
Automated Hierarchical
Service Level Agreements

Generic Management Principles and Application

to Multi-Domain Infrastructure-as-a-Service

Bei der Fakultät für Informatik
der

Technische Universität Dortmund
zur Begutachtung eingereichte

Dissertation

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

von

Konstantinos (Costas) Kotsokalis

Oktober 2010

Hauptreferent: Prof. Dr.-Ing. Ramin Yahyapour

Στον πατέρα µου,
Αθανάσιο Κωτσοκάλη

και τη µητέρα µου,
Κωνσταντίνα Σακελλαράκη-Κωτσοκάλη

για το ϑεµέλιο
και το παράδειγµα.

Preface

The research presented in this dissertation concerns the area of Service
Computing; more specifically, it contributes to the topic of enabling IT ser-
vice stacks with dependability, such that they can be used even further in
pragmatic business environments and applications. The instrument used
for this purpose is that of a Service Level Agreement (SLA).

The main focus is on SLA Hierarchies, which reflect corresponding Ser-
vice Hierarchies. SLAs may be established manually, or automatically
among software agents; it is mainly the latter case that is considered
here. The thesis contributes by means of a formal problem definition for
the construction of SLA hierarchies using a translation process, a man-
agement architecture, a formal model for defining penalties, and a repre-
sentation that facilitates the processing of SLAs.

Using these tools it is shown that automated SLA management in hi-
erarchical setups is possible, through an application to Multi-Domain In-
frastructure as a Service. Within this specific technical area, different
SLA-based resource capacity planning approaches are examined via sim-
ulation – both for online and offline planning. The former case concerns
normal runtime operations, and the thesis examines two greedy algo-
rithms with regard to their energy-savings efficiency and their perfor-
mance. In the latter case, a resource-scarce environment is simulated
with the purpose of minimizing penalties from already established SLAs.
This is achieved via formally-defined combinatorial models, which are
solved and compared to two greedy algorithms.

The research that lead to this thesis was conducted from late 2004 to
early 2008 in Athens, Greece; from then on and until late 2010 in Dort-
mund, Germany, as part of the SLA@SOI EU/FP7 Integrated Project (con-
tract No. 216556) [1]. It is presented at Technische Universität Dortmund
(TU-Dortmund), Department of Computer Science, under the supervision
of Prof. Dr.-Ing. Ramin Yahyapour.

i

ii

Acknowledgements

There are many people onemust usually thank in this section of a doctoral
dissertation. No exception to this rule is to be found here.

First of all, I would like to thank my advisors and supervisors during
these years of research; namely, Prof. Dr.-Ing. Ramin Yahyapour, who
supervised my work at the Dortmund University of Technology, Germany,
and Prof. Dr. Panayiotis Tsanakas who was my supervisor at the National
Technical University of Athens, Greece. I owe them a lot for their help and
guidance during this process.

I am grateful to my colleagues at ITMC/TU-Dortmund, who contributed
towards a stimulating research environment, helpedme enormously when-
ever speaking German was necessary, but also stood by me as good
friends during the last and most difficult part of my work. They are all
nothing short of amazing. Special thanks go to Philipp Wieder; his tireless
support during my time in Germany made a huge difference.

It would be hard to achieve this without the constant support from the
many good friends I have been blessed with, outside my working environ-
ment. I hope they will understand that I cannot be too verbose here and
mention each one separately, but they must all know that their encour-
agement was precious.

I cannot be thankful enough to my family. This thesis is dedicated to
my parents, Athanasios and Konstantina, for all the reasons that words
can hardly express. My sisters, Vassiliki and Dimitra, provided support,
motivation and a voice of reason that was much needed. They played a
crucial role, and for that I thank them wholeheartedly. The same applies
to my brother in law, Makis Lazos, and my beloved nephews George and
Thanos.

Last, but not at all least, I would like to thank my partner in life, Nadia
Nikolopoulou. There is no possible way to describe, even to the tiniest
bit, all the reasons why this thesis would have never been written if it was
not for her. For all the patience, encouragement, support, inspiration and
motivation, Nadia, I thank you. You were right in everything.

iii

iv

Contents

I Introduction 1

1 Context 3
1.1 Motivation . 3

1.1.1 The SLA@SOI EU Project 4
1.2 Scope and Scientific Contribution 5

2 Service and Cloud Computing 9
2.1 Service-Oriented Computing 9
2.2 An Example Scenario . 10
2.3 Service Dependencies . 11
2.4 Cloud Computing . 13
2.5 Multi-Domain Infrastructure-as-a-Service 15

3 Service Level Agreements 19
3.1 Definitions and General Considerations 19
3.2 SLA Management . 22
3.3 Related Work . 24

4 Use Cases and Problem Description 27
4.1 Hosted Enterprise Resource Planning 27
4.2 Enterprise IT . 30
4.3 Problem Description . 32

II Hierarchical SLA Management 37

5 SLA Hierarchies 39
5.1 SLA Dependencies . 39

5.1.1 Service Properties Dependencies 40
5.1.2 SLA Translation . 42

5.2 Related Work . 45

6 Management Architecture 49
6.1 Design . 49

v

6.1.1 Template Advertisements 51
6.1.2 Negotiation Interface 52
6.1.3 Planning and Optimization 52
6.1.4 Monitoring Infrastructure and Forecasting 53
6.1.5 Provisioning . 53
6.1.6 Monitoring and SLA Adjustment 54

6.2 Operations . 55
6.3 Architecture Applicability . 58
6.4 Framework Implementation 59
6.5 Related Work . 61

7 Penalty Model 65
7.1 Penalties and Service Level Agreements 65
7.2 Penalty Model . 67
7.3 Example Application . 68
7.4 Related Work . 70

8 System-Internal SLA Representation 73
8.1 Basic Concepts . 73
8.2 Binary Decision Diagrams . 74
8.3 SLAs as BDDs . 76

8.3.1 A Usage Example . 76
8.3.2 SLAs and SLA Hierarchies 77
8.3.3 BDD Mapping . 78
8.3.4 Negotiation Time Operations 81
8.3.5 Runtime Operations 83

8.4 Proof of Concept . 84
8.5 Related Work . 86

III Infrastructure SLA Planning 89

9 Resource Model 91
9.1 Rationale and Requirements 91
9.2 Resource Element Design . 93

9.2.1 The Resource Element Model 93
9.2.2 Relevance to CIM Reference Model 93
9.2.3 Relevance to GLUE Schema 94

9.3 Resource Element Reservations 95
9.4 Application to Real Use Cases 97
9.5 Related Work . 100

10 IaaS SLA Planning 103

vi

10.1 Scenario Description . 103
10.2 Algorithms . 107
10.3 Experimental Evaluation . 111
10.4 Related Work . 114

11 Offline Planning with Limited Resources 121
11.1 Scenario Description . 121
11.2 Problem Models . 125

11.2.1 Non-flexible . 125
11.2.2 Flexible-items . 128
11.2.3 Flexible-time . 128

11.3 Experimental Evaluation . 128
11.3.1 Setup . 128
11.3.2 Results . 130

11.4 Related Work . 140

IV Conclusions 143

12 Conclusions 145
12.1 Summary of Contributions . 145
12.2 Critical View of Presented Work 148
12.3 Concluding Statements and Future Directions 149

vii

viii

List of Figures

1.1 Layered SLA establishment of SLA@SOI 5
1.2 High-level scenario . 6

2.1 Actors of the example scenario 11
2.2 Flowchart of address-based route planning service process 12
2.3 Service dependency graph for example scenario 13
2.4 Multi-domain resource provisioning 16

3.1 The SLA life cycle, according to the TMF 22
3.2 An SLA and an SLA template, according to WS-Agreement . 22

4.1 Enterprise IT . 30
4.2 Enterprise IT planning and optimization 31

5.1 SLA dependencies, reflecting service dependencies 40
5.2 Example service Properties Dependency Graph 41
5.3 Generic flowchart for translation/negotiation of SLAs 44

6.1 SAMI and service instances 50
6.2 The SLA Management Instance (SAMI) 51
6.3 A simple Template and Offer example 56
6.4 High-level overview of the negotiation process 57
6.5 Meeting organization outsourcing 58

8.1 Simple/Ordered BDD representations of f = x1 · x2 + x1 · x3 75
8.2 The BDDs corresponding to functions from Equations 8.2

and 8.3 . 80
8.3 Experimental result . 85

9.1 Mapping of RE concepts to CIM 94
9.2 Resource Reservation Scenario 96
9.3 Representation of the computing resources 98
9.4 Representation of weather station 99

10.1 An SLA request example . 104

ix

10.2 The IaaS scenario of Part III 106
10.3 Two-dimensional bin (server) packing 108
10.4 Dynamic bin (server) packing 109
10.5 First-Fit assignment algorithm for each resource group . . . 110
10.6 Best-Fit assignment algorithm for each resource group . . . 112
10.7 Performance comparison of FF and BF 113
10.8 Energy savings comparison (low arrival rate) 113
10.9 Energy savings comparison, zoom in (low arrival rate) . . . 114
10.10 Accepted SLAs comparison (medium arrival rate) 115
10.11 Energy savings comparison (medium arrival rate) 115
10.12 Energy savings comparison, zoom in (medium arrival rate) 116
10.13 Accepted SLAs comparison (large arrival rate) 116
10.14 Energy savings comparison (large arrival rate) 117

11.1 Resource failure scenario 122
11.2 Problem illustration . 122
11.3 Example for “flexible items” strategy 124
11.4 Required / available resources ratio 130
11.5 Average resource utilization (percentage) 131
11.6 Solving/Approximation speed for (200, 1, 1, 5, 1) 132
11.7 Solving/Approximation speed for (400, 2, 2, 10, 2) 132
11.8 Solving/Approximation speed for (600, 3, 3, 15, 3) 133
11.9 Solving/Approximation speed for (800, 4, 4, 20, 4) 133
11.10 Effect of increasing number of SLAs 135
11.11 Effect of increasing number of resource types 136
11.12 Effect of increasing number of data centers 136
11.13 Effect of increasing planning horizon 137
11.14 Effect of increasing number of resource requests in each

SLA . 137
11.15 Placed SLAs per strategy (percent of total SLAs) 138
11.16 Placed resource requests per strategy (percent of total re-

source requests) . 138
11.17 Avoided penalties per strategy (percent of total penalties) . 139

12.1 High-level scenario . 146

x

Part I

Introduction

1

2

Chapter 1

Context

The vision of the present dissertation is to further enable IT service hier-
archies with dependability, in a scalable manner. As a quick introduction
to this vision and the overall context, it is beneficial to provide the back-
ground of the respective research. This initial chapter briefly discusses
the scientific motivation for the dissertation. Then, it continues to pro-
vide information about what is within the thesis’ scope, and what is not.

1.1 Motivation

The research presented in this doctoral dissertation is primarily motivated
by the wish to enable Service Oriented Infrastructures (SOIs) with depend-
ability, for the purpose of automated service binding. More specifically,
service computing envisages diverse service ecosystems, where software
agents automatically discover and bind each other, to achieve reusability
via composition. If this vision is to be achieved, some measure of cer-
tainty needs to be integral to the discovery and binding process. The
other option, best effort usage, is considered suboptimal and difficult to
apply to real-world businesses, as it offers no guarantees and therefore
could pose risks to the viability and sustainability of a business.

Service Level Agreements (SLAs) are an instrument that can be used
to approach such goals of increased certainty. They represent the elec-
tronic equivalent of business contracts between service providers and
service customers. As such, they can describe what exactly is the ser-
vice, what the service provider guarantees, what are the obligations of
the customer, what are the penalties if the guarantees are not honored,
and so on. The complex relationships between different services as they
are forming service chains and hierarchies can be reflected onto SLAs,
forming equally complex SLA hierarchies. This way, it will become pos-

3

Chapter 1. Context

sible to enhance complete service stacks, make them dependable, and
advance service computing overall. SLAs are meant to be negotiated,
just like normal contracts, and be used during the service’s lifetime as an
official means to describe expectations and guide the service provisioning
and monitoring processes.

The information contained within SLAs includes details regarding the
implementation of the service, for which the provider knows how to map
these onto resource requirements. Thus, SLAs can be used as a tool to
enable automated decision-making for purposes of online resource plan-
ning. Adaptive resource capacity management is not a new area, yet
it has had limited success so far in achieving integration with business
objectives and the way businesses operate. SLAs provide necessary for-
malisms to enable this connection to business objectives, as they typi-
cally include provisions for pricing, penalty definitions, etc.

When the service refers to infrastructure resources that are offered
over the network (“Infrastructure as a Service” - IaaS), the link between
SLAs and resource management becomes further prominent. Resources
in this case could be many different things, such as computing nodes,
storage, network circuits, sensors, scientific instruments, and so on. IaaS
is a trend that has seen new heights recently with advances in resource
virtualization and the prevalence of Cloud Computing. This area is one of
the targets for the present thesis.

1.1.1 The SLA@SOI EU Project

Most of the research presented within this thesis took place as part of
the SLA@SOI EU-funded Integrated Project (grant agreement: 216556).
SLA@SOI is a three-year project running from 2008 to 2011, aiming to
enable service hierarchies with dependability, transparent SLA manage-
ment, and automation. The project takes a holistic view on service man-
agement, using a three-layer approach: An infrastructure layer, consist-
ing of finite, countable physical and virtual infrastructure resources; the
software layer, consisting of software executing on this infrastructure,
possibly also constrained by limitations such as licensing options; and
a business layer, that augments software and infrastructure services with
business concepts and exposes them as complete products ready to be
sold to customers. Each layer represents distinct providers, or distinct de-
partments within the same provider. Eventually, for a product (business-
enabled service) sold under guarantees foreseen by some SLA, all in-
volved services from the two lower layers should be provisioned under
appropriate SLAs, so that the top-level one is fulfilled (Figure 1.1). Each
arrow in this figure represents the establishment and runtime manage-

4

Chapter 1. Context

ment of SLAs, including (re-)negotiation, monitoring and alerting, arbitra-
tion, etc.

Business

Pricing, customer management, ...

Software

Performance engineering, service
orchestration, ...

Infrastructure

Virtualization, carbon footprint
management...

Customer

Figure 1.1: Layered SLA establishment of SLA@SOI

The work presented herein is only a fraction of the work completed
(and still ongoing as of September 2010) within the project. For instance,
this dissertation does not touch upon business concepts (with the excep-
tion of cost and penalties), software service orchestration, performance
engineering, or infrastructure monitoring.

1.2 Scope and Scientific Contribution

The thesis has two different purposes. First, it tries to create some new
formalisms and methods, that apply to SLAs independent of the domain
and can be useful in combination with other ongoing research. Second,
focusing on infrastructure services, these formalisms / methods are used
and extended with algorithms for negotiation-time resource planning, and
for resource-planning during exceptional situations when resources be-
come scarce.

Looking at the topic informally and from a very high level, Figure 1.2
illustrates the context of this work, and the questions it addresses.

The scope and the respective scientific contributions of the thesis can
be summarized in the following list:

SLA Hierarchies: A concrete definition of the SLA hierarchies and the

5

Chapter 1. Context

Provider

Customer

Provider

Contract

Sub-Contract

Request Response

Request Response

Provisioning

Provisioning

Resources

Resources

Contracts bear
responsibility; there are
penalties if breached

How to deduce a
subcontract, starting

from the contract?

What do these boxes
really look like? How do

they function?

How to assess if the
contract can/should be

established?

(For infrastructure) How to
make best use of

existing resources?

(For infrastructure) How
are resources defined?

How to signal and
instruct them?

Figure 1.2: High-level scenario

process of “translating” from one SLA to others, is presented. This
text is available in Chapter 5.

Architecture: A complete, self-contained management architecture for
SLAs is presented in Chapter 6. This architecture takes into account
requirements for multi-level SLAs, and can be extended to fit any
domain that requires SLA management.

Penalty Model: A penalty model supporting SLA term interdependen-
cies, fairness, and business value declarations, is presented in Chap-
ter 7.

In-memory SLA Model: In contrast to SLA models for on-the-wire rep-
resentation, a generic and flexible model is necessary for in-memory
management of highly-complex SLAs. Such a model should allow
the efficient handling of their complexity. A proposal in this area is
presented in Chapter 8.

Resource Model and Reservation Primitives: For this work there was
required a formalism to express resource groupings and time rele-
vance, so that it can be used for co-allocation and advance reser-

6

Chapter 1. Context

vation. Additionally, such a model can be directly used within SLAs
to express guarantee terms for the provisioning of resources. Chap-
ter 9 presents a standards-compatible model for these purposes.

IaaS SLA Planning: The planning process differs significantly in differ-
ent domains. Here, the focus is on methods that can be applied to
the problem of SLA planning for infrastructure services. The topic
is researched considering two different use cases: First, normal op-
erations negotiation-time planning, where existing SLAs are never
violated on purpose; and the focus is on energy consumption and
planning performance. Second, planning under an extreme situa-
tion where resources have become scarce (e.g. massive resource
failure, or submission of non-negotiated SLAs to the system). In this
latter case, some SLAs may be discarded partially or in full, so that
eventual penalties are minimized. This is an offline process, and for
its solution this work proposes a combinatorial (Integer Linear Pro-
gramming - ILP) approach. Chapters 10 and 11 elaborate on these
issues.

Relevant, but out of scope for this dissertation, are:

• Negotiation protocols;

• Models for on-the-wire or on-the-screen SLA representation;

• Management necessities for service discovery, composition, bind-
ing, provisioning and monitoring.

• Technology and approaches for implementing infrastructure adjust-
ment capabilities such as scaling, virtual machine migration, etc.

The next chapter includes a motivating example, that will be used in
Part II for illustration purposes. In Part III a different example will be used,
to fit the narrower scope of infrastructure services.

What comes next

In the upcoming Chapter 2, the essentials of service and cloud computing
will be discussed. The remainder of Part I then continues to discuss SLAs
in general in Chapter 3, and provide a more detailed description of the
scientific problems that the thesis contributes to – also in the context of
various example and more realistic use cases – in Chapter 4.

7

8

Chapter 2

Service and Cloud
Computing

This Chapter serves as a more elaborate introduction to service orienta-
tion and service computing. Fundamental definitions are discussed and
relevant concepts such as workflows and composition are provided. The
Chapter then proceeds to explain the essentials of cloud computing and
how it relates to service computing. Finally, outsourcing of infrastructure
services is introduced.

2.1 Service-Oriented Computing

Service-Oriented Computing (SOC) is the computing paradigm that uti-
lizes services as fundamental elements for developing applications [2].
The question naturally arises, how is a service defined. In [3], Zhang et
al. start their book by reviewing a number of definitions from prior art,
and eventually define Information Technology (IT) services as follows:

Services represent a type of relationships-based interactions
(activities) between at least one service provider and one ser-
vice consumer to achieve a certain business goal or solution
objective.

Service providers offer and implement the service, while service con-
sumers utilize it (“consume” it).

In general, one could informally say that SOC is the IT discipline that
concerns with exposing functionality for others to utilize, possibly in the
context of some larger application. As such, any activity offered by one
entity to another, is a service. In recent years, SOC has changed to a
large extent the way business is conducted. The main reason is the fact

9

Chapter 2. Service and Cloud Computing

that it is possible to offer complete applications by combining services in
a proper way, using the functionality offered by one to cover for function-
ality missing from another. This makes it easier for companies to focus on
their area of expertise and integrate necessary additional functionality by
means of reusing existing tools offered by others. It also introduces the
notion of a service dependency; that is, the fact that a service requires
some other service in order to execute as designed. If this concept is
recursively applied to the services within an application, the result is a
service chain. Such formations are very typical nowadays. The term is
an analogy to supply chains, but instead of referring to traded products,
it refers to services.

2.2 An Example Scenario

Before further discussing service dependencies, we introduce an example
scenario to be used throughout the thesis for reasons of demonstration.
This example consists of an infrastructure service provider, a software
service provider, and a customer.

The software service provider offers a geo-positioning facility, consist-
ing of the following services:

1. Geo-coding (GC): Given an address it returns the respective longi-
tude and latitude, and vice-versa.

2. Route planning (RP): Given two sets of coordinates representing two
different geographical points, it returns the shortest route from the
first point to the second.

3. Address-based route planning (AB): Performs the same functionality
with coordinates-based route planning, but accepts full addresses
instead of coordinates.

Address-based route planning makes use of the other two services:
First, it invokes the geo-coding to convert addresses to geographical co-
ordinates; then, uses these coordinates to invoke the route planning ser-
vice. The latter two rely on a database server, which they must invoke to
retrieve necessary information.

On the same time, the three geo-positioning software services exe-
cute within a web application server, which they never “invoke”. The
application server, in turn, executes within a physical or virtual server –
and the same applies to the database server. We assume that they run
on two distinct servers, and that these servers are both offered by the

10

Chapter 2. Service and Cloud Computing

infrastructure provider. Figure 2.1 shows the different actors involved in
this scenario.

Central Topic

Central TopicCentral Topic

Customer receives
service from S/W
service provider

S/W service provider
receives service from
infrastructure provider

Figure 2.1: Actors of the example scenario

In the upcoming Section, this example will be used to illustrate the
various types of dependencies between different services.

2.3 Service Dependencies

Service dependencies can be explicit, or implicit. Explicit dependencies
play a central role in service-oriented computing. The assumption here
is that a service’s logic (the functionality it delivers) depends on some
other service by means of composition. That is, there are service invo-
cations involved. It is expected that each service is invokable over some
interface expressed in well-defined languages (e.g. theWeb Services Def-
inition Language - WSDL [4]). With a pipeline of input and output of such
services, it becomes possible to create a software service composition, in
the form of a workflow. Oftentimes such compositions are referred to as
Business Processes, and are in general orchestrated by means of a work-
flow engine. In recent years, the Web Services Business Process Execu-
tion Language [5] (WSBPEL) has been the most widely used specification
for this purpose.

In the example from Section 2.2, service AB invokes service GC with

11

Chapter 2. Service and Cloud Computing

the given addresses, and expects to receive two sets of coordinates (cor-
responding to the two addresses). If one, or both the addresses cannot
be found and mapped to geographical coordinates, an error is returned.
Should both addresses be properly resolved, service RP is invoked and a
route between the two is returned. Figure 2.2 illustrates this workflow of
invocations and checkpoints, in the form of a flowchart.

Process for Address-based Route Planning service (AB)

Start Invoke GC Invoke RP Stop
Addresses

valid?

Yes

No

Figure 2.2: Flowchart of address-based route planning service process

Implicit dependencies are, on the other hand, typically related to mid-
dleware and infrastructure services (without which a higher-layer service
cannot operate at all), and also services used for reasons of redundancy.
For instance, web site development agencies may do the site hosting
themselves, or outsource it to specialized data centers. Any software
relies on some hardware on which it can execute. When it comes to re-
dundancy, the standby services set up for this reason are normally not
used, but their existence affects the service that depends on them, in the
case of a failure.

In what follows, the services that depend on others will be referred to
as dependents, and services on which others depend will be referred to
as antecedents.

Although it is possible to perform this rough classification of explicit
and implicit dependencies, it is not possible to refine it further and try to
identify in greater granularity the relations between dependent services.
Rather, the notion of dependency itself is enough to construct a (Service)
Dependency Graph [6, 7]. Figure 2.3 illustrates the dependency graph
for the example scenario elaborated earlier. Relationships “invokes” and
“queries” denote explicit dependencies, whereas “executes in” is an im-
plicit relationship.

Throughout this thesis SDGs will also be referred to as Service Hierar-
chies, to denote the layered structure that one can also see in Figure 2.3.

12

Chapter 2. Service and Cloud Computing

Server-1

Web

server

Service

consumer

Server-2

Data

base

Invokes

AB

GC RP

Invokes Invokes

Executes in

Executes in
Queries

Queries

Executes in Executes in

Executes in

Figure 2.3: Service dependency graph for example scenario

2.4 Cloud Computing

Cloud Computing can be seen as an extension of the concepts of Service-
Oriented Computing, enriching them with notions of virtualization and
massive scalability. It is difficult to provide an exact definition of the
“cloud computing” term, also due to the fact that at this time it is the sub-
ject of extreme marketing, therefore the term is typically overloaded by
many of its users [8]. Although it started referring only to computing in-
frastructure, when AmazonTMreleased Elastic Compute CloudTM (EC2) [9]
and Simple Storage ServiceTM (S3) [10], currently the term is also being
used for highly scalable software services offered under similar condi-
tions.

Cloud computing is frequently also used as a term interchangeably
with Utility Computing [11], which essentially refers to “pay as you go”
usage models. With utility computing, the user initially leases a minimal

13

Chapter 2. Service and Cloud Computing

amount of resources, and then she can dynamically add more to the uti-
lized resource pool. In a similar manner, dynamically removing resources
from the pool is also supported. As such, the user eventually pays only
for the resources that she uses.

Finally, cloud computing has been often related toGrid Computing [12],
especially during its early stages. The latter refers to a resource sharing
model, which is closer to Platform as a Service (Paas). Grid computing
was very popular for the last decade, but eventually never managed to
become a successful model in the business world. Conversely, cloud com-
puting appears to be very suitable for business exploitation, and as such
the respective uptake is very significant at the time. Grid computing re-
mains, nevertheless, the preferred usage paradigm for large-scale scien-
tific computing.

A complete definition of cloud computing is not within the scope of
the work presented in this thesis. The focus of Part III is on Infrastructure
as a Service (IaaS), where the service always refers to infrastructure re-
sources. These may consist of computing power in the form of countable
CPU cores represented by Virtual Machines (VMs), storage measured in
well-defined units such as MegaByte (MB), or even sensors, virtualized
scientific instruments, etc. In general, the addressed field is that of fi-
nite, countable, tangible resources which are required as an infrastruc-
ture layer on which software executes.

A key concept for IaaS is virtualization. The infrastructure that the
consumer is using may be anywhere in the world (assuming no local-
ity constraints have been agreed with the provider). Additionally, it may
well be the case that the real hardware resource is shared between many
consumers, although this is something that the users cannot see directly.
This technology has been instrumental to the uptake of cloud computing
and IaaS, as it offers important management capabilities. Providers can
resize their infrastructure dynamically, with fine granularity. Enforcing us-
age limits to users (quota) is not depending on the operating system that
the user executes her applications on, but rather on the software that
implements the virtualization. Thus, it is possible to do things such as
changing the amount of volatile memory of a virtual machine, to scale up
and down when needed without restarting the system or performing any
manual (hardware-related) operations. Additionally, it is possible to sus-
pend VMs for implementing check-pointing mechanisms, clone and mi-
grate VMs to other physical infrastructure for load-balancing, etc. In gen-
eral, such virtual environments offer significant flexibility and manage-
ment convenience, hence also allow new techniques to be implemented
for advancing the ways people use IT today.

14

Chapter 2. Service and Cloud Computing

A common use case of IaaS is that of a company which needs com-
puting resources, but either the usage patterns present sudden scaling
requirements (e.g. simulations for a design that was just concluded), or
the requirements in the near future are simply unknown. Startup compa-
nies are a good example; when operations commence, typically it is not
known how prospective users will react, and if the offered product will be
successful. Thus, it is economical and makes good business sense to start
with small infrastructure, and then scale it if needed. Nevertheless, such
infrastructure scaling normally takes a lot of time to design, and the pro-
curement itself is also time-consuming. On the other hand, using IaaS,
it is possible for a company to size up its infrastructure in a very short
time, by leasing resources from an IaaS provider. For instance, it can start
load-balancing among 10 VMs, and then initiate another 10 following an
agreement with the provider. It is merely a configuration change in the
load-balancer, after which it is possible to distribute requests to double
the machines, therefore decreasing by 50% on average the workload on
each of the servers previously responding to incoming requests.

Outsourcing infrastructure requirements is often a good business idea,
also due to the avoidance of administration costs (and the costs associ-
ated with initial equipment purchase). Economies of scale ensure that a
provider of infrastructure services can achieve much lower management
costs per resource, than what a company with a small in-house infras-
tructure would have to pay for the same purpose. Provided that these
savings are also affecting the pricing of IaaS, the knock-on effect has pos-
itive results to the pricing of the services of the company who rents the
infrastructure, while it may also lead to increased profits.

Finally, infrastructure outsourcing is an attractive option for compa-
nies who provide complex software systems as a service. Typically, per-
formance or other requirements differ from one customer to another.
This translates to different requirements from the underlying infrastruc-
ture, with a typically very large number of different implementation op-
tions [13]. Outsourcing infrastructure requirements enables companies
to have access to possibly exotic equipment, that otherwise they might
purchase at a high cost, to use only rarely.

2.5 Multi-Domain Infrastructure-as-a-Service

The main concept underlying cloud computing (and therefore, IaaS) is
one of abstraction. The user does not know (and is not concerned) exactly
where her data resides, where it is processed, etc. As long as it is safe
from unauthorized access, and ubiquitously present with reasonable per-

15

Chapter 2. Service and Cloud Computing

formance, the exact location and domain is not relevant. This property
allows that different IaaS domains collaborate in groups and exchange
workload.

It is therefore assumed that an IaaS domain which is in need of ad-
ditional resources can become itself a customer to other IaaS domains,
and request to outsource to them (a “variable-role” assumption). It also
applies that an entity can perform as a broker of resources from other do-
mains, without owning any itself. Domains can be administrative (i.e. dif-
ferent providers), or management (i.e. different operational units within
the same provider). The two are not differentiated in this work. The
term domain is used here to imply resource management independence.
Within a single domain, the provider (or unit) can allocate, utilize and re-
lease resources basedmerely on “local” knowledge. In addition, providers
(or units) from other domains do not have rights over these resources,
therefore using them means that they have to request permission to do
so.

Customer Request

I need 500
cores.

Provider

A

Provider

B

Provider

C

Request

Request

I only have
300. I will

ask B and C
for 200.

Figure 2.4: Multi-domain resource provisioning

As evident, there is a straightforward analogy with the examples from
Section 2.1, where a service was calling out to other services in order to
accomplish its tasks. Figure 2.4 illustrates the concept. In this thesis, the
term Multi-Domain IaaS is used to describe this kind of setup.

Nevertheless, for the variable-role assumption to hold, there are cer-
tain guarantees that should apply. We already mentioned some about
security. There can also be others about performance, legal concerns,
etc. Hiding the information about who actually delivers the service, as is
the case here, means that the primary provider (“A” in the trivial exam-
ple here) is legally bound to any promises made to the user, even if it is
provider “B” or “C” who fails to deliver. This is a more general concept
in service-orientation. Such concepts, related to guarantees, obligation,
default and penalty, are covered by Service Level Agreements as will be

16

Chapter 2. Service and Cloud Computing

discussed in the next chapter.

Summary and Conclusions

Service computing is the discipline that studies how different services
can be exposed, discovered and bound (possibly into larger service pro-
cesses), so that reusability and expertise are taken full advantage of.
Cloud computing is the service computing area where virtualization is uti-
lized to hide from the user the less relevant information, such as equip-
ment and data location. Given sufficiently good reasons (e.g. capacity
limitations), a cloud provider or operational unit may choose to outsource
part of the service that a customer requires. This concept is essential to
the present work, specifically in the context of infrastructure services.

The upcoming chapter discusses Service Level Agreements more for-
mally, and elaborates over relevant concepts of the SLA life cycle.

17

18

Chapter 3

Service Level Agreements

The present Chapter explains important concepts relevant to the rest of
the document. More specifically, it discusses in detail what Service Level
Agreements are, how they are related to service computing and what SLA
management includes from a life cycle point of view. In addition, there is
provided some discussion regarding a number of problems pertinent to
automated negotiation of SLAs.

