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Abstract

We propose a test for shape constraints which can be expressed by transformations of the
coordinates of multivariate regression functions. The method is motivated by the constraint
of symmetry with respect to some unknown hyperplane but can easily be generalized to other
shape constraints of this type or other semi-parametric settings. In a first step, the unknown
parameters are estimated and in a second step, this estimator is used in the L2-type test
statistic for the shape constraint. We consider the asymptotic behavior of the estimated
parameter and show, that it converges with parametric rate if the shape constraint is true.
Moreover we derive the asymptotic distribution of the test statistic under the null hypothesis
and furthermore propose a bootstrap test based on the residual bootstrap. In a simulation
study we investigate the finite sample performance of the estimator as well as the bootstrap
test.

Keywords: Deconvolution, Goodness-of-Fit, Inverse Problems, Semi-Parametric Regression, Sym-
metry

1 Introduction

Several kinds of symmetry play an important role in many areas of research. For example, many
objects or parts of objects are symmetric with respect to reflection or rotation. Symmetry can be
used in image compression and also in image analysis to detect certain objects. If symmetry of
a certain object is violated one can sometimes deduce some results from it. Usually, parts of the
human body are (nearly) symmetric, e.g. the left hand is symmetric to the right hand, the left part
of the face to the right part and so on. This is usually also true for the thermographic distribution
of those parts. If in a thermographic image of both hands this symmetry is severely violated, this
can be a hint to some inflammation in this part. Problems of this and similar type make testing
for symmetry to a problem of considerable interest. Technically, modeling the object of interest
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as a multivariate function, we end up with the problem of testing for symmetry of a multivariate
function.
Whereas several results exist which discuss the symmetry of density functions (see e.g. Ahmad
and Li (1997), Cabaña and Cabaña (2000) and Dette, Kusi-Appiah and Neumeyer (2002) among
many others) only few authors have considered testing for symmetry of a regression function so far.
Recent results have been presented in Bissantz, Holzmann and Pawlak (2009) and Birke, Dette and
Stahljans (2011), where both are for the case of bivariate functions in direkt regression models and
for symmetry with respect to some known axis.
In some cases it is not possible to observe the object of interest directly. This leads to an inverse
problem. Testing for symmetry in inverse regression problems can be of even higher interest than
testing for symmetry in direct regression models. The reason is as follows. Whereas, at least
in bivariate settings, symmetry in direct regression models can approximately be recognized by
simply looking at the data, symmetrical structures in the true object can lack any symmetry in
the observed (indirect) data. Consider, for example, the well known convolution problem which
commonly appears in image analysis where the true object is distorted by a so called point-spread
function we can easily find situations (e.g. for asymmetric point-spread functions or if the point-
spread function has a different axis of symmetry than the true object) where the symmetry is not
visible in the image. To the best of our knowledge there are no methods for testing for symmetry
in inverse regression problems so far.
In the following we will develop a testing procedure for reflection symmetry of d-variate functions
with respect to some hyperplane of dimension d−1. The method can, however, easily be generalized
to rotational symmetry or other shape constraints of similar type. Therefore, whereas we motivate
the problem by the case of a symmetry constraint, the theoretical results and their proofs will
be formulated as general as possible. Since the symmetry hyperplane is unknown we estimate it
in a first step by minimizing an L2-criterion function. If the true function is really symmetric
with respect to this hyperplane, we derive, under some regularity conditions, consistency with
parametric rate of the estimator and show that it is asymptotically normally distributed. In a
second step, we use the minimized criterion function as test statistic for symmetry and show that it
is asymptotically normal. Since the problem under consideration is closely related to certain semi-
parametric problems we will use similar techniques as Härdle and Marron (1990). However note
the important differences, that our problem is inverse and our regression function is multivariate.
In nonparametric regression tests based on such asymptotic distributions usually do not perform
satisfactorily in finite samples because the convergence is very slow and there is the problem of
dealing with a bias term. To avoid this problem we propose a bootstrap test based on residual
bootstrap and investigate the finite sample performance of this test in a simulation study.
The rest of the paper is organized as follows. In section 2 we describe the model and define the
estimator for the hyperplane as well as the test statistic. The asymptotic behavior of both is
considered in section 3 while we show the finite sample performance in section 4. Finally all proofs
are defered to the appendix
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2 The model and test statistic

We consider the nonparametric inverse regression model

Yr = Ψm(xr) + σεr (1)

with xr = (r1/(n1an1), . . . , rd/(ndand))
T , rj = −nj, . . . , nj and anj → 0, j = 1, . . . , d such that with

increasing sample size we have observations on the whole Rd. For the sake of simplicity we assume
in the following that nj = n and anj = an such that xr = (r1, . . . , rd)

T/(nan) and for fixed n we
have observations on the compact set In = [−1/an, 1/an]d. In (1) m is a two times continuously
differentiable regression function, and Ψ is an operator which maps m to the convolution m ∗ ψ
with a known convolution function ψ. Finally, with r = (r1, . . . , rd), {εr}nr∈{−n...,n}d are independent

identically distributed errors with E[εr] = 0, E[ε2r] = 1 and E[ε4r] <∞. If m is j times continuously
differentiable according to Bissantz and Birke (2009)

m̂(j)(x) =
∑

r∈{−n,...,n}d
wr,j(x)Yr (2)

with

wr,j(x) =
1

(2π)d/2(nhjan)d

∫
[−1,1]d

(−iω)je−iω
T (x−xr)/h

Φψ(ω/h)
dω (3)

with j = (j1, . . . , jd), j = j1 + . . . + jd is an appropriate estimate for ∂j1+...+jd

∂x
j1
1 ...∂x

jd
d

m. If j = 0 we write

m̂(0)(x) = m̂(x) and wr,0(x) = wr(x). As an abbreviation we write in the following Ψm = g. In (3)
Φf denotes the Fourier transform of a function f .
We consider the case of reflection symmetry with respect to some hyperplane in Rd parameterized
by θ ∈ Rd. Then, for every fixed θ ∈ Rd mirrowing m at the corresponding hyperplane can be
realized by some linear functional TθS

−1
θ where Tθ contains the shift of the hyperplane and the

rotation and S−1θ is mainly the inverse of Tθ concatenated with the mirrowing at the (x2, . . . , xd)-
hyperplane }θ. The condition of symmetry of m with respect to that hyperplane in some area Aθ
around that hyperplane is

m(z) = m(TθS
−1
θ z) for all z ∈ Aθ (4)

or equivalently

m(Tθx) = m(Sθx) for all x ∈ A = T−1θ Aθ. (5)

To this end we will use

L(θ) =

∫
A

(m(Tθx)−m(Sθx))2 dx. (6)

to check whether m exhibits such a symmetry on Aθ. In the following we will assume without loss of
generality that A = T−1θ Aθ is independent of θ. The parameter ϑ of the true hyperplane minimizes
this criterion function. Since m is not known, we estimate the criterion function as

L̂n(θ) =

∫
A

(m̂(Tθx)− m̂(Sθx))2 dx (7)
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and find the estimator of ϑ by minimizing L̂n(θ)

ϑ̂ = arg min
θ∈B0×B1

L̂n(θ),

where B0 ⊂ Rd−1 is the compact set of all possible rotation angles and B1 ⊂ R the compact set of
all possible shifts. If m̂ is continuously differentiable, we can equivalently solve

l̂n(θ) = grad L̂n(θ) = 0 (8)

to find ϑ̂.

