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Abstract

We propose a CUSUM type test for constant correlation that goes beyond a

previously suggested correlation constancy test by considering Spearman’s rho in

arbitrary dimensions. By using copula-based expressions, we simultaneously ex-

tend a previously suggested copula constancy test. We calculate the asymptotic

null distribution using an invariance principle for the sequential empirical copula

process. The limit distribution is free of nuisance parameters and critical values

can be obtained without bootstrap techniques. We give a local power result and

analyze the test’s behavior in small samples.

Keywords: Copula, Mixing, Multivariate sequential empirical process, Robustness,

Structural break

2



1. Introduction

Recently, Wied, Krämer and Dehling (2010) proposed a fluctuation test for constant

correlation based on the Bravais-Pearson correlation coefficient. The test, which will be

referred to as BPC test in the following, is useful e.g. in financial econometrics when

a practitioner wants to analyze if correlations of asset returns change in time, see e.g.

Longin and Solnik (1995) and Krishan et al. (2009) for the relevance of this question. It

complements former approaches by e.g. Galeano and Peña (2007) and Aue et al. (2009).

This paper presents a fluctuation test for constant correlation based on Spearman’s

rho and the sample version of it. In many situations, e.g. if the data is non-elliptical,

the Bravais-Pearson correlation may not be an appropriate measure for dependence. It is

e.g. confined to measuring linear dependence, while the rank-based dependence measure

Spearman’s rho quantifies monotone dependence. Spearman’s rho is probably the most

common rank-based dependence measure in economic and social sciences, see e.g. Gaißler

and Schmid (2010), who propose tests for equality of rank correlations, and the references

herein. In addition, Spearman’s rho often performs better in terms of robustness than

the Bravais-Pearson correlation. Several other pitfalls and possible problems for a risk

manager who simply applies the Bravais-Pearson correlation are discussed in Embrechts

et al. (2002).

Therefore it is natural in the context of testing for changes in the dependence struc-

ture of random vectors to extend the BPC test to a test for constant Spearman’s rho.

As expected from the theory of dependence measures, this test is applicable in more

situations: It has a much better behavior in the presence of outliers and there are no

conditions on the existence of moments, while the BPC test (as well as Aue et al., 2009)

requires finite fourth moments. In addition, the test is applicable in arbitrary dimensions,

while the BPC test is designed for bivariate random vectors. Similarly to the BPC test,

the test bases on successively calculated empirical correlation coefficients in the vein of

Ploberger et al. (1989) or Lee et al. (2003) and the limit distribution of our test statistic

is the supremum of the absolute value of a Brownian Bridge. This immediately provides
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critical values without any bootstrap techniques. We impose a strong mixing assumption

for the dependence structure. The proof relies on an invariance principle for multivariate

sequential empirical processes from Rüschendorf (1976).

By using the copula-based expression for Spearman’s rho from Schmid and Schmidt

(2007) or Nelson (2006), we get quite another contribution with our test, i.e. an extension

of the copula constancy tests proposed by Krämer and van Kampen (2010), Busetti

and Harvey (2011) or van Kampen and Wied (2010). These tests are important in

financial econometrics, but are restricted to the case of testing for copula constancy in

one particular quantile, e.g. the 0.95-quantile. This might be an important null hypothesis

as well, but our test now allows for testing constancy of the whole copula by integrating

over it. We therefore reject the null hypothesis of constant Spearman’s rho (which is

closely connected to the null hypothesis of an overall constant copula) if the integral over

it fluctuates too much over time.

The paper is organized as follows: Section 2 presents our test statistic and the asymptotic

null distribution, Section 3 considers local power, Section 4 presents Monte Carlo evidence

about the test’s behavior in small samples and Section 5 compares our new test with the

BPC test in terms of robustness by a simulation study and an empirical application.

Finally, Section 6 concludes. All proofs are in the appendix.

2. Test statistic and its asymptotic null distribution

In this section, we present the test statistic and the limit distribution of our test under

the null. First, we want to introduce notation: (X1, . . . ,Xn) are d-dimensional random

vectors with Xj = (X1,j, . . . , Xd,j). Regarding the dependence structure, the following

assumption is imposed:

(A1) X1, . . . ,Xn are α-mixing with mixing coefficients αj satisfying

∞∑
j=1

j2α
γ/(4+γ)
j <∞
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for some γ ∈ (0, 2).

This dependence assumption holds in most of the econometric models relevant in practice,

see e.g. Inoue (2001).