3.1 Definitions and General Considerations

A Service Level Agreement (SLA) is a representation of all those features
that a user can expect to receive by a service, plus related information
to provide the context unambiguously (such as user’s obligations). “Fea-
tures” here refer not only to the functionality delivered by the service, but
also to the quality that the user experiences. As a matter of fact, SLAs are
typically associated with Quality of Service (QoS), but in a formal repre-
sentation it is reasonably expected to find the service description as well.

In general, Service Level Agreements define context, obligations and
rights for the parties involved, as regards the service consumed. They
consist of a set of facts, and a set of rules. Facts are globally (with re-
spect to the contract) applicable truths, such as parties involved, mone-
tary unit, etc. Rules include:

1. the conditions that must hold for a certain clause to be in effect;

2. the clause itself, typically describing the expected result that the
customer wishes to receive – and which is usually referred to as
Service Level Objective (SLO); and

3. a fall-back clause in the case that the aforementioned clause is not
honored.

19

Chapter 3. Service Level Agreements

As an example, for the condition “time of day is after 08:00”, the clause
could be “response time is less than 5 seconds”, and the fall-back clause
could be an applicable penalty. This kind of format actually reflects real-
life contracts and their if-then-else structure, which might apply either as
the default or as the exception to such default respectively.

SLAs are typically said to govern service consumption, and guaran-
tee its properties. It was already mentioned that SLAs try to augment
services with acceptable levels of determinism. What this means is that,
purely on a document level, SLAs also include measures of business value
and penalty constructs for those cases that the agreed QoS level cannot
be maintained by the service provider.

Given the definition above, SLAs may be represented in various ways;
in this work, only their electronic representation is considered, for pur-
poses of automated management by means of machine-readable doc-
uments. In a direct analogy with contracts as known from traditional
business, SLAs are commonly referred to as electronic contracts. As a
consequence of this analogy, the following important questions come up:

• What are the legal implications of electronic contracts, when it is
software that decides whether to establish (sign) them, or not?

• What is the language in which an electronic contract is written?

• How is negotiation of electronic contracts taking place?

• How can the terms of the contract be expressed in uniform ways?
That is, how can the semantics of the language be commonly un-
derstood?

• How can the software actually make the decisions?

With regard to legal implications, it is clear that machines and soft-
ware cannot be held accountable in the case of penalties, or more severe
breach of contract. Therefore, it is commonly accepted that a formal (non-
electronic) contract negotiated between humans needs to be in place,
governing all automated interactions between software entities. This con-
tract will have to define what are the purposes of the automated SLAs, the
capabilities and administrative boundaries of the negotiating software en-
tities, acceptable terms and penalties, and in general all those business
and technical characteristics that apply to the automated interactions.
Hence, a framework contract must be in place to reflect accountability
and responsibilities of involved business parties.

The next three questions are more technical and have to do with
proper representation of messages exchanged between the two parties

20

Chapter 3. Service Level Agreements

(the software entities), as part of the establishment process. In general,
it is desirable to model this process after the establishment process of pa-
per contracts, where a first draft is created and then the parties involved
perform revisions iteratively. This iteration of drafts forms a multi-round
negotiation, until both parties are satisfied and agree to sign. A simi-
lar approach is commonly used to model negotiation of electronic con-
tracts. However, the question of the contract’s content remains. In real
life and paper contracts, someone expects that the contract is written in
a physical language that both parties can read, e.g. German, English,
French, etc. Achieving this universally in software is not trivial, and it is
only recently that the first relevant standardisation effort became suc-
cessful with WS-Agreement [14]. Even with such a common language,
though, the problem of describing the obligations and expectations of
the involved parties is still open. Let us consider an artificial example,
where a contract is negotiated between an administrative manager and
a systems administrator. The contract is about backoffice functions in-
voked by the adminstrative person’s desktop spreadsheet. The manager
would require that whenever she invokes a specific function from within
the spreadsheet, there is always a result returned within a few seconds.
The administrator may not be able to interpret this to technical terms, for
which she would be willing to sign a contract. Such terms would be, for
instance, the failover hardware of the backoffice server, load-balancing
for performance optimisation, etc. These two people cannot sign a con-
tract, although they may speak the same natural language, because they
are mutually unaware of the meaning of the guarantee terms their co-
signatory party is willing to accept. The exact same problem applies
to electronic contracts, where software entities may support and under-
stand different sets of SLA terms.

The final question has to do with automated e-contracting, which is
the latest trend in the area. Service Level Agreements are being used
already extensively in various parts of the IT industry, but their first ap-
plications were in computer networking by means of facilities such as
Differentiated Services [15] (DiffServ). SLAs were initially contracts that
defined things such as allocated bandwidth, quality of networking circuits,
etc. SLA research in the networking area is still very active (e.g. [16, 17,
18]), nevertheless, with the advent of service computing and the “every-
thing as a service” principles, the concept was applied to plenty of dif-
ferent areas and automated SLAs [19] are considered in more recent re-
search. Automation here is related to the absence of human intervention
to decide what is acceptable and what not, and perform the negotiation
and runtime management. Conversely, there are assumed autonomous

21

Chapter 3. Service Level Agreements

agents that can perform all decision-making during negotiation and run-
time, given predefined policies and business logic to drive decisions.

3.2 SLA Management

SLA Management entails the actions that must be taken throughout the
life cycle of a Service Level Agreement. Figure 3.1 [20] illustrates the
definition of the TeleManagement Forum (TMF) for this life cycle [21].

!"#"$%&'"() *"+%),-),%(.'&$"'"()-),%(/0"12),%(344"44'"()

!"#$%&'"()"*"%+$#",'

&,)(",'-'%"#",'

."/+'-&'"(&,)

"0"12'"(1+,'3&1'4

5","3&'"(&,)

$3+*-4-+,(4"3*-1"

+3)"34(&,)(678

#+,-'+3-,/

9$"3&'"(&,)

#&-,'&-,(:(#+,-'+3

678($"3;+3#&,1"

844"44($"3;+3#&,1"

&,)(3"&44"44

'"#$%&'"4

5"6',(-),%(

!"3#-,&'"(&,)

)"1+#-44-+,

4"3*-1"

Figure 3.1: The SLA life cycle, according to the TMF

Initially, a Service Level Agreement Template must be created. This
template abides to some description model, such as WS-Agreement or
WSLA [22]. Figure 3.2 illustrates the structure of an agreement, and that
of an agreement template, according to WS-Agreement.!

!

!

!

!

GFD-R-P.107 March 14, 2007

Grid Resource Allocation Agreement Protocol (GRAAP) WG

graap-wg@ogf.org 14

Figure 2: Structure of an agreement.

The section after the (optional) name is the context, which contains the meta-data

for the entire agreement. It names the participants in the agreement, and the

agreement’s lifetime. The next section contains the terms that describe the

agreement itself.

The XML representation of an agreement or an agreement creation offer has the

following structure:

<wsag:Agreement AgreementId=”xs:string”>

 <wsag:Name>

 xs:string

 </wsag:Name> ?

 <wsag:AgreementContext>

 wsag:AgreementContextType

 </wsag:AgreementContext>

 <wsag:Terms>

 wsag:TermCompositorType

 </wsag:Terms>

</wsag:Agreement>

The following describes the attributes and tags listed in the schema outlined above:

/wsag:Agreement

This is the outermost document tag which encapsulates the entire agreement.

An agreement contains an agreement context and a collection of agreement

terms.

/wsag:Agreement/@AgreementId

Agreement

Terms

Compositor

Service Terms

Guarantee Terms

Context

Name

GFD-R-P.107 March 14, 2007

Grid Resource Allocation Agreement Protocol (GRAAP) WG

graap-wg@ogf.org 29

5 Agreement Template and Creation Constraints

To create an agreement, a client makes an offer to an agreement factory. An

agreement creation offer has the same structure as an agreement. The agreement

factory advertises the types of offers it is willing to accept by means of agreement

templates.

An agreement template is composed of three distinct parts. We summarize the

structure in Figure 3:

Figure 3: Structure of an agreement template.

The structure of an agreement template is the same as that of an agreement, but an

Agreement template MAY also contain a creation constraint section, i.e. a section

with constraints on possible values of terms for creating an agreement. The

constraints make it possible to specify the valid ranges or distinct values that the

terms may take. The constraints refer back to individual terms they apply to using

XPATH.

The contents of an agreement template are of the form:

<wsag:Template TemplateId=”xs:string”>

 <wsag:Name>

 xs:string

 </wsag:Name> ?

Agreement Template

Terms

Compositor

Agreement Creation Constraints

Service Description Terms

Guarantee Terms

Context

Name

Figure 3.2: An SLA and an SLA template, according to WS-Agreement

A template’s purpose is to provide guidelines for the upcoming SLA
negotation, by providing a description of the service, a list of negotiable

22

Chapter 3. Service Level Agreements

properties and the applicable constraints, placeholders for stating busi-
ness values and penalties, and possibly information such as trusted 3rd
parties etc. The SLA templates need to be used by the initiator of a ne-
gotiation, to form an initial Request for Quote (RfQ), an agreement offer,
or other possible messages.

The SLA negotiation follows, where the involved parties are expected
to hold a series of message exchanges until they either converge to a final
agreement, or fail and quit. For the negotiation to take place, a protocol
is needed (e.g. Contract Net [23]) so that involved agents can interact
in a structured and meaningful way. Additionally to that, the negotiation
parties typically have a strategy based on which they decide what is a
good and what is a bad SLA, from a utility point of view. Different agents
with different strategies may have difficulty to converge to a commonly
acceptable SLA; In fact, it has been proven that this negotiation may take
prohibitively long to converge [24]. This is why, in most cases, it is consid-
ered useful to provide hints to each other about preferences with regard
to the candidate achieved objectives. For instance, if the negotiation in-
volves an agreement on the cost of the service, and its availability, the
customer may inform the provider that lower cost is more important than
high availability. Thus, the provider would be in a position to provide
counter-offers that have more chances to be acceptable by the user.

A negotiation may trigger another negotiation; for instance, the nego-
tiation of a customer with the geocoding service, may trigger a negotia-
tion between the latter and an infrastructure service. At this point in time,
an SLA Translation process takes place: it converts the terms of the first
negotiation into terms of the second one. This way, it is possible for the
geocoding service to have reasonable certainty that it will be able to of-
fer itself under the negotiated terms and conditions, and therefore it can
agree and establish the SLAs with its customers. SLA Translation, and the
resulting SLA hierarchies, are discussed extensively in Chapter 5.

The Implementation of the service, and therefore of the respective
SLA, follows negotiation. In this phase the provider must configure the
resources allocated during the negotiation phase, so that they are ready
to be used during service execution. For example, this would involve
installation of software on the allocated hardware, network configuration,
etc. Monitoring setup is also included as part of this phase. The provider
may prepare the monitoring infrastructure, so that it is readily available
during service execution. For example, this would involve installation of
software on the allocated hardware, network configuration, etc.

The SLA Execution entails the execution of the respective service(s),
and their monitoring to confirm compliance to the SLA. Following the col-

23

Chapter 3. Service Level Agreements

lection of performance or other information, the parties involved will eval-
uate the conformance of the service execution to the SLA. If some viola-
tion occurs, or is about to occur, countermeasures may be taken to bring
service performance back on track, or to reduce the violation probability.
Hence, this adjustment process is a mostly dynamic part of the SLA life
cycle. In the case of a possible failure, penalties should be assessed. A
provider may choose to pay penalties than react to a violation, depend-
ing on business policies. Another possibility is the re-negotiation of the
SLA, perhaps in parallel with penalty procedures. In all possible tracks of
action, SLA dependencies and hierarchies should be taken into account.
This contributes to system sanity and efficiency, with the reasons for fail-
ure being discovered faster and with greater certainty.

The SLA Assessment phase is mostly related to the Execution phase,
as it reuses the information collected during that one. More specifically,
monitoring data (which shows how the service performed in relation to
the guarantees provided as part of the SLA) is assessed in order to eval-
uate the sensibility of the offered templates. The outcome of the process
may be, for instance, that the current templates are not properly cali-
brated to take into account the QoS level that a service can actually offer.
As such, the templates must be adjusted to lower (or higher) limits and
constraints. This feedback process is important for the longevity of SLA-
based operations of a provider, otherwise there is a risk that penalties will
be too high to sustain.

The final phase is the SLA Termination, during which the allocated re-
sources are decommissioned, and clean-up takes place. Accounting and
billing may also happen at this stage, especially for short-lived services
where there is no need to have periodical payments.

In Chapter 6, a management architecture will be presented, which is
largely affected by these definitions for the SLA life cycle.

3.3 Related Work

In upcoming Chapters of this thesis, multiple citations and references to
related work are provided to illustrate better the relationship between the
presented work, and prior art. Nevertheless, there is important work that
has been committed in the past in the area of automated SLA manage-
ment, and is not directly within the scope of this thesis. In this Section,
such work is discussed to provide a more complete picture of the area for
the interested reader. Certainly the citation list herein cannot be exhaus-
tive, rather there is an effort to provide some characteristic results and
give a feeling of the developments timeline in this scientific area.

24

Chapter 3. Service Level Agreements

In [25], Jin et al. make an analysis of SLAs for web services, around
the time when such concepts also started being formalized with WSLA.
They look at the topic in relation to then-developing technologies, such
as WSDL and UDDI [26], and consider various aspects already such as
service composition and how it affects SLAs.

In 2002, Sahai et al. presented a paper on automated SLA monitor-
ing for web services [27]. Without a formal representation for SLAs being
available, they try to build on process description languages and intro-
duce quality metrics to be monitored. Then, an architecture and neces-
sary mechanisms for a distributed monitoring system are discussed.

In 2003, one of the first articles on SLAs for Grid Computing appears,
by Leff et al [28]. Within the context of commercial grids, the authors
look at the issue of honoring SLAs and meeting demand via techniques
mostly relevant to workload migration. Considerations for the definition,
monitoring and enforcing of the SLAs are integral to the article.

Shortly after WS-Agreement first drafts appeared, people already ea-
gerly started using it to implement various services that could offer per-
formance guarantees. In 2004, Zhang et al. used it also in the context of
Grid Computing for a data transfer service [29]. Using the WS-Agreement
model, the service would define agreements and offer guarantees for the
time completion of a data transfer. Decision-making for the feasibility of
the SLA was performed using prediction mechanisms; then rate-limiting
on the network interface was used to achieve the enforcement of the SLA.

In [30] (2005), Aiello et al. take a critical look to WS-Agreement, and
reflect on the semantics of SLAs. Following, the authors propose exten-
sions to the specification, mostly with regard to SLA life cycle and accept-
able states, so that agreements becomemore long-lived and robust as re-
gards forthcoming violations. In the same year, Sauve et al. connect SLA
planning to business objectives such as infrastructure costs and financial
loss [31]. The authors develop a complete impact model, to reflect SLA
failures onto business objectives.

Chawathe is also considering SLA planning in [32], from a theoretical
perspective related to the strategy that can/should be followed by nego-
tiating agents. Profit and risk distribution, as well as collaboration feasi-
bility, are discussed. Also in 2006, Oldham et al. extend WS-Agreement
with Semantic Web technologies, to enhance partner selection during au-
tomated service compositions.

In 2007, McKee et al. [33] discuss different strategies for decision-
making while negotiating in the context of grid service marketplaces. The
authors elaborate on the complexity of the problem, and look at possible
consequences such as “self-denial-of-service” in the case of reserving re-

25

Chapter 3. Service Level Agreements

sources as a means of promise during negotiation.
Barbagallo and Comuzzi explored cross-disciplinary aspects of auto-

mated SLA negotiation in 2008 [34]. Specifically, they focus on mecha-
nisms to reduce adverse selection and moral hazard risks. They present
a framework for the integration of microeconomic and engineering is-
sues, in contract definition and management. Proposed techniques in-
clude third-party verification, signaling, screening / monitoring, reputa-
tion management, incentives, etc.

Finally, recent and interesting research results include [35] by Wada
et al. The authors both look into SLA-aware service composition, focusing
on the multi-objective nature of the problem. A genetic algorithm is being
used, alongside an optimization framework called E3. The application of
multi-objective optimization on SLA planning is a promising approach for
SLA planning, and indeed, something that this thesis also considers within
the context of SLA Translation in Chapter 5.

Summary and Conclusions

In this chapter SLAs were discussed in general, initially providing some
considerations which apply to them due to their (possibly) legal nature.
Then, technical and other questions about SLAs were put forward, to in-
dicate some of the existing, real-world problems that apply to their auto-
mated management. Apropos, Section 3.2 elaborated over all the things
that their management entails, according to the SLA life cycle definition
from the TeleManagement Forum. The final Section offered a timeline
of research in the area of automated SLA management, albeit with a re-
duced but characteristic set of scholarly publications.

The following Chapter is the last one of Part I. Having provided a con-
crete background for the thesis’ work, Chapter 4 defines the respective
scope in detail further than within Chapter 1, by means of realistic use
cases. The gaps are identified, and scientific contributions are under-
lined.

26

Chapter 4

Use Cases and Problem
Description

In this chapter two relevant use case scenarios are introduced, which il-
lustrate typical relations between a service stack and its corresponding
SLA hierarchy1. These use cases are found today in real-life situations,
and are inspired to a large degree by the SLA@SOI EU project. They
involve software and infrastructure services, which are expected to be
provisioned with performance or other guarantees. A service hierarchy is
present, implying similar SLA hierarchies. Following the description of the
use cases, the existing problems are identified in greater detail than the
summary of Chapter 1.

4.1 Hosted Enterprise Resource Planning

This use case concerns a Software-as-a-Service scenario, where an Enter-
prise Resource Planning (ERP) system is made available to some external
customer. That is, the customer does not need to install the ERP stack
locally, rather she can use it via some thin client, or a web browser. With-
out loss of generality, this setup is mostly targeting smaller companies,
who usually prefer to avoid the hassle and administrative costs of a local
installation.

As defined in [36] by Bidgoli:

Enterprise Resource Planning (ERP) is an integrated computer-
based system used tomanage internal and external resources,
including tangible assets, financial resources, materials, and

1The concept of SLA hierarchies is formally defined in Chapter 5; here we will follow an
informal, via-example approach.

27

Chapter 4. Use Cases and Problem Description

human resources. Its purpose is to facilitate the flow of infor-
mation between all business functions inside the boundaries
of the organization and manage the connections to outside
stakeholders. Built on a centralized database and normally
utilizing a common computing platform, ERP systems consol-
idate all business operations into a uniform and enterprise-
wide system environment.

Although different ERP implementations will typically entail different
subsystems depending on the customer’s requirements and the business
offering, the following components are considered to be common across
the various implementations [37]:

• Transactional Backbone

– Financials

– Distribution

– Human Resources

– Product life cycle management

• Advanced Applications

– Customer Relationship Management (CRM)

– Supply chain management software

∗ Purchasing

∗ Manufacturing

∗ Distribution

– Warehouse Management System

• Management Portal/Dashboard

– Decision Support System

In the present use case, such involved subsystems are exposed as ser-
vices within the ERP provider; and one may invoke the other to complete
its various tasks. Other, lower-level components that are never directly
used by the customer, are also exposed as services and invoked by these
higher-level subsystems.

Considering that this is a business-critical system, and that complete
companies usually base their operations on it, it needs to be always avail-
able, and perform within acceptable limits. What constitutes “acceptable
limits” depends on the customer and the domain, and is the subject of

28

Chapter 4. Use Cases and Problem Description

SLAs between the customer and the provider. For instance, let assume a
retail store that uses such a hosted ERP system to manage its inventory.
When a customer wishes to buy an article, a store clerk needs to check
the availability of this article. The inventory module will typically first look
at the warehouse availability; and if the product is not immediately avail-
able, it would consult with the purchasing and distribution components,
to see if there is an ongoing order, and if so, what is its current state.

In this scenario, the retail store (as a customer of the ERP service) will
expect that the performance of these queries is sufficiently good, so that
the customer can be informed promptly on the article’s availability. Such
performance guarantees are the subject of the SLA among the customer
and the ERP service provider. For this running example, one guarantee
may be:

For all inventory queries within 24 hours, 99% should complete
within 5 seconds; and the remaining 1% should complete in no
more than 10 seconds.

Another one, may be:

Under the precondition that any query which does not return
a result within 10 seconds is considered as a failed request to
the system; and with “availability” being defined as the ratio
of completed requests to failed requests; then availability of
the system over 24 hours of measurements should be no less
than 99.9%.

Such requirements are very common in real life, and SLAs need to re-
flect them. In the case of automatically negotiated SLAs among software
agents, the software needs to be able to deduce what any of such guar-
antees between the customer and the provider means for corresponding
SLAswithin the provider, and among its services. Relevant questions may
involve, for this example:

1. What are the acceptable time limits for queries to the warehouse
availability component, the purchase component, and the distri-
bution component, so that the total time for the three sequential
queries does not exceed 5 seconds (or 10 seconds for up to 1% of
all calls)?

2. What is the technical setup for redundancy and failover, so that
availability remains higher than 99.9% within a span of 24 hours?

In addition, it is assumed that the infrastructure may be available in-
ternally, or rented from an external (infrastructure) provider. Either way,

29

Chapter 4. Use Cases and Problem Description

the SLAs for the software services will have to be reflected on SLAs for
the infrastructure service(s).

4.2 Enterprise IT

This use case refers to a provider of infrastructure resources. It is a de-
partment of a larger organization, offering its services within that orga-
nization, and may use its own resources exclusively or may choose to
outsource some of the workload in the case of utilization spikes. The cus-
tomers are the departments executing management functions (e.g. the
company’s Chief Technical Officer).

!"#$%&
'()(#%'%)*
+,-./*0'%&,1

IT

Infrastructure

Gateway

S
L
A

Data

center

Data

center

Data

center

SL
A

S
L
A SLA

External

IT Provider
SLA

Objectives:
Relative job importance,

Job priority,
Time-to-complete, ...

Objectives:
Resource types,

Resource quantities, ...

Figure 4.1: Enterprise IT

Figure 4.1 provides a high-level overview of the basic concept. Here,
higher management dictates the objectives according to which resource
allocation and job prioritization takes place. Such objectives may include
things like the expected completion time of a job, the performance re-
quirements of a service, the importance of a task in relation to other sim-
ilar tasks, etc. As soon as a new SLA is requested to be established, the
system must infer resource requirements from such higher-level objec-
tives. Following that, SLAs with data centers (resource pools), and even
with external providers if possible / necessary, are requested to be es-
tablished. These second-level SLAs are produced based on the first-level
SLA, as it has been requested by the management department.

In order to stay up-to-date with business environments that may be
changing rapidly, objectives and priorities for tasks served by the IT in-
frastructure may also change often. Examples of such situations include

30

Chapter 4. Use Cases and Problem Description

the sudden, unexpected customer request for a software service, the ad-
justment of a company’s operations to some natural disaster, a rapidly
changing financial environment that reflects on the importance of finan-
cial models and simulations, etc. It is therefore desirable that the sys-
tem can handle SLA adjustment requirements. Let assume, for example,
the case of two large-scale simulations executed in parallel by two differ-
ent research groups within the same company. They are both governed
by SLAs, which map time-to-complete on resource quantities assigned to
each workload. Should one simulation be suddenly considered more im-
portant than the other as regards its completion time, it may apply that
resources have to be re-assigned accordingly. In such cases, it is desirable
that the infrastructure adjusts automatically and takes into account all re-
lated consequences for the complete set of SLAs. One possible course of
action would be that the IT Infrastructure Gateway from Figure 4.1 rene-
gotiates its SLAs with the data centers: It could free up some resources
from the less important job, and re-assign them to the more important
one. Another option is to request that higher-capacity and performance
resources are now used for the more important job, therefore triggering
a migration process within the data centers.

High-level
business

objectives

Planning
model

Acceptable
costs

Assigned
penalties

Optimization
model

Resource
requirements

per data center

Figure 4.2: Enterprise IT planning and optimization

Independent of the selected course of action, there is apparently re-
quired the intelligence to translate objectives from one SLA to the oth-
ers, and choose one of the various possibilities in accordance to expected
utility. Models (typically, domain-specific ones) are therefore required to
perform this translation via planning and optimization processes, as illus-
trated in Figure 4.2.

In this broader SLA planning / optimization and adjustment context,

31

Chapter 4. Use Cases and Problem Description

things like Total Cost of Ownership (TCO), data center efficiency, high
availability, etc, become very important decision factors. Additionally,
resource allocation algorithms need to take into account resources avail-
able externally, and deduce whether it would be beneficial to outsource
some of the workload. Pricing then comes into the picture and has to
be weighed against higher management requirements. Based on such
factors, the SLA management framework can deduce whether subcon-
tracting is feasible, and what may be a good or optimal contract.

4.3 Problem Description

The gaps and open issues related to these two use cases (but also to
the example scenario from Section 2.2) are quite a few, spanning plenty
ICT disciplines (e.g. combinatorial optimization, performance engineer-
ing, forecasting, security, capacity engineering, virtualization, etc). In
this Section, the ones most relevant to this thesis will be identified.

First and foremost, there needs to be a formal definition of a hier-
archy of SLAs (Gap 1). Although the concept can be intuitively under-
stood within the Service Computing area, a formal way to describe what it
means is still lacking. More specifically, it is necessary to understand how
can SLAs be related, what is the nature of dependencies among different
SLAs, and how those dependencies affect other SLAs established by the
same entity. As an example from the Enterprise IT use case, when the
priority of one SLA is increased, and no outsourcing is possible, the pri-
ority of other SLAs must be decreased. Even if it is possible to outsource
some of the workload, someone must decide which exact workload will be
outsourced, and how does that affect costs and performance. Having de-
fined the concept of SLA hierarchies, it is necessary to understand what it
means to deduce one from another; that is, how and when is a hierarchy
of SLAs built.

Following this step, it is needed to have an SLA management archi-
tecture that takes into account such requirements for the establishment
of SLA hierarchies (Gap 2). This architecture should be extensible, to
be applied to any possible use case, independent of languages, proto-
cols, and legacy systems already in place. In addition, it would ideally be
autonomous, so that it is easier to reach (at least) some local optimum
when evaluating the feasibility of a contract, or trying to infer a subcon-
tract; both tasks can be extremely expensive from a computational point
of view. An architecture of this kind is a necessary milestone in order
to achieve hierarchical SLA management, as discussed in the example
scenario and the use cases.

32

Chapter 4. Use Cases and Problem Description

The tasks of evaluating SLA feasibility and deducing subcontracts are
tightly coupled with the concept of utility; that is, some measure of bene-
fit that comes from the respective decisions. More often than not, utility is
associated with financial results and somemeasure of net income. Pricing
may take many different forms, and there is already significant prior art in
this area. Nevertheless, a complete model for the definition of penalties
depending on the agreed price, is still missing (Gap 3). Various efforts
have taken place in recent years –these are discussed in the respective
chapter–, but the author believes there is room for improvement. This is,
therefore, an additional identified gap, and a proposed solution is part of
this thesis. The solution seeks to be fair (thus associated to price, and
some objective measure of failure) and unambiguous.

Penalties aside, computing the feasibility of an SLA under its specific
terms, or inferring good/optimal subcontracts starting from a top-level
contract, may be extremely demanding from a computational point of
view. In certain cases (depending on the algorithm at hand and the num-
ber of candidates) it may even be impossible to deduce. To the combi-
natorial nature of resource planning for multiple SLAs, adds the fact that
SLAs themselves may be arbitrarily complex. Multiple logical operators
such as AND, OR, XOR may be found – for instance, this type of constructs
are integral to WS-Agreement. Even within the two simple terms from the
ERP use case, multiple terms can be found that are combined with such
logical operators. Further to that, “if” clauses are found in the form of
pre-conditions for an SLA term to apply, introducing further complexity to
the handling of SLAs. Putting everything together, the task of processing
incoming (or producing outgoing) SLA offers becomes very hard. Generic
recipes to handle this kind of complexity are much needed, and consti-
tute an important gap in the area of SLA negotiation and management in
general (Gap 4). This thesis introduces and proposes a methodology us-
ing a graph-based structure, known as Binary Decision Diagrams (BDDs).
Using this methodology, it is possible to simplify SLAs significantly under
the assumption that they can be represented as boolean functions. This
simplification leads to a canonical form, therefore their handling becomes
much easier.

The four gaps and respective innovations discussed so far, are generic
and applicable to SLA management independent of the domain at hand.
Due to the recent explosive growth of IaaS platforms and applications,
as well as the recognition by many experts of the need to enhance IaaS
with full SLA management, the author decided to focus further on this
area, applying the know-how achieved from the generic work outlined
within Part II. Within this context, a necessary milestone was to have

33

Chapter 4. Use Cases and Problem Description

an abstract and flexible syntax to describe resources and operations for
reserving them. Advance resource reservation is a very useful facility
during SLA negotiations. Although there is significant amount of prior art
in the area of resource description, a sufficient combination of the two
features could not be found; thus, a model was developed to describe ar-
bitrary infrastructure resources and primitives for their reservation. The
result was loosely based on existing standards such as CIM and GLUE (fur-
ther discussed in Chapter 9), to enable practical use while also applying
the respective experience.

This model is a tool to use for some practical problems. The interest
of the author was to research the practical use of SLAs in two different
scenarios: First, examine the scheduling of IaaS SLAs in the normal case
where customers arrive randomly and request some resources for a spe-
cific amount of time. Taking into account these incoming requests, the
main question to answer was: How to model the scheduling problem,
so that the energy footprint of a provider’s data centers is minimized?
The online nature of the scenario (i.e. for each incoming resource/SLA
request, the next ones are unknown) means that some simpler, greedy
approach is both convenient and suitable. Indeed, the problem was mod-
eled after the online bin-packing problem, where each bin is represented
by one server, potentially shared by many customers.

The second scenario is modeling an extreme situation, where the re-
sources are not enough to satisfy a number of already-established SLAs.
One such example is the case where a considerable percentage of avail-
able resources becomes unavailable, e.g. due to power outage. The
question that arises, is how to best manage this case and adjust the use
of available resources, so that the least penalties are paid to customers.
Various possibilities are examined as regards which parts of the SLAs are
honored, and which ones are purposefully withdrawn. A combinatorial
model is developed, as a knapsack problem variant. To the best of the
author’s knowledge, this is the first time that this variant appears in lit-
erature. The model is evaluated in three different variations, as well as
against two greedy algorithms.

Summary and Conclusions

In this Section there were provided two typical, real-world use cases for
SLA management based on industrial use cases of the SLA@SOI project.
The relevance to SLA hierarchies was discussed and respective gaps were
identified. These gaps were analyzed to result in a more complete prob-
lem description, so as to provide the full scope of the thesis.

34

Chapter 4. Use Cases and Problem Description

The upcoming Part II includes scientific contributions that apply to SLA
management independent of the application domain. Initially, SLA hier-
archies will be discussed; then a management architecture; a penalty
model; and finally, a flexible, generic model for in-memory SLA represen-
tation.

35

36

Part II

Hierarchical SLA
Management

37

38

Chapter 5

SLA Hierarchies

Starting from service chains and business processes, one can deduce de-
pendencies of one service on some other(s). These dependencies stand
behind the concept of SLA hierarchies, which is central to this thesis.

The present chapter discusses the respective topic, exploring it in de-
tail. A generic definition of the “SLA translation” problem will be provided,
alongside related formalisms that connect it to SLA negotiation.