Example. For illustrational purposes we discuss the case d = 2. Here, the hyperplane reduces

to a straight line parameterized by }θ =
{

(cos θ1, sin θ1)
T λ+ θ2 (− sin(θ1), cos(θ1))

T |λ ∈ R
}

, θ =

(θ1, θ2)
T ∈ R2 unknown such that mirrowing z ∈ R2 at that straight line can be obtained by

transforming z to

T−1θ z =

(
cos θ1 sin θ1
− sin θ1 cos θ1

)
z−

(
0

θ2

)
,

mirrowing at }0 =
{

(0, 1)T λ|λ ∈ R
}

which gives

S−1θ z =

(
−1 0

0 1

)
T−1θ z

and transforming back, which finally yields

TθS
−1
θ z.

3 Asymptotic inference

To consider asymptotic theory, we further assume that Ψ is ordinary smooth, i.e. we consider mildly
ill-posed problems in model (1). This can be summarized in the following assumption.

Assumption 1. The Fourier transform Φψ satisfies

|Φψ(ω)| |ω|β → κ, ω →∞

for some β > 0 and κ ∈ R \ {0}.

Assumption 2. The Fourier transform Φm of m satisfies
∫
R |Φm(ω)||ω|kdω <∞ for any multiindex

k with k1 + . . .+ kd ≤ r for some r > β + 1 and m is two times continuously differentiable

Assumption 3. The bandwidth h fulfills h → 0, nd/2a
d/2
n hβ+d → ∞, (log n)1/4/ndhdadn = o(1),

ndh2β+2s+d/2−1a
3d/2
n → 0 and arn = o(hβ+s+d−1)
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Assumption 2 is, for example fulfilled, if for grad (m) (and hence also for the products and sums in
the integral) the k-th derivative exists for all ||k|| ≤ β. Note also, that in Assumption 3 an cannot
be seen as regularization parameter since it is determined by the underlying design. Therefore, all
conditions have to be read as conditions on hn, s, β, j and r dependent on the rate of an.

Under the above conditions we can now discuss the asymptotic properties. We first consider the
consistency and the asymptotic distribution of the estimator ϑ̂

Theorem 1. Let L(θ) be locally convex near the true parameter ϑ. Then, under Assumptions 1

ϑ̂n
P→ ϑ for n→∞.

Theorem 2. If m̂ is continuously differentiable, ϑ̂ is defined by (8) and }ϑ is the true symmetry
hyperplane, we have √

ndadn

(
ϑ̂− ϑ

)
D→ N (0, σ2h−1(ϑ)Σ(ϑ)(h−1(ϑ))T )

with

Σ(θ) =
σ2

(2π2κ)d

∣∣∣∣∫
Rd

∫
Rd
||ω||βI[−1,1]d(ω)e−iω

Tydydω

∣∣∣∣2 ∫
Rd
σθ(u)σθ(u)Tdu

σθ(u) =

((
∂

∂θ
Tθ

)
(T−1θ (u))−MθN

−1
θ

(
∂

∂θ
Sθ

)
(T−1θ (u))−NθM

−1
θ

(
∂

∂θ
Tθ

)
(S−1θ (u))

−
(
∂

∂θ
Sθ

)
(S−1θ (u))

)T
(grad m(u))T

h(θ) = 2

∫
A

(
grad m(Tθx)

∂

∂θ
Tθx− grad m(Sθx)

∂

∂θ
Sθx

)(
grad m(Tθx)

∂

∂θ
Tθx− grad m(Sθx)

∂

∂θ
Sθx

)T
dx

The second point of interest is to test whether the image obeys a symmetry of some kind. We use
the test statistic

L̂n(ϑ̂) =

∫
A

(m̂(Tϑ̂x)− m̂(Sϑ̂x))2 dx (9)

which has the following asymptotic distribution.

Theorem 3. Under the above assumptions, if ϑ parametrizes the true symmetry hyperplane, we
have

σ−1/2n

(
L̂n(ϑ̂)− 2σ2

(2π)dndh2β+dadn

∫
A

∫
[−1,1]d

|ω|2β
∣∣∣∣sin(ωTSϑxh

)∣∣∣∣2 dωdx
)
D→ N (0, 1)

with

σn =
32σ4

κ4(2π)2dn2dh2d+4βa2dn

∫
R2d

|ω|2β|η|2β
∣∣∣ ∫

A

sin

(
ωTSϑx

h

)
sin

(
ηTSϑx

h

)
dx
∣∣∣2d(ω, η)

It can be shown similarly as in the proof of Theorem 4 in the Appendix, that the effective rate of
convergence is ndh2β+d/2a

3d/2
n .
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4 Simulations

4.1 Simulation framework

In this section we present the results of a simulation study. To this end we generate observations
according to model (1), i.e.

Y(r,s) = Ψm(x(r,s)) + σε(r,s).