The vectors Xj, j = 1, . . . , n, have joint distribution functions F j with

F j(x) = P(X1,j ≤ x1, . . . , Xd,j ≤ xd),x = (x1, . . . , xd) ∈ Rd,

and marginal distribution functions Fi,j(x) = P(Xi,j ≤ x) for x ∈ R and i = 1, . . . , d.

With Sklar’s (1959) theorem, there exists a unique copula function Cj : [0, 1]d → [0, 1] of

Xj with

F j(x) = Cj(F1,j(x1), . . . , Fd,j(xd))

and

Cj(u) = Fj(F
−1
1,j (u1), . . . , F

−1
d,j (ud)),u = (u1, . . . , ud) ∈ [0, 1]d.

In terms of the copula, Spearman’s rho is defined as

ρj = h(d) ·
(

2d
∫
[0,1]d

Cj(u)du− 1

)

with

h(d) =
d+ 1

2d − (d+ 1)
,

see Schmid and Schmidt (2007) or Nelson (2006).

We are testing

H0 : ρj = ρ0, j = 1, . . . , n vs. H1 : ∃j ∈ {1, . . . , n− 1} : ρj 6= ρj+1.
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Let

F̂i;n(x) =
1

n

n∑
j=1

1{Xi,j≤x}, i = 1, . . . , d, x ∈ R,

Ui,j = Fi,j(Xi,j) and

Ûi,j;n := F̂i;n(Xi,j) =
1

n
(rank of Xi,j in Xi,1, . . . , Xi,n) , i = 1, . . . , d, j = 1, . . . , n.

Let

Rj(u) = 1{U1,j≤u1,...,Ud,j≤ud}

and

R̂j(u) = 1{Û1,j;n≤u1,...,Ûd,j;n≤ud}.

The copula C is estimated by the empirical copula, defined as

Ĉn(u) =
1

n

n∑
j=1

R̂j(u) =
1

n

n∑
j=1

d∏
i=1

1{Ûi,j;n≤ui},u = (u1, . . . , ud) ∈ [0, 1]d.

The estimator based on the first k observations is

Ĉk(u) =
1

k

k∑
j=1

R̂j(u) =
1

k

k∑
j=1

d∏
i=1

1{Ûi,j;n≤ui},u = (u1, . . . , ud) ∈ [0, 1]d.

Note that we must use Ûi,j;n and not Ûi,j;k.

The estimator for the copula immediately yields an estimator for Spearman’s rho:

ρ̂k = h(d) ·
(

2d
∫
[0,1]d

Ĉk(u)du− 1

)
= h(d) ·

(
2d

k

k∑
j=1

d∏
i=1

(1− Ûi,j;n)− 1

)
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We use the following test statistic W :

W = D̂ max
1≤k≤n

∣∣∣∣ k√n (ρ̂k − ρ̂n)

∣∣∣∣
= D̂ sup

s∈[0,1]

∣∣∣∣ [ns]√n (ρ̂[ns] − ρ̂n)
∣∣∣∣

=: D̂ sup
s∈[0,1]

|Pn(s)|

with an estimator D̂,

D̂ =
1√
D̂′
,

where

D̂′ = h(d)222d

 1

n

n∑
j=1

d∏
i=1

(1− Ûi,j;n)2 −

(
1

n

n∑
j=1

d∏
i=1

(1− Ûi,j;n)

)2

+2

 γn∑
m=1

k

(
m

γn

)n−m∑
j=1

1

n

d∏
i=1

(1− Ûi,j;n)(1− Ûi,j+m;n)−

(
1

n

n∑
j=1

d∏
i=1

(1− Ûi,j;n)

)2
 .

The kernel k(·) fulfills k(x) = 0 for |x| > 1 and is contained in the class K2 of de Jong

and Davidson (2000) which guarantees positive semi-definiteness (we can choose e.g. the

Bartlett-kernel); the bandwidth γn is chosen such that γn = o(n
1
2 ).

For the central theorem, we need several additional assumptions:

(B1) (X1, . . . ,Xn) is strictly stationary.

(B2) The marginal distribution functions Fi,j = Fi, i = 1, . . . , d are continuous.

(B3) The marginals of C are strictly increasing.

(B4) The partial derivatives ∂C
∂ui

(u) exist and are continuous for i = 1, . . . , d.
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Theorem 1. Under H0 and Assumptions (A1), (B1)-(B4),

W →d sup
s∈[0,1]

|B(s)|,

where B(s) is a one-dimensional Brownian Bridge.

Theorem 1 allows for constructing an asymptotic test. The main tool for the proof which

can be found in Appendix A is an invariance principle for the multivariate sequential

empirical process

Ln(s,u) =
1√
n

[ns]∑
j=1

(R̂j(u)− C(u))

=
[ns]√
n

 1

[ns]

[ns]∑
j=1

R̂j(u)− C(u)

 ,

see Rüschendorf (1976).

