 20 runs are performed, respectively.

1 1
NSGA-II: case 4 SMS-EMOA: case 4
Xx1<0 % x1>=0 0 x1<0  x1>=0 O

Figure 3.5: Pareto-sets of single NSGA-II (left) and SMS-EMOA (right) runs on case 4.

Experimentation/Visualization: Figure 3.4 depicts a typical outcome for case 1. More
extreme population distributions with almost all individuals on one wing of the Pareto-set
also happen. In figure 3.5, resulting Pareto-sets for two different algorithms are presented,
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again, typical runs are chosen.

Observations: Figure 3.4 demonstrates that for symmetric optima, the Pareto-front of-
ten contains large chunks of points originating from the proximity of different minimizers.
Accordingly, the approximated Pareto-sets show corresponding clouds of points, unevenly
distributed over the true Pareto-set. For case 4, Figure 3.5 shows that the algorithms are
able to spread their populations over both important parts of the Pareto-set. However, the
shape of the clouds near the global minimizer of f; is different: NSGA-II often forms lines of
points in that region, whereas the SMS-EMOA rather builds areal structures.

Discussion: For case 1, hypothesis testing reveals a slight difference (p-value 0.071) be-
tween NSGA-II and SMS-EMOA and a strong one (p-value 0.030) between NSGA-II and
SPEA2. SMS-EMOA and SPEA2 may be considered behaving relatively similar (p-value
0.427). NSGA-II covers both wings of the Pareto-set more evenly on average, its fair-measure
is 0.110, compared to 0.149 and 0.152 for SPEA2 and SMS-EMOA, respectively.

All three algorithms cope surprisingly well with case 4. Here, hypothesis tests hint to a
similarity between SMS-EMOA and NSGA-II (p-value 0.468) and sharp distinction between
SPEA2 and SMS-EMOA, and SPEA2 and NSGA-II, both p-values 0.001. As indicated by the
histograms, NSGA-II and SMS-EMOA both place more points near the global optimizer, their
left-measures are 0.169 and 0.167, respectively. SPEA2 only puts 13.1% of its final population
there. Unfortunately, we are currently not able to explain what makes the algorithms behave
differently in this respect.

3.1.7 Summary and Outlook

The main message of the work presented here is our belief in the fact that a neat covering of
the Pareto-front is not sufficient for meeting the needs of all clients that may use EMOAs.
Therefore, future versions of EMOAs should also take into account a proper covering of the
Pareto-set. Evidently, contemporary EMOAs cannot deliver this kind of behavior. For this
purpose we need an effective measure for assessing the quality of a solution set in decision
space—similarly to the S-metric in objective space.

To follow this avenue we have to deepen our understanding of EMOA behavior in the
decision space, which may be quite counter-intuitive as our seemingly simple test problem
has revealed. Obviously, EMOAs are easily confronted with strangely shaped approximate
Pareto-sets as the ones obtained from our empirical approaches to determine the true Pareto-
set. We attribute this behavior to scaling issues between orthogonal gradients and discretized
computer representation of real values, but this assessment can only be preliminary. The
important point is that EMOAs have no means of detecting 'real’ Pareto-set shapes, they
have to cope with their inexact counterparts. These problems are currently not reflected in
algorithm design. Furthermore, we are convinced that a thorough analysis of the interaction
between Pareto-front and Pareto-set will eventually lead to new insights, new search operators,
and even better EMOAs.
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3.2 Capabilities of EMOA to Detect and Preserve Equivalent Pareto
Subsets

This section (pages 54 to 67) is copied verbatim from

[RNPO7] G. Rudolph, B. Naujoks, and M. Preuss. Capabilities of EMOA to Detect and Preserve
Equivalent Pareto Subsets. In S. Obayashi et al., editors, Evolutionary Multi-Criterion Opti-
mization (EMO 2007), pages 36—-50. Springer, Berlin, 2007.

Abstract

Recent works in evolutionary multiobjective optimization suggest to shift the focus from solely
evaluating optimization success in the objective space to also taking the decision space into
account. They indicate that this may be a) necessary to express the users requirements of
obtaining distinct solutions (distinct Pareto-set parts or subsets) of similar quality (compa-
rable locations on the Pareto-front) in real-world applications, and b) a demanding task for
the currently most commonly used algorithms. We investigate if standard EMOA are able
to detect and preserve equivalent Pareto subsets and develop an own special purpose EMOA
that meets these requirements reliably.

3.2.1 Introduction

Almost all publications about evolutionary multiobjective algorithms (EMOA) put their em-
phasis on approximating the Pareto front in the objective space whereas the relevance of an
appropriate approximation of the Pareto set is widely neglected. The knowledge about the
Pareto front is important for the product designer. But as soon as a solution in objective space
has been selected it is important to know for the product engineer if there are alternative
solutions in the decision space that lead to the same objective vector. Such Pareto-optimal
solutions in decision space exist if there are symmetries in the objective function. This phe-
nomenon occurs for example in the test problems considered by Chan and Ray [CR05] or
Preuss et al. [PNRO06]. Basically, the Pareto set could be partitioned into subsets where the
images of each subset are identical, i.e., each Pareto subset of this partition represents the
entire Pareto front. Figure 3.6 illustrates and distinguishes different cases that may occur in
multiobjective problems.

Apart from artificial test problems, there are of course real-world problems that exhibit
such symmetries. For example, consider the problem of designing a proper diet for people
with special needs. Besides taking into account nutrient and non-nutrient requirements, there
are also aesthetic standards regarding shape, colors and others (cf. Seljak [Sel06]). Of course,
there are numerous ways to compile alternative but equally valuable meals that differ only in
the exchange of some vegetables.

Here, we are interested in the capabilities of standard EMOA of detecting and /or preserving
Pareto subsets of equivalent quality. A more detailed view of our aims and methods is given in
section 2. For our analysis, we construct an artificial problem class that exploits symmetries
in the objective function in an extreme manner along with various geometric transformations.
The same blue print can be used to construct further test classes in future. This approach is




Diversity Preservation in Decision and Objective Space

55

presented in section 3, which is enriched with an experimental investigation of the problem
hardness via design of experiment (DOE) methods. Section 4 evaluates standard EMOA and
a special purpose EMOA on this problem class which leads to the observation that standard
EMOA and even the special purpose EMOA do not provide fully satisfying results. Therefore,
we develop a new EMOA approach that is based on the multistart technique along with several
scalarization methods. We can show empirically that this approach delivers a reliable and
accurate approximation of all Pareto subsets with equivalent quality. We finish with our
conclusions in subsection 6.

type I type II
[ ] o [ ] )
° Sl 8—/——%
° o s ———=»
o ) o Q
@e—— 0 @e—— 0
type III type IV
4 o ° 0]
‘E %:0 e——0
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Figure 3.6: Different Pareto-set and Pareto-front type combinations: One Pareto-set and one
Pareto-front (type I), one Pareto-set and multiple Pareto-front parts (type II),
multiple Pareto subsets and one Pareto-front (type III), and multiple Pareto sub-
sets and Pareto-front parts (type IV). Type III problems are rarely investigated,
although they potentially provide multiple preimages for every objective vector of
interest.

3.2.2 Aims and Methods

To investigate the behavior of EMOA and their operators in presence of multiple Pareto-set
parts (type III problems), we concentrate on three main questions:

e Which properties make these problems especially hard or simple for standard EMOA?

e What are the mechanisms in EMOA that lead to better or worse performance in terms
of Pareto-set preservation and Pareto-front approximation?

e How can Pareto-set preservation in EMOA be improved?

Obviously, standard performance measures for multiobjective optimization algorithms dis-
regard how Pareto-sets are dealt with; they only refer to population distributions in the ob-
jective space. We therefore define two simple new measures which require knowledge about
Pareto subset numbers and locations and are thus not applicable to real-world application
problems.

The formal definitions refer to a population P of points (ind) in decision space and a set
S of Pareto subsets (set). The boolean function near(ind,set) becomes true if the tested
individual reaches the vicinity of the tested set. For determining when exactly this is the
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case, the concrete problem must be taken into account. VAR stands for the sample variance
s?, determined to s? = 15 5" | (z; — 7)?

Covered sets (cs): The number of covered Pareto subsets (which comprise at least one indi-
vidual in their vicinity).

cs(P,S) := [{set € S : Jind € P, near(ind, set) }| (3.3)

Set population spread (sps): The standard deviation of the Pareto subset population counts
(the number of individuals found on a Pareto subset).

sps(P, S) := \/VAR({Vset € S: |ind € P,near(ind, set)|})
(3.4)

For measuring the Pareto front approximation quality of a population, we utilize the com-
mon S-metric (hypervolume). Furthermore, standard experiment layout and visualization
techniques from the design of experiments (DOE) field (see Montgomery [Mon01]) are em-
ployed.

3.2.3 A test-problem class: SYM-PART

In a previous work [PNRO6], a configurable type III test problem with two distinct Pareto-
sets, overlapping only in the decision space origin, has been investigated. These distinct
Pareto-sets were caused by the point symmetry of the bi-modal objective function. It is easy
to see that such property entails loss of surjectiveness by creating two or more preimages of
the optima and search points in their vicinity. As soon as at least the global optimum of
one objective function (which is by definition part of the Pareto-front of the resulting mul-
tiobjective function) is affected, multiple, possibly connected Pareto subsets emerge. In the
following, we use this reasoning to construct SYM-PART (symmetrical parts) test problems
with a controllable number of Pareto subsets, heavily relying on symmetry properties of the
underlying singleobjective functions.

Construction of the test problems

Starting point is a very simple and well known test problem with two objectives and two-
dimensional search space, namely,

(3.5)

fl@r, @) = ( (1 + a)? + 23 >

(21 —a)® + 23

for some a > 0. The Pareto set X* = {x € R? : x = (x1,0)’ with 1 € [~a, a]} maps to the
Pareto front F* = f(X*) = {z € R? : z = (4a®1?,4a® (1 — v)?)’ with v € (0,1)}. Our idea
is to translate the problem above to different regions in search space (see Fig. 3.7), such that
each of these Pareto subsets are of equivalent quality since each Pareto subset maps to the
same Pareto front.

For this purpose we define test problem (3.5) only in a certain neighborhood. Such a
neighborhood will be called tile hereinafter (see Fig. 3.8).
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Figure 3.7: Blue print of the initial test problem: Each subset of the Pareto set is a line of
length 2 a. Parameter b specifies the vertical distance between neighboring Pareto
subsets, whereas parameter c specifies the distance to the next Pareto subset on
the horizontal line. Each Pareto subset maps to the same Pareto front.

tile (-1, 1) tile (0, 1) tile ( 1, 1)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2a e
tile (-1, 0) tile (0, 0) tile (1, 0)

—_— —_— b —_—
tile (-1,-1) tile ( 0,-1) tile (11,-1)

Figure 3.8: Tile pattern for function (3.5) translated to tiles (¢, j) that are defined by a rectan-
gular region with width 2 a+ ¢ and height b. Here, (i, j) denotes the tile identifier.

The tile identifiers are determined via

t; = sgn(z1) x [W-‘ (3.6)
~ _ ’$2| — g
to sgn(xg) X —5 (3.7)

where a,b and c are the parameters for specifying the tile pattern. We restrict the problem
to 9 tiles, i.e., the tile identifiers ¢; only attain values in {—1,0,1} by using the relation
t; = sgn(t;) x min{|#;],1}. Now we are in the position to define the first test problem
instance:

f(l)(x1,$2) = f($1 — 11 (C+ 2(1),$2 — 19 b)

The second test problem instance requires that = is rotated by w = 45° via

r(z) = < cosw —sinw > .

sin w Ccos w
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before calculating the tile identifiers ¢1, ¢ in (3.6) and (3.7). This leads to (see Fig. 3.9, left)
FP (@1, 22) = fO(r1 (@), ra(2))

Finally, we add a transformation that distorts the shape of the Pareto subsets:

xQ—L-i-é -1
U-L

d(x1,x2) =21 X (

for some small ¢ > 0 and where U and L denote the upper and lower bound of the search
space, respectively. When transforming z; prior to calculating the tile identifiers, the third
test problem instance is defined by (see Fig. 3.9, right)

FO (@1, 20) = fD(d(21, 22), 22) .

SYM;PART rofated, Paréto set SYM—|5ART rot.+‘ trans., Pa{reto set
\ N\
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N\ N\ N\ \
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-10 - r -10 -
N\ ]
I I I I I I
-10 0 10 -10 0 10
x1 x1

Figure 3.9: Empirically detected (randomly enumerated) Pareto-sets of SYM-PART test prob-
lems instances 2 and 3 (instance 1 refers to the original problem depicted in
Fig. 3.8). Instance 2: 45° rotation, no transformation (left), instance 3: 45°
rotation with transformation (right). Note that Pareto subset sizes differ here.

Needless to say, we are aware of the weaknesses of these test instances since they exploit
only one type of symmetry and since they are defined only for two dimensions in search
and objective space. But as can be seen shortly, these simple test problems can be used to

demonstrate interesting phenomena occurring in standard EMOA and some special purpose
EMOA presented below.

Experimental investigation of problem hardness

In the following sections, several EMOA are tested for their ability to reach and preserve
many or all existing Pareto subsets. It is therefore necessary to establish differently diffi-
cult problem instances of the SYM-PART problem class. In particular, the three problem
instances developed in §3.2.3 shall be assessed. Apart from the fact that we do not employ
any evolutionary algorithm but simple, deterministic, grid-based search methods, exploring
the effect of problem modifications onto optimization methods is related to the approach of
Langdon and Poli [LP05].
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Experiment 1 relies on the utilization of design of experiments (DOE) techniques as first
introduced by Fisher [Fis35]. The controllable input variables or factors—in this case problem
properties—are varied systematically in discrete levels. Observing the resulting performance
changes then enables estimating the impact of single properties (main effects) and combined
properties (interaction effects). An experimental layout that requires to actually test all
possible factor level combinations is called a fully factorial design. For larger numbers of
factors, one often uses fractional factorial designs. These reduce the number of runs by
ignoring certain factor level combinations at the expense of explanatory power regarding
higher-order interaction effects. For a more thorough introduction into DOE methods we
refer to standard textbooks (e.g. Montgomery [Mon01]).

Experiment 1: Problem hardness of different SYM-PART configurations.

Pre-experimental planning: First experiments revealed that a standard operator/value
NSGA2 (see Tab. 3.4) performs reasonably well in preserving Pareto-sets over a long time
(30,000 evaluations). Replacing search operators or parameter values seems to weaken this
ability. The NSGA2 is therefore chosen as constant base algorithm when modifying the
treated problem.

Task: Detect which SYM-PART modifications have a large impact on the ability of an EMOA
to discover and preserve as many Pareto-sets as possible. Recommend few considerably
different SYM-PART instances for further use.

Setup: We apply a full factorial design: NSGA2 is run with 30 repeats on each factor
level combination (16). Low and high factor levels are given in Tab. 3.2. Bounds refers to
the rectangular search space bounds, shift stands for translation of the whole tile structure
relative to the origin, rotation and transformation are as stated in §3.2.3.

Results/Visualization: The mean number of covered sets (cs) and the set population spread
(sps) are used to compute main and interaction effects. These are depicted in Fig. 3.10 and
Fig. 3.11, respectively. Due to space limitations and to enhance comparability, all effects
are plotted into one diagram, thereby deviating from standard DOE practice. Higher-order
interaction effects (of more than two factors) are disregarded.

Observations: The strongest main effects are caused by the transformation and the extent
of decision space bounds (trans and bounds in Fig. 3.10). Measures cs(P,S) and sps(P,.S)
return consistent values: For smaller decision spaces, less Pareto subsets are kept, and the
spread of set populations increases. The transformation has a similar effect and obviously
makes the problem harder if switched on. Shift and rotation apparently do not affect problem
hardness. The interaction effect plots Fig. 3.11 document that only two interactions need to
be considered: Trans-bound and rot-trans. Both interaction effects are much weaker than

Table 3.2: SYM-PART problem designs, made of combinations of 4 factors, each of which has
a low (left) and high (right) level. Chosing all 4 low levels results in the original
problem as described in §3.2.3.
parameter bounds (L:U) shift vs. origin rotation angle transformation
factor levels —50:50/—20:20 (0,0)/(2,2) 0° / 45° no / yes
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Figure 3.10: DOE main effects, original mean values, without adjustment towards the average.
As the standard deviations of the observed cs(P,S) values are almost 1 (up to ~ 5
for the largest values of sps(P,S)), all but the largest two effects are insignificant.

the important main effects. Whereas trans-bound signals harder problems if both factors are
either set to their low or to their high levels, rot-trans points into the other direction. If only
rotation or only transformation is switched on, the problem appears to be harder than if both
are on or off.

Discussion: Surprisingly, changing decision space bounds has a large effect on performance
in terms of cs(P, S) and sps(P, S). If the relative amount of search space that must be covered
for placing individuals in all Pareto subsets approaches 1, the EMOA gets more and more
difficulties. We attribute this behavior at least in part to the polynomial mutation (PM)
operator which uses the upper and lower bounds for adjusting its step size distribution. We
must however state that the PM operator works reasonably well even under very tight bounds
around the Pareto subsets. As setting the bounds to the high factor level (-20/20) greatly
increases problem difficulty, we consider only these in the following.

Dissecting the impact of the 4 possible combinations of rotation and transformation leads
to an unexpected order of increasing hardness: —rot A —trans (mean/stddev(cs)=8.83/0.33)
< rot A —trans (8.49/0.49) < rot A trans (8/0.60) < —rot A trans (7.71/0.76). To keep the
number of problem instances for further testing as low as possible, we select only 3 of these,
namely the simple one (—rot A —trans), the rotated one (rot A —trans), and the rotated and
transformed one (—rot A—trans). Instead of the latter, one could also chose the not rotated but
transformed instance. However, we refrained from doing so because the difference between
these two is rather small, and it is currently not clear why the instance without rotation may
be more difficult.

3.2.4 Evaluation of Standard EMOA on SYM-PART

Compared to §3.2.3, we now follow the opposite approach and test several common EMOA
on the three previously selected SYM-PART problem instances.
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Figure 3.11: DOE interaction effects, as Fig. 3.10 at the original location, but differently
scaled, without adjustment. All except the trans-bound and rot-trans interac-
tions are insignificant due to the high variance level.

Experiment 2: Investigate convergence/diversity tradeoff for different EMOA.

Pre-experimental planning: First results confirmed the expected behavior: Standard
techniques do not perform well even on the simplest instance of the SYM-PART problem.
The algorithms only kept a very limited number of tiles (cs(P,S5)).

Later, it was discovered that this unwanted behavior was seemingly caused by adaptive mu-
tation featuring n = 2 step sizes [BS02]. After changing the variation operator to polynomial
mutation [Deb01], which became the standard mutation operator within EMOA in recent
years, the quality of results increased significantly. This is indicated by the average number
of tiles preserved by different EMOA, in turn using the two mentioned mutation operators.
Mean values for cs(P,S) are given next to the corresponding standard deviations (in brackets)
in Tab. 3.3. As polynomial mutation performed much better, this operator was applied in
the investigation of different EMOA on all instances of the SYM-PART problem.

Table 3.3: Test of standard EMOA with different mutation operators, namely polynomial
mutation (PM) and adaptive mutation with two step sizes (AM). The values give
average cs(P,S) values of 18 runs with 10,000 evaluations each (standard deviations
are given in brackets).

algorithm AM PM
NSGA-II 1.65 (0.745) 8.61 (0.608)
SPEA2 1.94 (0.873) 8.94 (0.236)

Task: The performance of EMOA is to be tested on all instances of the SYM-PART problem.
More detailedly, we look for drawbacks of the standard techniques in contrast to an algorithm
that is explicitly developed to keep diversity in solution space as well as in decision space.
Are the algorithms able to discover new tiles and can they keep the new tiles for the rest of
the optimization run?

Setup: We invoke two standard techniques next to a new development within the field.
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The Pisa framework? is used to conduct the referred optimization runs with the standard
techniques. Here, all specifications of the SYM-PART problem have been implemented as a
variator, which can be optimized with respect to different objectives and multiple selectors.
Among the set of available selectors, NSGA-IT and SPEA2 are chosen, because these appear to
be the currently most well-known and commonly used algorithms in the field [Deb01, CVLO02].
Additionally, the more recent KP1 by Chan and Ray [CRO05] is tested.

KP1 was designed for maintaining diversity in decision space as well as in objective space.
Therefore, two criteria to measure the diversity of solutions in the corresponding spaces are
defined and applied in each generation. These are dominated hypervolume of each individual
for the objective space and a neighborhood counting approach for the decision space. Both
are described in detail by Chan and Ray [CR05]. The OMNI-Optimizer by Deb et al. [DT05]
considers only one of such measurements in the different space at a time and is not included
in this study.

The parameters of the variation operators are set to standard values, i.e. SBX and PM with
distribution indices 1. = 15 and 7, = 20, respectively. Crossover and mutation probability
are set to one. Selection is performed using a (100 + 100) selection scheme for 300 generations
in either cases, resulting in 30,000 fitness function evaluations per run (see Tab. 3.4).

The additional effort for a third algorithm in the study seems to be justified as the devel-
opment aims of this algorithm directly address the difficulties of the chosen test problems.

Table 3.4: Parameter setting for standard EMOA depicting mutation and crossover probabili-
ties (mut.prop. and cross.prob.), distribution indices (7,, and 7.), and the selection
scheme in use.

parameter mut.prob. Nm cross.prob. Ne selection
value 1 20 1 15 (100 + 100)

Results/Visualization: Tab. 3.5 and 3.6 give average final results of the 30 runs performed
for every algorithm on every instance of the SYM-PART problem. Tab. 3.5 more detailedly
depicts the average number of tiles preserved by the indicated algorithm after 30,000 evalua-
tions. The mean hypervolume received after the corresponding runs is contained in Tab. 3.6.
But, these averaged values of the final results do not give evidence for the behavior of the
different algorithms during the runs. This aspect is tackled in Fig. 3.12, where all repetitions
of runs have been averaged generation by generation. For example, the upper left diagram of
Fig. 3.12 depicts three curves, one for each instance of the SYM-PART problem. Each curve
is generated averaging the results achieved after the first generation, the second one, up to the
300th one. The same holds for all other curves within all diagrams in Fig. 3.12. The middle
row holds SPEA2 results while the lower one displays the results of KP1 by Chan and Ray.
The upper row is dedicated to NSGA2 and the left column to the generation-wise averaged
number of tiles kept as can be seen from the example above.

2PISA - Platform and Programming Language Independent Interface for Search Algorithms, ETH Zurich,
www.tik.ee.ethz.ch/pisa/
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The right column gives the generation-wise average values of the dominated hypervolume.
Here, the displayed area is shortened to the starting phase of the runs up to generation 50.
This is done to highlight the interesting developments during the runs and implies that no
major changes in the behavior take place after the depicted interval of the run. The final
results of the averaged runs can be taken from Tab. 3.5 and 3.6 as described above.

Table 3.5: Test of different algorithms on all instances of the SYM-PART problem. The
values give the average cs(P,S) of 30 runs with 30,000 evaluations each (standard
deviations are given in brackets).

algorithm simple rotated rot.+trans.
NSGA-II 6.333 (1.446) 5.633 (1.450) 4.667 (1.124)
SPEA2 6.3 (1.022) 5.2 (1.157) 5 (1.364)
KP1 8.3 (1.290) 6.733 (1.818) 6.5 (0.9738)

Table 3.6: Test of different algorithms on all instances of the SYM-PART problem. The values
give the average dominated hypervolume after 30 runs with 30,000 evaluations each
(standard deviations are given in brackets).

algorithm simple rotated rot.+trans.

NSGA-II 22.254 (0.00353) 22.255 (0.00305) 22.254 (0.00358)
SPEA2 22.257 (0.00237) 22.257 (0.00243) 22.255 (0.00278)
KP1 22.241 (0.00712) 22.231 (0.00689) 22.220 (0.00781)

Observations: With respect to the number of tiles kept, Tab. 3.5 shows the expected be-
havior of the algorithms within this study: The number of tiles kept decreasing with growing
hardness of the considered instance of the SYM-PART problem. This means, most of the
tiles are kept on SYM-PART 1 by all algorithms. Here, KP1 clearly outperforms the other
algorithms keeping 8.3 of 9 tiles on average. This is the highest value achieved within all
experiments. The lowest number of tiles is received for SYM-PART 3, the rotated and trans-
formed instance and therefore the most difficult one. On this problem, NSGA2 receives the
lowest value achieved within all experiments (4.667). For all algorithms, the values for SYM-
PART 2 are greater than the ones for SYM-PART 3 and smaller than the ones for SYM-PART
1. KP1 performs better than the other algorithms on all instances. Interestingly, NSGAZ2 is
better than SPEA2 on SYM-PART 1 and SYM-PART 2, while SPEA2 performs better on
SYM-PART 3.

The behavior of the algorithms changes when taking the dominated hypervolume into ac-
count (see Tab. 3.6). SPEA2 receives the best results on all instances, followed shortly by
NSGA2. KP1 clearly achieves the worst values of dominated hypervolume on all instances.
Furthermore, the values from this algorithm decrease with problem complexity. This behavior
can not be observed for NSGA2 and SPEA2. Here, the largest dominated hypervolume is
obtained on the rotated instance of SYM-PART, while the lowest values are achieved on the
rotated and transformed SYM-PART 3.
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Figure 3.12: Average runs of NSGA-II, SPEA2 and KP1 of Chan and Ray (labeled KP1)
on all instances of the SYM-PART function. The left column presents the av-
erage cs(P,S) values over the evaluations while the right one gives the average
dominated hypervolume. The average runs have been received from 30 runs
performed, 30,000 fitness function evaluations each. Only the first part up to
5,000 evaluations is presented in case of the hypervolume plot due to better

observability of results.
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More dramatic differences in the behavior of KP1 in contrast to NSGA2 and SPEA2 can be
observed in the diagrams of Fig. 3.12 considering the average cs(P, S) values per generation.
In contrast to the behavior of KP1, NSGA2 and SPEA?2 loose tiles during the averaged opti-
misation runs. KP1 first looses tiles as well but turns its behavior after about 20 generation
on all three instances. Starting here, KP1 almost constantly captures tiles back. Interest-
ingly, steps can be observed even in the averaged runs. This is due to increasing as well
as decreasing cs(P, S) values within single runs. As a consequence, also KP1 is not able to
keep all newly discovered tiles for the rest of the run. Some are lost again after only a few
generations. But, in contrast to NSGA2 and SPEA2, this algorithm is able to keep more tiles
than get lost. This leads to the over all increasing number of tiles on average.

The curves depicting the hypervolume do not yield such interesting results. The values
here increase rapidly to almost optimal values for all algorithms. More detailedly, NSGA2
and SPEA2 act almost comparable on SYM-PART 1 and SYM-PART 2. The dominated
hypervolume increases a bit more slightly on SYM-PART 3. This also holds for KP1, where
a more distinct difference can be observed between SYM-PART 1 and SYM-PART 2. Over
all, the results for KP1 seem to converge to the almost optimal values for the run a bit faster.
But, as can be seen from Tab. 3.6, these values are worse than the ones for SPEA2 and
NSGA2.

Discussion: With respect to the course of the tiles kept, an important difference in the
behavior of the algorithms is observed. While this course decreases for NSGA2 and SPEA2,
it increases for KP1. The final conclusion that all but one tile are lost after more generations
of NSGA2 and SPEA2 while all tiles are captured back using KP1 is not shown, but is an
self-evident assumption.

The values for the dominated hypervolume reveal that the more tiles are kept, the less
hypervolume is achieved. This leads to the assumption that both criteria are conflicting. The
fact that no hypervolume is lost with increasing number of tiles in the KP1 runs contradicts
this assumption. Therefore, KP1 can be stated to be the best algorithm within this study,
although not dominating all the hypervolume the other algorithms do. This is due to KP1
preserving diversity not only in the solution space, but also in the decision space. Considering
both criteria, it would be better to stop the runs of the standard algorithms more early,
i.e. after about 50 generations. At his point, they already dominate almost all possible
hypervolume and occupy the highest number of tiles.