In our simulations, the noise terms are i.i.d. normally distributed with variance 1 and x(r,s) =
(
r
n
, s
n

)
,

(r, s) ∈ {−n,−n+1, . . . , n−1, n}2 are the coordinates of a grid with equidistant stepsize in both
coordinates and with an = 1. In the following we use the parameter values n = 50 and σ (in
dependence of the underlying function m) such that σ makes up for 1/10-th and 1/25-th of the
maximum of the signal Ψm, which amounts to signal-to-noise ratios - defined as the mean signal of
the image divided by σ - of ≈ 10 and ≈ 4, respectively. These values amount to rather poor signal-
to-noise ratios, and in a practical application, S/N will frequently be larger and our simulations be
expected to be conservative with respect to the performance of our method.
We consider two different ”true” images m1 and m2 from which the data is generated. These images
represent the cases of having a unique axis of symmetry (image m1) and of not having any axis of
symmetry at all (image m2). The images are generated from the following bivariate functions (with
(xt, yt) ∈ R2).

m1(x, y) = exp(−3 · (4 · x2t + (yt + 0.1)2)) + 0.5 · exp(−3 · (x2t + 3 · (yt − 0.4)2))

m2(x, y) = 0.5 · exp(−5 · ((xt − 0.3)2 + 5 · (yt + 0.3)2+))

+ 0.5 · exp(−5 · ((xt + 0.2)2 + 5 · (yt − 0.3)2))

+ 0.5 · exp(−5 · ((xt + 0.5)2 + 5 · (yt + 0.6)2)),

where (
xt
yt

)
=

(
cos(α) − sin(α)

sin(α) cos(α)

) (
x

y

)
+

(
−δ
0

)
are the coordinates of a coordinate system which is rotated by an angle α = −0.3 with respect to
the original coordinate system of y in counterclockwise direction and shifted (along the transformed
yt-axis) by δ = 0.1. Hence, image m1 is symmetric with respect to an axis of symmetry which
passes the x-axis at x = 0.1 and is tilted away to the right from the y-axis by an angle of −0.3 rad.,
that is ϑ = (α, δ)T = (−0.3, 0.1)T

In accordance with model 1 for the observations, we do not assume to be able to observe mi directly,
but that at our disposal are only observations of the convolution of mi, i = 1, 2 with a convolution
function ψ given by

ψ(x, y) =
λ

2
· exp

(
−λ ·

√
x2 + 0.25 · y2

)
(with λ = 5). Figure 1 shows the images of m1 and m2, their convolutions with Ψ and typical
examples for estimates m̂1 and m̂2.
The convolution function ψ is symmetric with respect to the x- and y-axis of the (original) coordinate
system, that is symmetric with respect to axes which are different to the axes of symmetry of m1. In
consequence, the convolved (observed) image Ψm1 does not have any axis of axial symmetry. Note
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Figure 1: True images and typical examples for the observed image and associated selected axis for
m1 (top panels)and m2 (bottom panels). Left column: true functions, middle column: true function
convolved with Ψ, right column: reconstructions from data with n = 50, S/N = 25. The full line
indicates the true axis of symmetry and the dashed line the estimated symmetry axis. Note that
m2 is not symmetric to any axis, hence the full line is missing.

that this implies that testing for symmetry of m can in general not be substituted by testing for
symmetry of Ψm, except under specific, strong assumptions on the symmetry properties of m and
ψ. Instead, it is required that the observed image is deconvolved in a first step, with the symmetry
test being performed in a subsequent second step.
In our simulations we use the spectral cut-off estimator (2) with equal bandwidths in both coordinate
axes. From a visual inspection of 5 randomly selected noisy images and the associated estimates m̂
we chose h ≈ 0.05. This bandwidth was kept fixed in all subsequent simulations.

4.2 Critical functions and the distribution of estimated parameters and
test statistics

In this section we describe the performance of the estimators for the symmetry axis parameters δ
and α, and the properties of the underlying criterion function (7), which can, as already pointed out
in Section 3, be used as test statistic for symmery of the regression function, for the two different
images considered here.
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Figure 2: True (noiseless) criterion function Ln for the translation axis for m1 (top panels) and m2

(bottom panels) for n = 50 and signal-to-noise ration S/N = 25. Left column: Ln(δ) for α = −0.3
assumed to be known, middle column: Ln(α) for δ = 0.1 assumed to be known, right column:
Ln(δ, α).
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(a) (b) (c) (d)

Figure 3: Distribution of the estimated symmetry parameters for m1 ((a) and (c)) and m2 ((b) and
(d)). (a) and (b): only shift estimated, (c) and (d): only rotation angle estimated for sample size
parameter n = 50, and signal-to-noise ratio S/N = 25.

Figure 2 shows the critical function Ln(δ, α) both for the case of univariate estimation of the shift δ
resp. the angle α (where the other parameter is assumed to be known) and for bivariate estimation
of the pair (δ, α). For m2 the criterion function for the selection of the shift only (top right panel)
does not come close to the minimal value it attains for the symmetric function m1 at all, but the
situation is different for the estimation of the rotation angle, where the minimal values differ less
strongly. Now consider the bivariate estimation of shift and rotation angle. For m2, a complicated
pattern appears without a distinct minimum.
Next, Figure 3 shows the simulated distribution of the estimated parameters for rotation and shift
for the various simulation setups. For m2, which does not have an axis of symmetry at all, the
critical function still showes clear minima of the criterion function if only one of the parameters
was estimated. This is reflected in the right column of Figure 3 for the estimated parameter, that
is the value where the minimum is attained.
Finally, consider Figure 4, which compares the simulated distributions of the test statistic for the
case of one parameter estimated under H0 (i.e. for m1) with the results under H1 (i.e. for m2). In
the latter case the distributions are shifted to significantly larger mean values, which reflects the
fact that there exists no axis of symmetry. Moreover, their shape appears more symmetric than
under H0, where it is (much) more skewed to the right, similar to other L2-based test statistics (e.g.
Dette (1999), Bissantz et al. (2010) and Birke, Dette and Stahljans (2011)).

4.3 Testing for symmetry

In the final part of our simulations let us now turn to a more precise analysis of the performance
of our proposed test for symmetry. Since the convergence of L2-tests is known to be slow and the
asymptotic distribution apparently depends on unknown parameters we use bootstrap quantiles as
critical values for the test.
Hence, our testing procedure consists of two main parts. In the first bootstrap part we determine
a bootstrap approximation to the distribution of the test statistics. In more detail, this consists of
three steps: (1) to estimate the distribution of residuals, (2) to determine a ”true image” m̂B from
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(a) (b) (c) (d)

Figure 4: Distribution of the test statistics under H0 : m = m1 ((a) and (c)) resp. m = m2 ((b)
and (d)). (a) and (b): only shift estimated, (c) and (d): only rotation angle estimated for sample
size parameter n = 50, and signal-to-noise ratio S/N = 25.

which the bootstrap data are generated, and (3) to perform the bootstrap replications of the test
statistic. The subsequent, second test decision part of the procedure is performed by computation
of the test statistic for the original (observed) data and a decision based on this test statistic and
the bootstrap approximation to its distribution. We now describe all steps in detail.