There exists an interesting relationship between our test for constancy of Spearman’s rho

and the copula constancy tests proposed by Busetti and Harvey (2011) and van Kampen

and Wied (2010): One can show (see Appendix B) that our test is as a functional of the

multivariate τ -quantics on which these copula constancy tests base. But, in fact, while

the other tests examine if the copula in a particular quantile is constant, we can test for

constancy of the whole copula by integrating over it. Note that the integral of the copula

is just one particular functional of it (which has of course nice properties as it e.g. leads

to a limit distribution which is free of nuisance parameters). Currently, we are trying to

extend our approach to other functionals of the copula which lead to other dependence

measures as e.g. Kendall’s tau (see Nelson, 2006).

3. Local power

This section considers the local power of our test. Since the copula function of the

random vectors under consideration changes with n, we now operate with a triangular
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array (Xn
1 , . . . ,X

n
n), but we suppress the index n for ease of exposition. Let C(u) be a

copula and let C∗(s,u) be another copula with an additional index parameter s. We

consider local alternatives of the type

Cj(u) =

(
1− δ√

n

)
C(u) +

δ√
n
C∗
(
j

n
,u

)
. (1)

By choosing, say, C∗ (s,u) = [1− g(s)]C (u) + g(s)C∗∗ (u) for some copula C∗∗(·) and

some function g(·) bounded by 1 we obtain the sequence of correlations

ρj =

[
1− δ√

n
g

(
j

n

)]
ρ0 +

δ√
n
g

(
j

n

)
ρA.

To deduce limit results for the sequence of local alternatives (1), we need some more

assumptions

(C1) The analogue mixing condition (A1) holds for the triangular array.

(C2) The joint copula for the random vectors (X1, . . . ,Xn) with lag l,

Cj,l(u,v) := P(X1,j ≤ F−11,j (u1), . . . , Xd,j ≤ F−1d,j (ud), X1,j+l ≤ F−11,j+l(v1), . . . , Xd,j+l ≤ F−1d,j+l(vd)),

is specified to

Cj,l(u,v) =

(
1− δ√

n

)2

Cl(u,v) +
δ2

n
C∗l

(
j

n
,
j + l

n
,u,v

)
+

δ√
n

(
1− δ√

n

)[
C(u)C∗

(
j + l

n
,v

)
+ C(v)C∗

(
j

n
,u

)]

with a constant δ ∈ (0, 1]. In this equation Cl(·, ·) is the joint copula of some

sequence of stationary random vectors ξi with lag l, C(·) is the copula of ξi. Anal-

ogously, C∗l (·, ·, ·, ·) is the copula of some sequence of stationary random functions

ηi(·) with lag l, C∗(·, ·) is the copula of ηi(·).

(C3) The marginals of C are strictly increasing.
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(C4) The partial derivatives ∂C
∂ui

(u) and ∂C∗

∂ui
(s,u) exist and are continuous for i = 1, . . . , d

and all s.

(C5) The marginal distribution functions of (X1, . . . ,Xn) do not depend on j and are

continuous.

Assumption (B1) is in line with Inoue (2001) and yields equation (1) by letting v tend

to ∞. The equation describes a mixture of two distribution functions and allows for

multiple-change local alternatives. With this, we get

Theorem 2. Under Assumptions (C1) - (C5),

W →d sup
s∈[0,1]

∣∣∣∣B(s) + δDh(d)2d
[∫

[0,1]d

∫ s

0

C∗ (t,u) dtdu− s
∫
[0,1]d

∫ 1

0

C∗ (t,u) dtdu

]
.

∣∣∣∣ ,
where D is the probability limit of D̂ under the null hypothesis.

With this theorem and Anderson’s Lemma we can deduce that the asymptotic level

is always larger than or equal to α, see Andrews (1997) or Rothe and Wied (2011).