What is not tackled in this investigation is the distribution of individuals over tiles sps(P, S).
In the most comprehensive algorithms, the user would like the number of individuals to grow
on newly occupied tiles. At the end of a run, a uniform distribution of individuals over all
Pareto-sets within tiles is aspired.

3.2.5 A Multistart Approach for Pareto Subset Detection

An alternative approach to detect and maintain several Pareto subsets of equivalent quality
is provided by the multistart technique. The algorithm described here is still of experimental
state but very promising. The main idea is as follows: We run a singleobjective optimizer
for each objective function. Since the optimal solution of each objective function is Pareto-
optimal we have a kind of anchor that can be used to approximate the associated Pareto subset
successively by deploying some singleobjective optimizer repeatedly with different weights of
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the scalarized multiobjective function.

Let f(x) = (fi(x),..., fa(z)) be the objective function with x € R™. At first, N runs with
a standard (1, \)-ES are made for each of the d objectives. The ES stops if the standard
deviation o of the mutation operator is below some threshold § > 0. Each solution x* is
stored and annotated with the index of the objective function used: (z*, k) € R" x{1,...,d}.
Thus, we obtain IV - d candidate solutions in this manner.

Suppose there are s € N Pareto subsets with equivalent quality. If all Pareto subsets are
hit by the multistart approach then we need only s - d anchor solutions as starting points
of the singleobjective search with the scalarized multiobjective function to approximate all
Pareto subsets. Since the number s of the equivalent Pareto subsets is unknown in general,
we deploy an unsupervised clustering method to reduce the N - d candidate solutions to s - d
anchor solutions required for the next step. Actually, it is possible to reduce the number of
anchor solutions to s since we can apply the clustering method to the N solutions of each
objective separately (recall that we have annotated each candidate solution with the index
of the objective function used). Since the different objective functions may be of varying
difficulty for the optimization, we can use the d outcomes of the clustering method as a
consistency check. This idea, however, is currently not implemented. We simply cluster
the candidate solutions of the objective function with index 1 and proceed with § estimated
anchor solutions.

The scalarization used in the sequel is known as the weighted Tchebycheff method [Ste86]:
The multiobjective function f : R” — R? is scalarized via

f=7 (@) = max {w;fi(x) —uil}
where u* € R? is the utopian solution. Since we have made N singleobjective optimizations
of each objective f; : R® — R in the first phase of our algorithm, we have obtained an
accurate estimator of the ideal solution z* with zf = min{f;(z) : z € R"} for i = 1,...,d.
As a consequence, we may set u; = z — 1 to get a valid utopian solution required for the
weighted Tchebycheff method (WTM). We have chosen WTM because of its ability to find
also solutions whose images are on a concave Pareto front. Needless to say, here we tacitly
assume that the Pareto subsets are connected.

The user may choose how many representatives of each Pareto subset are desired. Suppose
we like to obtain k representatives. Then for each of the § anchor solutions z* we start a
standard (1, \)-ES with initial o9 = 109, seeding point z*, and weights that cover all possible
weight assignments with maximal uniformity. In case of d = 2 objectives the weights are
given by w; = j/(k—1) and wg =1 —w; for j =1,...,k—1. Notice that the anchor solution
x* is used as initial parent of the ES for j = 1 only. The best solution found in this run serves
as initial parent for j = 2. And so forth until j = k — 1. In this vein, we finally arrive at an
approximation of all Pareto subsets that were detected in the first phase of the algorithm.

For an assessment of this approach, we made some experiments for the three test instances
introduced previously. The parametrization was as follows: A =5, N =50, § = 107°, k = 10.
The initialization of the ES in the first phase used o9 = 20/6 and the starting point was
sampled uniformly from the region [—20, 20]%.

Each run out of 30 in total detected the 9 Pareto subsets reliably and approximated the
Pareto subset with high accuracy. In the first phase each run of the (1,)\)-EA stops on
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average in less than 60 generations. Thus, we required less than 60 x A x N x d = 30,000
function evaluations of the single-objective functions, which is equivalent to 15,000 function
evaluations of the multiobjective function. The second phase (clustering) does not evaluate
the objective function. The third phase required less than 5,000 function evaluations of the
scalarized multiobjective function. Thus, this approach required less than the equivalent of
20,000 multiobjective function evaluations for a reliable and accurate approximation of all
Pareto subsets for all test instances. Figure 3.13 shows typical results for the three test
instances.

SYM-PART simple, Pareto set SYM-PART rotated, Pareto set SYM-PART rot.+ trans., Pareto set
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Figure 3.13: Typical runs of the multistart approach on all instances of the SYM-PART prob-
lem (from left to right: instances 1, 2, and 3, as described in §3.2.3).

3.2.6 Conclusions and Future Work

We have shown that standard EMOA are not able to reliably detect and/or preserve all
Pareto subsets of equivalent quality. This is not surprising as they have not been designed
for this purpose. Moreover, this property is not required in some cases. But if we need this
property we have to deploy special purpose EMOA. We have tested one such EMOA given in
the literature and we have developed another EMOA that is based on a multistart approach
which meets our requirements. It is imaginable that EMOA with niching can be successful
in this case, too. But this analysis remains for future research, as well as the development of
additional problem classes that exploit different types of symmetries and that are defined in
higher-dimensional decision and objective spaces.
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Chapter 4
Many-Objective Optimisation

Since the interest in handling more than one objective increased during the nineties, most of the
effort was spent on handling two objectives in parallel. This still holds, even though beginning with
the first years of the new millennium, even more objectives have been considered. Starting with
the definition of the test function collection of Deb, Thiele, Laumanns, and Zitzler [DTLZ02], three
objective optimisation problems got into focus, and this collection offered the chance to consider even
more than three objectives. However, the interest in problems with a specific number of objectives
decreases as the number of objective increases.

Purshouse and Fleming [PF03] may have been the first to call the optimisation considering more
than three objectives many-objective optimisation. As described in the introduction, Tobias Wag-
ner, Nicola Beume, and | wanted to compare different evolutionary multiobjective optimisation ap-
proaches to find out how these perform in this context and maybe some drawbacks of standard
approaches. The resulting article was published at the EMO conference in 2007 and is the basis of
this chapter (cf. pages 71 to 84):

[WBNO7] T. Wagner, N. Beume, and B. Naujoks. Pareto-, Aggregation-, and Indicator-Based Meth-
ods in Many-Objective Optimization. In S. Obayashi et al., editors, Evolutionary Multi-Criterion
Optimization (EMO 07), pages 742—756. Springer, Berlin, 2007.

The paper focusses on the comparison of different approaches on a collection of test functions
with increasing number of objectives. Three major groups of methods were identified that were
investigated separately. EMOA that are mainly based on the quantitative information of Pareto dom-
inance, Pareto-based ranking, or counting build the first class of so-called Pareto-based methods.
Most well-known, standard EMOA belong to this class.

Such early Pareto-based methods like NSGA-Il and SPEA2 performed badly on multiobjective
optimisation problems with more than three objectives (compare with Purshouse and Fleming [PF03]
or Hughes [Hug05] as well). These methods show a rapid degradation with increasing number of
objectives. Some additional studies show that they do not converge to the Pareto front at all and
stagnate far away from it.

This bad behaviour was attributed to the curse of dimensionality. With increasing dimension, the
fraction of the objective space, where an offspring dominates its parent decreases exponentially.
To this end, convergence to a Pareto front is very hard if only dominance and spread information
is considered. Nevertheless, the performance of e-MOEA refutes the hypothesis of Hughes that a
Pareto-based approach cannot succeed on many-objective problem instances.

The second class of EMOA investigated are aggregation-based methods. As instances of this
class the Multiple Single Objective Pareto Sampling (MSOPS) by Hughes [Hug03] was tested in the
corresponding publication and performed well with respect to convergence aspects. A sophisticated
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scheme for the generation of weight vectors was introduced within this algorithm and it also produced
well distributed solution sets. As a second instance of the aggregation -based methods "Repeated
Single Objective” (RSO) [Hug05] was considered. However, it does not succeed in reaching the
Pareto front at all.

Finally, indicator-based EMOA have been investigated. The considered instances were IBEA
[ZK04] as well as SMS-EMOA. While two IBEA variants achieve only average results, this does
not hold for the SMS-EMOA. This EMOA, featuring more than just distribution aspects, performs
very well in many-objective optimisation tasks.

Of course, the computational complexity of the SMS-EMOA led to very large runtimes for this al-
gorithm, but it was able to outperforme all other algorithms on all considered test functions. This way,
this work demonstrates the more general applicability of SMS-EMOA compared to other approaches.
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4.1 Pareto-, Aggregation-, and Indicator-based Methods in
Many-objective Optimization

This section (pages 71 to 84) is copied verbatim from

[WBNO07] T. Wagner, N. Beume, and B. Naujoks. Pareto-, Aggregation-, and Indicator-Based Meth-
ods in Many-Objective Optimization. In S. Obayashi et al., editors, Evolutionary Multi-Criterion

Optimization (EMO 2007), volume 4403 of Lecture Notes in Computer Science, pages 742—-756.

Springer, Berlin, 2007.

Abstract

Research within the area of Evolutionary Multi-objective Optimization (EMO) focused on
two- and three-dimensional objective functions, so far. Most algorithms have been developed
for and tested on this limited application area. To broaden the insight in the behavior of EMO
algorithms (EMOA) in higher dimensional objective spaces, a comprehensive benchmarking
is presented, featuring several state-of-the-art EMOA, as well as an aggregative approach
and a restart strategy on established scalable test problems with three to six objectives. It
is demonstrated why the performance of well-established EMOA (NSGA-II, SPEA2) rapidly
degradates with increasing dimension. Newer EMOA like e-MOEA, MSOPS, IBEA and SMS-
EMOA cope very well with high-dimensional objective spaces. Their specific advantages and
drawbacks are illustrated, thus giving valuable hints for practitioners which EMOA to choose
depending on the optimization scenario. Additionally, a new method for the generation of
weight vectors usable in aggregation methods is presented.

4.1.1 Introduction

In the field of evolutionary multi-objective optimization, a lot of test problems and appli-
cations with two or three objectives have been studied. Problems with more than three
objectives, which have been termed many-objective problems by Farina and Amato [FA02],
have been tackled only rarely. Many techniques that work well for only a few objectives are
anticipated to have difficulties in high-dimensional objective spaces. Thus, many-objective
optimization is significantly more challenging than scenarios usually being analyzed.

Within multi-objective optimization, we consider d-dimensional vectors of objective values
for a problem of d objective functions f = (f1,..., fq). Among these vectors, a partial order
holds concerning the considered minimization problems. For details on often used terms and
definitions like Pareto dominance, Pareto set and front, books on EMOA by Deb [Deb01] or
Coello Coello et al. [CVLO02] are suggested.

The selection module of an EMO algorithm (EMOA) requires a mapping of an objective
vector to a ranking criterion to establish a complete order among individuals. Popular EMOA
usually consist of two selection operators. The primary selection operator is based on Pareto
dominance and favors non-dominated solutions over dominated ones. The secondary operator
is constituted diversity preserving and rates solutions incomparable concerning the primary
operator.

This concept of selection already documents the insight that Pareto dominance may not
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be sufficient as a sole selection operator, due to the large amount of possibly incomparable
solutions. More precisely, a d-dimensional objective vector is only comparable with a fraction
of 1/2971 of an (infinite) objective space (cf. Farina and Amato [FA02]). The importance of
the secondary selection operator grows with increasing dimension of the objective space since
the incomparability concerning the Pareto-based operator becomes the typical case.

Few previous studies on many-objective optimization by Purshouse and Fleming [PF03]
and Hughes [Hug05] focus to demonstrate the bad performance of NSGA-II by Deb et al.
[DPAMO02]. Hughes observed a simple single-objective restart strategy outperforming NSGA-
II on a six-objective function in a two-dimensional decision space. Upon this, he implied a
generalization to all Pareto-based techniques.

In contradiction, the work at hand includes positive results by demonstrating that some
modern EMOA using Pareto-concepts cope very well with high-dimensional objective spaces.
We ascribe the good performance of e-MOEA, IBEA, SMS-EMOA, and MSOPS to new con-
cepts of aggregation and indicator functions and explain how and why these EMOA work
successfully. A comprehensive benchmark is presented on the established test functions of
the DTLZ function family, which feature a high dimensional decision and a scalable objec-
tive space. Moreover, a slight modification to NSGA-II is suggested, which causes a better
performance. Our motivation is not to modify NSGA-II but to demonstrate which aspects of
classic EMOA are responsible for the problems within many-objective optimization.

The aggregation method MSOPS by Hughes [Hug05] is studied more detailedly. The prob-
lems using aggregation are described and solution concepts are presented with a focus on
suitable sets of weight vectors.

The considered test functions, performance measures and basic settings of the EMOA are
described in the following section. Section 4.1.3 deals with the behavior of Pareto-based
EMOA, Section 4.1.4 with aggregation methods, and Section 4.1.5 with methods utilizing
indicator functions for selection. In these sections, algorithms are presented and their perfor-
mances are described with help of the quality measures. Section 4.1.6 summarizes the findings
and gives an outlook on how to further deepen insight in many-objective optimization.

4.1.2 Benchmark Settings

All algorithms, except otherwise mentioned, have been implemented within the PISA frame-
work! [BLTZ03] since an integrative framework simplifies comparisons. The same variation
operators are used with exactly the same parameterization, which is chosen according to the
studies of Deb et al. [DMMO03a]. Simulated binary crossover (SBX) and polynomial mutation
(PM) as described by Deb [Deb01] are applied with mutation probability p,, = 1/n per de-
cision variable and recombination probability p. = 1 per individual. The distribution indices
ne = 15 and 7, = 20 are used. If not otherwise stated, a (u + u) strategy and a binary
tournament for mating selection are applied. A number of 30.000 function evaluations is ac-
complished and the population size p = 100 is chosen. For each EMOA, besides SMS-EMOA,
on each test function, 20 runs are performed. Due to the exponential runtime and the small
standard deviation in the observed runs, SMS-EMOA is only repeated 5 times.

'PISA - Platform and Programming Language Independent Interface for Search Algorithms, ETH Ziirich
(www.tik.ee.ethz.ch/pisa/)
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Test Functions

To benchmark the performance of the considered EMOA, the functions DTLZ1 and DTLZ2
of the DTLZ test function family [DTLZ02] are invoked. These functions are scalable in
the number of objectives and thus allow for a many-objective study. The decision vector is
divided into two subvectors. The first one of length d — 1 contains the parameters defining
the position on the given surface while the second of length v specifies the distance to the
Pareto front. This results in dimension d + v — 1 of the decision space. According to Deb et
al. [DTLZ02], v =5 is used in DTLZ1 and v = 10 is used in DTLZ2 respectively.

The Pareto front of DTLZ1 is a linear hyperplane. DTLZ2 features a Pareto front that
corresponds to the positive part of the unit hypersphere (|f(x)| = 1). Here, the interaction
between objectives is nonlinear. The domain of all decision variables is [0, 1]. Due to different
scaling constants in the distance function, the codomain of objective values for DTLZI is
[0,14225v] and [0, 14 0.25v] for DTLZ2, respectively. The Pareto set of both test functions
corresponds to x4, ..., x, = 0.5 with arbitrary values for x1,...,z4_1.

Performance Assessment

For performance assessment, S-metric by Zitzler and Thiele [ZT98] and convergence measure
[DMMO03a] are considered. The S-metric determines the size of the dominated hypervolume
in objective space bounded by a reference point r. In EMO research it is of outstanding
importance due to its theoretical properties. The values depend on proximity to the Pareto
front as well as on distribution of points. The maximal S-metric value is reached by the
Pareto front. The reference points r = 0.7¢ for DTLZ1 and r = 1.1¢ for DTLZ2 were used in
previous studies [DMMO03a, NBEO05] and are close to the Pareto front in order to emphasize
on the distribution of optimal solutions. Points that do not dominate the reference point are
discarded for metric calculation. The metric values are normalized by calculating the fraction
of the analytical optimal value. Note that exactly 100% are unreachable with a finite number
of points.

The convergence measure describes the average distance of the approximation to the Pareto
front in objective space. In contrast to the study of Deb et al. [DMMO03a], the euclidean
distance to the nearest optimal solution is determined analytically without using a reference
set. This is possible due to the special structure of the employed Pareto fronts.

4.1.3 Pareto-based EMOA

As Pareto-based EMOA, we classify EMOA with selection criteria that are mainly based on
the qualitative information of Pareto-dominance, Pareto-based ranking, or counting. Thus,

NSGA-II, SPEA2, and e-MOEA are considered here.

NSGA-Il The Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) by Deb et al.
[DPAMO2] applies the rank assigned to each solution by non-dominated sorting as primary
selection criterion. Non-dominated individuals are assigned rank one and the set of individuals
with equal rank is called a front. Those individuals that are non-dominated if the first
front was removed are assigned rank two. The third front is decided within the population
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discarding the first and the second front and so on. Individuals with equal ranks are evaluated
using a secondary selection criterion called crowding distance. This subsumes the distances to
the next higher and lower values in each dimension, respectively. Currently, the NSGA-IT is
supposed to be the best known and most frequently applied EMOA. Jensen [Jen03| improves
the non-dominated sorting algorithm, determining the overall runtime of NSGA-II, to run in
O(plog?~! 1) per generation.

SPEA-2 The Strength Pareto Evolutionary Algorithm (SPEA2) by Zitzler et al. [ZLT01]
uses two ranking criteria as well. It is an elitist algorithm with an archive of constant size,
which is chosen to be the population size p in the experiments at hand. As primary selection
criterion, a strength value that gives the number of individuals in the population dominated
by the current individual is assigned. Based on these values a raw fitness is computed as the
sum of the strength values of every individual that dominates it. Thus, every non-dominated
individual’s raw fitness equals zero. In a second step, a density estimation is performed based
on the euclidean distances between all individuals. The primary fitness value is the raw fitness
plus the reciprocal of the sum of the distance to the k-nearest neighbor [Sil86]2. To fill the
archive for the next generation, the individuals with the best fitness are copied. In case of
individuals with equal fitness, the distance to the k-nearest neighbor for increasing & is used
as further criterion. Given d > 3, these methods require a runtime in O(du?) per generation
[Jen03].

e-MOEA Laumanns et al. [LTDZ02] proposed the e-MOEA to combine the convergence
properties of an elitist MOEA like suggested by Rudolph and Agapie [RA00] with the need
to preserve a diverse set of solutions. The objective space is divided into a grid of boxes,
whose size can be adjusted by the choice of e. Dominance is checked according to the boxes
where the solutions are positioned. The archive E holds one solution for each non-dominated
box. If the box of a new solution dominates other boxes in the archive, the associated archive
members are rejected. In case of two solutions belonging to the same box, Laumanns et al.
decline the new solution except it dominates the old one. Later, Deb et al. [DMMO03a] propose
to select the solution, which is closer to the best corner of the box. They also administrate a
co-evaluated population P of constant size. If a new solution is not dominated by any member
of the population, it replaces a randomly chosen member favoring dominated solutions. They
also suggest a steady-state approach, where the offspring is generated by a parent from P
and a parent from E. A binary tournament regarding the dominance relation is performed to
choose the member of P for mating. The parent from E is chosen equiprobable. Because no
further diversity measures are computed, the runtime of a generation of e-MOEA is O(d|E|).

Experimental Results

NSGA-IT and SPEA2 rapidly decrease in quality with increasing dimension of objective space.
If more than four objectives are considered, these algorithms do not converge to the Pareto
set as indicated by the high distance values (cf. Tab. 4.1). With dimension greater than
four, no relative hypervolume is measured because no point dominating the reference point
is achieved (cf. Tab. 4.2).

2In PISA k is chosen as 1.
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Table 4.1: The convergence measure for the pareto dominance based algorithms.

DTLZ1 DTLZ2
obj. | algorithm || mean std.dev | median || mean std.dev | median

3 e-MOEA || 0.00614 | 0.00413 | 0.00484 || 0.00102 | 0.00022 | 0.00105
NSGA-II | 0.06333 | 0.15581 | 0.01002 || 0.01049 | 0.00162 | 0.01027
SPEA2 0.06783 | 0.16435 | 0.00792 || 0.00801 | 0.00112 | 0.00806
4 e-MOEA || 0.15990 | 0.34073 | 0.01990 || 0.00129 | 0.00024 | 0.00126
NSGA-II || 1.70260 | 1.95260 | 0.69515 || 0.08522 | 0.02580 | 0.08060
SPEA2 3.47990 | 4.78910 | 1.66910 || 0.08164 | 0.01676 | 0.08901
5 e-MOEA || 0.22348 | 0.41685 | 0.01941 || 0.02681 | 0.00120 | 0.02670
NSGA-II || 300.416 | 37.2461 | 317.506 || 1.06780 | 0.14504 | 1.07770
SPEA2 358.818 | 25.0853 | 366.236 || 1.30970 | 0.15758 | 1.27760
6 e-MOEA || 0.97014 | 1.39920 | 0.27217 || 0.00272 | 0.00067 | 0.00266
NSGA-II || 393.674 | 17.6076 | 388.689 || 2.15610 | 0.09584 | 2.16910
SPEA2 482.742 | 13.6757 | 479.577 || 2.32000 | 0.09617 | 2.36070

Table 4.2: The relative hypervolume for the pareto dominance based algorithms.

DTLZ1, r = 0.7¢ DTLZ2, r = 1.1¢

obj. | algorithm || mean ‘ std.dev ‘ median || mean std.dev | median
3 e-MOEA || 0.94560 | 0.01005 | 0.94662 || 0.92858 | 0.00118 | 0.92836
NSGA-IT || 0.94333 | 0.11423 | 0.96923 || 0.86913 | 0.00803 | 0.86918
SPEA2 0.98010 | 0.00152 | 0.98068 || 0.90760 | 0.00350 | 0.90782
4 e-MOEA || 0.85493 | 0.18655 | 0.92697 || 0.87722 | 0.00186 | 0.87766
NSGA-IT || 0.45730 | 0.40600 | 0.46204 || 0.71644 | 0.01971 | 0.71733
SPEA2 0.62316 | 0.34319 | 0.72224 || 0.78461 | 0.01258 | 0.78202
5 e-MOEA || 0.82261 | 0.16668 | 0.86933 || 0.83847 | 0.00308 | 0.83809

NSGA-II || 0 0 0 0.11570 | 0.06842 | 0.11734

SPEA2 0 0 0 0.12528 | 0.06942 | 0.12864
6 e-MOEA || 0.64563 | 0.38344 | 0.81552 || 0.85332 | 0.01434 | 0.85497

NSGA-II || 0 0 0 0 0 0

SPEA2 0 0 0 0 0 0
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Further studies with these algorithms have been performed to exhibit if any convergence
occurs with a higher number of function evaluations. As shown in Fig. 4.1, both algorithms
increase the distance to the Pareto front in the first generations because the diversity based
selection criteria favor higher distances between solutions. Special emphasis is given to ex-
tremal solutions with values near zero in one or more objectives. These solutions remain
non-dominated and the distance cannot be decreased thereafter.

600

500

400 |-

300 |- NSGA-Il ———
} SPEA2
NSGA-II with modified crowding distance -—------
e-MOEA archive
£-MOEA population

convergence measure

200 |

100 | &,

1 1 1 1 1 1 1 1 1
100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+00€
function evaluations

Figure 4.1: Convergence measure during the optimization run performing the median result
on six-objective DTLZ1.

To confirm this assumptions and improve NSGA-II, a slight modification of crowding dis-
tance is studied. Originally, an individual without a neighbor regarding one dimension of the
objective space is assigned an infinite crowding distance. Instead of that, a value of zero is
used, causing that non-dominated solutions with extremal values are rejected. Although this
variant is not able to converge to the Pareto front, an improvement of the average distance
within the first 100,000 function evaluations is obvious (Fig. 4.1). Then, most of the deci-
sion variables have reached their optimal value. Only one or two of them remain in a local
optimum. This experiment shows that a diversity measure with emphasis on a spread of the
population can misguide the MOEA to deterioration and the loss of promising non-dominated
solutions.

The performance of e-MOEA highly depends on the choice of e. We choose it such that
E finally contains about 100 solutions.> The e-MOEA is able to produce optimal solutions
within the allowed number of function evaluations for all considered numbers of objectives.
This is shown in the lower left part of figure 4.1. The active dominance-preserving function of
the archive, combined with an utopia point distance criterion for non-dominated individuals

3d=3, DTLZ1: £ = (0.03,0.03,0.03), DTLZ2: £ = (0.058,0.058, 0.058).
d=4, DTLZ1: £ = (0.047,0.047,0.047,0.047), DTLZ2: £=(0.125, 0.125, 0.125, 0.125).
d=5, DTLZ1: £ = (0.057,...,0.057), DTLZ2, ¢ = (0.18,...,0.18).
d=6, DTLZ1: £ = (0.066, . ..,0.066), DTLZ2, ¢ = (0.232, ...,0.232).
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in the same hyperbox avoids the effects of deterioration and thus ensures convergence even
for the co-evolving set P. Though, the hypergrid guarantees an uniform distribution of
individuals, the obtained hypervolume values are only for DTLZ2 competitive with the best
considered algorithms. This is due to the trend of the hyperbox method to avoid extremal
solutions, as described by Deb et al. [DMMO03a].

4.1.4 Aggregation-based EMOA

Basic aggregation methods are single-objective optimizers, which multiply the objective values
with weights and accumulate them to a scalar value. The EMOA considered here, enhance
aggregation concepts in order to produce a set of solutions. In contrast to the other EMOA
considered, aggregation-based approaches require the a priori definition of relations between
objective functions. This results in a certain focus during the optimization.

MSOPS  Multiple Single Objective Pareto Sampling (MSOPS) does not feature Pareto meth-
ods, but handles all objectives in parallel. The decision maker has to choose T vectors
of weights for every objective function to enable an aggregation. Hughes [Hug03] recom-
mends weighted min-maxz (MSOPS 1) and a combination of this approach with Vector-Angle-
Distance-Scaling (VADS) called dual optimisation (MSOPS 2). Depending on the aggregation
strategy, one receives a set of T' or 27T aggregated scores per solution. The scores are held in
a score matrix S, where each row belongs to a solution and each column represents an aggre-
gated score. Each column of the matrix S is ranked, giving the best performing population
member rank one. The rank values are stored in a matrix R. Each row of R is sorted ascend-
ing, resulting in a lexicographical order of the individuals. The runtime is in O(u7T'd) for the
computation of the aggregated scores, and in O(uT logT) and Oemo07 — moo — (Tplog )
respectively to perform the sort. Thus, the runtime of MSOPS is O(uT(d +log T + log 11) per
generation.

Obviously, the choice of weight vectors determines the distribution properties of MSOPS.
Each weight vector w = (w1, ..., wy) corresponds to a direction, given analytically by a target
vector starting in the origin. The aim of the aggregation methods is to reach the point on
the corresponding direction vector which is as close as possible to the origin. To this end,
weighted min-max focuses on the distance to the origin, while VADS favors solutions whose
position vector has a small intersecting angle with the target vector.

In this study, the optimization shall not have a special focus, but an approximation of the
whole Pareto front is desired and the weight vectors have to be chosen appropriately. In
Hughes [Hug05] benchmarking ’50 target vectors spread uniformly across the search space’
are used. The target vectors t = (¢1,...,tq) are created by calculating an initial number of
steps s = |V/T| and constructing each possible vector containing multiples of 1/s between
0 and 1. Afterward, these target vectors are normalized and doubles are removed. If the
number of targets is lower as desired, s is incremented and the procedure is repeated. At
the end, a next neighbor technique is used to prune the set of target vectors to the desired
size. Because the PISA implementation of MSOPS uses weight vectors, a transformation of
the target vectors into weights is necessary. The authors recommend — deviant from Hughes
[Hug05] — the following procedure for transformation, that can also be used to transform a
set of utopia or reference points into weights and avoids numerically unstable calculations in
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many cases.