5.1 SLA Dependencies

Let assume a service hierarchy, where a service “A” relies on two other
services “B” and “C”. This practically means that, if a customer requests
to consume A under some specific guarantees, the service provider can
only agree if it has reasonable certainty that services B and C will per-
form accordingly. Otherwise, best-effort service delivery by the latter can
easily affect the delivery of the former. That is, the guarantees offered
(and agreed upon) between the provider and the consumer of service A,
depend for their compliance or violation on the guarantees agreed upon
between A and B, and those between A and C. Hence, it is necessary
to have SLA Hierarchies that reflect the service hierarchies to which they
apply.

For instance, let assume that service A is the address-based route
planning service from Section 2.2 (AB), and services B and C are the re-
spective geo-coding (GC) and route-planning (RP) services. It has already
been shown that the completion time of an invocation of the former de-
pends on the completion times of invocations of the latter two. There-
fore, these non-functional properties are related. Should an SLA be es-
tablished to guarantee the properties of the dependent service, then an
SLA should also be established to guarantee the related properties of the

39

Chapter 5. SLA Hierarchies

antecedents. Figure 5.1 illustrates the concept; and Section 5.1.1 elabo-
rates further on it.

AB

Customer

GC RP

SLA 1

SLA 2 SLA 3

SLA 1

SLA 2 SLA 3

Figure 5.1: SLA dependencies, reflecting service dependencies

The existence of these hierarchies signifies the need to have some
method to deduce one from the others, based on their inter-dependencies.
In the text that follows, this process will be referred to as SLA Translation.
One could say that SLA Translation is the process that designs a hierar-
chy of SLAs, during negotiation between the various parties involved; and
the establishment of the SLAs is what builds and finalizes the hierarchy.
Just like with service hierarchies, full distribution of SLA hierarchies is as-
sumed. Each party knows only about the parties (services) depending on
it, and the parties (services) on which it depends. Similarly, each party
only knows SLAs for which it acts as a provider, SLAs for which it acts as a
customer, and the links/dependencies between the two categories. There
is no assumption about a centralized data store that holds all SLAs and all
dependencies, thereby leading to the possibility to deduce the complete
hierarchy/-ies within a service ecosystem.

5.1.1 Service Properties Dependencies

An SLA was described earlier as a set of guarantees over the consump-
tion of a service. Dependency of a service upon others, naturally means
that its properties are depending on properties of these other services.
Assuming the availability example for a dependent service, it will be af-
fected by the availability of its antecedents: Service AB cannot execute
when either GC or RP cannot execute – hence, the availability of the two
latter affect that of the former. The same applies for other service prop-

40

Chapter 5. SLA Hierarchies

p1 p2 p3

q1 q2 q3 r1 r2q4

Sp

Sq Sr

f f g
gh

h

Figure 5.2: Example service Properties Dependency Graph

erties such as invocation completion time, maximum throughput, Mean-
time-to-Failure (MTTF), Mean-time-to-Repair (MTTR), etc.

There may also be cases where a dependent service’s property may
be related to a completely different property of its antecedents. For in-
stance, the cost of a service is typically affected by the quality of the
services that it uses for completing its tasks. Additionally, it is certainly
possible to have an SLA which does not refer to all properties of a service,
and therefore only a limited number of dependencies must be taken into
account: only those which affect the properties mentioned in the SLA.

It is becoming clear that there cannot be a universal classification of
service properties, and their dependencies. Certainly, facts that set the
context of an SLA cannot apply to all SLAs either, but rather, distinct facts
for distinct SLAs should be assumed. It is only possible to define the prob-
lem generically based on the abstraction of conditions that need to hold
true, when aggregated according to the SLA structure. Use-case-specific
knowledge needs to be applied by domain experts to instantiate these
conditions, and associate them in the context of different, dependent ser-
vices.

Starting from the service dependency graph (see Section 2.1), it be-
comes possible to make a next step towards a service Properties Depen-
dency Graph (PDG). If service Si has properties PSi = (pSi

1 ,pSi
2 , ...,pSi

m);

service Sj has properties PSj = (p
Sj

1 ,p
Sj

2 , ...,p
Sj
n); and Si depends on Sj;

then a dependency of Si’s r-th property can be formulated as a function
fr of properties of Sj:

pSi
r = fSi

r (p
Sj

1 ,p
Sj

2 , ...,p
Sj
q) (5.1)

where 1 ! r ! m, and 1 ! q ! n.
This definition can be extended for a service S that depends on more

than one services. Let assume that S has properties pS
1 , p

S
2 , ..., p

S
N. Let

us also call the antecedents S1, S2, ..., Sm, with property sets PSi =

41

Chapter 5. SLA Hierarchies

(pSi
1 ,pSi

2 , ...,pSi
Ni

), 1 ! i ! m. Then, each property pS
r of service S can

be generically expressed as follows:

pS
r = fr(p

S1
1 , ...,pS1

N1
,pS2

1 , ...,pS2
N2

, ...,pSm
1 , ...,pSm

Nm
) (5.2)

Figure 5.2 illustrates such an example. Here, service Sp depends on
services Sq and Sr. Domain experts can then create rules about the de-
pendencies of Sp’s properties p1-p3 on those of Sq (q1-q4) and Sr (r1-
r2), based on modeling techniques, simulation, or real-world observation.
These rules are represented by functions f1, f2 and f3 (named f,g and
h for convenience) that implement a mapping of each property on the
properties on which it depends.

5.1.2 SLA Translation

Operating under the abstractions from Section 5.1.1, the concept of SLA
Translation can be discussed. In essence, SLA translation is the process of
analyzing an SLA in relation to the PDG (i.e. finding the service properties
common to the SLA and the PDG), applying heuristics and pre-existing
knowledge, and coming up with one or more subsequent SLAs for an-
tecedents. These subsequent SLAs provide reasonable (but not necessar-
ily complete) certainty that the top-level SLA will not be violated, unless
some of them are violated too.

The aforementioned analysis starts with Equation 5.2. One can first
define a complete set of such equations, one for each property that the
customer of the dependent service requires in the negotiated SLA. Proper-
ties that the customer does not require guarantees for, can be excluded.
Then, this systemmust be solved, taking into account existing constraints
as provided by the SLA templates. These limits as regards what can be
negotiated help customers to reduce the search space for their offers.
The search space may otherwise be so large that the problem becomes
practically infeasible from a computational point of view.

Optimization of subsequent SLAs is one more requirement for the
translation process. Actually, optimization is part of translation, as it af-
fects the final output. The system mentioned above will typically accept
plenty of different solutions, and it is up to optimization to select the best
of all those candidates. As many properties are simultaneously dealt with,
this becomes a multi-criteria optimization problem [38].

Using the example from Figure 5.2, the following relations apply:

p1 = f(q1,q3)

p2 = g(q3, r1)

p3 = h(q4, r2)

42

Chapter 5. SLA Hierarchies

If an incoming SLA request/offer for service Sp refers to all three prop-
erties, an SLA negotiation mechanism which includes translation func-
tions should first find out the dependencies of these three properties
based on the PDG. It is assumed, as also mentioned earlier, that these
dependencies are known as domain-specific expertise encoded into the
system. For instance, if the property is “availability”, it will typically de-
pend on the availability of all antecedents; this is fairly straightforward to
assume. However, if cost is examined, it is not necessary that the cost of
invoking service Sp is related specifically to cost properties of services Sq
and Sr. On the contrary, it may be the case that there are no cost prop-
erties for these two services, but rather that their providers only apply
flat-rate pricing. In this case, the cost of Sp may rely on properties such
as Quality of Service characteristics of Sq and Sr.

The next action is to find acceptable value spaces (“domains”) for all
of (q1,q3,q4, r1, r2), leading to a feasible solution. “Acceptable” are val-
ues which remain within constraints set inside the templates of the two
lower-level services, and on the same time satisfy the requested values
in the offer for the higher-level SLA.

The last step during the translation process, would be to come up with
a sufficiently good solution to the problem of selecting SLA parameters
for antecedents, according to an optimization algorithm. The latter typ-
ically takes into account all applicable business objectives. An obvious
such objective is to maximize profit, nevertheless others are often taken
into account as well; for instance, reputation. Associating reputation with
(future) profit may be impossible without large historical data sets and
very complete, complex models. The same may apply for other possible
business objectives. Thus, there may be no one single objective for the
optimization, and no single optimal solution. Rather, a multi-criteria ap-
proach should be adopted. Without loss of generality, it is here assumed
that there may be N applicable criteria, N " 1. In this case, one of the
solutions on the Pareto front should be chosen. The Pareto front is a set of
all those solutions that are considered to be optimal in multi-criteria op-
timization. More formally, they are solutions where none of the included
criteria can be improved (accept a better value), without some other cri-
teria in the same solution receiving a worse value.

Figure 5.3 shows how this translation process can be implemented ac-
cording to the previous discussion. Counter-offers are assumed to be pos-
sible, as part of the negotiation protocol being used. An entity negotiating
over a set of variables may find that small modifications to the negotiat-
ing party’s requirements may increase significantly the resulting utility. In
this case, it may just as well modify the proposed term slightly, and return

43

Chapter 5. SLA Hierarchies

SLA Translation

Incoming SLA

offer

Extract properties

and target values

Search PDG for

properties in SLA

Find antecedent

properties

Limit search

space according

to antecedents'

templates

Search and

select optimal

value

Negotiate with

antecedents

Success?

Accept

incoming SLA

offer

No

Yes

Timeout?

No

Yes

Reject

incoming SLA

offer

Counter-offer

preferrable?
Construct

counter-offer

Yes

No

Reply with

counter-offer

Figure 5.3: Generic flowchart for translation/negotiation of SLAs

44

Chapter 5. SLA Hierarchies

a counter-offer which does not match the other entity’s requirements,
but may provide much better results if accepted. Such negotiation-time
risk-taking attitudes can be modeled with game theory methods, and in-
deed there has been important research towards this direction in the past
(e.g. [39, 40]) – this topic is, however, outside the scope of the work pre-
sented here.

The reason to interleave translation and negotiation in this flowchart,
is exactly that they take place in parallel and depend on each other. Ne-
gotiation feeds translation with confirmations whether the translation’s
results are acceptable; and translation provides negotiation with input
according to existing domain-specific knowledge, and any further intelli-
gence implemented within the system. It should be clarified, at this point,
that the negotiation process and all kinds of decision making remain sep-
arate here; that is to say, negotiation concerns only the exchange of
messages in such a way that implements correctly a specific protocol,
while all planning functionality lives elsewhere and is, in this case, part
of the translation process. This is a distinction applied also in the man-
agement architecture, as described in Chapter 6. Regarding planning it-
self, it is anticipated that coping with multiple service level attributes and
n-dimensional Pareto fronts might become difficult. In order to be able
to implement an efficient and automated SLA translation and negotia-
tion framework, use-case dependent heuristic functions will be required
to narrow the search space down to a feasible size. Scalarization of the
multiple objectives into a single one, may also be needed to achieve au-
tomation.

One last thing to mention here, is that the prior discussion tackles
the problem of producing lower-level SLAs starting from a higher-level
one, in a top-down approach. A different scenario is that of a bottom-up
approach, where the lower-level SLAs are already established and used
to decide whether an incoming higher-level offer can be satisfied. The
essentials of the previous discussion on producing and using PDGs for
SLA translation can be applied just as well on such a bottom-up process,
as they are modeling service relationships without being tied to a specific
usage scenario.

5.2 Related Work

Although not directly related to SLAs, there is prior art that concerns rela-
tionships between different services and/or resources. In [41], Keller et al.
describe a Functional and a Structural dependency model, on which they
base their work. They provide a specific classification of dependencies,

45

Chapter 5. SLA Hierarchies

into a number of dimensions such as locality, time, type, dependency
strength and criticality, etc. Then, building on the two models, they dis-
cuss a method for dependency analysis. In [42] the same authors append
the two models with an Operational one, and further refine a proposed
architecture for managing dependencies. The main differences with the
present work is that they constrain theirs in the ICT domain where they
also provide an architecture to tackle the dependency discovery problem.
Additionally, they do not consider SLA management.

In [43], Hasselmeyer discusses the problem in a generic manner, much
like this Chapter. However, the work is tied to software services; more
specifically, it proposes a scheme where services declare their dependen-
cies on other services based on access patterns (how often are services
accessed, in what sequence, etc) with dynamic service selection in mind.
Additionally, it looks specifically at functional dependencies. Contrary to
that, dependency management in the context of SLAs requires a generic
view that handles non-functional dependencies as well.

Bahl et al., in [44], are looking at the same problem as regards net-
work services. The authors describe a model called Inference Graph that
represents the dependencies. Based on that, they present an algorithm
for inferring probabilistically the malfunctioning components of the net-
work, given real-world observations. The main difference with this work
is that the Inference Graph describes dependencies based on service
states, and probabilities that the state of one depends on the state of an-
other; additionally, the referenced work is explicitly addressing network
services.

In [45], Di Nitto et al. introduce an agent-based automated SLA nego-
tiation architecture and discuss efficient search-based algorithms to de-
termine an acceptable Service Level Agreement in a multi-agent environ-
ment. The main difference to the present work is the complex and layered
multi-tier services landscape that requires additional analysis steps and
related data-structures for SLA negotiation. In addition, SLA translation
is considered here as an essential part of the SLA negotiation process.
Although some of the search-based algorithms analyzed in [45] would be
able to cope with multiple objectives that negotiation agents may have,
it is not the primary concern of the authors’ work.

Summary and Conclusions

This chapter’s main contribution is a formalization of SLA Hierarchies,
and the SLA Translation problem. That is, how to deduce an SLA for an-
tecedents when the SLA for dependents is known, and the way that the

46

Chapter 5. SLA Hierarchies

latter depend on the former. This computationally difficult exercise can
be carried out as an optimization problem, when the properties are differ-
ent. When the properties are the same (for instance, the number of CPU
cores in an IaaS outsourcing request), it is straightforward to go from the
first SLA to the second.

The upcoming chapter will present a novel architecture that covers
SLA management during its complete life cycle. Alongside components
for tasks such as negotiation, provisioning, monitoring, and others, it con-
tains a central component for decision-making (termed “Planning / Opti-
mization / Adjustment”) that is expected to perform the task of SLA trans-
lation when required by the specific use case.

47

48

Chapter 6

Management Architecture

Managing automated SLAs implies the need for one or more software
artifacts that can handle the various stages in the life cycle of an SLA.
This Chapter presents a novel architecture for the complete SLA life cy-
cle management, catering for SLA hierarchies. It has been designed
with extensibility, domain-independence, and technology-independence
in mind. The respective negotiation and runtime scenarios are discussed,
followed by technical details about a reference implementation.

6.1 Design

In the past there has been significant effort committed towards imple-
menting different architectures and methodologies for negotiating SLAs,
and managing them during their life cycle. Prior art has been concerned
with both automated SLA establishment (typically using agent technol-
ogy), and manual establishment steered by humans. However, existing
research results are tied to specific assumptions/use cases, and often
specific technologies. In this chapter, a generic architecture is proposed,
which can be used across different domains and use cases for manag-
ing SLAs. This architecture covers all phases of the SLA management
life cycle, from negotiation and establishment to termination, also with
attention to the existence of SLA inter-dependencies and hierarchies.

The major requirement from this design is that it can be adapted to
different use cases, ideally any scenario whatsoever that demands the
establishment and management of SLAs. “Management” refers to provi-
sioning, monitoring, adjusting and terminating SLAs. Therefore, the de-
sign has to be adaptable, bear no ties to specific technologies, neither any
ties to specific application contexts. In parallel, there must be separation
of concerns between service-plane and SLA-plane activities, so that it can

49

Chapter 6. Management Architecture

be realistically applied onto existing service infrastructures. Additionally,
the design needs to advance the state-of-the-art, by considering hierar-
chies of inter-dependent SLAs as a result of similar (hierarchical) service
compositions.

The SLA Management Instance (SAMI) is designed to operate on a
level parallel with that of the services, so that is not disruptive to ex-
isting service infrastructures. Figure 6.1 shows in an abstract manner
the relationship between SAMI and service instances, in the context of
the example from Section 2.2. It is reminded that this example involves
an end-customer, a geo-location service offered by a SaaS provider, and
the infrastructure offered by an IaaS provider. Management of service in-
stances by the respective SAMIs refers to provisioning and adjustment of
those instances. The end-customer invokes the geo-location service ac-
cording to s-SLA, which has been established earlier following negotiation
between the end-customer and the geo-location SAMI. The (geo-location)
software service executes on the infrastructure provisioned according to
i-SLA, established earlier between the geo-location service provider and
the infrastructure provider. It should be emphasized, at this point, that
this is a simple scenario to be used for illustrative purposes. In a full-
fledged use case there may be many more inter-dependent services and
SAMIs, in multiple layers.

End-
Customer

SAMI

Geo-
location
SAMI

IaaS
SAMI

s
-S

L
A

i-S
L
A

Infrastructure

Geo-
location
service

Service
consumer

S
e
rv

ic
e
 in

v
o
c
a
tio

n
s

Provision/
Adapt

Monitoring
information

(Re-)Negotiate

(Re-)Negotiate

Provision/
Adapt

Monitoring
information

Figure 6.1: SAMI and service instances

50

Chapter 6. Management Architecture

It is assumed that the SAMI is autonomous and does not interact with
the services in any way other than a) provisioning/adjusting them, and
b) receiving monitoring information. Cardinality of services and the SAMI
is not predefined either. The architecture is flexible to accommodate dif-
ferent numbers of services. As such, feasible scenarios include a single
SAMI for the whole provider’s domain, or one SAMI for some services, or
even one per service. Figure 6.2 illustrates the SAMI architecture.

Planning /
Optimisation /
Adjustment

Negotiation

Negotiation

Offers

Offers

Accept / Reject,

Counter-offers

Accept / Reject,

Counter-offers,

Templates

Forecasting

Recom-

mendations
Provisioning

Monitoring

Execution

Plan

Historical information,

State information,

Events

Dependencies
Management

Service
Instance

Provision

/ Adapt

SAMI

Advertisements

Legacy
Monitoring

Infrastructure

Monitoring

Data

Monitoring

Data

Template requests,

Negotiation templates,

Agreement offers

Template requests,

Negotiation templates,

Agreement offers

Figure 6.2: The SLA Management Instance (SAMI)

6.1.1 Template Advertisements

Interactions between different SAMI instances may be either based on
broadcasting, through the Advertisements interface, or point to point,
through the Negotiation interface. This depends on the type of mes-
sage exchanged, and the negotiation mechanism. It should be noted that
agreement offers may come either by a service customer, or by a service
provider.

A Publish/Subscribe System (PSS) is being used for broadcasting ad-
vertisements to groups of interested parties. The advertisements are SLA
templates, published either from customers for purposes of procurement,
or from providers informing prospective customers about their service of-
ferings. In the case of procurements, a customer broadcasts a template
describing the expected service: what it involves from a functional point

51

Chapter 6. Management Architecture

of view, what non-functional properties are supported, what can be cus-
tomized and within what limits, etc. Following, providers interested in
signing a contract with such terms can customize the template and return
it (either as a template again, or as a final offer) in a point-to-point fash-
ion through the customer’s Negotiation interface. In the case of providers
that advertise their services, templates are broadcasted as soon as they
become available. Then, interested prospective customers can use them
to create a modified template for further negotiation, or an agreement
offer and submit it through the provider’s Negotiation interface. In both
cases, the published template should include an endpoint to the publish-
ing SAMI’s negotiation interface, so that interested parties can contact it
to submit offers.

6.1.2 Negotiation Interface

The Negotiation interface is the endpoint formally used for point-to-point
negotiations. It provides a list of available templates for existing service
offerings in the specific SAMI’s domain of responsibility. This template list
may be complete, or customized based on a properly formatted query.
Having received and customized a certain template, it is then possible to
submit a modified template for further negotiation, or directly an agree-
ment offer. It must be noted, that the second (lower) negotiation interface
in Figure 6.2 is there only for purposes of intuitive illustration. In reality,
it is sufficient to have a single negotiation interface and implementation.
However, this second instance is included in the figure to explicitly in-
dicate the chaining of SAMIs, in the exact same way that services are
composed into other services.

6.1.3 Planning and Optimization

It is assumed that the negotiation interface will be able to support dif-
ferent protocols and languages (e.g., WS-Agreement, WSLA), however a
single internal model will have to be used for the management of SLAs;
a proposal for such a model is discussed later, in Chapter 8. When a
template or an offer is received, it is interpreted into this internal model
and forwarded to the entity that implements Planning, Optimization and
Adjustment (POA). This entity represents the central decision system for
each specific SAMI, which has the domain-specific knowledge on how to
implement SLAs in an optimal or near-optimal manner, and how to en-
force them. The decisions of the POA module are related to the existing
available resources, and also to the external services that may be needed
in order to implement an SLA. Hence, if subcontracts are needed to sat-

52

Chapter 6. Management Architecture

isfy the requested functionality and quality objectives, respective offers
are created on the fly and forwarded to subcontractors’ SAMI instances
in consecutive negotiation cycles. A SAMI knows other existing SAMIs
through the templates that the latter have published with their advertise-
ments. These templates can therefore also be stored by receiving SAMIs,
and used to be aware of existing service offerings. It is this point where
the translation process discussed in Section 5.1.2 may be required, to
convert from the incoming offer to the outgoing offers towards third par-
ties (external to the specific SAMI).

An example of this planning process based on resource availability,
and without outsourcing, is the approach discussed in Chapter 10. Chap-
ter 11 provides an example of a planning process that does indeed out-
source to other SAMIs, as it has no resources of its own.

6.1.4 Monitoring Infrastructure and Forecasting

Before combining different candidate values for service parameters in-
cluded in subcontract offers, one has to calculate those candidates first.
For this purpose, the POA module depends on two other modules: Moni-
toring, and Forecasting. Monitoring will typically be available, as in most
cases it is not sensible to establish an SLA without the capability to mon-
itor it1. Thus, it is expected that historical monitoring information will, in
general, be available. Using monitoring data sets, POA is able to decide
which external services should be used based on their previous perfor-
mance and therefore their reputation. Forecasting may be available or
not, depending on the use case at hand. In this case, there may be an
existing forecasting mechanism used for specific services, to estimate
future resource availability, or future performance given predefined con-
ditions. Such mechanisms the SAMI should be able to reuse if they exist,
also to make the transition to this new management structure easier.

6.1.5 Provisioning

Following the planning and optimization process, an SLA must be provi-
sioned. This includes preparatory phases that may exist, plus the actual
service instance deployment. In this case, the POA module will have to
feed an execution plan towards the Provisioning component. The latter
will also have to take into account information about dependencies of

1In a high-risk setup or if dictated by other business policies, it may be the case that
a provider establishes an agreement without monitoring it – but rather, based on some
rough statistics about the overall system and its performance.

53

Chapter 6. Management Architecture

services, for purposes of configuration and resource allocation. The Pro-
visioning subsystem will orchestrate all those actions that are not directly
related to Planning and Optimization, but must take place in order to im-
plement a service. That includes, for example, configuration of services
according to specific languages and notations, or accounting actions that
must come before and after service deployment. Eventually, the Pro-
visioning component will take all necessary actions to enable a service
according to the SLA and the consequent execution plan produced by the
POA subsystem.

6.1.6 Monitoring and SLA Adjustment

When the service is deployed and enabled, and after consumption starts,
monitoring information will have to be collected. As said, there may be
an existing (legacy) infrastructure for service monitoring. That will have
to be reused, so that service operations are not disrupted and the SAMI
platform can be easily applied over existing services. If such a monitor-
ing infrastructure does not already exist, it will have to be created, and
eventually monitoring events will need to be sent to the SAMI’s Monitor-
ing component (or the SAMI should be configured to retrieve such data
if needed). First-level processing of raw events takes place there, so as
not to flood the POA module with useless information. When a violation of
existing SLAs occurs, or is about to occur according to Monitoring’s pro-
jections, the respective event is sent to POA alongside information that
can explain in more detail what went wrong. The POA subsystem may
also need to receive current state information about various aspects of
the service; that information will also be received from the Monitoring
component. Based on current state of affairs and Monitoring’s assump-
tions, the Adjustment part of POA will make a decision on the course of
action to take. That may include an adaptation of services through re-
configuration, scaling, etc, or renegotiation. The latter may be directed
either towards customers, or towards third parties, depending on whether
the (near-)violation is also due to failure of subcontracts.

Business concepts built into POA are used also for negotiation, and
their effect is equally profound during renegotiation. Penalties will have
to be taken into account during the latter, as well as accounting for the
service execution time and consumption up to the moment that rene-
gotiation starts. Signaling of renegotiation takes place by submitting a
template, like in negotiation, however it must include a reference to the
SLA that is already effective. Whether renegotiation itself is acceptable
at all, is something that may be a term in the initial agreement. Even if
it is acceptable, the affected party may wish to discard any renegotiation

54

Chapter 6. Management Architecture

requests, in which case the violating party will have to pay penalties as
defined in the initial agreement.

6.2 Operations

It has already been mentioned that a major design goal for the SAMI was
to ensure that operations of existing services would not be affected. This
practically means that, ideally, the services will not know anything about
the SAMI that manages them, and will not initiate any interaction with it.
That said, it is assumed that the processes for interacting with customers,
making business decisions and deploying services will have to change as
a result of applying the SAMI architecture and its principles within existing
service providers.

Looking again at the example from Figure 6.1, in a typical scenario the
end-customer would first discover templates describing the geo-location
service, indicating which parameters can be negotiated, and providing
default values for those. The customer can then form one or more agree-
ment offers based on the templates, or modify some parameters to its
likings, and send them back for negotiation. Price could be one such
parameter, or left empty as a way to ask for a quote. Figure 6.3 illus-
trates such an example with a price request, given a throughput of 100
hits/minute and availability higher than 98%. Similarly, the provider could
then make small modifications to this document and return it, or could
form an agreement offer based on it and send it to the customer. On each
round of this negotiation, the SAMIs representing the customer and the
SaaS provider would have to evaluate templates, modify them in an ef-
fort to optimize the resulting utility, and make their final offer (or submit
a new template for negotiation). As mentioned previously, it has been
proven that this process may take prohibitively long to finish [24], but the
practical implications are limited: any business entity can set a timeout,
after which it will terminate any negotiation that does not bear results.

From the SaaS provider’s side, before it submits an offer or agrees to
an offer, it needs to know that it can successfully support it. Therefore, an
offer for s-SLA will have to be translated to an offer for i-SLA, according
to the domain-specific knowledge implemented within the SaaS SAMI’s
POA subsystem. Similarly to the case between the end customer and
the SaaS SAMIs, there would be a negotiation taking place between the
SaaS and the IaaS providers’ SAMIs. As soon as i-SLA is established, the
offer for s-SLA could be accepted (or submitted). Nevertheless, this de-
sign does not exclude riskier strategies, without consecutive (lower-layer)
SLAs. Figure 6.4 shows a high-level view of the negotiation process, in

55

Chapter 6. Management Architecture

Template

Context

Terms

Customer

Provider

Service

Price

Throughput

Availability

Offer

Context

Terms

Company A

Company B

ERP

> 100 h/m

> 98%

Figure 6.3: A simple Template and Offer example

the form of a UML sequence diagram. A loop of negotiation messages
is typically followed by a final, binding offer; and binding offers are ide-
ally synchronized, so that cancellation fees are avoided if a party retracts
from negotiations on some layer. This is evident in Figure 6.4, where a
failure of step 2.1 leads to failure of step 2.

The author believes that a modeling of the POA system internals that
applies to all imaginable use cases is probably impossible. Given the fact
that different domains require different vocabularies for the guarantees
of the applicable SLAs, and the very distinct utility functions that may be
used even by different providers in the same domain/use case, it is only
possible to model the interface with generic constructs for assessing SLAs
and intervening to the planning/optimization process. Furthermore, it has
been proven that no algorithm has a universal advantage over other al-
gorithms, for the set of all possible optimization problems [46, 47]. As
such, under the assumption that the Negotiation module looks after cor-
rect message exchange, the POA subsystem only needs a method to eval-
uate incoming offers (either during negotiation or final, binding offers),
and a method to interrupt ongoing evaluations.

At the time of SLA enactment, provisioning of i-SLA (i.e. provisioning
of the infrastructure resources) must take place before deployment of
the software, and the latter should also start before the time that the
customer expects to find the service available for invocations. Therefore,
this time difference should be taken into account during negotiation and

56

Chapter 6. Management Architecture

Negotiation 2010/07/22 JUDE(Free Version)

Negotiationsd

Customer SaaS IaaS

1: Negotiate()

loop

loop

2: createAgreement()

2.1: createAgreement()

1.1: Negotiate()

Figure 6.4: High-level overview of the negotiation process

construction of offers. An alternative option is that the customer herself
explicitly requests the provisioning of the service when the time comes;
and receives confirmation when this happens, after the provisioning of all
antecedent services.

Following the provisioning phase according to established SLAs, the
IaaS provider’s SAMI receives events from the infrastructure monitors,
and correlates them to the existing SLAs. If some part of the infrastruc-
ture fails, it will try to provision new infrastructure resources as soon as
possible. If that is not possible, it will have to start a renegotiation, tak-
ing into account any penalties that may apply for doing so. Similarly, the
SaaS provider SAMI needs to monitor software service activity. If s-SLA
fails, the reason for that should be traced: It could be a customer invok-
ing the service more often than agreed, or it might be software failure,
or infrastructure failure (i.e. violation of i-SLA which was not mitigated by
IaaS already). Again, the provider needs to solve the problem by either
reprovisioning the software onto existing resources, or renegotiating with
the IaaS provider, or eventually, renegotiating with the end-customer if
all else fails.

57

Chapter 6. Management Architecture

6.3 Architecture Applicability

As a proof of concept for the generic application of the SAMI architecture,
an additional example from a very different area is used, which includes
non-technical services as well. As shown in Figure 6.5, there is a meeting
organizer who wishes to arrange hotels and rental cars for the attendees.
In such a case, the SAMI would be essentially a system to help decision-
making and indicate favorable options. Negotiation would be driven by
humans, but the SAMI’s negotiation interface/mechanisms could be used.
Also, the SAMI’s planning and optimization mechanism would monitor ex-
isting resources, know their semantics and suggest how to proceed with
a negotiation. As soon as the latter concluded, it would book an account
manager’s agenda, reserve rooms, or reserve cars depending on the ser-
vice at hand. Monitoring would be implemented through possible com-
plaints by attendees; the account manager would receive them, and ei-
ther forward them to the hotel/car rental, try to renegotiate, or try to find
a different subcontractor.

PSS
Travel

agent SAMI

Negotiation:

Price, number of

rooms,

extras

Meeting
organizer

Negotiation:

Price,

number of

guests

Hotel SAMI
Rent-a-car

SAMI

Negotiation:

Price, number of

cars

Bundles templates

Rooms/Cars

templates

Rooms templates

Cars

templates

Bundles templates

Provisions
Account
manager

ProvisionsRooms

Provisions

Cars

Figure 6.5: Meeting organization outsourcing

This example illustrates the generic applicability of the SAMI architec-
ture, even in domains completely unrelated to IT. Concerns remain sep-

58

Chapter 6. Management Architecture

arated throughout the SLA life cycle, and the domain-agnostic approach
followed facilitates using the same concepts and architecture in very di-
verse scenarios.

6.4 Framework Implementation

The nature of the SAMI and the requirement to make it applicable in a
wide spectrum of very different use cases, enforce the need to implement
it as a reusable framework. The SAMI has been implemented as part of
the SLA@SOI project, based on technologies that allow domain-specific
methodologies to be inserted in the form of plugins, interacting via the
SAMI kernel. Thanks to this plugin-based pattern, new implementations of
the various components can be easily added or even replaced at runtime.