4. Finite sample behavior

We investigate the test’s finite sample behavior and compare it to the BPC test by

simulating the empirical size under the null hypothesis and the empirical power under

various alternatives. In all our simulations we use the Bartlett kernel and bandwidth

[log(n)] both for our test and for the BPC test. For serial dependence, we assume a

bivariate MA(1)-process

Xt = εt + θεt−1 with θ =

θ1 = 0.3 0

0 θ2 = 0.2

 .
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In this situation the εt, t ∈ Z are independent and identically distributed, following the

t1-distribution with shape matrix

S =

1 s

s 1

 , |s| < 1. (2)

In this case, we do not have finite fourth moments (even no finite first moment) which are

required for the BPC test. The null hypothesis is that Xt has constant correlation of ρ0 =

0.4. Additionally we consider six alternatives A1 to A6, in which the correlation jumps

after the middle of the sample from ρ0 = 0.4 to ρ1 = 0.6, 0.8, 0.2, 0.0,−0.2,−0.4,−0.6, re-

spectively. For the simulations, we generate realizations ε0, ε1, . . . , εn/2 and εn/2+1, . . . , εn

with si = ρi

√
(θ21+1)(θ22+1)

θ1θ2+1
, i = 0, 1.2 Table 1 reports rejection frequencies at the signifi-

cance level α = 0.05 based on 5000 repetitions and sample sizes n = 500, 1000, 2000.

-Table 1 here -

We see that the size of our is kept and that the empirical power increases with the

magnitude and n. It is slightly higher for increasing than for decreasing correlations,

what is important in risk management. The BPC test is not applicable at all, because it

cannot distinguish between null hypothesis and alternative. This is an expected behavior

considering that the asymptotic variance of the empirical correlation coefficient is an

unbounded function of the fourth moments of the population distribution and that, on the

other hand, Spearman’s correlation coefficient is invariant under monotonely increasing,

componentwise transformations and hence little effected by heavy tails.

We get a partly similar result when using the setup from above with the t5-distribution,

constant correlation 0.4 and by adding one heavy outlier of size, say, (40,−100) to the

sample at time c · n, c = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5. If the outlier comes

late, the BPC test almost always rejects the null hypothesis; if it comes early, the test

2The choice of the si is due to the fact that with this, the Pearson correlation would be equal to
ρ0 resp. ρ1 if it existed. Spearman’s rho lies then closely to these values as numerical approximations
suggest.
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almost never rejects it. This is an odd behavior and makes the test unsuitable for this

outlier scenario. Our new test always keeps the size, see Table 2.

-Table 2 here -

In a setup for distributions with lower tails and no outliers, the efficiency of our copula-

based test is low compared to the BPC test, see Table 3 for exemplary results for the

t3-distribution. Note that the t3 is already “closer” to the Gaussian distribution where the

usual empirical correlation coefficient is the maximum likelihood, i.e. the most efficient

estimator of the correlation.

-Table 3 here -

5. Robustness

5.1. Simulation evidence The two major advantages of our test compared to the

BPC test proposed by Wied et al. (2010) are its applicability without any moment con-

ditions at all (as compared to the existence of fourth moments for the BPC test) and its

appealing robustness properties. The latter shall be visualized by an instructive exam-

ple. Both proposed fluctuation tests mainly derive their robustness properties from the

respective properties of the underlying correlation measure. The robustness properties of

Spearman’s rho, along with several other correlation estimators, are studied in detail in

Croux and Dehon (2010).

We sample a path (xt)t=1,...,500 of length n = 500 of the bivariate MA(1) process Xt =

εt+θεt−1, where the εt, t ∈ Z, are i.i.d. with a centered bivariate Gaussian distribution and

covariance matrix S. The parameters θ and S are as in Section 4, where the correlation

s of εt is, as under the null before, chosen such that the resulting correlation of Xt is 0.4.

We add one mild outlier to the sample by setting, say, x288 to (20,−50). We denote the

resulting contaminated example by (xwt )t=1,...,n, where w indicates weak contamination.
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Figure 1 visualizes the process

bk = D̃
k√
n

(r̂k − r̂n), k = 1, ..., n,

where r̂k denotes the Bravais-Pearson correlation coefficient based on X1, ...,Xk, and D̃

is a deviation estimator that is described in Wied et al. (2010) and scales the process

such that (b[ns])s∈[0,1] converges to a Brownian bridge.

-Figure 1 here -

-Figure 2 here -

The BPC test statistic is then sup1≤k≤n |bk|. The grey line in Figure 1 corresponds to the

uncontaminated sample (xt)t=1,...,n, the black line to (xwt )t=1,...,n. The single outlier has

a dramatic effect on the Bravais–Pearson test statistic and, in this example, causes the

null hypothesis to be rejected at the significance level 0.05. The results are similar if the

outlier is placed at a different position.

Alternatively we create a strongly contaminated sample (xst)t=1,...,n by randomly plac-

ing 10 outliers in the second half of the sample. Each outlier is of the form (yt,−yt),

where yt is drawn from the uniform distribution on [−1000,−100] ∪ [100, 1000]. Both,

fraction and size of the outliers in (xst)t=1,...,n are about 10 times as large as in (xwt )t=1,...,n.