From the aggregation methods can be referred that a weight vector for a specified target
fulfills the following d — 1 conditions:

wy -t = wa - t2, wy - to = ws - I3, Wq—1 td—1 = wWq---tq

The normalizing condition w; + ... + wg = 1 is added in order to obtain a completely de-
fined system of equations. Thus, the components of the corresponding weight vector can be
computed as follows:

_ st
T —d
Zk:1 Hj;ék tj

To extremal solutions with value 0 in d—1 objectives, a small € needs to be added to allow the
above calculation. Hughes [Hug03] generally recommends to use a number of target vectors
that is lower than the population size. Besides, he states that the number of target vectors
has to be increased for more objectives. To cover both needs, three different sets of target
vectors are used. The first contains 50 vectors, the second 100 vectors, and the third 200
vectors.

(i=1,...,d) (4.1)

Wy

RSO A restart strategy of a conventional single-objective evolutionary optimizer is applied
as well and abbreviated RSO (Repeated Single Objective) according to Hughes [Hug05]. Here,
a single-objective run is performed for each of the 100 weight vectors. Thus, the number of
function evaluations has to be divided among them, resulting in only 300 evaluations per run.

The derandomized mutation operator by Ostermeier et al. [OGH94] is applied in a (1, 10)-
evolution strategy. This operator was a first step towards the popular Covariance Matrix
Adaptation (CMA) operator by Hansen and Ostermeier [HOO01], which is known to produce
good results within limited function evaluations. To handle multiple objectives in a single-
objective EA, the weighted min-max approach was chosen like in MSOPS.

Experimental Results

The methods using aggregation show an obvious convergence in all scenarios considered be-
cause they benefit from the property of the min-max method to minimize all objectives at
once. While MSOPS obtains very promising results, RSO does not succeed in reaching the
Pareto front. This is due to a too small number of function evaluations per run and the
loss of information with every restart. Confirming the observations of Hughes [Hug05], RSO
outperforms NSGA-II and SPEA2 in case of five and six objectives.

Almost all variants of MSOPS attain very low average distances indicating that only optimal
solutions have been found. Only for five or six objectives, variants using a lower number of
target vectors fail to converge to the Pareto front in some of the runs. In the table, this
behavior can be inferred from a high standard deviation and high differences between the
mean and the median value.

From the obtained hypervolume can be concluded that the distribution properties can be
slightly improved by the supporting use of VADS. Hughes assumption that the number of
target vectors should be increased if more objectives are concerned is confirmed. For three
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Table 4.3: The convergence measure for the aggregation algorithms.

DTLZ1 DTLZ2
obj. | algorithm mean std.dev | median | mean std.dev | median
3 MSOPS 1 50 0.00276 | 0.00235 | 0.00185 || 0.00013 | 0.00014 | 9.0-10°
MSOPS 1 100 || 0.00278 | 0.00241 | 0.00244 || 0.00015 | 0.00010 | 0.00015
MSOPS 1 200 || 0.00234 | 0.00156 | 0.00210 || 0.00080 | 0.00020 | 0.00076
MSOPS 2 50 0.00214 | 0.00221 | 0.00161 || 9.0-107° | 5.9-107° | 8.4.107°
MSOPS 2 100 || 0.00222 | 0.00172 | 0.00191 || 0.00037 | 0.00013 | 0.00035
MSOPS 2 200 || 0.00128 | 0.00074 | 0.00116 || 0.00168 | 0.00034 | 0.00168
RSO 62.9990 | 15.2960 | 59.7140 || 0.26753 | 0.04901 | 0.26776
4 MSOPS 1 50 0.00392 | 0.00451 | 0.00269 || 0.00023 | 0.00023 | 0.00012
MSOPS 1 100 || 0.00292 | 0.00252 | 0.00231 || 0.00024 | 0.00039 | 0.00013
MSOPS 1 200 || 0.00365 | 0.00319 | 0.00264 || 0.00072 | 0.00028 | 0.00067
MSOPS 2 50 0.00246 | 0.00216 | 0.00182 || 0.00016 | 0.00010 | 0.00012
MSOPS 2 100 || 0.00849 | 0.02369 | 0.00282 || 0.00074 | 0.00024 | 0.00072
MSOPS 2 200 || 0.00439 | 0.00378 | 0.00260 || 0,00203 | 0.00047 | 0.00195
RSO 118.260 | 33.4420 | 121.190 || 0.56473 | 0.07953 | 0.57386
5 MSOPS 1 50 0.08016 | 0.31475 | 0.00814 || 0.00059 | 0.00027 | 0.00060
MSOPS 1 100 || 0.05667 | 0.23459 | 0.00337 || 0.00017 | 0.00023 | 7.1-107°
MSOPS 1 200 || 0.00779 | 0.00556 | 0.00651 || 0.00096 | 0.00033 | 0.00092
MSOPS 2 50 0.13676 | 0.26271 | 0.01882 || 0.00113 | 0.00038 | 0.00097
MSOPS 2 100 || 0.03308 | 0.11179 | 0.00614 || 0.00138 | 0.00065 | 0.00119
MSOPS 2 200 || 0.00870 | 0.01079 | 0.00535 || 0,00231 | 0.00059 | 0.00233
RSO 111.960 | 35.1240 | 112.140 || 0.73556 | 0.15491 | 0.72211
6 MSOPS 1 50 0.02207 | 0.06509 | 0.00604 || 0.00044 | 0.00030 | 0.00044
MSOPS 1 100 || 0.00936 | 0.01579 | 0.00406 || 0.00012 | 8.7-10~° | 9.7-107°
MSOPS 1 200 || 0.00734 | 0.00420 | 0.00712 || 0.00048 | 0.00028 | 0.00039
MSOPS 2 50 0.27890 | 0.63926 | 0.02603 || 0.00091 | 0.00058 | 0.00069
MSOPS 2 100 || 0.18106 | 0.32499 | 0.02496 || 0.00190 | 0.00097 | 0.00180
MSOPS 2 200 || 0.01344 | 0.01134 | 0.01026 || 0.00118 | 0.00056 | 0.00116
RSO 110.910 | 42.7920 | 113.600 || 0.67628 | 0.13970 | 0.69903

objectives, the variants of MSOPS using 50 target vectors obtain the maximal hypervolume
among the aggregation methods. With increasing objectives, the best values can be obtained
with a higher number of target vectors. In general, the results show that the method used
to design the target vectors is able to generate well distributed Pareto front approximations.
Even for three objectives, NSGA-IT and e-MOEA (DTLZ1), respectively NSGA-IT and SPEA2
(DTLZ2) can be outperformed regarding the S-metric. Note that the given method to gener-
ate the target vectors only performs well on continuous Pareto fronts. As observed by Hughes

[Hug03], a refinement of the targets is necessary for more complicated problems.
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4.1.5 Indicator-based EMOA

The term indicator-based EA (IBEA) was introduced by Zitzler and Kiinzli [ZK04] for EMOA
guided by a general preference information. The EMOA’s selection operator uses a preference
function (indicator) as a single-objective substitute for the d-dimensional objective function.
In contrast to the aggregation methods, this preference information describes a general aim.
No specification of weights or targets is needed. As already stated in Sec. 1, classic EMOA use
two ranking criterions: one regarding the dominance relation and the other for distribution
aspects. Here, a single indicator is used to optimize a desired property of the approximation
set.

Table 4.4: The relative hypervolume of the aggregation algorithms.

DTLZ1, r = 0.7¢ DTLZ2, r = 1.1¢
obj. | algorithm mean std.dev | median || mean std.dev | median

3 MSOPS 1 50 0.97142 | 0.00127 | 0.97184 || 0.89663 | 0.00717 | 0.89817
MSOPS 1 100 || 0.96484 | 0.00171 | 0.96537 || 0.88344 | 0.00208 | 0.88341
MSOPS 1 200 || 0.96180 | 0.00955 | 0.96625 || 0.88752 | 0.02681 | 0.88490
MSOPS 2 50 0.97278 | 0.00111 | 0.97317 || 0.89822 | 0.00054 | 0.89799
MSOPS 2 100 || 0.96719 | 0.00623 | 0.96776 || 0.91774 | 0.01203 | 0.92105
MSOPS 2 200 || 0.95744 | 0.00965 | 0.96020 || 0.91117 | 0.00775 | 0.91253
RSO 0 0 0 0.67735 | 0.03730 | 0.68188
4 MSOPS 1 50 0.96590 | 0.00107 | 0.96623 || 0.84765 | 0.01438 | 0.85238
MSOPS 1 100 || 0.94724 | 0.00573 | 0.94887 || 0.72575 | 0.03761 | 0.73177
MSOPS 1 200 || 0.94764 | 0.01187 | 0.94968 || 0.81489 | 0.03289 | 0.82292
MSOPS 2 50 0.96726 | 0.00062 | 0.96730 || 0.85284 | 0.00049 | 0.85273
MSOPS 2 100 || 0.96908 | 0.00258 | 0.96955 || 0.86206 | 0.00609 | 0.86445
MSOPS 2 200 || 0.95605 | 0.00561 | 0.95742 || 0.85938 | 0.01289 | 0.86395
RSO 0 0 0 0.39649 | 0.02363 | 0.39435
5 MSOPS 1 50 0.97740 | 0.00614 | 0.97956 || 0.78971 | 0.05479 | 0.80668
MSOPS 1 100 || 0.96312 | 0.01848 | 0.97160 || 0.48432 | 0.32422 | 0.72034
MSOPS 1 200 || 0.97749 | 0.00584 | 0.97694 || 0.82177 | 0.01404 | 0.82490
MSOPS 2 50 0.93235 | 0.16743 | 0.98387 || 0.81037 | 0.00915 | 0.80863
MSOPS 2 100 || 0.98743 | 0.00119 | 0.98762 || 0.86497 | 0.00606 | 0.86565
MSOPS 2 200 || 0.97966 | 0.00296 | 0.97987 || 0.84002 | 0.01467 | 0.84609
RSO 0 0 0 0.04960 | 0.03184 | 0.05873
6 MSOPS 1 50 0.98688 | 0.00469 | 0.98770 || 0.70669 | 0.18905 | 0.76654
MSOPS 1 100 || 0.95343 | 0.02840 | 0.96312 || 0.63285 | 0.13323 | 0.68515
MSOPS 1 200 || 0.99046 | 0.00169 | 0.99056 || 0.81435 | 0.03071 | 0.81964
MSOPS 2 50 0.92549 | 0.18116 | 0.99355 || 0.84659 | 0.00215 | 0.84627
MSOPS 2 100 || 0.96533 | 0.06398 | 0.98592 || 0.79881 | 0.01918 | 0.79436
MSOPS 2 200 || 0.99122 | 0.00160 | 0.99154 || 0.81208 | 0.11049 | 0.83925
RSO 0 0 0 0.16333 | 0.03440 | 0.15121
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IBEA In Zitzler’s and Kiinzli’s [ZK04] IBEA framework, binary performance metrics that
map an ordered pair of individuals to a scalar value are suggested as indicator functions.
Each individual is compared with all others, thus O(p?) indicator values must be calculated.
A suitable indicator has to be dominance preserving [ZK04], which sloppily means that the
indicator must not evaluate a vector better than another that dominates it. Two efficiently
computable indicators have been suggested in [ZK04]. The additive e-indicator subsumes
the translations in each dimension of objective space that are necessary to create a weakly
dominated solution. The hypervolume indicator measures the dominated hypervolume that
is only dominated by one vector and not by the other. Both indicators can be computed in
linear time regarding the dimension of the objective space. This results in a runtime O(u?d)
per generation. For both indicators, negative values mean that the first individual of the
argument pair dominates the other. For each individual, its indicator values are charged in a
sum of an exponential function to get a fitness value. A positive scaling constant is invoked,
which is chosen as £ = 0.05 as recommended in [ZK04] for the applied adaptive variant of
IBEA. For dominance preserving indicators holds that the fitness value of a vector is worse
than the fitness value of a vector that dominates it.

SMS-EMOA The S-metric Selection-EMOA (SMS-EMOA) by Emmerich et al. [EBNO05,
NBEO05] aims at maximizing the S-metric value of the population. This optimization aim
rewards progression toward the Pareto front as well as a good distribution of individuals.
The maximal S-metric value is reached by the Pareto front. Thus, optimizing the S-metric
value is a very general purpose. Contrary to most other EMOA, a steady-state selection
scheme and an equiprobable mating selection are applied. SMS-EMOA invokes the non-
dominated sorting procedure as primary selection criterion and the selection occurs among
the members of the worst ranked front. The secondary criterion applied to the last front is the
hypervolume contribution, which is defined as the exclusively dominated hypervolume of an
objective vector. The individual with the lowest hypervolume contribution is discarded. The
non-dominated sorting can alternatively be omitted, which hardly influences the algorithms
performance. The runtime of a generation of SMS-EMOA is O(,ud/ 2+1) as described by Beume
and Rudolph [BRO6].

Experimental Results

As can be inferred from the convergence measure, both IBEA variants reach the Pareto front
of DTLZ2. On DTLZ1, only IBEA.; converges towards the Pareto front for all dimensions.
IBEAp reaches a very good distance value on DTLZ1 with three dimensions but fails in
case of more objectives. This is due to the normalization of objective values to [0, 1], tending
the hypervolume indicator to favor extremal solutions, which hinder the progression.

Surprisingly, the IBEA; using the additive e-indicator reaches better S-metric values than
the IBEA i7p invoking the hypervolume indicator. The consideration of translation lengths in
the additive e-indicator causes a good distribution of solutions. Contrary, the approximation
of the hypervolume contribution through the binary hypervolume indicator tends to spiral
downward with increasing dimension of objective space. Both adaptive IBEA fail to produce a
good distribution on DTLZ1, which we ascribe to the high-scaled co-domain and the resulting
difficulties in the scaling of the fitness values.
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Table 4.5: The convergence measure of the indicator-based EMOA.
DTLZ1 DTLZ2
obj. | algorithm mean std.dev. | median || mean ‘ std.dev. ‘ median
3 IBEA, 0.04399 | 0.17481 | 0.00057 || 0.00015 | 5.0-10=° | 0.00014
IBEALDp 0.00137 | 0.00337 | 0.00029 || 1.3-107° | 5.3-1076 | 1.2.107°
SMS-EMOA || 0.00110 | 0.00148 | 0.00039 || 3.4-107% | 1.2.1076 | 2.8-1076
4 IBEA, 0.01790 | 0.02940 | 0.00096 || 0.00071 | 0.00012 | 0.00069
IBEALDp 76.1230 | 119.550 | 0.00136 || 4.5-107° | 1.3-107° | 4.2.107°
SMS-EMOA || 0.00193 | 0.00176 | 0.00100 || 1.4-107° | 5.0-107% | 1.2.107°
5 IBEA, 0.02056 | 0.06678 | 0.00129 || 0.00115 | 0.00019 | 0.00112
IBEAgD 151.310 | 131.820 | 215.000 || 0.00013 | 0.00014 | 0.00010
SMS-EMOA || 0.00333 | 0.00215 | 0.00351 || 3.7-107° | 9.2.107% | 3.8-107°
6 IBEA, 0.00467 | 0.00450 | 0.00256 || 0.00187 | 0.00031 | 0.00184
IBEALDp 82.1580 | 116.410 | 0.00182 || 0.00015 | 5.6:10~° | 0.00014
SMS-EMOA || 0.10278 | 0.22310 | 0.00444 || 5.4-107° | 1.1-107° | 5.2-107°

Table 4.6: The relative hypervolume of the indicator-based algorithms.

DTLZ1, r = 0.7¢ DTLZ2, r = 1.1¢
obj. | algorithm mean std.dev. | median || mean std.dev | median
3 IBEA+ 0.77693 | 0.03182 | 0.78033 || 0.92991 | 0.00075 | 0.93002
IBEAgp 0.73929 | 0.03144 | 0.74208 || 0.92023 | 0.00071 | 0.92008
SMS-EMOA || 0.98352 | 0.00071 | 0.98387 || 0.93870 | 6.3-107° | 0.93873
4 IBEA+ 0.82920 | 0.02445 | 0.83425 || 0.89477 | 0.00059 | 0.89484
IBEAgp 0.51417 | 0.35620 | 0.70647 || 0.88633 | 0.00090 | 0.88619
SMS-EMOA || 0.97612 | 0.00034 | 0.97627 || 0.90370 | 6.4-107° | 0.90368
5 IBEA+ 0.87018 | 0.02777 | 0.86961 || 0.88571 | 0.00097 | 0.88584
IBEAgp 0.26292 | 0.33673 | O 0.88250 | 0.00122 | 0.88259
SMS-EMOA || 0.99182 | 0.00019 | 0.99182 || 0.89619 | 9.5-107° | 0.89624
6 IBEA+ 0.89146 | 0.03569 | 0.90029 || 0.89283 | 0.00130 | 0.89322
IBEAgp 0.40153 | 0.30853 | 0.53634 || 0.88431 | 0.02231 | 0.89124
SMS-EMOA || 0.96688 | 0.06741 | 0.99698 || 0.90483 | 0.00014 | 0.90481

SMS-EMOA reaches the best S-metric values of all considered algorithms. The distance
values are very good as well and all runs except one reached the Pareto front. This run
on six-objective DTLZ1 stagnated since one decision variable —which defines the distance—
remains static at a non-optimal value due to an unusual loss of diversity in decision space in
the beginning of the optimization process. Since the selector modules in PISA only decide
regarding the objective values, this effect cannot be blamed to the selection properties of
SMS-EMOA. Figure 4.2 exemplarily pictures the distribution of an usual six-objective result
set of SMS-EMOA in a parallel plot. Every objective is covered and the structure of the set
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Figure 4.2: Results of one run of SMS-EMOA on six-objective DTLZ2. In the parallel plot,
each column corresponds to one objective.

is almost symmetric, indicating a uniformly spread distribution of solutions over the whole
Pareto front.

4.1.6 Summary and Outlook

The bad performance of early Pareto-based methods like NSGA-IT and SPEA2 observed
by Hughes [Hug05] and Purshouse and Fleming [PF03] is confirmed. They show a rapid
degradation with increasing number of objectives. Some additional studies show that they
do not converge to the Pareto front at all and stagnate far away from it. The performance
of e-MOEA refutes the hypothesis of Hughes that a Pareto-based approach cannot succeed
on many-objective problem instances. Instead, favoring extremal solutions has been shown
to hinder the progression in many-objective spaces, which is also obviously for IBEA.

It is shown that more recent EMOA using indicators, which feature more than just distri-
bution aspects, perform very well in many-objective optimization. Especially, SMS-EMOA,
which optimizes the population’s dominated hypervolume, outperforms the other algorithms
on all considered test functions. Moreover, an aggregation-based EMOA, namely MSOPS,
performs well with respect to convergence aspects. A sophisticated scheme for the generation
of weight vectors is introduced and also produces well distributed solution sets. In compar-
ison to the simple restart strategy RSO, MSOPS benefits from structural equalities of good
solutions by optimizing all weight vectors in parallel.

Future research will deepen the insights in the behavior of indicator-based algorithms in
particular. Theoretical statements are aspired for the convergence of the MOEA showing
promising results in this study. Statistically guided parameter studies should be performed
to obtain suitable parametrizations for many-objective problems. Especially, the size of the
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population and the offspring are to be studied. Furthermore, relations between the Pareto
front and the Pareto set are studied all together resulting in new optimization techniques.
These feature good convergence and distribution properties in objective space as well as in
decision space.
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Stopping Criteria for EMOA

The possibly high number of fitness functions evaluations necessary to receive results from an evo-
lutionary algorithm run is often mentioned to be a drawback of such algorithms. This is true since up
to the late first decade of the new millennium, no common stopping criteria existed, which provided
useful and meaningful results for different application areas. Normally, just a pre-defined number of
function evaluations is used ignoring any information from the current or even prior optimisation runs.

The first part of this chapter describes an approach to overcome the afore mentioned drawback
by systematic statistical testing (cf. pages 87 to 103). Therefore, different quality indicators have
been introduced next to two statistical tests, namely the t-test on the regression coefficient of a set
of quality indicators and the x2-variance test on these indicators. Both tests guarantee an accurate
convergence detection in all the considered examples. Special emphasis was laid on the fact that
the indicators could be calculated on a stand-alone basis. This way, the pre-defined information like
Pareto fronts, ideal or reference points, which are necessary for incorporating Online Convergence
Detection (OCD, cf. chapter 1.3.4 on page 10) is only depending on the considered quality indicators.

Within OCD, a time window of generations is observed and it is decided whether the statistical tests
indicate convergence. If at least one test indicates convergence for two successive generations, OCD
stops the run of the algorithm. Next to the function evaluations that could be saved applying OCD, the
loss of quality in the optimisation results is reported in the publications. As a result, approximately
half of the function evaluations for common test cases could be saved without having to accept a
considerable loss of quality:

[WTNO09] T. Wagner, H. Trautmann, and B. Naujoks. OCD: Online Convergence Detection for Evo-
lutionary Multi-Objective Algorithms Based on Statistical Testing. In M. Ehrgott et al., editors,
Evolutionary Multi-Criterion Optimization (EMO 09), pages 198-215. Springer, Berlin, 2009.

The quality indicators to be incorporated in the statistical tests are to be chosen by the user of
the method. We incorporated the hypervolume indicator, the R2 indicator as well as the additive-¢
indicator, which, according to Knowles et al. [KTZ05], build a set of standard quality indicators. An
alternative choice would be an indicator already incorporated in the EMOA. This way, it is possible
that no additional runtime has to be spent for calculating the quality indicators, and the runtime for
OCD is governed by the runtime of the EMOA.

The second part of this chapter transfers the methods previously tested only on mathematical test
functions to real-world test problems (cf. pages 104 to 120). The already known applications from
aerodynamics have been employed to test the applicability of OCD. The main problem for this type of
real-world applications is that the number of possible fitness function evaluations is incredibly smaller
than it is for mathematical test functions. This way, testing OCD on such problems was challenging as
well as important and we were able to save meaningful computational resources using the method.
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[NT09] B. Naujoks and H. Trautmann. Online Convergence Detection for Multiobjective Aerody-
namic Applications. In A. Tyrrell, editor, IEEE Congress on Evolutionary Computation (CEC
09), pages 332-339, IEEE Press, Piscataway, NJ, 2009.

Applying OCD on close to industry aerodynamic test cases confirmed the results received from
standard benchmark test cases. The parametrisation proposed for the mathematical test cases
proved to be highly compliant with the industrial test cases. To this end, parameter recommendations
are provided leading to a robust and reliable convergence detection and a very good compromise
between solution quality and saving computational resources.

Beyond the validation of the OCD method for the aerodynamic applications, more general results
have been achieved. For the parametrisation of the optimisation algorithm, smaller population sizes
were expected to be more suitable for the RAE test case and larger ones for the NACA one. These
expectations were strongly supported by the received results.

For this publication, implementation and experimentation was provided by the author of this thesis.
Heike Trautmann adapted and tuned the statistical methods as well as fostered the publication by
valuable discussions and management.

Based on a paper at the PPSN conference in 2008 [TLMPQ8] introducing an offline stopping cri-
terion and the resulting EMO paper [WTNO09], offline and online convergence detection have been
compared to each other. While the online convergence detection tries to identify a adequate gener-
ation to stop the algorithm during the run, the offline criterion is applied after a number of algorithm
runs has been executed. Based on the results at hand, recommendations for future algorithm runs
can be derived.

Of course, the application areas for offline and online convergence detection are different. Never-
theless, the methods can be compared based on statistical testing. The results have been published
in a special issue of the MIT Evolutionary Computation journal, which was dedicated to the end of
a collaborative research centre (SFB) with focus on Computational Intelligence, and in particular EC
methods. Therefore, the special issue was called "Twelve Years of EC Research in Dortmund”.

Because major work in the comparison of both methods has been provided by the co-authors, this
journal article was not integrated in the thesis. However, the reference should be provided to stress
the influence of the prior work:

[TWN'09] H. Trautmann, T. Wagner, B. Naujoks, M. Preuss, and J. Mehnen. Statistical Methods for
Convergence Detection of Multiobjective Evolutionary Algorithms. Evolutionary Computation,
17(4):493-509, 2009. Special Issue: Twelve Years of EC Research in Dortmund.

Summing up, a robust and reliable method for convergence detection within evolutionary multiob-
jective optimisation algorithms has been introduced. The investigations can be seen as a practical
validation for establishing OCD as an efficient termination criterion in EMOA.
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5.1 Online Convergence Detection for Evolutionary Multi-Objective
Algorithms Based on Statistical Testing

This section (pages 87 to 103) is copied verbatim from

[WTNO09] T. Wagner, H. Trautmann, and B. Naujoks. OCD: Online Convergence Detection for Evo-
lutionary Multi-Objective Algorithms Based on Statistical Testing. In M. Ehrgott et al., editors,
Evolutionary Multi-Criterion Optimization (EMO 09), pages 198-215. Springer, Berlin, 2009.

Abstract

Over the last decades, evolutionary algorithms (EA) have proven their applicability to hard
and complex industrial optimization problems in many cases. However, especially in cases
with high computational demands for fitness evaluations (FE), the number of required FE is
often seen as a drawback of these techniques. This is partly due to lacking robust and reliable
methods to determine convergence, which would stop the algorithm before useless evaluations
are carried out. To overcome this drawback, we define a method for online convergence detec-
tion (OCD) based on statistical tests, which invokes a number of performance indicators and
which can be applied on a stand-alone basis (no predefined Pareto fronts, ideal and reference
points). Our experiments show the general applicability of OCD by analyzing its performance
for different algorithmic setups and on different classes of test functions. Furthermore, we
show that the number of FE can be reduced considerably — compared to common suggestions
from literature — without significantly deteriorating approximation accuracy.

5.1.1 Introduction

In real-world industrial problems and engineering applications, improvements, e.g., in sim-
ulation techniques, machines, tools, and materials, constantly offer increasing productivity.
However, in order to completely exploit these potentials, an appropriate setup of the inher-
ent parameters is necessary. Due to the numerous requirements of modern processes, these
problems are mainly multi-objective, which supports the application of evolutionary multi-
objective algorithms (EMOA). Nevertheless, their applicability is still put into question, even
though EMOA have already been successfully applied to these kinds of problems.

A possible reason, for instance when compared to mathematical programming methods,
may be the lack of convergence criteria for EMOA. More specific, the performance of an
a-posteriori multi-objective optimization algorithm can be expressed in simple terms by two
objectives:

1. maximize the quality of the Pareto-front approximation and
2. minimize the number of function evaluations or computation time, respectively.

In the last decade, many EMOAs have been introduced to achieve one or both of the above
objectives. For instance, the use of performance indicators [ZK04, BNE(Q7, ZTB08], which
evaluate the quality of the current Pareto-front approximation, has turned out to be successful
in achieving the first objective [WBNO7]. The second objective has recently been approached
by integrating modeling methods into the EMOA framework [EGN06, Kno06, PWBVO08].
However, in the evaluation of all these methods, the number of allowed function evaluations
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(FE) is fixed at a predefined level, which is high (30k-500k FE [DMMO03b, HQD'07]) when
the main objective is a good approximation and low for model-assisted approaches (130-250
FE [Kno06, PWBVO08]). In order to perform the optimization in an efficient manner, the
EMOA should be stopped when

1. no improvement can be gained by further iterations or
2. the approximation quality has reached the desired level.

Right now, these stopping criteria are only applied for single-objective approaches. Never-
theless, the detection of convergence is an equally important issue for EMOA since further
evaluations are a waste of computational resources and may lead to a loss of diversity by
means of genetic drift [RNP07]. Multi-objective performance indicators allow the reduction of
a multi-objective optimization (MOO) problem to a single-objective problem on sets [ZTB08].
Thereby, the above criteria can be transferred to MOO. Furthermore, multiple indicators can
be used to reliably detect different kinds of improvement in the set.