A. Bootstrap part of the testing procedure:

1. Estimation of the distribution of residuals: In our simulations we use a residual bootstrap
as follows. In the first step we determine the empirical distribution of the residuals as the cen-
tered distribution of differences between the observations and an estimate Ψm̂ of Ψm. Then,
in each of the bootstrap replications, we draw residuals from this distribution and generate
bootstrap data as the sum of a suitable ”true bootstrap image” m̂B and these residuals.

2. Determination of a ”true image” m̂B: The ”true bootstrap image” m̂B is generated as fol-
lows such that it obeys a known axis of symmetry and closely resembles the true (unknown)
function m, assuming H0 to be true.

Step 2.1 - Estimating m: Determination of an estimate m̂ of m as described above.

Step 2.2 - Estimation of symmetry axis parameter: Minimization of the criterion func-
tion yields estimates δ̂ and/or α̂ of the symmetry axis parameter(s) of m̂.

Step 2.3 - Backshift and rotation of m̂: We shift and rotate m̂ back by the estimated
parameters δ̂ and/or α̂ (and, if applicable, the known true values of the other parameter).
Under H0, and if no noise would be present in the observed data, the new image m̌ would
now be symmetric with respect to the y-axis.

Step 2.4 - Symmetrization: To ensure symmetry, we average the image over both sides
of the y-axis, that is according to the scheme m̃(x, y) = 1

2
(m̌(x, y) + m̌(−x, y)) for all

(x, y).

Step 2.5 - Backrotation and -shifting of the image to the estimated symmetry axis:
The image m̃ is rotated and shifted such that it is symmetric with respect to the axis
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S/N = 10 S/N = 25

Hypothesis/Nominal level 5% 10% 20% 5% 10% 20%

H0 : m = m1 5.5% 10.5% 21.5% 6.5% 11.0% 20.5%

H1, κ = 0.1 8.0% 12.0% 23.5% 8.5% 17.0% 27.0%

H1, κ = 0.2 10.5% 20.0% 33.0% 54.0% 70.5% 81.5%

H1, κ = 0.4 57.0% 71.5% 82.0% 100% 100% 100%

Table 1: Estimated rejection probabilities of the test for axial symmetry from 200 simulations each
in case of estimating the axis-shift δ (with α known), under H0 : m = m1, and under an alternative
m = κ ·m2 + (1− κ) ·m1, respectively.

S/N = 10 S/N = 25

Hypothesis/Nominal level 5% 10% 20% 5% 10% 20%

H0 : m = m1 0% 2% 7% 6% 12% 20%

H1, κ = 0.4 3% 5% 15% 8% 19% 39%

H1, κ = 1.0 9% 19% 50% 78% 87% 96%

Table 2: Estimated rejection probabilities of the test for axial symmetry from 100 simulations each
in case of estimating both the axis-shift δ and the angle of rotation α, and under an alternative
m = κ ·m2 + (1− κ) ·m1, respectively.

with the estimated parameters δ̂ and/or α̂, or - if applicable - the known values of shift
and rotation, respectively. We call the resulting image m̂B.

3. Bootstrap replications: In the final step of the bootstrap part of the testing procedure we
generate bootstrap data from the model Y ∗r = Ψm̂B(xr)+ε

∗
r, where ε∗r are drawn independently

from the empirical distribution of the residuals ε̂r = Yr−Ψm̂(xr). From each set of bootstrap
data the image is estimated and the minimal value of the criterion function, that is the test
statistics, determined. In our simulations we always use B = 200 bootstrap replications. The
bB(1− α)c-th order statistic of all those bootstrap test statistics gives the critical value for
the test.

Test decision part of the testing procedure:
In the second part of the testing procedure we use once more the estimate m̂ of m described above.
From this estimate we determine the test statistics L̂n(α̂, δ̂), that is the minimal value of the cri-
terion function (9). The test decision by itself is then to reject the null hypothesis of m obeying
an axial symmetry to level α, if the test statistics for the original set of data is larger than the
(1− α)-quantile of the bootstrap distribution of the test statistics.

In the following, we consider the functions

mκ(x, y) = κm2(x, y) + (1− κ)m1(x, y), κ = 0, 0.1, 0.2, 0.4, 1

11



to analyse the sensitivity of our test to small deviations from symmetry. Tables 1 and 2 summarize
the simulated levels and power of the test for axial symmetry for the case of an unknown shift
parameter δ only (with α known), and for the case that both parameters are unknown. The results
demonstrate the substantial additional difficulty of disproving the existence of any axis of symmetry
if both δ and α are unknown. Slightly acceptable results for the moderate sample size of n = 50
only appear for a comparable large deviation from symmetry (i.e. κ = 1). This effect is to a large
part due to the complicated shape of the critical function in this case (cf. Fig. 2) with several local
minima. If only the shift parameter is unknown, the test already performes well for small devi-
ations from symmetry (e.g. κ = 0.2 for a signal-to-noise ratio of S/N = 25 or κ = 0.4 for S/N = 10).

Acknowledgements. This work has been supported in part by the Collaborative Research Center
”Statistical modeling of nonlinear dynamic processes” (SFB 823 project C4) of the German Research
Foundation and the BMBF project INVERS.
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A Proofs

Theorem 4.

ndh2j+2β+d/2a3d/2n

(∫
B

[
m̂(j)(x)−m(j)(x)

]2
dx− 2dσ2

∏d
k=1(2(jk + βk) + 1)−1

κπdndh2j+2β+da2dn

)
D→ N (0, s(j))

for j = (j1, . . . , jk) with j1 + . . .+ jk ≤ 2 and

s(j) =
2σ4

κ2(2π)2d
lim
n→∞

d∏
l=1

anh
4βl+4jl+1

∫ ∫
I[−1,1](ωl)I[−1,1](ηl)|ωlηl|2jl+2βl

sin2(ωl−ηl
an

)

(ωl − ηl)2
dωl dηl

Proof. In the following we write the L2-distance as a quadratic form and some bias terms and
apply a central limit theorem by de Jong (1987). There is∫
B

[
m̂(j)(x)−m(j)(x)

]2
dx =

∫
B

(∑
r

wr,j(x)εr

)2

dx+ 2

∫
B

(∑
r

wr,j(x)εr

)
(E[m̂(j)(x)]−m(j)(x))dx

+

∫
B

(E[m̂(j)(x)]−m(j)(x))2dx

= I
(j)
1 + I

(j)
2 + I

(j)
3 .

