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ZUSAMMENFASSUNG 

Innerhalb von Zellen ist die Verteilung von Proteinen häufig präzise, das bedeutet mit 

spezifischer Anreicherung in verschiedenen intrazellulären Kompartimenten. Als Ursache 

solcher Verteilungen wurden bereits Interaktionen, Rezeptoren oder auch Signalsequenzen 

beschrieben. In dieser Arbeit wird die Entstehung einer räumlich inhomogenen 

Proteinverteilung innerhalb von Zellen beschrieben – ‘Acylation Cycle’ genannt - die auf 

einem Reaktions-Diffusions-Prozess basiert, welcher die reversible S-Palmitoylierung 

umfasst. Palmitoylierung läuft am Golgi-Apparat ab, wobei die dort lokalisierten Enzyme 

kaum oder keine Spezifität für ein konkretes Proteinsubstrat zeigen. Anscheinend benötigen 

DHHC-Palmitoyltransferasen zur Palmitoylierung lediglich einen membrannahen Cysteinrest. 

Den gerichteten Transport zur Plasmamembran ermöglicht der sekretorische Weg. Der 

‘Acylation Cycle’ wirkt der entropie-getriebenen Homogenisierung palmitoylierter Proteine 

im Zellvolumen entgegen. Weiterhin wird die Aufenthaltsdauer palmitoylierter Proteine, wie 

z.B. Ras,  an der Plasmamembran durch die Kinetik des ‘Acylation Cycle’ beeinflusst, 

wodurch auch die Menge an Ras, die dem MAPK-Signalweg zur Verfügung steht, verändert 

wird. Das Unterbrechen des ‘Acylation Cycle’ durch den neuartigen Inhibitor Palmostatin B 

bewirkt die durch Entropie getriebene Umverteilung von Ras. Durch Palmostatin B-

Behandlung wird die Ras-Signalaktivität nach EGF Stimulierung an der Plasmamembran von 

der Aktivität am Golgi Apparat entkoppelt. Letztendlich führt die Palmostatin B-Behandlung 

von mit onkogenem HRasG12V transformierten MDCK Zellen zu einer Unterdrückung ihres 

konstitutiv-aktiven MAPK-Signals, welches zur Zellteilung führen kann und verursacht so die 

Reversion des Phänotyps zu einem der untransformierten MDCK Zellen sehr ähnlichen. Der 

‘Acylation Cycle’ ist ein Phänomen, dem viele Proteine unterworfen sind und bietet daher 

die Gelegenheit die Modulation von Signalaktivitäten therapeutisch auszunutzen. 
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ABSTRACT 

Protein distributions within the cellular environment are often precise, with specific 

enrichments in different intracellular compartments. Such distributions have previously 

been described to be generated by specific interactions, receptors or signal sequences. This 

work describes the creation of a spatially inhomogeneous protein distribution within the cell 

through a reaction-diffusion process, involving reversible S-palmitoylation – termed as the 

Acylation cycle. Palmitoylation occurs on the Golgi apparatus, and enzymes participating in 

the acylation cycle have little or no specificity towards the protein substrate. DHHC 

Palmitoyltransferases seem to require only a membrane proximal Cysteine residue for 

palmitoylation. The secretory pathway provides the vectorial transport required to transfer 

palmitoylated proteins to the plasma membrane. The Acylation cycle counters entropy 

driven homogenization of a palmitoylated protein within the cellular volume. Further, 

kinetics of the acylation cycle affect the residence time of palmitoylated proteins such as 

Ras on the plasma membrane, and thus change the amount of Ras available for MAPK 

signaling. Interruption of the acylation cycle through a novel inhibitor Palmostatin B, causes 

entropy driven redistribution of Ras. Under Palmostatin B treatment, Ras signaling from the 

Golgi apparatus in response to EGF stimulation is uncoupled from its signaling on the plasma 

membrane. Finally, treatment of oncogenic HRasG12V-transformed MDCK cells with 

Palmostatin B quenches their constitutively active proliferative MAPK signaling and leads to 

a phenotypic reversion to one similar to untransformed MDCK cells. The acylation cycle is a 

phenomenon a diverse array of proteins is subject to, and thus offers an opportunity for 

therapeutic modulation of signaling activities. 
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1  INTRODUCTION 

Biological Systems are complex, not just in the colloquial sense of the word, nor as the 

collective whine of exasperated biologists. They are complex in the pure mathematical 

designation – the number of interacting nodes in even the best map of all the molecules, 

structures and behaviors makes them extremely information-rich on all levels – from cellular 

biology to ecosystem dynamics. This information of course, changes in response to the 

environment, the internal state of the system and according to predetermined 

programming inherited from the previous generation of such systems. Focusing on cell 

biology, one could go so far as to say that biological systems exist because they are 

information rich, for many of the molecules  and structures have functions and activities 

directly antagonistic to each other. In other cases, some structures are so efficient at their 

function that without the metaphorical handbrake, their activity would spiral out of control. 

In still others, the simple existence of molecules in the 3D-volume of the cell would not 

nearly be sufficient to have concentrations high enough that the molecules are able to 

function as required to maintain the system. To find any semblance of a method to the 

madness, it is a necessary condition that some sort of information-processing capabilities 

exist within cells. A common solution to the problem is to have multiple levels of regulation 

imposed on to specific molecules, tempering their activity to the state of the cell. The 

regulation may be imposed on the level of activity of the gene, as is seen with transcription 

factors and the periodic expression of cell-cycle proteins. It may be as seen with protein 

phosphorylation, or G-proteins, where the activity of a protein is controlled by secondary 

molecules that are bound to it. While these phenomena have been studied in substantial 

detail, a simpler, less appreciated method involves protein targeting, i.e., the creation of 

asymmetric protein distributions within the cell.  Receptor-based or signal-sequence based 

mechanisms to achieve protein targeting are well known, and reaction-diffusion 

mechanisms in calcium-dependent signaling are known. However, to the knowledge of the 

author, no known reaction-diffusion mechanism that targets proteins with specific 

implications on cellular signaling has been described so far. This work describes such a 

spatial reaction-diffusion cycle, its mechanism and its influence on signaling. 
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1.1 Emergent Patterns in Biology 

In general, asymmetric pattern generation has been the subject of study in mathematical 

biology (Polack & Stepney, 2005). With a brief description of certain well-understood 

examples, the author wishes to draw out a central theme in the emergence of spatial 

patterns. 

Cellular Automata: Cellular automata (CA) are isolated abstract universes, with discrete 

‘cells’ (no relation to biological cells), that may transition iteratively between many 

states (Dasgupta et al, 2001). The rules of these transitions are simple, and usually 

involve a dependency on cells surrounding the one undergoing the transition, referred 

to as the ‘neighborhood’ of the cell. Perhaps the most well-known of CA universes is 

Conway’s Game of Life, which consists of a matrix of cells that transition between 2 

states: alive and dead. Transitions between these two states are given simply as follows: 

1. Any live cell with fewer than two live neighbors dies, as if caused by under-population. 
2. Any live cell with two or three live neighbors lives on to the next generation. 
3. Any live cell with more than three live neighbors dies, as if by overcrowding. 
4. Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction. 

Conway’s Game of Life has been used to model population dynamics in an eco-system. 

But perhaps the most insightful feature is the occurrence of self-reproducing patterns 

that achieve a steady-state until perturbed. 

 

‘Pulsar’: Snapshots depicting the 4 stages of a self-reproducing steady-state pattern generated from the rules 

of Conway’s Game of Life. 

 

Lindenmayer Systems: Lindenmayer (L)-systems (Lindenmayer, 1968) described simple 

rules for the generation of strings, with each hierarchical step recorded as the string builds 

up. When the rules of such strings include a distance and angular component, graphical 
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representations of the strings may be obtained. Surprisingly, it is possible to reproduce the 

appearance and branching of nearly every plant by simply varying the distance and angular 

component. While the biological basis of these components is not understood, it is 

convincing proof that complex fractal-like spatial expanses such as those of plants and 

trees may be produced by repetitive iteration of simple rules. 

 

Plants and Fractals: Various L-system generated shapes of plants based on variations of (1) Create line of 

length ‘d’. (2) Change growth angle by 3) Repeat. Reproduced from Prusinkiewicz P, Lindenmayer A (1990). 

The Algorithmic Beauty of Plants. Springer-Verlag:New York 

 

Turing Patterns: Described initially by Alan Turing, Turing patterns are concentrations 

gradients that arise due to the spontaneous fluctuations in spatially uniform distribution of 

a molecular activity, when the activity is inhibited over large distances, but enhanced over 

short distances (Dillon et al, 1994; Benson et al, 1998). In this sense, Turing patterns are 

classical reaction-diffusion systems and are closest to the spatial cycles described in this 

work. Turing patterns have been described as models for cellular differentiation during 

development, and more recently as involved in cellular glycolytic processes, eventually 

contributing to decisions to commit to the cell division process. 

While the systems described above may seem diverse and unrelated, the central theme in 

all of them is one of discrete agents following simple rules (mathematical, physical or 

biochemical), such that the interaction of these agents lead to spontaneous steady-state 

asymmetries in particular contexts. The Acylation Cycle described in this work is a spatial 

reaction-diffusion cycle that follows similar rules to generate a precise localization of 

proteins in the cellular environment, emerging from the interaction of localized agonistic 
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activity, ubiquitous antagonistic activity and a vectorial transport of entities subjected to 

these activities. 

 

How the leopard gets its spots – Turing pattern generation from spontaneous fluctuations in the ‘brown’ 

molecule against a yellow ‘inhibitor’. Reproduced from Rauch et al. Journal of Theoretical Biology, Volume 226, 

Issue 4, 21 February 2004, Pages 401-407 

 

1.2 Protein Lipidation 

Protein lipidation involves the post-translational covalent modification of proteins with lipid 

moieties. It is described here as the biochemistry of the acylation cycle falls within the 

purview of this broad topic. While a large number of lipid-modified proteins are known, the 

role of such a modification in each case has been thought to be rather unique to the 

protein. Lipid modifications are generally categorized according to the nature of the lipid 

group and its linkage to the protein. However, in the context of this work, it is more suitable 

to describe lipid modifications as either irreversible, or reversible and dynamic.  

 

Irreversible Lipidation and its roles 

Irreversible lipid modifications are those that remain on a protein molecule throughout its 

life cycle, that is, they are removed only through protein degradation processes. In 

Eurakryotes, irreversible lipid modifications include N-linked acyl groups (Martin et al, 

2011), S-linked isoprenoids (Hougland & Fierke, 2009)and O-linked cholesterols (Milenkovic 

& Scott, 2010).   
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N-linked acylations occur at the -N of Lys residues, or at the -N of the first amino acid of 

proteins via amide bonds. N-linked lipids are typically long-chain fatty acids, of which 

palmitate and myristate represent the overwhelming fraction. It should be noted however, 

that N-palmitoylation and N-myristoylation are not redundant, and are catalyzed by 

separate N-myristoyltransferase and N-palmitoyltransferase in Drosophila melanogaster. A 

mammalian N-palmitoyltransferase is known with a single known substrate – the Hedgehog 

protein, and there are indications that the biochemical mechanism involved in these 

modifications may also be different. N-myristoylation describes the addition of myristic acid 

(C14:0) to a glycine residue with an exposed NH2 group after cleavage of the immediately 

adjacent initiating methionine (Resh, 2006; Zha et al, 2000). This process is predominantly 

post-translational, mediated by soluble enzymes, and has a strict consensus sequence 

(MGXXXS/T)(Maurer-Stroh et al, 2002). N-myristoylation can also occur posttranslationally, 

notably after caspase-mediated protein cleavage during programmed cell death (Zha et al, 

2000). N-palmitoylation is less understood, but is known to require a Cys residue, which is 

presumably S-paImitoylated first, and then an S-to-N acyl transfer occurs (Buglino & Resh, 

2008). In general, N-palmitoylation seems to be common in proteins that are eventually 

secreted such as Hedgehog, and seems to have more profound effects on tissue-level 

signaling activities. N-myristoylation on the other hand is more common in proteins involved 

in cellular signaling such as the heterotrimeric G-proteins and seems to have more profound 

effects on intracellular signaling (Salaun et al, 2010). In either case, myristoylation and 

palmitoylation seem to confer additional hydrophobicity to protein molecules, allowing 

them to interact with membranes. A large number of N-myristoylated proteins are 

peripheral membrane proteins, with well-defined functions on the plasma membrane of 

cells. Indeed, abolishing these modifications through mutagenesis of the N-myristoylation 

signal sequence leads to a loss-of-function for most proteins at their cellular expression 

levels. N-palmitoylated proteins on the other hand are secreted, necessitating a 

requirement to transgress the plasma membrane, which may be mediated by the 

membrane-soluble palmitate group. For example, the Hedgehog protein, which is required 

tissue patterning to establish a concentration gradient in the tissue, fails to be secreted 

when expressed in a non-N-palmitoylatable mutant form. 
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Prenylation is the well-studied of the post-translational modifications, owing to the success 

of prenylation inhibitors in clinical trials (Gelb et al, 2006). Prenylation involves the linkage 

of farnesyl or geranylgenranyl moieties to the C-terminal of proteins containing the so called 

CaaX signal sequence as the last 4 aa in the polypeptide chain. The CaaX sequence is first 

proteolytically processed to remove the terminal the 3 amino acids. Farnesyl pyrophosphate 

or Geranylgeranyl pyrophosphate, both precursors in the cholesterol biosynthesis pathway 

serve as respective isoprenyl donors in the reaction catalyzed by farneyltransferase (FTase) 

or geranylgeranyltransferase (GGTase) (Reid et al, 2004). The prenyl moieties are then 

linked to the S-atom of the Cysteine residue in the CaaX box via a thioether bond. The role 

of isprenyl modifications has been elucidated largely for Rab and Ras proteins which are 

geranylgeranylated and farnesylated respectively. As with N-myristoylation, prenylation 

increases a protein’s hydrophobicity and is necessary for correct localization of these 

proteins to membranes and docking into cellular membranes (Silvius & l’Heureux, 1994). 

Comparisons of the CaaX box of these proteins have led to the identification of sequence 

requirements dictating preference for which of the two isoprenoid groups are acquired by 

the proteins(Maurer-Stroh & Eisenhaber, 2005). However, some degree of redundancy 

exists in this preference, as treatment with farnesyltransferase inhibitors leads to 

geranylgeranylation of Ras. At least the geranylgeranyltransferase, therefore, is specific to 

the isoprenyl group, but has a much more relaxed specificity when it comes to the specific 

CaaX sequence. 

Finally, at least one example of the Hedgehog protein is known where the isoprenoid group 

attached to the protein is a cholesterol ester. This modification occurs at the carbonyl group 

prior to a non-terminal Cysteine residue, and is said to mediate secretion of the Hedgehog 

protein (Herz et al, 1997). However, cholesterol modified proteins are not known to possess 

the acylation cycle described in this work. 

Besides the clear mislocalization and loss of function reported for both Ras and Rab proteins 

when prenylation is inhibited in general (Rak et al, 2003; McGeady et al, 1995; Santillo et al, 

1996), several studies suggest that prenylation may affect the partitioning of these proteins 

to specific membrane domains. Clustering behavior of Ras proteins has been suggested to 
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exist and derive largely from its farnesyl moiety (Prior & Hancock, 2001; Harding & Hancock, 

2008). Solubilization of Ras, Rab and other prenylated proteins such as Rho is mediated by 

binding of isoprenoid groups to so-called Guanine Dissociation Inhibitor (GDI) proteins 

(Antonarakis & Van Aelst, 1998). GDIs shield the hydrophobic isoprenoid from the 

hydrophilic cytosol, thus allowing solubilization. Given the absolute necessity of prenylation 

for correct localization and solubilization, it is therefore not surprising that FTase and 

GGTase inhibitors are effective in quenching hyperactive mutants of proteins possessing 

these modifications. 

It has been reported that proteins subjected to the acylation cycle usually require a prenyl 

group or an N-myristoyl group in order to enter the cycle (Linder & Deschenes, 2007). Since 

an increase in membrane binding is the common property conferred by these lipid 

modifications, it seems likely that the acylation cycle requires prior membrane affinity, 

however weak it may be. As such, these modifications are of special importance to the work 

described herein. 

Reversible Lipidation  

Only one known reversible lipid modification is known, the acylation of proteins at the S-

atom of Cysteine residues via a thioester bond. Several transmembrane proteins and 

peripheral membrane proteins are S-acylated. Again, palmitate moieties constitute an 

overwhelming majority of S-acyl groups on proteins (Martin & Cravatt, 2009; Liang et al, 

2002), and hence terms acylation and palmitoylation are used interchangeably.  

The repertoire of S-palmitoylated proteins is diverse, include transmembrane receptors 

such as the -adrenergic receptor, peripheral membrane proteins such as G family and 

Ras, as well as several synaptic proteins that shuttle between the cytosol and the synaptic 

membranes (Fukata & Fukata, 2010). Indeed, large scale proteomic analysis in Yeast has 

revealed several hundred proteins that undergo S-palmitoylation (Roth et al, 2006). 

Unfortunately, substantial controversy exists around the enzymes that mediate such 

palmitoylation. Firstly, the only other known S-acylation of a protein occurs during fatty acid 

biosynthesis (Alberts et al, 1965; Toomey & Wakil, 1966). Much of the mechanism for 
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protein acylation is thought to be similar to that occurring on the acyl-carrier protein during 

fatty acid biosynthesis. As such, palmitoyl-CoA is thought to be the acyl-donor during such a 

reaction. However, incubation of proteins with accessible Cys residues with palmitoyl-CoA 

shows that the protein acylation reaction occurs spontaneously in vitro (Bizzozero et al, 

1987a; 1987b), in a reducing environment. Secondly, no consensus sequence could be 

established for proteins that are palmitoylation substrates. Due to these reasons, the 

requirement of a palmitoyltransferase (PAT) enzyme has been the subject of debate 

(Dietrich & Ungermann, 2004). 

It could be shown however, that yeast lacking Erf2 and Erf4 genes showed a phenotype that 

similar to a RAS knockout (Bartels et al, 1999). RAS (yeast homologue of human Ras genes) is 

expressed in these yeast cells, but localized to the endoplasmic reticulum (ER) instead of its 

wild-type plasma membrane (PM) localization. The presence of lipid anchors is known to 

allow PM binding in other proteins and as RAS is a palmitoylated protein, the activity of the 

Erf2/Erf4 complex to palmitoylate Ras proteins was assayed in the presence of palmitoyl-

CoA. Indeed, the presence of the Erf2/Erf4 proteins led to a modest increase in Ras 

palmitoylation. Positional mutagenesis showed that a particular 4 amino acid stretch within 

Erf2/Erf4, henceforth called the DHHC domain was essential for this palmitoyltransferase 

activity. Formally named the DHHC-zinc finger-like cysteine rich domains (zDHHC-CRD), 7 

proteins in yeast were identified (Roth et al, 2002). The DHHC proteins are multipass 

polytopic transmembrane proteins, while their substrates are often cytosolic or peripheral 

membrane proteins, suggesting that the reaction they catalyze occurs at the membrane 

cytosol interface. Further, most proteins undergoing S-palmitoylation have prior N-myristoyl 

or prenyl modifications within the region of the palmitoylatable Cys residue, which grant 

them weak membrane affinity. Presumably, at least a weak membrane affinity is required 

for Cys residues in a protein to gain access to DHHC proteins and acquire palmitate groups. 

A small subset of proteins such as GAP43 is exclusively S-palmitoylated (Liang et al, 2002) – 

however, these proteins may possess weak membrane affinity through other non-lipid 

based mediators. 
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A comprehensive proteomics study of protein palmitoylation in yeast ascribes PAT activity 

to each of these proteins, though perhaps the most insightful finding this study is the 

overlapping and varying specificity of these PATs (Roth et al, 2006). Pfa3 for example, was 

said to be a general palmitoyltransferase with minimal specificity towards the protein 

substrate (Nadolski & Linder, 2009), while Erf2/Erf4 mentioned earlier were thought to be 

specific Ras PATs. 