In this paper, an approach for online convergence detection (OCD) is introduced. Due
to the stochastic nature of evolutionary algorithms, OCD is based on systematic statistical
testing. The number of parameters is low, it can be combined with any set-based EMOA,
and the selection of the considered preference indicators is up to the user. Thus, OCD is an
intuitive, yet flexible tool to guarantee an effective use of EMOA, which may promote the
industrial application of these methods.

In section 5.1.2, the state of the art in multi-objective convergence detection is summarized.
Afterwards, OCD is detailed, and the algorithmic steps are presented (section 5.1.3). The
applicability of OCD is demonstrated by comprehensive experiments, which are described
and analyzed in section 5.1.4. Finally, conclusions are drawn and the results are summarized
in section 5.1.5.

5.1.2 State of the Art

For the application of EMOA on new industrial problems, where no sufficient a-priori knowl-
edge exists, it is generally hard to find a suitable termination criterion. Therefore, the most
frequently used limit is the maximum number of generations or FE. Hybrid EMOA using
quadratic programming methods have been developed to guarantee (local) optimality of so-
lutions [KSDO7, DLDO07]. These approaches are formally converged as soon as Karush-Kuhn-
Tucker (KKT) points for a given set of aggregation or reference-point-based distance functions
have been identified, but can not guarantee the quality of the set of solutions, e.g., in terms of
diversity and spread. This is accomplished by recent approaches, which compute the gradient
of the hypervolume for a set of solutions [EDB07]. Note that all these approaches require
sufficient accuracy in the approximation of the Hessian.

Deb and Jain [DJ02] investigate so-called running performance metrics for convergence and
diversity of solutions to be monitored in the course of the algorithm. Thereby, the algo-
rithm may be stopped when convergence is observed. However, therein the authors focus on
performance evaluation and algorithm comparison. An automated procedure for detecting
convergence has not been proposed. For this purpose, Rudenko and Schoenauer [RS04] sur-
vey possible online termination criteria for elitist EMOA, such as the disappearance of all
dominated individuals or the deterioration of the number of newly produced non-dominated
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individuals. Finally, they suggest a technique for determining stagnation based on stability of
the maximum crowding distance, which requires the determination of a threshold, which de-
pends on the scale of the objectives as well as the population size. Furthermore, its application
is only tested with NSGA2, which uses the crowding distance as selection criterion [DPAMO02].
It is an open question whether a stability of the maximum crowding distance can be observed
in EMOA, which do not directly use this measure in the selection process.

The basic idea of using dominance-related metrics to compare sets [ZTL103] has recently
been used to reduce the multi-objective to a single-objective problem on sets [ZTBO08|. This
allows to use convergence criteria from single-objective theory. Furthermore, a method for
offline detection of the expected generation, in which the EMOA converges, has been in-
troduced [TLMPOS8]. This method is based on statistical testing of the similarity in the
distribution of performance measures for consecutive generations relying on multiple parallel
runs of the EMOA. In this paper, the main ideas of both contributions are transferred to
online convergence detection.

5.1.3 Online Convergence Detection

In the progression of OCD, two different analyses are carried out. It is sequentially tested
whether the variance of the performance indicator values decreases below a predefined limit
(VaarLimit) or whether no significant trend of the performance indicators can be detected
over the last generations. The EMOA terminates if at least one of these conditions is met.

All algorithmic steps of the proposed OCD approach and the required subroutines are given
in Algorithms 5, 6, and 7. These steps are described in depth to ensure a straightforward
implementation of OCD. The required input parameters for Algorithm 5 can be set easily,
even by inexperienced users. The variance limit VarLimit corresponds to the desired ap-
proximation accuracy in single-objective optimization, but does not require knowledge about
the actual minima of the objectives. The algorithm stops when the standard deviation of the
indicator values over the given time window of nPreGen generations is significantly below
Vv VarLimit. Thus, the user can exactly determine how many generations the EMOA is max-
imally allowed to compute with average changes in the indicator values significantly below
the specified limit. The user also has to specify a significance level « for each statistical test
procedure. Established levels for «, such as 0.05 (standard) and 0.01 (conservative), exist.
The maximum generation number MaxGen ensures that the resources required by the algo-
rithm cope with the restrictions of the individual application, especially in the case where no
convergence of the EMOA can be detected. However, the maximum number of function eval-
uations has to be specified for most known EMOA as well. The number and types of desired
performance indicators (PI) have to be selected in order to evaluate the solution quality at
each generation with respect to the requirements of the user, which allows him to express his
own preferences on the final Pareto-front approximation [ZTB08]. Users, who are not familiar
with multi-objective performance assessment, can resort to the standard set of PI as defined
by Knowles et al. [KTZ05], which comprises the hypervolume, the additive e-, and the R2
indicator. Only these indicators meet the requirement of strict compliance with the Pareto
dominance relation.

After the first nPreGen generations, convergence is checked after each generation i. The
n indicator values of the vector PI;; (j = 1,...,n) are computed for the objective sets of
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generations ¢ — nPreGen,...,i7 — 1 using the Pareto-front approximation of generation ¢ as
reference set. Thus, no a-priori knowledge about the true Pareto front is required, making the
method applicable to practical problems. If a specific indicator PI; does not use a reference
set and evaluates each set separately (e.g., the hypervolume indicator), the difference between
the indicator value of the preceding and the current set is calculated and stored in PT jii-

The sets are normalized to the interval [1,2]¢ = [1,2] x ... x [1,2] € R? as it is also
implemented in PISA [BLTZ03], where d is the number of objective dimensions. This is
done in order to avoid problems within the indicator calculation based on objectives which
are negative, equal to zero, or extremely large [KTZ05]. Since the actual bounds of the
non-normalized objectives are not a-priori known, they are updated at each generation. The
Pareto-front approximations of the nPreGen preceding generations are also normalized based
on the current objective-bound approximations. Due to the normalization, I = (1,...,1) €
R% and 2.1 = (2.1,...,2.1) € R? can be used as ideal point and (anti-optimal) reference
point for the PI calculation, respectively.

The resulting n PreGen vectors of n indicator values at each generation are then — separately
for each indicator — checked against the alternative hypothesis that the variance of these
values is lower than the predefined threshold VarLimit using the y2-variance test [She00]
(cf. Algorithm 6). This parametric test is used being aware of its sensitivity to the normality
assumption of the underlying sample as no nonparametric test for this problem exists. Due
to the multiple testing, a Bonferroni correction on « is performed [DvdLO08] resulting in an
individual significance level of a/n for each test. The a-correction ensures that at each
generation the global desired significance level is met. However, a correction with respect to
the sequential testing over all generations is impossible concerning a reasonable applicability

of OCD.

Additionally, a regression analysis is performed in order to check the significance of the
descending linear trend (cf. Algorithm 7). Unfortunately, a test for Hy : 5 # 0 vs. Hy : § =0
cannot be constructed. Thus, the test has to be performed with interchanged hypotheses,
and the generation, in which the null hypothesis cannot be rejected anymore, has to be
determined. Additionally, the decreasing linear trend has been checked via the negative sign
of the estimator B .

Strictly speaking, the a-error for the desired decision cannot be controlled by «, but equals
1 — power(t-test), where the power of a statistical test is the probability that the test will
reject a false null hypothesis. As a result, an overall significance level at generation 7 cannot
be maintained since the y?-variance test initiates the EMOA termination in the case of Hy
being rejected whereas the t-test initiates it in the opposite case. Thus, no combination of
the a-levels can be performed relating to multiple test theory [DvdLO08] although both tests
are simultaneously performed on the same data. However, the main focus when setting up
« is not on correctly controlling the a-error, but on finding reasonable critical values for the
test statistics in order to make OCD applicable and successful within industrial applications.
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Algorithm 5 OCD: Algorithm for Online Convergence Detection

Require: VarLimit /* mazimum variance limit

Y/

nPreGen /* number of preceding generations for comparisons */
a /* significance level of the tests */
MazGen /* mazximum generation number */
(PL,...,PIL,) /* vector of performance indicators, e.g., (HV, ¢, R2) */
1. i=0 /* initialize generation number */
2: for alli € {1,...,nPreGen},j € {1,...,n} do
30 pChi2(j,i) =1 /* initialize p-values of the x*-variance Test */
4:  pReg(i) =0 /* initialize p-values of the t-Test on regression coefficient */
5: end for
6: 1b=] /* initialize lower bound vector */
7. ub = || /* initialize upper bound vector */
8: repeat
9. 1=1+1
10:  Compute d-objective Pareto front PF; of i-th EMOA generation
11: Ib=min(lbU PF)) /* update lower bound vector */
12 ub = max(ubU PF;) /* update upper bound vector */
13:  if (i > nPreGen) then
14: PF, =1+ (PF; — Ib)/(ub — Ib) /* normalize PF; to [1,2]% */
15: for all k € {i — nPreGen,...,i— 1} do
16: Compute Pareto front PF} of k-th EMOA generation
17: PF, =1+ (PF, — Ib)/(ub — D) /* normalize PF}, to [1,2]% */
18: end for
19: for all j € {1,...,n} do
20: PI;; = (PI}(PF,_ppreGen, PF;, 1,2.1),. .., (PI;(PF;_1, PF;, 1,2.1)))
/* compute PI; for PFi_,preGen, - - -, PFi—1 using PF; as reference set,
T as ideal, and 2.1 as reference point */
21: pChi2(j,i) = call ChiZ(PHiji, VarLimit) /* p-value of x? test */
22: end for

23: pReg(i) = call Reg(P_'ILi, . .,ﬁlm)
/* p-value of the t-Test on the generation’s effect on the P_'IM
24: end if
25: until Vj € {1,...,n} : (pChi2(j,i) < a/n) A (pChi2(j,i — 1) < a/n)
\Y (pReg(i) > a) A (pReg(i — 1) > «)
V it = MazGen
26: Terminate EMOA
27: return {MaxzGen,Chi2, Reg} /* criterion which terminates the EMOA
i /* generation in which the criterion holds

Y/

Y/
Y/
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Algorithm 6 Chi2: One-Sided x2-variance test for
Hy: var(PI) > VarLimit vs. Hy: var(PI)< VarLimit
Require: Pl /* vector of performance indicator values */
VarLimit /* variance limit */
1. N =length(PI)—1 /* determine degrees of freedom */
2: Chi = [var(PI) * N|/VarLimit /* compute test statistic */
3: p=x%(Chi, N) /* look up x? distribution function with N degrees of freedom */
4: return p
Algorithm 7 Reg: Two-sided t-test on the significance of the linear trend
Hy: pB=0 vs. Hi: B#0
Require: ﬁfj, j=(1,...,n) /* wectors of performance indicator values */
1: N =n-length(PI*) -1 /* determine degrees of freedom */
2: for all j € {1,...,n} do
3 Pj'*j = (P_Yj — P_)Ij)/aﬁf /* standardize */
J
4: end for
5. PI* := concatenate(P[*1,..., PI*,) /* row vector of all PI; */
6: X = (1,...,length(PI*),...,1,..., length(PI*))

n times
/* row vector of generations corresponding to PI* */
7 B= (X« XT)"lu X« (PI*)T /* linear regression without intercept */
8 e=PI*— X %3 /* compute residuals */
9: 82 = (exel)/N /* mean squared error of regression */
10: t = W /% compute test statistic */
11: p=2- min(tN(t), 1— tN(t))

12:

/* look up p-value from t distribution with N degrees of freedom */
return p
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For performing the t-test, all indicator values PT j are standardized, i.e., linearly trans-
formed to mean zero and standard deviation one. The standardization of PT j provides two
benefits: the regression can be performed for all indicators at once and no intercept (constant
term) is required. The least squares estimator B of the actual slope (3 is determined in line 7
[Sta95]. Afterwards, the fit is calculated via the mean squared error of the linear model, and a
standard error of the estimator is computed [Sta95]. Based on these measures, the t-statistic,
i.e., the standardized regression coefficient, and the p-value can be computed using a standard
statistical library.

The algorithm stops if either the variance test or the regression analysis indicates the
convergence of the EMOA for generations i and (i —1). OCD returns the stopping generation
7 and the method that initiated the EMOA termination. Thereby, the user is informed about
the final state of the algorithm. In the case of termination based on the maximum number of
generations, the user knows that the EMOA has not yet converged and further generations
may further improve the Pareto-front approximation.

Additional runtime for OCD

The update, normalization, and standardization of the objective sets within each iteration
can be performed in O(N), where N denotes the population size. The calculation of the
Pareto front requires O(N log?~! N) [Jen03], but is already part of most known EMOA.
Thus, the calculation of the indicator values is the crucial part of OCD. Especially when the
hypervolume is used, the runtime is in O(N%/?+1) for d > 3 [BR06]. For hypervolume-based
algorithms, such as SMSEMOA [BNEO7], this is not critical since the selection procedure is
in the same complexity as OCD. Also for expensive real-world problems, the time, which can
be saved by an appropriate termination, is considerably higher than the additional runtime.
Nevertheless, the approach can be efficiently used for time-critical optimization as well by
using performance measures in O(Nd), such as the R2 indicator.

5.1.4 Experiments

The experiments are conducted to analyze the proposed OCD applied to modern EMOA.
At present, online convergence detection can only be performed by a human decision maker,
who inspects the running metrics, i.e., the PI, and terminates the algorithm when conver-
gence is observed. For a successfully automatized application, the time when OCD indicates
convergence has to be in agreement with the intuitive understanding of the decision maker.
Thus, the first experiments focus on the correspondence of OCD and a human decision maker.
In order to analyze the applicability of the statistical tests separated from the whole OCD
framework, OCD is additionally computed using pre-calculated Pareto front discretizations
as well as the known ideal and anti-ideal points. Apart from the OCD version in Algorithm
5, we will refer to the latter as OCD with full information. Finally, the results received by
standard OCD are compared to the common termination criterion from EMOA literature,
i.e., a fixed number of FE. Here, we focus on the reduction of the number of evaluations as
well as the loss of quality by stopping the evolution earlier.

Research Question. The main question of the analysis is whether or not the proposed
OCD algorithm helps to reduce FE without resulting in an uncontrollable loss of quality.
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Table 5.1: Parameter settings within the experiments.

test problem | MaxGen | MaxGen2

Fonseca 66 66

ZDT1, ZDT2 120 200

ZDT4 200 100

DTLZ2 300 300
algorithm ‘ implem. ‘ De ‘ Dm ‘ Ne ‘ Nm ‘ Dswap
NSGA2 R [IG96]! 0.7 0.2 2020 0
SMSEMOA | PISA [BLTZ03] | 0.9 | 1/length(Z) | 15 | 20 | 0.5

Therefore, we evaluate the results received regarding both approximation quality and the
required number of FE and compare them to the ones we receive after applying the number of
FE, which are originally proposed in standard EMO literature. Moreover, we are interested
in the criterion which first indicates convergence and how this is motivated by the P_’Iivj
characteristics over time. In order to inspect the behavior of OCD more closely, it is also
analyzed whether OCD, with the reference set and the ideal and anti-ideal point approximated
on the fly, performs similar to the case of full information. Last but not least, we want to
demonstrate that the time, when OCD indicates convergence, matches with an intuitive
observation of the running metrics.

Pre-experimental planning. NSGA2 [DPAMO02] and SMSEMOA [BNEOQ7] are considered
since

NSGA2 is the industrially most popular EMOA and recent studies motivate the use of the
hypervolume contribution during selection [WBNO7]. The test functions are chosen to repre-
sent different kinds of problem characteristics, such as dimension in decision and in objective
space, the number of local optima, and the shape of the Pareto front. The population sizes
used on the problems vary in order to allow for different problem characteristics and evaluate
OCD for a wider variety of algorithmic setups.

Initial preparative analyses of OCD indicate that the time window nPreGen should span at
least seven, but better ten, generations to permit an adequate calculation of the p-values in the
tests. In this context, it has to be considered that the tests will not indicate convergence until
the PT ji stagnate over a large span of this time window. Thus, when it is reviewed whether
OCD’s indication matches with the generation determined by a human decision maker, the
delay of nPreGen generations has to be accepted within the assessment.

Task. Check if OCD provides a robust and reliable termination of EMOA on several test
cases. Compare the results of OCD with an intuitive understanding of termination and
with the results provided in standard EMO literature. Furthermore, systematical deviations
between the proposed approach and the one with full information are to be identified, which
may occur due to a inaccurate approximation of the true Pareto front.

Setup. NSGA2 and SMSEMOA are analyzed on the four bi-objective test functions Fon-

seca [FF98], ZDT1, ZDT2, and ZDT4 [ZDT00] as well as on the three-objective DTLZ2 [DTLZ02]

test function. Different population sizes p € {60 (Fonseca), 100 (ZDT1, ZDT2, DTLZ2), 200
(ZDT4)} and selection strategies — (¢ + p) in the NSGA2 and (¢ + 1) in the SMSEMOA —
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are incorporated, where, for the sake of comparability, a generation of SMSEMOA equals a
sequence of u FE. For each combination of EMOA and test function, ten independent runs
are performed.

The variance bound for the y?-variance test is set to VarLimit = 0.0012, the significance
level for both tests is set to o« = 0.05, and the time window is of size nPreGen = 10.
The different numbers of FE allowed within our experiments (MaxzGen) and within the
standard literature (MaxGen2) [DMMO03b] as well as the parameters used in the simulated
binary crossover and polynomial mutation [Deb01] are displayed in Tab. 5.1. For measuring
the performance of the algorithms, the following PI have been invoked: hypervolume (HV)
[ZT98], additive ¢ (Eps) [ZTL103], and R2 [HJ98]. Recall that OCD as well as OCD with
full information terminate if and only if one of the tests (y?-variance or t-test) simultaneously
indicates convergence with respect to all three metrics. The reference fronts used within
OCD with full information have been calculated via equidistant sampling of the known Pareto
fronts.

Experimentation/Visualization. Several ways of visualization are used to demonstrate
our findings. In the first plots, the PI behavior is inspected over the generations of the EMOA
on the ZDT4 (cf. Fig. 5.1) and the DTLZ2 test function (cf. Fig. 5.2), where the median
run with respect to the difference between the full information-based performance metrics
and OCD is plotted semi-logarithmically. The black and light-gray solid lines indicate the
generation, in which either the y?-variance or the regression criterion detect convergence in
case of the reference set and objective bounds being approximated online. The black and
light-gray dashed lines indicate the generation, in which convergence is detected for the given
combination of EMOA and test problem within the full information approach.

The differences in performance are visualized using boxplots. The subsequent figures present
the differences between the PI ;i after the number of FE recommended in literature (i =
MaxGen2) and after OCD indicated convergence. One box is shown for each PI; and each
considered test case, in Fig. 5.3 for the NSGA2 and in Fig. 5.4 for the SMSEMOA. Due to
different scales, the displayed area had to be changed for some of the test cases, i.e., DTLZ2
for NSGA2 and ZDT1 as well as ZDT2 for the SMSEMOA. For the combinations of EMOA
and test function, in which the variance criterion initiated termination for most of the runs,
the interval [—v/VarLimit], /'V ar Limit] is highlighted in order to assist inspecting the effect
of VarLimit on the final approximation quality. Fig. 5.5 splits the runs for all test problems
into two categories: runs being terminated by the regression criterion and by the x?-variance
test. This analysis is done separately for NSGA2 and SMSEMOA in order to show the two
different types of EMOA behavior and how OCD copes with these challenges.

Statistic details of the boxplots can be found in Tab. 5.2. Here, the median differences
are listed with respect to the corresponding algorithm/test case combination. Note that all
median differences are given multiplied by 1073, Besides the results regarding the received
quality, the additional rows within Tab. 5.2 indicate the number of generations OCD termi-
nated the algorithm earlier in contrast to the generation number suggested in the literature
(MaxGen2) [DMMO03b]. Furthermore, the number of saved function evaluations and their
percentage of MaxGen2 are calculated to emphasize what is saved by using OCD with only
the given median loss in quality.

In the line plots of Fig. 5.6 and Fig. 5.7, the values of each run with and without full
information are compared. By these means, systematic deviations can easily be observed.
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Figure 5.1: The run of the metrics with respect to the reference set for NSGA2 and SMSE-
MOA on ZDT4. Exemplary, the run is chosen which obtains the median difference
between the approaches with and without full information. The vertical lines in-
dicate the generations, in which the different tests and variants of OCD would
stop the algorithm.

Since OCD terminates the EMOA when the first of the tests indicates convergence, it is
also labeled which of the tests initiates the termination of each run using different symbols.
Fig. 5.6 shows the results for NSGA2 on each test case whereas Fig. 5.7 provides these for
SMSEMOA.

Observations. OCD efficiently copes with two different types of convergence. In case the
variance test terminates the EMOA (cf. Fig. 5.5, subfigures 1 and 3), the standard deviation of
all Pfi,j is significantly below vVarLimit = 0.001. Fig. 5.5 shows that the Psz differences
between OCD Stop and MaxGen2 are approximately in the range of [—0.001,0.001] for
the EMOA runs, which have been terminated by the y2-variance-test. Furthermore, big
differences to the runs, which are terminated by the regression criterion (cf. Fig. 5.5, subfigures
2 and 4), can be observed. In these cases the differences between the approximation quality of
OCD Stop and MaxGen2 are much higher, strictly positive for the SMSEMOA and balanced
between positive and negative values for NSGA2.

The basic results from above can also be recognized in the boxplots for NSGA2 (cf. Fig. 5.3)
and SMSEMOA (cf. Fig. 5.4). However, systematic differences between the NSGA2 and the
SMSEMOA results can be detected on ZDT4 and DTLZ2. For NSGA2 on ZDT4, the variance

criterion indicates convergence much earlier than the regression criterion. This is different
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Figure 5.2: The run of the metric with respect to the reference set for NSGA2 and SMSEMOA
on DTLZ2. Exemplary, the run is chosen which obtains the median difference
between the approaches with and without full information. The vertical lines
indicate the generations, in which the different tests and variants of OCD would
stop the algorithm.
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Figure 5.3: Boxplots of PI differences at OCD StopGen and MaxGen2 for NSGA2. The
interval [—v/VarLimit],/VarLimit] is highlighted in gray where appropriate.

from the findings for SMSEMOA, where the regression criterion terminates the algorithm
earlier. The progressions of PI i on DTLZ2 are strongly distorted for NSGA2 with alternating
phases of convergence and divergence. The ones of SMSEMOA are much smoother. In both
cases, the regression criterion is able to identify convergence very early in the run, but due to
the rough structure, the variance test is not able to do so for NSGA2, while for SMSEMOA
the variance criterion terminates the optimization about 25 to 30 generations later than the
regression criterion.

The differences in generations between the ones proposed by OCD and MaxGen2 range
from rather small (18 for NSGA2 on ZDT4) to very large (287 for NSGA2 on DTLZ2). In the
latter case, only less than 5% of the evaluations are needed to find better solutions compared
to the ones found after the complete optimization run with the termination criterion proposed
in the literature. In most cases, slightly more than 50% of the generations can be saved. This
results in over 10,000 unnecessary evaluations for the high-dimensional problems. Even in
the worst case, more than 2,900 evaluations can be saved.

The coincidence of both tested OCD variants are indicated in the line plots in Fig. 5.6 for
NSGA2 and Fig. 5.7 for SMSEMOA. The differences between OCD and its full-information
variant are strongly depending on the EMOA in use. For SMSEMOA the results with full
information and approximated reference sets are well-correlated and no general trend can be
observed. The median differences between the indications of convergence in both situations
are within one to five generations (cf. Fig. 5.7). This is different to NSGA2, which shows a
trend to overestimate the stop generation for the high-dimensional problems. Furthermore,
some outliers with extreme differences can be detected (cf. Fig. 5.6). Nevertheless, the
generations proposed by OCD are matching the subjective localization of the termination
generation with an accuracy of approximately nPreGen = 10 generations.

Discussion. The y2-variance test as well as the test on the regression coefficient are nec-
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Figure 5.4: Boxplots of PI differences at OCD StopGen and MaxGen2 for SMSEMOA. The
interval [—v/VarLimit],/VarLimit] is highlighted in gray where appropriate.

essary to successfully detect convergence of EMOA. While the former indicates a low level
of improvement in cases of successful optimization, e.g., on ZDT1 and ZDT2, the latter is
extremely important when the high variance in the indicator values does not provide further
improvements due to cyclic deterioration effects. These effects can be observed for NSGA2
on DTLZ2 and Fonseca. In contrast, on ZDT4 phases of temporary stagnation lead to the
termination of the SMSEMOA based on the regression criterion. Due to a lower selection
pressure, NSGA2 can avoid these phases and is therefore stopped by the variance criterion
after global convergence.

Another important observation is that, in cases, in which OCD terminates the EMOA
based on the y2-variance test, the value of vVarLimit = 0.001 is close to the differences
in approximation quality compared to the one after the commonly proposed MaxGen2 FE.
Thus, the user can approximately adjust the desired level of approximation accuracy e by
choosing VarLimit = ¢2. However, the figures show that the value VarLimit = 0.001? is
suitable for the considered test cases.

The experiments document the general ability of the statistical tests within OCD to detect
convergence based on performance indicator values. The delayed detection of convergence on
the Fonseca problem is due to the time window of preceding generations and the very fast
convergence of the EMOA. For a faster detection of stagnation, nPreGen has to be decreased.
However, the time of convergence as indicated by OCD can be accounted as premature for
SMSEMOA on ZDT4 and DTLZ2 regarding the run of the metrics in further generations.
In such situations, a larger time window allows longer phases of stagnation and provides the
EMOA with the possibility to escape from local optima. In summary, a conflict between a
fast detection of convergence and robustness with respect to short phases of stagnation exists.
Therefore, the specification of the length of the time windows nPreGen allows the user of
OCD to express his own preferences based on the expected kind of problem.
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Figure 5.5: Separated boxplots of PI differences between OCD StopGen and MaxGen2 for
the runs of the SMSEMOA which are terminated by the y2-variance test and the
regression analysis, respectively. *Two extreme outliers not shown.

The problem of the overestimation of the generation, in which stagnation occurs, when OCD
is applied within NSGA2 can be explained by the selection that is implemented within this
EMOA. Due to the high number of non-dominated solutions in the already converged pop-
ulation, the individuals are mainly evaluated by means of the crowding distance [DPAMO02].
Thus, in combination with the (u + u) selection, the population is still in motion. Since the
reference set itself is part of this motion, a high variance in the indicator values is likely to
appear. In contrast, SMSEMOA does only accept solutions, which increase the hypervolume
of the current population. Thereby, a monotonic improvement can be expected, which also
guarantees appropriate reference sets for OCD.

5.1.5 Conclusion

In this paper, a robust and reliable method for convergence detection within evolutionary
multi-objective optimization algorithms has been introduced. This method is based on two
statistical tests, namely the t-test on the regression coefficient and the y2-variance test, which
guarantee an accurate convergence detection in all the considered examples. The proposed
method is able to invoke different performance indicators, and it was investigated using the
three recommended metrics from the EMO field. This way, we have been able to save half
of the function evaluations for common test cases without having to accept a considerable
loss of quality. However, the application of OCD to optimization scenarios, which include
temporary phases of stagnation, such as in discrete optimization, could result in a premature
indication of convergence.
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Table 5.2: Summary of PI i; and generation differences at the stop generation of OCD de-
noted as OCDStop and MaxGen2, where PIDiff = P_‘Ij’ocpgtop —ﬁIj,MmeQ and
GenDiff = MaxGen2—0OCDStop (j = {HV, EPS, R2}). Additionally, the number
of saved function evaluations and their percentage of MaxGen2 are calculated.