Using the definition of wr,j(x) and Parseval’s equality we obtain

I
(j)
1 =

1

(2π)dn2dh2j+da2dn

∫
Rd
|ω|2j

I[−1,1]d(ω)

|Φψ(ω/h)|2

∣∣∣∣∣∑
r

eiω
T xr/hεr

∣∣∣∣∣
2

dω

− 1

(2π)dn2dh2j+da2dn

∫
(B/h)c

∣∣∣∣∣
∫
Rd
e−iω

T x(−iω)j
I[−1,1]d(ω)

Φψ(ω/h)

∑
r

eiω
T xr/hεrdω

∣∣∣∣∣
2

dx

= I
(j)
1.1 − I

(j)
1.2.

We write

I
(j)
1.1 =

∑
u

a(j)u,uε̃
2
u + ε̃T Ã(j)ε̃ = I

(j)
1.1.1 + I

(j)
1.1.2

with

a(j)u,v =
1

(2π)dn2dh2j+da2dn

∫
Rd
|ω|2j

I[−1,1]d(ω)

|Φψ(ω/h)|2
eiω

T x̃u/he−iω
T x̃v/hdω

Ã(j) = (ã(j)u,v)1≤u,v≤(2n+1)d , ã
(j)
u,v = a(j)u,v for u 6= v, ã(j)u,u = 0

x̃1 = x(−n,...,−n), . . . , x̃(2n+1)d = x(n,...,n)

ε̃T = (ε̃1, . . . , ε̃(2n+1)d) = (ε(−n,...,−n), . . . , ε(n,...,n)) ∈ R(2n+1)d .
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For I
(j)
1.1.1 we obtain

E[I
(j)
1.1.1] = σ2

∑
u

a(j)u,u =
σ2

(2π)dn2dh2j+da2dn

∑
r

∫
Rd
|ω|2j

I[−1,1]d(ω)

|Φψ(ω/h)|2
dω

=
σ2(2n+ 1)d

(2π)dn2dh2j+da2dn

∫
Rd
|ω|2j

I[−1,1]d(ω)

|Φψ(ω/h)|2
dω

∼ σ2(2n+ 1)d

κ2(2π)dn2dh2j+2β+da2dn

∫
Rd
|ω|2j+2βI[−1,1]d(ω)dω

=
σ2(2n+ 1)d

κ2πdn2dh2j+2β+da2dn

d∏
k=1

1

2(jk + βk) + 1
= O

(
1

ndh2j+2β+da2dn

)

Var(I1.1.1) =
∑
u

(
a(j)u,u
)2
µ4(ε) =

µ4(ε)

(2π)2dn4dh4j+2da4dn

∑
r

(∫
Rd
|ω|2j

I[−1,1]d(ω)

|Φψ(ω/h)|2
dω

)2

=
µ4(ε)(2n+ 1)d

(2π)2dn4dh4j+2da4dn

(∫
Rd
|ω|2j

I[−1,1]d(ω)

|Φψ(ω/h)|2

)2

dω

∼ µ4(ε)(2n+ 1)d

κ4(2π)2dn4dh4j+4β+2da4dn

(∫
Rd
|ω|2j+2β|I[−1,1]d(ω)|2dω

)2

= O

(
1

n3dh4j+4β+2da4dn

)
= o

(
1

n2dh4j+4β+da3dn

)
.

We now check the assumptions of Theorem 5.2 in de Jong (1987) for I1.1.2. First of all we calculate
the variance

σ(n)2 = Var(ε̃T Ã(j)ε̃) = 2σ4 tr(Ã(j))2 = 2σ4
∑
u6=v

(a(j)u,v)
2

=
2σ4

(2π)2dn4dh4j+2da4dn

∑
r 6=s

(∫
Rd
|ω|2j

I[−1,1]d(ω)

|Φψ(ω/h)|2
eiω

T xr/he−iω
T xs/hdω

)2

∼ 2σ4

(2π)2dn2dh4ja2dn

∫
In/h

∫
In/h

(∫
Rd
|ω|2j

I[−1,1]d(ω)

|Φψ(ω/h)|2
eiω

T y/he−iω
T z/hdω

)2

dydz

=
2σ4

(2π)2dn2dh4ja2dn

∫
Rd

∫
Rd
|ω|2j|η|2j

I[−1,1]d(ω)I[−1,1]d(η)

|Φψ(ω/h)|2|Φψ(η/h)|2

∣∣∣∣∫
In/h

ei(ω−η)
Tudu

∣∣∣∣2 dωdη
=

2σ4

(2π)2dn2dh4ja2dn

∫
Rd

∫
Rd
|ω|2j|η|2j

I[−1,1]d(ω)I[−1,1]d(η)

|Φψ(ω/h)|2|Φψ(η/h)|2
d∏
l=1

|ei(ωl−ηl)/(han) − e−i(ωl−ηl)/(han)|2

|ωl − ηl|2
dωdη

=
2σ4

κ4(2π)2dn2dh4j+4βa2dn

∫
Rd

∫
Rd
I[−1,1]d(ω)I[−1,1]d(η)

d∏
l=1

|ωl|2jl+2βl |ηl|2jl+2βl
| sin(ωl−ηl

han
)|2

|ωl − ηl|2
dωdη

=
2σ4

κ4(2π)2dn2dh4j+4βa2dn

d∏
l=1

∫
R

∫
R
I[−1,1](ωl)I[−1,1](ηl)|ωlηl|2jl+2βl

sin2(ωl−ηl
han

)

(ωl − ηl)2
dωl dηl
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=
2σ4h

∑d
l=1(4jl+4βl+2)

κ4(2π)2dn2dh4j+β+2da2dn

d∏
l=1

∫ 1/h

−1/h

∫ 1/h

−1/h
|ωlηl|2jl+2βl

sin2(ωl−ηl
an

)

(ωl − ηl)2
dωl dηl

=
2
∏d

l=1Clσ
4

κ4(2π)2dn2dh4j+4β+da3dn

using that

lim
n→∞

anh
4βl+4jl+1

∫ 1/h

−1/h

∫ 1/h

−1/h
|ωlηl|2jl+2βl

sin2(ωl−ηl
an

)

(ωl − ηl)2
dωl dηl = Cl,

following from the integrability of sinc2 by some slightly tedious algebra. In the following, we check
the assumptions (1) - (3) of Theorem 5.2 in de Jong (1987) to show the asymptotic normality of

I
(j)
1.1.2.