A plugin in SAMI is implementing one of the components of the archi-
tecture, for example, the POA module. As such, a plugin provides a spe-
cific set of functionalities, within the context of SLA management, based
on pre-specified interfaces. The SAMI kernel provides the infrastructure
required to support the activation, operation and interaction of each of its
components. This infrastructure is based on the SpringDM [48] applica-
tion framework for the OSGi [49] technology, in which a plugin is known
as bundle.

The key feature of this approach is the high degree of flexibility pro-
vided for dynamic behavior, and customizable system deployment and
reconfiguration. Each SAMI implementation can customize or reuse com-
ponents, integrate new ones or replace others (even at runtime) with min-
imal effort. Some of the main features of the plugin-based SAMI architec-
ture are as follows:

• Simplicity: The life cycle of each plugin or bundle is handled by the
SAMI kernel and supported by an OSGi container;

• Adaptive behavior: Given different mechanisms and implementa-
tions for different system conditions, it is straightforward to replace
one with another when the administrator sees that fit, or automati-
cally according to predefined rules and policies;

• Easy deployment: SAMI is able to run under any implementation
of an OSGi container. To the best of the author’s knowledge, the
most complete implementation of the latest OSGi specification (R4)
is Equinox [50]; it is therefore the one on which SAMI is being cur-
rently tested;

59

Chapter 6. Management Architecture

• Versioning: Due to the full support for replacement of the various
components, when a new version of a component is available it is
straightforward to exchange versions and upgrade to the latest one.
Nevertheless, rollback is similarly easy if problems appear.

• Reusability: The plugin-based architecture also allows the integra-
tion of third-party libraries inside each bundle. This encapsulation
feature improves code reusability within SAMI implementations. For
example, if applied to a High-Performance Computing (HPC) do-
main, one can wrap an existing scheduler with the interfaces fore-
seen by the POA module, and therefore reuse the scheduler in this
new context of SLA planning.

Currently, the plugins implemented or under implementation in the
context of the SLA@SOI Project are the following:

• Negotiation: The Negotiation module includes a Syntax Converter,
that converts from on-the-wire representations (e.g. WS-Agreement
and other XML renderings) to internal SLA models, and vice-versa;
a Protocol Engine that takes care of protocol-related formalisms and
enforces the respective consistency; a Publish/Subscribe client that
advertises templates and receives advertisements; a Template Reg-
istry that stores templates and can be queried using templates as
input; and an SLA Registry that holds established SLAs.

• POA: The POA module is custom per domain and/or use case. One
implementation already completed is for infrastructure services, par-
tially using the ideas from Chapters 10 and 11. An additional im-
plementation for a demo application with software services is also
underway.

• Provisioning and Monitoring: The two components have been im-
plemented as one in the project, and comprise two different in-
stances; one for infrastructure services, and one for the aforemen-
tioned demonstrator.

At the moment of writing, integration tests are taking place, also con-
verging with parallel ongoing work on the topic of software service pre-
diction services (“Forecasting”) and Dependency Management input. The
latter comes in the form of queries to a Service Manager implemented
within the project.

The SAMI implementation as described so far is a service itself, with
its functionality concerning SLA management in complete. Nevertheless,
a different implementation approach is to enable the components of the

60

Chapter 6. Management Architecture

SAMI architecture as distinct services. It could, therefore, be possible to
have services to negotiate, others to plan, to monitor, etc, allowing even
further flexibility.

6.5 Related Work

In [51], Ludwig et al. present an architecture for the management of
SLAs during negotiation and runtime. Their work is specifically targeting
the WS-Agreement standard, and does not discuss renegotiation of SLAs
or SLA hierarchy management. The latter is neither discussed in [52] by
Padgett et al., which is furthermore tightly coupled to Grid Computing.
In [53], Koumoutsos et al. present an abstract architecture for managing
SLAs through their complete life cycle, but no information is provided with
regards to the interactions of the various components for achieving the
purpose, while additionally they concentrate on information management
and SLA modelling.

In [54], Keller et al. present theWeb Service Level Agreement (WSLA)
language for defining SLAs, alongside an architecture for monitoring them.
Focusing on the architecture part, it only concerns the runtime, without
reference to negotiation-time mechanisms. The same limitation to run-
time management appears in [55], where an architecture based on the
Common Information Model (CIM) [56] is presented by Debusmann and
Keller. Apart from being limited to monitoring of SLAs, this work is also
tightly coupled to specific technologies (CIM and WSLA). In [57], Bartolini
et al. elaborate on an SLA management framework, which is very com-
plete from a runtime perspective, but does not touch on the issue of nego-
tiating and re-negotiating SLAs. The case is similar for [58] from Paschke
et al., which applies extensively knowledge management techniques into
the domain of SLA management. In [59], Buco et al. are also discussing
SLA management after establishment, assuming that to be a manual pro-
cess.

In [60], Chhetri et al. present an SLA negotiation architecture. Al-
though they include a “SLA life cycle management” component, they do
not discuss how it is used. In [61], Bartolini et al. present an abstract
framework like the one presented in this thesis (including, additionally,
negotiation rules), but it is also limited to negotiation time only. Similarly,
in [45] Di Nitto et al. focus on negotiation, especially on protocol man-
agement and assuming a marketplace approach. In [62] Kim and Segev
discuss SLA negotiation only, as part of an abstract framework, which is
similar to the present one, in the sense that it also separates concerns
between protocol management and decision making. Finally, in [63],

61

Chapter 6. Management Architecture

Ayatollahzadeh-Shirazi and Barfouroush present a conceptual framework
for negotiating SLAs using generic negotiation principles, but do not dis-
cuss runtime management either.

Also close to the work discussed here, is [64] by Dan, Ludwig and Paci-
fici. The authors present an architecture that includes all those constructs
for interacting with customers, provisioning, monitoring and adjusting
SLAs. Nevertheless, multi-level (hierarchical) SLAs are not addressed.
In addition, their work is described around WSLA and web services in spe-
cific, while the SAMI is technology-independent.

Overall, the main novelty introduced by the SAMI architecture can be
summarized as follows:

• It is technology-independent: No reliance on web services or other
specific technology.

• It brings specific support for SLA hierarchies and chained negotia-
tion, which is necessary for service chains / hierarchies.

In addition, these features are unified with capabilities that were found in
prior art, albeit fragmented:

• It covers the complete life cycle of SLAs, including negotiation and
execution (monitoring / enforcement).

• It can be customized to different domains; specifically, it innovates
by separating protocol-related negotiation functionality from utility
and strategy concepts; and by foreseeing a pluggable mechanism
for the support of different planning mechanisms.

Summary and Conclusions

SAMI, the SLA Management Instance, was presented in this chapter. SAMI
is an architectural design for achieving SLA management, throughout the
complete life cycle of SLAs – most notably including negotiation and ex-
ecution. SAMI’s essential principles are extensibility, as well as indepen-
dence from specific domains and technologies. SLA hierarchies are specif-
ically taken into account, by means of SLA template advertisements, ser-
vice discovery and composition, SLA Translation interlaced with SLA Ne-
gotiation, and hierarchical SLA Provisioning.

In the next chapter, a novel penalty model is formalized and pre-
sented. Such a penalty model describes what are the costs that a provider
must pay, if an SLA is not honored. It is a necessary consideration both
during negotiation (for the Planning and Optimization), but also during

62

Chapter 6. Management Architecture

runtime (for deciding the most appropriate course of action when an SLA
is violated or about to be violated).

63

64

Chapter 7

Penalty Model

One important differentiation of SLAs from best-effort service provision-
ing requests is the annotation with penalties. That is, all those provisions
that define what will happen in the case that a provider fails to deliver the
service, as agreed. The consequences of such a failure may be some kind
of refunding, additional (free) service points, etc.

The present chapter explores this topic, and proposes a new formal-
ization for penalty definition. This formal model is taking into account
requirements for fairness and business value. Following the model’s defi-
nition, an example is provided that links the model to SLA hierarchies.

7.1 Penalties and Service Level Agreements

Penalties are as an essential part of SLAs as the description of guaran-
tees. The reason for that is the very concept of using SLAs as an instru-
ment to provide some level of determinism in business relations. As such,
SLAs also describe what must happen when something goes wrong and
the SLA cannot be honored (i.e. it is violated). This section of a Service
Level Agreement, describing the penalties, is typically of concern to busi-
ness and legal departments of companies.

Penalties requested by customers during negotiation indicate the im-
portance of the SLA’s compliance, for these customers. In a similar way,
the penalties acceptable by the service provider indicate a risk strategy;
namely, how far a provider is willing to go to make the customer feel
safe, while in the same time reducing the risk for its business. In addi-
tion, it may be the case that some penalty is defined for customers who
do not respect certain obligations they may have according to the SLA;
for instance, exceeding the agreed invocation rate may lead to additional
costs.

65

Chapter 7. Penalty Model

Penalty fairness is important to keep business relationships stable,
and to preserve SLAs as a useful and meaningful instrument to define
such business relationships. Fairness refers to reasonable and propor-
tional royalties returned when the SLA is violated. This kind of propor-
tionality concerns the interests of both the customer and the provider. As
mentioned earlier, the business value of the SLA to the customer is re-
flected, ideally, in the penalties; while the provider usually does not wish
to risk its complete business over a single contract. At the same time,
penalties should reflect how far from the agreed QoS level an SLA has
drifted, to achieve proportionality. By way of an example, one may con-
sider an SLA where 95% of invocations of some operation are guaranteed
to complete within 5 seconds. If 94.9% did so during the accounting pe-
riod, the SLA is violated – but the penalty will typically be much smaller
than if only 80% of the invocations completed within 5 seconds.

Currently, there are various ways to express penalties, some simpler
(e.g. flat rate for the whole SLA; or linear proportionality per guarantee)
and some more complex – such as the ones discussed in Section 7.4. The
various approaches, however, do not satisfy all of the following require-
ments for formulating complex penalty expressions, in a single unam-
biguous model:

• Capability to describe associative penalties, where the penalty for
failing one guarantee of the SLA depends on the state (failed or
satisfied) of some other guarantee(s);

• Full flexibility as regards the QoS levels agreed and/or achieved,
without constraints such as pre-specified classes of service;

• Openness and applicability to different domains, without depen-
dence of the model on specific languages, taxonomies or technolo-
gies.

In this chapter, a formal model of defining penalties within an SLA is
provided, taking into account the aforementioned requirements as part
of the contract negotiation. The model must be flexible and adaptable to
different scenarios, and expressive enough so that complex expressions
can be accommodated – e.g. penalties for combinations of different guar-
antees being violated. In addition, an example of this penalty model is
given, applied to the geocoding service scenario from Section 2.2.

66

Chapter 7. Penalty Model

7.2 Penalty Model

Let assume service S, and a Service Level Agreement that governs the
consumption of this service by a certain customer. Also, that the total
cost for the consumption of the service under this SLA is C, and that the
agreed Quality of Service is given as a set of guarantees (Q1,Q2, ...,Qn)
for the various supported quality metrics and properties. Then, a set of
penalty functions is defined as

Pm(Q1m , ...,QNm) = C · PWm ·
∑

k

QWk · FRk (7.1)

where m > 0 and 1m ! k ! Nm.
Q1m , ...,QNm represents a combination of guarantees that are de-

pending on each other, and the violation of one may affect, under specific
circumstances, the others. It is a way to express correlations of fine gran-
ularity. Thus, a customer can express statements such as that a violation
of one guarantee is more relevant if another guarantee is also violated.

Pm is a penalty function that corresponds to the above combination
Q1m , ...,QNm of guarantees. The sum of all penalty functions during one
reporting period represents the total penalties for this SLA, during that
period.

PWm is the weight of penalty function Pm. It indicates how important
is this function to the total calculated penalty; and is possibly a contribut-
ing factor for the service provider to make decisions with regards to the
deployment and implementation of the SLA. The sum of all weights is
equal to 1.

QWk is the weight of one specific guarantee being violated, for this
specific combination of guarantees. This value may be arbitrarily high.
It offers the capability to the customer, when negotiating, to express the
importance of honoring certain guarantees in this penalty function. As an
example, one may consider the case where the guarantees concern the
availabilities of two load-balancing servers. If the availability guarantee
for one of the servers is violated, its weight (and hence, the penalty) is
kept small. If, however, on the same time the availability guarantee of the
other server is also violated – i.e. the second server becomes unavailable
as well –, there may be a very high weight to suggest an equally high
penalty for the system becoming unavailable as a whole.

Finally, FRk is the failure ratio, i.e. the achieved quality vs the planned
quality. It indicates how far the offered quality has drifted, when com-
pared to the quality that was agreed to be offered for that specific ser-
vice parameter. For instance, if availability of a service was agreed to
be 100%, but only 90% is achieved, then the failure ratio is 0.1; and if a

67

Chapter 7. Penalty Model

response time was agreed to be 5 seconds on average, but 6 seconds is
the average response time achieved, then the failure ratio is 0.2. By def-
inition, FRk may also model possible rewards for performing better than
agreed.

Chapter 5 discussed the construction of subcontracts starting from
a higher-level contract, in a top-down fashion. In parallel with inferring
proper values for the service properties of the SLAs, suitable penalties
must be deduced. Therefore, penalty calculation for subcontracts is also
part of the SLA Translation process. Due to the domain-specificity of the
way that properties depend on each other, it is not possible to provide
generic analytical expressions of penalties for antecedent services / SLAs.
Rather, the next Section illustrates how this would work, by means of an
example.

7.3 Example Application

This section provides an example of using the penalty model, based on
the scenario from Section 2.2. It illustrates how the model is applied for
the geocoding service GC, and how it is translated to penalties for an-
tecedent services in this context. Let assume that the negotiable proper-
ties for the geocoding service are:

• Availability, defined as the ratio of service uptime to total monitor-
ing time, over a certain predefined time period (e.g. one month);
and

• Response Time, defined as the time duration from the moment a
message is received, to the moment a response is generated and
put on the wire, for a specific percentage of all invocations.

The customer wants to express that availability must be over 99%,
and the penalty increases up to the full cost for availability dropping down
to 90%. For response time, it is desired that 98% of invocations return
in less than 5 seconds. The respective response time penalty increases
linearly towards 85% of the calls; at that point, full SLA cost is claimed
back. Network delays are not considered in this example. The customer
expresses these penalty terms as follows:

P(A) = C · 1 ·
(

99
99− 90

· FRA

)
(7.2)

P(R) = C · 1 ·
(

98
98− 85

· FRR

)
(7.3)

68

Chapter 7. Penalty Model

P(A), P(R), are the penalties for availability and response time. C is
the total SLA price. For all penalty functions, a maximum penalty equal
to the SLA price is requested (PWA = PWR = 1). Obviously, this may
add up to more than the SLA price, should more than one parameters
be “sufficiently violated”. It may well be the case that the provider does
not accept this, but rather sets a maximum aggregate penalty; this is
something to be negotiated between the two parties, and its expression
is a syntactical matter which is out of scope for this work.

The weight for each guarantee being violated is set such that each
unit of additional failure from agreed target contributes linearly to a total
failure at the agreed threshold. Thus, 99/(99−90) is the necessary num-
ber to reach a value of 1 when multiplied with the threshold failure ratio
of (99 − 90)/99 for availability (99% being the planned one, 90% being
the actual). Similarly, 98/(98 − 85) for the response time threshold of
85% (down from 98%).

The Planning/Optimization component of the geocoding service SAMI
knows that the availability of the geocoding service, Ag, depends on the
availability of the infrastructure on which the service executes. Its re-
sponse time, R, depends on utilization of the infrastructure being suffi-
ciently low. Equations 7.4 and 7.5 describe the availability and response
time of the geocoding service in relation to the availability and utilization
of the supporting VMs. Coefficients k and l are specific to the software
used, and are known by the Planning/Optimization component via soft-
ware modeling, monitoring, or other means. A constant c denotes the
response time for near-zero utilization of the VMs. Based on these for-
mulae, the geocoding service provider would deduce the required guar-
anteed properties and construct an SLA offer towards the infrastructure
provider.

Ag = min(AVM1,AVM2) (7.4)

R = k ·UVM1 + l ·UVM2 + c (7.5)

AVM1,AVM2,UVM1,UVM2 ∈ [0, 1] (7.6)

The policy of the geocoding provider is to ensure that full infrastruc-
ture SLA costs will be refunded, if the infrastructure provider fails up to an
extent such that the profit from the geocoding SLA starts being affected.
That is; although availability of the geocoding service can become as low
as 90% before a full refund is issued; and it relates to VM availability as
shown in Equation 7.4; the geocoding provider will ask that it converges
sooner to values that constitute “complete failure” to deliver. As such,
the failure multipliers must be larger, to reflect this financial difference.

69

Chapter 7. Penalty Model

The same applies for response time, and the penalties for infrastructure
utilization levels. For the purposes of the example, a naive assumption is
made that the geocoding provider has no implementation costs, and that
the difference between software SLA price C and infrastructure SLA price
C∗ is all profit.

Eventually, this penalty can be formulated as in Equations 7.7 and 7.8.

P(AVM1,AVM2) = C∗ · 1 ·
(

C

C∗ · α · FRAVM1 +
C

C∗ · α · FRAVM2

)
(7.7)

P(UVM1,UVM2) = C∗ · 1 ·
(

C

C∗ · β · FRUVM1 +
C

C∗ · β · FRUVM2

)
(7.8)

where α = 99/(99− 90) and β = 98/(98− 85).
One can easily notice that these equations can be simplified as fol-

lows:

P(AVM1,AVM2) = C · α · (FRAVM1 + FRAVM2) (7.9)

P(UVM1,UVM2) = C · β · (FRUVM1 + FRUVM2) (7.10)

Taking into account Equations 7.2 and 7.3, it holds that:

P(A)

P(AVM1,AVM2)
=

FRA

FRAVM1 + FRAVM2

(7.11)

P(R)

P(UVM1,UVM2)
=

FRR

FRUVM1 + FRUVM2

(7.12)

However, it must be underlined that this applies only because of the
assumption that the geocoding service provider has no implementation
costs other than the infrastructure for service execution.

7.4 Related Work

In [65], Becker et al. propose a price function over achieved QoS. Sub-
tracting from the agreed price provides the penalty, so it can be con-
sidered to be the penalty function as well. Rewards are also possible,
using their approach. The main difference with the approach presented
in this Chapter, is that in [65] it is not possible to express penalty with
more than one QoS properties involved, and these properties being cor-
related. That is, quality is seen as a unidirectional aggregated measure
for a service, while in fact there may be quality characteristics that cannot
be aggregated without preference information and also without property
inter-dependence information.

70

Chapter 7. Penalty Model

In [66], Jurca and Faltings suggest a method to calculate penalties
(after using a service and following an SLA) based on a reputation mech-
anism, where all customers evaluate the quality of the service they re-
ceived. The authors take measures to avoid false voting for price reduc-
tion or other fraud. The approach, however, can only be combined with
classes of service.

In [67], Rana et al. discuss monitoring and reputation mechanisms
for SLAs. The authors look into EU contract law and take some relevant
points into account, then define three broad penalty categories: All-or-
nothing, Partial, Weighted Partial. However, a complete mathematical
model is not present. The work presented in this paper is then related to
WS-Agreement, so the relevant negotiation concepts are also discussed.

Finally, Kosinski et al. present in [68] a mathematical formulation of
penalty functions which is fairly similar to what is presented here (al-
though applied specifically in the area of networking). The paper does
capture the relationships between different properties, and policies are
defined depending on such relationships and the respective combina-
tions. These policies are captured within “subcontracts” (the term is used
differently than in this thesis; it refers to sections of a single SLA). The
main difference to the present work is that in [68] failures are calculated
using a pre-specified taxonomy (number of violations, amount of viola-
tions, etc), while here the way to calculate the failure ratio is considered
domain-specific and left open. In addition, the model from Section 7.2 as-
signs a weight not only to each violation, but also to each penalty function
(“subcontract”, using the terminology of [68]).

Summary and Conclusions

In this chapter, a novel, complete mathematical penalty model was intro-
duced and formulated. Expressions compliant to this model can be inte-
grated within SLAs, to define unambiguously the penalties that accom-
pany SLA failures. The model is taking into account concepts of fairness,
business value, and quality parameter interdependencies alike.

Via an example, the application of the model to SLA hierarchies was
demonstrated. It was shown that it can be applied using domain-specific
(and perhaps use-case specific) knowledge, in order to build analytical
penalty expressions at negotiation time, dynamically and according to
top-down or bottom-up hierarchy construction.

The chapter that follows presents a model for an in-memory SLA rep-
resentation that can simplify highly complex SLAs, and contribute to mak-
ing decisions during negotiation and subcontracting.

71

72

Chapter 8

System-Internal SLA
Representation

Machine-readable SLAs, being a projection of real-world contracts in the
IT space, can be arbitrarily complex. They may include conditionals, re-
quirements that must all apply in parallel, optional items that affect final
pricing, penalties, rewards, and so on. Processing such complex docu-
ments without prior knowledge of their structure (even if the syntax is
well-defined and understood) may be a task of significant difficulty. More
specifically, this task is equivalent to the graph isomorphism problem,
which remains open as regards its complexity; its generalization, the sub-
graph isomorphism problem, is known to be NP-Complete [69].

The present chapter proposes a methodology to reduce this complex-
ity, by accepting that SLAs have special properties and can be modeled
as boolean functions. Based on this proposition, a structure known as
Reduced Ordered Binary Decision Diagrams can be used, to result in a
canonical representation of SLAs, and allow their processing for reasons
of planning and outsourcing. A canonical representation like this can fa-
cilitate fast processing of SLAs and decision-making about them during
negotiation.

8.1 Basic Concepts

In this chapter it is proposed that a graph-based data structure, well-
known in the domain of Computer Aided Design (CAD) for Very Large
Scale Integrated (VLSI) circuits, is suitable for modeling SLAs in a way
which is both expressive enough, and very efficient. R. Bryant introduced
Reduced Ordered Binary Decision Diagrams (ROBBDs) in 1986 [70] as an
evolution of C.Y. Lee’s [71] and S. Akers’ [72] work on BDDs. They are

73

Chapter 8. System-Internal SLA Representation

classified as a tool in the area of symbolic model checking, the scientific
discipline looking into the problem of verifying that a given system satis-
fies specific requirements, given any kind of input. The hardware industry
race has further contributed to the optimization of the structure itself with
a significant amount of relevant research, and a large number of methods
already exist for taking advantage of ROBDDs’ inherent properties.

It is here reminded, from Section 3.1, that on an abstract level SLAs
consist of facts, conditions and clauses; the latter two being here col-
lectively referred to as rules, and comprise if-then-else structures. The
essential reason that ROBDDs are useful for modeling SLAs, is that they
are canonical representations generated on the grounds of such if-then-
else structures. Thus, they can express SLAs unambiguously: equivalent
SLAs which are structurally different, are eventually represented by the
same ROBDD. On the contrary, using formats developed for on-the-wire
representation (e.g. the various XML-based models that were mentioned
in the introductory chapters) does not guarantee this property. It is herein
proposed that ROBDDs are used internally in systems which have to man-
age SLAs, as a representation that facilitates their management. Suitable
interpreters should then be developed to convert from standardized, in-
terchangeable formats such as WS-Agreement and WSLA, to this more
convenient data structure and vice-versa.

8.2 Binary Decision Diagrams

This section serves as a general, high-level introduction to BDDs and their
basic properties. Motivated readers are encouraged to consult with the
bibliography for in-depth material. Most of the definitions provided in this
section, are summaries of the definitions that can be found in [73] by
Ebendt et al.

A BDD is a graph-based representation of one or more boolean func-
tions. This kind of diagram is based on Shannon’s decomposition theo-
rem [74], which states that, assuming a boolean function f : Xn → Xm,
where Xn = {x1, ..., xn} and Xm = {x1, ..., xm}, then for any boolean vari-
able xi, i ! 1 ! n:

f = xi · fxi=1 + xi · fxi=0 (8.1)

What Equation 8.1 provides, is the if-then-else representation sought
for: If xi is true, then fxi=1 must be evaluated, or else fxi=0 must be
evaluated. A BDD then, is a directed acyclic graph G = (V,E), where
V denotes the vertices (nodes) and E the edges. Vertices can be either
terminal (i.e. their out-degree is equal to zero), or non-terminal. The
former can carry a value of either 1 (true) or 0 (false). The latter are

74

Chapter 8. System-Internal SLA Representation

labelled with a variable xi ∈ Xn; if u is the node, the variable xi is referred
to as var(u). Of the two children nodes, the one followed if xi evaluates
to true is referred to as then(u), and the other as else(u).

An illustrative example can be found in [73]. This example is shown
in Figure 8.1(a), with a BDD representation of the boolean function f =
x1 · x2 + x1 · x3. Solid lines are typically used for the edge between u and
then(u), and dashed lines for the edge between u and else(u). Addition-
ally, non-terminal nodes are denoted as circles, while terminal nodes as
squares.

Let π be an ordering of the boolean variables involved in the function
to represent. Then, the pair (π,G) is the Ordered BDD (OBDD) represen-
tation of the function, as long as (additionally to simple BDD definitions)
it is true that on each path from the root to a terminal node the vari-
ables are encountered at most once and in the same order. Looking into
the previous example, Figure 8.1(b) is illustrating exactly this ordering of
variables, and how it affects the diagram. A diagram with more than one
roots (i.e., representing more than one boolean functions which depend
on the same boolean variables) is a Shared BDD (SBDD). It must be noted
that a root node here does not necessarily imply that the in-degree of this
node is equal to zero. For a specific function within a BDD or a SBDD, a
path is a subset of G which connects the root with a terminal node, with-
out any duplicate occurrences of a node or an edge. The set of all paths
for function f is herein denoted as Γf.

1

f

x2

x3 x3 x2 x2

x3

x1

0

(a)

1

f

x2

x3 x3 x3 x3

x2

x1

0

(b)

Figure 8.1: Simple/Ordered BDD representations of f = x1 · x2 + x1 · x3

An ordered BDD can be reduced (resulting in a Reduced Ordered BDD),
using the following two operations:

1. Deletion: If for a non-terminal node u of G holds that then(u) =

75

Chapter 8. System-Internal SLA Representation

else(u) = u ′, the node can be removed from the graph. All edges
pointing to it, if any, must now point to u ′, and if u was a root node,
then u ′ must be upgraded to a root node.

2. Merging: If for two non-terminal nodes u and u ′ holds that var(u) =
var(u ′), then(u) = then(u ′) and else(u) = else(u ′), then it is possi-
ble to remove u and have all edges pointing to it redirected to point
to u ′. Additionally, if u is a root node, then u ′ must be made into a
root node.

Remark: In the text that follows, the term BDD will be used uni-
versally, to refer to Reduced Ordered BDDs. Also, there will be no dis-
tinction between single-rooted and shared diagrams. Whenever single-
rooted BDDs are explicitly excluded, this will be denoted by pre-pending
“shared” or just the letter “S”.

8.3 SLAs as BDDs

8.3.1 A Usage Example

In order to illustrate more intuitively the usage of this structure for SLAs,
the example from Section 2.2 will be used. As discussed, this kind of busi-
ness scenario involves two SLAs. The first (s-SLA) is established between
the end-customer and the SaaS provider, to govern their interactions and
apply guarantees. The second (i-SLA) is established between the SaaS
and the IaaS providers for the same purpose.

The customer would try to engage in an SLA with the geo-location ser-
vice provider, which would involve –for instance– metrics for service avail-
ability, and service invocations completion time (CT). The SaaS provider
would apply its understanding about the software (based on modeling
principles or historical monitoring evidence) to derive expected resource
requirements, possibly varying throughout a day’s, month’s or other pe-
riod. The infrastructure resource requirements, on the other hand, would
be the guarantees that the SaaS provider’s SLA with the IaaS provider
would need to include. The example SLAs are described as follows:

SLA-1: For service “Geo-location”, and given that business hours are be-
tween 09:00 and 17:00: During business hours, operation “Plan-
Route” must complete within 5 seconds, and the service’s availabil-
ity must be more than 99%. Outside business hours, completion
time for the same operation can be up to 10 seconds, and the ser-
vice’s availability must be more than 95%.

76

Chapter 8. System-Internal SLA Representation

SLA-2: For service “VMpool”, and given that business hours are between
09:00 and 17:00: During business hours, 4 virtual machines must
be allocated to this contract. Outside business hours, 2 virtual ma-
chines must be allocated.

SLA Variable Proposition Proposition type

SLA-1 x1 ServiceName = ’Geo-location’ Fact
SLA-1 x2 BusinessHours = 09:00 - 17:00 Fact
SLA-1 x3 TimeOfDay in BusinessHours Condition
SLA-1 x4 ’PlanRoute’ CT < 5 sec Clause
SLA-1 x5 Geo-location availability > 99% Clause
SLA-1 x3 TimeOfDay not in BusinessHours Condition
SLA-1 x6 ’PlanRoute’ CT < 10 sec Clause
SLA-1 x7 Geo-location availability > 95% Clause

SLA-2 y1 ServiceName = ’VMpool’ Fact
SLA-2 y2 BusinessHours = 09:00 - 17:00 Fact
SLA-2 y3 TimeOfDay in BusinessHours Condition
SLA-2 y4 Number of VMs = 4 Clause
SLA-2 y3 TimeOfDay not in BusinessHours Condition
SLA-2 y5 Number of VMs = 2 Clause

Table 8.1: Example clauses

Table 8.1 illustrates the set of facts and clauses to be used for this
example scenario. It is straightforward to see that, given these facts and
clauses in the form of boolean variables which evaluate to true or false,
the SLAs can also evaluate correctly if they are modeled according to
Equations 8.2 and 8.3 respectively. In the upcoming Section 8.3.2, the
problem of expressing SLAs as boolean functions will be formalized. Then
in Section 8.3.3 it will be shown how these specific example SLAs map to
BDDs.

f = x1 · x2 · (x3 · x4 · x5 + x3 · x6 · x7) (8.2)

g = y1 · y2 · (y3 · y4 + y3 · y5) (8.3)

8.3.2 SLAs and SLA Hierarchies

Here follows a proposed SLA representation: Let Φn be the universe of
facts applicable to contracts as indisputable truth,Φn = {φ1, ...,φn}. Also
let Ym be the universe of clauses which can be evaluated to either true
or false, Ym = {y1, ...,ym}. A Service Level Agreement is the boolean

77

Chapter 8. System-Internal SLA Representation

function f:
f : Fk ∪ Zl → {0, 1} (8.4)

where Fk ⊆ Φn, Fk = {φ1, ...,φk} and Zl ⊆ Ym, Zl = {z1, ..., zl}.
Hence, there exists a representation of an SLA as a boolean function,

taking advantage of an SLA’s binary nature upon evaluation as possible
/ impossible to satisfy (at negotiation time) or honored / violated (at run-
time, i.e. while the service is being consumed). The variable terms of an
SLA are taking values from Zl, while pre-agreed understanding (and in
general, facts about the world) is encoded in facts accepting values from
Fk. This definition is broad enough to encompass various previous defini-
tions, both conceptual (e.g. [75]) and syntactical (e.g. WS-Agreement).