In mammalian systems, 25 DHHC proteins have been identified. As with the yeast DHHC 

proteins, mammalian proteins display very little sequence similarity beyond the presence of 

the DHHC domain. Unfortunately, limitations of knockdown methodologies for such a large 

number of genes in mammalian cells make it difficult to tease out the specificity of these 

DHHC proteins with the approaches used in yeast systems. Based on comparisons with 

substrate specificity with those of yeast DHHC proteins, the DHHC9/GOLGA7 complex is 

thought to be the mammalian equivalent of the yeast Erf2/Erf4 RasPAT (Swarthout et al, 

2005). It should be noted that hDHHC9 and Erf2 have only 31% sequence similarity, barely 

above the ‘homology-threshold’. Similarly, DHHC3 and DHHC8 and thought to be general 

low-specificity PATs, much like the yeast Pfa3. Various studies on the specificity of DHHC 

proteins have unfortunately led to only partial agreement regarding the substrate specificity 

of DHHC proteins (Hou et al, 2009). 

On the other hand, the tissue specific expression of mammalian DHHC proteins and their 

intracellular localization has been studied in greater detail (Ohno et al, 2006). The fact that 

all DHHC proteins do not have ubiquitous expression, while many palmitoylated proteins do 

has added more credibility to the hypothesis that DHHC proteins must have overlapping 

specificity. DHHC9, the supposed RasPAT, for example, is not detected in the thymus, spleen 

and peripheral blood leucocytes. Nonetheless, its substrate Ras is expressed in all 

mammalian tissues. Clearly, Ras palmitoylation must be mediated by other proteins in the 

tissues where DHHC9 is absent. The intracellular localization of DHHC proteins, as studied 

with microscopy of fluorescent fusion constructs indicates that most DHHC proteins localize 

to the Golgi apparatus or on the ER, with 2 reported to localize on the plasma membrane. 
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The localization of DHHC9 to the Golgi apparatus is at least consistent with studies 

indicating that the palmitoylation of Ras occurs on the Golgi apparatus in mammalian cells.  

Whatever the exact substrate specificity of DHHC proteins, or their PAT activity, it is certain 

that these proteins seem to affect the function of their proposed substrates.  It is unclear 

however, if this effect is a direct result of catalyzing palmitoylation of these proteins, or an 

indirect effect due to an unknown function of these DHHC proteins. 

 

Functions of Reversible S-palmitoylation 

S-palmitoylation has shown to be dynamic, consistent with the labile nature of the thioester 

bond linking the lipid to the protein (Iwanaga et al). A protein may undergo several 

palmitoylation turnovers during its existence in the cell, suggesting a role for the 

palmitoylation status of the protein in its cellular functions.  

Palmitoylation is known to be essential for the structural stability of proteins such as 

rhodopsin (Maeda et al). Palmitoylation prevents the inactivation of rhodopsin, presumably 

by stabilizing the protein tertiary structure. Such structural palmitoylation is postulated to 

stabilize G-protein coupled receptors as well. It is unclear if such palmitoylation is indeed 

dynamic, or if it used to regulate signaling via these proteins. 

It is well-established that palmitoylation controls the localization and activity of proteins. 

Receptors such as estrogen-receptor or the AMPA receptor require palmitoylation in order 

to enhance their membrane residence time (DeSouza et al, 2002; Gonnord et al, 2009; 

Hayashi et al, 2009). Since such receptors are transmembrane proteins, clearly 

palmitoylation is not required to enhance membrane binding. However, palmitoylation may 

facilitate the interaction of the transmembrane domains of these proteins with the local 

lipid environment, and thus increase their average residence time in the membrane. On the 

other hand, palmitoylation could regulate ubiquitin-mediated protein degradation, as is the 

case for the yeast SNARE protein Tlg1 (Valdez-Taubas & Pelham, 2005). The roles 

palmitoylation plays in the function of a protein may be convoluted. For example, both the 



 
18 

ligand-dependent activation and regularized internalization of synaptic AMPA receptors is 

dependent on palmitoylation of the protein. In AMPA membrane receptors, palmitoylation 

controls regularized internalization, but causes inhibition of the receptor. Palmitoylation 

therefore seems to have direct effects on a protein’s activity or indirect effects by regulating 

its localization and degradation. 

For peripheral membrane proteins such as Ras and heterotrimeric G-proteins, 

palmitoylation increases membrane binding of these proteins by increasing the 

hydrophobicity. Any effects on cellular signaling, so far have been ascribed to mislocalization 

of the respective protein. However, the palmitoylation of transmembrane receptors occurs 

over tens of minutes, while the palmitate turnover of peripheral membrane protein occurs 

over a time scale of seconds (Rocks et al, 2005). It is likely that limitations of conventional 

biochemical approaches which typically involve in vitro purification, isolation and then 

equilibrated assays have prevented the elucidation of fast-time scale effects of 

palmitoylation on the activity of these proteins. Indeed, part of this work describes a mode 

of signaling regulation of Ras that results from the dynamics of the Ras acylation cycle.  

 

1.3 Depalmitoylation and Thioesterases  

While S-palmitoylation is dynamic, autohydrolysis of the thioester bond in the reducing 

environment of the cell is unlikely. Enzymes that catalyze the depalmitoylation of proteins 

are simply thioesterases. Fortunately, thioesterases are at least more familiar than the 

enzymes which catalyze the palmitoyltransferase reaction. Mammalian systems contain only 

3 known genes that encode for a acyl-protein thioesterase activity: Palmitoyl-Protein 

Thioesterase 1 (PPT1), Acyl-Protein Thioesterase 1 (APT1), and Acyl-Protein Thioesterase 2 

(APT2) (Hirano et al, 2009a). As PPT1 is a lysosomal enzyme, it is thought to be involved in 

depalmitoylation during degradative processes and certainly does not have access to the 

vast array of palmitoylated proteins present in the cell (Dawson et al, 2010). APT1 and APT2 

on the other hand are expressed ubiquitously and have cytoplasmic localization, making 

them good candidates as protein depalmitoylating thioesterases. APT1 was shown to 
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depalmitoylate G protein and Ras in vitro (Duncan & Gilman, 1998). However, in vivo 

demonstration of the activity of APT1 was lacking thus far. APT2 is less studied; however, 

the high sequence similarity (66%) suggests that APT2 is indeed a functional thioesterase.  

APT2 has now been shown to be an active thioesterase, depalmitoylating the GAP43 protein 

(Tomatis et al). In either case, the role played by these enzymes in the activity of 

palmitoylated proteins remains to be elucidated. Regulatory mechanisms have been 

described, wherein nitrosylation or proline isomerization on substrate proteins (Ahearn et 

al, 2011; Baker et al, 2000), as well as PKC mediated control of APT1/2 localization affects 

their activity in certain cell types (Wang et al, 2000). In this work, these proteins are 

described as components providing the infrastructure for the acylation cycle and thus 

affecting Ras signaling. The reader may note that APT1 and APT2 were discovered initially as 

having lysophospholipase activity and may be denominated LYPLA1 and LYPLA2 

respectively. This nomenclature is changed to its current form after the publication of this 

work, corroborated by in vitro data indicating that the acyl-protein thioesterase activity of 

these proteins is far more efficient than their incidental lysophospholipase activity (Uniprot 

Database Version 25, http://www.uniprot.org). 

 

1.4 The Ras proteins and biochemistry of the GTPase cycle 

Ras has the significant distinction of being the first oncogene to be discovered (Parada et al, 

1982).  The Ras gene was known to be part of the Harvey virus, which caused the rapid 

formation of sarcoma tumours in Rats. Isolated as tumorigenic fragments from at least 

thrice from independent samples of human cancerous tissue, its significance in oncogenic 

transformation was solidly established when Luis Parada reported the tumorogenic 

fragments to be homologues of the transforming gene in the Harvey virus, thus christening 

them to be RAS (Rat Sarcoma). Subsequent studies by identified Ras to be a single molecule 

GTPase akin to the heterotrimeric G-proteins. Over the years, Ras has evolved in scientific 

literature from single viral protein to a superfamily of related proteins (Wennerberg et al, 

2005). The original Ras proteins are now known to occupy a central node in cellular 
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signaling, and in turn affect a wide variety of cellular processes ranging from cell 

proliferation, apoptosis, cytoskeletal remodeling etc (Bourne et al, 1991; Shields, 2000).  

All Ras proteins are Guanine nucleotide binding proteins – consisting of the G-domain which 

binds GTP or GDP with affinities as near as makes no difference (Vetter & Wittinghofer, 

2001). Substantial changes occur in the tertiary structure of the G-domain when bound to 

GTP, as compared to when bound to GDP. The two resulting conformational states can be 

distinguished by ‘effector’ domains on other proteins that recognize only the GTP-bound 

form of Ras. In short, the ability to bind different nucleotides and reflect its ‘loading state’ 

turns Ras into a molecular switch. Of course, a switch of this sort is not very useful until it is 

regulated. In order to switch from a GDP-bound state to a GTP-bound state, Ras proteins 

require interaction with proteins called Guanine Nucleotide Exchange Factors (GEFs). GEFs 

pry the structure of Ras, allowing the release of GDP. Since the cytoplasmic GTP 

concentration is much higher compared to GDP (GTP:GDP ratio is ~10), GTP replaces GDP, 

thus changing the loading state of Ras (Antonarakis & Van Aelst, 1998; Zhang et al, 2005).  

Conversely, G-domains are weak GTP-hydrolases (GTPases), possessing an active site that 

lacks a critical Asp residue (Wittinghofer et al, 1997). Interaction with the aptly named 

GTPase Activating Proteins (GAPs) completes the active site, and causes the hydrolysis of 

the bound GTP to GDP and inorganic phosphate. Thus Ras is switched to the GDP-loaded 

state.  
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The GTPase Cycle. G-proteins transition between GTP-bound and GDP-bound states, catalyzed by GEFs and 

GAPs that respond to upstream stimuli. GTP-bound G-proteins are considered ‘active’ and they can bind 

downstream effectors and continue the signal transduction cascade. 

 

This transition scheme between GTP and GDP loaded states of Ras is known as the GTPase 

cycle, and occurs in response to activation of GEFs and GAPs from upstream signaling 

events. Typically, downstream effectors bind Ras when it is GTP-loaded, furthering the 

transmission of the signaling event. Since upstream GEF and GAP activators represent a 

wide variety of cellular receptors and proteins, it is clear that Ras serves as an integration 

point in various signaling networks, facilitated by the GTPase cycle. 
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1.5 Ras Signaling in the Context of the MAPK Pathway 

Ras signaling in the context of the Membrane Associated Protein Kinase (MAPK) pathway  

has received significant attention for a number of reasons. Firstly, it is the first pathway 

describing a linear signaling cascade from extracellular ligands to gene expression. Secondly, 

the pathway was discovered to signal proliferation of cells. The discovery of Ras, which itself 

was known to be an oncogene, as a component of this pathway was an epiphany in 

mechanisms of signal transduction. In particular, the role of Ras in MAPK pathway is 

important for this work, since it is the proliferative effects of oncogenic Ras that can be 

quenched by manipulating the acylation cycle. 

The MAPK pathway is activated by one of several extracellular ligands, each binding to 

different plasma membrane bound receptors. One such ligand is the Epidermal Growth 

Factor (EGF), which binds the transmembrane Epidermal Growth Factor Receptor (EGFR). 

The cytoplasmic domain of these receptors is a receptor tyrosine kinase (RTK), which 

undergoes activation upon ligand binding of the extracellular domain. The kinase activity 

autophosphorylates tyrosines present in the activation loop of the protein (Lemmon & 

Schlessinger, 2010). Adaptor proteins containing Src-Homology (SH2) domains, which can 

themselves be phosphorylated bind to phosphorylated Tyrosines, for example Grb2 (Chen§ 

et al, 1996; Lowenstein, 1992), which in turn recruits GEFs such as SOS (son of sevenless). 

SOS then interacts when GDP-loaded Ras to ‘activate’ it, exchanging the GDP to GTP. GTP-

loaded Ras can then be bound by the downstream Serine/Threonine kinase Raf, activating it  

(Freedman et al, 2006). Raf then activates Mek by phosphorylation. Mek is itself a Ser/Thr 

kinase which in turn activates another downstream Ser/Thr kinase Erk by phosphorylation 

(Peyssonnaux & Eychène, 2001). Upon phosphorylation, Erk translocates to the nucleus 

(Brunet et al, 1999), and phosphorylates Elk and nuclear transcription factor by 

phosphorylation. Elk then activates expression of several genes required for cell 

proliferation. 

This linear description of the MAPK pathway is of course oversimplified. Several 

complexities exist within the details of MAPK signaling. Besides adaptor proteins such as 

Grb2, the interaction of several of the kinases is facilitated through scaffold proteins such as 
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KSR or Ste5 (in yeast) (Kolch, 2005; Zhong et al, 2003; Rocks et al, 2006). The ligand sensing 

RTKs on the membrane are known to cluster, and exhibit regulated internalization (Hofman 

et al, 2010; Wang et al, 2005). Network analysis of MAPK systems have shown that the 

fidelity with which the involved kinases act on each other differs depending on the 

upstream extracellular ligand, eventually affecting the output of the signal transduction 

process (Santos et al, 2007). Numerous positive and negative feedback loops exist within the 

MAPK infrastructure. At the level of Ras, the previously mentioned GEF SOS does not simply 

activate Ras, but its activity can be allosterically enhanced by activated Ras (Waters et al, 

1995; Freedman et al, 2009). In other words, SOS asserts positive feedback on itself, making 

it an effector as well as GEF for the Ras protein.  

 

MAPK pathway and Ras coupling to RTKs. Signal transduction in a highly simplified depiction of the MAPK 

pathway is itself full of complex interactions surrounding the Ras GTPase cycle. Additionally, a plethora of 

syndromes associated with alterations in MAPK components highlights the prominent role of the MAPK 

cascade in cellular signaling. 

 

In the background of such complexity, the Ras protein forms a nodal  point where MAPK 

signals are integrated. Due to its role in cellular proliferation, differentiation and a host of 
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other cellular processes, it is no surprise that nearly every protein-coding gene that 

contributes to the MAPK cascade, including Ras is a potential oncogene. Unfortunately, 

attempts to design inhibitors that affect the GTPase cycle of Ras in order to control 

oncogenic effects of the MAPK mutations, have met with failure. The GTPase cycle, which is 

the intended target of such inhibitors, is far to general a mechanism. The G-domain is an all-

purpose protein domain that is present in proteins involved in protein sysnthesis, such as Ef-

Tu, in the entire Ras superfamily (protein secretion, sorting, proliferation, cytoskeleton 

remodeling, vesicular transport etc.), in proteins that form the basis for alternative forms of 

signaling such as G-protein coupled receptors. As a result, designing specific inhibitors for 

the MAPK/Ras GTPase cycle is challenging and almost always results in massive toxicity and 

pleiotropic effects (Morris et al, 2010; Newton et al, 2000; Caron et al, 2005; Klohs et al, 

1997; Arredondo et al, 2006). In this work, the acylation cycle is shown to be a target 

candidate for modulation of Ras activity while avoiding such unwanted effects. 

 

1.6 Ras Isoforms and Localization 

So far, this document has referred to Ras as a single protein entity. However, mammalian 

genomes contain three isoforms of Ras – Harvey (H)-Ras, Neuroblastoma (N)-Ras and 

Kirsten (K)-Ras. HRas and KRas are named after their homology viral oncogenes that induce 

sarcomas after infection (Ulsh & Shih, 1984; Norton et al, 1984). NRas is known from its 

homology to the oncogene identified in a human neuroblastoma cell line (Ireland, 1989). 

The KRas gene product occurs in two splice variants KRas4A and KRas4B, with differences in 

the C-terminal region of the protein. As KRas4B is similar to HRas and much less abundant 

than KRas4A, the term ‘KRas’ typically refer to the KRas4A variant (Pan et al, 1990). 

The Ras proteins are 189 amino acids in length of which the first 165 constitute the 

conserved G-domain. This region is nearly identical between all of the three Ras isoforms  

displaying >95% sequence similarity. The effector binding region of the G-domain is exactly 

identical, indicating that that H, N and K-Ras do not differ in their ability to bind effectors or 

in their GTPase cycles. The three isoforms are indistinguishable in in vitro assays of GTPase 
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activity and effector binding (Gulbins et al, 1994). The C-terminal 25 amino acids however, 

display only 10-15% sequence similarity between the three isoforms and is hence referred 

to as the Hypervariable Region (HVR). However, biological studies show that KRas activates 

Raf more effectively, while H and NRas show more potent activation of PI3-kinase, 

representing an alternative downstream signaling branch. Further, gene knockout studies in 

mice show that KRas is essential for mouse development, but H an NRas seem to be 

dispensable at this stage (Johnson et al, 1997). Since the phenotypic effects of oncogenicity 

of these genes are distinguishable and tissue-specific and developmental changes in the 

expression of the three isoforms has been reported (Quinlan & Settleman, 2009), the HVR is 

clearly responsible for differences in the signaling mediated by the three Ras isoforms.  

The HVR terminates in a CaaX box – each of the three Ras isoforms is prenylated. More 

specifically, Ras isoforms are Farnesylated and methyl-modified at the C-terminus. This 

confers weak membrane affinity to the Ras proteins. In addition, HRas contains 2 Cys 

residues (position 181 and 184) which are S-palmitoylated. N-Ras contains only a single S-

palmitoylated Cys residue (position 181). HRas also contains proline residues in the HVR , 

which have been reported to affect the reversibility of the S-palmitoylation on HRas (Ahearn 

et al, 2011). KRas is not S-palmitoylated, but instead contains a sequential polybasic stretch 

of 6-lysine resides, conferring a strong positive charge onto the KRas C-terminus.  

The features on the HVR are shown to be responsible for the differential localization of H,N 

and KRas. HRas and NRas localized to the PM and Golgi apparatus, a result of mediated by 

palmitoylation on the Golgi apparatus which increases its membrane affinity (Rocks et al, 

2006). HRas however, is doubly palmitoylated, which is correlated with its more prominent 

PM localization. Artificially, increasing the number of palmitoylatable Cys residues is known 

to confer a a bias towards PM localization for H and NRas, shifting their partitioning away 

from the Golgi apparatus (Rocks et al, 2005). KRas, on the other hand, is not detected on the 

Golgi (as is expected from its lack of palmitoylatable Cys residues). KRas localization is 

almost exclusively towards the plasma membrane, mediated by the interaction of the 

polybasic stretch towards the negatively charged phospholipids and the electrical polarity in 

the PM (Yeung et al, 2008; Crouthamel et al, 2008; Quatela et al, 2008). Additionally, KRas 
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contains a Ser residue adjacent to the polybasic stretch, which is a phosphorylation 

substrate for Protein Kinase C (Bivona et al, 2006). Phosphorylation of the adjacent Ser can 

neutralize the positive charge of the polybasic stretch, and shifts KRas localization away 

from the PM onto internal cellular membranes, due to the weak affinity of the prenyl group. 

Such an effect is also seen for H- and NRas, where treatment with 2-bromopalmitate (2-BP), 

an inhibitor of palmitoylation causes a change in localization of H and NRas to all internal 

cellular membranes (Jennings et al, 2009; Dekker et al, 2010). The prenylated forms of the 

three Ras isoforms are indistinguishable in their cellular localization. The palmitoylation and 

polybasic stretch are the key features that generate differences in localization between H,N 

and KRas.  