Figure 2 depicts the process

sk = D̂
k√
n

(ρ̂k − ρ̂n), k = 1, ..., n,

once being computed from the uncontaminated sample (grey line) and once from the heav-

ily corrupted sample (xst)t=1,...,n (black line). We witness a slight distortion of (sk)k=1,...,n

as a result of the contamination, but the location of the maximizing point as well as the

decision of the test are unaffected. Similar results are obtained for other realizations.
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5.2. Empirical relevance This subsection shows that the outlier scenario described in

the previous subsection might indeed be relevant for a practitioner who analyzes struc-

tural changes in the dependence of assets. This can be exemplarily seen in the time

period around the Black Monday, 19th October 1987, i.e. in the time from January 1985

to December 1989. Both the Dow Jones Industrial Average and the Nasdaq Composite

daily returns are extremely negative at this day and the absolute values of these returns

are much higher than the other ones at this time. One day after, the Dow Jones return is

positive again, while the Nasdaq return remains negative - both on a high level compared

to the means and standard deviations of all days. Table 4 shows the exact values.

-Table 4 here -

These outliers are reflected in the BPC test statistic, see Figure 3, part (a), for the

weighted differences of successively estimated Pearson correlation coefficients and the

peak around the Black Monday. On 19th October, the successively estimated correlations

become very high, but due to the behavior one day after, they fall down immediately.

Both phenomena together lead to the peak.3

Applying the BPC test gives a test statistic of 1.447 (p-value of 0.030) such that the null

hypothesis of constant correlation is rejected on the 5%-level, but the test statistic would

be much lower without this peak and the null would not be rejected.

Our Spearman test statistic is not affected by this peak - see Figure 3, part (b) - and the

test statistic is equal to 0.886 (p-value of 0.412). Therefore, one should probably conclude

that the dependence structure did not change seriously after the Black Monday. Similar

results were obtained for other time periods around 19th October 1987.

-Figure 3 here -

3This is not exactly the same situation as in Table 1. However, by similar simulations with two
outliers as in this applications we can reproduce the peak of Figure 3 (a) as well. Thus, the figures give
two different examples of a bizarre behavior of the test statistic which are both due to the construction
of the Pearson correlation coefficient.
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6. Discussion

We have proposed a new test for constancy of Spearman’s rho which is much more robust

against outliers than the BPC test previously suggested by Wied et al. (2010).

Our test also allows for testing if the whole copula of multivariate random vectors is

constant, therefore extending former suggested copula constancy tests. It is a task for

further research to extend this test to other functionals of the copula in order to check

if the performance might be better for certain alternatives. Another task for further

research is the extension of the dependence structure to functionals of iid- or even of

mixing processes to enlarge the class of models in which our test can operate.

A. Appendix section

Proof of Theorem 1

Consider first Pn(s):

Pn(s) =
[ns]√
n

(
h(d) ·

(
2d
∫
[0,1]d

Ĉ[ns](u)du− 1

)
− h(d) ·

(
2d
∫
[0,1]d

Ĉn(u)du− 1

))

=
[ns]√
n
· h(d) · 2d

∫
[0,1]d

 1

[ns]

[ns]∑
j=1

R̂j(u)− 1

n

n∑
j=1

R̂j(u)

 du

= h(d) · 2d
∫
[0,1]d

An(s,u)du

with

An(s,u) =
[ns]√
n

 1

[ns]

[ns]∑
j=1

R̂j(u)− 1

n

n∑
j=1

R̂j(u)

 . (3)
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Now,

An(s,u) =
[ns]√
n

1

[ns]

[ns]∑
j=1

R̂j(u)− [ns]√
n
C(u)− [ns]√

n

1

n

n∑
j=1

R̂j(u) +
[ns]√
n
C(u)

=
[ns]√
n

 1

[ns]

[ns]∑
j=1

R̂j(u)− C(u)

− [ns]√
n

(
1

n

n∑
j=1

R̂j(u)− C(u)

)

= Ln(s,u)− [ns]

n
Ln(1,u).

With Theorem 3.3 in Rüschendorf (1976) it holds under the assumptions

An(·, ·)→d A0(·, ·),

where

A0(s,u) = L0(s,u)− sL0(1,u)

with

L0(s,u) = V0(s,u)− s
d∑
i=1

∂C

∂ui
(u)V0(1, 1, . . . , ui, . . . , 1).

The convergence of An(·, ·) follows from the convergence of Ln(·, ·); for this, we need an

invariance principle for

1√
n

[ns]∑
j=1

(Rj(u)− C(u)). (4)

The latter is presented in Inoue (2001) in a slightly more general form than we need it

here.