In Chapter 5, service hierarchies and the corresponding SLA hierar-
chies (contracts and sub-contracts) were discussed. There was also a
formal definition of the relationship between one property of a service,
and all relevant properties of the services that it depends on (i.e. service
dependencies). It is now possible to codify generically SLA dependencies,
in a manner that allows enough flexibility to describe any such kind. Let:

• f : Fk ∪ Zl → {0, 1}, the dependent SLA

• fi : Fki ∪ Zli → {0, 1}, i ∈ N, the depending SLAs

• Fki ⊆ Φn, Fki = {φ1i, ...,φki}

• Zli ⊆ Ym, Zli = {z1i, ..., zli}

There is defined the dependency of f upon {fi} (and therefore the resulting
hierarchy) as a function g:

g : Zl → ∪i(Z
li)|Fk ∪i (F

ki) (8.5)

Simply put, a function of any number of variable terms from SLA f

equals a function of any number of variable terms from one or more SLAs
fi, under the circumstances defined by the relevant fact sets. Operating
under this highly abstract definition allows us the required flexibility to
describe contracts with dependencies of any kind, as long as each of them
does eventually evaluate to either true, or false.

8.3.3 BDD Mapping

There now exists a formal representation of SLAs (Equation 8.4) and SLA
dependencies (Equation 8.5). The gain in using BDDs lies in reduction.
Through this process, a BDD becomes a canonical representation of the

78

Chapter 8. System-Internal SLA Representation

boolean function it describes, as proven in [70]. Therefore, an SLA de-
scribed as a boolean function in the form of a BDD takes a unique, well-
specified andminimal form, eliminating redundancy and allowing to make
the mapping which describes SLA dependencies far more efficient than
what it would be if complete graphs were processed. Additionally, the
canonical form of the SLAs allows objective evaluation and comparison
for maximizing utility.

The exact method to construct a BDD from an SLA depends on the for-
mat in which this SLA is originally expressed, and therefore it cannot be
algorithmically defined in a universal way. In the case of WS-Agreement,
the Context and Service Description Terms would be used as facts;
Qualifying Conditions as conditions; Guarantee Terms as clauses; and
Term Compositor Terms could be classified as either conditions or clauses.
In fact, WS-Agreement’s Term Compositor Terms are essentially boolean
operators: All (AND), OneOrMore (OR), ExactlyOne (XOR). Using this pre-
defined knowledge for such a specific SLA language, it is straightforward
to implement a parser that can read the documents and construct a (Re-
duced Ordered) BDD on-the-fly as described in [76] by Bryant with the
revised “APPLY” operation.

Using the example also discussed earlier in Section 8.3.1, it is possible
to illustrate the reduced form of BDDs representing SLAs. As mentioned,
Equations 8.2 and 8.3 represent the two example SLAs as boolean func-
tions of the variables from Table 8.1. Then, assuming an ordering corre-
sponding to the numbering of the variables, the two resulting BDDs would
be as in Figure 8.2.

The main deficiency of BDDs is their reliance on the ordering of the
variables. The size of a BDD for the same function may vary from linear
to exponential, depending on how variables are ordered [70]. Generic al-
gorithms for near-optimal orderings of variables during or after BDD con-
struction have been researched extensively in the past (e.g. [77, 78]).
The application to the domain of SLA management and the involvement
of facts as variables, whose else edge always points directly to terminal
node 0, provides already a possibility for optimizing the BDD by push-
ing all facts to the top of the diagram. Although this kind of ordering does
not reduce the total number of nodes, it allows to ensure that indisputable
facts are honored by all parts of the SLA, otherwise it will evaluate to false
at runtime (i.e. it is violated). Also, at negotiation time, this ordering may
speed up the negotiation process significantly, since the first thing to be
confirmed as acceptable (or not) is the agreement of the involved parties
on the essentials of the contract (for instance, monetary unit). It should
be underlined, at this point, that facts are propositions which apply to

79

Chapter 8. System-Internal SLA Representation

x1

1 0

x2

x3

x4

x5

x6

x7

y1

1 0

y2

y3

y4

y5

(a) (b)

f

g

Figure 8.2: The BDDs corresponding to functions from Equations 8.2
and 8.3

the complete contract, and govern all terms included. Therefore, in cer-
tain cases, additional attention is required for choosing what is a fact and
what is not. Considering, for instance, the case of a two-party contract
with two sections describing the obligations of each party, starting each
section with an indication as to which party it applies: The statement
“section (a) describes the obligations of party (A)” is certainly true for
the complete contract. Nevertheless, if reference to the section includes
some contract-locality constraint, e.g. “this section describes the obliga-
tions of party (A)”, then this causes ambiguity and cannot apply to the
whole contract any more – therefore should be modeled as a condition.

After ordering facts at the beginning of the diagram, one of the ex-
isting BDD methods to optimize the ordering of conditions and clauses is
assumed to be used. Additionally to generic methods described in rel-
evant literature, a kind of structural optimization that takes advantage
of the semantics of SLAs and may be applied here is one that consid-
ers what is more crucial to the user. Certain SLA representations con-
tain sections on Business Values, that may reference specific terms as
regards their importance (in Chapter 7 they were used as coefficients to

80

Chapter 8. System-Internal SLA Representation

failure ratios). Given proper formalization of such sections, a constructor
of BDDs from SLAs can take them into account and order clause variables
from maximum to minimum importance, thus allowing faster evaluation
of business-critical terms.

It is now possible to discuss additional principles for the SLA applica-
tion domain, and for outsourcing parts or all of the contract. Starting from
the very semantics of SLAs represented as BDDs, one must distinguish
between the meaning of a boolean variable (and the whole diagram) dur-
ing negotiation time, and during runtime.

8.3.4 Negotiation Time Operations

During negotiation time, the evaluation of a fact variable to true or false
shows whether the fact is recognized as such from the receiving party.
For conditions and clauses, it indicates whether there is any reachable
state based on assignments of respective variables, so that the condition
/ clause under examination can eventually evaluate to true. Extending
this to the complete diagram, at negotiation time it is important to see if
there exist, in general, truth assignments for the whole set Fk ∪ Zl which
satisfy the diagram and lead to 1. At this point lies an implicit decision.
The party that receives the offer needs to have some certainty that it can
honor it after signing. It is a policy issue if this certainty needs to be 100%,
or near that, or even much lower (perhaps indicating a high-risk strategy).
Whatever the policy, the decision will have to be taken based on some
objective criteria. A certainty of 100% would mean that paths of the BDD
must be checked for tautology, that is, any truth assignment for a path
will lead to terminal node 1. If tautology applies for a single path, that
should be enough to accept the offer. Should more than one paths lead
to 1, then the provider must apply additional criteria to make a choice
as regards which path should be chosen. Such criteria would typically
involve utility, that is, which path would provide the most returns. This is,
for instance, directly applicable to the the IaaS use case of Part III. If all
paths refer to infrastructure resources that can be provided, then the one
that yields the highest profit would naturally be selected.

If there is no path leading with certainty to 1, it is necessary to make
an educated guess whether the offer is acceptable, and whether some
part needs to be subcontracted. A simple calculation that can be per-
formed, is the following: Let Γ1f be the set of all paths for f that connect
the root to terminal node 1, and Γ0f the respective set of paths leading to
terminal node 0. It is assumed that by means of historical monitoring in-
formation, forecasting, or simply common sense (e.g. time of day) there
is assigned to each node ui in h ∈ Γ1f a probability P ′(ui) to evaluate to a

81

Chapter 8. System-Internal SLA Representation

result so that node ui+1 is (also) on the same path, and 1− p to evaluate
otherwise. If the variables of the nodes in the path are dependent, then
one needs to take this into account and calculate the conditional proba-
bility of each variable, given the evaluation of all previous variables on
this path:

P(ui+1) = P ′(ui+1|u1 ∩ u2 ∩ ... ∩ ui) (8.6)

In somewhat less formal notation, the variables (and the events of them
taking a value of true or false) were represented by the names of their
nodes. If the variables are independent, then P(ui) = P ′(ui), ∀i. The
probability ph that the complete path evaluates to true, is

ph =
∏

u

P(u)|u ∈ h (8.7)

Then, the total probability that the SLA can be honored if established, is

C =
∑

h

(ph)|h ∈ Γ1f (8.8)

Assuming that the acquisition of this probability per node can be per-
formed in constant time, then the complexity of estimating this probabil-
ity per path is O(n). The consequent requirement to minimize the total
number of paths at construction time or variable ordering time, should
also be taken into account.

A negotiating party will want C to exceed some threshold, in order to
agree to an offer that was received. If this is not the case, then the party
(typically, a service provider) will have to either reject the offer, or try to
increase C by subcontracting one or more paths and thus increase their
contribution to the total success probability. Representing SLAs as BDDs
is most useful at this point: The canonical and reduced form of a BDD
produces a tractable list of options with regard to what can be assigned
to subcontractors. For items in such a list, due to the specific ordering
of variables, it is possible to devise unique and unambiguous signatures.
The latter may then be associated to different boolean functions, which
represent candidate subcontracts. Domain-specific intelligence can be
applied by area experts before operation starts, and define the depen-
dencies of certain variables on others for subcontracts. Then, a system
based on these principles can make use of this knowledge, and construct
proper offers towards third parties. In order to do this, such a system
would use the principles discussed in Section 5.1.2. As long as these of-
fers are accepted, and the respective second-level SLAs are established,
it should be the case that the corresponding path has increased certainty
to complete successfully as regards honoring the first-level SLA. The ne-
gotiating party has a choice, according to policies and strategies, to mod-
ify the offer and return it with specific values for the variables of that path

82

Chapter 8. System-Internal SLA Representation

(practically suggesting the SLA equivalent of the path), or to accept the
complete SLA as long as the increase in C is sufficient.

Coming back to the example scenario from Section 8.3.1, there are
two possible ways where this kind of subcontracting is / may be needed.
The first, is the explicitly mentioned subcontracting from the SaaS to the
IaaS provider. Conceptually, since the SaaS provider has no infrastruc-
ture, it cannot offer the service at all unless it subcontracts for infras-
tructure. Terms x4, x5, x6 and x7 would always evaluate to false unless
infrastructure resources are available for the software to execute on. As
such, the SaaS provider has to go through this translation process in any
case, to calculate infrastructure requirements and make a respective of-
fer to the IaaS provider. If an agreement with the IaaS provider already
exists, the contracting system in use should find this automatically af-
ter the translation occurs, try to reuse it if possible, otherwise resolve to
making a new offer. It must be noted here that, since the outsourcing
concerns paths, the SaaS provider may just as well make two different
offers to two different infrastructure providers (one for each of the two
paths in Γ1f), or can make a single offer to one infrastructure provider for
both paths (this is the working assumption in the example scenario).

The second case, is if it so happens that the IaaS provider cannot
satisfy the incoming offer – for instance, does not have the resources to
offer the requested performance during business hours. This means that,
according to its estimation, y4 would evaluate to false most of the times,
and therefore path y1−y2−y3−y4−1 would contribute minimally or not
at all to the whole agreement’s C-value. In this case, the IaaS provider
can reject the offer, or – depending on projected utility – try to outsource
this path to another IaaS provider.

It should be mentioned that an offer may be for a single SLA, or for
multiple SLAs (typically for different services or groups of services) in the
form of a Shared BDD. The presented working assumption of an offer for
a single SLA does not affect generality.

8.3.5 Runtime Operations

For the runtime scenario a monitoring subsystem is assumed, that can
capture service execution-related events from various sources and de-
tect if some SLA term is being violated. The process actually starts much
earlier, during negotiation. At that time already, it is beneficial to verify
that terms of an agreement can actually be monitored (this has already
been further discussed in Section 3.2 and [79]). Following this verification
step, as part of the negotiation process, an SLA may be formally estab-
lished, perhaps relying on other SLAs for its existence.

83

Chapter 8. System-Internal SLA Representation

While the service is being consumed, incoming events are processed
and terms (in the form of boolean variables of the BDD) are examined
to see if a violation has occurred. The ordering of the variables allows
the linear-time confirmation, starting from the root and traversing the
diagram towards terminal nodes. As each variable evaluates to true or
false, the respective child (then/else) is followed until a terminal node is
reached. If that node is 0, then there exists a violation, and the reason
of failing at that specific part of the SLA should be assessed. Depending
on whether this failure happened on a path which was outsourced, or
not, there may be a re-negotiation initiated, penalties claimed, or simply
adjust the method to estimate success probabilities for different paths.
Additionally to corrective actions, such an event must be logged to be
reused in next negotiation cycles.

The exact methodology to use in order to avoid unnecessary evalu-
ations of the complete diagram, depends on the monitoring system, the
way to evaluate each variable, and the acceptable time thresholds for re-
action to violations. A complete definition of such methodologies is out of
scope for this work.

8.4 Proof of Concept

As a proof of concept, a simple prototype was built to assess the ap-
proach’ efficiency in calculating the feasibility of [complying with] an in-
coming SLA offer, if it is established. The prototype accepts an SLA al-
ready expressed as a boolean function in Reverse Polish Notation (RPN)
form, produces a BDD from it and assigns probabilities to the nodes in a
semi-random way. Then, it calculates the paths leading to 1, their prob-
abilities to be followed and the total probability that the SLA can be hon-
ored without any subcontracting. Experimentation was with a single SLA
offer, which was crafted not to contain dependent variables, according to
the following description:

The SLA concerns service “Geo-location” (fact). Business
hours are set to 09:00-17:00 (fact). The whole system must
run in isolation from other customers of the service provider
(fact). If the operation invoked is “PlanRoute” (condition), and
time is within business hours (condition), then: completion
time should be less than 5 seconds (clause); availability should
be more than 99% (clause); and throughput should be more
than 100 operations per minute (clause). For times outside
business hours: completion time should be less than 10 sec-
onds, availability should be more than 95%, and throughput

84

Chapter 8. System-Internal SLA Representation

should be more than 50 operations per second. For operations
other than “PlanRoute”, invocations should be authenticated
(clause) and availability should be more than 98%.

With regard to the assignment of probabilities to the nodes and the
paths to follow, there was assigned a probability equal to 1.0 to facts and
to the proposition of authenticated invocations (this being a functional
requirement that the provider should be aware of). It was then assumed
that invocations of “PlanRoute” are one out of three, i.e. a probability
of roughly 0.33, and the same for the time of day being within business
hours – so it is implied that invocations of the service are equally dis-
tributed throughout the day. Finally, for the propositions of completion
time, availability and throughput, there was randomly assigned on each
node a probability between 0.8 and 1.0 that the provider can satisfy it or
will fail (a second random number indicates which of the two applies). In
a real scenario, the provider would calculate these probabilities based on
monitoring, forecasting or other information. Eventually, this simple sce-
nario was run 10000 times, to see under these semi-random conditions
how the SLA success estimations behave. Constructing the BDD for this
specific SLA took place in a mere 2.2 seconds. Running the 10000 prob-
ability tests took approximately 4 seconds on a 2.4 GHz processor. The
diagram contained 16 levels, excluding terminal nodes. Of the 21 paths
leading to terminal node 1, the shortest was 6-nodes long (excluding 1),
and the longest was 13-nodes long.

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1

Nu
m

be
r o

f h
its

Overall success probability

Figure 8.3: Experimental result

Figure 8.3 illustrates the overall calculated probability that the SLA will
be successful if established, in the form of a histogram for these 10000

85

Chapter 8. System-Internal SLA Representation

runs. For each of the runs, a total success probability for the whole SLA
was produced, then it was added to a counter of runs with the same result
in order to produce the histogram. Allowing some certainty for individual
terms (80%-100% probability of success or failure) results in a clear gap
between SLAs projected to fail, and those projected to succeed. This is an
indication that, using BDDs in this context and under such circumstances,
it is possible to calculate in only a few milliseconds and with a reasonable
amount of certainty, whether the complete SLA can be satisfied or not.

From this experimental evaluation, the feasibility and validity of the
approach is exhibited for all SLAs that consist of propositions evaluating
to true or false. As long as all invariable statements of an SLA (e.g. ref-
erences to other SLAs) can be expressed as facts, and all variable state-
ments can be expressed as conditions and clauses, this assumption is
valid for any SLA.

8.5 Related Work

To the best of the author’s knowledge, this is the first work that uses
BDDs to model and verify SLAs and SLA dependencies. That said, BDDs
have been used in service computing before, albeit in very few occa-
sions. In [80], Binder et al. are using a special form of BDDs, called Zero-
Suppressed BDDs, to create compact digests of service advertisements.
Then, the digests are distributed to interested parties which use them
for their service composition needs. In [81], Campailla et al. are using
BDDs for matching service advertisements in publish-subscribe systems
(making use of equivalence checking).

With regard to SLA modeling in general, the most well-known efforts
are WS-Agreement and WSLA. As also mentioned in the previous sec-
tion, the focus of these specifications is on-the-wire representations for
enabling interoperability between independent agents. This is an area
that is not targeted with the work presented in this Chapter; rather, the
focus here is a system-internal representation, that will enable efficient
mechanisms for decision making.

As regards applying logic-based approaches to the topic of SLA man-
agement, the work which comes closest to the present one, is the one de-
scribed in [58] by Paschke et al. There, the authors look at the problem in
more detail, defining constructs also for things such service description,
pricing, QoS, etc. Conversely, in this chapter everything is addressed in
an abstract way, and external syntactical definitions / appropriate archi-
tectural patterns are assumed for applying these definitions. Additional
differences include the explicit focus on managing hierarchies of SLAs

86

Chapter 8. System-Internal SLA Representation

and associations between them as such. The necessary constructs for
this kind of functionality also exist in [58], however there is no mention
of essential facilities such as equivalence checks and translation between
different vocabularies for different layers of a complete IT stack.

One should also not disregard the breadth of tools that exist for build-
ing, optimizing and processing BDDs. As part of the SLA@SOI project, a
software artifact was prepared to parse SLAs into BDDs, using a readily
available BDD construction Java library [82] in only a few days. Libraries
like that, and the algorithmic work that has taken place in this area over
the last decades, provides significant tooling that can be readily used for
fast and efficient SLA processing. This is a very important aspect of the
contribution outlined in this Chapter.

Summary and Conclusions

In this Chapter there was presented a novel application of (Shared) Re-
duced Ordered Binary Decision Diagrams, for representing and managing
SLAs, as well as facilitating the construction of SLA hierarchies. BDDs are
graph-based structures which have been used for decades in the field of
VLSI design and verification, with particular success. They are one of the
main tools of the VLSI industry for testing prototypes, and therefore BDDs
are a topic under heavy research for decades. The depth and breadth
of existing ideas and research can be applied to SLA management for
further advancement of this complex service management area. In this
particular Chapter there was discussion on the representation through a
formal definition of SLAs as boolean functions and from there as BDDs;
explained the advantages of this approach; and showed how such kind
of use is possible for negotiating SLAs, subcontracting (leading to implicit
SLA hierarchies) and detecting SLA violations. Finally, experimental re-
sults of applying BDDs to SLA representation were briefly discussed.

In Part III that follows, an application of the principles from Part II will
be illustrated in the context of Cloud Computing and, more specifically,
Infrastructure as a Service. In addition, there will be an evaluation of
using SLAs as a means for infrastructure capacity planning and resource
scheduling.

87

88

Part III

Infrastructure SLA Planning

89

90

Chapter 9

Resource Model

Although SLA models define structurally a general context for describing
electronic contracts (an envelope as referred to in many cases), they usu-
ally do not provide languages and models for the SLA content. This is on
purpose, in order to achieve generic use of the various envelope models.

In this Chapter there is provided a resource description model that
can be used within infrastructure SLAs. This model, called Resource Ele-
ment (RE), is an abstract and standards-compatible construct to describe
dynamic groups of resources in a generic manner. Given that resource
pools can be described by the RE, it is also used as an abstraction for
a Resource Manager that is invoked by the respective SAMI’s “Provision-
ing” module from Chapter 6. The relevant invocations are for reasons of
Advance and Immediate Reservation, as a means of resource leasing and
provisioning.

9.1 Rationale and Requirements

In certain usage scenarios, infrastructure resources need to be accessed
by multiple users concurrently; while in others, exclusive operation is re-
quested. In both cases, the maximum number of users accessing the
resources must be controlled – either to enable an acceptable level of
service quality, or to comply with exclusive operation requirements. This
functionality implies the requirement for advance or immediate reserva-
tion of resources, for which an infrastructure service architecture and a
set of operations and reservation attributes need to be defined. Not only
is reservation required for the management of access concurrency, but
also to integrate control tasks such as job submission and data staging
into complex workflows. This is further exaggerated when there are spe-
cific QoS requirements from such workflows, and therefore some level of

91

Chapter 9. Resource Model

predictable behavior is needed [83, 84]. Therefore, reservation of a re-
source when shared use is possible, provides a means to support strict
guarantees and thus contributes to predictable QoS [85].

The reservation of resources, especially when multiple of them are in-
volved and must be reserved together, implies the need for a model that
can describe resources and groups of them. In this chapter a generic
model is provided, alongside primitives for declaring resource groups,
and for reserving them. Using these, it is possible to formulate relation-
ships between resources, and thus express requirements for resource co-
allocation. The resulting data types can be used inside the envelope of
a generic negotiation protocol, but can also be directly supported by re-
source pools attached to a SAMI. In addition to the model and data types,
there is provided a set of generic operations that may be supported by
these resource pools, and therefore used by the SAMI’s provisioning mod-
ule during the negotiation and provisioning phases.

It is important to note that, although when speaking of IaaS one typ-
ically focuses on computing, storage and network resources, there is no
particular reason why other types of resources would not be considered.
Such resources may include sensors, scientific instruments, robotic and
industrial equipment, etc. The presented model takes that into account,
and uses this diversity as a requirement.

On a more specific technical level, the following requirements are
adopted. Firstly, it is necessary to be able to define groups of similar
or identical resources, to which the reservations will correspond. This is
for usability reasons: Reserving large amounts of resources by identify-
ing them, one by one, would be impractical. Via the definition of groups
which correspond to the inherent details of resources, it is possible to
use more complex expressions for resource selection. The reservation
of a single group allows the simultaneous booking of all resources in the
group. There are assumed “get”, “set” (which also includes “update”
semantics) and “cancel” operations for the reservations. Additionally,
functional and non-functional group properties –which are subject to in-
frequent changes and only meant for resource selection purposes– are
expected to be available.

Based on the rationale elaborated above, the aforementioned require-
ments are interpreted into the following categories of functionality:

Execution of reservations: Reservation of groups by identification, by
resource type and properties.

Provision of reservation metadata: Provision of metadata for a spe-
cific reservation and for all reservations.

92

Chapter 9. Resource Model

Handling of existing reservations: Update and cancellation of a reser-
vation.

9.2 Resource Element Design

9.2.1 The Resource Element Model

The Resource Element (RE) is defined to be the service representing and
virtualizing resources within the IaaS provider’s domain, or one of its sub-
domains (for instance, different data centers of the same provider). It al-
lows access, manipulation and management of a set of resources via the
exposure of resource-specific, as well as general-purpose primitives. As a
single RE may represent multiple resources of different kinds, use cases
can require individual operations to be performed atomically on groups
of the real resources represented by this RE. These groups are required
to include resources that are supporting semantically and syntactically
identical operations, such that the invocation of a given group primitive
ensures the operation to be atomically executed on all the elements that
are part of the group itself. This model will now be expressed in terms of
CIM, and its compliance will be shown.

9.2.2 Relevance to CIM Reference Model

The Common Information Model (CIM) [56] provides a common definition
of management information for systems, networks, applications and ser-
vices, although currently it does not include reservation concepts. Never-
theless, the RE definition provided above is compatible with CIM as herein
described (in what follows, the CIM_ prefix of CIM classes is truncated).
The RE implements System, as it defines a functional whole. Resource
groups implement the LogicalDevice class, which is meant to provide an
abstract model of hardware entities. In the case of physical resources that
are sensors, the Sensor subclass of LogicalDevice can be used. Other re-
sources implement PhysicalElement, defined in CIM as “any component
of a System that has a distinct physical identity”.

Through the SystemDevice relationship, LogicalDevice instances can
belong to a System. The many-to-many relationship defined between
PhysicalElement and LogicalDevice models the case where one phys-
ical resource belongs to multiple groups at a time.

The LogicalDevice class exposes properties that can be used for dis-
covery and matchmaking. This allows the construction of complex ex-
pressions for resource selection and reservation based on group type,
or on group properties (for instance “location”, or “CPU clock speed”).

93

Chapter 9. Resource Model

Resource Element
(CIM_System)

Group
(CIM_LogicalDevice)

Group
(CIM_LogicalDevice)

Resource
(CIM_PhysicalElement)

Resource
(CIM_PhysicalElement)

...

CIM_SystemDevice

ID
(DeviceID)

QualityCharacteristics
(IdentifyingDescriptions,
OtherIdentifyingInfo)

Type
(CreationClassName)

Resource (Sensor)
(CIM_Sensor)

Resource (Sensor)
(CIM_Sensor)

realizes

realizes ...

Figure 9.1: Mapping of RE concepts to CIM

The relevant attributes of LogicalDevice are DeviceID, which identifies
groups uniquely, and IdentifyingDescriptions/OtherIdentifyingInfo,
which are free-form and may be used for any kind of such character-
istics. The extension of the LogicalDevice class and the usage of the
CreationClassName property offer an additional easy way to implement
group types.

9.2.3 Relevance to GLUE Schema

As mentioned earlier, the less frequently changing attributes of resource
representations are expected to be available for resource selection and
matchmaking. To achieve this, an appropriate information model is nec-
essary for representation purposes. The Grid Laboratory Uniform En-
vironment (GLUE) Schema by the respective Open Grid Forum working
group [86] addresses this requirement for computing and storage re-
sources, as it already provides representations for them. The abstract
resource virtualization design presented here is compatible with the es-
sential GLUE concepts, therefore the two can be combined and a nor-
mative description in the GLUE framework can be produced straightfor-
wardly. According to the the GLUE 2.0 specification, five core concepts

94

Chapter 9. Resource Model

lie in the heart of the model and can be directly mapped onto the de-
sign presented here. The Resource Element itself is the Service. Its in-
terface to the SAMI, offering implementation information and normative
access methods, is the Endpoint. Single resources themselves are the
Resources; and resource groups are the Shares. Finally, GLUE Activities
refer to control operations taking place on physical resources. This design
does not pose any restrictions to these operations, therefore they can be
freely described in GLUE terms.

9.3 Resource Element Reservations

Establishment of infrastructure SLAs involves a number of players; us-
ing WS-Agreement terminology, they are the Agreement Initiator (AI), the
Agreement Responder (AR) and the RE. Practically, a request to establish
an SLA is – in the context of IaaS – primarily a request to provision re-
sources. As such, the reservation of resources will be required at some
point, be it during negotiation (tentatively) or after the establishment
(permanently for the contract duration). The main scenario addressed
in this Part of the thesis can be as illustrated in Figure 9.2. As evident
there, a customer SAMI (AI) negotiates with the IaaS provider SAMI (AR)
for resources provided by the resource pools (RE). Thus, reservation oper-
ations of the RE must be invoked by the AR, via the provisioning module.

The data structures necessary to support RE reservation functionality
are presented below.

Time Lease: this type is used to define the temporal creation constraints
of reservations. As such, it is required for requesting a reservation,
for verifying the availability of a resource group at a certain point
in time, or for retrieving reservation metadata. The type consists of
a start time expressed as a timestamp, and the guaranteed dura-
tion of the reservation. The start time may be zero, indicating an
immediate reservation.

Group Types and Characteristics: these are simple structures consist-
ing of an identification number and a textual description. They pro-
vide group-specific information that can allow for logical grouping in
the process of matchmaking for a reservation request. Such types
and characteristics may enable the construction of complex con-
straint expressions, such as “reserve 10 CPUs where clock speed is
2GHz and location is Germany”.

Resource Group: the group data type includes a numerical identifica-
tion, a textual description, the group’s type and a list of characteris-

95

Chapter 9. Resource Model

tics associated with it. As any domain-specific group-related data is
decoupled from the group identifier itself, the design can be flexibly
used in very diverse application environments.

Reservation: this type represents the reservation of one or more groups
and includes all related metadata. It contains an identification num-
ber, a timestamp indicating the date and time for reservation set-
up, its duration, the list of the relevant groups reserved, a boolean
attribute to flag the state of the booking operation for all groups,
and, finally, the reservation state itself. The state may indicate that
the agreement is established but not activated yet; alternatively,
that it is active and ready to be used by the authorized consumers;
or that is has expired.

Group

Group D

Agreement
Initiator

Agreement
Responder

Resource
Element

Negotiation
protocol

Reservation
protocol

Agreement
and Resource

Consumer

Group B

Group A

Group C

Legend: A single resource

Figure 9.2: Resource Reservation Scenario

It is very important to note that the model allows both static (prede-
fined) and dynamic groups. In the latter case, it is possible that a group

96

Chapter 9. Resource Model

contains other groups recursively, although this is purely a conceptual
artifact. What is imposed by the data type is that one single specific re-
source may belong to more than one groups. Thus, if resources R1, ..., Rn

all belong to a group S1, and there exists a group S2 which contains all of
R1, ..., Rn but also Rn+1, ..., Rm, then one can conceptually represent S1
to be contained within S2.

The following operations are defined for RE reservation management,
according to requirements from Section 9.1:

Reserve groups By ID: Assuming that the IDs of the resource groups
to reserve are known in advance, the SAMI may use this operation
to invoke a reservation request on the receiving RE.

Reserve Groups By Expression: This operation enables the use of ex-
pressions including resource quantity, group type attributes and
characteristics of a group as reservation constraints. The expres-
sion predicates may be combined using unary or binary boolean
operators to specify dynamically the groups to be reserved.

Retrieve Reservation By ID: This operation returns metadata about a
specific reservation, using its identification number.

Retrieve All Reservations: This operation is meant to return all the
reservations for a Resource Element, or, with appropriate factoring
of the input argument, all reservations in a specific state (e.g. ex-
pired).

Update Reservation: Reservation properties are modified by this oper-
ation using information such as time lease, the list of groups to be
added or subtracted, new types and qualitative characteristics.

Cancel Reservation: It removes an existing reservation, as long as it
has not expired. The policy to adopt in case of active reservations
is a service-provider specific issue.

9.4 Application to Real Use Cases

The model and reservation language presented can have practical ap-
plications when combined with ontologies which describe the systems
(equipment) that will be modeled and reserved. Such ontologies can be
built using various sources, depending on the specific resources. Here, for
illustration purposes, it will be shown how the model applies to a resource
pool including storage, CPUs (processing) and network traffic sensors, as

97

Chapter 9. Resource Model

well as to a real-world scientific instrument. The former could be, for in-
stance, part of the infrastructure supporting the geo-location service dis-
cussed so far in the thesis. Additionally, the structure of a reservation re-
quest and the corresponding operation in a simple pseudo-language will
be illustrated. Storage supports the types found in the Storage Resource
Manager (SRM) specification [87] and a location characteristic. The in-
strument is a weather station coming from a SensorML [88] example, and
including a thermometer, a barometer, an anemometer and a rain gauge.
The thermometer has a resolution of 0.1 degrees Celsius, a range of -45 to
+60 degrees, and its accuracy is ±0.5 degrees. In the simplest scenario,
the computing resources would be as illustrated in Figure 9.3, while the
instrument would be represented as shown in Figure 9.4.