 

Localization and Lipid Modifications of Ras Isoforms:  All Ras isoforms are farnesylated (red). H- and N-Ras are 

palmitoylated (blue) at cysteines, while K-Ras contains a polybasic stretch of lysines (green). These distinct 

features modifications result in the differential partitioning of Ras isoforms. H-Ras and N-Ras stain the Golgi 

apparatus and plasma membrane, albeit to different degrees. K-Ras stains the plasma membrane almost 

exclusively. Gal-T-CFP is a Golgi marker. Reproduced from Rocks et al. 2005 

 

The dynamic nature of H and NRas palmitoylation is known from FRAP studies conducted by 

Rocks et al. However, exactly how this reversible S-palmitoylation leads to the observed 

PM/Golgi localization, and what effects it has on Ras dependent signaling is unclear. 

Considering what is known about the similarities and differences between the Ras isoforms, 
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this reversible palmitoylation is clearly a critical factor in the biological functions of these 

proteins. This work provides a mechanistic explanation for how localization is generated 

from spatially separated palmitoylation and depalmitoylation activities for H/N-Ras, 

resulting in an acylation cycle that eventually modifies their signaling activities. 
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2 SCOPE  

It is clear that the cell is not simply a ‘bag of enzymes’. Proteins within the cell have precise 

activity profiles that vary over time and space. It is of interest to determine how such 

precise activity profiles emerge from the kinetics of basic biochemical reaction processes 

when coupled with molecular mobility. Spatial modulation of protein activity is a critical for 

a variety of phenomenon – some obvious, such as the establishment of cell polarity or 

orientation of the mitotic spindle. In other cases, spatial modulation takes place over 

subcellular compartments. The acylation cycle for peripheral membrane proteins, such as 

Ras, can be thought of as a reaction-diffusion cycle that generates asymmetry along the 

radial axis of the cell, with enrichment at the Golgi and the PM, and fast, constant, low-

intensity flux of the protein on the endoplasmic reticulum or cytosol. The ensuing study 

results seek to answer the following questions regarding the acylation cycle of peripheral 

membrane proteins: 

1) The repertoire of proteins subjected to the acylation cycle is substantial. Is the 

acylation cycle then a case of independent convergent molecular evolution of these 

proteins, or is it a general mechanism that recruits various proteins into its scope? 

Equivalently, is there specific machinery for the acylation of each protein, or is it 

aspecific machinery that can act any protein that satisfies the minimal criteria for 

acylation?  

 

2) How does the acylation cycle generate the spatial asymmetry that is so prominent? 

What are the minimal criteria that a protein must satisfy in order to enter the 

acylation cycle? What are the mechanics of the process, and more importantly, what 

is the basic ‘infrastructure’ – proteins, subcellular structures etc. required to operate 

the acylation cycle? 

 

3) Howsoever the acylation cycle functions, what exactly is the influence of such a cycle 

on proteins that are subjected to it? Teleological reasoning suggests that it is unlikely 

for such a widely conserved mechanism to exist without function. Is the purpose of 



 
29 

the acylation cycle merely protein targeting, or does it entwine with other aspects of 

the proteins’ activity to generate more complex phenomenon?  

 

4) Finally, is it possible to perturb or modulate such a reaction-diffusion cycle for 

therapeutic benefits? 

 

The Ras proteins exist in three isoforms, each differentially susceptible to the effects of the 

acylation cycle. They are peripheral membrane proteins with a single, well-defined 

biochemical activity that stems from their GTPase domain. They form integral nodes in the 

well-studied MAPK cascades; the functioning of which can be assayed with well-established 

biochemical, molecular and phenotypic readouts. As oncogenes, the biology of Ras proteins 

has definite clinical implications. As such, Ras proteins and their signaling represent a 

convenient model with which the answers to the above questions might be attempted. The 

results however, may be readily extended to other proteins, taking into account the 

respective proteins’ idiosyncrasies.  
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3  EXPERIMENTAL PROCEDURES 

3.1 Materials 

3.1.1 Consumables and Kits 

PRODUCT MANUFACTURER 

QIAPrep Spin Plasmid Miniprep Kit Qiagen 

HiSpeed Maxi Plasmid Kit Qiagen 

RNAeasy Spin Kit with gDNA Elminator Qiagen 

OneStep RT-qP CR SYBR Green Kit Qiagen 

Glass Bottom Cell Culture dishes (35mm) 
MatTek Corp (Ashland, USA) 

 

Polylysine/Collagen coated Glass Bottom dishes MatTek Corp (Ashland, USA) 

Femtotip- II Gold Microcapillary Needles Eppendorf 

Glass Slides (76x26 mm) Menzel (Braunschweig) 

Coverslips (18x18 mm) Menzel (Braunschweig) 

6-well and 24-well Cell Culture Plates Nalgene 

Cryogenic Vials Nalgene 

Odyssey Blocking Buffer LI-COR Biosciences Inc. 

White-Background RT-qPCR 96-well plates BioRad 

Quickchange-XL Site-Directed-Mutagenesis Kit Stratagene 

 

3.1.2 Reagents 

PRODUCT MANUFACTURER 

Effectene Transfection Reagent Qiagen 

Lipofectamine LTX Transfection Reagent Invitrogen 

RNAiFect Transfection Reagent Qiagen 

2-Bromopalmitate Sigma-Aldrich 
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Cycloheximide Sigma-Aldrich 

Human Epidermal Growth Factor Cell Signaling Inc. 

Bradykinin Cell Signaling Inc. 

FITC-labelled Dextran Sigma-Aldrich 

Dynasore Sigma-Aldrich 

Phorbol Myristate Acetate Sigma-Aldrich 

Triton X-100 Sigma-Aldrich 

Pluronic Sigma-Aldrich 

 

3.1.3 Antibodies and related products 

PRODUCT MANUFACTURER 

Anti-Erk1 Monoclonal Mouse IgG Cell Signaling Inc. 

Anti-PhosphoErk1 Monoclonal Rabbit IgG Cell Signaling Inc. 

Anti-Erk2 Monoclonal Mouse IgG Cell Signaling Inc. 

Anti-PhosphoErk2 Monoclonal Rabbit IgG Cell Signaling Inc. 

Alexa-488 labelled Anti-E-Cadherin Mouse IgG Cell Signaling Inc. 

Anti-E-cadherin Mouse IgG Cell Signaling Inc. 

IR-Dye 700 labelled Goat Anti-Mouse IgG  Secondary LI-COR Biosciences Inc. 

IR-Dye 800 labelled Goat Anti-Mouse IgG  Secondary LI-COR Biosciences Inc. 

IR-Dye 700 labelled Goat-Rabbit IgG  Secondary LI-COR Biosciences Inc. 

IR-Dye 800 labelled Goat-Rabbit IgG  Secondary LI-COR Biosciences Inc. 

IR-Dye 700 labelled Streptavidin LI-COR Biosciences Inc. 

Anti-N-Ras Mouse IgG Sigma-Aldrich 

 

3.1.4 Commonly Used Buffers and Solutions 

NOMENCLATURE CONSTITUENTS 

PBS (Phosphate Buffered Saline) 137 mM NaCl,2.7 mM KCl,10.2 mM Na2HPO4, 1.8 mM 
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K2HPO4 

RIPA Cell Lysis Buffer 

50mM Tris-cl pH 7.4, 150mM NaCl, 1% NP40, 0.25% Na-

deoxycholate, 1mM PMSF, 1x Roche complete mini 

protease inhibitor cocktail, 1x Pierce phosphatase 

inhibitor cocktail 

Methanol Fixation Buffer 100% Methanol at -20°C 

50x Tris-HEPES Buffer 100mM Tris, 100mM HEPES, 3mM SDS 

50x TAE Buffer 2M Tris/acetate, pH 8.5, 50 mM EDTA 

6x Gel Sample Buffer 
30% (v/v) Glycerol, 0.25% (w/v) Bromophenol blue, 

0.25% (w/v) Xylenecyanol in TAE Buffer 

 

3.1.5 Cell Culture Media, Supplements and Solutions 

PRODUCT MANUFACTURER 

Dulbecco’s Modified Eagle Medium (DMEM) Invitrogen 

Trypsin/EDTA for cell culture Sigma-Aldrich 

Fetal Bovine Serum PAN Biotech GmBH 

100X Penicillin-Streptomycin-Glutamine solution Invitrogen 

OptiMEM I w/ Glutamax Invitrogen 

OptiMEM I Reduced Serum Media w/ HEPES Invitrogen 

Dimethyl Sulfoxide (DMSO) Sigma-Aldrich 

HL-5 medium Invitrogen 

 

 

3.1.6 Eukaryotic Cell Lines 

MDCK (ATCC: CCL-34) 

The MDCK cell line was derived from a kidney of an apparently normal adult female cocker 

spaniel, September, 1958, by S.H. Madin and N.B. Darby. The cells are positive for keratin by 
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immunoperoxidase staining and display an epithelial phenotype. MDCK cells are strongly 

adherent, contact inhibited and non-tumorigenic. 

MDCK-F3 

The MDCK-F3 cell line is a subclone of an MDCK cell line subjected to adenoviral neoplastic 

transformation with an oncogenic HRas-G12V gene (Karaguni et al, 2002). MDCK-F3 cells are 

cytokeratin positive and display a mesenchymal-like phenotype. MDCK-F3 cells have 

constitutively active canonical MAPK pathways, lack contact inhibition and are tumorigenic. 

The MDCK-F3 cell line was kindly provided by Dr. O. Müller (MPI for Molecular Physiology, 

Dortmund).  

HeLa (ATCC: CCL-2) 

HeLa cells are human cervical cancer cells isolated from a patient Henrietta Lacks pre-

mortem in 1951. HeLa cells are epithelial-like, are contact inhibited but are tumorigenic. 

Hela cells contain the Human Papilloma Virus. 

Dictyostelium discoideum (Dictybase: AX2) 

Dictyostelium discoideum is a species of soil-living amoeba belonging to the phylum 

Mycetozoa. D. discoideum, commonly referred to as slime mold, is a eukaryote that 

transitions from a collection of unicellular amoebae into a multicellular slug and then into a 

fruiting body within its life time. The strain used in this work is a neomycin-susceptible 

axenic strain, maintained in the amoeboid stage. 

 

3.1.7 Plasmids 

Mammalian Plasmids 

Mammalian expression plasmids used in this work are derived from the pEGFP vector. 

pEGFP encodes a F64L,S65T monomeric variant of wild type from Aequorea victoria Green 

Fluorescent protein, with its sequence optimized for expression in mammalian cells. The 
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backbone contains a human cytomegalovirus (CMV) promoter and Simian Virus 40 (SV40) 

polyadenylation signal downstream of the coding sequence. Bacterial selection is mediated 

by a kanamycin resistance gene in E.coli. The EGFP sequence could be interchanged with 

that of several other fluorescent proteins to generate multiple colors of fluorescent fusion 

proteins. ECFP and mCerulean are cyan fluorescent proteins, the latter being a brightness 

optimized variant of ECFP. Similarly, EYFP and mCitrine are yellow fluorescent proteins, the 

latter being a pH-stable version of EYFP. mRFP, and mCherry are red fluorescent proteins, 

the latter being an optimized version of mRFP for faster maturation and photostability. 

EpaGFP and EpaCherry are kind gifts from J. Lippincott-Schwartz and encode photo-

activatable versions of EGFP and mCherry respectively. These proteins undergo glutamate 

decarboxylation at the fluorophore upon exposure to UV light of 340-440 nm, resulting in 

the formation of an alternative fluorophore that is ~40 fold brighter. Most plasmids were 

obtained from the central plasmid bank at the Dept. of Systemic Cell Biology.  

H-Ras, N-Ras and K-Ras plasmids were kind gifts from Dr. Oliver Rocks and all mutations in 

these plasmids of upto 12 amino acids were derived through site-directed mutagenesis. Fyn 

sequences were a kind gift from Dr. Margaret Frame (Edinburgh Cancer Research Centre). 

PCR fragments of Fyn were inserted into the pEGFP vector backbone using the EcoRI/BamH1 

restriction sites. Myr, G(1-11), tH constructs were created through direct chemical 

synthesis of nucleotides, followed by ligation into mammalian expression vectors. 

Constructs were validated using forward and reverse sequencing. 

 

Dictyostelium plasmids 

Plasmids for expression in Dictyostelium were derived from the pDM vector, which was a 

kind gift from Dr. Arjan Kortholt (Max Planck Inst. Dortmund). pDM vectors pDM317 and 

pDM134 represent N-terminal labeling vectors containing EGFP (green) and mRFPmars (red) 

fluorescent proteins respectively. The vectors contain the DIctyostelium act15 promoter 

upstream of the expressed sequence, and a cabA terminator sequence downstream of the 

expressed sequence. Additionally, ampicillin resistance is encoded for selection in E.Coli, 
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while neomycin resistance is encoded for selection of stable transfectants in Dictyostelium. 

PCR fragments of human HRas and its mutant HRasC181S,C184S where cloned into the pDM 

vectors using the XhoI/EcoRI restriction sites, to generate GFP and mRFP fusion variants. 

Constructs were validated using forward and reverse sequencing. 

3.1.8 Oligonucleotides 

Fluorescent fusions of short truncated sequences of upto 15 amino acids (for C-termini or 

HRas and KRas, N-termini of G-alpha proteins and Fyn) were generated using chemical 

synthesis of the relevant truncated 5’-phosphorylated DNA oligonucleotide with flanking 

partial restriction sites and direct ligation with restriction enzyme treated vector. The 

oligonucleotides were purchased from MWG-Biotech and sequences are provided below : 

Name Sequence 

MyrSer 
5’atgggatccacactgagcgctggctccgctgnttntgcgggtagcgcgggatccgcc

ggttcagcagggagtgctggctcggcaggatctgcgcgc 3’ 

Fyn(1-11) 5’atgggctgcgtgcagtgcaaagataaagaagcg 3’ 

 

 

3.2 Molecular Biology Techniques 

In general, wherever kits were utilized, the protocol recommended by the manufacture was 

followed. 

 

3.2.1 Plasmid Preparation 

Cultures of transformed bacteria were centrifuged to form a bacterial cell pellet. The pellet 

was then homogenized and lysed with SDS-buffer provided in the HiSpeed Plasmid Maxi 

prep kit (Qiagen). The SDS was then precipitated with a pH shift and centrifuged out, while 

the supernatant of applied to a DNA-binding mini-column. The column pore-size excludes 
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genomic DNA. After a series of washes with binding buffer (supplied), the DNA was eluted in 

in Nuclease-free water. 

 

3.2.2 DNA Restriction and Ligation 

Restriction enzymes (New England Biolabs) are typically supplied with optimized buffers. 

Plasmid DNA and restriction enzymes were mixed in a ratio of 1 unit/mg of plasmid DNA in 

the appropriate buffer and incubated at the optimal temperature (37 or 55°C) for the 

restriction enzyme for 1h. When more than one restriction was required, the enzymes 

added simultaneously to the reaction provided optimal buffers and temperatures were 

identical. Plasmids in the open conformation or restriction fragments were isolated with 

subsequent agarose gel electrophoresis and purification on a DNA-binding column.  

Prior to ligation vectors were treated with Shrimp Alkaline Phosphatase to remove 5’ 

phosphate groups and thus avoid self-ligation. For sub-cloning procedures, restriction 

fragments or oligonucleotides were incubated with the vector backbone in molar ratios of 

3:1, 5:1 and 10:1 with DNA ligase for 1h. The entire reaction mixture was then used for 

transformation in bacteria. 

 

3.2.3 Bacterial transformation and selection 

200 L of dense chemically competent E.coli cultures were treated 1mM DTT and incubated 

with plasmid DNA or ligation products on ice for 10 min. The culture was then allowed to 

recover in Super Optimal Broth (SOB) for 1h at 37°C. Finally, the culture was plated on LB-

agar plates containing 20 g/mL Kanamycin or 50 g/ml Ampicillin, depending on the 

selection marker on the plasmid DNA, and incubated overnight at 37°C. Individual 

segregated colonies were picked and added to flasks containing LB-medium with the 

selection marker as on the agar plates. Steady state cultures obtained after overnight 

growth at 37°C were then used for plasmid preparation. 
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3.2.4 Sequencing 

Sequencing was outsourced to GATC Biotech GmBH. Sequences were obtained using 

Forward and Reverse primers on three independent runs of standard Sanger methods. 

 

3.2.5 RNA Preparation 

Confluent cells were placed on ice and lysed with scraping and lysis buffer immersion. The 

lysate was passed through gDNA eliminator columns for removal of genomic DNA. Flow-

through was then loaded on to RNA-binding columns from the RNAeasy Extraction kit. The 

column was then washed with buffers containing DNAse, and RNA was finally eluted with 

nuclease-free water at room temperature. Samples were immediately measured 

spectroscopically to determine RNA concentration by absorbance at 260 nm and placed on 

ice. 

 

3.2.6 PCR , RT-qPCR and relevant Data Analysis 

PCR was performed using standard protocols, and Pfu polymerase (New England Biolabs). 

Primers were designed using Primer3, with Tm (melting temperature) typically between 55-

62 deg C.  PCR products were purified with agarose gel electrophoresis and used for further 

procedures. A sample protocol for PCR is identical to the one shown below for RT-PCR, 

eliminating the reverse transcription and optical measurement steps. PCR was typically 

performed on 100 ng of purified templates and thus the number of cycles was retricted to 

25. For site-directed mutagenesis, mismatched primers including the required mutation 

were used, ensuring that the ration of mismatches to matches between primer and 

template did not exceed 1:8. The protocol was modified to expand the extension time to 5 

minutes to allow replication of the entire plasmid. 

Quantitative RT-PCR was performed on total RNA extracts from mammalian cells using the 

Quantifast One-step RT-PCR kit (Qiagen) in 96-well format on a Bio-Rad iQ5 thermocycler 

equipped with an imaging unit consisting of a CCD-camera, xenon excitation lamp and 
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necessary filters. Primers for RT-qPCR were designed with a melting temperature (Tm ) 

between 55-72 °C , and spanned at least one intron-exon boundary to avoid amplification of 

trace genomic DNA. Quantification of double stranded DNA was based on binding of the 

fluorophore SYBR Green – I , which is fluorescent only upon binding to double stranded 

DNA. Reverse transcriptase and a Master mix containing dNTPs are provided in the kit. A 

typical reaction mixture is as follows : 

Description (cycles) Volume per Reaction(l) Final Concentration 

RNAse free water Variable - 

5X PCR Buffer 5.0 1X 

dNTP Mix 1.0 400 M per dNTP 

Forward Primer Variable 1.0M 

Reverse Primer Variable 1.0M 

Enzyme Mix 1.0 - 

Template RNA Variable 100 ng/reaction 

Total 25.0 - 

 

In all cases, control samples were prepared as follows : 

1. Template RNA negative  : To detect possible primer-dimers. 

2. Primer negative : To detect possible self-amplification of total RNA 

3. Reverse transcriptase negative : To detect possible amplification of trace genomic DNA. 

A typical RT-qPCR thermocycler protocol is as follows: 

Description (cycles) Temperature (°C) Time 

Reverse Transcription (1X) 50 30 min 

Hotstart PCR Activation (1X) 95 15 min 

3 Step Cycling (45X)   

Denaturation 94 1 min 

Annealing 50-68 (Primer Tm-5) 0.5 min 



 
39 

Optical Measurement Same as annealing 0.5 min 

Extension 72 1 min 

Final Extension 72 10 min 

 

Since RT-qPCR was used only for validation of RNA interference, only relative changes in 

mRNA expression were measured in this work using Pfaffl’s modified (Ct) method (Pfaffl, 

2001).  

(Ct) = (         
              

    )  (     
          

    ) 

Fold Change = (E[gene])
(Ct) 

% Knockdown = (1 - 
 

        
       

Where: 

 Control represents primers for amplification of a housekeeping gene that is not 

affected by RNAi 

 YFG represents the gene of interest against which RNAi is directed. 

       
      

 represents the threshold half-cycling time for gene amplification in 

sample. 

 E[gene] = Primer amplification efficiency for a particular gene primer. We assume 

EGAPDH = EAPT1 = 2.00. 