V0(s,u) is a P-almost surely continuous, centered Gaussian process with covariance func-
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tion

K0((s1,u1), (s2,u2)) := Cov(V0(s1,u1), V0(s2,u2)) = (s1 ∧ s2)K ′(u1,u2)

for

K ′(u1,u2) = C(u1 ∧ u2)− C(u1)C(u2)

+
∞∑
m=2

(
E(1{X1,1≤F−1

1 (u11);...;Xd,1≤F−1
d (ud1)}

1{X1,m≤F−1
1 (u12);...;Xd,m≤F−1

d (ud2)}
)

−E(1{X1,1≤F−1
1 (u11);...;Xd,1≤F−1

d (ud1)}
) · E(1{X1,m≤F−1

1 (u12);...;Xd,m≤F−1
d (ud2)}

)

+E(1{X1,1≤F−1
1 (u12);...;Xd,1≤F−1

d (ud2)}
1{X1,m≤F−1

1 (u11);...;Xd,m≤F−1
d (ud1)}

)

−E(1{X1,1≤F−1
1 (u12);...;Xd,1≤F−1

d (ud2)}
) · E(1{X1,m≤F−1

1 (u11);...;Xd,m≤F−1
d (ud1)}

)
)
.

This covariance function is the limit of the covariance function of

Vn(s,u) =
1√
n

[ns]∑
j=1

(Rj(u)− C(u))

i.e.

K0((s1,u1), (s2,u2)) = lim
n→∞

Cov(Vn(s1,u1), Vn(s2,u2)).

It follows

A0(s,u) = V0(s,u)− sV0(1,u).

With the Continuous Mapping Theorem,

Pn(·)→d P0(·),
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where

P0(s) = h(d)2d
∫
[0,1]d

A0(s,u)du

is a P-almost surely continuous, centered Gaussian process. With Fubini’s theorem, the

covariance function is

Cov(P0(s1), P0(s2))

= h(d)222d

∫
[0,1]d

∫
[0,1]d

Cov(V0(s1,u)− s1V0(1,u), V0(s2,v)− s2V0(1,v))dudv

= h(d)222d(s1 ∧ s2 − s1s2 − s1s2 + s1s2)

∫
[0,1]d

∫
[0,1]d

Cov(V0(1,u), V0(1,v))dudv

= (s1 ∧ s2 − s1s2)D′

with

D′ = h(d)222d

∫
[0,1]d

∫
[0,1]d

K ′(u,v)dudv

= h(d)222d

E

(
d∏
i=1

(1− Ui,j)2
)
−

[
E

(
d∏
i=1

(1− Ui,j)

)]2

+2

 ∞∑
m=1

E

(
d∏
i=1

(1− Ui,j)(1− Ui,j+m)

)
−

(
E

(
d∏
i=1

(1− Ui,j)

))2


= h(d)22d

[
Var

(
d∏
i=1

(1− Ui,j)

)
+ 2

∞∑
m=1

Cov

(
d∏
i=1

(1− Ui,j),
d∏
i=1

(1− Ui,j+m)

)]
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This holds because, again with Fubini,

∫
[0,1]d

∫
[0,1]d

C(u ∧ v)dudv

=

∫
[0,1]d

∫
[0,1]d

E(1{X1,j≤F−1
1 (u11);...;Xd,j≤F−1

d (ud1)}
1{X1,j≤F−1

1 (u12);...;Xd,j≤F−1
d (ud2)}

)dudv

= E

(∫
[0,1]d

∫
[0,1]d

1{X1,j≤F−1
1 (u11);...;Xd,j≤F−1

d (ud1)}
1{X1,j≤F−1

1 (u12);...;Xd,j≤F−1
d (ud2)}

dudv

)
= E

(∫
[0,1]d

∫
[0,1]d

1{U1,j≤u11;...;Ud,j≤ud1}1{U1,j≤u12;...;Ud,j≤ud2}dudv

)
= E

(
d∏
i=1

(1− Ui,j)
d∏
i=1

(1− Ui,j)

)
.

The other summands of K ′(u,v) are integrated analoguesly.

We get a consistent estimator for D′ from de Jong and Davidson (2000),

D̃′ = h(d)222d

 1

n

n∑
j=1

d∏
i=1

(1− Ui,j)2 −

(
1

n

n∑
j=1

d∏
i=1

(1− Ui,j)

)2

+2

 γn∑
m=1

k

(
m

γn

)n−m∑
j=1

1

n

d∏
i=1

(1− Ui,j)(1− Ui,j+m)−

(
1

n

n∑
j=1

d∏
i=1

(1− Ui,j)

)2
 ,

with a kernel k that fulfills the condition k(x) = 0 for |x| > 1 and is contained in the

class K2 of de Jong and Davidson (2000) which guarantees positive semi-definiteness

of D̃′. Next, we show that D̂′ − D̃′ →p 0. By the invariance principle (4) we get a

Gliwenko-Cantelli-like theorem (in probability) with rate n−
1
2 , that means,

Bn := max
i=1,...,d

sup
j∈N
|Ûi,j;n − Ui,j| = OP

(
n−

1
2

)
.