NSGA2 SMSEMOA
problem | PI || med(PIDiff) | med(GenDiff) | med(PIDiff) | med(GenDiff)
ZDT1 HV 2.07e-03 124 0.96e-03 112

Eps 2.08e-03 12400 FE 1.31e-03 11200 FE
R2 0.93e-03 62% 0.38¢-03 56%
ZDT2 HV 2.56e-03 104 1.01e-03 101
Eps 3.13e-03 10400 FE 0.91e-03 10100 FE
R2 1.46e-03 52% 0.63e-03 51%
ZDT4 HV 0.26e-03 18 21.72e-03 63
Eps 0.28e-03 3600 FE 19.75e-03 12600 FE
R2 0.06e-03 18% 9.07e-03 63%
DTLZ2 | HV -0.39e-03 287 0.72e-03 256
Eps || -14.76e-03 28700 FE 3.37e-03 25600 FE
R2 0.06e-03 96% 0.02e-03 85%
Fonseca | HV 0.97e-03 50 2.49e-03 49
Eps -0.51e-03 3000 FE 5.14e-03 2940 FE
R2 0.14e-03 76% 0.21e-03 74%

In addition, we tried OCD on an already solved practical example [WMSO07], which is
not shown due to a lack of space. This test indicated that the former analysis wasted many
computational resources. Processing this hint by means of comprehensive evaluations of OCD
on real-world problems is a task for the near future.

Furthermore, the technique of OCD offers a way for algorithm comparison. For this purpose,
all EMOA parameters and operators have to be set to comparable values, and a high number of
parallel runs of each benchmarked EMOA has to be performed. This way, a proper statistical
analysis on the distributions of the stop generations proposed by OCD combined with the
internally used performance indicators becomes possible. In this context, a comparison to an
approach for offline convergence detection, which has been recently proposed by one of the
authors [TLMPO0S], seems revealing.
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5.2 Online Convergence Detection for Multiobjective Aerodynamic
Applications

This section (pages 104 to 120) is copied verbatim from

[NT09] B. Naujoks and H. Trautmann. Online Convergence Detection for Multiobjective Aerody-
namic Applications. In A. Tyrrell, editor, Congress on Evolutionary Computation (CEC 2009),
pages 332-339, IEEE Computational Intelligence Society, IEEE Press.

Abstract

Industry applications of multiobjective optimization problems mostly are characterized by
the demand for high quality solutions on the one hand. On the other hand an optimization
result is desired which at any rate meets the time constraints for the evolutionary multiob-
jective algorithms (EMOA). The handling of this trade-off is a frequently discussed issue in
multiobjective evolutionary optimization.

Recently an online convergence detection algorithm (OCD) for EMOA based on statistical
testing has been introduced. OCD is independent from any knowledge of the true Pareto
front of the optimization problem. It automatically stops at the EMOA generation in which
either only a very small variation or a trend stagnation of a set of multiobjective performance
indicators are detected for a predefined number of generations.

In the course of the paper, OCD is applied to two aerodynamic test cases provided by a
global player of the aircraft industry. It is shown that OCD performs extremely well on these
problems in terms of saved function evaluations and EMOA performance after the OCD stop
generation.

5.2.1 Introduction

The aircraft industry is dominated by two global players. However, a large number of smaller
companies and institutes serving as, e.g., suppliers and technology provider, are involved. All
highly depend on the global players that facilitate different ways to incorporate the smaller
organizations.

One way are publicly sponsored research projects, where the global players provide close
to industry test cases that are investigated in detail by the partners. In general, these test
cases are already solved or not state-of-the-art due to the competition and legal rights within
publicly funded projects. But such test cases serve as ideal playgrounds for researchers to
evaluate their methods on more realistic test cases than purely mathematical ones.

The benefit for the global players are that they stay in close contact with different research
institutes and get a bunch of methods evaluated on test cases proposed by their own. This
leads to easier decisions which methods and procedures should be considered for new, up-to-
date tasks and problems.

The application of evolutionary multiobjective algorithms in all major industries has become
widely accepted in recent years. However, the lack of an autonomous quality-orientated
termination criterion is often seen as a major drawback of the methodology. Up to now, the
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standard approach is to fix a maximum number of allowed function evaluations with respect
to the present time constraints. This is often critical in industrial examples as usually no
sufficient a-priori-knowledge about the problem complexity exists in order to reach a well-
founded decision.

Local optimality of solutions has been investigated by analysing hybrid EMOA based on
quadratic programming methods [KSDO7] resp. [DLDO07]. Rudenko and Schoenauer [RS04]
propose an online termination criterion based on the convergence of the maximum crowding
distance, but it is restricted to elitist EMOA and only tested for NSGA-II. Deb and Jain [DJ02]
investigate so-called running performance metrics for convergence and diversity of solutions,
which are used as a monitoring tool in the course of the algorithm but not directly as an
EMOA termination criterion. Another approach is to use convergence criteria from single-
objective evolutionary algorithms once the multi-objective problem has been transferred to
a single-objective problem on sets [ZTB08]. Furthermore, a statistical-testing based offline
convergence detection has been suggested [TLMPO8], which checks the similarity in the dis-
tributions of performance indicators for consecutive generations based on multiple parallel
runs of the EMOA. A novel approach for online convergence detection (OCD) of EMOAs
based on statistical testing has recently been introduced [WTN09]. OCD is independent from
knowledge of the true Pareto front, which makes it highly applicable for practical problems.
Two aerodynamic test cases are introduced, i.e. an airfoil reconstruction (NACA) and an
airfoil drag minimization test case (RAE), to which the OCD concept is applied.

Section 5.2.2 summarizes the OCD concept. Section 5.2.3 then gives details of the aerody-
namic applications, i.e. the two-dimensional NACA problem in section 5.2.4 as well as the
three-dimensional RAE problem in section 5.2.5. Results of the respective OCD experiments
are presented in section 5.2.6. Conclusions and an outlook on further research complete the
analyses in section 5.2.7.

5.2.2 Online convergence Detection

In the progression of OCD, two different analyses are carried out. These focus either on a
sufficiently small variance of preceding performance indicator (PI) values or on the detection of
the point in time, where no significant trend of the indicators can be detected for a predefined
number of generations. The EMOA stops if at least one of the two criteria is met or if a
predefined maximum number of generations is reached. The latter ensures that the time
restrictions are fulfilled in any case. This number would have to be specified anyway without
an efficient EMOA termination criterion.

Detailed steps of the required algorithms are provided in Algorithms 8, 9, and 10 so that
a straightforward implementation is possible. An appropriate selection of a set of Pls is
very important to reflect the existing preferences regarding the Pareto front approximation
quality. OCD, however, suggests to revert to the standard set of Pls defined by Knowles et
al. [KTZ05], i.e. the hypervolume, the additive e—, and the R2 indicator. The parameter
npregen reflects the length of the time window comprised of npregen preceding generations
counting backwards from the current generation. The selected Pls are calculated for the
generations falling into this time window using the current Pareto front approximation at the
actual generation as the reference set. This adaptive procedure avoids the requirement of a
global target front specification. If a specific PI does not use a reference set and evaluates
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Algorithm 8 OCD: Algorithm for Online Convergence Detection
Require: VarLimit /* mazimum variance limit */
npregen /* number of preceding generations for comparisons */
a /* significance level of the tests */
MazxGen /* mazimum generation number */
(PL,...,PI,) /* vector of performance indicators, e.g., (HV, €, R2) */
1. i=0 /* initialize generation number */
2: for alli € {1,...,npregen},j € {1,...,n} do
30 pChi2(j,i) =1 /* initialize p-values of the x*-variance Test */
4:  pReg(i) =0 /* initialize p-values of the t-Test on regression coefficient */
5: end for
6: b= /* initialize lower bound vector */
7. ub =] /* initialize upper bound vector */
8: repeat
9. 1=1+1
10:  Compute d-objective Pareto front PF; of i-th EMOA generation
11: b= min(lbU PF) /* update lower bound vector */
12: ub = maxz(ubU PF) /* update upper bound vector */
13:  if (i > npregen) then
14: PF; =1+ (PF; — Ib)/(ub — Ib) /* normalize PF; to [1,2]% */
15: for all k € {i — npregen,...,i—1} do
16: Compute Pareto front PFy, of k-th EMOA generation
17: PF, =1+ (PFy, — 1b)/(ub — D)
/* normalize PF), to [1,2]% */
18: end for
19: for all j € {1,...,n} do
20: Plj; = (PLj(PF;—ppregen, PF;, 1,2.1), ...
..., (PI;(PF_,, PF;,,1,271)))
/* compute PI; for PFi_ppregen - - -, PFi—1
using PF; as reference set, T as ideal, and 21 as nadir point */
21: pChi2(j,i) = call Chi2(P1,;, VarLimit)
/* p-value of x? test */
22: end for
23: pReg(i) = call Reg(ﬁ[lm .. .,ﬁln’i)
/* p-value of the t-Test on the generation’s effect on the PYM */
24:  end if
25: until Vj € {1,...,n}:

26:
27:

(FChi2(j, 1) < a/n) A (pChi2(j,i — 1) < a/n)
\Y (pReg(i) > a) A (pReg(i — 1) > «)
\Y% t = MazGen
Terminate EMOA
return {MaxGen, Chi2, Reg} /* criterion which terminates
the EMOA */
i /* generation in which the criterion holds */
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Algorithm 9 Chi2: One-Sided x2-variance test for

Hy : var(PI) > VarLimit vs. Hy : var(PI) < VarLimit

Require: P /* vector of performance indicator values */
VarLimit /* variance limit */
1: N = length(PI) —1 /* determine degrees of freedom */
2: Chi = [var(PI) « N]/VarLimit /* compute test statistic */
3: p=x%(Chi, N) /* look up x? distribution function with
N degrees of freedom */

4: return p

Algorithm 10 Reg: Two-sided t-test on the significance of the linear trend Hy : (8 =
Ovs.Hi: B#0

Require: ﬁfj, j=(1,...,n) /* wvectors of performance indicator values */
1: N =n-length(PI*) -1 /* determine degrees of freedom */
2: for all j € {1,...,n} do
3 PI*; = (PI; - ﬁIj)/aﬁIj /* standardize */
4: end for
5. PI* := concatenate(PI*y,..., PI*,) /* row vector of all ﬁlj */
6: X = (1,...,length(PI*),....1,... length(PI*))

n times
/* row vector of generations corresponding to PI* */
7 B= (X« XT)1x X« (PI*)T /* linear regression without intercept */
8 e=PI*— X xf3 /* compute residuals */
9: 82 = (exel)/N /* mean squared error of regression */
10: t = W /% compute test statistic */
11: p=2- min(tN(t), 1— tN(t))

12:

/* look up p-value from t distribution with N degrees of freedom */
return p
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each set separately (e.g., the hypervolume indicator), the difference between the indicator
values for the preceding and the current set is calculated.

Two statistical tests are applied to the resulting npregen vectors of Pls at each generation.

Variance criterion: For each PI a y2-variance test [She00] (cf. Algorithm 9) is used
to check if the variance of the PI values falls below a predefined threshold VarLimit. The
global significance level « has to be adjusted due to the multiplicity of the test problem using
a Bonferroni correction [DvdLO08]. This leads to an individual significance level of a'\n for
each PI variance test.

Regression criterion: Besides a sufficiently small variance, a lack of a significant trend
in the vector of npregen indicator values can be seen as an indication for EMOA convergence.
All PI values are standardized to mean zero and standard deviation one and concatenated into
one overall PI vector at each generation. A linear regression analysis without intercept and a
respective t-test (cf. Algorithm 10) for Hy : 5 =0 vs. Hy : 8 # 0 on the regression coefficient
B oare performed. Unfortunately a test for interchanged hypothesis cannot be constructed
so that the generation, in which the null hypothesis cannot be rejected anymore, has to be
determined. This makes it extremely difficult to control the a-error in this case. However,
the main focus when setting up « is not on correctly controlling this kind of error, but on
finding reasonable critical values for the test statistics in order to make OCD applicable and
successful within industrial applications.

OCD indicates EMOA convergence if either the regression criterion or the variance criterion
is met for two succeeding generations or the allowed maximum number of generations is
reached. The time, which can be saved by an appropriate termination, is considerably higher
than the additional runtime, even for time—expensive practical problems. If required, the
approach however can be efficiently used for extremely time-critical optimization as well by
only using PIs in O(Nd), such as the R2 indicator.

An in-depth description of the methodology can be found in [WTNO09].

5.2.3 Aerodynamic Applications

The two aerodynamic test cases introduced below stem from collaborations with one of the
global players in aircraft industry within some research projects funded by the European Com-
mission, namely the projects INGENET and AEROSHAPE. For both test cases, all modeling
issues concerning computational fluid dynamics (CFD), e.g. mesh size, mesh generation, used
models, pressure calculation, etc. are performed automatically. Due to the large calculation
times for the Navier-Stokes simulations, a restricted number of 1,000 fitness function evalua-
tions is allowed. The software and technical support for the fitness function calculation was
provided by the European Aeronautic Defence and Space Company — Military Aircraft Unit
(EADS-M), one of the partners in the projects.

5.2.4 Airfoil Reconstruction Test Case: NACA

In the first investigation, a two-dimensional airfoil design problem is considered. T'wo regimes
of flow conditions have been chosen, which vary in the flow parameter settings. A suitable
airfoil as a compromise for both conditions has to be designed. Next to this compromise,
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Table 5.3: Flow conditions, NACA test case

high lift | low drag
Mach number 0.20 0.77
Reynolds number 5-10° 107
angle of attack 10.8 1.0

practitioners are interested in good compromise solutions ranging from considering mainly
the first flow conditions to the other way around. This way, a Pareto front according to this
trade-off is highly appreciated.

To achieve this Pareto front, two nearly optimal airfoils (NACA 0012, NACA 4412) have
been identified to become target airfoils, and the test case is defined as a two dimensional
redesign test case. To identify differences between the current airfoil and the target ones,
differences in the pressure distribution along the airfoil are considered:

1
fl,? = /0 (Cp(s) - C;farget)zds

with s being the airfoil arc-length measured around the airfoil. C), is the pressure coefficient
distribution of the current and C’;”farget the pressure coefficient distributions of the two target

airfoils, respectively.

The two flow conditions are calculated using different turbulence models recommended by
the industrial partners to ensure a good approximation of the flow around the airfoil. The
parameter settings describing the flow conditions in use are given in table 5.3.

The airfoil parametrization using Bezier points has been improved after first results have
been published [NWH'00]. In the current application, some x-components of these points
have been involved into the optimization process next to the y-components of all points. All
these components are represented by real values in the individuals of the EA, resulting in a
decision space dimension of 18.

5.2.5 Airfoil Pressure Minimization Test Case: RAE

The second aerodynamic test case is a real design test case. Here, the drag for some given
airfoil is to be minimized for three different flow conditions. According to the number of flow
conditions, which are detailed in table 5.4, three different drag values are received resulting
in the three objectives to be minimized.

The RAE 2822 airfoil is a standard airfoil suggested by the Royal Aircraft Establishment.
The flow around the baseline design is calculated with respect to three different flow condi-
tions, yielding different values for drag, lift and pitching moment for each of the flow condi-
tions.

The airfoil parametrization is done using Bezier points again. Here, only the y coordinates
of these points serve as parameters for the optimization methods. Three Bezier weighting
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Table 5.4: Flow conditions, RAE test case

cruise | off-design 1 | off-design 2
Mach number 0.734 0.754 0.680
Reynolds number || 6.5 - 10° 6.2-10° 5.7-10°
angle of attack 2.8 2.8 1.8
transition 3% 3% 11%

points have been in use for both surfaces of the airfoil next to two fixed ones for each surface.
This results in an optimization problem with 6 degrees of freedom.

For the original problem formulation, different constraints were defined to stay close to
the original proposed airfoil and, thus, guarantee for a minimum of structural feasibility of
the received results. These constraints were of geometrical nature, i.e., thicknesses, radii and
angles, as well as of aerodynamic nature, i.e., on the lift coefficients, pitching moments etc..
Due to our intention to investigate OCD and not aiming at optimal airfoils with best practical
feasibility, the mentioned constraints have not been considered here. The optimization is
performed with the only aim to minimize the mentioned drag values.

5.2.6 Experiments

The reports on the received results adhere to the suggestion by Preuss [Pre07], which is based
upon the framework of sequential parameter optimization (SPO) by Bartz-Beielstein [BB06].
It demands the author to think about the tackled questions and the employed methods before
the experiment is carried out and to report the results in a structured, easily accessible way.

Experiment 1: OCD behavior on the NACA test case

Research question: Can the results received for OCD on theoretical test cases be verified
for the NACA test case?

Pre-experimental planning: The OCD concept as introduced by Wagner et al. [WTNO09]
was initially tested on five standard test problems from literature with varying level of dif-
ficulty regarding objective and decision space dimension, possible multimodality and Pareto
front shapes. These experiments led to recommended OCD parameters of VarLimit = 0.001,
a = 0.05 and npregen = 10. On all test problems a high amount, i.e. approximately half of
the function evaluations compared to the suggestions from literature, could be saved while
simultaneously only marginally losing EMOA performance. It was additionally shown that it
is very important to integrate both the variance as well as the regression criterion in order to
capture the two main types of possible algorithm stagnation.

Earlier studies on the aerodynamic test cases showed a good compatibility of the NACA
test case with larger population sizes, while the RAE test case appeared more compatible
with smaller population sizes. In the latter case, for higher population sizes non-dominated
solutions were rather hard to find. Smaller populations sizes allowing more generations and
yielding a higher selection pressure, are beneficial. Even at the end of the optimization runs,
not all individuals were mutually non-dominated.
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For the NACA test case, mutually non-dominated solutions have not been that hard to
find. Here, more emphasis is put on a good approximation of the true Pareto front. This
can more easily be received with larger population sizes. Nevertheless, a detailed study of
parameter settings like it could be provided by SPO, is still missing. Within all our prior
experiments on both test cases, the number of allowed fitness function evaluations is set to a
maximum of 1,000, which is introduced in the current experiments as well.

Task: Check the OCD criteria received from Wagner et al. [WTNO09] for the aerodynamic
applications. Find out whether modifications of the OCD parameterization are necessary to
get a suitable convergence criterion for these more realistic applications. Moreover, we are
interested in the performance of OCD and to what extent possible improvements of EMOA
performance are set aside if OCD is applied.

Setup: Two known EMOA are applied to the NACA test case introduced in section 5.2.4,
namely NSGA-II [DPAMO02] and SMS-EMOA [BNEOQ7]. Both algorithms feature the non-
dominated sorting algorithm to extract the current Pareto front. While NSGA-IT introduces
crowding distance as secondary selection criterion in its (u + p) approach, SMS-EMOA in-
troduces the hypervolume indicator in a (x4 1) approach. To get a better overview about
how OCD behaves for different parametrizations of the applied EMOA, we investigated two
different population sizes, namely p € {8,20}.

NSGAZ2 is taken from the R ([IG96])- package? mco, which uses SBX and polynomial
mutation [Deb01] with p. = 0.7 and p,, = 0.2 as well as crossover and mutation distribution
indices 7, = n. = 20. SMS-EMOA is applied with p,, = 1/|z|, p. = 1.0, 1, = 20, and
1. = 15. To align the results for SMS-EMOA and NSGA-II, we only considered every p-th
generation from the SMS-EMOA for convergence detection.

With respect to OCD, first experiments have been conducted utilizing the parametrization
determined in [WTNO9] for the theoretical test cases. This means that VarLimit is set to
0.001, alpha = 0.05 and npregen € {10,15}. As performance indicators, hypervolume (HV,
anti-optimal point (0.3,0.3)), additive e- and R2- indicator are chosen (standard settings). For
every combination of population size and npregen, 10 runs are conducted for each EMOA to
get an indication of OCD robustness and keep the computational effort at a reasonable level.

Though already integrated in the OCD analysis, the HV indicator is supplementary used
for evaluating the EMOA performance over time. At each generation HV is computed and
the resulting vector is plotted in order to check the reasonability of the OCD Stop generation
and the performance loss compared to the EMOA quality after 1,000 evaluations.

Experimentation/Visualization: The left part of figure 5.8 depicts the course of the hy-
pervolume received for NSGA-II and SMS-EMOA with a populations size of 20 individuals
and npregen = 10 for one single run. Moreover, the generation, where OCD would have
terminated the corresponding optimization run is highlighted by a vertical line for each algo-
rithm. The right plot shows the course of the p-values of the considered t-test vs. the number
of generations. It stops right after a p-value of 0.05 is exceeded twice. This makes the OCD
terminate the corresponding algorithm according to the description in section 5.2.2.

Figures 5.9 to 5.12 are split in two parts as well. All present boxplots of the OCD stop

2The package can be found at http://cran.r-project.org/web/packages/mco/index.html
(downloaded January 14th, 2011)
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Figure 5.8: NACA: Hypervolume in the course of the generations for SMS-EMOA and NSGA-
IT of an example run (Run 1) as well as p-values of the t-test,u = 20, npregen = 10
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Figure 5.9: NACA: Left: Boxplots of Stop Generations of SMS-EMOA and NSGA-II, u = 20,
npregen = 10; Right: Scatterplot Stop Generation vs. HV (black: NSGA-II,
grey: SMS-EMOA); lines reveal average HV at generation 50 over all runs.

generation for both algorithms are displayed in the left part. The right part depicts a scat-
terplot, where the stop generation is plotted against the received hypervolume for all 10
corresponding runs. The horizontal lines give the mean value of the results received after
the maximum number of function evaluations for each algorithm. The respective figures are
dedicated to different parametrizations of the EMOA and the OCD to detect and illustrate
major differences in behavior. This way, figure 5.9 presents the results for p = 20 for each
algorithm, and OCD invokes a value of npregen = 10. The results for npregen = 15 are
shown in figure 5.10, while figures 5.11 and 5.12 depict the corresponding results for p = 8
(figure 5.11: npregen = 10 and figure 5.12: npregen = 15).

For the two-dimensional NACA problem, summary attainment surfaces according to Knowles
[Kno05] are generated and depicted in figure 5.13 and 5.14. For each algorithm and param-
eter setting, the differences between the results received after the full experiment, i.e. the
maximum number of 1,000 function evaluations (grey dots), and when OCD would have ter-
minated the experiment (black dots) are compared. Figure 5.13 shows the results for p = 20
with npregen = 10 in the upper row and npregen = 15 in the lower one. Figure 5.14 shares
the same setup like figure 5.13 for p = 8. In both figures, the results for NSGA-II are given
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Figure 5.10: NACA: Left: Boxplots of Stop Generations of SMS-EMOA and NSGA-II, 1 = 20,
npregen = 15; Right: Scatterplot Stop Generation vs. HV (black: NSGA-II,
grey: SMS-EMOA); lines reveal average HV at generation 50 over all runs.
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Figure 5.11: NACA: Boxplots of Stop Generations of SMS-EMOA and NSGA-II, u = 8,
npregen = 10; Right: Scatterplot Stop Generation vs. HV (black: NSGA-II,
grey: SMS-EMOA); lines reveal average HV at generation 125 over all runs.

in the left column and the ones for SMS-EMOA in the right one.

The number of points considered for the attainment surfaces is adapted to the population
size the results are generated with. This way, the attainment surfaces for y = 8 are presented
featuring less points than the corresponding ones for p = 20.

Tables 5.5 and 5.6 summarize the findings with respect to OCD. For each algorithm and
parametrization, table 5.5 gives the number of runs that have been terminated by each of the
two criteria of OCD.

Table 5.6 provides details on the EMOA quality at the OCD stop generation compared to
the performance reached after 1,000 function evaluations. The saved generations (MaxGen —
OC D-Stop) are calculated, and the median is taken over all 10 runs. In addition, this number
is given in percentage of MaxGen. The hypervolume loss occurring when terminating the
EMOA at the OCD stop generation compared to MaxGen in absolute and in percentage
terms is computed and the respective median is listed.

Observations: It can be seen from the boxplots in figures 5.9 to 5.12 that OCD generally
terminates the optimization runs much earlier than executing the maximum number of allowed
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Figure 5.12: NACA: Boxplots of Stop Generations of SMS-EMOA and NSGA-II, p = 8,
npregen = 15; Right: Scatterplot Stop Generation vs. HV (black: NSGA-II,
grey: SMS-EMOA); lines reveal average HV at generation 125 over all runs.

Table 5.5: Number of Runs, which have been terminated by variance (Var)- or regression
(Reg)- criterion.

NACA RAE
Alg. u | npregen || Var | Reg || Var | Reg
NSGA-II 8 10 0 10 5 5
8 15 0 10 8 2
20 10 0 10 9 1
20 15 0 9 10 0
SMS-EMOA | 8 10 0 10 5 5
8 15 0 3 10 0
20 10 0 10 10 0
20 15 0 0 10 0

function evaluations. As it is expected from the algorithm layout, npregen = 15 leads to a
later convergence detection than npregen = 10. This can be determined from the boxplots as
well as from the distribution of the points in the scatterplots. Table 5.6 indicates that saving
up to 80% of the EMOA generations is possible on average for the NACA problem utilizing
NSGA-II with 4 = 8 and npregen = 10. This result is received with accepting a loss of only
4% in hypervolume on average.

Figures 5.9 to 5.12 stress the trade-off between received hypervolume and saved computa-
tional resources again. The figures utilizing © = 8 (i.e. figures 5.11 and 5.12) show that OCD
terminates the runs earlier compared to p = 20. Nevertheless, not as much hypervolume can
be generated like featuring 20 individuals. Moreover, the variance of received points in the
scatterplots is generally higher incorporating 8 individuals. Note, that the above description
holds for both algorithms.

If the 50% attainment surfaces from figures 5.13 and 5.14 are considered for a comparison
of the OCD results, no clear cut can be made. Major differences of the results received after
OCD stop generation and all 1,000 evaluations can not be detected in the figures for the larger
population size. For p = 8 small differences can be observed, but these do not allow to really
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Figure 5.13: NACA: 50% -Attainment Surfaces of NSGA-IT and SMS-EMOA at stop genera-
tion and maximum generation of 50 generations, u=20, npregen = 10 (top) and
npregen = 15 (bottom).

judge the method. On first sight, it is hard to decide which color represents the runs stopped
by OCD and which the finalized runs.

Taking a deeper look at the results from table 5.6, it is observed that p = 20 never leads to
loosing more than 1% in hypervolume if OCD terminates the run. Here, the values are much
better than the ones for p = 8, except for SMS-EMOA with p = 8 and npregen = 15 as well
as p = 20 and npregen = 15. However, these results can not be considered because OCD
did not indicate convergence at all and all 1,000 function evaluations have been executed for
most of the runs here.

The most important observation can be gained from table 5.5. It points out that either the
OCD regression criterion indicates convergence or MaxGen is reached. The variance criterion
is never met earlier than the regression criterion or before MaxGen. The missing number of
runs stem from combinations, where OCD is not able to indicate convergence at all. This is
the case for NSGA-II once, but 17 times for SMS-EMOA.

Comparing the performance of the two considered algorithms, NSGA-II obviously outper-
forms SMS-EMOA. This can clearly be seen in most of the presented results, but the different
parametrizations of the algorithms have to be respected. However, the quality assessment of
different algorithms is not within the scope of the current investigation.

Discussion: As described above, u = 20 yields less reduction in hypervolume compared to
1 = 8 and computational resources are saved in either case. Combined with the fact that
npregen = 10 leads to an earlier convergence detection than npregen = 15, we conclude
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Figure 5.14: NACA: 50% -Attainment Surfaces of NSGA-IT and SMS-EMOA at stop genera-
tion and maximum generation of 125 generations, u=8, npregen = 10 (top) and
npregen = 15 (bottom).

that the combination of p = 20 and npregen = 10 is the best setting within our experi-
ment. This is highly appreciated because the larger population size is foreseen already in the
pre-experimental planning and the results support the assumption made there. Moreover,
npregen = 10 is the setting determined in our earlier work [WTNO09] to be the best one on
the standard test cases. Therefore, the assumption that npregen = 10 in general is a good
setting for OCD is strongly supported.