 Resource Element

 Group A
Type: Storage

Characteristics
Volatile: No

Location: Germany
Backup: Daily

 Group B
Type: Processing

 Group C
Type: Network Traffic Sensors

Figure 9.3: Representation of the computing resources

For the computing resources, a sample reservation request could look
in pseudocode as follows:

Reserve Groups by Expression:
Time Lease:
Start: 2010-06-01 13:00:00 GMT
Guaranteed Duration: 3600 seconds
Desired Duration: 7200 seconds

Type: Storage
Characteristics:
Storage: Volatile
Location: Germany
Quantity: 1TB

98

Chapter 9. Resource Model

 Resource Element

 Group A
Type: Thermometer

Quality Characteristics
Resolution: 0.1

Range: -45 -- +60
Accuracy: 0.5

 Group B
Type: Barometer

 Group C
Type: Anemometer

 Group D
Type: Rain gauge

Figure 9.4: Representation of weather station

Making the weather station example slightly more complex, it is as-
sumed that it has two thermometers; one with the characteristics men-
tioned earlier, and another one with more accurate characteristics, e.g.
resolution equal to 0.01 degrees, range -65 to +70, and accuracy 0.05
degrees. A request to reserve this latter sensor for measurements would
look in pseudocode as follows:

Reserve Groups by Expression:
Time Lease:
Start: 2010-06-01 13:00:00 GMT
Guaranteed Duration: 3600 seconds
Desired Duration: 7200 seconds

Type: Thermometer
Characteristics:
Accuracy: 0.05

In the case where dynamic groups would be used, a group containing
the more accurate thermometer would be automatically created and re-
served. The initial resource representation would only include the groups
originally defined by the resource owner (IaaS provider). Then, as reser-
vation requests would come in and be accepted, additionally created
groups could enrich the group ecosystem of the RE for all users, or re-
main private for the authenticated user who created them, depending on

99

Chapter 9. Resource Model

implementation choices.
Similarly, for more traditional resources such as CPUs or storage, the

use of dynamic group creation and deletion is necessary as a means to
group resources on-the-fly according to incoming requests on one hand,
and existing availability on the other. By way of an example, one can
consider a case of a RE with a single group of 100 CPUs, all of the same
characteristics. A reservation requests for a group that includes 50 CPUs
of those same characteristics, would allow the RE to randomly select 50
out of 100, group them under a single reference endpoint, and return that
to be used in all further communication with the requesting SAMI. The
remaining 50 CPUs would form a new group to denote available (free) re-
sources, but on the same time the original group would remain to denote
the complete resource set.

9.5 Related Work

As discussed in Paragraph 9.2.3, GLUE is a model to describe computa-
tional resources – especially in the context of Grid computing. The model
presented here is compatible with GLUE, but more generic, so as to allow
the modeling of infrastructure resources other than compute units and
storage. This abstract approach is necessary to describe, for instance,
sensors, or scientific instruments. In this latter case, the types of the re-
source could be anything: “cameras” for telescopes, “pressure sensors”
or “temperature sensors” in meteorological stations, “network interfaces”
in active networking equipment, “motors” in robotic equipment, etc. The
diversity of the different instrument types that comprise certain appa-
ratus can be too large to express with a reduced dictionary. Similarly,
the quality and suitability of a specific instrument can be expressed in
many different ways. Examples include error rate, accuracy, response
time, availability. However, it must be pointed out that different devices
may have completely different metrics to indicate their appropriateness
for a purpose, therefore also their suitability to a specific use case: Field
of view (lens width), for cameras; Resolution, for visualization devices;
Throughput, for a hardware encryption device; and so on.

The same differentiation applies for storage: Advance reservation of
storage resources has been specified by the Storage Resource Manage-
ment Working Group (SRM-WG) of the Open Grid Forum. SRM reservation
operations are storage-specific as they include a number of functional
attributes which are of particular interest to this application area.

In [89], Czajkowski et al. define a protocol for SLA negotiation in the
context of Grid computing. Within this definition there exists a resource

100

Chapter 9. Resource Model

description language, which is largely equivalent to the one presented in
this Chapter. One difference between the two, is the additional semantics
in the present work for resource clustering in virtual, dynamic groups.
In addition, here there were presented advance reservation primitives,
which were not within the scope of [89].

In [90], Kee et al. describe vgDL, the “Virtual Grid Description Lan-
guage” that serves similar purposes. Nevertheless, the language is specif-
ically targeting the Grid computing area, and as such, it is not clear how
easily the language can be applied to different environments. Conversely,
the language presented in this Chapter remains abstract on purpose, and
therefore application in diverse domains is relatively straightforward.

Some very recent work that took place in parallel with the one de-
scribed herein, is [91] by Koslovski et al. The authors present VXDL,
a language to describe virtual resources and interconnection networks.
Targeting a similar area, but not providing similar advance reservation
primitives as in this Chapter, the aforementioned paper provides the def-
inition of a more well-specified language (i.e. with specific syntax) that
covers both traditional infrastructure resources (compute units, storage,
network elements/circuits) but also acquisition and visualization devices,
software, etc. In addition it makes possible to define resource groups, as
is also the case with the work described here. Compatibility with other
efforts and standards is not discussed.

Summary and Conclusions

In this chapter, a resource description model was defined, alongside prim-
itives for advance reservation of such resources. The goal of this work
was to complement the SAMI architecture and allow access to resources
in parallel to SLA negotiations. The contribution by this work can be sum-
marized as follows:

• The model is extensible and can be used in very diverse use cases,
to describe arbitrary kinds of infrastructure;

• It is compatible at large with standards such as CIM and GLUE;

• Given a machine-readable rendering, the model can be used to-
gether with envelope negotiation protocols and models (such as,
for example, WS-Agreement);

• It is coupled with generic constructs for reserving resources in ad-
vance;

101

Chapter 9. Resource Model

• It supports clustering of resources in virtual groups; and

• It is not tied to specific technologies (such as XML), rather it can be
adapted through respective renderings.

In the upcoming Chapter, two greedy resource planning algorithms
will be examined in the context of a hierarchy of SAMIs. The concepts
from Part II, together with the concepts from this Chapter, will be applied
to the use case of Infrastructure as a Service as an example of applica-
tion.

102

Chapter 10

IaaS SLA Planning

As mentioned earlier in the thesis, this part comprises an evaluation of
the concepts mentioned thus far to show how hierarchical SLA manage-
ment can be achieved. In this Chapter and the next one, SLAs and their
hierarchies will be used as a means for infrastructure resource capacity
management in the context of IaaS.

More specifically, in this chapter a scenario is sketched and the whole
setup for IaaS SLA management is illustrated. A simulation is designed
as proof of concept based on this scenario, putting the focus on normal,
runtime operations. There, SLA requests arrive from customers, they are
being negotiated, served, and expire. To this extent, the Chapter serves
as proof that the proposed design and models for hierarchical SLA man-
agement are feasible.

As discussed earlier, the SLA planning methodologies used during
negotiation are considered to be use-case specific. Here, two different
greedy scheduling algorithms are used for this purpose. The algorithms
are modeled after the online bin-packing problem, and they are evalu-
ated (via the aforementioned simulation) with regard to their energy effi-
ciency, performance, and resource utilization efficiency.

10.1 Scenario Description

The scenario assumes customers (which may be represented by a SAMI
themselves) who contact the provider to ask for the establishment of
one or more SLAs, where the service involves infrastructure resources.
The provider has a top-level negotiating SAMI, without any attached re-
sources. The latter are distributed among a number of data centers, and
resource pools contained in those data centers. For each data center,
there is a SAMI that negotiates for the respective resources, and a Re-

103

Chapter 10. IaaS SLA Planning

source Manager (abstracted by the Resource Element model) that man-
ages them. An SLA of the customer with the provider’s SAMI implies
there is at least one, or perhaps more, SLAs between the provider’s SAMI
and the data center SAMIs. For reasons of convenience, but without loss
of generality, the assumption here is that each SLA consists of one co-
location unit – that is, all resources for that SLA must reside in the same
data center. Nevertheless, it is straightforward to have more than one
co-location units inside an agreement, and assign each one of them to a
single data center. This applies as long as it is possible to associate each
co-location unit with a specific price and penalty.

An incoming SLA request, such as the ones used for the simulation
discussed later in this Chapter, looks like the example from Figure 10.1.
There it is assumed that the constructs offered by the negotiation proto-
col’s envelope are used to assign temporal, price, and penalty parame-
ters. That said, there is nothing that prohibits to use the resource request
(RE) structure for the same purpose; the SAMI would then have to remove
those group characteristics that cannot be understood by the resource
manager. This would then allow to have a single resource request – with
multiple resource groups – inside the SLA request.

SLA Request

 ...

Resource Request 1

Group 1.1
Type: Virtual Machine

Characteristics
Quantity: n1

Resource Quality: (QoS, Size)

Reservation: [Long running | Strict | Batch]
Start Time: DateTime
End Time: DateTime

Duration: Integer
Price: Float

Penalty: [Penalty Function]

Resource Request N

Group N.1
Type: Virtual Machine

Characteristics
Quantity: nN

Resource Quality: (QoS, Size)

Reservation: [Long running | Strict | Batch]
Start Time: DateTime
End Time: DateTime

Duration: Integer
Price: Float

Penalty: [Penalty Function]

Figure 10.1: An SLA request example

Incoming SLA requests were produced at random for the simulation. It
should be noted that these requests contained no boolean operators, and
therefore no BDD construction or path selection was necessary. This ap-
proach was chosen to reduce less-relevant complexity, but also because
the performance of constructing BDDs for random boolean functions is
out of scope for the present work (readers interested in the topic can

104

Chapter 10. IaaS SLA Planning

study [92] by Wegener and [93] by Gröpl). The specific choice does not
affect generality; should there be more than one alternatives (paths end-
ing to node 1), the one with the highest returns could be chosen – and if
it could not be satisfied due to lack of resources, the next one(s) would
be tested.

The resources involved in each SLA are Virtual Machines (VMs), all
characterized as “gold”, “silver” and “bronze” to illustrate different qual-
ity of service (CPU clock speed, amount of memory, amount of storage).
Each QoS level also has two categories (“small” and “large”), resulting
in the possible requested configurations from Table 10.1. They are as-
signed in servers of the same QoS class, to reflect the correct clock speed,
but also the correspondingly larger total amounts of memory and storage
(Table 10.2). All memory and storage amounts are counted in GB. Each
resource manager (data center) has three resource pools, one for each
server type, each pool featuring 5000 servers. There are three REs in to-
tal, each represented by one SAMI. Figure 10.2 illustrates the described
setup.

QoS class Category Clock speed Memory Storage

Bronze Small 1.6 1 80
Bronze Large 1.6 2 140
Silver Small 2.0 2 160
Silver Large 2.0 4 280
Gold Small 2.4 4 320
Gold Large 2.4 8 560

Table 10.1: Virtual machine types

QoS class Clock speed Num. Cores Memory Storage

Bronze 1.6 4 8 640
Silver 2.0 8 32 2560
Gold 2.4 16 128 10240

Table 10.2: Server types

A customer must provide, as part of the request, the respective details
of each resource group that must be allocated. These details include, for
each resource group, the following information:

1. Reservation type: May be one of long-running, strict, and batch.
Long-running indicates that the point in time when the allocation
should be de-activated (i.e. when the lease will expire) is not known;

105

Chapter 10. IaaS SLA Planning

Provider's
SAMI (A)

Data
Center

SAMI (B)

Data
Center

SAMI (C)

Data
Center

SAMI (D)

Resource Manager

Gold servers

Bronze servers

Silver servers

 Negotiation

Provisioning

Resource
Manager

Resource
Manager

Customer

 Negotiation

First-fit

First/Best Fit

Figure 10.2: The IaaS scenario of Part III

the resources would be constantly needed for the foreseeable fu-
ture. Strict means that the given time limits (as discussed below)
are strict and should be honored, otherwise the SLA will be consid-
ered to be violated. Finally, batch means that the resources must
be allocated to the user at some point between the declared time
limits, for a duration also declared, with the duration being shorter
than the given time frame. This basically means that the provider is
free to schedule those resources for some point in time when it will
be most convenient; the user does not care exactly when that will
be, as long as it is for the given duration. Should the total duration
be less than the requested one, penalties will apply.

106

Chapter 10. IaaS SLA Planning

2. Resource quantity: The amount of requested resources, in some
standard unit.

3. Resource quality: Combination of size category (large, small) and
quality (gold, silver, bronze).

4. Start time: When the resources should become available (or earliest
time limit for batch resource groups).

5. End time: When the resource can be de-commissioned (may be a
value implying “never” for long-running groups, or a value implying
the latest acceptable point in time for batch groups).

6. Duration: For how long the resources must be available. May be
irrelevant for long-running groups, equal to the given time frame
for strict groups, and shorter than the given time frame for batch
groups.

7. Penalty: A percentage of the group’s cost, depending on failure ra-
tio, as discussed in Chapter 7. The failure ratio is proportional to the
amount of time that the group’s resources are unavailable.

A price per resource group is also assigned to each of them. It is
the product of a random value, the group’s resource quantity, and its
duration.

10.2 Algorithms

As also illustrated in Figure 10.2, the assignment to a data center is al-
ways made (in this scenario) on a First-Fit basis. In the next Chapter,
different strategies for the negotiation among the provider SAMI and the
data center SAMIs will be explored.

The provisioning strategy, however, may take different forms. The
scenario is modeled as a dynamic, multi-dimensional, online bin-packing
problem. A bin-packing problem is the (combinatorial) problem that tries
to minimize the number of bins into which are placed N given items of
different sizes, and all items are known in advance. Its online counterpart
is the same problem, but the items are not known in advance; rather,
every time a new item m is given, m < N, the remaining items (m +
1..N) are unknown. The multiple dimensions are related to the different
types of resources required per item (CPUs, memory, storage). Finally,
the problem is characterized as dynamic due to the introduction of a time
dimension, and the fact that items may also leave a bin – not only join it.

107

Chapter 10. IaaS SLA Planning

Figure 10.3 illustrates the problem graphically. Each box without a
label represents a request for a VM, within the incoming SLA offer. Its
horizontal side represents the amount of memory that the VM should fea-
ture, and the vertical side represents the respective amount of storage.
The color shows what is the required clock speed (and, therefore, in which
server pool it should be assigned). The problem faced is how to assign all
VM requests and minimize the number of (active) servers that have one
or more VMs assigned to them. That means, unused memory and storage
should be minimized for the active servers, while in parallel, the number
of inactive servers (dark-colored ones) should be maximized. Figure 10.4
illustrates the time dimension of the problem (excluding the “storage”
dimension and keeping only the one about memory, to simplify represen-
tation). Requests A – E are being agreed to as they come. The height of
each box represents the requested memory, while the width represents
the duration of the advance lease. Location on the time axis represents
the exact point in time when the lease starts. When SLA request F ar-
rives, it cannot be placed into Server 1, as there is not enough memory
left available from point in time T1 to point in time T2. Server 2 must then
be started, and the request should be assigned on it.

Bronze

Bronze

Bronze

Bronze

Bronze

Silver

Silver

Silver

Gold

Gold

Figure 10.3: Two-dimensional bin (server) packing

The reason that the formalization of bin-packing is chosen, is the wish
to minimize the number of active servers, and thus explore the efficiency
of different approaches with regard to energy savings. Although bin-
packing is one of the oldest combinatorial problems, and there exist var-
ious different formulations (online/offline, dynamic/static, single-/multi-
dimensional), the combination of all three properties has not been stud-

108

Chapter 10. IaaS SLA Planning

M
e
m

o
ry

 u
ti
li
z
a
ti
o
n

Time

A

Total available memory

C

E

D

B

Server 1

M
e
m

o
ry

 u
ti
li
z
a
ti
o
n

Time

Total available memory

Server 2

F

T1 T2

Figure 10.4: Dynamic bin (server) packing

ied until very recently. To the best of the author’s knowledge, the only
other work that addresses this specific problem is [94] by Epstein and
Levy, under publication at the time of writing (September 2010). This
paper studies the problem in a more complete manner, and therefore
readers interested in its properties are recommended to advise with it. In
the present Chapter the requirement is to apply the problem, as an ap-
propriate formulation, and explore the efficiency of two relatively simple
solving algorithms. It should also be noted that in the traditional dynamic
variant of the online bin-packing problem, the events of an item leaving
the bins is not known in advance. In the case studied here, it may be
known in advance when an item will leave the bins, as it reflects the du-

109

Chapter 10. IaaS SLA Planning

ration of the reservation (declared by the customer at negotiation time,
in the case of strict and batch reservations).

The strategies explored are a First-Fit (FF) and a Best-Fit (BF) greedy
algorithm. The FF algorithm is going through the list of open bins (can-
didate servers) for each VM group requested in an SLA, until the first
server with sufficient resources is found for the time frame of the group
and some part of its total quantity; when this happens, the specific VM
group’s quantity is reduced by the respective amount that was assigned
to the server, and the search continues in the same manner until the full
group quantity has been assigned. Figure 10.5 illustrates the algorithm
executed for every resource group in the request, in the form of a flow
chart.

Start

Select first server

in pool

Select next

server in pool

No No

YesYes

Available

resources?

Assign as many

as possible

Group fully

assigned?

Stop

Last server?

No

Yes

Figure 10.5: First-Fit assignment algorithm for each resource group

The Best-Fit algorithm is similar, but instead of selecting the first server
with available resources, it tries to find the one that will minimize resource

110

Chapter 10. IaaS SLA Planning

waste (in the form of spare cores, or memory/storage residue). Naturally,
this means that BF has to run through the server list multiple times –
up to s2, s being the total number of servers in the pool. Therefore, its
performance is expected to be much worse than FF; this is confirmed in
Section 10.3 via simulation. The Best-Fit algorithm used is illustrated in
Figure 10.6.

10.3 Experimental Evaluation

The simulation was executed for three different arrival rates and resource
demand scenarios: One where resources were always enough for both
algorithms (low consumption), a “borderline” one where some SLA re-
quests would start being dropped, and one where resource demand was
very high and the pools could not keep up with it. Results were averaged
across the three data centers, for each case.

In all cases, execution speed of the Best-Fit algorithm was predictably
much worse than First-Fit. This is illustrated in Figure 10.7. It is imme-
diately evident that BF is significantly slower than FF. Nevertheless, this
delay should be assessed in relation to potential advantages in SLA ac-
ceptance rate and energy savings.

In the first case, as designed, all SLAs were accepted by both strate-
gies. Looking at energy savings, measured by means of total servers
switched on, Figure 10.8 shows that the Best-Fit algorithm performs bet-
ter to some small extent. Zooming in to the graph, Figure 10.9 shows that
the difference is in the scale of 2%. In general, the better performance
of the BF strategy is expected: It it tuned to avoid resource waste, and
therefore, it always first tries to maximize utilization for the servers that
have some resources available. Therefore, it fills utilization gaps, and is
slower to try switch on the next available server.

Switching to a larger arrival rate, Figure 10.10 shows that BF accepts
all SLA requests, while FF already starts dropping some.

In this case, however, energy savings are much more using a BF strat-
egy, and can be seen to approach 5% - 6%. This is illustrated in Fig-
ures 10.11 and 10.12.

When moving to the very large arrival rate, where in both cases not
all incoming SLA requests can be served, these energy saving difference
is evened out as one would expect. All servers must be utilized, and the
advantage of the BF strategy now is that it can serve more SLA requests,
as it has been making better use of the available resources. Figure 10.13
illustrates this better rate of accepted SLAs, which at times reaches a
gap of approximately 10%. Finally, Figure 10.14 shows that all servers

111

Chapter 10. IaaS SLA Planning

Start

Select first

server in pool

Available

resources?

Calculate

residue

Store as

candidate

Select next

server in pool

Last server?

Yes

No

No

Sort candidates

by residue

Assign as many

resources as

possible

Select first

candidate

Last

candidate?

Select next

candidate

No

Yes

List empty?
No

Stop

Yes

Group fully

assigned?

No

Yes

Yes

Figure 10.6: Best-Fit assignment algorithm for each resource group

112

Chapter 10. IaaS SLA Planning

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100

Pl
an

ni
ng

 d
ur

at
io

n
(s

ec
)

Time

Duration of planning for incoming requests

First-Fit
Best-Fit

Figure 10.7: Performance comparison of FF and BF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge
 o

f a
ll s

er
ve

rs

Time

Active (switched-on) servers

First-Fit
Best-Fit

Figure 10.8: Energy savings comparison (low arrival rate)

113

Chapter 10. IaaS SLA Planning

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge
 o

f a
ll s

er
ve

rs

Time

Active (switched-on) servers

First-Fit
Best-Fit

Figure 10.9: Energy savings comparison, zoom in (low arrival rate)

are fully utilized, and the advantage of the BF strategy has vanished as
expected.

Via all the experiments run, it is evident that the use of a Best-Fit strat-
egy that tries to minimize resource waste within a single data center, has
significant advantages when aggregated over the whole infrastructure of
a provider. Energy savings varied and reached a difference of approxi-
mately 6%; and accepted SLA requests (which can be directly reflected
on additional customers and therefore additional revenue) was also signif-
icantly higher in the case of saturated infrastructure. These advantages
should be balanced against the significantly higher planning time. The
gap among the two varied, but was consistently high, in some cases more
than an order of magnitude. That said, the total time wasn’t prohibitively
large, and in all cases remained under 20 seconds for our setup of three
data centers, nine resource pools, and 5000 servers in each pool. Should
this planning duration be acceptable, then the gains in using a Best-Fit
strategy should not be overlooked.

10.4 Related Work

Variants of bin-packing have been studied extensively in the past. As
mentioned in Section 10.2, Epstein and Levy very recently studied the
complete variant we use here (albeit with unknown departure times for
the items involved) in [94]. An overview of related approximation algo-

114

Chapter 10. IaaS SLA Planning

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge
 o

f t
ot

al
 s

ub
m

itt
ed

 re
qu

es
ts

Time

Accepted SLA requests

First-Fit
Best-Fit

Figure 10.10: Accepted SLAs comparison (medium arrival rate)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge
 o

f a
ll s

er
ve

rs

Time

Active (switched-on) servers

First-Fit
Best-Fit

Figure 10.11: Energy savings comparison (medium arrival rate)

115

Chapter 10. IaaS SLA Planning

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge
 o

f a
ll s

er
ve

rs

Time

Active (switched-on) servers

First-Fit
Best-Fit

Figure 10.12: Energy savings comparison, zoom in (medium arrival rate)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge
 o

f t
ot

al
 s

ub
m

itt
ed

 re
qu

es
ts

Time

Accepted SLA requests

First-Fit
Best-Fit

Figure 10.13: Accepted SLAs comparison (large arrival rate)

116

Chapter 10. IaaS SLA Planning

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge
 o

f a
ll s

er
ve

rs

Time

Active (switched-on) servers

First-Fit
Best-Fit

Figure 10.14: Energy savings comparison (large arrival rate)

rithms for other online variants can be found in [95] by T. Gonzalez (ed.)
and [96] by Coffman et al.

In [97], Van et al. also address a VM packing problem aiming at min-
imizing active servers, but they approach it as an offline, combinatorial
problem that they solve periodically. Also, VM migration is possible in
their model, something not allowed in the scenario presented here. A
similar approach is presented by Hermenier et al. in [98]. The authors
discuss task placement in cluster systems, but assume a VM per task,
making the problem largely equivalent.

In [99], Nakada et al. apply a genetic algorithm to plan efficient VM
packing vectors, as an alternative to best-effort and VM migrations. Their
work, however, is currently at the first stages and therefore it is difficult
to extract conclusions with regard to its sufficiency or purpose fitness.

Ajiro and Tanaka present some similar work for server consolidation
in [100]. They perform measurements using two different algorithms, a
First-Fit Decreasing (FFD) one (which is equivalent to BF from this Chap-
ter), and a Least-Loaded (LL) one where the load was assigned to the
server with the most available resources. By definition for this Chapter’s
energy-saving objective, LL was inappropriate. Also, the authors do not
address the time perspective.

As regards SLA-based resource scheduling, there has been quite some
work in the area during the last few years. Most existing work, however,
looks into application-specific SLAs (which may, for instance, address ap-

117

Chapter 10. IaaS SLA Planning

plication performance guarantees), while the present work considers only
SLAs for infrastructure services that are application-agnostic.

In [101], Netto et al. concern mostly with advance reservation of re-
sources. Similarly to the work presented in this chapter, SLAs may have
some flexibility with regard to their start and end times. Although Netto
et al. do not include long-running SLA requests, they have a type that
has flexible start time and strict end time. The authors also assume that
the user provides (as part of the SLA) a function that correlates execution
time with number of resources; and that there is, as such, flexibility with
regard to the amount of resources assigned to the user. Conversely, here
it is assumed that the user requests a specific amount of resources for a
specific duration, and the main concern is which resources to use so that
the energy footprint is reduced.

In [102], Goiri et al. look at SLA-driven resource management in the
context of Grid computing. As such, SLAs are related to specific tasks
also in this case. The paper is related mostly to SLA adjustment issues: It
presents a method to reschedule SLAs that are failing, by scaling either
vertically or horizontally. These concepts and the architecture presented
may be useful for the purpose of renegotiation and dynamic workloads.
A very similar system is presented in [103] by Roy and Mukherjee. Using
management agents in a Grid environment, the authors monitor tasks in
relation to the respective SLAs, and perform adjustments when neces-
sary.

Finally, in [104] Ardagna et al. present a solution to the problem of as-
signing multi-tier applications to servers within a data center. The multi-
tier nature of those applications makes the problem quite similar to the
topic of hierarchical SLAs, nevertheless the authors address it exclusively
in the context of a single data center. Ardagna et al. construct a Mixed-
Integer Non-linear Program, based on which they try to maximize revenue
and minimize costs; the latter, in the form of reduced energy footprint.
The problem is solved using a custom heuristic.

Summary and Conclusions

In this Chapter, there was presented a scenario that applies the main SLA
management concepts from Part II on the domain of Infrastructure as a
Service. Multiple SAMIs are assumed, in different management domains,
serving incoming SLA requests. Based on those requests, which were dis-
patched from a central broker to the data centers, two different VM place-
ment algorithms were evaluated as regards their performance and energy
efficiency, in a simulated environment. The algorithms, First-Fit (FF) and

118

Chapter 10. IaaS SLA Planning

Best-Fit (BF), could be used as the POC implementations of the data cen-
ter (2nd level) SAMIs. They exhibit a large difference in performance, with
FF being faster. However, BF is significantly more efficient with regard to
resource utilization, and energy savings by means of switched-off servers
(no VMs assigned to them).

In the Chapter that follows, a different planning problem (yet, within
the same setup) will be tackled. More specifically, the problem is to de-
cide on the best course of action when suddenly resources become less
than those needed to serve the already established SLAs. This may hap-
pen, for instance, in the case of massive resource failure. The objective of
upcoming work is to minimize resulting penalties, and the approach used
is to solve a knapsack-based combinatorial problem.

119

120

Chapter 11

Offline Planning with
Limited Resources

After an SLA has been established, it must be executed and monitored.
Failure to provide the necessary resources and implement the service will
result in a penalty, according to the SLA’s provisions.

In this Chapter, it is assumed that at some point in time the resources
become drastically less than needed to serve the SLAs already estab-
lished. This may be, for example, due to some massive resource failure.
The provider at that point must make a choice, which SLAs to violate pur-
posefully, and to what extent. This is different from the previous Chapter
not only because of the extraordinary circumstances involved, but also
because the planning involved is now offline: the provider knows all SLAs
in advance, and can use the complete SLA set during this planning pro-
cess.

11.1 Scenario Description

As an example of the situation to be examined in this Chapter, it will be
assumed that at some point in time the normal operations (as described in
Chapter 10) are disrupted because of one data center failing completely,
e.g. due to power outage, network disruption, etc (Figure 11.1). It must
be stressed that this is just an example; the approach is valid in any case
where the existing available resources are less than those required by
established SLAs. Another example of such an occasion could be the case
where SLAs are not automatically negotiated among SAMIs, but rather
inserted into the system by an administrator without prior confirmation
of the existing resource capacity. Should resources become less than
those necessary for the complete provisioning of all SLAs, some of them

121

Chapter 11. Offline Planning with Limited Resources

will have to be withdrawn partially or completely.

Provider's
SAMI (A)

Data
Center

SAMI (B)

Data
Center

SAMI (C)

Data
Center

SAMI (D)

 Negotiation

Resource
Manager

Resource
Manager

Resource
Manager

3rd Party
Provider

SAMI
 Negotiation

Figure 11.1: Resource failure scenario

This time, the problem is not to fill up as few servers as possible, like
in Chapter 10. Rather, it is a question how to make the best possible use
of all available resources – where “best” is associated to the least penalty.
Figure 11.2 illustrates the concept in a simple manner. If the resource pool
is as shown in this Figure, where the horizontal dimension represents time
(lease start times and durations), the vertical axis represents the SLA(s)
requested resource quantity; and the number in each SLA representation
is the associated penalty if it is discarded; then the problem is which SLAs
to choose and assign resources to, so that the penalties of the remaining
SLAs (the ones “outside” the pool) are minimized.

SLAs

Resource pool(s)

3

4
1

8

2

1
6

9

Figure 11.2: Problem illustration

In this case, we are evaluating five different planning strategies, for
the interaction among the main provider’s SAMI (A) and the data center
SAMIs (B, C) or possibly a 3rd-party provider’s one. It is important to note

122

Chapter 11. Offline Planning with Limited Resources

that 3rd-party SAMIs and data center SAMIs are essentially treated in the
same way. For the provisioning phase (i.e. the communication between
data center SAMIs and REs), a simpler model has been chosen here to
improve simulation speed: It is assumed that there are large resource
pools with CPUs, memory and storage, instead of separate servers of-
fering them as it was examined in Chapter 10. This does not affect the
results, due to the fact that within a data center there is simply a check
whether an SLA fits or not; and the result is the same, irrelevant of the
strategy used each time. Thus, this simplification causes no loss of gen-
erality when it comes to the comparison of the five examined strategies.

The structure of an SLA is as discussed in the previous Chapter. It
includes a single co-location unit, that is, a group of resources that must
end up in the same data center. Each group contains subgroups (resource
requests) of the same resource types, for instance “CPU cores of clock
speed 1.6 GHz”, and a requested quantity. For each resource request,
there is also mentioned the type of the lease (long-running, strict, batch)
and the respective time limits.

The planning strategies that will be evaluated are the following:

Non-flexible: The SLA is included/ scheduled in full, or not at all. That is,
there is either no penalty, or a penalty equal to the full price of the
SLA. Apparently this strategy is the least flexible, being almost “bi-
nary” in nature: All resources have to be provided, otherwise the full
penalty applies. It represents resource requests where the various
groups inside them are tightly coupled, and it is not useful to have
some resources available, while others are not. The only element
of flexibility is with regard to start / end time, for “batch” reserva-
tion types as discussed in Chapter 10. Even in that case, however,
the total duration of the lease is strictly defined; if the resources are
provided for less time than agreed, the full penalty applies. One can
intuitively see that this strategy will be the fastest, as there are far
less options to evaluate during the optimization phase.

Flexible-items: Some of the resource requests in the SLA may be ac-
cepted, while others not. The total penalty is the sum of penalties
for each resource request that was not accepted. This strategy is
similar to the previous one, with regard to the lack of flexibility re-
garding time. It is not possible to modify the start or end time of the
associated resource leases, except for batch reservations where the
duration must still remain the agreed one, or the full penalty will oc-
cur. Looking at Figure 11.3, it may be the case that resource request
1 is accepted and assigned, while resource request 2 is not. This
could happen if, for instance, after calculating penalties for the two

123

Chapter 11. Offline Planning with Limited Resources

requests according to the respective penalty functions, it turned out
that the penalty for request 1 is relatively smaller than the one for
2, and therefore can be tolerated.

SLA Request

Resource Request 1

Group 1.1
Type: Virtual Machine

Characteristics
Quantity: 5

Resource Quality: ...

Reservation: Long running
Start Time: DateTime
End Time: DateTime

Duration: Integer
Price: Float

Penalty: [Penalty Function]

Resource Request 2

Group 2.1
Type: Virtual Machine

Characteristics
Quantity: 10

Resource Quality: ...