Since 0 ≤ Ui,j, Ûi,j;n,≤ 1, we obtain

∣∣∣∣∣
d∏
i=1

(1− Ûi,j;n)(1− Ûi,j+m;n)−
d∏
i=1

(1− Ui,j)(1− Ui,j+m)

∣∣∣∣∣ ≤ 2dBn.
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Thus we get

|D̂′ − D̃| ≤ C

γn∑
m=1

k

(
m

γn

)
Bn = O

(
γnn

− 1
2

)
= oP(1),

as γn = o(n
1
2 ). Therefore D̂′ is a consistent estimator of D′.

The theorem follows then with the Continuous Mapping Theorem, because the process

P ∗0 (s) :=
1√
D′
P0(s)

is a P-almost surely continuous, centered Gaussian process with the same covariance

function as the Brownian Bridge, i.e.

Cov(P ∗0 (s1), P
∗
0 (s2)) = s1 ∧ s2 − s1s2.

Since a Gaussian process is uniquely determined by the first two moments, the limit pro-

cess is in fact a Brownian Bridge. �

Proof of Theorem 2

We consider An(s,u) from (3). By adding suitable averages over Cj(u) it holds

An(s,u) =
[ns]√
n

 1

[ns]

[ns]∑
j=1

(R̂j(u)− Cj(u))

− [ns]√
n

(
1

n

n∑
j=1

(R̂j(u)− Cj(u))

)

+
1√
n

[ns]∑
j=1

Cj(u)− [ns]

n

1√
n

n∑
j=1

Cj(u).

We denote

Bn(s,u) :=
1√
n

[ns]∑
j=1

Cj(u)− [ns]

n

1√
n

n∑
j=1

Cj(u).
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Using similar arguments as in the proof of Theorem 1, i.e. using the analogous invariance

principle for

Vn(s,u) =
1√
n

[ns]∑
j=1

(Rj(u)− Cj(u)),

which is presented in Inoue (2001), one shows that the first two summands converge to

A0(s,u). Furthermore Bn(s,u) is equal to

Bn(s,u) = δ

 1

n

[ns]∑
j=1

C∗
(
j

n
,u

)
− [ns]

n

1

n

[ns]∑
j=1

C∗
(
j

n
,u

) .
This expression converges to

δ

[∫ s

0

C∗ (t,u) dt− s
∫ 1

0

C∗ (t,u) dt

]
.

In addition, the probability limit of D̂ under the sequence of local alternatives is the

quantity D from the proof of Theorem 1, i.e. the probability limit of D̂ under the null

hypothesis. This holds because

lim
n→∞

Cov(Vn(s1,u1), Vn(s2,u2))

is the same under the null hypothesis as well as under the sequence of local alternatives.

Thus, the theorem is proved. �
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B. Connection to copula constancy tests

Let F̂−1i,n (ui) denote the empirical quantile function (see e.g. Welsh (1996, p39)). Write

An(s, u) =
[ns]√
n

 1

[ns]

[ns]∑
j=1

R̂j(u)− 1

n

n∑
j=1

R̂j(u)


= − [ns]√

n

 1

[ns]

[ns]∑
j=1

Ĉn(u)− R̂j(u)

+
[ns]√
n

(
1

n

n∑
j=1

Ĉn(u)− R̂j(u)

)

= − 1√
n

[ns]∑
j=1

(
Ĉn(u)− R̂j(u)

)
+

1√
n

[ns]∑
k=1

(
1

n

n∑
j=1

Ĉn(u)− R̂j(u)

)

= − 1√
n

[ns]∑
j=1

[(
Ĉn(u)− R̂j(u)

)
− 1

n

n∑
m=1

(
Ĉn(u)− R̂m(u)

)]

= − 1√
n

[ns]∑
j=1

[
Ĉn(u)− I(X1j ≤ F̂−11,n(u1), . . . , Xdj ≤ F̂−1d,n(ud))

]

where the last step uses that 1/n
∑n

m=1 R̂m(u) = Ĉn(u) and

R̂j(u) := I(Û1j,n ≤ u1, . . . , Ûdj,n ≤ ud)