The fact that only the regression criterion indicates convergence might lead to the conclusion
that the variance criterion can be omitted for more realistic test cases. Nevertheless, the
NACA test case might be an outlier in this respect, and we will continue our investigation
on this in the second experiment. Constantly quite large variances in the course of the
performance indicators are responsible for the fact that the variance criterion does not take
effect. As the variance of the indicators is not decreasing uniformly, the convergence to the
final Pareto front is not smoothly. A rather inconsistent convergence on a topology featuring
larger steps and plateaus is one possible reason.

With respect to still invoking a maximum number of function evaluations in OCD, it must be
mentioned that this was necessary for some runs of the SMS-EMOA to terminate. Here, OCD
is not able to indicate convergence (cf. SMS-EMOA for npregen = 15) and the runs would
have exceeded the number of allowed evaluations without the additional criterion. Summing
up, OCD worked very well, i.e. a lot of evaluations are saved respecting only less than 1%
deterioration in solution quality in special cases. Moreover, even for different parametrizations
of OCD as well as of the associated algorithms, the proposed method allowed for a robust
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Table 5.6: NACA: Absolute and percentage medians of HV- and generation-differences at

OCD stop generation and MaxGen.

NACA

Alg. w | npregen || med(Genp;g) med(HVp;g)

NSGA-II 8 10 100.0 (80.0 %) | 0.0031 (3.97 %)
8 15 93.0 (74.4 %) | 0.0026 (3.29 %)
20| 10 20.0 (40.0 %) | 0.0008 (0.99 %)
20| 15 5.5 (11.0 %) | 0.0000 (0.01 %)

SMS-EMOA | 8 10 87.0 (69.6 %) | 0.0047 (5.97 %)
8 15 0.0 (0.0 %) 0.0000 (0.00 %)
20| 10 11.0 (22.0 %) | 0.0007 (0.81 %)
20 15 0.0 (0.0 %) 0.0000 (0.00 %)

and reliable detection of convergence.

Experiment 2: OCD behavior on the RAFE test case

Research question: Can the OCD results on the NACA test case be confirmed on the RAE
problem? Does OCD perform similar, or are there major differences that may demand for
method or parameter adaptation?

Pre-experimental planning: All relevant aspects have been mentioned for the experiment
before. Of course, the results received for the NACA experiments have to be considered as
well. It was observed that the regression criterion leads to OCD termination of the EMOA
nearly exclusively. Thus, this criterion seems to be sufficient for OCD for more realistic test
scenarios at the moment.

Task: Evaluate the same experiments for the RAE test case like it was done for the NACA
one. Report on different behavior and draw conclusions for the OCD method. If necessary,
adapt this according to the needs of close to industry applications.

Setup: Due to the fact that the results from the NACA test case have to be verified on the
RAE one, the setup is not changed. Shortly summarized, this means that experiments have
been conducted with u € {8,20} and OCD is applied featuring npregen € {10,15}. The HV
reference point has been set to (0.3,0.3,0.3).

Experimentation/Visualization: To present the results received for the RAE test case
in a way highly comparable to NACA, identically structured boxplots and scatterplots are
generated in figures 5.15 to 5.18. These are organized according to the population size in use
and the values of npregen.

The 50% attainment surfaces as utilized for the NACA test case did not allow a clear
distinction of the results. Due to this, 3-D attainment surfaces have not been considered for
the RAE test case. Table 5.7 provides the differences for the RAE test case that are presented
for the NACA test case in table 5.6.

Observations: Table 5.5 reflects that in contrast to the former test case, the variance crite-
rion is required within OCD. For the RAE test case, clearly more runs are terminated by the
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Figure 5.15: RAE: Boxplots of Stop Generations of SMS-EMOA and NSGA-II, u = 8§,
npregen = 10; Right: Scatterplot Stop Generation vs. HV (black: NSGA-II,
grey: SMS-EMOA)
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Figure 5.16: RAE: Boxplots of Stop Generations of SMS-EMOA and NSGA-II, u = 8§,
npregen = 15; Right: Scatterplot Stop Generation vs. HV (black: NSGA-II,
grey: SMS-EMOA)

variance than by the regression criterion. In particular, this is true for the SMS-EMOA, but
can also be observed for the NSGA-II results.

Comparing both algorithms in more detail, the results on the current test case are rather
similar. In most runs, the NSGA-II performs a bit better than the SMS-EMOA, but two
extremely good results for = 8 (cf. figures 5.15 and 5.16) result in higher mean values for
the corresponding parametrizations than for NSGA-II.

As a general tendency within the box- and scatterplots it can be seen that the variance of
the results grows with increasing population size. A similar result can be observed increasing
npregen from 10 to 15. Moreover, npregen = 15 again terminates the corresponding runs a
bit later than npregen = 10. This result was found for the NACA test case as well and meets
the expectations from pre-experimental planning.

While invoking a large population size generally terminates optimization runs at a stop
generation around 30, the smaller p = 8 values lead to convergence detection around stop
generation 40 (cf. figures 5.15 to 5.18). Observing the differences, the smaller population size
is able to save about 60 to 70 percent of evaluations while the larger one ”only” saves between
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Figure 5.17: RAE: Boxplots of Stop Generations of SMS-EMOA and NSGA-II, p = 20,
npregen = 10; Right: Scatterplot Stop Generation vs. HV (black: NSGA-II,
grey: SMS-EMOA)
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Figure 5.18: RAE: Boxplots of Stop Generations of SMS-EMOA and NSGA-II, u© = 20,
npregen = 15; Right: Scatterplot Stop Generation vs. HV (black: NSGA-II,
grey: SMS-EMOA)

40 and 50 percent. At minimum 40% of function evaluations are saved leading to a reduction
in received hypervolume of less than 1% (cf. table 5.7).

Discussion: The final observation is a very impressive and encouraging result for the pro-
posed OCD. A value of npregen = 10 proved to be a very good setting to detect convergence
early while not loosing much solution quality. Nevertheless, even different parametrizations
yield very good results again. This hints to a very robust and reliable procedure.

In contrast to the results received for the NACA test case, the variance criterion is strongly
required for the RAE test case to allow for a well-timed termination of the algorithm. This
implies that the convergence to the Pareto front is more smooth for this test case. This
sounds a bit strange on first sight due to a higher dimension of the objective space. However,
a possible explanation is the larger decision space dimension of the NACA test case in contrast
to RAE.
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Table 5.7: RAE: Absolute and percentage medians of HV- and generation-differences at the
OCD stop generation and MaxGen.

RAE

Alg. w | npregen || med(Genpg) med(HVpig)

NSGA-II 8 10 87.0 (69.6%) | 5.29¢-05 (0.23%)
s | 15 78.0 (62.4%) | 2.58¢-05 (0.11%)
20 10 26.0 (52.0%) | 8.06e-05 (0.35%)
20| 15 21.5 (43.0%) | 4.36e-05 (0.19%)

SMS-EMOA | 8 10 89.5 (71.6%) | 8.33e-05 (0.36%)
8 15 81.0 (64.8%) | 4.38e-05 (0.19%)
20| 10 24.0 (48.0%) | 7.41e-05 (0.32%)
20| 15 19.5 (39.0%) | 3.58¢-05 (0.16%)

5.2.7 Summary and Outlook

Applying OCD on close to industry aerodynamic test cases confirmed the results received
from standard benchmark test cases presented before. The parametrization proposed there
proved to be highly compliant with the test cases under investigation here. To this end, a
value of npregen = 10 leads to a robust and reliable convergence detection and a very good
compromise between solution quality and saving computational resources.

For the parametrization of the optimization algorithm, smaller population sizes were ex-
pected to be more suitable for the RAE test case and larger ones for NACA. These expec-
tations are strongly supported by the received results. In this sense, the investigation in
the current paper can be seen as a practical validation for establishing OCD as an efficient
termination criterion in EMOA.

Although two interesting and relevant aerodynamic applications have been tested with
OCD, there are many more to be explored. The effect of constraints has to be analysed, which
can be performed without any adaptations of OCD. Furthermore, test cases from completely
different areas like, e.g., combinatorial optimization should be investigated to additionally
confirm the conclusions drawn.
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Sequential Parameter Optimisation for EMOA

Ever since evolutionary multiobjective optimisation algorithms have been invented, the research fo-
cus was almost solely put on selection operators. Variation was thought to play only a minor role for
the performance of the algorithms.

The first collection of test functions within the EMOA field was the ZDT test function set, named af-
ter their inventors Zitzler, Deb, and Thiele [ZDT00]. Trying to solve these test functions, the simulated
binary crossover (SBX) operator in conjunction with the polynomial mutation (PM) operator [Deb01]
proved to yield a very good performance. As a consequence, these operators became established
in the EMOA field as a kind of standard operators for real-valued applications.

If special domain knowledge is available or the problem at hand exhibits a combinatorial or other
discrete nature, the situation is different. For discrete, e.g. combinatorial, optimisation problems,
normally specialised variation operators exist. If special domain knowledge is available, it is almost
always beneficial to implement this into a special variation operator.

Putting a research focus on variation operators, one is normally confronted with more than just
one or two parameters, which is the case in (deterministic) selection strategies. This is particularly
true, invoking the SMS-EMOA, where, due to the (1 + 1) selection scheme, the number of selection
parameters is reduced to only one, the population size p.

Taking a look at variation operators, more parameters have to be considered. For single-objective
EA, the Sequential Parameter Optimisation (SPO) framework was a breakthrough [BB06]. Using
this framework enables the user to tune parameter settings for an algorithm-application combination
at hand. Moreover, the techniques within the framework are able to provide insight in parameter-
problem interactions. To this end, the user is able to achieve problem understanding and domain
knowledge.

The transfer of SPO to multiobjective optimisation problems is self-evident. The standard, single-
objective framework can be applied if the results of multiobjective optimisation runs are mapped to
scalar values, e.g. by a quality indicator like the hypervolume. Nevertheless, this was not officially
conducted until the point of time of the following CEC publication. "Unofficial” exceptions are a techni-
cal report at the TU Dortmund University by Bartz-Beielstein and Naujoks [BBN04] and an extended
abstract published in the Proceedigns of an ERCOFTAC' meeting on design and optimisation in
2006 [NQBBO06].

The current chapter presents two publications that introduce the SPO framework for EMOA and
are mainly based on the diploma thesis of Simon Wessing [Wes09]:

'ERCOFTAC — European Research COmmunity on Flow, Turbulence, And Combustion,
www.ercoftac.org
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[WN10] S. Wessing and B. Naujoks. Sequential Parameter Optimization for Multi-Objective Prob-
lems. In IEEE Congress on Evolutionary Computation (CEC 10) within the World Congress on
Computational Intelligence (WCCI). IEEE Press, Piscataway, NJ, 2010.

This article (cf. pages 123 to 138) details some preliminaries of the approach first. Here, the
choice of the quality indicator is highlighted next to the question whether the normalisation of the
objective space plays a major role for the quality of the results. Finally, SPO was applied to a test
function set assembled for a benchmark contest at the CEC in 2007 [HQD07] to determine optimal
selection parameters for each of the test functions.

The second article (cf. pages 139 to 147) investigates the variation operator parameters and com-
pares the results of the standard operators SBX and PM with a differential evolution approach. The
second part of this publication applies the methods above to the two well-known aerodynamic test
cases. Here, it was tested, whether the results on the mathematical test cases could be transferred
to real-world problems.

[WBRN10] S. Wessing, N. Beume, G. Rudolph, and B. Naujoks. Parameter Tuning Boosts Per-
formance of Variation Operators in Multiobjective Optimization. In R. Schaefer et al., editors,
Parallel Problem Solving from Nature (PPSN Xl), pages 728—-737. Springer, Heidelberg, 2010.

On real-world problems, it is still common practice to use EMOA parametrisations obtained from
unrelated test problems. The experiments in section 6.2 clearly put this into question. It is shown
that the performance of the tuned operators improved significantly compared to the default parametri-
sations. The performance of two tuned variation operators, SBX plus PM compared to differential
evolution, is very similar, whereas the optimised parameter configurations for the considered prob-
lems are very different from the initialised, standard settings. The latter perform comparably bad
within the investigations at hand.

As a consequence, parameter tuning should become standard. While we respect that the pro-
posed parameter optimisation is computationally very expensive, ignoring the problem is not an
option, because significantly improved solutions can be obtained.

The most important essence of what was found out with respect to strategy parameters is that
EMOA (and even EA) parametrisation is not a trivial task. After tuning, the obtained parameter con-
figurations are often very different from each other, even on one problem. Nevertheless, important
findings are:

e The population size usually has a great influence on the observed performance and a great
diversity of values could be found. However, caution is advised since the results are depending
on the used quality indicator and the number of function evaluations considered.

e The hypervolume indicator is more successful than the additive e- and the R2-indicator for
optimising the SMS-EMOA with SBX plus PM as variation operator.

e Experimental setup is not a trivial task. Any reference data for evaluation has to be chosen
carefully, so that differences are measurable. The CEC 2007 evaluation approach fails on one
problem, because the reference point is too far away from the Pareto front. In such cases, the
indicator’s ability to reward a good distribution of the approximation set vanishes.

From the practitioners point of view and in consensus with Smit and Eiben [SE09], who studied
parameter tuning on single-objective problems, there is a clear message: Regardless which variation
operator is chosen, make sure that the parameters are tuned. Do not trust in default settings.
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6.1 Sequential Parameter Optimization for Multi-Objective Problems

This section (pages 123 to 138) is copied verbatim from

[WN10] S. Wessing and B. Naujoks. Sequential Parameter Optimization for Multi-Objective Prob-
lems. In Congress on Evolutionary Computation (CEC 2010) within the World Congress on
Computational Intelligence (WCCI). IEEE Press, Piscataway, NJ, 2010.

Abstract

Optimizing an algorithm’s parameter set for evolutionary multi-objective optimization (EMO)
algorithms is not performed regularly until now. However, it could have been learned from
single-objective optimization that doing so yields remarkable improvements in algorithm’s
performance. Here, the sequential parameter optimization (SPO) framework is exemplarily
applied to one EMO algorithm (EMOA) with different questions handled in different exper-
iments. The main goal is to show the wide application area of such methods with a second,
minor focus on the achievable improvements.

6.1.1 Introduction

Within the past five to ten years, a remarkable step with respect to evolutionary algorithms
(EA) was taken. Since then, the importance of the parameterization of EA increased because
it was learned that the performance of such methods depends on its parameterization heavily.
Different frameworks to consider the parameterization on problem-algorithm combinations
have been developed with the goal to improve algorithm’s performance on the considered
problem. Such combinations are examined because another lesson learned was that optimal
parameterizations of an optimization method vary with respect to the problem at hand.

Up to now, the frameworks for parameter optimization have mostly been applied to single-
objective optimization problems. Only a few attempts have been made to transfer the method-
ology to multi-objective optimization problems (MOP). However, the field of evolutionary
multi-objective optimization algorithms lacks of a detailed analysis of parameter interactions
and investigations on the usefulness of different genetic operators, either selection as well as
variation operators.

The work at hand provides a first step to apply the sequential parameter optimization (SPO)
framework to some tasks, i.e. problem-algorithm combinations, from the multi-objective
optimization field. At first, the above mentioned framework is introduced in Sec. 6.1.2. The
major part of the contribution, Sec. 6.1.3, depicts four experiments combining SPO and MOP.

To apply the SPO framework to MOP, quality indicators for MOP are utilized to rate
the quality of EMOA outcomes providing a single, real-valued quality measure. The in-
fluence of the respected quality indicator compared with alternative ones is investigated in
the first experiment (cf. Sec. 6.1.3). Prepared this way, the framework is applied to the
SMS-EMOA [NBEO05] on SYM-PART, a special MOP, in the forthcoming experiment. A
resulting question from the above, the influence of objective space normalization, is tackled
in Experiment 6.1.3.

To show the wide applicability of SPO even on EMOA, Experiment 6.1.3 examines differ-
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ent selection variants of the algorithm at hand next to parameters of these. Section 6.1.4
summarizes the results and concludes our work.

6.1.2 Sequential Parameter Optimization

SPO was developed by Bartz-Beielstein [BB06] for parameter tuning of stochastic optimiza-
tion algorithms. It was the first tuning procedure that specifically targeted at this task. By
now, another procedure, called Relevance Estimation and Value Calibration (REVAC), has
been developed by Nannen and Eiben [NE06, NE07]. Of course, parameter tuning is again
an optimization problem that can also be tackled by arbitrary optimization algorithms. The
aforementioned special approaches additionally try to provide insight into the parameters’
effects, which helps on deciding if any improvement is scientifically meaningful. Recently,
Smit and Eiben began comparing the different tuning approaches empirically [SE09].

Basic SPO Workflow

SPO treats optimizer runs as experiments. The algorithm’s parameters (e.g. the population
size p) that need to be set before the optimization’s start are considered as the experiment’s
design variables. These are also called factors. SPO always improves an algorithm’s param-
eter set for one specific problem. The workflow of SPO can be divided into three phases:
Experiment construction, parameter optimization, and reporting (see Figure 6.1). In the first
phase, the preexperimental planning (S-1) has to be done, e.g. to determine the true aim
of the investigation or the parameters to consider. A scientific claim (S-2) and a statistical
hypothesis (S-3) must be specified next. Such a hypothesis must be falsifiable by a statistical
test. An introduction to statistical hypothesis testing can be found in [LRO05]. Afterwards,
the experimental design (S-4) comprises the optimization problem, resource constraints, an
initialization method, a termination method, an algorithm and its parameters, an initial ex-
perimental design, and a performance measure. In the optimization phase, the experiment is
carried out (S-5) and its results are used to learn a prediction model (S-6). Usually, DACE
Kriging by Lophaven et al. [LNS02] is used for this purpose, but other models, e.g. regression
trees, are also possible. The Kriging model is also able to predict the mean squared error
(MSE) on an untried point in the region of interest. We have to mention that DACE Kriging
was originally intended to model deterministic functions. SPO accounts for this requirement
by sampling each design point multiple times and using the mean value. The model is eval-
uated and visualized in (S-7). Optimization is carried out in (S-8). In (S-9) the termination
criterion is tested. If it is not fulfilled, a new design point is generated in (S-10), where-
upon the process continues at (S-5). Otherwise, the reporting phase begins in (S-11) with
the rejection or acceptance of the statistical hypothesis and finally the results are interpreted
and discussed (S-12). The reporting off all experiments is done in alliance with this basic
SPO workflow according to Preuss [Pre07]. This standardized scheme especially separates
statements of varying objectivity, making results more comprehensible.

Preparing SPO for Multi-Objective Optimization

To evaluate an optimizer run, a performance measure has to be selected. In single-criterion
optimization, this is usually the mean or median best fitness value. In the multi-objective
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EXxperiment construction

(S-1) Preexperimental planning

(S-2) Scientific claim

(S-3) Statisticaltypothesis

(S-4) Specification
Parameteroptimization
(S-5) Experimentation

(S-6) Statistical modeling and prediction
(S-7) Evaluation and visualization
(S-8) Optimization

(S-9) Termination criterion

fulfilled not fulfilled

(S-10) Design update

Reporting

Figure 6.1: Workflow of SPO. You can see the three main phases experiment construction,
parameter optimization and reporting. The “Sequential” in the name SPO comes
from the loop in the optimization phase.
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case it gets more complicated, because we need a mapping from the population of solutions
to a scalar value. First, we define a few prerequisites. A unary quality indicator is a function
I : ¥ — R that assigns each Pareto-set approximation a real number. Here, ¥ denotes the
set of all Pareto-set approximations in the search space. In this work, we will concentrate on
three monotonic indicators, i.e. indicators I that satisfy

VA, BEU:A=<B=I(A)<IB). (6.1)

In Equation 6.1, the weak dominance relation =< has been generalized to operate on sets as
follows:
A<BeVyeB:Ixe A:x<y.

A solution x weakly dominates a solution y (x < y), if and only if it is not worse than y
in every objective. For our experiments, the e; indicator (I.;) [ZTL"03], the R2 indicator
(Ir2) [HJ98] and the hypervolume indicator (/) are chosen. To date, I is the only indicator
that is known to be even strictly monotonic. Zitzler et al. [ZKTO08] deal with the topic in
greater detail. I,y and o are to be minimized, and Iy will measure the negative hypervolume
in the following, so that all indicators consistently must be minimized.

SPO was applied to multi-objective optimization for the first time by Naujoks et al.
[INQBBO06], who optimized the SMS-EMOA’s population size and variation, using the hyper-
volume indicator as utility measure. This paper extends the previous work in several ways.
Firstly, the contribution at hand also investigates quality assessment, comparing three qual-
ity indicators and two evaluation approaches. Secondly, every single variation parameter can
be optimized, while Naujoks et al. [NQBBO06] only differentiated between simulated binary
crossover (SBX) variation [DA95] and an evolution strategy variation as a whole. Thirdly, this
work deals with mathematical benchmark problems, while the other investigated a real-world
design problem.

While real-world problems are probably more relevant to people, mathematical problems
offer some advantages. They are usually designed to have certain properties that make it
easier for the experimenter to measure an algorithm’s performance. For example, the true
Pareto-front should be known for a test problem. Another plus factor is the problem’s formal
definition, supporting the reproducibility of results. For these reasons, we are using problems
from a competition at the Congress on Evolutionary Computation (CEC) 2007 [HQD"07] in
the experiments. In this competition, Iy and Iro were used as performance measures and set
up according to Algorithm 11.

The normalization has a few drawbacks, though. Firstly, because the worst objective values
are usually estimated, it still can happen that not all solutions of the algorithm’s result
dominate (2,...,2)7. These points have to be filtered out or repaired. Secondly, the Pareto-
front can be very small compared to the whole feasible objective space. This causes differences
between indicator values to become very small, which might lead to numerical problems.
Thirdly, the Pareto-front has to be known. A more practical approach would be Algorithm 12.
This approach works especially well with SPO, because there usually exists an initial algorithm
design one wants to compare the results with. So, the old algorithm has to be run for this
comparison anyway. Doing this before SPO, one can reuse these results to obtain a reference
point.

The procedure could be easily extended to obtain the necessary reference sets for I, and
Iro. However, it does not fix the first point of criticism. Experiment 6.1.3 compares the two
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Algorithm 11 CEC 2007 Evaluation

1. Set the upper reference point to the worst possible objective values of the problem.
If these values are unknown, estimate them by evaluating a sample of randomly
generated solutions.

2. Set the lower reference point to the ideal point of the Pareto-front. This point should
be easily obtainable because the Pareto-front of the problems is known.

3. Normalize the objective space between these two points, so that the lower point is
mapped to (1,...,1)” and the upper point is mapped to (2,...,2)7.

4. I.y and IRy are initialized with the two reference points and a sample of the Pareto-
front. Iy is initialized with (2.1,...,2.1)7 as reference point.

Algorithm 12 Evaluation for practical problems

1. Run your current optimization algorithm a number of times and save the resulting
populations.

2. Set the upper reference point to the worst obtained objective values and use it with
Iy

approaches on a problem where they lead to quite different reference points.

6.1.3 Experimental Results

This section describes the experimental results. At first, the correlation and performance of
different quality indicators is investigated, aggregating results from all CEC 2007 problems.
The next experiments focus on SBX variation and the evaluation methodology on a single
problem. Finally, some selection parameters are studied on all problems again.

All experiments were conducted with test problems from the CEC 2007 suite [HQD™07].
However, the results presented here are not directly comparable to any other that were ob-
tained before in the environment of the CEC 2007 contest. This is, because a number of bugs
in the implementation were fixed here. Additionally, new reference sets are generated for the
evaluation.

Experiment 1 (Correlation in SPO) Does SPO deliver similar results if different quality indi-
cators are used as objective? Which indicator is most suitable for SPO?

Preexperimental planning: In a preliminary experiment, random populations were created and
their non-dominated fronts have been evaluated with the three indicators introduced above
(Ie4, IRo, and Iy). Each population consists of randomly generated individuals that are uni-
formly distributed in the feasible region of the solution space. The population size is randomly
drawn from [5, s], where s is the default reference set size for the problem (cf. [HQD"07]). For
each of the 19 problems of the CEC 2007 suite, 50 populations are created, leading to a total
sample size of 950. Figure 6.2 shows the results that are obtained with Pearson’s correlation
coefficient [SC89]. All correlations found feature p-values smaller than 2.2 x 10716,
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Figure 6.2: Correlation of indicators shown visually and in numbers. The main diagonal

specifies, which indicators are plotted against each other in each panel. The plots
also distinguish different numbers of objectives. Medium shade means two, dark
three, and light five objectives. Iy and Iro show the highest correlation.
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Table 6.1: The setups for experiments with SBX variation.

Problems 2D and 3D CEC 2007 problems

SPO budget 500 algorithm runs

Algorithm initialization Uniform random

Stopping criterion 500 - M and 5000 - M evaluations

Algorithm SMS-EMOA

Parameters s Nes M, Pes P

Initial experimental design | Latin Hypercube (50 points, 3 repeats per point)
Performance measures I, Iy, Ino

Additionally, some SPO runs are carried out to determine the parameters’ region of interest
(see Table 6.2) and therefore to avoid the production of outliers. Any performance comparison
between configurations is based on the mean value of a sample of runs, because this is also
what SPO is set up to optimize.

Task: The different quality indicators should give similar and reasonable results when used
with SPO. It would be especially nice if it could be shown that optimization with Iz also leads
to better results for Iy and Iry. Spearman’s rank correlation coefficient [HW73] is used to
compare how the indicators evaluate the results. The indicator’s performance in optimizing
over all problems is tested with a U-Test [HW73]. The significance level is always 5%.

Setup: SPO is applied to all two- and three-objective test problems in the CEC 2007 suite.
Five-objective problems are excluded from the experiments because of the SMS-EMOA’s
high runtime on these, leaving 13 problems for further analysis. For every problem, SPO is
carried out with each indicator. Moreover, two different run lengths of the SMS-EMOA are
examined. The short run length represents a budget that is normally not sufficient to reach
the Pareto-front, while the long run length hopefully is sufficient to get quite near. This
way, there are six SPO runs for every problem. Each of the six SPO results is verified by
doing 50 SMS-EMOA runs with the respective configuration. Again, each SMS-EMOA run is
evaluated with all three indicators and the mean value is computed for each indicator. These
mean values are converted to ranks on every problem afterwards, resulting in a 3 x 3 matrix
for each run length. Thus, we gain information about indicator performance and correlation
in the same experiment. Table 6.1 shows an overview of the specification. In the following,
the number of objectives will always be denoted by M.

For the variation of individuals, SBX and polynomial mutation are conducted [DA95]. The
parameters p. and p,, define the variation probabilities per decision variable, while 7. and
Nm control the variance of the used probability distributions. Table 6.2 contains the regions
of interest and the default values for the parameters. New configurations must succeed in a
performance comparison to the default parameters. The region of interest (ROI) is the range
over which we conduct our search.

Results/Visualization: Table 6.3 shows a compilation of the performance results. A lower
rank-sum is better in this table. The rank correlation between Iy and Iy is 0.54 for 500 -
M evaluations and 0.41 for 5000 - M evaluations. The correlation between Iy and Igo is
0.58 for 500 - M evaluations and 0.65 for 5000 - M. I,y and Ips have correlations of 0.35
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Table 6.2: Region of interest and default value for each parameter.

Parameter 7! Ne Mm Pe Pm
Default 100 20.0 | 15.0 | 1.0 | 0.1
ROI {3, ..., 200} | [0,40] | [0,40] | [0,1] ] [0,1]

Table 6.3: The summed-up ranks achieved by the indicators.

Evaluated
500 - M Total
Iy IeJr IR2
Tl Iy ||20] 24 | 24| 68
| Iy |[26] 2228 76
Slipll32]132]26] 90
Evaluated
5000 - M Total
IH IeJr IR2
Tl Iy | 22)27 |25 74
Z| Iy 28|18 |29 | 75
Sl Ip [26]31]22] 79

and 0.06. Except for the last value, all correlations are significant. Fig 6.3 depicts the
influence of optimization on population size, depending on the used indicator and the amount
of evaluations allowed for the SMS-EMOA.