(1) We have uniformly over all s ∈ {−n, . . . , n}d∑
r∈{−n,...,n}d

|a(j)r,s|2

=
1

(2π)4dn4dh4j+2da4dn

∑
r∈{−n,...,n}d

∫
Rd

∫
Rd
|ωη|2j

I[−1,1]d(ω)I[−1,1]d(η)

|Φψ(ω/h)|2|Φψ(η/h)|2
ei(ω−η)

T xr/he−i(ω−η)
T xs/hdωdη

∼ 1

(2π)4dn3dh4j+da3dn

∫
An

∫
Rd

∫
Rd
|ωη|2j

I[−1,1]d(ω)I[−1,1]d(η)

|Φψ(ω/h)|2|Φψ(η/h)|2
ei(ω−η)

Tue−i(ω−η)
T xs/hdωdηdu

=
1

(2π)4dn3dh4j+da3dn

∫
Rd

∫
Rd
|ωη|2j

I[−1,1]d(ω)I[−1,1]d(η)

|Φψ(ω/h)|2|Φψ(η/h)|2

 d∏
ν=1

sin
(
ων−ην
han

)
ων − ην

 e−i(ω−η)
T xs/hdωdη

=
1

(2π)4dn3dh4j+4β+da3dn

d∏
ν=1

∫
R

∫
R
|ωνην |2jI[−1,1]d(ων)I[−1,1]d(ην)

sin
(
ων−ην
han

)
ων − ην

 e−i(ων−ην)
T xs,ν/hdωνdην .

Since | sin((ων − ην)/(han))/(ων − ην)| ≤ (han)−1 we obtain∑
r∈{−n,...,n}d

|a(j)r,s|2 = O

(
1

n3dh4j+4β+2da4dn

)

and therefore with κ(n) = (log n)1/4

κ(n)

σ(n)2

∑
r∈{−n,...,n}d

|ar,s|2 = O

(
(log n)1/4

ndhdadn

)
= o(1)

(2) Since κ(n) → ∞ and εr are independent identically distributed with E[ε2r] = σ2 < ∞, it
immediately follows that

E[ε2rI{|εr| > κ(n)}] = o(1).
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(3) For estimating the eigenvalues µr of Ã(j) we use Gerschgorin’s Theorem and obtain uniformly
over all s ∈ {−n, . . . , n}d

µs ≤
∑

r∈{−n,...,n}d
|a(j)r,s|

∼ 1

(2π)2dndh2jadn

∫
An

∣∣∣∣∫
Rd
|ω|2j

I[−1,1]d(ω)

|Φψ(ω/h)|2
eiω

Tue−iω
T xs/hdω

∣∣∣∣ du
=

1

(2π)2dndh2j+2β+da2dn

d∏
ν=1

∫ 1/(han)

−1/(han)

∫
R
|ων |2jν+2βνI[−1,1]d(ων)e

iωνuνe−iωνxs,ν/hdωνduν

It now follows by similar but tedious calculations as above, that this term is of orderO(log n/ndadnh
2j+2β)

and

1

σ(n)2
max

s∈{−n,...,n}d
µ2
s = O (han log n) = o(1).

It now remains to discuss the remainder terms For I1.2 we get

I1.2 = oP (I1.1)

since it consists of the tails of the integral in I1.1, before Parseval’s equality was used, and the upper
respective lower bound of the integral tails asymptotically diverge to ±∞. This means, that I1.2 is
asymptotically negligible.
Since the bias of m̂(j) is uniformly of order o(hs−j−1) on B (see e.g. Bissantz and Birke, 2009) we
have with condition (3)

I3 = O(h2s−2j−2) = o

(
1

ndh2β+2j+d/2a
3d/2
n

)
and by applying the Cauchy-Schwarz inequality also

I2 = O

(
1

nd/2hβ+j+d/4a
3d/4
n

)
o(hs−j−1) = o

(
1

ndh2β+2j+d/2a
3d/2
n

)
.

A.1 Proof of Theorem 1.

Since L(θ) is locally convex near ϑ, for every ε > 0 exists a constant Kε > 0 with

P(|ϑ̂n − ϑn| > ε) ≤ P(L(ϑ̂n)− L(ϑ) > Kε) ≤ P(|L̂(ϑ̂n)− L(ϑ̂n)| > Kε/2) + P(|L̂(ϑ)− L(ϑ)| > Kε/2)

since ϑ̂n minimizes L̂(θ) and the assertion follows if we show that L̂(θ)−L(θ) stochastically converges
to 0 uniformly in θ. To this end note that

|L̂(θ)− L(θ)| =

∣∣∣∣∫
A

(m̂(Tθx)− m̂(Sθx))2dx−
∫
A

(m(Tθx)−m(Sθx))2dx

∣∣∣∣
≤ C

(∫
A

(m̂(Tθx)−m(Tθx))2dx+

∫
A

(m̂(Sθx)−m(Sθx))2dx

)
≤ 2C

∫
Aθ

(m̂(z)−m(z))2dz ≤ 2C

∫
B

(m̂(z)−m(z))2dz.
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Therefore we have for any δ̃ > 0 and δ = δ̃/(2C)

P(sup
θ
|L̂(θ)− L(θ)| > δ̃) ≤ P

(∫
B

(m̂(z)−m(z))2dz > δ

)
.

But the right probability converges to 0 because of Theorem 4. �

A.2 Proof of Theorem 2.

Note, that l̂n(ϑ̂) = 0. With this and a first order Taylor expansion of l̂n in ϑ we write

−ĥ(ξn)(ϑ̂− ϑ) = l̂n(ϑ) (10)

for some ξn between ϑ̂ and ϑ Theorem 2 now follows after we have shown the following two Lemmata

Lemma 1. Under the assumptions of Theorem 2 we have√
ndadnl̂n(ϑ)

D→ N (0,Σ(ϑ))

with Σ(θ) and σθ(u) defined as in Theorem 2.

Lemma 2. Under the assumptions of Theorem 2 we have

ĥ(ξn)
P→ h(ϑ).