 

3.3 Cell Culture Techniques 

3.3.1 Mammalian Cell Culture and transfection 

MDCK and MDCK-F3 were routinely maintained in MEM containing antibiotics and 

glutamine, supplemented with 10 % and 5% fetal bovine serum respectively. Cells were 
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typically cultured upto 90% confluency in T75 flasks before trypsinization and splitting 1:4 

into a new flask. Prolonged incubation at confluency is to be avoided since MDCK cells tend 

to differentiate under these conditions. Frozen stocks were prepared with confluent 

trypsinized cells in MEM with 5% DMSO. Cells were routinely checked for infection with 

mycoplasma by MycoAlert (Cambrex, USA) following the recommendations of the 

manufacturer. If cell lines were found to be contaminated, they were discarded and new 

cells were thawed from frozen stocks.  

For live cell microscopy, cells were cultured on 35-mm glass bottom dishes (MatTek) and 

transferred OptiMEM I (Invitrogen) without phenol red supplemented with 25 mM HEPES 

pH 7.4, or with OptiMEM 1 without HEPES in a CO2 controlled chamber. In the case of 

experiments monitoring Ras activation, MDCK cells were starved in MEM without fetal calf 

serum for 6-7 hours before experimentation. For bright field imaging, cells were cultured in 

24-well plates. 

Transfection was performed with plasmid DNA and Effectene transfection reagent with the 

following protocol:  

1) MDCK and MDCK-F3 cells must be seeded at 1:5 dilution at least 5.5 hours before transfection. HeLa 

cells maybe transfected immediately after seeding. 

2) Add 0.25 ug DNA per plasmid construct in Buffer EC to final volume of 100 ul. 

3) Add [8 x Net amount of DNA used (ug) ] ul of Enhancer reagent.  

4) Vortex for 1 second. 

5) Incubate for 2-5 minutes at RT.  

6) Add Effectene Transfection Reagent, 5 ul per 35 mm Mattek dish (amount of DNA is irrelevant)  

7) Incubate the transfection mix for 5-10 min at RT. While incubation proceeds, replace  

8) medium in 35 mm  dishes with 1.5-2.0 ml OptiMEM w/Glutamax.  

9) Vortex for 10 seconds after incubation and add OptiMEM to transfection mix.  

10) Pipet up and down twice.  

11) Add transfection mix to cells gently 

12)  Incubate dishes at 37 deg C. Cells express protein 7-8 hours post transfection. 

 



 
41 

3.3.2 RNA Interference 

For the experiment, ~6x103   cells were seeded and cultured as described above. 5.5 hours 

after seeding, cells were transferred to OptiMEM I + GlutaMax I (Invitrogen) and cells were 

transfected with upto 2 g siRNA or Non-targeting control siRNA , using RNAifect reagent 

(Qiagen). For determination of siRNA transfection efficiency, cells were transfected with 

non-targetting Cy5 labeled-siRNA and the efficiency was quatified optically. After incubating 

cells for at least 6 hours in the transfection mix, the transfection mix was aspirated and 

replaced with fresh OptiMEM I + Glutamax I (Invitrogen). Cells were then transfected with 

DNA expression constructs (if required) using Effectene transfection reagent (Qiagen). Total 

RNA was then extracted from cells and used for RNAi quantification by RT-qPCR or 

Westernblot as described elsewhere. 

 

3.3.3 Dictyostelium Cell Culture 

Dictyostelium discoideum AX2 cells were cultured in HL5 medium under sterile conditions in 

60 cm petri-plates at 22° C. Cultures were passaged every 3 days into fresh medium. The 

culture was not allowed to reach starvation conditions in order to prevent differentiation.  

 

3.3.4 Stable Transfection of Dictyostelium 

Transformation of D.discoideum amoebae was accomplished by electroporation using 

supercoiled plasmids. All transformants were selected in HL5 medium containing Neomycin 

G418 (50 μg/ml) for 2 seeding cycles and then maintained in HL5 medium containing G418 

(20 μg/ml). 
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3.4 Immnunohistochemistry and Western Blotting 

For anti-E-cadherin immunostaining, cells were fixed in methanol at -20° C. After blocking 

for 1h with 1% BSA solution in PBS, cells were stained with FITC conjugated Mouse Anti-E-

cadherin antibody (BD Tranduction Technologies Cat no : 612130) and imaged under 

confocal or widefield fluorescence microscopes. For brightfield contrast staining, cells were 

fixed with formalin (3.7%), and subsequently stained with Celestine blue (Sigma) and 

visualized by means of an automated microscope. 

MDCK-F3 cells were plated at a density of 1.5x105 cells/dish in 3.5 cm dishes and incubated 

for 36 h. The cells were then treated with Palmostatin B (novel inhibitor), U0126 

(Calbiochem) or DMSO at the indicated concentrations for the indicated time periods.  After 

treatment, cells were washed once with ice-cold phosphate buffered saline (PBS). 100 µl of 

RIPA-buffer (50 mM Tris-HCl (pH 7,4), 1 % NP-40, 0.25 % Na-deoxychelate, 150 mM NaCl, 1 

mM EDTA, 1 mM PMSF, 1 µg/ml aprotinin, 1 µg/ml leupeptin, 1 µg/ml pepstatin, 1 mM 

Na3VO4, 1 mM NaF) containing protease inhibitors (complete protease inhibitor tablets, 

Roche) was then added to each dish. After 10 min of incubation on ice the cells were 

scraped and the lysates were centrifuged at 10000 g for 10 min at 4°C. The supernatants 

were kept at 4 °C. Total cellular lysates (50 µg) of each sample were mixed with sample 

buffer and resolved onto SDS-polyacrylamide (10 %) gels by electrophoresis. The gel was 

blotted with a semi-dry electroblot onto a polyvinylidene diflouride (PVDF) membrane. The 

membrane was then blocked with Blocking Buffer (Licor) for 1 h at room temperature and 

then incubated with the ERK1/2 or p-ERK1/2 antibody (Cell Signaling) diluted (1:1000) in 

Blocking Buffer (Licor)  overnight at 4 °C. To detect the primary antibody the IRDye 700 or 

IRDye 800 (Licor) goat anti- rabbit IgG antibody was used at 1:2x105 dilution in Blocking 

Buffer (Licor). Antibody binding was detected using the Licor Odyssey Infra-Red imaging 

scanner. 
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Acyl exchange assay for detection of palmitoylated protein  (Drisdel & Green, 2004) 

MDCK cells were plated at a density of 5x105 cells/dish in 3.5 cm dishes and incubated for 

6h. The cells were transferred to 2ml OptiMEM I + GlutaMax I (Invitrogen) and transfected 

with YFP-NRas DNA (0.5 µg/ml) using the Effectene transfection reagent (Qiagen) and 

incubated for 24 h. The cells were then treated with Palmostatin B (30 µM), 2-

bromopalmitate (50 µM) or an equivalent amount of DMSO respectively for 1h in D-MEM 

(Invitrogen). After treatment cells were washed once with ice-cold phosphate buffered 

saline (PBS). 300 µl of lysis buffer (5 mM EDTA, 1 % Triton X-100, 50 mM N-ethylmaleimide, 

1 mM PMSF, 1 µg/ml Aprotinin, 1 µg/ml Leupeptin, 1 µg/ml Pepstatin, 1 mM Na3VO4, 1 mM 

NaF in PBS pH 7,4) was then added to each dish. After 3 min of incubation on ice the cells 

were scraped and the lysates were homogenized by passing the lysate through a 20-gauge 

needle, attached to a sterile plastic syringe. The homogenized lysates were rotated for 1 h at 

4 °C and then centrifuged at 10000 g for 10 min at 4°C. Supernatants were stored ovenight 

at 4 °C. To remove proteins that bind non-specifically to sepharose the lysates were 

incubated with Sepharose G (Sigma). All samples were centrifuged and the supernatants 

were rotated with Living Colors® Full-Length A.v. Anti-GFP polyclonal antibody (Clontech) for 

30 min at 4 °C. The protein-antibody complex was precipitated with Sepharose G by rotation 

for 1 h at 4 °C. The purified protein was then additionally treated with 50 mM N-

ethylmaleimide for 1 h at room temperature to ensure quenching of reactive cysteines. 

After treatment and centrifugation, the pellets were washed twice with PBS and each 

sample was divided into two fractions. One fraction was subsequently treated with 1 M 

hydroxylamine (pH = 7.4) by rotation for 1 h at room temperature, to release palmitate 

groups. The other fraction was treated with PBS and served as control sample. Samples 

were then treated with 1-biotinamido-4-[4´-

(maleimidomethyl)cyclohexanecarboxamido]butane BMCC™ (Pierce 320 µM) and rotated 

for 1 h at room temperature to complete the exchange chemistry.  After washing the 

samples twice with PBS the samples were resolved by SDS-PAGE and Western Blotting was 

performed with the Mouse Monoclonal anti-GFP N-terminal antibody (Sigma) or Mouse 

Monoclonal anti-pan-Ras (Ab-2) (Calbiochem) to detect total YFP-NRas. The primary 

antibody staining was visualized by using IRDye 680 Goat anti-mouse IgG Antibody (LI-COR), 
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while biotinylated protein (representing palmitoylated protein) was visualized with IRDye 

800CW Streptavidin (LI-COR) on the Odyssey® Infrared Imaging System (LI-COR). 

 

3.5 Microscopy and Imaging Techniques 

3.5.1 Equipment 

Confocal Microscopy 

Confocal microscopy was performed on a Leica SP5 microscope equipped with a set of 

objectives with magnifications ranging from 10x-60x as air, water and oil based objectives. 

The automated DMI6000 microscope stage is automated and enclosed in a 

CO2/Humidity/Temperature controlled incubator. The scanner unit of the microscope is 

coupled to an Argon laser, UV Diode laser and Helium Neon lasers. In addition, the 

microscope in equipped with an experimental super-continuum laser with output 

wavelengths ranging from 476-800 nm. The excitation wavelength is selected by acousto-

optical tunable filters (AOTF), scanned over the sample at frequencies ranging from 100-

1400 Hz in standard mode, and 8000 Hz in resonant mode. Emission signals from the sample 

are also selected for using AOTFs or through rapid switching of the excitation frequency 

(Sequential mode) to enable multiplex imaging of fluorophores. The emission signal is 

passed through a pinhole to control confocality. Detection of the signal is on PMTs, whose 

sensitivity can be adjusted by manipulating the applied gain voltage.  

Fluorescence Lifetime Imaging Microscopy 

 The Fluorescence Lifetime Imaging Microscope is an in-house built custom unit, a basic 

outline of the construction is provided here. (Grecco et al, 2010). 

 The desired excitation wavelength and power is selected with an acousto-optic tunable 

filter (AOTF, AA, AOTFnC-VIS-TN). The AOTF as a fast shutter by connecting its blanking input 

to the exposure out TTL of the camera. Intensity modulation is achieved by creating an 

oscillating diffraction grating with a standing wave accousto optic modulator (AOM, 
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IntraAction, SWM-804AE1-1) powered with a sinusoidal wave of frequency f/2, which 

deflects the light from the zero order at a frequency f. The modulated beam is selected by 

placing an iris diaphragm (Thorlabs, ID25/M) in the optical path.  

The laser is coupled into a vibrationally isolated inverted microscope (Olympus, IX81) using a 

multimode fiber (Schaeffter Kirchhoff GmbH, #46688-03). The spatial coherence of the laser 

is disrupted by vibrating the fiber using a rotating eccentric wheel attached to the fiber. This 

results in a randomly moving speckle pattern, which averages out during detection. 

Homogeneous (Koehler) illumination at the sample plane is achieved by imaging the fiber 

core in the backfocal plane of the objective. A 12-bit CCD camera using a 0.5X magnification 

is used to record images.  

To perform phase-sensitive homodyne detection it is important that: (1) the frequencies of  

the modulation and detection are precisely matched and (2) the phase between the two 

signals can be shifted. 

 

Total Internal Fluorescence Microscopy: Total Internal Fluorescence Microscopy is 

performed on a Olympus IX81 microscope equipped with 60x NA=1.8 TIRFM APOCHROMAT 

oil objective. The microscope is coupled into Argon lasers passing through condensers that 

allow manipulation of the incident angle of the light onto the specimen.  

Microinjection: Microinjection was performed directly at the Leica SP5 DMI6000 

microscope using an automated micromanipulator (Eppendorf 5171), coupled to the 

Eppendorf Femtojet pressure generator. 

 

3.5.2 Confocal Microscopy  

For live cell experiments, confocal laser scanning microscopy was performed on a Leica TCS 

SP5 DMI6000 microscope equipped with a HCX PL APO 63x 1.4-.6 NA Blau CS objective and 

an environment control chamber which maintained temperature at 37°C, and 5% CO2. For 

anti-E-cadherin immunostaining experiments, a N PLAN L 20x/0.40 Air objective was used.  

For contrast-staining experiments, cells were imaged on a Zeiss Axiovert 200M equipped 
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with a ‘Plan Apo. 20x/0.5 Air objective. Fluorescent fusion-proteins with Cyan Fluorescent 

Protein (CFP), Citrine and conjugates with the dye fluorescein were excited using the 

458nm, 514m and 488nm Ar- laser lines respectively, while fusion-proteins with Cherry and 

conjugates with the dye Cy3 were excited using the 561nm HeNe laser line. Spectral filtering 

of emission bands was achieved using an acousto-optical tunable filter. Detection of 

fluorescence emission was restricted as follows - CFP: 468-504 nm, Citrine: 524-551 nm, 

Cherry: 571-650 nm, Fluorescein: 498-550nm, Cy3: 571-650 nm . In all cases, scanning was 

performed in line-by-line sequential mode with 2x line averaging. Confocality was controlled 

by limiting pinhole-size to between 1.0 and 1.5 Airy units. 

 

3.5.3 Microinjection  

Injection needles were prepared from borosilicate glass capillaries from Harvard Apparatus 

(Kent, UK), using a micropipette puller (Sutter Instruments P-97). Probes destined for 

microinjection were diluted in buffer (65 mM Tris, pH 7.5, 1 mM MgCl2) to a final 

concentration of 2 mg/ml. Fresh aliquots were thawed for each experiment. After 

centrifugation at 13000 g and 4 ºC for 15 minutes the supernatant was immediately used for 

injection.  

 

3.5.4 Fluorescence Recovery after Photobleaching (FRAP), Fluorescence Loss after 

Photoactivation (FLAP)  

FRAP experiments were carried out at 37 ºC on a Leica SP5 confocal microscope with 

settings similar to those described in ‘Confocal Microscopy’, typically with a 63x oil 

immersion objective. Cells transfected with relevant constructs were allowed to equilibrate 

in the incubation chamber on the microscope and imaged with laser settings adjusted to 

minimize photobleaching. A custom routine was setup that followed through the three 

steps of FRAP/FLAP analysis: (1) Pre-bleach imaging, (2) Bleaching/Photoactivation and (3) 

Post-bleach imaging.  Pre-bleach and post-bleach imaging was typically performed at similar 
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settings, with durations optimized by preliminary experiments for obtaining complete 

stability and recovery curves respectively. Bleaching/Photoactivation was performed in a 

pre-defined Region of Interest (ROI) for either specific organelles such as the Golgi 

apparatus, which were identified with expressed markers, or in a circular ROI of radius 1 m 

in the cytosol or nucleoplasm. The laser scanner on the microscope was set to restrict 

illumination to the ROI, with high laser intensity for 1 second. This was found sufficient to 

provide >80% bleaching or 50-fold photoactivation in the ROI without diminishing or 

increasing total fluorescence intensity regions outside the ROI. For FRAP/FLAP experiments 

on the Golgi apparatus where durations of the post-bleach imaging extended into several 

minutes, cells were treated with 50 g/ml cycloheximide at least 2h prior to the experiment. 

For experiments relating to protein diffusion, the method proposed by Soumpasis (see FRAP 

Analysis techniques, page 48)  was utilized. As such, imaging parameters were adjusted to 

conform to the assumptions implicit in such an analysis: namely, widefield imaging and 

activation of the smallest possible ROI to approximate the transverse section of a cylindrical 

volume where height >> width. 

 

3.5.5 Total Internal Reflection Fluorescence (TIRF) Microscopy  

MDCK cells were transfected with Protein Kinase C-C1 domain- eGFP fusion protein and 

mCherry and starved for at least 2 hours prior to experiments. After treatment with 

Palmostatin B or vehicle control DMSO, MDCK cells were observed in Total Internal 

Reflection Fluorescence (TIRF) microscopy on an Olympus CellR Microscope. Fluorescence 

excitation for GFP and Cherry was provided by the 488nm Ar- and 561 HeNe-laser excitation 

lines, respectively. For stimulation, 10 M Bradykinin (Merck) was added to the cell media 

and translocation of the PKC-C1-GFP to the basal membrane was observed in response to 

diacylglycerol production (Feng et al, 1998). GFP/Cherry ratiometric analysis was performed 

to quantify the fold increase of PKC-C1-GFP on the basal membrane of cells in response to 

bradykinin. Multiple response curves showing PKC-C1-GFP recruitment to the plasma 
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membrane over time were averaged for comparison of Palmostatin B- and vehicle control 

(DMSO) treated cells. 

To determine if unpalmitoylated Ras proteins had access to the plasma membrane, MDCK 

cells were transfected with the non-palmitoylated mCitrine-HRasC181S,C18S mutant and 

imaged in TIRF. The distributions on the plasma membrane were compared to that of free 

floating mCherry imaged simultaneously. Since the penetration depth of the TIRF field is 

greater than the width of the plasma membrane, the cytoplasmic mCherry provided a 

control for the amount of cytoplasmic protein that contaminates the signal in the TIRF field,  

at the same time accounting for any intensity differences that may arise due to the 

invaginations and non-uniformity of the plasma membrane in the TIRF field. 

 

3.5.6 Fluorescence Lifetime Imaging (FLIM) and relevant Data Analysis 

Fluorescence Lifetime Imaging Microscopy was performed with MDCK cells expressing GFP-

APT1, which were incubated with a various concentrations of Rhodamine-labeled inhibitor. 

Live cells in indicator-free HEPES buffered medium were imaged on an Olympus FV1000 

microscope equipped with a 100x 1.6 NA PLAN APO Oil Objective, with a frequency-domain 

FLIM imaging setup as described in equipment. In order to prevent bleed through of the 

excitation laser and acceptor, an extremely narrow band 515/10 emission filter was used. In 

order to prevent precipitation of the inhibitor and facilitate its entry into cells, 0.001% Triton 

X 100 was added to the medium. MDCK cells expressing untagged GFP or incubated with 

free Rhodamine served as biological controls. Calibration of the instrument was performed 

with a mirror in focus that allowed the characterization of the machine response. Lifetimes 

were calculated with pixel-wise global fitting of the homodyne wave after images where 

passed through the standard image processing pipeline (described below). 
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3.5.7 Image Processing and Analysis Techniques 

Standard Image Processing : During image acquisition, 8,12 or 16-bit TIFF images were 

obtained from microscopes Background subtraction was performed by detecting the low-

level background intensity from a image histogram, and an subtracting peak value plus two 

standard deviations, assuming a Gaussian background distribution. The images were then 

median-filtered with a 1-pixel neighborhood and converted to 32-bit floating point TIFFs 

without interpolation. Thresholding was then performed to convert background zero-values 

to Not-a-Number (NaN). 

Time lapse Sequences: Time lapse sequences of images stacked after standard processing 

and mean intensities or ratios of various image channels were calculated, after defining an 

ROI if necessary. For tracking intensities on specific compartments such as the Golgi 

apparatus or plasma membrane, expressed fluorescent markers in alternative channels 

were used to generate binary masks. Typically, mean intensities in a defined compartment 

where obtained through the time-lapse stack. 