Observations: Ig is the most successful indicator, attaining the lowest rank-sum over all indi-
cators and problems. As in Figure 6.2, Iy and Irs have the highest correlation. Nonetheless,
Iy achieves a significantly better performance than Ire (column “Total” in Table 6.3) with
500 - M evaluations. All other differences in rank-sums are not statistically significant.

Additional investigations indicated that the found parameters themselves do also correlate
between the indicators. The highest correlation can be seen in u, p., and p,,. Moreover,
the population size has the strongest influence on performance throughout the problems (see
Figure 6.3).

Discussion: As expected, the main diagonal almost always contains the row- and column-
wise minimum. So, it is most efficient to optimize with the indicator that is also used for
evaluation. In other words, the indicators are different enough to separate each one from
the others. Iy achieves the best overall score, which is welcome, because it is the easiest to
set up for practical applications. A remarkable issue is that Iy and Igo feature the highest
correlation between the indicators, while the e-indicator ranges right in between concerning
the rank-sums. This issue needs to be investigated in more detail in the future. It appears
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Figure 6.3: Mean population sizes obtained with each indicator on the different run lengths.
The values are averaged over all 13 problems .

plausible that the population size for 500 - M evaluations is the lowest for If, because the
Pareto-front is not reached anyway. So, it is probably sufficient to optimize a single, balanced
solution to maximize the hypervolume.

Experiment 2 (SBX on SYM-PART) Which parameter configurations will be found for the
problem SYM-PART? Will they improve performance on the respective indicator compared
to the default configuration?

Preexperimental planning: SYM-PART was designed as a testbed for EMO algorithms’ ability
to maintain diversity in the decision space. As this aspect is not considered here, SYM-PART
should not be very difficult for the SMS-EMOA. For this reason, we take it as an example
to illustrate how the results of Experiment 6.1.3 were generated. Moreover, the problem is
interesting from another point of view. The feasible objective space is very large compared to
the Pareto-front (see Figure 6.4), which might be a problem for the performance measurement.

Task: After SPO has finished, the resulting configuration is run 50 times. Each run is eval-
uated with every indicator, so that the configurations can be compared with each other and
the default configuration. Comparisons with the default configuration are done by a statis-
tical test: The null hypothesis (Hy) is that there is no difference in means. The alternative
hypothesis is that the optimized configuration produces a lower mean best value than the
default configuration. Hj is rejected if a U-Test [HW73] can achieve a significance level of
5%. The optimized configurations are not compared with a statistical test, only ranked by
their mean performance. This kind of information was aggregated in Experiment 6.1.3.

Setup: See Experiment 6.1.3.
Results/Visualization: The parameter configurations found by SPO are shown in Table 6.4.
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Figure 6.4: The reference set for SYM-PART. In the upper right corner you can see that after
normalization, all points lie very close to (1,1) and are therefore not visible.

Hy is rejected for all configurations, which means the improvements are statistically sig-
nificant. Figure 6.5 shows the main effects of the SPO run with Iy and 10000 problem
evaluations.

Observations: The effect plots (see Figure 6.5) indicate that 7,, has a high influence and
should approximately be greater than 20. While p,, is chosen constantly low, p. is only
low on the long runs. Especially Iy and Ire suggest very low variation probabilities for
10000 evaluations. These two indicators show a high correlation in all their parameter results
(see Table 6.4). All the indicators also perfectly correlate in their performance evaluation of
the configurations. More effective population sizes are continuously low, the most successful
configurations actually feature the smallest population size.

Discussion: The surprisingly low recombination probabilities may stem from the symmetry in
the decision space. SYM-PART features several niches in decision space that cover the whole
Pareto-front each. Thus, solutions that are very different can be equally fit. The experiment
indicates that doing SBX between these solutions will probably lead to worse offspring. The
proposed population sizes are surprisingly small, which certainly means there is not much
diversity maintained here. However, this was not the task. The question, if normalizing the
whole objective space on this problem is a good idea, still persists and will be tackled again
in Experiment 6.1.3.
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Table 6.4: SPO results for SBX variation on SYM-PART.

Evalu- | Indi- Configuration Rank
ations | cator || p ‘ Tc ‘ Im ‘ Pc ‘ Pm || o ‘ Iy ‘ IRy
Iy 4 120.70 | 18.52(0.59|0.07|| 1 | 1 1
1000 | Iy 5 138.59139.15(0.92/0.19( 2 | 2 | 2
IR 5 (13.71]113.51(0.560.10( 3 | 3 | 3
Iy 9 | 5.05 139.48|0.01(0.02] 2 | 2 2
10000 | I+ 13137.16 | 38.73]0.63|0.15|| 3 | 3 | 3
Iro 7486 |34.25/0.01/0.09| 1 | 1 1

Table 6.5: Reference points obtained with different approaches

Problem Alg. 11 Alg. 12
OKA?2 (5.45,5.45)T (3.14,4.22)T
SYM-PART (525, 525)7 (28.71, 30.40)T
S.ZDT1 (2.05,10.45)7 (2.16,10.04)7
S_ZDT2 (2.05,10.45)7 (1.62,10.21)7
S_ZDT4 (3.1,1049.95)7 (1.84,1281.88)7
R_ZDT4 (4.15,524.95)T (2.00, 450.36)7
S_ZDT6 (3.1,20.95)7 (2.04,15.76)7
S.DTLZ2 | (10.45,10.45,10.45)" (4.61,4.01,7.08)"
R.DTLZ2 | (10.45,10.45,10.45)7 (5.24,5.67,4.95)T
S_.DTLZ3 (6300, 6300,6300)" | (6175.19,4873.26,3381.78)7
WFG1 (10.5,10.5,10.5)7 (2.87,1.28,2.29)7
WFGS (10.5,10.5,10.5)7 (2.85,4.59,6.39)7
WFG9 (10.5,10.5,10.5)T (2.87,4.52,6.43)T

Experiment 3 (Quality assessment on SYM-PART) Is the normalization of the objective space
a handicap for SPO or is it harmless? Can the random noise be reduced while keeping
normalization?

Preexperimental planning: Table 6.5 shows the reference points obtained with Algorithms 11
and 12. The left column contains the points that map to (2.1,...,2.1)7 in normalized ob-
jective space. The points in the right column were obtained from 20 SMS-EMOA runs with
default parameterization and a budget of 500 - M evaluations, respectively. Both these num-
bers as well as Figure 6.4 illustrate that normalization has a great impact on SYM-PART. So,
we compare the two approaches with each other on this problem. Another idea is to subtract
the initial population’s hypervolume I?I from the final indicator value to dampen the noise.
This could be important, because this experiment will use short algorithm runs.

Task: We have Algorithms 11 and 12 as alternatives for our evaluation approach. We call this
factor ALG. The indicator choice is called factor IND. So we prepare a 22 full factorial design
with ALG € {1,2} and IND € {Ig, Iy — I%} that determine the setup. Each combination is
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Figure 6.5: Main effects of parameters on SYM-PART (optimized with Iz and 10000 problem
evaluations). The errorbars depict 90% confidence intervals.

Table 6.6: The parameters’ standard deviation on the 20 runs.

No Factors Mean T Standard Deviation
ALG| IND "TTh 1w e | tm | Pe | Pm
1 1 Iy -1.2056 | 0.00125 | 1.39 | 12.85 | 9.00 | 0.20 | 0.13
2 1 Iy —19% | -1.2055 |0.00093 | 1.12 | 11.31|10.39 | 0.25 | 0.13
3 2 Iy -1.2063 | 0.00135 | 1.04 | 12.05 | 4.33 | 0.17 | 0.07
4 2 Iy —1% || -1.2065 | 0.00098 | 0.60 | 13.23 | 4.98 | 0.23 | 0.14

run 20 times in SPO. The outcomes of these runs are analyzed regarding their performance
and their variance. Note that this evaluation is again based on normalized values only. A
U-test [HW73] is used to compare the distributions’ means. A significance level of 5% is
required again.

Setup: SPO and evaluation is only done with the hypervolume indicator. The part of the
setup that is not fixed by ALG and IND is taken from the previous experiments, described in
Tables 6.1 and 6.2. Because many repetitions are carried out, only 1000 problem evaluations
are given to each SMS-EMOA run.

Results/Visualization: Table 6.6 shows the standard deviations obtained with the two setups.
Figure 6.6 shows the main effects for the two factors.

Observations: Factor ALG yields a significant improvement, but IND does not. Consequently,
the normalization of the objective space has a negative effect on SPO’s performance, causing
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Figure 6.6: Main effects for the two factors ALG (left) and IND (right). The black lines
connect the samples’ mean values.

also a higher standard deviation of almost all parameters. The assumed neutralization of
noise from the random initial population could not be observed.

Discussion: Admittedly, the use of Algorithm 12 does probably not make such a big difference
on most other CEC 2007 problems than the SYM-PART one. Often, the reference points
obtained by the two evaluation algorithms are quite similar. To evaluate if there is really no
impact of IND, further studies would have to be carried out.

Experiment 4 (Selection Variants) Which influence do selection parameters have on the SMS-
EMOA’s performance?

Preexperimental planning: The S-metric selection contains some less well-known parame-
ters than variation. One issue is a selection variant introduced by Naujoks, Beume and
Emmerich [NBEO5], which only uses the S-metric when the population contains just one
non-dominated front. In the other case, an individual’s fitness is determined by the number
of individuals that dominate it. This selection is called dominating points (DP) selection in
the remainder. Its attraction is its lower runtime compared to S-metric selection, which is
exponential in the number of objectives. DP assigns every point a rank which is equal to
the number of other points that dominate it. The fitness is the higher the lower the rank is.
Another parameter hides in the constant offset (1,...,1)” that is used in the SMS-EMOA’s
reference point construction. A new reference point is calculated in each generation from the
population (). Therefore, we use Algorithm 13 to make this offset parameter variable. We
can even have a different offset in each dimension. For more details on the SMS-EMOA’s
selection variants we refer to [NBE05]. Please note that the application of hypervolume in
the selection operator is completely independent from Iz, which is used to evaluate the algo-
rithm’s performance afterwards. Additionally, the SMS-EMOA’s reference point has nothing
to do with the reference point mentioned in Experiment 6.1.3.

Task: The two selection variants introduced are compared using SPO. Moreover, different
offset values were allowed (o; for each objective space dimension 1,..., M) and incorporated
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Algorithm 13 constructReferencePoint(Q, o)

1w« first(Q) /* set the vector of worst objective values to the first point of Q */
2: for all ¢; € Q do
3:  for j=1to|¢| do /* for every dimension */
4: wj +— max{wy, gi;} /* set wj to the worse value */
5. end for
6: end for
7: return w4+ o /* return the reference point */

Table 6.7: The default configuration and the parameters’ region of interest.

Parameter W DP 01 09 03
Default Value 100 0 1 1 1
ROI [6, 120] | {0,1} | [0, 100] | [0, 100] | [0, 100]

in the SPO investigation. The results are tested with a two-sided U-Test [HW73] with a
significance level of 5%.

Setup: Table 6.7 shows the default selection parameters and the region of interest for the
configuration in this experiment. The SPO runs are carried out with SBX default parameters,
assuming that selection is fairly independent from variation. In the validation after SPO, every
configuration is run 50 times with 5000 - M problem evaluations. Factor DP € {0,1} depicts
if the number of dominating points is used for selection or not. As it is binary, it cannot be
optimized by SPO. So, we run SPO separately for each possible value.

Results/Visualization: Using the dominating points for selection leads to a significantly worse
performance on OKA2 and S_ZDT2, which is shown in Figure 6.7. There is no significant
effect on the other problems, although it is a close decision on S_ZDT1 and S_DTLZ3, which
also end in favor of DP = 0 with p-values of 0.06 and 0.08. The better SPO results are
reported in Table 6.8. In the last column, p values from Experiment 6.1.3 are shown for a
comparison.

Observations: Dominating points selection cannot yield any improvements, but it also pro-
duces worse results on only two of the 13 problems. The population sizes found by SPO
tend to be smaller than the previously obtained ones in the SBX experiments, but there is a
remarkable correlation of 0.94 between the values (p-value = 1.156 x 107).

Discussion: DP proves to be a reasonable alternative, reducing runtime without losing much
quality. The DP column in Table 6.8 should be seen rather as a recommendation for cases
where runtime must be reduced. With hindsight, the SPO runs should have been carried out
with a fixed pu, so that the effects of the offset parameters stood out more clearly. On the other
hand, it is interesting to see that the resulting population sizes are quite similar to previously
found ones, although the variation was not optimized and the region of interest was different.
This way, we obtained a validation of our population size results from Experiment 6.1.3.

The upper bound for the offsets probably should have been higher, perhaps even in the
thousands, because some problems (e.g. S_DTLZ3) have feasible objective ranges in such
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Figure 6.7: The main effects of the two problems where DP yields significantly worse results.
The black lines connect the samples’ mean values.

dimensions. Treating each offset-dimension o; individually did not provide any additional
insight yet. Further experiments are required to draw any conclusions here. Using higher
offsets seems to be very promising, though. On some problems, it has a remarkable positive
effect.

6.1.4 Conclusions

For the first time, I,y and Ipo were used as performance measures in SPO and compared to
each other and Iy. For 5000- M problem evaluations, SPO carried out 19.2 optimization steps
on average with its budget of 500 algorithm runs. The final configuration was also the best in
40% of these steps. The numbers for 500 - M evaluations are similar (19.4 steps, 36%). This
high percentage means that improved configurations are seldom found and seems to indicate
that the optimization is not too successful yet.

The obtained parameter configurations are often very different from each other, even on the
same problem. This seems normal, because Smit and Eiben made the same observation in
their experiments [SE09]. Considering the stochasticity of the optimization and the different
preferences of the indicators, it makes few sense to speak of optimal configurations. But, as the
statistical tests show, there is always room for improvement over the default configurations.
The practitioner may use the given parameters as a starting point, searching for his own
personally optimal configuration. Further results of this work can be summarized as follows:

e The population size usually has a great influence on the observed performance and a
great diversity of values could be found. However, the results are depending on the used
quality indicator and the algorithm’s run length. So, the results should be used with
care.

e The hypervolume indicator Ig is more successful than I,y and Ipe for optimizing the
SMS-EMOA with SBX as variation (see Experiment 6.1.3).

e Experimental setup is not a trivial task. Any reference data for evaluation has to be
chosen carefully, so that differences are measurable. The CEC 2007 evaluation approach
does not work well at least on SYM-PART, because the reference point is too far away
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Table 6.8: The selection parameters obtained with SPO.

Configuration W in
Problem W ‘ DP ‘ 01 ‘ 09 ‘ o3 || Experiment 6.1.3
OKA2 55 | 0 |87.1[84.9| - 107
SYM-PART || 6 0 [98.8]50.3| - 9
S_ZDT1 17 | 0 |44.2]48.6| - 39
S_ZDT2 9 0 [56.1|45.4| — 18
S_ZDT4 7 0 [46.9]26.3| — 7
R_ZDT4 97 | 0 [41.3|15.7| — 196
S_ZDT6 6 0 |90 |273| — 16
S_DTLZ2 114 1 | 7.2 | 3.2 |60.1 172
R_DTLZ2 81 | 1 [85.2|28.2|774 179
S_DTLZ3 20 | 0 |52.1]52.6]93.2 83
WFG1 14| 1 |12.9(65.8]25.6 30
WFGS8 26 | 0 |47.2]94.1]93.5 15
WFG9 104| 0 |91.2|18.2|78.8 152

from the Pareto-front. In this case, the indicator’s ability to reward a good distribution

of the approximation set vanishes.

Since this is one of the first contributions highlighting SPO for multiobjective optimization,
numerous questions arise providing interesting new research direction. Possibly the most
interesting one focuses on standard parameterizations for certain genetic operators. Is there
a special setting proving superior or at least above-average results on a collection of test
functions? How do the algorithms parameterized this way perform on multiple, different real-
world problems? Having answered these questions, can the results be transferred to other
MOEA algorithms, especially if only the selection operator is changed, but the variation

operators persist?
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6.2 Parameter Tuning Boosts Performance of Variation Operators in
Multiobjective Optimization

This section (pages 139 to 147) is copied verbatim from

[WBRN10] S. Wessing, N. Beume, G. Rudolph, and B. Naujoks. Parameter Tuning Boosts Per-
formance of Variation Operators in Multiobjective Optimization. In R. Schaefer et al., editors,
Parallel Problem Solving from Nature (PPSN Xl), pages 728—737. Springer, Heidelberg, 2010.

Abstract

Typically, the variation operators deployed in evolutionary multiobjective optimization algo-
rithms (EMOA) are either simulated binary crossover with polynomial mutation or differential
evolution operators. This empirical study aims at the development of a sound method how to
assess which of these variation operators perform best in the multiobjective context. In case
of the S-metric selection EMOA our main findings are: (1) The performance of the tuned
operators improved significantly compared to the default parameterizations. (2) The perfor-
mance of the two tuned variation operators is very similar. (3) The optimized parameter
configurations for the considered problems are very different.

6.2.1 Introduction

Numerous multiobjective evolutionary algorithms have been developed and studied in various
benchmarks. However, clear evidence on which methods, operators, and even parameters are
promising for certain test cases could not be received. Here, the functions from the well-known
CEC 2007 [HQD"07] competition are dealt with investigating the performance of different
variation operators for one special algorithm. The aim is to either propose one promising
setting for this special scenario or to empirically prove that such settings differ along the
considered test functions and operators.

The operators polynomial mutation (PM) and simulated binary crossover (SBX) devised by
Deb et al. [DA95] are standard, have been incorporated in many algorithms, and considered
in just as many benchmarks. In the competition on multiobjective optimization at the CEC
2007 [HQD™07], algorithms using differential evolution (DE) were among the best especially
on the alterations of standard test functions and thereby recommend themselves. These
variation operators are plugged into the SMS-EMOA [EBNO05|, which is compliant and well
working with both variation concepts as well as the test cases considered.

We aim at performing this study as professional as possible with state-of-the-art method-
ologies of experimental research, so that it may serve as a prototypic example to gain a very
deep understanding of the object of investigation. In the past, experimental studies were
mostly set up such that several algorithms are compared based on their default parameters
(performing with unknown quality) or equal parameter values, e.g. for the population size.
But a certain parameter value can of course be more suitable for one algorithm than for an-
other. According to Bartz-Beielstein [BB06|, a comparison of algorithms is fair only if these
are both set up with optimal parameter configurations with respect to the optimization prob-
lem. To comply with this mindset, we use Sequential Parameter Optimization (SPO) [BB06]
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to find good configurations before comparing the performance. The tuning is an optimization
problem with unknown optimum and better parameterization are likely to exist. Since we
can neither determine the optimum nor prove the optimality of a configuration, the chosen
methodology seems to be the best way to proceed.

Wessing and Naujoks [WN10] compared the established performance indicators I, Ire and
Iy [KTZ05] in combination with SPO, finding out that the hypervolume indicator Iy is the
most suitable one for a comparison. For this reason, we are focusing on Iy exclusively. From
the CEC 2007 testbed we have chosen the two-objective problems OKA2, SYM-PART, the
shifted as well as rotated variants of ZDT problems, and three-objective DTLZ and WFG
problems. Note that the results are not directly comparable to others obtained before in the
environment of the CEC 2007 contest, since a number of bugs in the implementation of the
benchmark have been fixed. In a second experiment, two aerodynamic test cases are analyzed.

The next section details the invoked algorithm and variation operators as well as the pa-
rameter tuning tool SPO. Section 6.2.3 contains our experimental studies and we summarize
our work in Sec. 6.2.5.

6.2.2 Preliminaries

The SMS-EMOA [EBNO05] is an indicator-based steady-state algorithm which performs its
selection such that the hypervolume dominated by the population in the objective space is
maximized. Thereby, the algorithm aims at converging towards a good distribution along the
Pareto front. Its conception does not include any prescribed variation operator but it has

mostly been studied with PM and SBX.

Recall that in single-objective optimization the CMA-ES [HOO01] is unchallenged as the most
successful variation operator on most problems. However, this question is not settled yet in
multi-objective optimization (MOO), because of the different requirements. The aim in MOO
is not to converge to a single global optimum, but to approximate the whole Pareto-front,
which requires appropriate diversity in the population.

Simulated Binary Crossover (SBX) was devised by Deb et al. [DA95] to carry over the
behavior of single-point crossover in binary search spaces to real valued search spaces. It
always creates two children from two parents. Polynomial Mutation (PM) utilizes the same
probability distribution to vary a single individual. These two variation operators together
will simply be called SBX wvariation in the remainder of the paper. They contain several
parameters to be adjusted by the user. The variance of the distributions is controlled by
the parameters 7., 7, € Ry. For recombination and mutation the parameters p. and py,,
respectively, describe the probability for each position in the genome to apply variation. This
means that the impact of the n values is directly depending on the probabilities.

Another variation method that copes well with (u 4 1) selection scheme of the chosen
EMOA is Differential Evolution (DE), developed by Storn and Price [SP97]. The classic DE
algorithm contains a special selection scheme, which lets the offspring only compete with its
parent, achieving a crowding effect. However, only the DE variation is picked here to be used
with the SMS-EMOA. We choose to focus on the two user-adjustable parameters F' and CR
for optimization. F' is a scaling factor to vary the length of the difference vectors and CR
controls the crossover rate, similar to p. in SBX. In this work, we employ the plain SBX and
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DE versions that were originally proposed by their inventors.

The main idea of SPO is to treat optimizer runs as experiments, using methods from
Design of Experiments (DoE) [Mon01] and Design and Analysis of Computer Experiments
(DACE) [SWMW89]. The optimizer’s exogenous parameters are considered as the experi-
ment’s design variables. SPO begins with a latin hypercube sample (LHS) in the search space
and creates a surrogate model from the results. In our case, DACE Kriging [LNS02] is used
for modeling. As the optimizer’s results are stochastic, each point is sampled several times
and the results are averaged. In an optimization loop, the model is then used to predict
promising parameter configurations. The new candidates are evaluated and the data is fed
back into the model. If no new best configuration is found in a step, the number of repetitions
is increased.

6.2.3 Experiments

The first experiment investigates the performance of the algorithms and methodologies above
on a set of well known mathematical test functions. A second experiment deals with two
real-world problems.

6.2.4 DE vs. SBX on CEC 2007 Problems

Research Question: How does DE compare to SBX variation on the CEC 2007 test case
collection [HQD07]?

Preexperimental planning: For the experiment’s preparation, some SPO runs were car-
ried out to determine the parameters’ regions of interest (see Tab. 6.9). Additionally, the
optimization of SBX configurations on OKA2 and S_ZDT2 with 1000 problem evaluations
was repeated 20 times, to get an estimate of SPO’s reliability. It is not necessary that SPO
always delivers the same parameterization as the optimized one, because not all parameters
have influence on the performance. But it is desired that an algorithm set up with the final
parameterization achieves Pareto front approximations of similar quality. Fig. 6.8 shows that
the performance could be increased in all cases and we regard the variance as small enough
for meaningful comparisons, even when only one SPO run is performed per problem. The
tuned parameter configurations will be called DE* and SBX* in the remainder.

Task: After SPO has finished, the new configurations are run 50 times and evaluated with
Iz These samples are compared to same-sized samples of the default configurations and each
other. For each comparison, a two-sided U-Test [HW73] is employed. The null hypothesis is
that there is no difference in means and we require a significance level of 5% to reject it.

Table 6.9: The default values and region of interest (ROI) of parameters. The ROI is the
range on which the search is conducted.

DE SBX
Param. HUDE CR F H1SBX Ne Nm De DPm
Default 100 0.1 0.5 100 20.0 15.0 1.0 0.1

ROI  {6,...,120} [0, 1] (0,2 {3,...,120} [0,40]  [0,40] [0,1] [0, 1]
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Figure 6.8: Boxplots show the performance distributions in terms of dominated hypervolume
(HV) of 20 SPO runs. Additional lines mark the default SBX (solid) and DE
(dashed) configurations’ mean performance.

Table 6.10: The setup for Experiment 6.2.4.

Problems

SPO budget

Algorithm initialization
Stopping criterion
Algorithm

Parameters

Initial experimental design
Performance measure

Two- and three-objective CEC 2007 problems
500 algorithm runs

Uniform random

500 - M and 5000 - M problem evaluations
SMS-EMOA

DE: u, CR, F; SBX: i, Ne, Mm» Pes Pm

Latin Hypercube (50 points, 3 repeats per point)
Iy
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Table 6.11: Mean hypervolume and standard deviation with 500 - M evaluations.

Problem SBX SBX* DE DE*

OKA2 0.5053 =£0.013 0.5450 =£0.011 0.4976 =+0.013 0.5322 =£0.021
SYM-PART 1.1640 =+0.009 1.2063 =+0.001 1.0335 +0.023 1.1935 =+0.011
S_ZDT1 1.0189 =+0.020 1.1024 +0.015 0.8706 =+0.019 1.0403 =+0.026
S_ZDT2 0.9488 =£0.023 1.0496 =+0.042 0.7451 =£0.028 0.9422 =£0.033
S_ZDT4 0.9505 =£0.027 1.0407 +£0.043 0.8489 =£0.025 1.0546 +0.027
R-ZDT4 1.0994 =+0.018 1.1214 +0.039 1.0605 =+0.022 1.1350 =+0.024
S_ZDT6 0.7340 =+0.011 0.7592 =£0.016 0.6573 =+0.007 0.7013 +0.011
S_DTLZ2 1.3270 +0.001 1.3291 +0.002 1.3189 =+0.003 1.3290 +0.001
R_DTLZ2 1.3100 +0.009 1.3204 +0.008 1.25631 +0.024 1.3243 +0.003
S_DTLZ3 1.3165 =+£0.003 1.3304 =+£0.001 1.3054 +£0.005 1.3257 +£0.003
WFG1 0.9051 =£0.005 0.9936 =£0.005 0.8677 =£0.012 0.9084 =£0.008
WFGS8 1.1101 +0.014 1.2231 =+0.009 1.1062 +£0.015 1.1985 =+0.009
WFGY 1.1651 =+0.020 1.2147 +£0.013 1.1474 +0.024 1.2012 +0.019

Setup: SPO is applied to all 2-objective 3-objective test problems in the CEC 2007 suite.
The contained 5-objective problems are excluded, because of the SMS-EMOA’s high runtime
on these. Two different run lengths, namely 500 - M and 5000 - M function evaluations, of
the SMS-EMOA are examined to detect possible floor or ceiling effects. Here, M denotes the
number of the problem’s objectives. Tables 6.9 and 6.10 show the regions of interest and the
setup for the experiments. The default parameters for DE variation are chosen according to
[KLO7]. DE’s lower bound for p is higher than that for SBX, because it uses more parents for
variation. The performance evaluation is generally done according to the CEC 2007 contest
rules [HQD107], i.e the whole objective space of each problem is approximately normalized
to [1,2]M. The reference point for Iz is then set to (2.1,...,2.1)7, although Wessing and
Naujoks [WN10] show that the whole approach can have drawbacks on some problems.

Results/Visualization: Tables 6.11 and 6.12 show the performance results of DE and SBX
variation. Optimized configurations that are significantly better than the competing opti-
mized configuration are highlighted in bold face. Figure 6.9 shows parallel plots of the con-
figurations. More details on the parameter configurations are provided by Wessing [Wes09].

Observations: SBX reaches significantly better mean values than DE for all test cases. For
500 - M problem evaluations, SBX* is better than DE* on ten problems, while the opposite
is true on only two problems (there is one tie). For 5000 - M evaluations, SBX* wins seven
times and DE* four times (there are two ties). Except for SBX* on R_ZDT4, both operators
can always improve significantly compared to their default configurations. Figure 6.9 shows
that small population sizes should be used on the short runs. Especially for long runs, low
values of p,, are a good choice. It also seems to be promising to choose CR > F. The rest of
the parameters does not follow any general trend.