Proof of Lemma 1. We write

∆m,θ(x) =

(
grad m(Tθx)

∂

∂θ
Tθx− grad m(Sθx)

∂

∂θ
Sθx

)T
.

and

l̂n(ϑ) = 2

∫
A

[m̂(Tϑx)− m̂(Sϑx)] ∆m,ϑ(x)dx +Rn,1

=
∑

r∈{−n,...,n}d

(
2

∫
A

(wr(Tϑx)− wr(Sϑx)) ∆m,ϑ(x)dx

)
Zr +Rn,1

=
∑

r∈{−n,...,n}d
vr(ϑ)εr +Rn,1 +Rn,2 = l̃n(ϑ) + 2Rn,1 + 2Rn,2.

with

vr(ϑ) = 2

∫
A

(wr(Tϑx)− wr(Sϑx))

(
grad m(Tϑx)

∂

∂θ
Tθ

∣∣∣
θ=ϑ

x− grad m(Sϑx)
∂

∂θ
Sθ

∣∣∣
θ=ϑ

x

)T
dx ∈ Rd

Rn,1 =

∫
A

[m̂(Tϑx)− m̂(Sϑx)]

(
grad (m̂−m)(Tϑx)

∂

∂θ
Tθ

∣∣∣
θ=ϑ

x− grad (m̂−m)(Sϑx)
∂

∂θ
Sθ

∣∣∣
θ=ϑ

x

)
dx

Rn,2 =

∫
A

(E[m̂(Tϑx)]− E[m̂(Sϑx)]) ∆m,ϑ(x)dx.
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This means, that l̂n(ϑ) consists of a sum of weighted independently distributed random variables for
which we determine the asymptotic distribution by using a central limit theorem (see e.g. Eubank,
1999) and remainders Rn,1 and Rn,2 for which we show that they are asymptotically negligible. We
will first consider the asymptotic distribution of l̃n. To this end we have to check the condition

maxr∈{−n,...,n}d |cTvr(ϑ)|(∑
r∈{−n,...,n}d c

Tvr(ϑ)vTr c(ϑ)
)1/2 = o(1) (11)

for every c ∈ R2. Note that from (4) we have

grad m(Sϑx) = grad m(Tϑx)MϑN
−1
ϑ

grad m(Tϑx) = grad m(Sϑx)NϑM
−1
ϑ .

Therefore we get

|cTvr(ϑ)| =

∣∣∣∣2∫
A

1

(nhan)d

∫
Rd

(e−iω(Tϑx−xr)/h − e−iω(Sϑx−xr)/h)
I[−1,1]d(ω)

Φψ(ω/h)
dωcT∆m,ϑ(x)dx

∣∣∣∣
≤ 2

(nan)d

∫ ∫
R2

|e−iωTϑu − e−iωSϑu| |eiωxr/h|
I[−1,1]d(ω)

|Φψ(ω/h)|
dω
∣∣cT∆m,ϑ(hu)

∣∣ du
≤ 4

(nan)d

∫
R2

I[−1,1]d(ω)

|Φψ(ω/h)|
dω

∫
A

∣∣cT∆m,ϑ(hu)
∣∣ du

= O

(
1

ndhβadn

)
and∑
r∈{−n,...,n}d

(cTvr(ϑ))2

=
4

(2πnhan)2d

∑
r

(∫
A

∫
Rd

(e−iω
T (Tϑx−xr)/h − e−iωT (Sϑx−xr)/h)

I[−1,1]d(ω)

Φψ(ω/h)
dωcT∆m,ϑ(x)dx

)2

=
4

(nan)dh2d

∫
Rd

(∫
Rd

I[−1,1]d(ω)

Φψ(ω/h)
cT
(∫

A

e−iω
T (Tϑx−u)/h∆m,ϑ(x)(grad m(Tϑx))Tdx

−
∫
A

e−iω
T (Sϑx−u)/h

(
NϑM

−1
ϑ

∂

∂θ
Tθ

∣∣∣
θ=ϑ

x− ∂

∂θ
Sθ

∣∣∣
θ=ϑ

x

)T
(grad m(Sϑx))Tdx

)
dω

)2

du(1 + o(1))

=
4

(nan)d

∫
Rd

(∫
Rd

I[−1,1]d(hω)

Φψ(ω)
cT
(∫

A

e−iω
T (Tϑx−u)∆m,ϑ(x)(grad m(Tϑx))Tdx

−
∫
A

e−iω
T (Sϑx−u)

(
NϑM

−1
ϑ

∂

∂θ
Tθ

∣∣∣
θ=ϑ

x− ∂

∂θ
Sθ

∣∣∣
θ=ϑ

x

)T
(grad m(Sϑx))Tdx

)
dω

)2

du(1 + o(1))

With assumption 2 the integral on the r.h.s. of the equation exists, and we have∑
r∈{−n,...,n}d

(cTvr(ϑ))2 =
4Ca

(nan)d
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with

Ca =

∫
Rd

(∫
Rd

I[−1,1]d(hω)

Φψ(ω)
cT
(∫

A

e−iω
T (Tϑx−u)∆m,ϑ(x)(grad m(Tϑx))Tdx

−
∫
A

e−iω
T (Sϑx−u)

(
NϑM

−1
ϑ

∂

∂θ
Tθ

∣∣∣
θ=ϑ

x− ∂

∂θ
Sθ

∣∣∣
θ=ϑ

x

)T
(grad m(Sϑx))Tdx

)
dω

)2

du.

This yields by
maxr∈{−n,...,n}d |cTvr(ϑ)|
(
∑n

r c
Tvr(ϑ)vTr c(ϑ))

1/2
= O

(
1

(nan)d/2hβ

)
= o(1)

and the Cramér-Wold device the asymptotic normality of l̃n(ϑ). We will now discuss the remainder
terms. Using the Cauchy-Schwarz inequality we get

Rn,1 ≤
(∫

A

[m̂(Tϑx)− m̂(Sϑx)]2 dx

)1/2

×

∫
A

((
∂

∂θ
Tθ

∣∣∣
θ=ϑ

x

)T
(grad (m̂−m)(Tϑx))T −

(
∂

∂θ
Sθ

∣∣∣
θ=ϑ

x

)T
(grad (m̂−m)(Sϑx))T

)2

dx

1/2

.