FRAP/Photoactivation:  For FRAP and photoactivation, ROI coordinates were retrieved from 

metadata stored in the microscope data file. After standard image processing, mean 

intensities yielded FRAP recovery or Fluorescence loss curves, which were normalized to the 

relevant marker to account for changes structure and intensity in the ROI resulting from the 

dynamic nature of live cells. For measuring half-time of recovery or loss on organelles in the 

ROI, these curves were then fitted to the following exponential change equation that 

accounted for multiple processes contributing to the change in intensity. 

     ∑      

 

   

     

Where I is the intensity, C is the exponential constant, t is time, is the exponential time-

constant, and kb is the bleaching constant. 
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In the case of protein diffusion measurements, diffusion constants were calculated 

according to the method of Soumpasis (Soumpasis, 1983). Accordingly, fluorescence decay 

or recovery curves where fitted to the following equation: 
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 ⁄ )    (
  

 ⁄ )]      and        
     

 
 

where f(t) is the normalized intensity at time t, J0() is the modified Bessel function of the first kind of order 0 

and I1() is the modified Bessel function of the first kind of first order to find only parameters A and τ, the 

diffusion time constant. r is the radius of the cyndrical bleaching or activation volume and D is the diffusion 

constant. 

 

Disparity measurements in TIRF: In order to determine if unpalmitoylated proteins had 

access to the plasma membrane, the ratio of TIRF intensity maps of the solely farnesylated 

non-palmitoylatable mutants with those of cytoplasmic fluorophores where calculated. The 

contrast or disparity in the resulting ratio map provided an estimate of differences arising 

from unpalmitoylated mutants that could bind to the membrane and did not represent 

purely cytoplasmic contamination in the TIRF signal or differences in the structure of the 

plasma membrane. Note that in this case, the absolute mean value of the ratio is simply an 

indication of the amount of protein expressed ectopically in cells, and only internal variation 

within the ratio map is indicative of differences in membrane binding. 

 

Ratiometric imaging for membrane partitioning measurements: For steady state 

measurements where differences in the two simultaneously imaged intensity channels was 

to be measured, the ratio of mean intensities over compartments isolated through binary 

masking was calculated. Thus, complete equivalence in partitioning represents a value of 1, 

while deviations from this value reflect a difference in compartmental partitioning. For time-

lapse measurements where one channel represented an organelle marker, ratiometric 

imaging was performed as a simple division of the intensities in the two channels.  
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Colocalization analysis: Colocalization of two intensity images obtained from confocal 

microscopy was performed using Intensity scatter plots of the two channels and with 

Manders’ coefficients (Manders et al, 1993). Manders’ coefficients are independent of the 

relative intensity differences between the two channels, as they are normalized to the mean 

intensity in the respective channels. Manders’ coefficients, range from are determined as : 

   
∑        

∑  
                           

∑        

∑  
 

where R and G are the two intensity channels. 

 

Morphology analysis: For morphology analysis, a custom algorithm was developed to be 

applied to brightfield images. Brightfield images were subjected to standard image 

processing, and local contrast equalization based on a neighborhood of 2 pixels was applied. 

Following which, a watershed operation was used to binarize and segregate individual cells 

based on contrast. Grayscale morphology operations were then used to determine area and 

circularity of the cells under various treatment conditions. The algorithm was automated to 

deal with large numbers of images of cells. 

 

3.6 Bioinformatics 

3.6.1 siRNA Design  

The canine APT1 transcript sequence was retrieved from the Ensembl database with 

transcript ID ENSCAFG00000006978.  Three Anti-APT1 21-mer siRNAs were designed from 

transcript sequence using the HiPerformance siRNA Design Algorithm (Qiagen). The 

sequences were tested for their efficacy in down-regulating APT1 and the candidate with 

the highest efficacy was identified as 5’-ACCAGTTATGCCTATAACATT-3’ , henceforth referred 

to as the anti-canine APT1 siRNA. 
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3.6.2 Hidden Markov Modelling and Consensus Sequence Extraction 

Sequences for human DHHC proteins were derived from the UniProt database (Version 23, 

http://www.uniprot.org) and aligned using the MUSCLE algorithm (Edgar, 2004). The 

alignment consisting of previously reported Ras palmitoyltransferases was then used as an 

input for statistical derivation of a Hidden Markov Model (Garber et al, 2009) matrix using 

HMMer (http://hmmer.janelia.org/). The HMM matrix so obtained was then calibrated 

through jack-knifing the sequence set, and a distribution of scores of all DHHC proteins was 

obtained. Reported RasPATs obtained high scores at least 2away from the mean score. 

The HMM was then used to output several ‘fictional’ sequences that conform to the 

constraints of the HMM matrix. Position-based frequencies of amino acids in these 

generated sequences were calculated to obtain the ‘consensus sequence’ that formed the 

defining feature of the HMM. 

The consensus sequence so obtained was transliterated into a ProSite pattern and scanned 

against all available genomes (http://www.scanprosite.org). Results so obtained were used 

to determine ideal test cases for absence of putative Ras palmitoyltransferase activity.  

3.6.3 Phylogenetic Analysis 

Sequence alignments of human, yeast and fungal DHHC proteins based on the HMM 

generated previously was used to derive an unrooted distance-tree using nearest neighbor 

statistics (Smyth, 1997) in Jalview (http://www.jalview.org) or with the MATLAB 

Bioinformatics Toolbox. Yeast DHHC proteins were chosen due to the substantial amount of 

literature available on yeast homologs of human DHHC proteins. Fungal DHHC proteins by 

contrast served as a evolutionarily distant organism to humans, but closer to yeast, that 

contributed ‘noise’ to the dataset. The expectation to be realized was that a correct cladal 

analysis would group fungal DHHC proteins closer to yeast, than to humans. 

  

http://www.uniprot.org/
http://hmmer.janelia.org/
http://www.scanprosite.org/
http://www.jalview.org/
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4  RESULTS 

 

4.1 Molecules with a single covalent lipid anchor have rapid mobility in the cytosol  

Since proteins with covalently attached lipid or isoprenyl groups have substantially 

increased hydrophobicity, they are expected to have high membrane affinity and thus 

reduced diffusibility through the cytosol.  

To investigate the localization and mobility of such proteins, we expressed mutant solely 

farnesylated HRasC181,184S and solely myristoylated MyrSer (32 aa peptide) (Navarro-

Lerida et al, 2002) that cannot get palmitoylated, fused with photoactivatable GFP to follow 

their diffusion kinetics. Steady state distribution of such proteins showed a staining of all 

cellular membranes, merely reflecting membrane densities without any enrichment in a 

particular membrane compartment (Figure 1A). The same proteins were expressed as PA-

GFP fusions, which could be photoactivated in a specific region with UV light under a 

confocal microscope. Upon photoactivation, both proteins rapidly redistributed over all 

membranes, reaching steady-state within the first seconds after photoactivation (Fig. 1B, C). 

The diffusion constants for both proteins were measured to be 1.1 ± 0.1 m2/s. 

This is a clear indication that proteins possessing single irreversible lipidations have a weak 

membrane affinity, none the less; they are rapidly mobile within the cellular environment. 

This observation is  inconsistent with the presence of receptors for mono-lipidated proteins 

on specific membrane compartments (Choy et al., 1999), which would show some sort of 

enhanced fluorescence in the compartments where such receptors are present.  Instead it 

seems that mono-lipidated proteins sample all cellular membranes. Further lipid 

modifications, such as palmitoylation, of course alter physicochemical properties of such 

molecules and could their mobility, as is discussed later in this work. 
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4.2 Unpalmitoylated Ras proteins have access to the Plasma Membrane 

To confirm that the mono-lipidated proteins also had access to the PM, TIRF microscopy was 

performed on the wild-type and mono-lipidated mutant proteins. The TIRF fluorescence 

distributions, which are devoid of cytoplasmic fluorescence to a much greater degree than 

confocal and widefield imaging, were compared to that of free-cytosolic fluorescent protein 

mCherry which would reflect the topography of the cellular membrane, and thus its 

coupling into the TIRF field. 

As expected, the fully lipidated wild type proteins clearly showed an enrichment at the PM 

(Fig. 1D), as measured by the disparity between the TIRF distribution of the lipidated and 

free cytosolic proteins. Both mono-lipidated mutants also exhibited clear PM localization 

establishing that they have access to this membrane. Proteins with only one attached lipid 

seem to rapidly sample all membranes and clearly additional processes are required to 

develop enrichment of the wild-type forms of these proteins on specific membrane 

compartments. 
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Figure 1 

 

Figure 1: Rapid and random partitioning of monolipidated proteins  A. Steady state localization of MyrSer is 
similar to that of HRasC181S,C184S. B Fluorescence loss of photoactivated MyrSer-paGFP and C paGFP-
HRasC181S,C184S at the perinucleus in MCDK cells, showing that both single lipidated proteins rapidly and 
indiscriminately sample different cellular membrane systems with comparable membrane residence times. D 
Total internal reflection fluorescence (TIRF) images of MDCK cells expressing Citrine-HRras or Citrine-
HRasC181S,C184S and MyrSer-Citrine. The fluorescence signals from the lipidated proteins were normalized to 
soluble mCherry to show the disparity in contrast reflecting their PM localization. Free mCitrine/mCherry 
images are shown as controls, showing disparity arising due to differences in optical parameters of the TIRF 

field. Scale bars: 10 M, Color bar indicates normalized range of pixel ratios from minimum (blue) to maximum 
(red).  
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4.3 Stage 1: Palmitoylation at the Golgi 

Microinjection of semi-synthetic Cy3 labeled-Ras proteins CysFar and PalFar in previous 

studies has shown that the Golgi apparatus is the site of palmitoylation (Rocks et al, 2005). 

CysFar is an N-Ras protein chemically linked to a synthetic prenylated N-Ras terminus 

lacking the palmitate modification. Immediately after microinjection, CysFar diffuses 

throughout the cell (consistent with data on monolipidated protein mobility), but 

enrichment is seen within seconds on the Golgi. Control experiments with SerFar , which is 

equivalent to a mutant NRas lacking the palmitoylatable Cys does not show this enrichment. 

Similarly, PalFar is a version of CysFar that already possesses the palmitate modification. 

PalFar also accumulates on the Golgi after microinjection, but with slightly slower kinetics as 

compared to CysFar. Presumably, PalFar must be depalmitoylated before it can be 

repalmitoylated at the Golgi (Figure 2A). However, the depalmitoylation of PalFar all over 

the cell provides the first indication that depalmitoylation activity is ubiquitous within the 

cytoplasm. In both cases, over a period of minutes, Golgi enrichment is transferred to the 

PM and eventually reaches the steady-state indicated by expressed wild-type mCherry-

NRas. 

HDFar is a semi-synthetic NRas identical to PalFar in all respects, except that the palmitate 

group is covalently bound to the Cys residue via a thioether linkage (instead of the biological 

thioester linkage). The thioether linkage cannot be hydrolyzed within cells, and thus HDFar 

represents a permanently palmitoylated protein. HDFar displays uniform membrane 

staining enrichment in any particular membrane compartment (Figure 2B). This reaffirms 

previous reports that the dynamic nature of the S-palmitoylation on Ras is essential to 

generate the typical wild type localization of NRas (seen as red channel images in Figure 2).  

In order to investigate what kind of substrates such a palmitoylation reaction at the Golgi 

might accept, the flexibility of the semi-synthetic approach was exploited. Truncated NRas 

proteins D-CysFar and -CysFar, coupled with C-termini constructed of the unnatural D-

amino acids or -amino acids respectively, were injected into cells. Surprisingly, both these 

artificial constructs display Golgi accumulation with kinetics indistinguishable from that of 

the wild-type like CysFar construct (Figure 3). These data indicate that the palmitoylation 
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machinery has very little local substrate specificity for palmitoylated proteins. As reported 

earlier, the minimum requirement for a protein to undergo palmitoylation seems simply to 

have a membrane-proximal Cys residue.  

Figure 2 

 

Ras palmitoylation must be reversible to generate localization and occurs on the Golgi apparatus: A.  Time 

lapse confocal images of Cy3-labeled PalFar (green), showing it approach the steady state localization of 

Citrine-NRas (red channel). Upper graph shows ratiometric quantification of PalFar localization to the Golgi and 

PM. Lower graph shows faster kinetics of CysFar accumulation on the Golgi compared to PalFar, in similar 

microinjection experiments B. Ratiometric quantification of PalFar and HDFar accumulation of the Golgi versus 

the cytosol. C. Ratiometric quantification of CysFar and PalFar approach to a common wild-type steady state D. 

Confocal time-lapse images of Cy3-labeled HDFar injections (green), showing uniform distribution to 

endomembranes, as compared to expressed Citrine-NRas. Scale bar: 10m 
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Figure 3 

 

The Palmityolation machinery lacks stereospecificity and backbone specificity towards the protein 

substrate: Structure of the D-CysFar and -CysFar (A). Confocal Time-lapse images and ratiometric 

quantification of D-CysFar and D-PalFar (B,C) , as well as -CysFar and  -PalFar (D,E) showing 

indistinguishable accumulation kinetics and approach to steady state with CysFar and PalFar (see Figure 

2). Scale bar: 10m 
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4.3.2 The Specificity of Palmitoyl transferases 

It is possible however, that the reported specificity of the palmitoyltransferases that are 

reported to constitute the palmitoylation machinery comes from off-site recognition of 

putative motifs on the Ras-G-domain distal to the target palmitoylated cysteine. In order to 

investigate this, we compared the steady state distributions of YFP-tH, a YFP fusion of the 

only the minimal C-terminal membrane targeting sequence of HRas (aa 175-190) and full-

length mCherry-HRas. Differences in the kinetics and fidelity of substrate recognition for 

these protein constructs would reflect in the steady state localization which is generated 

from the palmitoylation of these proteins. YFP-tH and mCherry-HRas exhibited an identical 

steady-state partitioning over the PM and the Golgi (Figure 4D). They therefore must have 

identical palmitoyl turnover kinetics arguing against recognition of the Ras G-domain by the 

palmitoylation machinery. The G-domain which forms the globular core of NRas seems to be 

dispensible for recognition by the palmitoylation machinery as well as for generating the 

observed cellular localization of wild type NRas. 

This apparent lack of specificity led us to explore claims of previously reported specific PAT 

activity of some DHHC proteins (Linder and Deschenes, 2007; Roth et al., 2006; Tsutsumi et 

al., 2008). In particular, Human DHHC9 and Yeast Erf2 have so far been identified as Ras 

PATs based on biochemical assays (Lobo et al., 2002; Swarthout et al., 2005), evidence also 

exists for DHHC17 and 18 (Fukata et al., 2004; Huang et al., 2004). However, FRAP studies 

where the Golgi apparatus was bleached and recovery of HRas monitored under shRNA-

mediated knockdown of DHHC9 showed no detectable effect on Ras palmitoylation. The 

steady state localization of HRas in DHHC9 knockdown cells also did not display any 

differences when compared to cells transfected with control nonsense shRNA (Figure 4A-C). 

These data strongly argue for a lack of specificity either on the Ras substrate or on the DHHC 

proteins (if they are indeed PATs). A bioinformatics analysis of the esoteric DHHC protein 

family was undertaken, in hopes of finding clues to alleviate the conflict with previously 

published conflicting reports.  
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4.3.1 Bioinformatics of DHHC proteins 

Attempts to classify DHHC proteins based on their predicted membrane topology, or from 

basic sequence alignments were not fruitful owing to the large sequence diversity present in 

this family. A Hidden Markov Model (HMM)-based bioinformatics approach (Smyth, 1997) 

was therefore used to classify the 25 human DHHC proteins into different classes. DHHCs 

reported as RasPATs were used to seed and construct an HMM. The statistical model could 

then be used to extract a consensus sequence and construct a phylogenetic tree Indeed, the 

HMM indicated close relationships (Figure 5A) between these particular DHHC proteins, as 

compared to other human, yeast and fungal DHHC proteins. Each of these proteins 

contained the conserved consensus sequence ‘W-X(4)-L-X(12)-TTNE’ , located in the 

cytoplasmic loop predicted to be topologically adjacent to the DHHC-CRD domain. Such a 

sequence could be inferred to be correlated with in vitro RasPAT activity. Scanning of 

multiple genomes with this consensus sequence showed that the HMM could identify the 

putative RasPAT DHHC proteins 9, 17, 18 etc. in all mammalian species with high fidelity 

(Figure 5B). This finding was consistent with biochemical assays of RasPAT activity, and now 

in conflict with our own microinjection data that showed lack of specificity. Through a 

detailed search of genomes, we identified the organism Dictyostelium discoideum which 

contained only homologs of human DHHCs 1-8. This organism has at least 11 Ras isoforms, 

all of which are prenylated, but none of which contain a palmitoylatable cysteine. We 

hypothesized that if indeed Ras specific PAT activity exists, human HRas should not become 

palmitoylated when expressed in Dictyostelium discoideum. Human HRas was however 

palmitoylated in Dictyostelium cells as indicated by its clear enrichment at the PM and 

certain internal membranes including endosomes, as compared to the largely 

endomembrane/cytosolic localization of its non-palmitoylatable mutant HRasC181S,C184S 

(Fig. 4E).  Endosomes originate from the PM is abundantly present in Dictyostelium cells 

(Gerisch et al., 2004). The enrichment of HRas on the PM and endosomes was lost upon 

inhibiting palmitoylation with 2-bromopalmitate, a general inhibitor of palmitoylation and 

palmitate synthesis (Coleman et al, 1992; Jennings et al, 2009). Finally, FRAP kinetics 

showed that the relatively slow motility of HRas in Dictyostelium cells (Figure 4F) was 

consistent with that of palmitoylated HRas (t1/2=183.3±3.8s) as observed in mammalian cells 
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(Rocks et al, 2005). In summary, it seems that while some correlation in the sequences of 

DHHC proteins reported to have RasPAT activity exists, the putative PAT activity of these 

proteins is certainly redundant when other DHHC proteins are present. 
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Figure 4

 

HRas does not require distal recognition or specific PATs for correct localization A Lentiviral shRNA-mediated 

downregulation of DHHC9 expressions in HeLa cells analyzed by quantitative RT-PCR using Actin B RNA as 

reference. Error bars represent standard error of mean of percentages calculated from (Ct) values in three 

independent runs. B Steady-state localization of HRas in DHHC9 knock down and control HeLa cells. C 

Fluorescence recovery after photobleaching of HRas at the Golgi in DHHC9 knock down (n=7) and control cells 

(n=4). The recovery of local fluorescence was ratiometrically quantified using GalT-CFP as a Golgi reference. 

Plateau values were normalized to one. D Comparison between the localization of full length HRas fused to 
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mCherry and the c-terminus of HRas fused to YFP. Equivalent distribution of the fragment versus full-length 

protein has a theoretical value of 1. Quantification of the experiment shows complete equivalence of both 

constructs (value of 1.02 +/- 0.04). E Representative images of Dictyostelium cells (1 of 20 each) expressing 

HRas and HRasC181S,C184S. HRas shows clear enrichment on the PM, which is lost upon treatment with 2-

bromopalmitate. Scale bars: 5M. F FRAP sequences of HRas and HRasC181S,C184S with representative 

examples (5 each) in Dictyostelium cells showing the slower recovery of HRas, indicating its palmitoylated 

state. Scale bars: 5M. See also Suppl. Fig. 7. 

Figure 5 

 

 

Bioinformatics analysis of DHHC proteins. A Phylogenetic tree showing human DHHC proteins as classified by 

the HMM. The tree is unrooted since no assumptions of an ancestral DHHC sequence have been made. The 

clade containing biochemically ascribed RasPATs is indicated in blue. B Alignment in the region of the 

consensus sequence of mammalian and yeast genome hits identified by the PROSITE scan of 'W-X4-L-X12-

TTXE' , showing high degree of conservation and fidelity. 
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4.4 Stage 2: From Golgi to the Plasma Membrane 

As the results presented here and those reported earlier show, palmitoylation of Ras occurs 

at the Golgi apparatus. While this explains the enrichment of palmitoylated Ras on the Golgi 

apparatus, it does not explain how this enrichment is transferred to the plasma membrane. 