= I(F̂−11,n(Û1j,n) ≤ F̂−11,n(u1), . . . , F̂
−1
d,n(Ûdj,n) ≤ F̂−1d,n(ud))

= I(X1j ≤ F̂−11,n(u1), . . . , Xdj ≤ F̂−1d,n(ud))

Note that Ĉn(u) − I(X1j ≤ F̂−11,n(u1), . . . , Xdj ≤ F̂−1d,n(ud)) are the bivariate τ -quantics in

Busetti and Harvey (2011) if d = 2. Hence, the test can be written as an functional form

of the same quantities.
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Aue, A., S. Hörmann, L. Horvath, and M. Reimherr (2009): “Break detection in

the covariance structure of multivariate time series models,” The Annals of Statistics,

37(6B), 4046–4087.

22



Busetti, F. and A. Harvey (2011): “When is a copula constant? A test for changing

relationships,” Journal of Financial Econometrics, 9(1), 106–131.

Croux, C. and C. Dehon (2010): “Influence functions of the Spearman and Kendall

Correlation measures,” Statistical Methods and Applications, 19, 497–515.

de Jong, R. and J. Davidson (2000): “Consistency of kernel estimators of het-

eroscedastic and autocorrelated covariance matrices,” Econometrica, 68(2), 407–424.

Embrechts, P., A. McNeil, and D. Straumann (2002): “Correlation and depen-

dence in risk management: Properties and pitfalls,” in Risk management: Value at Risk

and beyond, ed. by M. Dempster, Cambridge University Press, Cambridge, 176–223.

Gaißler, S. and F. Schmid (2010): “On testing equality of pairwise rank correlations

in a multivariate random vector,” Journal of Multivariate Analysis, 101, 2598–2615.

Inoue, A. (2001): “Testing for distributional change in time series,” Econometric The-

ory, 17, 156–187.

Krishan, C., R. Petkova, and P. Ritchken (2009): “Correlation risk,” Journal of

Empirical Finance, 16, 353–367.
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Figure 1: Process (bk)k=1,...,500 computed from weakly contaminated (black) and uncontami-
nated (grey) sample
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Figure 2: Process (sk)k=1,...,500 computed from strongly contaminated (black) and uncontami-
nated (grey) sample

n Values of ρ1
0.4 0.6 0.8 0.2 0 −0.2 −0.4 −0.6

500 0.044 0.067 0.165 0.071 0.138 0.282 0.506 0.740
(0.489) (0.514) (0.560) (0.480) (0.481) (0.502) (0.523) (0.540)

1000 0.048 0.102 0.282 0.094 0.256 0.530 0.811 0.969
(0.479) (0.512) (0.552) (0.474) (0.496) (0.497) (0.514) (0.544)

2000 0.051 0.160 0.486 0.155 0.466 0.834 0.982 1
(0.487) (0.495) (0.557) (0.486) (0.467) (0.500) (0.511) (0.538)

Table 1: Empirical power in different settings for MA(1) serial dependence and the t1-
distribution, ρ0 = 0.4, results of the BPC test in brackets

Fraction outlier point
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.051 0.051 0.051 0.052 0.051 0.053 0.053 0.053
(0) (0.001) (0.190) (0.820) (0.980) (0.996) (0.999) (0.999)

Table 2: Empirical rejection frequencies in an outlier scenario, n = 500, results of the BPC test
in brackets
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Figure 3: Processes bk and sk for the Dow Jones and Nasdaq Index
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n Values of ρ1
0.4 0.6 0.8 0.2 0 −0.2 −0.4 −0.6

500 0.042 0.080 0.177 0.076 0.176 0.366 0.613 0.854
(0.056) (0.287) (0.725) (0.143) (0.422) (0.700) (0.852) (0.912)

1000 0.046 0.107 0.306 0.109 0.323 0.646 0.911 0.992
(0.045) (0.358) (0.833) (0.204) (0.601) (0.845) (0.919) (0.946)

2000 0.050 0.175 0.549 0.177 0.567 0.931 0.997 1
(0.037) (0.490) (0.914) (0.319) (0.768) (0.906) (0.957) (0.966)

Table 3: Empirical power in different settings for MA(1) serial dependence and the t3-
distribution, ρ0 = 0.4, results of the BPC test in brackets

Day 16.10. 19.10. 20.10. 21.10. 22.10. µ̂ σ̂
Dow Jones −0.047 −0.256 0.057 0.097 −0.039 0 0.013

Nasdaq −0.039 −0.120 −0.094 0.071 −0.046 0 0.009

Table 4: Dow Jones and Nasdaq Returns around the Black Monday and empirical moments of
the whole time span
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