Reservation: Strict
Start Time: DateTime
End Time: DateTime

Duration: Integer
Price: Float

Penalty: [Penalty Function]

Figure 11.3: Example for “flexible items” strategy

Flexible-time: In an effort to maximize the number of accepted SLAs
(i.e. minimize the number of customers that receive no service
whatsoever), in this strategy there is given complete flexibility: Not
only some resource requests of an SLA may be served while oth-
ers not, but those that were chosen may be scheduled to start later
than planned, end earlier (for “strict” leases) or have a duration
shorter than requested (for “batch” leases). In the example from
Figure 11.3, it may be the case that request 1 (featuring a long-
running reservation) may start later than agreed; and 2 may start
later, end earlier, or be rejected altogether.

First-Fit: This is a greedy algorithm, that sorts SLAs according to their
penalties in decreasing order and tries to assign (serve) as many
of them as possible. It follows an all-or-nothing approach, like the
“Non-flexible” strategy. Each SLA is committed to the first data cen-
ter in a row that will have enough resources (i.e., the first SAMI to
accept it).

Best-Fit: Like First-Fit, but the SLA is committed to the SAMI that will
report back the least available (free) resources after acceptance.
As it cannot be realistically expected that 3rd-party SAMIs will report
resource availability, this algorithm can be applied only within the
same administrative domain – that is, within the same IaaS provider.

124

Chapter 11. Offline Planning with Limited Resources

In all strategies, the objective is to pay the least penalties possible.
The evaluation in Section 11.3 will assess them with regard to execution
time, best achieved objective, how far customers are affected, etc.

11.2 Problem Models

The three combinatorial strategies (Non-flexible, Flexible-items, Flexible-
time) will be formalized as binary (0-1) Integer Linear Programming (ILP)
models. It is also possible, with some modifications, to formalize them as
Mixed-Integer Programs (MIP) of quadratic form. Such models are simpler
to express and more flexible with time. However, they are also known
to be extremely difficult even for state-of-the art solvers and relatively
small instances, therefore an ILP approach was preferred. As it will be
shown later, even like this, the problems are fairly hard to solve for larger
instances. In order to achieve the ILP formulation, time was quantized.
The exact analogy of each simulated time slot to a real time duration is
left open; it may be one minute, one hour, or anything else.

The problem is formulated as a knapsack problem [105] variant. More
specifically, this is a multi-period, multi-dimensional, multiple-knapsack
problem. In the traditional knapsack problem, the question is the follow-
ing: If there is one knapsack of known (weight) capacity; a number of
items with their total weight to be larger than the knapsack’s capacity;
and each item has a value associated with it: What is the combination of
items that can be put in the knapsack, so that its capacity is respected,
and the total value of items is maximized.

Here, the “multi-period” part relates to the fact that items may come
and go depending on time. “Multi-dimensional” is related to the fact that
each SLA includes resource requests of different types (reflecting the dif-
ferent resource types), and therefore there are more than one knapsack
capacity dimensions to be considered. Finally, there are “multiple knap-
sacks” representing the multiple data centers that may be used.

Variants of the knapsack problem have been extensively studied in
the past, and there have been various combinations of such variants ex-
amined. To the best of the author’s knowledge, this is the first time that
the specific combination of the three variants is formalized and studied.

11.2.1 Non-flexible

The integer variable xij indicates whether SLA i (out of I SLAs in total) is
assigned to data center j, or not. Its values are 1 and 0, respectively:

xij ∈ {0, 1} (11.1)

125

Chapter 11. Offline Planning with Limited Resources

Each SLA may be assigned only to one out of the existing J data cen-
ters, at most:

J∑

j=1

xij ! 1 (11.2)

The integer variable yijklm indicates whether resource request m of
SLA i is assigned to data center j, from time slot k to time slot l (inclusive).
It also takes values 1 or 0, to indicate an assignment or not:

yijklm ∈ {0, 1} (11.3)

k ! l (11.4)

Each of these resource requests may be assigned to one data center
at most. In addition, it can only be assigned once – i.e., only one value for
k and one for l are acceptable:

J∑

j=1

H∑

k=1

H∑

l=1

yijklm ! 1 (11.5)

As mentioned earlier, in this strategy the target is to assign the com-
plete SLA, or no part of it at all. This means that, if the SLA is accepted
(i.e. assigned to a data center), all of its resource requests should be
accepted as well; and if the SLA is not accepted, no resource requests
should be accepted either. This constraint is formulated as follows:

H∑

k=1

H∑

l=1

Mi∑

m=1

yijklm = Mi · xij (11.6)

Mi is the number of resource requests in SLA i.
Each resource request m of SLA i has a lease type LTm, which takes

values from the set (LR,ST ,BA) – for Long Running, STrict and BAtch. It
also has a declared duration, DURim, a start time Ts

m and an end time
Te
m. If a start time is in the past (i.e. the SLA is already executing), it is
substituted by the current time:

Ts
im = max((NOW), Ts

im) (11.7)

It applies that:

(LTm = LR)∧ (k *= Ts
im ∨ l *= H)

(LTm = ST)∧ (k *= Ts
im ∨ l *= Te

im)

(LTm = BA)∧ (k < Ts
im ∨ l > Te

im ∨ l− k+ 1 *= DURim)

⇒ yijklm = 0

(11.8)

126

Chapter 11. Offline Planning with Limited Resources

That is, for long-running leases, candidate start time k must be equal to
the declared start time Ts

m and candidate end time l must be equal to
the end of the planning horizon. For strict leases, k and l must be equal
to declared start and end times; and for batch leases, k and l must be
within the declared limits Ts

m and Te
m, while duration should be equal to

the duration declared (requested) by the user. In all other cases, the
assignment variable yijklm must be 0.

For any given time slot t within the planning horizon, the 0-1 variable
zimt indicates whether resource requestm of SLA imay be active at that
moment:

zimt =

{
0, t < Ts

im ∨ t > Te
im

yijklm, Ts
im ! t ! Te

im

(11.9)

The weight of a resource request m of SLA i in a specific dimension
d is wimd. As also mentioned earlier, dimensions are different types of
resources, such as CPU cores, memory, storage. The sum of all weights
of active resource requests at any given point in time and for any given
resource type (dimension), should not exceed the amount of available
resources of that type:

I∑

i=1

Mi∑

m=1

wimd · zimt ! cjd (11.10)

Finally, PENiklm is the penalty of an resource request m of SLA i,
if it is active during time slots k to l. Penalty definition is external to the
model. Here, for reasons of convenience it is given as a percentage of the
resource request’s price Pim, proportionate to its time-related violation:

PENiklm = Pim · DURim − (l− k+ 1)
DURim

(11.11)

Given Equation 11.8, the penalty in the Non-flexible strategy can be ei-
ther equal to the full price Pim, or 0. Nevertheless, it is straightforward to
apply a more complete penalty scheme, like the one elaborated in Chap-
ter 7.

The objective is to maximize the total penalties for resource requests
assigned to data centers; that is, to minimize penalties for resource re-
quests that will be left unassigned, and therefore, will have to be re-
funded.

max
I∑

i=1

J∑

j=1

H∑

k=1

H∑

l=1

Mi∑

m=1

PENiklm · yijklm (11.12)

127

Chapter 11. Offline Planning with Limited Resources

11.2.2 Flexible-items

The only difference between strategies Non-flexible and Flexible-items, is
that in the latter it is possible to select only some of the resource requests
to assign in one of the data centers. Therefore, the only part of the model
to change is Equation 11.6, which becomes:

H∑

k=1

H∑

l=1

Mi∑

m=1

yijklm ! Mi · xij (11.13)

11.2.3 Flexible-time

Apart from the modification of Equation 11.6 into 11.13, in the Flexible-
time strategy it is also possible to start serving some SLA resource re-
quests later than agreed, or end them earlier than agreed. This is re-
flected on the relaxation of constraints from Equation 11.8. More specifi-
cally, this Equation now becomes as follows:

k < Ts
im ∨ l > Te

im ⇒ yijklm = 0 (11.14)

It is assumed that starting to serve a resource request earlier than
agreed, or continuing to serve it after its agreed expiration time, offers
no value either to the customer, or to the provider.

11.3 Experimental Evaluation

11.3.1 Setup

The models described in Section 11.2, plus the two greedy algorithms
(Fist-Fit and Best-Fit) were evaluated and compared with random data for
incoming SLA requests. Randomness was related to the reservation type,
the duration of the reservations (i.e. the durations of the SLAs), their
start and end time, the amount of requested resources, and the costs
(with penalties being calculated as a percentage of those costs). Nor-
mal distributions were used across the board. ILP models were built with
the PuLP modeler [106] and executed using the GUROBITM [107] state of
the art commercial solver. In various benchmarks against CPLEXTM and
other solvers, GUROBITMproves to be as fast or even faster in most cases
(e.g. [108, 109]. All simulations were run on a 4-way server running the
Linux SMP kernel v2.6.32. Each of the four processors was a 1 GHz AMD
Opteron with 1 MB of attached cache memory. The total RAM of the server
was 16 GB. Except for standard operating system processes, and the Se-
cure Shell (SSH) daemon, no other processes were executing at the times
of the experiments.

128

Chapter 11. Offline Planning with Limited Resources

The experiments executed included the following setups:

• Standard configuration: 100 SLAs, 4 different resource types, 3 data
centers, a planning horizon of 10 time units, and 3 resource re-
quests per SLA;

• Increasing number of SLAs, from 100 to 1000 in steps of 100;

• Increasing number of resource types, from 1 to 5;

• Increasing number of data centers, from 1 to 5;

• Increasing planning horizon, from 5 to 30 units in steps of 5;

• Increasing number of resource requests per SLA, from 1 to 5; and

• All parameters increasing in parallel, in four steps: SLAs from 200
to 800 in steps of 200, resource types/data centers/number of re-
source requests per SLA from 1 to 4, and planning horizon from 5 to
20 in steps of 5.

Each setup was tested with all five strategies, and for the combinato-
rial ones there was a timeout of 15 minutes. It should be noted that
GUROBITMis highly optimized for parallelism, and indeed it was possible
to confirm that all CPUs were at top load during problem solving. There-
fore, the 15 minutes of real time correspond to 1 CPU-hour due to the four
processors of the server used. For the last type of experiments (variables
increasing in parallel), there was initially tested a 5th configuration with
1000 SLAs, 5 resource types/data centers/SLA resource requests and 25
time units in the planning horizon, but even the pre-solving phase (lead-
ing to a bound value) was not finishing in the 15 minutes allocated; there-
fore, this setup was dropped from the experiments. The complete set of
experiments was run five times, and results were averaged when suitable
(e.g. for normalized values).

In all experiments, the amount of available resources was crafted dur-
ing modeling time to be significantly less than the amount required. With-
out loss of generality, it was assumed that all scheduled SLAs start in the
future; a pseudo-random number generator following a gaussian distri-
bution was used to return start/end times, required resources per SLA
resource request, resource type, etc. Figure 11.4 illustrates the required
resources over time, as a percentage of the available resources. This
graph concerns only experiments with a planning time horizon of 30 units,
but for other experiments the resource requirements are similar.

129

Chapter 11. Offline Planning with Limited Resources

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

Ra
tio

Time

Required / available resources over time

Figure 11.4: Required / available resources ratio

11.3.2 Results

Resource Utilization

The first goal was to see how good use of the available resources, do the
various strategies offer. Figure 11.5 illustrates exactly that. It is straight-
forward to see that Flexible-times provides the best utilization, converg-
ing towards a ratio of 100% much faster than the rest. Flexible-items
is second best, then follows Non-flexible. The two greedy algorithms
achieve the worst resource utilization, but they should be compared only
to the Non-flexible strategy, as they are also applying an all-or-nothing
approach for the SLAs under consideration.

Complexity and Runtime Behavior of Optimization

It was also important to achieve an understanding of the complexity of
the different ILP models, as all parameters were increasing in parallel.
The solver’s output was intercepted to see how fast it is approaching the
best-bound values, as well as how long the pre-solving phase takes. Fig-
ures 11.6 - 11.9 illustrate these results. The numbers in parentheses (in
the captions) refer to the number of SLAs, resource types, data centers,
planning horizon time units, and resource requests in each SLA – in this
particular order.

In Figure 11.6, the simplest of the four instances is solved instanta-

130

Chapter 11. Offline Planning with Limited Resources

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30

Re
so

ur
ce

 u
tili

za
tio

n
pe

rc
en

t

Time

Average resource utilization

Flexible-time
Flexible-items

Non-flexible
GreedyBestFit
GreedyFirstFit

Figure 11.5: Average resource utilization (percentage)

neously in all three models. In Figure 11.7, Non-flexible and Flexible-items
strategies start solving immediately with a distance from best-bound ob-
jective less than 1% on average, and quickly converge even further. The
Flexible-time strategy goes through a very short pre-solving phase, then
starts solving from a distance of approximately 10% on average, but con-
verges in less than 10 seconds to almost the optimal value.

In the third problem instance, the difference of complexity starts to
become more apparent. The Non-flexible strategy starts solving almost
immediately, with a large distance from best-bound objective (more than
15% on average), but converges in less than 30 seconds to less than
2%. Flexible-items behaves even better, starting from a distance of ap-
proximately 2.5% and almost reaching best-bound a few seconds later.
Flexible-time is pre-solving for approximately one minute on average,
then remains quite far from best bound (more than 20%) for some time,
and then quickly approaches best-bound – a total of almost 3.5 minutes
for that).

The results from the last instance of this problem were further reveal-
ing about the exponential complexity of at least two out of three mod-
els. While the Flexible-items strategy starts far from best-bound, it ap-
proaches it to a distance less than 2% in approximately 30 seconds on
average. Strategy Non-flexible starts at a distance of almost 30%, then
slowly approaches best-bound taking almost 4 minutes to reach a dis-
tance of 5%, and achieving a distance very close to optimality just before

131

Chapter 11. Offline Planning with Limited Resources

-1

-0.5

 0

 0.5

 1

 0 100 200 300 400 500 600 700 800 900

Di
st

an
ce

 fr
om

 b
es

t b
ou

nd

Time

Average approximation speed - 1

Non-flexible
Flexible-items
Flexible-time

Figure 11.6: Solving/Approximation speed for (200, 1, 1, 5, 1)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 100 200 300 400 500 600 700 800 900

Di
st

an
ce

 fr
om

 b
es

t b
ou

nd

Time

Average approximation speed - 2

Non-flexible
Flexible-items
Flexible-time

Figure 11.7: Solving/Approximation speed for (400, 2, 2, 10, 2)

132

Chapter 11. Offline Planning with Limited Resources

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700 800 900

Di
st

an
ce

 fr
om

 b
es

t b
ou

nd

Time

Average approximation speed - 3

Non-flexible
Flexible-items
Flexible-time

Figure 11.8: Solving/Approximation speed for (600, 3, 3, 15, 3)

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900

Di
st

an
ce

 fr
om

 b
es

t b
ou

nd

Time

Average approximation speed - 4

Non-flexible
Flexible-items
Flexible-time

Figure 11.9: Solving/Approximation speed for (800, 4, 4, 20, 4)

133

Chapter 11. Offline Planning with Limited Resources

the timeout. The last strategy, Flexible-time, is going through pre-solving
phase to find a reasonably good first solution for an average of 7 min-
utes. After that, it starts solving at a distance of more than 25% from
best-bound objective, but never comes any closer before the 15-minute
timeout.

Clearly, with regard to complexity, Flexible-time is the most difficult
problem and Flexible-items is the easiest. It is interesting to explore to
some more detail, which of those five parameters causes the largest toll
to performance degradation. Figures 11.10–11.14 illustrate the distance
from best-bound for all combinatorial strategies. One can see that:

• Increasing SLAs affect all three ILPs positively. This is reasonable, as
it provides more options for a good initial choice when the integrity
constraint is relaxed during pre-solving.

• Increasing number of resource types affects negatively all strate-
gies. This was expected; it is always underlined across literature,
that increasing dimensions in multi-dimensional knapsack variants
causes significant increase in the problem’s complexity (e.g. [105]
by Kellerer et al.)

• Like with resource types, the increase in the number of data centers
also affects negatively the solving of the problem. Again, this is to
be expected: In the multiple-knapsack variant, increasing number
of knapsacks causes increased complexity.

• Changing the planning horizon has, initially, a small (and inconsis-
tent) effect for all three strategies. In order to get a better picture,
more extensive experiments were conducted, increasing the time
horizon up to 75 time units. It was found that, starting at 70 time
units, the pre-solving phase of the Flexible-time strategy did not fin-
ish within the 15-minute timeout. Therefore, the respective graph
was produced with a planning horizon of 65 units at most. The result
is that the respective increase affects only the Flexible-time strat-
egy – as was expected, due to the increase in decision variables that
it is causing. After a threshold (55 time units, in this case) the dis-
tance from best-bound increases from less than 5%, to more than
20%. Flexible-items and Non-flexible are not affected in some con-
sistent way.

• Similarly with the planning horizon, changes in the number of re-
source requests per SLA had small and inconsistent effects on prob-
lem complexity. Thus, extended experiments were run with up to 15
resource requests per SLA. There is a trend that reduces distance

134

Chapter 11. Offline Planning with Limited Resources

from best-bound for all three strategies, as the number of resource
requests increases. This is an effect similar to the increase in the
number of SLAs.

 0

 1

 2

 3

 4

 5

 100 200 300 400 500 600 700 800 900 1000

Di
st

an
ce

 fr
om

 b
es

t-b
ou

nd

Number of SLAs

Effect of increasing SLAs

Non-flexible
Flexible-items
Flexible-time

Figure 11.10: Effect of increasing number of SLAs

Both greedy strategies were executing in less than 1 second for all
problem problem instances, so from a performance point of view they
are preferable. However, one must assess them also taking into account
their fitness for the purpose and how well they behave with regard to
approximation of an objective close to optimal.

Affected Users

Figures 11.15 and 11.16 provide an account of user satisfaction, based on
numbers of accepted SLAs, and accepted SLA resource requests. Due to
the allowed flexibility, as expected, Flexible-items and Flexible-time can
accept many more SLAs, even if partially. Nevertheless, when looking
at accepted SLA resource requests, their number is smaller – especially
for Flexible-items, which accepts a resource request in full, or not at all.
Although the model’s objective is to minimize penalties in all cases, it
is important to pay attention to how many users are affected, and to
what extent. The number of users receiving no service whatsoever is the
largest with the two greedy algorithms, and the smallest with Flexible-
time.

135

Chapter 11. Offline Planning with Limited Resources

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5

Di
st

an
ce

 fr
om

 b
es

t-b
ou

nd

Number of resource types

Effect of increasing resource types

Non-flexible
Flexible-items
Flexible-time

Figure 11.11: Effect of increasing number of resource types

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5

Di
st

an
ce

 fr
om

 b
es

t-b
ou

nd

Number of data centers

Effect of increasing data centers

Non-flexible
Flexible-items
Flexible-time

Figure 11.12: Effect of increasing number of data centers

136

Chapter 11. Offline Planning with Limited Resources

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70

Di
st

an
ce

 fr
om

 b
es

t-b
ou

nd

Amount of time units in planning horizon

Effect of increasing planning horizon

Non-flexible
Flexible-items
Flexible-time

Figure 11.13: Effect of increasing planning horizon

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Di
st

an
ce

 fr
om

 b
es

t-b
ou

nd

Number of items in each SLA

Effect of increasing items in each SLA

Non-flexible
Flexible-items
Flexible-time

Figure 11.14: Effect of increasing number of resource requests in each
SLA

137

Chapter 11. Offline Planning with Limited Resources

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-./012." 32./012.,04.56" 32./012.,75." 30864,94" :.64,94"

Figure 11.15: Placed SLAs per strategy (percent of total SLAs)

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

,-./0123451" 65123451/37189" 65123451/:81" 63;97/<7" =197/<7"

Figure 11.16: Placed resource requests per strategy (percent of total re-
source requests)

138

Chapter 11. Offline Planning with Limited Resources

Distance from Optimality

The last chart, Figure 11.17, provides an overview of avoided penalties,
as a percentage to total penalties. It is reminded that the objective was
to maximize avoided penalties. In order to be able to compare with the
greedy algorithms, for which there is no notion of “best-bound objective”,
the charts do not use that value as it was the case with Figures 11.6–11.9.
Rather, the full penalties of all SLAs/resource requests under considera-
tion are used.

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

,-./0123451" 65123451/37189" 65123451/:81" 63;97/<7" =197/<7"

Figure 11.17: Avoided penalties per strategy (percent of total penalties)

One can see that Flexible-time provides the best result, with Flexible-
items a close second. Non-flexible is third, with quite some difference
from the second, and finally the two greedy algorithms fall behind signifi-
cantly.

Experimental Conclusions

Assessing all information presented, it appears that the best strategy
to follow is Flexible-items. It performs very well in comparison to the
other two ILPs with regard to the speed of approaching a reasonably good
solution; it offers a very small difference from the best objective found
by Flexible-time, less than 5% on average; and affected users, although
more than Flexible-time, they are acceptable as a number under the ex-
treme circumstances simulated.

139

Chapter 11. Offline Planning with Limited Resources

11.4 Related Work

Some prior art related to SLA adjustment in case of resource failures, was
already presented in Chapter 10. Goiri et al. [102] and Roy / Mukher-
jee [103] monitor SLAs during runtime, and for each one that fails, the
proposed systems try to find alternative execution environments. Con-
versely, the work proposed here looks into the case of massive failures,
in which case it is not clear whether the former approaches would suc-
ceed due to the conflicts between the requesting agents. Penalty con-
sequences are also unclear. In addition, the present chapter proposes a
comprehensive model to treat such problems of extreme failures in their
entirety.

Outside the context of SLAs, nevertheless trying to optimize service
performance, Song et al. present in [110] an architecture and amethodol-
ogy for controlled, adaptive resource scheduling in the data center. They
produce a linear program called the “resource flowing” problem, to model
reservations and releases of resources by VMs; then solve it with the Sim-
plex method.

In the context of internal IT infrastructure at Intel Corporation used for
chip simulations, Phan et al. present in [111] an approach for cost-based
dynamic rescheduling of low-priority jobs. The problem they try to tackle
is that low-priority jobs are often pre-empted by high-priority ones, al-
though there are significant amounts of available resources in the infras-
tructure as a whole. Process migration is not possible due to problems
with multi-threaded processes, and VMs are not used due to the heavy
performance toll (therefore, VM migration is not possible either). Hence,
the report explores the possibility of restarting the processes. Whether
a job will be kept suspended or be rescheduled is a cost-based decision,
and has to do with “wasted run time” (the process execution time leading
to pre-emption from a high-priority job), expected remaining completion
time, and other similar measures.

With regard to the knapsack problem and its applications in the area,
the work closest to the one presented here is [112] by Lau and Lim. They
use the multi-period, multi-dimensional knapsack problem to model what
is known as Available-to-Promise in logistics; that is, the capability of a
supplier to commit to meeting the requests of customers, during a pe-
riod of time (the planning horizon). Clearly this bears a lot of similarity to
IaaS SLAs, where the provider promises to make available the resources
during some time period. It is particularly applicable to the case of batch
SLAs, where the provider has some freedom as regards when to offer
the resources. The authors develop a two-phase heuristic, comprising a
greedy algorithm followed by a Tabu-search improvement. Additionally,

140

Chapter 11. Offline Planning with Limited Resources

an ant-colony based approach is evaluated. Their work is trying to opti-
mize profit; and an additional difference to the work presented here is the
single vs multiple knapsacks.

Finally, in [113], Kelly makes explicit the relationship between the
knapsack problem, and the Winner Determination Problem in combina-
torial auctions, which offer a suitable model for multiple parallel SLA ne-
gotiations among autonomous agents. The actual motivation comes from
resource allocation requirements in data centers, and the formulation is
a multi-dimensional, multiple-choice knapsack problem. Multiple-choice
is related to the selection of only one, out of many options in a list of
requested resource bundles (which has been solved here at an earlier
stage, using BDDs). The multiple dimensions represent resource types,
as is also the case in the present work. The author presents a dynamic
programming solver, and recognizes the significant complexity increase
as the number of resource types increases. The author’s model concerns
a single data center, so no discussion exists on multiple knapsacks.

Summary and Conclusions

In this Chapter, an Integer Linear Programming model was developed, as
a means of SLA rescheduling and penalty minimization in the case that
resources become scarce. The working example here was the malfunc-
tion of a complete data center. Through extensive experimentation, it was
possible to see that the constructed model behaves favorably to greedy
algorithms, although foreseeably slower to approach some optimal value.
Three combinatorial rescheduling strategies were explored: One with no
flexibility whatsoever (complete acceptance of an SLA, or complete re-
jection); one where it was possible to accept and reschedule only some
of the requested resource bundles within an SLA; and one where it was
additionally possible to offer some bundles later, or release them earlier
than agreed. This third approach offered the best final objective on aver-
age, normalized across all experiments. Yet, for large instances the com-
plexity grows so much that even after a lot of time it remained very far
from optimal values. The non-flexible strategy was faster, but its results
with regard to average achieved objective were quite worse. The fastest
method was the one to accept some of the resource bundles, but for the
time and duration agreed in the SLA. Its results, on average, were only
slightly worse than the Flexible-time strategy, therefore its performance
is enough reason to prefer it in realistic situations.

141

142

Part IV

Conclusions

143

144

Chapter 12

Conclusions

Throughout this dissertation the question asked was, what are those nec-
essary building blocks to enable service hierarchies with dependability,
using SLAs as an instrument for this purpose. It was the question that
the thesis tried to answer to, by providing new approaches and solutions
towards this goal.

As mentioned in Section 1.2, when looking at the topic from a very
high level, automated SLA negotiation and provisioning can be reduced
to the schematic of Figure 1.2 (repeated here for convenience, as Fig-
ure 12.1). The dashed boxes illustrate the gaps to which this thesis tried
to provide solutions and answers, in addition to a formal problem defini-
tion.

12.1 Summary of Contributions

Defining the problem generically, it was possible to express the relation-
ships among services and their negotiable properties independent of the
application domain. This definition cannot be directly applied, but rather
needs significant refinement before using it in any specific use case; nev-
ertheless, it provides the necessary grounds for getting an understanding
of the problem, and coming closer to domain-independent recipes that
can be combined with other tools and achieve the set goal of automated,
hierarchical SLA management. Prior art was discussing service depen-
dencies, or looking at QoS-related dependencies in specific domains. This
is, to the best of the author’s knowledge, the first effort to define SLA de-
pendencies and hierarchies formally. An additional very important result
of this specific work, is the conclusion that converting an SLA to many
others cannot be disentangled from SLA negotiation – rather, the two pro-
cesses are closely related and, as amatter of fact, one could say that “SLA

145

Chapter 12. Conclusions

Provider

Customer

Provider

Contract

Sub-Contract

Request Response

Request Response

Provisioning

Provisioning

Resources

Resources

Contracts bear
responsibility; there are
penalties if breached

How to deduce a
subcontract, starting

from the contract?

What do these boxes
really look like? How do

they function?

How to assess if the
contract can/should be

established?

(For infrastructure) How to
make best use of

existing resources?

(For infrastructure) How
are resources defined?

How to signal and
instruct them?

Figure 12.1: High-level scenario

translation” is a part of negotiation itself.
The next step was to define amanagement architecture. The resulting

SLA Management Instance (SAMI) is a complete architectural pattern that
has no specific ties to any application domain; rather, it foresees that it
must be extended before applied. That said, a generic infrastructure for
a SAMI was created as part of the project that supported this work [1],
using state-of-the-art tooling and resulting in a framework already being
customized and applied by four industrial use cases. The presented ar-
chitecture is extending State-of-the-Art in a number of ways, the most
important of which is the special consideration for SLA hierarchies. Fur-
ther to that, the domain-agnostic and technology-independent nature of
the architecture makes it applicable to very diverse use cases.

Before discussing SLA assessment, a link to business objectives was
necessary. A Service Level Agreement is a contract, and as such, it in-
cludes not only rewards (service price), but also penalties if the described
service is not delivered. One could argue that without the penalties,
an SLA is nothing more than a smart provisioning request. There has
been some prior art in SLA penalty models, but the author felt that it
was not sufficient and was lacking necessary expressive power. Thus,

146

Chapter 12. Conclusions

a new model was proposed in this work. Using this model it is possi-
ble to form very complex penalty expressions, also associated with con-
tract price and customer’s business values; therefore, it includes notions
of fairness. In addition, the application of this generic penalty model to
an example use case illustrated that it is possible to deduce subcontract
penalties based on the penalties within the original contracts.

The last part of generic, domain-independent contributions was re-
lated to the decision-making part of negotiation. The dissertation’s con-
tribution is the application of a structure well-known in VLSI design, the Bi-
nary Decision Diagrams as a model for SLA representation. This is based
on the capability to reduce SLA elements in boolean constants or vari-
ables. The author deems this part of the thesis to be an important contri-
bution, believing it can pave the way for efficient automated SLAmanage-
ment. In the SLA@SOI project, it became obvious that SLAs, if pragmatic,
they can be extremely complex. Indeed, so complex that their sheer pars-
ing, and of course their processing for reasons of decision-making, is a
task of enormous difficulty. The Reduced Ordered BDD structure has the
very interesting property of being canonical; that is, it provides a unique
and unambiguous representation of the boolean function from which it is
constructed. Eventually, given domain-specific term dictionaries and the
knowledge how to use them for creating SLAs, combined with BDDs, can
result in structures that are immensely more manageable than their orig-
inal SLA counterparts. As a proof of concept, for a specific SLA offer the
approach showed how it is possible to use a BDD and decide if the offer
should be accepted, or not.

Following, Part III of the thesis applied these principles, albeit in sim-
ple form, in the domain of Cloud Computing and more specifically Infras-
tructure as a Service. One necessary detail for the specific domain, that
had to prepend the discussion on IaaS SLA planning, was how to actually
manage the resources themselves. This concerns a proper representa-
tion, as well as a set of functions for reserving them – immediately or in
advance. The supporting models provided are standards-compliant and
designed to be agnostic of specific resource types: They may refer to
computing servers, network storage, active network equipment and cir-
cuits, scientific instruments, sensors, etc. Already and by itself, the sup-
ported resource diversity is an interesting property of the model, and a
contribution to State-of-the-Art.

Having the necessary constructs available, an infrastructure SLA con-
tent was described, and based on that two different greedy algorithms
were tested as a means for online SLA planning within a data center. This
corresponds to the lower of the two provider entities in Figure 12.1. The

147

Chapter 12. Conclusions

evaluation took place in the context of the Planning, Optimization and
Adjustment module of the SAMI architecture, as a possible implementa-
tion for this specific IaaS setup. As there has been significant amount of
work in this area during the last few years, the main interest of the work
here was to see what is the energy footprint of these two fast algorithms,
and how well they were performing with regard to resource utilization.
The conclusion after experimentation was that a best-fit approach, that
assigns SLAs to those servers that end up with the least available re-
sources after the assignment, results in significant gains with regard to
the amount of servers that are switched on. Nevertheless, the comple-
tion time of the algorithm was an order of magnitude worse than its first-
fit counterpart, for three pools of 5000 servers each. Even as such, the
delay of up to 20 seconds for our setup can probably be considered as
acceptable.