Partitioning over the Golgi apparatus versus the plasma membrane depends on the 

reversible palmitoylation. While the core Ras G-domain does not affect this partitioning, 

additional domains on other palmitoylated proteins could quantitatively shift this 

partitioning. Fyn is a Src-family kinase that is N-Myristoylated and palmitoylated at Cys 

residues at positions 3 and 6. At 37°C, Fyn displays strong PM enrichment but almost no 

enrichment on the Golgi apparatus. Examples such as these have been used to suggest that 

perhaps palmitoyltransferase is not localized only to the Golgi apparatus, but may also be 

present on the PM. It should be noted that Fyn is large multi-domain peripheral membrane 

protein that functions in focal adhesion formation and can interact with several other 

proteins localized independently to the plasma membrane (Sato et al, 2009). As such, our 

alternative hypothesis is that Fyn, like all other palmitoylated proteins is also palmitoylated 

at the Golgi, however, due to its additional features, its steady-state localization is strongly 

shifted towards to the PM. Incidentally, trafficking of palmitoylated proteins HRas and TC10 

to the plasma membrane via exocytic vesicles has been previously reported (Apolloni et al, 

2000; Watson et al, 2003). The canonical secretory pathway provides a unidirectional route 

for the high-affinity membrane bound forms of palmitoylated proteins to reach the plasma 

membrane. To test this hypothesis, we performed imaging at 16°C, a temperature at which 

the mammalian vesicular secretory pathway is blocked due to motor-protein dysfunction. In 

corroboration with our hypothesis, blocking the secretory pathway resulted in a strong 

enrichment of Fyn at the Golgi apparatus, indicating that the protein does get palmitoylated 

at the Golgi apparatus (Figure 7). Similar results could be obtained from a secretory pathway 

block for other palmitoylated proteins- TC10, RRas that do not show Golgi localization at 

37°C (Rocks et al, 2010). 

 

As confirmation of this result, microinjection experiments reported in Section 4.3 were 

repeated at 16°C. As expected, both PalFar and CysFar show enrichment at the Golgi 
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following microinjection, but this enrichment is not transferred to the PM under the 

secretory pathway block (Figure 8, compare with Figure 2). Thus, despite quantitative 

differences in their steady state localization: (1) palmitoylated proteins are palmitoylated at 

the Golgi apparatus and not at the PM and (2) The secretory pathway is responsible for 

transferring palmitoylated proteins from the Golgi apparatus towards the plasma 

membrane.  

 

Figure 7 

 

Steady state localization of Fyn wt-mCitrine in MDCK cells at various temperatures. GalT-CFP serves as a 

Golgi marker, and mCherry-HRasC181S,C184S serves to indicate distribution of non-palmitoylated 

proteins. No substantial differences in Fyn localization are observed as cells are cooled to from 37°C to 

19°C. At 16°C, a vesicular transport block causes the accumulation of Fyn at the Golgi apparatus, with 

steady localization similar to HRas wt. Scale Bar : 10M. 
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Figure 8 

 

Temperature block of the exocytic pathway inhibits accumulation of semi-synthetic Ras probes CysFar and 

PalFar at the plasma membrane. Time-lapse images of MDCK cells maintained at 17°C for 10 min prior and 

after microinjection of CysFar (a) or PalFar (b), in the green channel. Citine-NRas (red channel) and GalT-CFP 

(blue channel) show the steady state NRas distribution and the Golgi apparatus respectively. This experiment 

shows that the secretory pathway re-directs palmitoylated Ras proteins to the plasma membrane.  
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4.5 Stage 3: Depalmitoylation by APT1 and Interrupting the Acylation Cycle 

So far, the work described here discusses the palmitoylation of proteins and the mechanism 

of their transport to the plasma membrane. To maintain a steady state distribution, it Is 

necessary that proteins so transported be also removed from the PM. One mechanism, 

albeit inefficient, would be the degradation of such proteins. Moreover, palmitate turnover 

kinetics as measured by FRAP recovery at the Golgi apparatus is far too rapid to be 

explained by de novo protein synthesis. It was hypothesized that thioesterases such as APT1 

(or APT2 as the only 2 candidates) depalmitoylate acylated proteins, returning them to their 

mono-lipidated rapidly diffusing form, and allowing them to be repalmitoylated at the Golgi 

apparatus. In order to investigate this phenomenon, we adopted a chemical biological 

approach, involving treatment of cells with a newly-developed APT1 inhibitor. 

4.5.1 Development of an APT1 inhibitor 

Collaborators at the Department of Chemical Biology developed a potent inhibitor for APT1 

employing ‘Protein Structure Similarity Clustering’ (PSSC) as a knowledge driven 

bioinformatics based strategy (Dekker et al, 2005). In PSSC the ligand-sensing core of a given 

protein is identified and extracted from its structure in silico. Databases are then searched 

for proteins with structurally similar ligand-sensing cores, i.e. similar folds around the 

binding site, irrespective of similarity in sequence. Compound classes known to inhibit such 

similar proteins are then used as starting points for the design and synthesis of compound 

collections that are likely to yield inhibitors for the protein of interest (Fig. 1a). Acyl protein 

thioesterase 1 (APT1, PDB code 1FJ2) is a α/β-hydrolase with a catalytic triad of Ser-114, His-

203 and Asp-169. Based on similarities with a gastric lipase, and screenings with several -

lactone compounds, Palmostatin B (Figure 9A) was identified as a potent APT1 inhibitor and 

was selected for further investigation in vivo (Dekker et al, 2010). 
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4.5.2 Palmostatin B inhibits depalmitoylation of Ras in cells 

In order to confirm that treatment with Palmostatin B and the resulting APT1 inhibition 

directly inhibits depalmitoylation of Ras in vivo, the level of Ras palmitoylation was 

measured in MDCK cells expressed YFP-NRas using the Acyl-biotin exchange assay (Drisdel & 

Green, 2004; Martin & Cravatt, 2009). Immunoprecipitation of YFP-NRas and quantitative 

labeling of palmitoylation sites revealed a marked increase of palmitoylated YFP-NRas in the 

presence of Palmostatin B (Fig. 9B). In contrast, levels of palmitoylated YFP-NRas were 

reduced upon treatment with 2-bromopalmitate, the general inhibitor of palmitoylation and 

palmitate synthesis. These results provide direct evidence that Palmostatin B increases Ras 

palmitoylation levels in cells by inhibiting the depalmitoylating thioesterase. 

Further evidence was provided through a repetition of the microinjection experiments with 

CysFar and PalFar, in cells treated with Palmostatin B. CysFar, which is a substrate for 

palmitoylation showed enrichment on the the Golgi apparatus, similar to control cells 

treated with the delivery vehicle or untreated cells. PalFar, however, did not show this 

enrichment, as PalFar must first be depalmitoylated, the very process that Palmostatin B 

inhibits (Figure 10). These results demonstrate that Palmostatin B selectively inhibits the 

cellular de-acylation reaction without affecting the acylation reaction. 

Finally, we investigated if Palmostatin B directly binds to APT1 in cells though Fluorescence 

Lifetime Imaging Microscopy. Firstly, intensity images of APT1 confirmed the reported 

(Hirano et al, 2009a) cytoplasmic ubiquitous localization of APT1. FRET between a 

fluorescent labeled (TAMRA) analog of Palmostatin B and GFP-tagged APT1 was detected 

indicating the molecular proximity of the fluorescent tags, and in turn, confirming APT1 as 

the cellular target of Palmostatin B (Figure 11). 
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Figure 9 

A 

 

B 

 

Palmostatin B specifically inhibits depalmitoylation. A Structure and synthesis scheme of Palmostatin B. B 

Thioesterase inhibition by Palmostatin B increases the fraction of palmitoylated NRas in live cells, as measured 

by the Acyl-Biotin exchange assay. 2-BP, an inhibitor of cellular palmitoylation is shown as negative control. 

Quantification of Western blots (arbitrary fluorescence units using IR-dye labeled antibodies) represents data 

from 4 independent experiments with 8 independent runs per treatment. 
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Figure 10 

 

 

Palmostatin B inhibits depalmitoylation, but not palmitoylation in the acylation cycle Confocal time-lapse 

images of MDCK cells expressing the Golgi marker GalT-CFP prior and after microinjecton of CysFar or PalFar. 

Cells were incubated for 80 min with 1 M Palmostatin B prior to the experiment. CysFar shows accumulation 

at the Golgi apparatus, however, PalFar shows no specific accumulation instead adopting an HDFar-like 

aspecific staining. Compare with Figure 2,3 (pg 55-56). Scale bars: 10 m.  
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Figure 11 

 

Fluorescence Lifetime Imaging of Live cells showing specific binding of APT1-GFP (donor) to TAMRA-labelled 

Palmostatin B (acceptor). Lifetime and intensity maps of cells after incubation with acceptor, showing 

reduction in GFP-fuorescence lifetime of upto 1.26 ns. Graph shows reduction in APT1-GFP lifetime as 

compared to GFP-GFP (control) lifetime upon incubation with the acceptor. Lower limit for APT1 / Palm B 

bound fraction is estimated to be 40%. 

 

4.5.3 Palmostatin B affects Ras localization 

MDCK cells expressing the fluorescent protein fusion constructs Citrine-NRas and the Golgi 

marker GalT-CFP were treated . Confocal time 

lapse microscopy showed a dramatic re-distribution of Citrine-NRas to endomembranes 

over the period of 1h. Quantitative comparison of the localization with Manders’ 

coefficients of yellow fluorescent Citrine-NRas with the solely farnesylated red fluorescent 

Cherry-C181, 184S HRas mutant, showed that NRas reached a similar random distribution 

among all cellular membranes similar to that of the monolipidated (farnesylated Ras) (M1 

=0.96)(Manders et al, 1993). Here, the partial overlap of Cherry-C181,184S-HRas with the 

Golgi marker GalT-CFP does not reflect specific accumulation but rather the high density of 

membranes at this subcellular site.  



 
72 

A similar Palmostatin B induced redistribution was observed in cells expressing Citrine-HRas. 

This Ras isoform, however, exhibited more persistent, albeit reduced plasma membrane 

localization after Palmostatin B treatment, expected due to the additional stability of the 

dual acylation on HRas. The residual Citrine-HRas concentration at the plasma membrane is 

due to the remaining flux from the secretory pathway that is not completely countered by 

the slow leaking of the dually acylated HRas from the plasma membrane. Importantly, at 

shorter times after Palmostatin B incubation there was a clear loss of Golgi-localized HRas 

due to the remaining unidirectional flux of Ras towards the plasma membrane (PM) via the 

secretory pathway (Figure 14).  

The non-palmitoylated KRas isoform did not exhibit any re-distribution after Palmostatin B 

treatment of MDCK cells, confirming that this effect of Palmostatin B was due to 

perturbation of the acylation cycle (Figure 13A). Treatment with 2-BP, on the other hand, 

leads to a inhibition of the palmitoylation machinery and thus leads to a similar random 

redistribution. It should be emphasized, however, that Palmostatin B and 2-BP inhibit 

antagonistic processes, and thus the redistributing species in each case differs in its 

palmitoylation status. . The Palmostatin B induced redistribution mechanism is similar to 

that of 2-bromopalmitate. However, in the case of 2-bromopalmitate, palmitoylation at the 

Golgi is inhibited, and the redistributing species is depalmitoylated (but still farnesylated) 

Ras. After the initial lag phase in which the cellular palmitate levels drop, the random 

equilibrium distribution of Citrine-NRas is more rapidly attained, as compared to 

Palmostatin B incubation. Under 2-bromopalmitate treatment, the more rapid redistribution 

kinetics are due to the lower hydrophobicity, and thereby, lower affinity for membranes, of 

solely farnesylated NRas as compared to palmitoylated NRas. Since Palmostatin B has a half-

life of about 20 minutes in an aqueous environment, proper localization of Citrine-NRas was 

restored after overnight incubation. Palmostatin B is therefore not cytotoxic at micromolar 

concentrations as has been verified elsewhere (Dekker et al, 2010).  

In principle, inhibition of the thioesterase activity would have been expected to increase 

enrichment of Ras on the PM, tilting the kinetic balance in favor of palmitoylation and 

consequently membrane PM localization. The counterintuitive identical result of increasing 
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and decreasing palmitoylation of Ras finally reveals the cyclical nature of Ras palmitoylation. 

Palmitoylation at the Golgi apparatus and transport to the plasma membrane is followed by 

depalmitoylation by the ubiquitous thioesterases and a return to the rapidly mobile mono-

lipidated state. Such molecules have a high stochastic probability of a Golgi encounter, only 

to be repalmitoylated – thus completing the acylation cycle. 
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B 

 

Palmostatin B causes entropy-driven redistribution of palmitoylated Ras isoforms. A Representative example 

of changes in distribution of Citrine-NRas with respect to Cherry-HRasC181S,C184S in MDCK cells at various 

time-points after treatment with 1 M Palmostatin B observed under confocal microscopy. Columns show red-

green channel overlays and intensity scatter plots for Citrine-NRas (green) and Cherry-HRasC181S,C184S (red) 

demonstrating their increase in co-localization over time. Manders’ coefficients for colocalization of Citrine-

NRas and Cherry-HRasC181S,C184S over time after Palmostatin B treatment approach a value >0.95. B 

Representative example of changes in distribution of Citrine-HRas with respect to Cherry-HRasC181S,C184S in 

MDCK cells at various time-points after treatment with 10 M Palmostatin B. Scale bar : 10 m.  
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Figure 13 

A 

 

B 

 

 

 

 

 

 

 

 

 

Palmostatin B induced redistribution is Palmitoylation depedent. A Representative example of stable 

distribution of Citrine-KRas with respect to Cherry-HRasC181S,C184S in MDCK cells at various time-points 

after treatment with 10 M Palmostatin B. B Inhibition of protein palmitoylation with 2-BP replicates the 

redistribution of NRas as seen with Palmostatin B. Scale bar : 10 m. 
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Figure 14 

 

 

  

Palmostatin B leads to depletion of 

Citrine-HRas from the Golgi apparatus 

at short time scales. MDCK cells 

expressing Citrine-HRas and the Golgi 

marker GalT-CFP show depletion of 

HRas from the Golgi apparatus within a 

hour of 10 M Palmostatin B treatment, 

due to the pumping action of the 

secretory pathway when influx of HRas 

through depalmitoylation is blocked. 

Scale bar: 10 m 
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Endocytosis does not play a role in Ras redistribution 

In order to rule out the possibility that the observed redistribution of Ras did not occur due 

to enhanced binding to the PM and subsequent redistribution by membrane processes such 

as endocytosis, the redistribution experiment was repeated in the presence of Dynasore, an 

inhibitor of endocytosis (Macia et al, 2006a). Inhibition of endocytosis prevented cellular 

uptake of high-molecular weight fluorescein labeled Dextran, but did not alter the kinetics 

of Palmostatin B induced redistribution of NRas (Figure 15). This shows that endocytosis was 

not the primary mechanism of entropy driven redistribution of palmitoylated Ras. 

Figure 15 

 

Palmostatin-induced Ras redistribution under Dynasore-imposed Endocytosis block: MDCK cells were 

cultured and transfected with Citrine-NRas, GalT-CFP and mCherry-HRasC18

Dynasore (Macia et al, 2006b) for 20 min and treated with 1 M Palmostatin B as in the case of the 

restribution assay described earlier. Restribution was observed over the next 50 min. In order to evaluate the 

efficacy of Dynasore in inhibiting endocytosis, MDCK cells were incubated with Dynsore or DMSO under similar 

conditions as the redistribution assay and uptake of 15kD FITC-Dextran (Sigma) into endocytic vesicles was 

measured over time using wide-field fluorescence microscopy. Mean FITC-Dextran intensities per cell provided 

a measure of the near complete inhibition of endocytosis due to Dynasore. Scale bar: 20 m 
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4.5.4 Down-regulation of APT1 mimics the effect of Palmostatin B 

 

In order to ascertain that APT1 exhibits a thioesterase activity that regulates the Ras 

acylation cycle in cells, and there are no pleiotropic effects of Palmostatin B playing a role in 

the observed effects on Ras localization, RNA interference mediated knockdown of APT1 

was performed in MDCK cells (Figure 16A). The steady state palmitoylation levels of YFP-

NRas were ascertained with the acyl-biotin exchange assay, showing a near doubling of the 

fraction of palmitoylated NRas (Figure 16B) under a 5 fold downregulation of APT1.  Further, 

this reduction of NRas palmitoylation could be rescued by ectopic expression of human 

APT1 in MDCK cells (Figure 16D), which is not susceptible to knockdown by Anti-Canine 

APT1 siRNA. 

Since the palmitoylation activity that causes Ras to accumulate at the Golgi is not perturbed 

by APT1 down-regulation, it is expected the redistribution to endomembranes following a 

loss of thioesterase activity reduces the fraction of Ras localized to the plasma membrane, 

resulting in the decrease of the plasma membrane/Golgi fluorescence intensity ratio. This 

change in membrane partitioning during the redistribution was quantitatively imaged, and a 

comparison of APT1 knockdown and Palmostatin B treated cells shows the qualitative 

similarity in the effects of the two methods of reducing thioesterase activity. The 

thioesterase activity of APT1 therefore is necessary to depalmitoylate Ras proteins. 

Together these results confirm that the re-distribution of Ras is indeed due to inhibition of 

cytoplasmic APT1 activity, that APT1 is a Ras-depalmitoylating thioesterase and is the 

cellular target of Palmostatin B. 

 

  



 
79 

Figure 16 

D 

 

 

Down-regulation of APT1 increases the 

steady-state palmitoylation level of Ras. A 

Efficacy of APT RNAi - The bar graph shows 

decrease in relative APT1 mRNA content in 

NRas transfected cells for two siRNA 

concentrations. RT-qPCR quantification of 

mRNA APT1 knockdown in MDCK cells treated 

with 100 nM anti-canine APT1 siRNA 

((Ct))=1.8 cycles w.r.t GAPDH control B. 

Down-regulation of APT1 by RNAi increases 

the levels of NRas palmitoylation as measured 

by the acyl-biotin-exchange assay. C, 

Ratiometric image analysis of the 

redistribution of palmitoylatable Ras isoforms 

to endomembranes after down regulation of 

APT1 shows a significant decrease of the 

PM/Golgi intensity ratio of both Citrine-HRas 

and Citrine-NRas occurs in cells treated with 

anti-APT1 siRNA. For Citrine-NRas, cells treated with Palmostatin B showed a similar decrease in PM/Golgi 

intensity ratio in MDCK and MDCK-F3 cells. PM/Golgi ratios from control cells treated with either NT siRNA or 

DMSO as vehicle control (indicated by red bar) was used to normalize the data.  
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4.6 The Acylation Cycle convolutes with Ras Signal transduction 

4.6.1 Palmostatin B uncouples Ras signaling from the PM from that on the Golgi  

Growth factor stimulation normally leads to a rapid activation of HRas at the plasma 

membrane and delayed but sustained activity on the Golgi (Rocks et al, 2006). The short-

term effect (<1 h) of Palmostatin B incubation on wild-type HRas activity was monitored via 

the translocation of the mCherry-labeled Ras binding domain of Raf (RafRBD) to Citrine-

labeled HRas upon epidermal growth factor (EGF) stimulus.  The relatively short time of 

thioesterase inhibition ensured that HRas maintained its overall localization at the plasma 

membrane and Golgi in this experiment. Palmostatin B treatment indeed resulted in EGF-

induced transient HRas activity at the plasma membrane, while the HRas pool on the Golgi 

remained inactive (Figure 17). The activity of HRas on the Golgi thus also critically depends 

on retrograde transport of active protein from the plasma membrane via the acylation cycle. 