Discussion: The experiment shows that the decision which variation is chosen is less impor-
tant than the decision to tune the chosen variation operator, because the differences between
the default and optimized configurations are much bigger than between different optimized
configurations. It is also obvious that the default setting is completely opposing the optimal
configuration on some problems. SBX* winning more often might be due to a biased set of
problems. The result is more balanced on the longer runs, so it would be interesting to test
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Figure 6.9: Parallel plots of best parameter configurations found by SPO. Parameters for all
13 test functions are shown in light gray. Default configurations are marked as
dashed lines. The upper graphics depict the results received using SBX operator
while the lower ones the ones received invoking DE operators. On the left hand
side, the situation after 500 - M evaluations is shown. Here, the results from
Exp. 6.2.4 are shown as dark bold lines. The right hands side depicts thesituation
after 5000 - M evalualtions.

Table 6.12: Mean hypervolume and standard deviation with 5000 - M evaluations.

Problem SBX SBX* DE DE*

OKA2 0.5610 =+0.010 0.5725 =£0.011 0.5480 =£0.008 0.5676 =+0.010
SYM-PART 1.2074 +3.0e-4 1.2095 =+1.4e-4 1.1194 =+0.012 1.2098 +£4.0e-5
S_ZDT1 1.1508 =+0.004 1.1684 =+0.005 0.87556 =£0.012 1.1686 =+0.002
S_ZDT2 1.0668 =+0.006 1.1271 +0.009 0.7394 =£0.023 1.0928 +0.018
S_ZDT4 1.1241 +£0.015 1.2029 =+0.003 0.8441 =£0.020 1.1654 =+0.011
R.ZDT4 1.1908 +0.010 1.1933 =+0.008 1.0845 =+0.015 1.1923 +0.006
S_ZDT6 0.8658 =+0.007 0.9293 £0.024 0.6584 =£0.004 0.9574 =£0.016
S_DTLZ2 1.3301 +1.1e-5 1.3302 +4.0e-6 1.3224 +5.7e-4 1.3302 +1.6e-5
R-DTLZ2 1.3296 +3.2e-5 1.33000 =£3.2e-5 1.2638 =+1.3e-2 1.32997 =£4.2e-5
S_-DTLZ3 1.3306 +2.3e-4 1.33099 =£1.4e-5 1.3028 +2.2e-3 1.33097 =£2.1e-5
WFG1 0.9684 =+0.003 1.0803 =+0.017 0.8929 =£0.005 1.0633 +£0.025
WFGS8 1.2197 +£0.005 1.2702 =+0.003 1.2003 +0.046 1.2615 +£0.003
WFGY 1.2459 +£0.007 1.2592 +0.008 1.1894 +£0.007 1.2607 =+£0.010
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if DE* performance increases for run lengths extended even further.

DE vs. SBX on Aerodynamic Problems

From the academic test cases we have learned that optimal parameterizations differ consider-
ably. As a consequence, there is no general near-optimal default parameterization. However,
this could be due to artificial structures of the academic test cases. Therefore, the next exper-
iment shall reveal whether our insights gained so far are transferable to real-world problems.

Research Question: How does DE compare to SBX variation on examples of real-world
problems? How do the results compare to the ones from the previous experiment?

Preexperimental planning: We consider a 2-objective and a 3-objective aerodynamic
problem, which have been subject of previous studies NWBHO02, EGNO06]. Due to the large
calculation times for the computational fluid dynamics simulations, a restricted number of
1000 objective function evaluations is allowed and the SPO budget is slightly decreased to
300 algorithm runs (see Tab. 6.13).

Task: See Experiment 6.2.4.

Setup: In the first investigation, a two-objective airfoil design problem is considered (referred
to as NACA, cf. [NWBHO02]). Two regimes of flow conditions have been chosen, which vary
in the flow parameter settings. Practitioners are interested in good compromise solutions
ranging from considering mainly the first flow condition to the other way around. This way,
a Pareto front according to this trade-off is highly appreciated. To achieve this Pareto front,
two nearly optimal airfoils have been identified to become target airfoils, and a two-objective
redesign test case is defined.

The second aerodynamic test case is a true design test case (referred to as RAE, cf. [EGN06]).
Here, the drag for some given airfoil is to be minimized for three different flow conditions.
Different constraints were defined to guarantee for a minimum of structural feasibility of the
received results. These constraints were of geometric, as well as of aerodynamic nature. Both
kind of constraints were handled in different ways as can be gleaned from [EGN06]. The base-
line RAE 2822 design is always included in the initial population. The airfoil parametrization
is done using Bezier points like for the NACA test case. While 18 degrees of freedom were
allowed to control the airfoil in the NACA test case, the RAE test case features only six.

The default configurations and regions of interest are identical to those in Experiment 6.2.4
(see Tab. 6.9). Table 6.13 shows the differences in the experimental setup compared to Exper-
iment 6.2.4. The reference point is set to (0.4,0.4)T for the NACA problem and (10, 10, 10)7
for the RAE problem.

Results/Visualization: Table 6.14 shows the found optimized configurations, which are

Table 6.13: Settings for Experiment 6.2.4 that differ from Tab. 6.10.

Problems NACA, RAE
SPO budget 300 algorithm runs
Stopping criterion 1000 problem evaluations

Initial experimental design Latin Hypercube (25 points, 4 repeats per point)
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Table 6.14: Parameter results on the aerodynamic problems
DE Configuration SBX Configuration
Problem UDE CR F HSBX Me Mm De Pm
NACA 21 0.90 0.34 10 0.16 15.43 0.06 0.68
RAE 14 0.76 0.71 10 20.50 34.24 0.01 0.48

Table 6.15: Mean hypervolume and standard deviation on aerodynamic problems

Problem SBX SBX* DE DE*
NACA 0.1462 £+ 0.0012 0.1501 £ 0.0007 0.1467 £+ 0.0009 0.1502 £ 0.0007
RAE 993.663 £ 0.005 993.844 + 0.022 993.672 = 0.033 993.869 + 0.041

also included in Fig. 6.9 as bold lines. Table 6.15 shows the performance results.

Observations: All optimized configurations are significant improvements over their default
configurations. The difference between SBX* and DE* is not significant on NACA, but on
RAE. The possible improvements by parameter tuning can be gleaned from Tab. 6.15: SPO
is able to improve the NACA values by 2.7% using SBX* and 2.4% featuring DE*. However,
the results on RAE cannot be improved accordingly, here the improvements are about 0.02%.

Interestingly, the same population size is identified for SBX variation on both test cases.
For DE*, a roughly similar population size was identified for the RAE case as well, while the
best value for the NACA case is twice as big. Concerning the operators’ probabilities, SBX*
variation focuses on mutation. The application probabilities for the recombination operator
are very small, which means that 7. cannot have much influence. Generally, it is remarkable
that SBX* and DE* are completely opposed to the default configurations.

Discussion: The improvement seems so low on RAE, because the initial population always
contains the mentioned near-optimal baseline solution, which already dominates a hypervol-
ume of 993.662. But in fact, the default SBX configuration fails to find any other feasible
solution in 49 of the 50 runs. The default DE configuration ‘only’ fails in 39 runs. DE* and
SBX*, on the other hand, achieve success rates of 100% for this measure.

6.2.5 Conclusions

On real-world problems, it is still common practice to use EMOA parameterizations obtained
from unrelated test problems. Our experiments clearly put this into question. This work
shows that the performance of the tuned operators improved significantly compared to the
default parameterizations. Moreover, the performance of the two tuned variation operators
is very similar, whereas the optimized parameter configurations for the considered problems
are very different. As a consequence, parameter tuning should become standard. While we
acknowledge that the proposed parameter optimization is computationally very expensive,
ignoring the problem is not an option, because significantly improved solutions can be ob-
tained. Moreover, Preuss et al. [PRW10] outline a possible remedy by replacing the original,
expensive problem by a surrogate model. An EA tuned on the surrogate yields a parameter
configuration that performs better than the default parameterization on the original problem.
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From the practitioners point of view there is a clear message: Regardless which variation
operator is eventually chosen, make sure that the parameters are tuned. Do not trust in
default settings! This is also the result of Smit and Eiben [SE09], who studied parameter
tuning on single-objective problems. Thus, we recommend that publications include infor-
mation on how much effort was put into finding any parameter values. Also, benchmarking
contests should add rules for dealing with parameters. For example, the parameter tuning
can be regarded as part of the problem, i.e. parameter tuning has to be performed within
given budget restrictions. At least, it is not fair to compare algorithms with default or equal
parameterizations.
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Conclusions and Future Work

The basic topic of this thesis is evolutionary multiobjective optimisation. Multiobjective optimisation
is of special interest, because it is more suitable for practical optimisation tasks than conventional
singleobjective optimisation. The standard way to handle different objectives of a problem, e.g. in
industrial applications, is to aggregate these by a weighted sum. This is also done if the objec-
tives are conflicting. Beside the fact, that aggregating conflicting objectives is at least questionable,
drawbacks of the approach in general are already known [DD97].

As an alternative, approaches from the fascinating field of evolutionary algorithms are introduced.
Their simple working principle of variation and selection, gleaned from the natural evolution process,
has very successfully been transported to academia and industry.

Moreover, evolutionary multiobjective optimisation fosters the collaboration of the optimisation en-
gineer and the industrial practitioner. The methods provide a set of possible solutions, which cannot
be rated by the optimisation engineer in more detail. The knowledge and experience of the industrial
practitioner is required to decide for one solution to be implemented for the process at hand.

If none of the solutions is really adequate, an improved approach based on a better collaboration
is needed to better fit the optimisation to the considered process. Other optimisation techniques
might be required to handle this possibly more complex optimisation problem. Different aspects of
the thesis at hand might come into play, e.g. methods to preserve decision space diversity as well
as SPO or better, adequate stopping criteria.

Within this thesis, the topic of evolutionary multiobjective optimisation is highlighted and, almost
all aspects of (multiobjective) EA are discussed:

Selection This is the major driving force for EMOA as well as EA in general. A new and very
promising method, SMS-EMOA, is presented and analysed in detail.

Variation Especially in EMOA, this aspect has wrongly been neglected during the past years. Based
on the SPO framework, the huge potential of re-discovering this second driving force of EA for
EMOA could be shown.

Stopping criteria This is another disregarded topic, at least in EMOA, but also in EA. A new ap-
proach based on statistical testing is provided promising huge potential savings in terms of
computational time by only a minimum loss in quality.

Fitness function and applications Fundamental work on the correlation of decision and objective
space, Pareto-front and Pareto-set is provided. Mathematical test cases are studied and the
SMS-EMOA showed a great performance. This particularly holds for more than three objec-
tives. Moreover, most of the ideas implemented have been tested on challenging aerodynamic
applications as well.
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To a certain extent, this covers a lot more than might be necessary for a PhD thesis in general.
Moreover, | am sure to have contributed significantly to the future development of the field and special
research directions in particular. However, none of the publications is exclusively my achievement. |
always enjoy to collaborate with other researches and | am very thankful to the colleagues | had the
pleasure of collaborating with. This in particular holds for the following researchers, who participated
in the publications of this thesis, i.e. Nicola Beume, Heike Trautmann, Michael Emmerich, Mike
Preu3, Ginter Rudolph, Tobias Wagner, and last but definitely not least Simon Wessing.

The following sections will provide an outlook on promising future improvements of the considered
topics. For each of the topics, research ideas that focus the development and improvement of the
individual method are depicted. In addition, the later sections try to put the things together, connect
open ends and develop promising ideas for future research like the one of hierarchical models.

SMS-EMOA Parallelisation

One method, to decrease response time in design optimisation is to distribute function evaluators
in parallel computer systems. Since the SMS-EMOA is a steady state approach, it is well suited for
being executed in an asynchronous parallel way. Further research is needed to determine an ideal
integration of the SMS-EMOA and different parallel architectures as well as to investigate how this
effects the algorithm’s performance.

As far as | know, a parallel SMS-EMOA has not been implemented until now. However, multiple
start strategies of SMS-EMOA exist, that are executed in parallel. This means parallelism on a higher
level than the parallelisation of a single SMS-EMOA run. For example, the famous and possibly best
performing EMOA, MO-CMAES (Multiobjective - Covariance Matrix Adaptation Evolution Strategy
[IHROQ7]), is based on the idea of multiple restart SMS-EMOA executions [ISHO7].

EMOA Constraint Handling

The applicability of a special EMOA for parallelisation is a very particular aspect depending on the
considered algorithms solely. In contrast to this, the development of suitable constraint handling
techniques refers to EMOA in general and even the whole EA field. Within the interrelation of sin-
gleobjective EA and EMOA, the topic is of special interest since objectives can be formulated as
constraints for the considered problem. A special range of feasible values for one objective is defined
and the practitioner relinquishes to optimise the objective. Instead the objective value is constraint
to stay in the pre-defined range.

The treatment of constraints can effect the selection operators as well as the variation operators
of EA in general. A good overview on the different methods existing to handle constraints in EA is
given by Coello Coello [Coe99] and Woldesenbet et al. [WYTO09].

Correlation of Decision and Objective Space Diversity
The main message of the work presented with respect to decision space diversity in EMOA is the

belief in the fact that a neat covering of the Pareto-front is not sufficient for meeting the needs of
all clients that may use EMOA. Therefore, future versions of EMOA should also take into account
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a proper covering of the Pareto-set. Evidently, contemporary EMOA cannot deliver this kind of be-
haviour. For this purpose we need an effective measure for assessing the quality of a solution set in
decision space — similarly to the S-metric in objective space.

To follow this avenue, the understanding of EMOA behaviour in the decision space must be deep-
ened. This may be quite counter-intuitive as our seemingly simple test problem TWO-ON-ONE has
revealed. It turned out that EMOA have no means of detecting ‘real’ Pareto-set shapes, they have to
cope with their inexact counterparts. These problems are currently not reflected in algorithm design.

The development of new test cases focussing on the correlation between Pareto-front and Pareto-
set is another aspect. Next to the two presented ones, higher dimensional decision and objective
spaces are to be considered. The existence of symmetries and their types are additional aspects as
well.

One very interesting step in this context has already been taken by Rudolph and Preuss. They
proposed an EMOA to search for decision space equivalent inverse images of Pareto-optimal solu-
tions [RP09]. Starting from a given Pareto-optimal solution of a problem, a different individual in the
decision space is to be found. The work offers another wide area for future research. For example,
small differences within objective space could be allowed. This way, only a certain area or direction
in the objective space is aspired, not a concrete solution. This might allow for more and even diverse
solutions or areas in the decision space to be found.

It is imaginable that EMOA with niching can be successful in this case. The collaboration with Shir
et al. [SPNEQ9] is only a first step in this direction leading to new and possibly better EMOA. The
task to design an algorithm respecting objective as well as decision space diversity has been picked
up again very recently. Right in 2010, Ulrich, Bader, Zitzler, and Thiele, respectively proposed two
new ways to consider both.

The first way is the integration of a decision space diversity measure in the hypervolume [UBZ10].
Using this modified hypervolume for indicator-based selection, a proof of principle could be derived
on a set of WFG test functions [HHBWO06]. Interestingly, using the modified hypervolume employing
decision space diversity, the results could be improved compared to using the standard hypervolume.
However, the proposed algorithm is only applicable using small population sizes due to the runtime
complexity being highly related to this size.

The second approach handles objective space diversity as well as decision space diversity sep-
arately [UBT10]. Therefore, an archive is implemented next to the actual working population in
the EMOA. While the archive is updated with respect to objective space diversity only, the working
population is updated considering both measures, i.e. decision and objective space diversity. The
resulting new algorithm is compared to the omni-optimiser [DT08] and yielded good results.

Furthermore, a thorough analysis of the interaction between Pareto-front and Pareto-set will even-
tually lead to even more new insights, new search operators, and, consequently, better EMOA.

Stopping Criteria

Recently, a reduced variant of the OCD approach has been introduced for indicator-based EMOA
[WT10]. In case the internally optimised performance indicator monotonically increases, OCD can
be restricted to this indicator and the regression test can be neglected. The complexity of OCD is
reduced by concentrating on the variance test operating on the optimised performance indicator. The
procedure is illustrated for the SMS-EMOA in combination with the dominated hypervolume.
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A systematic comparison with the common OCD approach shows that the classical OCD approach
should be applied when no assumptions about the monotonicity of a specific performance indicator
can be made or a strong compliance between the specified var Limit and the corresponding loss of
the considered indicator is required. Furthermore, Wagner and Trautmann [WT10] empirically derive
guidelines for reasonable settings of OCD parameters based on statistical design of experiment
methods.

Together with L. Marti, these authors define a taxonomy for online stopping criteria [WTM11] and
classify all existing approaches. This is an important first step towards the aspired comparison of
online stopping criteria.

Although two interesting and relevant aerodynamic applications have been tested with OCD, there
are many more to be explored. To this end, the new results mentioned above have to be considered
for the already treated applications as well as all new ones. Furthermore, test cases from completely
different areas like discrete and combinatorial optimisation should be investigated. A confirmation of
the applicability as well as the drawn conclusions is questionable since the probability of plateaus is
much higher in discrete optimisation. This might cause OCD, holding the parametrisation from the
continues test cases, to fail due to a premature indication of convergence.

Moreover, in conjunction with the delayed progress on plateaus, the effect of constraints on OCD
has to be analysed. Here, first investigations can be performed without any adaptations of the
method by just implementing discrete and constraint test cases.

The question of suitable stopping criteria for the single-objective optimisation task has not been
answered satisfactorily until now. Although there are some very good guidelines when to stop the
famous CMA-ES [AHO05]', a practical validation of these is still missing. Moreover, also the question
whether these guidelines also hold for other EA variants remains for future research.

Many-Objective Optimisation

The alternative selection approaches discussed in section 2.2 have not been considered for the
multiobjective optimisation case with more than three objectives. Applying ranks based on the num-
ber of dominated solutions sounds promising here, since the calculation of the hypervolume within
SMS-EMOA is costly and its efficiency deteriorates with increasing number of objectives. However,
the possibility to dominate other solutions deteriorates as well with the objective space increasing in
dimension. This might restrain the selection pressure towards the Pareto-front again. As a conse-
quence, this criterion might be applicable for only a limited number of objectives again, nevertheless
this might be greater than three.

One important focus within the context of evolutionary manyobjective optimisation was set on
dimensionality reduction in the last years. The easiest way to reduce the dimensionality of the
objective space might be to identify objectives that can be optimised in parallel, i.e. these objectives
are not conflicting. In this situation, it is sufficient to optimise only one of the objectives. One objective
or even more can be omitted from the optimisation process. As a consequence, the dimensionality
of the objective space is reduced and optimisation techniques might be better applicable.

1These guidelines are given in more detail in a tutorial by N. Hansen that is available online only:
www.lri.fr/"hansen/cmatutorial.pdf (version of November 2nd, 2010, download November 17th, 2010), N.
Hansen also runs a website dedicated to the CMA-ES: www.1ri.fr/~hansen/cmaesintro.html (download Novem-
ber 17th, 2010)
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An overview on dimensionality reduction is provided by Brockhoff and Zitzler [BZ06]. Recent work
within evolutionary many objective optimisation is summarised by Purshouse and Fleming [PF07] as
well as Ishibuchi et al. [ITNO8].

— Concatenating Ends —

All presented concepts in this thesis are able to provide improved results compared to the earlier
algorithms considered. Combining the different methods promises to further improve EMOA. This
should make these methods even more attractive for industrial applications.

Of course, the snapshot of only two aerodynamic applications is too small to prove a general
applicability. However, at least for me, the concepts are sound and valuable. To this end, | expect
these concepts to be highly competitive even on other aerodynamic applications and beyond.

It is known that meaningful, important industrial optimisation tasks are nowadays often handled
by EA or EMOA, respectively. To proceed and improve algorithm development, the EA field needs
the feedback from industry and, moreover, the collaboration from industry to develop meaningful,
interesting near industrial test cases; far away from mathematical ones. This feedback, although
very important for the development of the research area, is hard to get.

Beside the practical issues, there are many theoretical aspects of EA that suggest essential and
promising directions for future research. One such direction will for sure aim to deepen the insights
in the behaviour of indicator-based algorithms. Theoretical statements are also aspired for the con-
vergence of EMOA in general. The investigation of the hypervolume calculation and many aspects
correlated to this is important as well. However, | limit myself to the empirical and practical aspects
focussed within the thesis in the following.

Comparison of Results

A fair comparison of algorithm performance is needed and, therefore, the aspect of benchmarking
plays a major role. As very recent results show, even the chosen consensus method is very important
and choosing a suitable one is not a trivial task. Mersmann et al. [MTNW10a] introduce this problem
to the EMOA field, mention pitfalls and give guidelines to avoid these.

To receive a fair comparison, benchmarking contests should add rules for dealing with parameters.
For example, the parameter tuning can be regarded as part of the problem, i.e. parameter tuning
has to be performed within given budget restrictions. At least, it is not fair to compare algorithms with
default or equal parametrisations in general.

Tuned parametrisations yield a much better performance in contrast to standard ones. Therefore,
tuning of parametrisations is very important to receive good results. To this end, the information on
how much effort was put into finding parameter values belongs to the experimental setup and should
consequently be published in conjunction with the results achieved.

The technique of OCD also supports a way for algorithm comparison. For this purpose, all EMOA
parameters and operators have to be set to comparable values, and a high number of parallel runs
of each benchmarked EMOA has to be performed. This way, a proper statistical analysis on the dis-
tributions of the stop generations proposed by OCD combined with the internally used performance
indicators becomes possible. However, the trade-off between spent effort and gained quality should
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not be neglected here. A comparison to the approach for offline convergence detection by Trautmann
et al. [TLMPO8], which has been proposed before the online variant, seems revealing.

Moreover, stopping criteria might be received from other properties of EMOA runs, e.g. by analysing
distribution aspects. Mersmann et al. [MTNW10b] analysed the distribution of the hypervolume in-
dicator within the SMS-EMOA on special test cases during the optimisation run. Some interesting
phenomena have been observed that might lead to stopping an optimisation run if a certain structure
within the course of the hypervolume indicator is detected.

Parameter Tuning Everywhere

There still are numerous questions that arise from the first contributions invoking SPO for multiobjec-
tive optimisation. Possibly the most interesting one focuses on standard parametrisations for special
operators. These concern the vital operators within EMOA, i.e. variation and selection operators,
as well as other internal and external issues like the termination criterion or the considered test
cases. The parametrisation of variation as well as selection are of equal importance since a bad
parametrisation for each of them leads to defective results.

Only optimiser runs with tuned parameter settings stopped by an appropriate convergence criterion
enable a fair comparison of methods. The results received until now only hold for single algorithm
— problem combinations and cannot be transferred to other combinations, in particular if only the
problem is changed. The analysis of algorithm performance with common parametrisations after
tuning may lead to a categorisation of functions. These categories might be extended to functions,
for which optimal parametrisations are not known until now.

The categorisation based on common parameter settings may yield another problem. Results on
the robustness of SPO findings are, at least for the EMOA case, missing as well. Our experiments
in section 6.2 suggest that robust parametrisations may be hard to find as different SPO runs on the
same algorithm - problem combinations show.

The attentive reader will have noticed that a careful parameter setting is required if optimisation
techniques are compared. Moreover, algorithm runs should be terminated adequately by some
appropriate, reliable criterion like OCD. This again makes the parameter tuning problem harder. Due
to the interaction of parameters, tuned parameters of the basic optimisation methods can be different
whether OCD is applied or not. Moreover, different OCD parameters might lead to different findings
for the basic optimisation method.

Statistical Tests are a Necessity

All presented methods are highly connected to statistical modelling and testing. It can be seen as
a major development within the EA/EMOA field in recent years that such issues are becoming more
and more important and on the way to become state-of-the art approaches. Of course, due to the
stochastic nature of evolutionary optimisation algorithms, this is not only a welcome fact but rather a
necessity.
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Hierarchical Models

In contrast to the extended effort that is spent on statistical modelling and testing in general EA/EMOA
research, recent applications from aircraft industry show an opposite tendency (cf. the examples
from the recent CEC conference by luliano and Quagliarella [IQ10] and Lee et al. [LPO™10]). In
contrast to focussing on more experiments to receive meaningful, statistically significant results, the
applications themselves rely on more and more complex simulations and optimisation models which
require an increasing amount of computational resources. However, it should not be neglected that
experts from the optimisation field certainly need realistic test cases to provide developers with highly
applicable, successful optimisation methods.

The author is aware of the implicit trade-off between having to spend increasing resources for more
complex test cases vs. having the chance to focus on properly planned and sufficiently repeated
experiments. This trade-off is an issue for practitioners with no specific expertise in optimisation, in
particular, if a good improvement with only one optimisation run can already be achieved.

A promising and straightforward compromise are hierarchical models [KGK07, KZAG07, ZON 107,
LJOS10], which pick up the metamodeling approach and expand it to multiple models of different
complexity. To this end, Kriging as well as CFD simulations could be two levels within a model
hierarchy that consists of even more models sharing different properties. Using such hierarchical
models, more complex tasks can be considered, but a high amount of experiments and resources
are needed to achieve good results as well. To this end, the investigation of such models just started,
but, with even more computational resources available in the future, these will get in the focus of
research activities.

Deploying such hierarchical models will contrariwise lead to new questions in research. Solutions
must migrate from one level of the hierarchy to another one. Which solutions are to be migrated and
when? Is there any evidence to believe that a good solution for a simple model is competitive in a
more complex one? This leads to the important question of causality of models. Are the ranking of
solutions, active constraints and additional properties still valid if a solution migrates from one model
to another?

The causality of models is linked to the correlation of Pareto-front and Pareto-set as well. Of
course, this correlation needs to be studied for each of the models. Moreover, there are possi-
ble correlations of Pareto-sets from different models. These might yield interactions between the
corresponding Pareto-fronts as well. The situation is getting more complex, the more models are
considered.

User Preferences Integration

A very promising way to proceed in complex real-world situations is the integration of preferences in
the optimisation process. These preferences provide a concrete search direction for the optimisation
algorithm. Solutions are effectively and efficiently moved towards parts of the Pareto-front instead
of being spread over the whole objective space. This situation is comparable to the exploitation vs.
exploration dilemma in singleobjective optimisation. In fact, it is the other way around. While at first,
a direct approach of the Pareto-front is aspired (exploitation), a set of solution is spread all over the
front afterwards (exploration).
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The incorporation of user preferences is a rather old idea from the MCDM community (cf. e.g.
Agrell [Agr97]). Nowadays, such preferences are coupled to modern EMOA, an overview is given by
Branke [Bra08]. Zitzler et al. [ZBT07] define a weighted hypervolume indicator to introduce weights
defined by the user in hypervolume selection based EMOA. As a consequence, desired regions
of the Pareto front are focussed within the resulting algorithm. Auger et al. [ABBZ09] extend this
approach.

A more elegant way is introduced by Trautmann and Wagner [TW10]. Instead of weights, desir-
ability functions (cf. e.g. Harrington [Har65]) to express user preferences for each of the objectives
are employed. This approach is exemplary implemented in the SMS-EMOA to direct the search to
the aspired region in the Pareto front.

Final Remarks

According to Ishibuchi et al. [ITNO8], more sophisticated methods are to be devised by the collabo-
ration of EMO and MCDM community. With respect to most of the discussed future research issues,
the thesis at hand can be seen as an initial step to focus on this proposed, aspired research direc-
tion. It aims at providing tools for the upcoming challenges of e.g. hierarchical optimisation systems.
Efficient stopping criteria and optimised parameter sets of the used EMOA will for sure play a major
role in this field.

Summing up, although very interesting approaches have been developed and meaningful results
have been received, the most interesting research questions are the ones that have not been an-
swered yet. The most interesting applications are again the ones not handled yet. Each of it will
be unique, possibly needing a novel idea, concept or approach, and maybe offering a new research
direction. | am looking forward to encountering these interesting challenges.
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