Finally, a penalty-driven planning and optimization methodology was
considered in the last Chapter. The scenario in mind was that of a resource-
scarce environment, where resource requirements (far) exceed resource
availability. Three ILP models were developed and solved, to represent
three different strategies of varying flexibility with regard to time, or
grouping constraints. These strategies express different possible ways
that a coordinating SAMI instance (the higher one in Figure 1.2) would
react to this scenario, while negotiating with data-center SAMIs. Via ex-
tensive experimentation, it became clear that the best strategy to apply –
at least in small to average problem instances – is to consider the existing
SLAs with the possibility of discarding some of their parts (i.e. some of the
requested resources). Experimenting with the time dimension resulted in
very poor performance, while selecting to accept SLAs in full or not at
all, resulted in significantly more penalties. With regard to the latter, two
tested greedy algorithms (first-fit and best-fit) performed even worse.

12.2 Critical View of Presented Work

The area tackled by this doctoral dissertation is a very large one, far too
large to be addressed here in full. Various limitations of time and re-
sources in general affected the results to some extent, although hopefully
not enough to have a negative effect on the thesis’ contributions.

The most important problem that the author identifies, is the complex-
ity of some of the produced formalizations. The penalty model from Chap-
ter 7 is extremely powerful, nevertheless this also means that a large
number of parameters must be taken into account. It assumes that re-
lationships among different SLA guarantees and service parameters are

148

Chapter 12. Conclusions

known to the customer, and therefore assumes a very detailed model of
interactions within an application and the supporting SOI. In addition, it
is assumed that the customer is fully aware of the business value that
certain objectives and guarantees have, which may be a wrong assump-
tion in plenty realistic scenarios. The choice to favor expressiveness over
simplicity was a conscious decision, in hope that future developments will
allow such fine-grained understanding of SOAs, SOIs and the respective
applications.

Similarly, the application of BDDs to SLA modeling presumes the ca-
pability to identify terms generically, within a domain and application.
It requires detailed knowledge of the semantics of an application, which
could have important repercussions on the wide applicability of the pro-
posedmethodology. Additionally to that, there is a gap in using the canon-
ical form of the structure for outsourcing and decision-making, related to
matching paths from different BDDs and finding out whether they are
equivalent. The author believes that the area to look into is that of Term
Rewriting Systems [114]. This could, nevertheless, be a different doc-
toral thesis on its own right, and therefore no further work towards that
direction took place.

Finally, the author would be very pleased if the proposed architecture
was further applied to real-world use cases in the context of the project
that funded the present work. Due to time restrictions and the fact that
the project is ongoing, this was not possible.

12.3 Concluding Statements and Future Direc-
tions

If one final statement must be extracted from the present thesis, is that
hierarchical SLA management is possible. There are multiple challenging
issues about it, and certainly this dissertation does not reply to every-
thing, yet it hopefully contributes to the more apparent areas. Furher-
more, the extension to IaaS planning illustrates the applicability of these
concepts onto a domain which is currently one of the most active areas
of service computing.

One problem that has been identified in multiple occasions and var-
ious fora, is the lack of a common language for SLA negotiation. This
includes both a model and a protocol. WS-Agreement is an important
step in that direction, but at the moment has two significant problems:

1. It is considered to be very complex; specifically, its reliance on the
Web Services Resource Framework (WSRF) [115] has proved to be

149

Chapter 12. Conclusions

problematic for the community;

2. It supports only single-shot negotiations, without multiple rounds
which are necessary for meaningful business interactions.

Service registries for automated discovery and binding are not suffi-
ciently polished yet, either. Both compatibility issues, but also the com-
plexity of the topic (security, matching and semantics, policy / administra-
tive domains) hinder the adoption of global service registries and large,
dynamic service ecosystems.

Monitoring SLAs is also a topic that is widely researched at the mo-
ment, especially due to the commercial interest in the area. Here, there
are two important considerations; one is of technical nature, related to
what must be monitored and what are the associations among different
signals received as part of a single SLA being monitored. The other prob-
lem is one of policy; that is, providers do now allow transparent access
to service execution parameters, making it very difficult for customers to
have an educated understanding of the SLA state. The gap seems to be
closing, with recent trends of trusted third parties: companies that act
as mediators, are trusted by both the providers and the customers, and
monitor the SLAs on behalf of both.

Negotiation and planning strategies (including subcontracting deci-
sions) remains, without doubt, the most demanding field of automated
SLA management. The author strongly believes that the way to tackle
this problem is to produce a sufficient amount of generic recipes (such as
the BDD representation), that can be combined and applied on different
domains. The complexity of SLA planning can be notoriously large, as also
illustrated in Chapter 11. Areas of mathematics such as combinatorial
optimization, operational research, evolutionary computing, and others,
provide a solid foundation to build upon towards this direction; “stand-
ing on the shoulders of giants”, combined with original cross-disciplinary
ideas are sure to equip us better for the purpose.

150

Bibliography

[1] “The SLA@SOI Project.” http://www.sla-at-soi.eu/ (Last retrieved:
09/2010).

[2] M. Papazoglou and D. Georgakopoulos, “Service-Oriented Comput-
ing,” Communications of the ACM, vol. 46, no. 10, pp. 25–28, 2003.

[3] L. Zhang, J. Zhang, and H. Cai, Services Computing. Springer-Verlag
New York Inc, 2007.

[4] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web
Services Description Language (WSDL) 1.1.” World Wide Web Con-
sortium - W3C, 2001.

[5] Organization for the Advancement of Structured Information Stan-
dards - OASIS, “Web Services Business Process Execution Lan-
guage (WSBPEL).” http://www.oasis-open.org/committees/wsbpel/
(Last retrieved: 09/2010).

[6] I. Katzela and M. Schwartz, “Schemes for fault identification in
communication networks,” IEEE/ACM Transactions on Networking,
vol. 3, pp. 753–764, Dec 1995.

[7] B. Gruschke, “Integrated event management: Event correlation us-
ing dependency graphs,” in Proceedings of the 9th IFIP/IEEE Inter-
national Workshop on Distributed Systems: Operations & Manage-
ment (DSOM 98), pp. 130–141, 1998.

[8] E. Knorr and G. Gruman, “What cloud computing really
means.” http://www.infoworld.com/d/cloud-computing/what-cloud-
computing-really-means-031 (Last retrieved: 09/2010).

[9] “Amazon Elastic Compute Cloud - EC2.”
http://aws.amazon.com/ec2/ (Last retrieved: 09/2010).

[10] “Amazon Simple Storage Service - S3.” http://aws.amazon.com/s3/
(Last retrieved: 09/2010).

151

BIBLIOGRAPHY

[11] M. Rappa, “The utility business model and the future of computing
services,” IBM Systems Journal, vol. 43, no. 1, pp. 32–42, 2004.

[12] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid:
Enabling scalable virtual organizations,” International Journal of
High Performance Computing Applications, vol. 15, no. 3, p. 200,
2001.

[13] Y. Chen, S. Iyer, X. Liu, D. Milojicic, and A. Sahai, “SLA Decomposi-
tion: Translating Service Level Objectives to System Level Thresh-
olds,” International Conference on Autonomic Computing, p. 3,
2007.

[14] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Lud-
wig, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, “Web
Services Agreement specification (WS-Agreement).”
http://www.ogf.org/documents/GFD.107.pdf, 2007 (Last retrieved:
09/2010).

[15] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the Dif-
ferentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,”
tech. rep., RFC 2474, 12 1998.

[16] C.-H. Chang, P. Kourtessis, and J. Senior, “GPON service level agree-
ment based dynamic bandwidth assignment protocol,” Electronics
Letters, vol. 42, pp. 1173–1174, September 2006.

[17] W. Fawaz, B. Daheb, O. Audouin, M. Du-Pond, and G. Pujolle, “Ser-
vice level agreement and provisioning in optical networks,” IEEE
Communications Magazine, vol. 42, pp. 36–43, Jan 2004.

[18] D. Nowak, P. Perry, and J. Murphy, “Bandwidth allocation for ser-
vice level agreement aware Ethernet passive optical networks,”
in Global Telecommunications Conference, 2004. GLOBECOM ’04.
IEEE, vol. 3, pp. 1953–1957, 2004.

[19] A. Sahai, A. Durante, and V. Machiraju, “Towards automated SLA
management for Web services,” Hewlett-Packard Research Report
HPL-2001-310 (R. 1), 2001.

[20] R. Yahyapour and P. Wieder, Encyclopedia of Software Engineer-
ing, ch. Service Level Agreements in Grids. Taylor & Francis Group,
2009. To appear.

152

BIBLIOGRAPHY

[21] The TeleManagement Forum, “SLA Management Handbook, Vol-
ume 2, Concepts and Principles, Release 2.5,” tech. rep., The Tele-
Management Forum, Morristown, New Jersey, United States, 2005.

[22] A. Keller and H. Ludwig, “The WSLA framework: Specifying and
monitoring service level agreements for web services,” Journal of
Network and Systems Management, vol. 11, no. 1, pp. 57–81, 2003.

[23] R. Smith, “The contract net protocol,” IEEE Transactions on Com-
puters, vol. 29, no. 12, pp. 1104–1113, 1980.

[24] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The com-
plexity of computing a Nash equilibrium,” Commun. ACM, vol. 52,
no. 2, pp. 89–97, 2009.

[25] L. Jin, V. Machiraju, and A. Sahai, “Analysis on Service Level Agree-
ment of Web Services,” tech. rep., Software Technology Labora-
tory, HP Laboratories Palo Alto, 2002.

[26] OASIS, “Universal Description, Discovery and Integration (UDDI).”
http://www.oasis-open.org/committees/uddi-spec, 02 2005 (Last
retrieved: 09/2010).

[27] A. Sahai, V. Machiraju, M. Sayal, A. van Moorsel, and F. Casati, “Au-
tomated sla monitoring for web services,” Management Technolo-
gies for E-Commerce and E-Business Applications, pp. 28–41, 2002.

[28] A. Leff, J. T. Rayfield, and D. M. Dias, “Service-level agreements and
commercial grids,” IEEE Internet Computing, vol. 7, no. 4, pp. 44–
50, 2003.

[29] H. Zhang, K. Keahey, and W. Allcock, “Providing data transfer
with qos as agreement-based service,” Services Computing, 2004.
(SCC 2004). Proceedings. 2004 IEEE International Conference on,
pp. 344–353, Sept. 2004.

[30] M. Aiello, G. Frankova, and D. Malfatti, “What’s in an agreement?
an analysis and an extension of ws-agreement,” Service-Oriented
Computing - ICSOC 2005, pp. 424–436, 2005.

[31] J. Sauvé, F. Marques, A. Moura, M. Sampaio, J. Jornada, and E. Radz-
iuk, “Sla design from a business perspective,” Ambient Networks,
pp. 72–83, 2005.

[32] S. S. Chawathe, “Strategic web-service agreements,” Web Ser-
vices, IEEE International Conference on, vol. 0, pp. 119–126, 2006.

153

BIBLIOGRAPHY

[33] P. McKee, S. Taylor, M. Surridge, R. Lowe, and C. Ragusa, “Strate-
gies for the service market place,” Grid Economics and Business
Models, pp. 58–70, 2007.

[34] D. Barbagallo and M. Comuzzi, “Towards understanding the role
of adverse selection and moral hazard in automated negotiation
of service level agreements,” in SIPE ’08: Proceedings of the 3rd
international workshop on Services integration in pervasive envi-
ronments, (New York, NY, USA), pp. 7–12, ACM, 2008.

[35] H. Wada, P. Champrasert, J. Suzuki, and K. Oba, “Multiobjective
optimization of sla-aware service composition,” Services, IEEE
Congress on, vol. 0, pp. 368–375, 2008.

[36] H. Bidgoli, The Internet Encyclopedia. John Wiley & Sons Inc, 2004.

[37] “Enterprise resource planning.” http://en.wikipedia.org/wiki/Enter-
prise_resource_planning (Last retrieved: 09/2010).

[38] M. Ehrgott, Multicriteria Optimization. Springer-Verlag New York,
Inc., 2005.

[39] S. Fatima, M. Wooldridge, and N. Jennings, “A Comparative Study
of Game Theoretic and Evolutionary Models of Bargaining for Soft-
ware Agents,” Artificial Intelligence Review, vol. 23, pp. 187–205,
04 2005.

[40] C. Figueroa, N. Figueroa, A. Jofre, A. Sahai, Y. Chen, and S. Iyer,
“A Game Theoretic Framework for SLA Negotiation,” tech. rep., HP
Laboratories, 2008.

[41] A. Keller, U. Blumenthal, and G. Kar, “Classification and Computa-
tion of Dependencies for Distributed Management,” IEEE Sympo-
sium on Computers and Communications, p. 78, 2000.

[42] A. Keller and G. Kar, “Determining service dependencies in dis-
tributed systems,” in IEEE International Conference on Communi-
cations (ICC 2001), vol. 7, pp. 2084–2088, 2001.

[43] P. Hasselmeyer, “Managing dynamic service dependencies,” in
12th International Workshop on Distributed Systems: Operations
& Management (DSOM 2001), pp. 141–150, 2001.

[44] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang, “Towards highly reliable enterprise network services via

154

BIBLIOGRAPHY

inference of multi-level dependencies,” in SIGCOMM ’07: Proceed-
ings of the 2007 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, pp. 13–24,
2007.

[45] E. Di Nitto, M. Di Penta, A. Gambi, G. Ripa, and M. Villani, “Nego-
tiation of service level agreements: An architecture and a search-
based approach,” LECTURE NOTES IN COMPUTER SCIENCE: Proc.
ICSOC’07, vol. 4749, p. 295, 2007.

[46] D. Wolpert and W. Macready, “No free lunch theorems for optimiza-
tion,” IEEE transactions on evolutionary computation, vol. 1, no. 1,
pp. 67–82, 1997.

[47] D. Wolpert and W. Macready, “Coevolutionary free lunches,” IEEE
Transactions on Evolutionary Computation, vol. 9, no. 6, pp. 721–
735, 2005.

[48] “Spring.” http://www.springsource.org/osgi (Last retrieved:
09/2010).

[49] “OSGi.” http://www.osgi.org/ (Last retrieved: 09/2010).

[50] “Equinox.” http://www.eclipse.org/equinox/ (Last retrieved:
09/2010).

[51] H. Ludwig, A. Dan, and R. Kearney, “Cremona: an architecture and
library for creation andmonitoring of WS-agreements,” in Proc. 2nd
international Conference on Service Oriented Computing (ICSOC
’04), pp. 65–74, 2004.

[52] J. Padgett, K. Djemame, and P. Dew, “Grid-Based SLA Manage-
ment,” Advances in Grid Computing - EGC 2005, pp. 1076–1085,
2005.

[53] G. Koumoutsos, S. Denazis, and K. Thramboulidis, “SLA e-
Negotiations, Enforcement and Management in an Autonomic En-
vironment,” Modelling Autonomic Communications Environments,
pp. 120–125, 2008.

[54] A. Keller and H. Ludwig, “Defining and Monitoring Service Level
Agreements for dynamic e-Business,” in Proceedings of the 16th
System Administration Conference (LISA 2002), 2002.

[55] M. Debusmann and A. Keller, “SLA-driven management of dis-
tributed systems using the common information model,” IFIP/IEEE

155

BIBLIOGRAPHY

8th Int. Symp. on Integrated Network Management, pp. 563–576,
March 2003.

[56] Distributed Management Task Force, “Common Information
Model,” 01 2008.

[57] C. Bartolini, A. Boulmakou, A. Christodoulou, A. Farrell, M. Salle, and
D. Trastour, “Management by Contract: IT Management driven by
Business Objectives,” Proc. 11th HP Openview University Associa-
tion (HP-OVUA) Workshop, 2004.

[58] A. Paschke and M. Bichler, “Knowledge representation concepts for
automated SLA management,” Decision Support Systems, vol. 46,
no. 1, pp. 187 – 205, 2008.

[59] M. J. Buco, R. N. Chang, L. Z. Luan, C. Ward, J. L. Wolf, and P. S. Yu,
“Utility computing SLA management based upon business objec-
tives,” IBM Syst. J., vol. 43, no. 1, pp. 159–178, 2004.

[60] M. B. Chhetri, J. Lin, S. Goh, J. Y. Zhang, R. Kowalczyk, and J. Yan, “A
Coordinated Architecture for the Agent-based Service Level Agree-
ment Negotiation of Web Service Composition,” Australian Soft-
ware Engineering Conference, pp. 90–99, 2006.

[61] C. Bartolini, C. Preist, and N. Jennings, “A generic software frame-
work for automated negotiation,” in First International Conference
on Autonomous Agent and Multi-Agent Systems, 2002.

[62] J. B. Kim and A. Segev, “A framework for dynamic eBusiness negoti-
ation processes,” in IEEE International Conference on E-Commerce
(CEC 2003), pp. 84–91, 06 2003.

[63] M. Ayatollahzadeh Shirazi and A. Barfouroush, “A Conceptual
Framework for Modeling Automated Negotiations in Multiagent
Systems,” Negotiation Journal, vol. 24, no. 1, pp. 45–70, 2008.

[64] A. Dan, H. Ludwig, and G. Pacifici, “Web service differentiation with
service level agreements,” White Paper, IBM Corporation, 2003.

[65] M. Becker, N. Borrisov, V. Deora, O. Rana, and D. Neumann, “Using
k-Pricing for Penalty Calculation in Grid Market,” in Hawaii Inter-
national Conference on System Sciences, Proceedings of the 41st
Annual, pp. 97–97, Jan. 2008.

[66] R. Jurca and B. Faltings, “Reputation-Based Service Level Agree-
ments for Web Services,” Service-Oriented Computing - ICSOC
2005, pp. 396–409, 2005.

156

BIBLIOGRAPHY

[67] O. Rana, M. Warnier, T. Quillinan, and F. Brazier, “Monitoring and
Reputation Mechanisms for Service Level Agreements,” Grid Eco-
nomics and Business Models, pp. 125–139, 2008.

[68] J. Kosinski, D. Radziszowski, K. Zielinski, S. Zielinski, G. Przybylski,
and P. Niedziela, “Definition and Evaluation of Penalty Functions in
SLA Management Framework,” Networking and Services, Interna-
tional conference on, pp. 176–181, 2008.

[69] S. A. Cook, “The complexity of theorem-proving procedures,” in
STOC ’71: Proceedings of the third annual ACM symposium on The-
ory of computing, (New York, NY, USA), pp. 151–158, ACM, 1971.

[70] R. Bryant, “Graph-Based Algorithms for Boolean Function Manipu-
lation,” IEEE Transactions on Computers, vol. C-35, pp. 677–691,
Aug. 1986.

[71] C. Lee, “Representation of switching circuits by binary decision di-
agrams,” Bell System Technical Journal, no. 38, pp. 985–999, 1959.

[72] S. Akers, “Binary Decision Diagrams,” IEEE Transactions on Com-
puters, vol. C-27, pp. 509–516, June 1978.

[73] R. Ebendt, R. Drechsler, and G. Fey, Advanced BDD optimization.
Springer, 2005.

[74] C. E. Shannon, “A symbolic analysis of relay and switching circuits,”
Trans. AIEE, no. 57, pp. 713–723, 1938.

[75] P. Bhoj, S. Singhal, and S. Chutani, “SLA management in feder-
ated environments,” Computer Networks, vol. 35, no. 1, pp. 5 –
24, 2001.

[76] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-
decision diagrams,” ACM Comput. Surv., vol. 24, no. 3, pp. 293–
318, 1992.

[77] S. Friedman and K. Supowit, “Finding the optimal variable order-
ing for binary decision diagrams,” IEEE Transactions on Computers,
vol. 39, pp. 710–713, May 1990.

[78] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” in ICCAD ’93: Proc. 1993 IEEE/ACM international confer-
ence on Computer-aided design, pp. 42–47, IEEE Computer Society
Press, 1993.

157

BIBLIOGRAPHY

[79] M. Comuzzi, C. Kotsokalis, G. Spanoudakis, and R. Yahyapour, “Es-
tablishing and Monitoring SLAs in Complex Service Based Sys-
tems,” IEEE International Conference on Web Services, pp. 783–
790, 2009.

[80] W. Binder, I. Constantinescu, and B. Faltings, “Scalable Automated
Service Composition Using a Compact Directory Digest,” Database
and Expert Systems Applications, pp. 317–326, 2006.

[81] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith, “Efficient
filtering in publish-subscribe systems using binary decision dia-
grams,” in ICSE ’01: Proc. 23rd International Conference on Soft-
ware Engineering, pp. 443–452, 2001.

[82] “JavaBDD.” http://javabdd.sourceforge.net/ (Last retrieved:
09/2010).

[83] A. S. McGough, A. Akram, L. Guo, M. Krznaric, L. Dickens, D. Colling,
J. Martyniak, R. Powell, P. Kyberd, C. Huang, C. Kotsokalis, and
P. Tsanakas, “GRIDCC: A Real-time Grid workflow system with QoS,”
Scientific Programming, vol. 15, no. 4, pp. 213–234, 2007.

[84] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut, “Quality of
service for workflows and web service processes,”Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 1, no. 3,
pp. 281–308, 2004.

[85] D. Colling, T. Ferrari, Y. Hassoun, C. Huang, C. Kotsokalis, A. S. Mc-
Gough, E. Ronchieri, Y. Patel, and P. Tsanakas, “On Quality of Ser-
vice Support for Grid Computing,” Grid Enabled Remote Instrumen-
tation, pp. 313–327, 2009.

[86] “OGF GLUE-WG.” http://forge.ogf.org/sf/projects/glue-wg (Last re-
trieved: 09/2010).

[87] A. Sim, A. Shoshani, et al., “The Storage Resource Man-
ager Interface Specification v2.2.” http://sdm.lbl.gov/srm-
wg/doc/SRM.v2.2.pdf (Last retrieved: 09/2010).

[88] M. Botts, “Sensor Model Language (SensorML) for In-situ and Re-
mote Sensors,” tech. rep., Open Geospatial Consortium, 2004.

[89] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke,
“SNAP: A Protocol for Negotiating Service Level Agreements and
Coordinating Resource Management in Distributed Systems,” in Job

158

BIBLIOGRAPHY

Scheduling Strategies for Parallel Processing, vol. 2537 of Lecture
Notes in Computer Science, pp. 153–183, Springer Berlin / Heidel-
berg, 2002.

[90] Y.-S. Kee, D. Logothetis, R. Huang, H. Casanova, and A. Chien, “Ef-
ficient resource description and high quality selection for virtual
grids,” Cluster Computing and the Grid, IEEE International Sympo-
sium on, vol. 1, pp. 598–606, 2005.

[91] G. P. Koslovski, P. V.-B. Primet, and A. S. Charão, “VXDL: Virtual
Resources and Interconnection Networks Description Language,”
in Networks for Grid Applications, vol. 2 of Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, pp. 138–154, Springer Berlin Heidelberg,
2009.

[92] I. Wegener, The complexity of Boolean functions. Teubner, 1987.

[93] C. Gröpl, Binary decision diagrams for random boolean functions.
PhD thesis, Mathematisch-Naturwissenschaftlichen Fakultät II der
Humboldt-Universität zu Berlin, 1999.

[94] L. Epstein and M. Levy, “Dynamic multi-dimensional bin packing,”
Journal of Discrete Algorithms, 2010 (Currently under publication).

[95] T. Gonzalez, ed., Handbook of approximation algorithms and meta-
heurististics. Chapman & Hall, 2007.

[96] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, Approximation
algorithms for bin packing: a survey. Boston, MA, USA: PWS Pub-
lishing Co., 1997.

[97] H. N. Van, F. D. Tran, and J.-M. Menaud, “SLA-Aware Virtual Resource
Management for Cloud Infrastructures,” Computer and Informa-
tion Technology, International Conference on, vol. 1, pp. 357–362,
2009.

[98] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall, “En-
tropy: a consolidation manager for clusters,” in VEE ’09: Proceed-
ings of the 2009 ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, (New York, NY, USA), pp. 41–50,
ACM, 2009.

[99] H. Nakada, T. Hirofuchi, H. Ogawa, and S. Itoh, “Toward Virtual
Machine Packing Optimization Based on Genetic Algorithm,” in

159

BIBLIOGRAPHY

Distributed Computing, Artificial Intelligence, Bioinformatics, Soft
Computing, and Ambient Assisted Living, vol. 5518 of Lecture
Notes in Computer Science, pp. 651–654, Springer Berlin / Heidel-
berg, 2009.

[100] Y. Ajiro and A. Tanaka, “Improving packing algorithms for server
consolidation,” in Proc. Computer Measurements Group 2007 In-
ternational Conference, 2007.

[101] M. A. S. Netto, K. Bubendorfer, and R. Buyya, “SLA-Based advance
reservations with flexible and adaptive time QoS parameters,” in
Service-Oriented Computing – ICSOC 2007, vol. 4749 of Lecture
Notes in Computer Science, pp. 119–131, Springer Berlin / Heidel-
berg, 2010.

[102] I. Goiri, F. Julià, J. Ejarque, M. De Palol, R. Badia, J. Guitart, and
J. Torres, “Introducing Virtual Execution Environments for Applica-
tion Lifecycle Management and SLA-Driven Resource Distribution
within Service Providers,” in 8th IEEE International Symposium on
Network Computing and Applications, pp. 211–218, IEEE, 2009.

[103] S. Roy and N. Mukherjee, “Adaptive Execution of Jobs in Computa-
tional Grid Environment,” Journal of Computer Science and Tech-
nology, vol. 24, pp. 925–938, September 2009.

[104] D. Ardagna, M. Trubian, and L. Zhang, “SLA based resource allo-
cation policies in autonomic environments,” Journal of Parallel and
Distributed Computing, vol. 67, no. 3, pp. 259 – 270, 2007.

[105] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems.
Springer Verlag, 2004.

[106] “PuLP-OR Modeler.” http://code.google.com/p/pulp-or/ (Last re-
trieved: 09/2010).

[107] “GUROBI Solver.” http://gurobi.com/ (Last retrieved: 09/2010).

[108] H. Mittelmann, “Mixed Integer Linear Programming Bench-
mark (parallel codes).” http://plato.asu.edu/ftp/milpc.html (Last re-
trieved: 09/2010).

[109] “Performance Profile Summary.” http://www.coin-
or.org/GAMSlinks/benchmarks/MIP/bestSolver_100209/profile_sum-
mary.htm (Last retrieved: 09/2010).

160

BIBLIOGRAPHY

[110] Y. Song, H. Wang, Y. Li, B. Feng, and Y. Sun, “Multi-Tiered On-
Demand Resource Scheduling for VM-Based Data Center,” in CC-
GRID ’09: Proceedings of the 2009 9th IEEE/ACM International Sym-
posium on Cluster Computing and the Grid, (Washington, DC, USA),
pp. 148–155, IEEE Computer Society, 2009.

[111] L. Phan, Z. Zhang, S. Jain, G. Tan, B. Loo, and I. Lee, “Cost-based
Dynamic Job Rescheduling: A Case Study of the Intel Distributed
Computing Platform,” tech. rep., University of Pennsylvania and In-
tel Corporation, 2010.

[112] H. Lau and M. Lim, “Multi-period multi-dimensional knapsack prob-
lem and its applications to available-to-promise,” in Proceedings
of the International Symposium on Scheduling (ISS), Hyogo, Japan,
pp. 94–99, Citeseer, 2004.

[113] T. Kelly, “Generalized Knapsack Solvers for Multi-unit Combinato-
rial Auctions: Analysis and Application to Computational Resource
Allocation,” in Agent-Mediated Electronic Commerce VI, vol. 3435
of Lecture Notes in Computer Science, pp. 73–86, Springer Berlin /
Heidelberg, 2005.

[114] M. Bezem, J. Klop, and R. de Vrijer, Term rewriting systems. Cam-
bridge Univ Pr, 2003.

[115] OASIS, “Web Services Resource Framework (WSRF) v1.2.”
http://www.oasis-open.org/committees/wsrf/, 04 2006 (Last re-
trieved: 09/2010).

161

162

Index

Agreement Initiator, 95
Agreement Responder, 95
Antecedent Service, 12
Automated SLA, 21

BDD Non-Terminal Node, 74
BDD Terminal Node, 74
Best-Fit Greedy Algorithm, 110
Best-Fit Planning, 124
Bin-Packing Problem, 107
Binary Decision Diagrams, 74
Business Process, 11
Business Value, 80

Check-Pointing, 14
Cloud Computing, 13
Common Information Model, 93
Conditional Probability, 82
Contract Net, 23
CPLEX Solver, 128

Dependent Service, 12
Dependent Variables, 82
Differentiated Services, 21
Directed Acyclic Graph, 74

Elastic Compute Cloud, 13
Electronic Contract, 20
Energy Efficiency, 108
Explicit Dependency, 11

First-Fit Greedy Algorithm, 110
First-Fit Planning, 124
Flexible-Items Planning, 123
Flexible-Time Planning, 124
Forecasting, 53

Game Theory, 45
GLUE Schema, 94
Grid Computing, 14
GUROBI Solver, 128

High-Performance Computing, 60

IaaS, Multi-Domain, 16
Implicit Dependency, 12
Independent Variables, 82
Infrastructure as a Service, 14
Integer Linear Programming, 125
IT Service, 9

Knapsack Problem, 125

Mean-time-to-Failure, 41
Mean-time-to-Repair, 41
Mixed-Integer Programs, 125
Monitoring and SLA Adjustment, 54
Monitoring Infrastructure, 53
Multi-Criteria Optimization, 42
Multi-Round Negotiation, 21

Negotiation Interface, 52
Negotiation Process, 55
Non-Flexible Planning, 123

Ordered BDD, 75
Outsourcing, 15

Pareto Front, 43
Penalties, 65
Penalty Fairness, 66
Penalty Function, 67
Planning and Optimization, 52

163

INDEX

Platform as a Service, 14
Procurement, 51
Properties Dependency Graph, 41
Provisioning, 53
Publish/Subscribe System, 51
PuLP Modeler, 128

Quality of Service, 19
Quota, 14

Reduced Ordered BDD, 75
Request for Quote, 23
Reservation Time Lease, 95
Reservation Type, 96
Resource Element, 93
Resource Group, 95
Resource Group Characteristic, 95
Resource Group Type, 95
Resource Reservation, 91
Reverse Polish Notation, 84

SAMI, 50
SAMI Framework, 59
Scalarization of Objectives, 45
Semantic Web, 25
Sensor Markup Language, 98
Service Chains, 10
Service Composition, 11
Service Dependencies Information,

54
Service Dependency, 11
Service Dependency Graph, 12
Service Level Agreement, 19
Service Manager, 60
Service-Oriented Computing, 9
Shannon’s Decomposition Theorem,

74
Shared BDD, 75
Simple Storage Service, 13
SLA Adjustment, 24
SLA Assessment, 24
SLA Clauses, 19
SLA Conditions, 19

SLA Dependency, 39
SLA Envelope, 91
SLA Execution, 23
SLA Facts, 19
SLA Hierarchy, 39
SLA Implementation, 23
SLA Management, 22
SLA Management Instance, 50
SLA Monitoring, 23
SLA Negotiation, 23
SLA Template, 22
SLA Termination, 24
SLA Translation, 40, 42
Storage Resource Manager, 98
Symbolic Model Checking, 74

TeleManagement Forum, 22
Template Advertisements, 51
Total Cost of Ownership, 32

Utility Computing, 13

Virtual Machine, 14, 105
Virtualization, 14

WS-Agreement, 21
WSBPEL, 11
WSDL, 11
WSLA, 22

164

Declaration

I declare that this thesis is my own work and has not been submitted
in any form for another degree or diploma at any university or other in-
stitute of tertiary education. Information derived from the published and
unpublished work of others has been acknowledged in the text, and a list
of references is given.

Konstantinos (Costas) Kotsokalis