Ihibition of depalmitoylation results in restriction of HRas activity to the plasma membrane. 

Palmostatin B uncouples Ras signaling from the plasma membrane from Ras signaling on the 

Golgi. 

Since the completion of this work, the long-duration Ras activation on the Golgi has been 

confirmed to emanate from ER-based RasGEFs that facilitate its activation. This too, 

depends on the acylation cycle, as without such a cycle, Ras would not pass through a 

rapidly mobile state that allows ints interaction with the ER. The results of this work are 

discussed in detail elsewhere (Lorentzen et al, 2010). 
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Figure 17 

 

Palmostatin B causes compartment-specific inhibition of Ras activity a, Altered HRas activity profile in 

Palmostatin B treated cells. Confocal time lapse of EGF-induced membrane translocation of RafRBD-Cherry to 

Citrine-HRas in MDCK cells co-expressing GalT-CFP in the presence of 1 M Palmostatin B for 45 min. Scale bar: 

10 m. Arrows indicate absence of activated Citrine-HRas on Golgi as compared to control case. b, 

Representative Control case, showing unperturbed spatial activity profile for HRas after EGF-induction. Arrows 

indicate accumulation of activated Citrine-HRas on Golgi. Scale bar: 10 m. 

 

 

Palm B Incubation, 1 M, 45 min + EGF 

Equivalent DMSO, 45 min + EGF 
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4.6.2 Cellular Phospholipase C- activity is not inhibited by Palmostatin B 

APT1 has been reported to exhibit marginal lysophospholipase activity (Duncan & Gilman, 

1998). As such, inhibitors such as Palmostatin B might inhibit phospholipase activities in the 

cel, with potential implications in signaling and the conclusions of this work. Additionally, 

Ras may couple into PI3-kinase dependent signaling that depends on phospholipase 

activities (Yip et al, 2007; Mastrangelo et al, 2000). In order to ascertain that Palmostatin B 

did not lysophospholipase activites within the cell and that any observed effects 

downstream of Ras where associated with the Raf-Mek-Erk cascade, the response of 

Phospholipase C- activity was tested in MDCK cells. MDCK cells were transfected with 

Protein Kinase C-C1 domain- eGFP fusion protein and mCherry and starved for at least 2 

hours prior to experimentation and stimulated with 10 M Bradykinin (Merck) Bradykinin 

activates Phospholipase C- via GPCRs, and results in the formation of diacylglycerol in the 

plasma membrane. Protein Kinase C (PKC) binds DAG, and is thus recruited to the PM if 

activation of this signaling pathway occurs. Translocation of the PKC-C1-GFP to the basal 

membrane was observed in response to diacylglycerol production (Feng et al, 1998), using 

TIRF microscope, with and without treatment with Palmostatin B for 1h. No statistical 

difference could be detected between the PKC-C1-GFP translocation responses (Figure 18) 

in either treatment condition, indicating that Palmostatin B does not affect Phospholipase C-

activity. In vitro biochemical assays for Phospholipase A, C and D enzymes have confirmed 

that Palmostatin B does not affect these enzymes (Dekker et al, 2010). 

 

 

 

 

 



 
83 

Figure 18 

 

Palmostatin B does not inhibit the activity of Phospholipase C- MDCK cells transfected with C1 domain of 

PKC tagged with GFP (PKC-C1-GFP) were incubated with vehicle control (DMSO) or Palmostatin B (50 M) 

for 60 minutes. Basal cell membranes were observed by TIRF microscopy following stimulation with bradykinin 

(10 M). PKC-C1-GFP translocates to the basal membrane after diacylglycerol production by activated PLC. 

a, Representative cells showing increased PKC-C1-GFP intensity at the plasma membrane 10 minutes after 

bradykinin stimulation. Scale bar : 10 m. b, Average response profiles (n=5 for each condition) showing 

increase in PKC-C1-GFP intensities after bradykinin stimulation for Palmostatin B treated or control cells.  
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4.7 Phenotypic effects of modulating the Ras Acylation Cycle 

4.7.1 Palmostatin B attenuates oncogenic Ras signaling in transformed MDCK-F3 

cells 

The subcellular localization of Ras determines its access to effectors that are localized to the 

PM or to other intracellular organelles. Palmostatin B alters the subcellular localization of 

both Ras isoforms and has already been shown to alter the characteristic compartmental 

Ras activation profile. It was therefore of interest to see if Palmostatin B has similar effects 

on oncogenic Ras signaling. 

The effects of Palmostatin B on the HRasG12V-transformed MDCK-F3 cell line were 

investigated. Upon neoplastic transformation with HRasG12V, MDCK cells undergo an HRas-

mediated epithelial-to-mesenchymal phenotype transition (Chen et al, 2010). The resulting 

MDCK-F3 cells appear spindle-shaped, as opposed to the cuboidal shape of untransformed 

MDCK cells. The expression of E-cadherin - a epithelial cell specific protein mediated contact 

inhibition, on the plasma membrane is lost, giving MDCK-F3 cells metastatic invasive 

characteristics (Onder et al, 2008; Schmidt et al, 2003). Since HRasG12V is a constitutively 

active from of HRas, the MAPK pathway downstream of Ras in these cells is constantly 

active, as measured by the phosphorylation of the downstream MAPKs Erk1/2. 

Overnight treatment of Citrine HRas transfected MDCK-F3 cells with 50 M Palmostatin B 

showed the expected redistribution of HRas. Western blot analysis for Erk phosphorylation 

showed a marked decrease in the levels of phosphorylated Erk1 and Erk2 over 4h. This 

Palmostatin B-mediated time-dependant reduction in Erk1/2 phosphorylation correlated 

significantly well with the time dependency Palmostatin B-induced Ras relocalization 

indicating that the Ras redistribution effects of Palmostatin B served to uncouple oncogenic 

Ras from the downstream MAPK cascade (Figure 19, Figure 20B for quantification). In order 

to confirm that Erk phosphorylation was a result of oncogenic Ras activity, HRasG12V was 

ectopically expressed in MDCK-F3 cells. As expected, the increased amount of oncogenic Ras 

caused a significant slowdown of the kinetics of decrease in Erk phosphorylation levels as 

measured by Western Blot (Figure 19, Figure 20A for quantification). 



 
85 

Concomitantly, Palmostatin B treated MDCK-F3 cells showed a phenotypic reversion to a 

cuboidal phenotype and growth in an epithelium-like monolayer with well-organized cell-

cell contacts and re-establishment of contact inhibition as judged by surface E-cadherin 

expression that is characteristic for untransformed MDCK cells (Figure 20A). This phenotypic 

reversion is comparable to that induced by UO126, a potent and specific inhibitor of Mek – 

another MAPK cascade kinase upstream of Erk.  

These phenotypic and Erk phosphorylation effects of Palmostatin B could be subverted by 

ectopic expression of KRasG12V, and oncogenic by palmitoylation independent isoform 

mutant of Ras that is localized only to the PM. MDCK-F3 cells transfected with KRasG12V 

resisted phenotypic reversion as determined by cell-shape, and relative Erk phosphorylation 

levels we measured to be higher than even those generated by ectopic expression of 

HRasG12V. The latter observation is likely an effect of the stronger coupling of KRasG12V 

into the Raf-Mek-Erk cascade, as has been reported previously. Unfortunately, experiments 

on the effect of KRasG12V expression on E-cadherin expression were not insightful, as KRas 

is known to have isoform specific effects on E-cadherin expression that are not related to 

the MAPK cascade (Agbunag & Bar-Sagi, 2004). 

Nonetheless, these results show that in MDCK-F3 cells oncogenic HRasG12V induces 

proliferative Erk1/2 signaling, and that such signaling must occur predominantly from the 

plasma membrane. Palmostatin B, by the redistribution of HRasG12V to endomembranes, 

uncouples HRasG12V from the signaling pathway, revealing an avenue for the attenuation 

of oncogenic Ras signaling in mammalian cells. 
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Figure 19 

 

 

Palmostatin B treatment leads to a reduction in Erk1/2 phosphorylation. Representative Western blots 

showing reduction in Erk1/2 phosphorylation levels after Palmostatin B treatment as detected by an Erk and 

phospho-Erk specific antibodies in MDCK-F3 cells. With ectopic expression of HRasG12V in MDCK-F3 cells, 

attenuation of the Erk phosphorylation signal occurs over a longer time scale. For quantification, see Figure 

20B. 
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Figure 20 

 Palmostatin B-induced phenotypic reversion of HRasG12V-transformed MDCK-F3 cells  

A, Top-left row: HRasG12V-transformed MDCK-F3 cells show changes in overall cell shape comparable to non-

transformed MDCK cells, after overnight treatment with 50 M Palmostatin B. Bottom-left row: E-cadherin 

immunostaining of HRasG12V-transformed MDCK-F3 shows restoration of E-cadherin expression at the cell-

cell interfaces (arrow-heads) after treatment with 50 M Palmostatin B. Untransformed MDCK cells treated 

with Palmostatin B or DMSO (vehicle control) are shown as controls ( Supplementary figure 13b). E-cadherin 

staining at the cell junctions is correlated with contact inhibition 32. Right panel: cell circularity distribution (n > 
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400 cells for each case) of HRasG12V-transformed MDCK-F3 cells approaches that of untransformed MDCK 

cells upon treatment with Palmostatin B. In all cases, 20 M U0126 treated MDCK-F3 cells serve as positive 

control for phenotypic reversion (Supplementary figure 13b), while DMSO treated MDCK-F3 cells serve as 

negative control. Scale bars represent 20m. B, Upper panel : Correlation of Citrine-HRas intensity on PM as 

detected by live cell imaging (n=7) and Erk activity as detected by densitometric quantification of fraction of 

phospho-Erk1/2 from gel-shift with Western blots (n=3). Pearson’s correlation for HRas PM-fraction (blue) and 

pErk1 fraction (black): 0.83 (p=0.006), or pErk2 fraction (red): 0.75 (p=0.021). Lower Panel: MDCK-F3 cells as 

well as MDCK-F3 cells overexpressing Citrine-HRasG12V (Upper and Lower panels respectively) show 

significant reduction in Erk1/2 phosphorylation, on different time scales, after Palmostatin B treatment. Lines 

represent trend lines from a parabolic fit for comparison. C. KRasG12V mediated rescue of transformed 

phenotype in Palmostatin B treated cells. Upper panel:  circularity distributions (n > 400 cells for each case) of 

MDCK-F3 cells transfected with KRasG12V did not change significantly upon treatment with Palmostatin B. 

Lower panel: Relative Erk phosphorylation in HRasG12V and KRasG12V transfected MDCK-F3 cells treated for 

100 min with 50 M Palmostatin B show enhanced Erk phosphorylation in KRasG12V transfected cells 

(p=0.125, Mann-Whitney-Wilcoxon test).  
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5 DISCUSSION 

5.1 The Acylation Cycle as a General Spatial Pattern Generator 

This work started with a description of spatial pattern generators. The simplest spatial cycles 

of mobile entities originate due to their interactions with substantially slower 

supramolecular structures(Benson et al, 1993; Benson et al, 1998; Dillon et al, 1994; MAINI 

et al, 1992). Cellular organelles constituted of membranes, the cytoskeleton and other 

relatively immobile features, while being dynamic, have a steady state presence that 

facilitates spatial cycles of relatively rapidly moving molecules that may interact with them. 

Spatial cycles may therefore be confined to specific locales in the cell, or spread across the 

cellscape depending on the molecules and physiochemical nature of the supramolecular 

structures. The interaction between mobile entities and semi-static structures need not be 

direct, but may be mediated by intervening molecular players.  

The net effect is the utilization of free energy to generate a kinetically maintained steady 

state (De Kepper et al, 1990) that entails an inhomogeneous distribution of molecules in the 

volume of a cell. The abundance of molecular transport processes, in combination with a 

ready supply of energy and the specific localization of such activities in biological systems, 

provides a pre-existing framework for the formation of spatial cycles.  

The acylation cycle can be understood as a reaction-diffusion spatial pattern generator, with 

invididual palmitoylatable protein molecules as the discrete players. As is shown in this 

work, monolipidated and permanently palmitoylated proteins tend to spread throughout 

the cell volume, staining endomembranes aspecifically simply due to their affinity towards 

hydrophobic environments. Their mobility is affected by the strength of this affinity. 

Reversible S-palmitoylation causes this affinity to membranes to shift between a relatively 

‘strong’ and ‘weak’ form. However, the locations in the cell where such switching occurs are 

spatially separated. More specifically, the Golgi apparatus is the site of palmitoylation where 

low-membrane affinity, rapidly-diffusing monolipidated proteins are palmitoylated and 

converted to a high-membrane affinity, slow-moving form in the first stage of the acylation 

cycle. In the second stage, vesicular transport via the secretory pathway transfers these 
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kinetically trapped palmitoylated proteins to the PM. The unidirectionality of the secretory 

pathway provides the vectorial component driving the cycle. However, cellular membranes 

such as the PM are dynamic structures themselves and such proteins would eventually leak, 

either by membrane fusions or slow diffusion. In general, these homogenizing effects can be 

attributed to simple entropy. In cells, before such entropic loss of localization leads to 

complete homogenization, cytoplasm wide thioesterase activities depalmitoylates proteins 

returning them to their rapidly mobile form. Such proteins now have a high probability of 

stochastically encountering the Golgi apparatus, where they can be repalmitoylated, thus 

completing a single turn of the Acylation Cycle. The spatial asymmetry in the location of 

palmitoylation and depalmitoylation activities , and the unidirectionality of the secretory 

pathway is thus manifested in the more elaborate dynamic steady-state localization of 

palmitoylated proteins. 

 

Schematic Representation of the Acylation Cycle and the generation of spatial distribution of Ras proteins. 

 



 
91 

This mechanistic explanation of the Acylation cycle also explains why inhibition of APT1 by 

Palmostatin B leads to a homogenous redistribution of palmitoylated Ras that is 

indistinguishable from that of unpalmitoylated Ras. The role of the acylation cycle is to 

counter entropy: the tendency of lipidated proteins to populate all accessible membranes. 

Interrupting the acylation cycle leads to an entropy-driven, aspecific spread of Ras 

molecules throughout the cellular environment. It is worth noting that such a system does 

not involve receptors on membrane compartments that recognize lipidation states of 

molecules. 

All entropy-countering processes, the acylation cycle must require enthalpic input. For the 

acylation cycle, energetic contributions are represented by the energy required to 

palmitoylate proteins. The acyl-donor in the reaction palmitoyl-CoA, is biochemically 

equivalent to the energy of 2 ATP molecules. Further, the energy expended in the transport 

of vesicles in the secretory pathway is also what drives the acylation cycle – representing an 

elegant optimization of energy efficiency in a process that has several other functions than 

to transport palmitoylated proteins. 

 

5.2 On Palmitoyltransferases and Thioesterases 

Palmitoyltransferase (PAT) activity that has been attributed to the zDHHC proteins in yeast 

and mammalian (Fukata et al, 2004; Bartels et al, 1999; Bijlmakers & Marsh, 2003; Goytain 

et al, 2008; Iwanaga et al, 2009; Matakatsu & Blair, 2008) systems remains a controversial 

issue. In this work, we could not detect any local or global substrate specificity for the 

palmitoylation reaction. (Fukata et al, 2004; Bartels et al, 1999; Bijlmakers & Marsh, 2003; 

Goytain et al, 2008; Iwanaga et al, 2009; Matakatsu & Blair, 2008). The spontaneous 

occurrence of the palmitoylation reaction in vitro casts even more doubt on the 

requirement of enzymes to facilitate it in the reducing cellular environment. However, at 

least for the DHHC proteins claimed to be RasPATs, a consensus sequence could be 

identified that allows them to be grouped together in cladal analysis and idenitifies the 

same proteins in a wide variety of mammalian genomes. What the function of this particular 



 
92 

conserved sequence might be remains to be clarified, despite its localization that appears 

proximal to the DHHC-CRD domain in 3D. It has been reported earlier that the DHHC 

proteins contain phosphorylatable Tyrosine residues C-terminal of the DHHC-CRD domain. It 

is tempting to speculate that the conflicts in understanding arise from a failure to take into 

account the phosphorylation state of DHHC proteins in in vitro experiments. 

It seems plain that if at all the DHHC proteins are palmitoyltransferases, they are certainly 

not conventional enzymes. Whatever the identity of the PAT activity, it is clear that the 

relevant palmitoylation reaction is confined to the cytoplasmic face of the Golgi apparatus . 

The strict localization of this activity could be due to high concentrations of the acyl-donor 

palmitoyl-CoA in the Golgi apparatus, though no evidence exists for it. Palmitoyl-CoA was 

intuitively identified as the acyl donor in the S-palmitoylation reaction by analogy to the 

fatty-acid biosynthesis pathway. One could extend the analogy further, and deem the DHHC 

proteins simply palmitate carriers - similar to the Acyl Carrier Protein (ACP) and Condensing 

Enzyme, which are part of the Fatty Acid Synthase complex (Toomey & Wakil, 1966). ACP 

and the Condensing enzyme both contain acylated sulfhydryls as part of cofactors or 

Cysteine residues respectively, and serve to ‘hold’ the growing acyl chain while it is 

extended by other enzymatic activities. Eventually, the ACP transfers the completed Acyl 

chain to Coenzyme A, generating palmitoyl-CoA. S-palmitoylation of proteins could be 

thought of the same biochemical reaction in reverse, where Golgi-localized DHHC proteins 

function as the palmitate carriers that sequester activated palmitate groups to the Golgi 

through reaction with CoA. These palmitate thioesters can then be easily exchanged with 

other proximal Cysteine residues (on other proteins), as the thioester bond is rather labile. 

In other words, we hypothesize that DHHC proteins do not catalyze palmitoylation, but 

simply enhance the local palmitate thioester concentration. Indeed, it has been reported 

that the Cys residue in DHHC proteins is itself palmitoylated, and that certain DHHC proteins 

display ‘auto-palmitoylation’ activity. 

Such a mechanism would facilitate the acylation cycle at the Golgi via two modes : (1) Since 

DHHC proteins are transmembrane and Golgi localized, interactions of monolipidated 

proteins with weak membrane affinity such Ras with DHHC proteins are far more likely than 
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with a freely-diffusing small molecule like Palmitoyl-CoA. (2) By localizing palmitoylation 

activity at the Golgi, such a mechanism allows for a dynamic acylation cycle to generate 

spatial asymmetry. If palmitoylation and depalmitoylation occurred everywhere within the 

cytoplasm, the futile cycle would now allow enrichment of such proteins on the PM or Golgi 

apparatus.  

Clearly, DHHC proteins represent a large family of 25 proteins in mammals as compared 

with <10 in yeast and Dictyostelium. Teleogical argumentation suggests that amplification of 

the protein family would not occur without a beneficial function to these proteins.  

Substantial work is needed before the details of the functions of DHHC proteins , and their 

contribution to the acylation cycle can be fully ascertained. 

In order for the acylation cycle to function, depalmitoylation activity must be spread 

throughout the cytoplasm of the cell. Indeed, acyl protein thioesterase-1 (APT1), a protein 

now shown to depalmitoylate Ras in this work is present ubiquitously in the cytosol(Hirano 

et al, 2009b). Incidentally, APT1 and its close homolog APT2 are the only two candidates 

that may mediate such a depalmitoylation reaction, and are seen to be rather promiscuous 

in their substrate specificity for the peptide chain as well as for the acyl-chain. This 

promiscuity is expected, considering that several other proteins besides Ras undergo a 

similar acylation cycle, but there do not seem to be any other soluble thioesterases in the 

cytosol. Studies on the X-Ray crystal structure of APT1 have shown APT1 to be a dimer, with 

large open tubular pockets for binding the acyl-chain. A closely related enzyme APT-like 2 

(LYPLAL3) does not possess this acyl-binding pocket and fails to show acyl-protein 

thioesterase activity. The promiscuity of APT1 therefore stems from the fact that the 

enzyme recognizes the acyl chain as its substrate rather than the protein the acyl-chain is 

attached to.  

It is however unclear how a cytoplasmic thioesterase gains access to a palmitate group 

which is embedded into a membrane. Recent work (Ahearn et al, 2011) has shown that at 

least for HRas, FKBP-catalyzed isomerization of a proline residue in the hypervariable region 

facilitates its depalmitoylation. The isomerization of proline residues is known to cause 

conformational changes in the protein. It is possible such mechanisms allow APT1 access to 
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the attached palmitate group on other proteins as well, and open the door on potential 

regulatory mechanisms for depalmitoylation. 

5.3 Potency of Acylation Cycle perturbations to inhibit Ras Signaling  

Spatial cycles occur in the background of signaling events involved in the sustenance of 

living systems. In recent years, mechanistic analyses of signaling have revealed non-linear 

phenomena such as bistability(Narula et al, 2010; Sabouri-Ghomi et al, 2008; To & 

Maheshri, 2010; Kulkarni et al, 2010; Ferrell Jr., 2009; Xiong & Ferrell, 2003; Angeli et al, 

2004), temporal dynamics and hysteresis(Takahashi et al, 2010; Kramer & Fussenegger, 

2005; Weichsel & Schwarz, 2010; Kholodenko et al, 2010), all of which are found to be 

critical to the relevant cellular process or structure. While molecular interactions and 

network topologies explain some aspects of these phenomena, models describing signaling 

must implicitly include assumptions relating to reaction-diffusion, compartmentalization 

and other geo-structural features of the cell, such as spatial cycling.  

 

Like all G-Proteins, Ras proteins also have a GTP/GDP cycle and are activated in response to 

a variety of stimuli: the most commonly studied being growth factor signaling. Transport to 

the plasma membrane (PM), PM enrichment, rapid diffusion and trapping at the Golgi are 

all features of the Ras spatial cycle which convolute with its activation mechanisms, 

conferring it with unique signal propagation characteristics. For example, the canonical 

RasGEF Son of Sevenless (SOS) requires Ras to be membrane tethered before it can be 

activated(Freedman et al, 2006). Additionally, SOS contains binding domains towards 

adapter proteins such as Grb2 that bind to activated receptor tyrosine kinases(Jang et al, 

2010) via phosphotyrosines and towards plasma membrane lipids such as phosphatidic 

acid(Zhao et al, 2007) and phosphatidylinositol. Combined, these specificities indicate that 

SOS almost exclusively activates Ras at the plasma membrane(Innocenti et al, 2002).  The 

localized activation of Ras is further amplified due to a positive feedback mediated by the 

allosteric activation of SOS by Ras-GTP, and to some extent due to further membrane 

recruitment of SOS by Ras. For example, dampening effects on the MAPK response due to 
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abolished allosteric binding in SOS mutants have been shown to be rescued by independent 

membrane targeting of such SOS mutants through recombination with the Ras C-terminus, 

subjecting them to the same acylation cycle as Ras. These experiments highlight the role the 

acylation cycle plays in the generation of robust Ras activation on the plasma membrane. 

Ras activity on the plasma membrane, however, is transient despite the amplifying effects 

of the positive feedback on SOS. The adaptive response of Ras activity on the plasma 

membrane may be attributed to several factors such as recruitment of RasGAPs(Ding & 

Lengyel, 2008; Smida et al, 2007), internalization of the growth factor receptor over longer 

time scales(Goh et al, 2010), or negative feedback on SOS via its phosphorylation by 

Erk(Chen§ et al, 1996; Waters et al, 1995). On short time scales, the acylation cycle exerts a 

modulatory effect. Since Ras is constantly being depalmitoylated and thus diffuses away, its 

total concentration on the plasma membrane is maintained at a certain steady-state level, 

while allowing the spread of active Ras in other regions of the cell (Harvey et al, 2008). Such 

a system clearly contributes to the non-linear MAPK response characteristics observed upon 

stimulation with different growth factors in living cells (Santos et al, 2007).  

Consider the case of the dominant oncogenic RasG12V mutants: The presence of feedbacks 

such as the one mentioned above means constitutively active Ras will tend to activate the 

normal wild type Ras present in these cells, explaining why such mutations are dominant. 

Thus, even if the gene dosage of oncogenic Ras is 50%, the protein activity level of Ras is far 

higher. The presence of the constitutively active G12V mutation in a single allele of a Ras 

gene can catapult the MAPK cascade into a permanent ‘on’ state due to positive feedbacks 

that activate even the wild type (wt) Ras expressed from the other allele. The ‘gain-of-

function’ mutant Ras generates an offset in the Ras dose-response relationship that might 

trigger full activation of the wt Ras dependent on its expression level. By down-modulating 

the amount of mutant Ras that can effectively couple into effectors, the feedback strength 

is weakened thereby putting the system into a regime with only partially activated Ras and a 

phenotype that still has regulated growth factor responses. Inhibition of constitutively 

active signaling on the level of Ras is extremely challenging, as is evidenced by the complete 

lack of any known Ras inhibitors. Therefore, the Ras spatial cycle is a lucrative target for the 

modulation of oncogenic Ras signaling. Palmostatin B treatment of untransformed MDCK 
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cells shows no apparent toxicity or morphological changes.  It should be noted that while 

oncogenic Ras redistributes over all membranes after Palmostatin B treatment, it is still GTP-

loaded.  It is, however, unable to effectively couple into the downstream MAPK cascade 

indicating that oncogenic MAPK signaling originates primarily from the oncogenic factors on 

the plasma membrane (Matallanas et al, 2006). The fact that several oncogenic proteins 

reside on the plasma membrane seems to corroborate this hypothesis. The author believes 

that the effects on MAPK signaling and dramatic phenotypic reversion described in this work 

are likely to stem from attenuation of the positive feedbacks of the sort Ras and SOS-like 

GEFs, rather than the obvious decrease of Ras partitioning onto the PM. 

In addition to these processes, phenomena such as activity-dependent clustering of Ras 

proteins in the plasma membrane(Tian et al, 2007), or specific partitioning to lipid rafts(Prior 

et al, 2001) add an additional layer of spatial complexity to Ras signaling dynamics.  

 

In the context of Ras effectors that are not located on the plasma membrane, the dynamic 

cycling of Ras molecules allows for a ‘clutch and gear’ framework, where activity is 

transmitted via the energy used to maintain the spatial cycle. Transmission of Ras-signals 

after growth factor activation to different cellular locations can occur by the generation of 

an activated Ras pulse into the pre-existing spatially cycling population. The acylation cycle 

allows the rapid diffusion of activated Ras throughout the cytoplasm until it is enriched at 

the Golgi via (re-)palmitoylation, enabling access to effectors spread throughout the 

cytoplasm. Since Golgi encounters are stochastic, the pulse-like Ras activation response at 

the plasma membrane is widened at the Golgi, while its amplitude is reduced (Peyker et al, 

2010). Ras effectors such as RIG1(Tsai et al, 2007) and MAPK scaffolds such as Sef and 

BIT1(Philips, 2004; Yi et al, 2010), which are restricted to the ER or Golgi complex, 

teliologically imply a function for Ras mediated signaling on these cellular compartments. 

The precise nature of this signaling remains open for study but multiple lines of evidence 

indicate that phenotypic effects on cells require Ras activation on specific cellular 

compartments(Chiu et al, 2002; Inder et al, 2008). In the context of the acylation cycle there 
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is little doubt that effectors on internal membranes experience a Ras temporal activation 

profile that is substantially different from that seen by effectors on the plasma membrane. 

 

5.4 Modulation of spatial cycles in potential therapeutic applications 

Conventional cancer drug therapy in particular depends either on inactivation of hyper-

activated molecules, as is seen in the case of inhibitors of tyrosine kinases(Klohs et al, 1997) 

or, at the other extreme, on essentially harnessing a pleiotropic effect to cause apoptotic 

death, as is the case with cytoskeleton targeting drugs(Calligaris et al, 2010). The 

manipulation of spatial cycles to alter signaling presents an exciting opportunity to control 

cellular dynamics in a rational manner. While the approach is not devoid of pleiotropic 

phenomena, the fact that the intended target molecule is far removed in the interaction 

network from the site of drug action allows for fine-tuning of the inhibition to reduce 

oncogenic signaling below a certain threshold level. Since spatial cycles work in tandem with 

activation cycles of proteins, and exert an indirect effect, they present the opportunity for 

finer control of signaling activities at the expense of sensitivity - the so-called ‘Hormetic 

dose-response’ (Scott, 2004; Calabrese & Baldwin, 2003; Preston, 2005). In particular 

contexts, where basal activities of signaling molecules are essential for cell survival, as is 

often the case for neurological and oncogenic diseases, the manipulation of spatial cycles 

provides a gentler approach in manipulating cellular signaling network states. 

The intimate relationships between spatial cycles of G-Proteins and their activity in signaling 

networks reveals an avenue for signaling response manipulation by altering the steady state 

localization of such molecules. Strategies to interfere with pathological cellular signaling 

have focused largely on inhibition of hyperactive signaling pathways. However, since 

conserved cellular signaling modules like the MAPK cascade are utilized for the transmission 

of multiple signaling cues to various effectors(Chavel et al, 2010; Roberts et al, 2000), 

complete inhibition of signaling leads to several undesirable effects due to the acute 

perturbation of important branches of a signaling network. For example, the potent Mek 

inhibitor UO126 effectively terminates downstream MAPK signaling, but results in 
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widespread toxicity (Cheng & Force, 2010; Finegan et al, 2009) due to the collateral 

inhibition of survival signaling. Modulation of spatial cycles however as described in this 

work, may allow leveraging of non-linear signaling responses to nudge signaling networks 

into a desirable parameter regime (Gomez-Uribe et al, 2007), in order to selectively 

attenuate pathological phenotypic effects on the cell.  

 

5.6 Future Directions 

The perturbation of spatial cycles for manipulating cellular processes may be expanded 

beyond Ras proteins. The ensemble of proteins displaying spatial cycling is large. 

Heterotrimeric G-proteins, most Src family kinases, secreted enzymes, signaling molecules 

such as Sonic Hedgehog, the Huntington protein, several proteins involved in synaptic 

trafficking display the Ras-like palmitoylation based spatial cycle. Transmembrane receptors 

have spatial cycles based on endocytic sorting. Arf-GTPases that modulate ER-Golgi traffic 

seem to have spatial cycles akin, and the Rab proteins which regulate vesicular transport are 

reported to have spatial cycles relying on GDI proteins to convert them to a high-mobility 

soluble state, although spatiotemporal dynamics are not well understood. Rho, Rac and 

Cdc42 GTPases have activity gradients and GDI proteins akin to Rab whose effects have 

been discussed elsewhere (Rajnicek et al, 2006). Indications are that KRas itself is targeted 

dynamically, based on a spatial cycle that counters its entropic mislocalization. The effect of 

cellular size and shape has been theoretically postulated to have a substantial effect on 

signaling activities due to the relative scale of activity gradients and cycles and their 

respective temporal properties (Meyers et al, 2006). The modulation of the activities of 

these proteins has implications in oncogenesis, development, neuropathology, immune 

responses and possibly on several biological phenomena that remain to be discovered. As 

probing and detection methods have improved over the last ten years in their temporal and 

spatial resolution, at the same time becoming more and more non-invasive, empirical 

observation of spatial cycles of proteins in living cells has become more accessible. Small 

molecule inhibitors such as Palmostatin B have the potential to effect minute non-toxic 

modifications on protein activities, simply because they do not involve dramatic inhibition 
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or activation, but a finely resolved manipulation of protein activities. Efforts to develop such 

small molecules will provide iterative growth in the understanding of the dynamics of living 

systems, with simultaneous therapeutic promises. 

 

The development of high-throughput adaptations of advanced microscopy techniques 

(Grecco et al, 2010) , coupled with similar high-throughput detection of signaling activities 

and networks(Olsen et al, 2010), along with progress in the mathematical modeling of 

cellular processes (Bressloff, 2006) sets the stage for the exploitation of spatial cycles in 

tinkering with biology. 
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SUMMARY 

This work combines advanced microscopy methods with chemical biology techniques, 

conventional biochemistry and molecular biology, to elucidate the players and role of the 

acylation cycle in generating spatial patterning of proteins and its effect of Ras-mediated 

cellular signaling.  

Monolipidated peripheral-membrane proteins were shown to have rapid mobility within the 

cell by measuring fluorescence loss after photo-activation of paGFP-fusions of a 

myristoylated or a prenylated protein. Confocal imaging showed that mono-lipidated 

proteins display aspecific weak affinity to all cellular membranes, reflecting only membrane 

density within the cell without specific enrichment. Total internal fluorescence imaging 

showed that monolipidated proteins also have access to the plasma membrane, without 

significant enrichment. Palmitoylation of these proteins must therefore significantly 

contribute to the hydrophobicity of these proteins and thus increase membrane affinity.  

The acylation cycle was shown to be a spatial reaction-diffusion cycle of peripheral 

membrane proteins that consists of (1) S-palmitoylation at the Golgi apparatus with a 

concomitant increase in membrane affinity, (2) vesicular transport of high-membrane 

affinity species to the plasma membrane (3) Ubiquitous depalmitoylation and (4) Rapid 

diffusion until stochastic encounter of the Golgi apparatus, leading to re-palmitoylation. 

Each of these processes is summarized below. 

Palmitoylation is known to occur at the Golgi apparatus from previous studies involving the 

microinjection of semi-synthetic palmitoylation substrates. The DHHC-proteins reported to 

be facilitating this S-palmitoylation, i.e., palmitoyl transferases (PATs) were shown to have 

broad specificity, if any at all. A consensus sequence for previously reported so-called Ras-

specific PATs was identified using Hidden Markov Models, but Ras palmitoylation activity 

was demonstrated in Dictyostelium discoideum, an organism lacking any of the so-called 

Ras-specific PATs. Any specificity reported previously is therefore likely to be a feature of 

the experimental procedure followed or an underlying effect of unknown functions of these 

DHHC proteins not related to palmitoylation. Further, it was shown that steady state 
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distribution of Ras depends solely on the number and position of palmitoylation events and 

the Ras G-domain does not affect the spatial distribution of Ras within the cell through 

ratiometric imaging of full-length and truncated Ras proteins. 

The steady state distribution of some peripheral palmitoylated proteins such as Fyn maybe 

affected by distal regions on the proteins, unlike in the case of Ras. However, a secretory 

pathway block through cooling induced a clear retardation of these proteins on the Golgi 

apparatus, indicating that they follow a similar acylation cycle, irrespective of their wild-type 

localization. It is apparent that their localization is either different due to additional factors 

specific to those proteins overlaying the acylation cycle, or that their steady state 

partitioning over membranes is only quantitatively but not qualitatively different from that 

generated by the acylation cycle. 

APT1 was identified as a cellular thioesterase that depalmitoylates Ras in vivo. APT1 

expression was confirmed to be cytosolic, in line with the requirement of ubiquitous 

depalmitoylation according the model of the acylation cycle shown above. 

Palmostatin B, a newly developed inhibitor of APT1 was shown bind APT1 directly through 

Fluorescence Lifetime Imaging (a FRET assay) of GFP-APT1 fusions and Rhodamine-labeled 

versions of the inhibitor. Palmostatin B blocks depalmitoylation activity and was shown to 

increase the steady state fraction of palmitoylated protein through biochemical 

measurement with the acyl-biotin exchange assay. 

Confocal time-lapse microscopy after treatment with Palmostatin B led to redistribution of 

N-Ras localization, counter-intuitively leading to aspecific distribution over all membranes 

on longer time scales, that was indistinguishable from that of solely prenylated Ras, 

However, FRAP studies showed that this redistributed species has high-membrane affinity 

and is not rapidly mobile like solely prenylated Ras. The redistribution is attributed simply to 

entropy - slow leakage from the membrane, and membrane fusion events themselves, 

leading to a mislocalization of Ras over time. The mislocalized Ras, however, being still in its 

palmitoylated high-membrane affinity form, is effectively trapped aspecifically on all 

membranes, in the absence of thioesterase activity.  
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Removal of thioesterase inhibition led to a recovery of the usual steady-state distribution of 

NRas. The depalmitoylation activity of APT1 thus provides a reset mechanism in the 

acylation cycle that allows mislocalized palmitoylated proteins to regain rapid mobility and 

encounter the Golgi apparatus, with palmitoylation and vesicular transport restoring the 

specific enrichment on the Golgi apparatus and plasma membrane. 

The acylation cycle determines the amount and residence time of Ras proteins on the 

plasma membrane. Since growth factor mediated signaling occurs via receptors on the 

plasma membrane, the acylation cycle affects the probability that Ras molecules are 

available for participation in the MAPK signaling cascade through their GTPase cycle. 

Treatment with inhibitors such as Palmostatin B, which lead to an effective trapping of Ras 

molecules away from the plasma membrane, causes an attenuation of MAPK signaling 

output as measured by phosphorylation of the downstream kinases ERK1/2, which is 

activated in response to EGF signaling. 

As a logical step, the inhibitor Palmostatin B was applied to oncogenic Ras-transformed 

MDCK-F3 cells, which exhibit loss of contact inhibition, invasiveness and a mesenchymal-like 

phenotype compared to untransformed MDCK cells which are contact inhibited, display 

growth in islands and have an epithelial phenotype. Overnight Palmostatin B treatment 

caused a phenotypic reversion of MDCK-F3 to epithelial-like phenotype, as measured with 

cell shape determination and restoration of E-cadherin expression on the plasma membrane 

(the absence of which is a diagnostic marker of metastatic tumors). The phenotypic 

reversion caused by Palmostatin B could be blocked in cells transformed with KRas-G12V, an 

oncogenic but acylation-cycle-independent version of Ras.  

It was noted however that Palmostatin B displayed no toxicity towards MDCK cells for the 

duration of the experiment at the concentrations used. Thus, the phenotypic reversion was 

an effect of the interruption of the acylation cycle, which attenuated oncogenic Ras 

signaling in transformed cells down to levels sufficient for reversion to an untransformed-

like phenotype. The attenuation was subtle enough, however, to not block survival signals, 

which also are Ras-mediated. 
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In conclusion, this work describes the generation of spatially asymmetric protein 

distributions within the cell through a general reaction-diffusion mechanism. The acylation 

cycle depends on a localized conversion of proteins to a high-membrane affinity form, 

directional transport, and ubiquitous return to a low-affinity form. Functionally, the 

acylation cycle counters the effect of entropy in the distribution of proteins. In the case of 

Ras proteins, the acylation cycle convolutes with their GTPase cycle and modulates cellular 

MAPK signaling. It was possible to attenuate MAPK signaling by interrupting the acylation 

cycle without causing toxicity, providing a therapeutic avenue where cellular signaling can 

be manipulated beneficially while avoiding deleterious effects. 
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ABBRIEVIATIONS 

2-BP  2 Bromopalmitate 

ABE  Acyl-Biotin Exchange Assay 

APT  Acyl Protein Thioesterase 

Asp  Aspartate 

BMCC  1-biotinamido-4-[4´(maleimidomethyl)cyclohexanecarboxamido]butane 

CRD                   Cysteine Rich Domain 

Cys  Cysteine 

EGF/R  Epidermal Growth Factor/ Receptor 

ER  Endoplasmic Reticulum 

FLIM  Fluorescence Lifetime Imaging Microscopy 

FRET  Foerster Resonance Energy Transfer 

MAPK  Mitogen Activated Protein Kinase 

Met  Methionine 

Palm B  Palmostatin B 

PAT  Palmitoyltransferase 

PM  Plasma Membrane 

RTK  Receptor Tyrosine Kinase 

RT-qPCR   Reverse Transcriptase Quantitative Polymerase Chain Reaction 

Ser  Serine 

Thr  Threonine 

TIRF  Total Internal Reflection Fluorescence 

Tyr  Tyrosine 
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