We apply Theorem 4 and obtainRn,1 = OP (1/ndadnh
2β+d) = op(1/n

d/4a
d/4
n hβ/2) since nd/2a

d/2
n hβ+d →

∞ by assumption 3. Now it remains to estimate

Rn,2 =
1

(2πnanh)d

∑
r

∫
A

∫
Rd

(e−iω
T (Tϑx−xr)/h − e−iωT (Sϑx−xr)/h)

I[−1,1]d(ω)

Φψ(ω/h)
dω∆m,ϑ(x)dxg(xr)

=
1

(2πh)d

∫
[−1/an,1/an]d

∫
A

∫
Rd

(e−iω
TTϑx/h − e−iωTSϑx/h)eiωTu/h

I[−1,1]d(ω)

Φψ(ω/h)
dω∆m,ϑ(x)dxg(u)du

+O

(
1

ndadn

)∫
A

∫
Rd

(e−iω
TTϑx/h − e−iωTSϑx/h)eiωTu/h

I[−1,1]d(ω)

Φψ(ω/h)
dω∆m,ϑ(x)dx

=
1

(2πh)2

∫
A

∫
Rd

(e−iω
TTϑx/h − e−iωTSϑx/h)Φm(ω/h)I[−1,1]d(ω)dω∆m,ϑ(x)dx

− 1

(2πh)2

∫
A

∫
Rd

(e−iω
TTϑx/h − e−iωTSϑx/h)

(∫
([−1/an,1/an]d)c

eiω
Tu/hg(u)du

)
I[−1,1]d(ω)

Φψ(ω/h)
dω∆m,ϑ(x)dx

+O

(
1

ndadn

)∫
A

∫
Rd

(e−iω
TTϑx/h − e−iωTSϑx/h)eiωTu/h

I[−1,1]d(ω)

Φψ(ω/h)
dω∆m,ϑ(x)dx

= R
[1]
n,2 +R

[2]
n,2 +R

[3]
n,2O

(
1

ndadnh
d

)
.

There is

R
[1]
n,2 = R

[1.1]
n,2 −R

[1.2]
n,2
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with

R
[1.1]
n,2 =

1

(2πh)d

∫
Aϑ

∫
Rd
e−iω

Ty/hΦm

(ω
h

)
I[−1,1]d(ω)dω∆m,ϑ(T−1ϑ y)dy

R
[1.2]
n,2 =

1

(2πh)d

∫
Aϑ

∫
Rd
e−iω

T (SϑT
−1
ϑ y)/hΦm

(ω
h

)
I[−1,1]d(ω)dω∆m,ϑ(T−1ϑ y)dy.

Since m(z) = m(TϑS
−1
ϑ z) it is easy to show that Φm = Φm(TϑS

−1
ϑ ·)

and

Φm(TϑS
−1
ϑ ·)

(ω/h) =

∫
R2

eiω
Tv/hm(TϑS

−1
ϑ v)dv

=

∫
Rd
eiω

T (SϑT
−1
ϑ u/hm(u)du = e−iω

T bϑ(I−NϑM−1
ϑ )/h

∫
Rd
eiω

TNϑM
−1
ϑ u/hm(u)du

= e−iω
T bϑ(I−NϑM−1

ϑ )/hΦm

(
(NϑM

−1
ϑ )Tω)/h

)
.

Furthermore
e−iω

T (SϑT
−1
ϑ y)/h = eiω

T bϑ(I−NϑM−1
ϑ )/he−iω

TNϑM
−1
ϑ y/h.

Substituting this in R
[1.2]
n,2 we obtain

R
[1.2]
n,2 =

1

(2πh)d

∫
Aϑ

∫
Rd
e−iω

T (SϑT
−1
ϑ y)/hΦm(TϑS

−1
ϑ ·)

(ω
h

)
I[−1,1]d(ω)dω∆m,ϑ(T−1ϑ y)dy

=
1

(2πh)d

∫
Aϑ

∫
Rd
e−i((NϑM

−1
ϑ )Tω)Ty/hΦm

(
(NϑM

−1
ϑ )Tω

h

)
I[−1,1]d(ω)dω∆m,ϑ(T−1ϑ y)dy

= R
[1.1]
n,2

with (NϑM
−1
ϑ )Tω = η. Therefore R

[1]
n,2 = 0.

||R[2]
n,2|| ≤

1

2πdhd+β

∫
([−1/an,1/an]d)c

1

||u||r
||u||r|g(u)|du

∫
Rd
||ω||β 1

||ω/h||β
|I[−1,1]d(ω)|
|Φψ(ω/h)|

dω

×
∫
A

∥∥∥∥grad m(Tϑx)
∂

∂θ
Tθ

∣∣∣
θ=ϑ

x− grad m(Sϑx)
∂

∂θ
Sθ

∣∣∣
θ=ϑ

x

∥∥∥∥ dx
≤ O

(
arn
hd+β

)∫
Rd
||u||r|g(u)|du

∫
Rd
||ω||βI[−1,1]d(ω)

×
∫
A

∥∥∥∥grad m(Tϑx)
∂

∂θ
Tθ

∣∣∣
θ=ϑ

x− grad m(Sϑx)
∂

∂θ
Sθ

∣∣∣
θ=ϑ

x

∥∥∥∥ dx
= O

(
arn
hd+β

)
and

|R[3]
n,2| ≤

2

hβ

∫
Rd
||ω||β 1

||ω/h||β
I[−1,1]d(ω)

|Φψ(ω/h)|
dω

×
∫
A

∥∥∥∥grad m(Tϑx)
∂

∂θ
Tθ

∣∣∣
θ=ϑ

x− grad m(Sϑx)
∂

∂θ
Sθ

∣∣∣
θ=ϑ

x

∥∥∥∥ dx
= O

(
1

hβ

)
.
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Altogether this yields with the assumptions nd/2a
r+d/2
n /hd → 0 and nd/2a

d/2
n hd →∞

|Rn,2| = 0 +O

(
arn
hd+β

)
+O

(
1

hβ

)
O

(
1

ndadn

)
= o

(
1

nd/2a
d/2
n hβ

)
.

Proof of Lemma 2. First of all note that ||ξn− ϑ|| ≤ ||ϑ̂n− ϑ|| and therefore ξn
P→ ϑ for n→∞.

ĥ(ξn)− h(ϑ) = (ĥ(ξn)− h(ξn)) + (h(ξn)− h(ϑ))

With the above remark and the continuity of h it is immediatly clear that the second part stochas-
tically converges to 0. For the first part it suffices to show that supθ ||ĥ(θ)− h(θ)||M stochastically
converges to 0 where || · ||M denotes the maximum norm of a matrix. We have

1

2
(ĥ(θ)− h(θ)) =

1

2
(
∂

∂θ
l̂n(θ)− ∂

∂θ
l(θ))

=

∫
A

(∆m̂,θ(x)−∆m,θ(x))T (∆m̂,θ(x)−∆m,θ(x))dx

+

∫
A

∆m,θ(x)T (∆m̂,θ(x)−∆m,θ(x))dx

+

∫
A

(∆m̂,θ(x)−∆m,θ(x))T∆m,θ(x)dx

+

∫
A

(m̂(Tθx)−m(Tθx)− (m̂(Sθx)−m(Sθx)))

(
∂

∂θ
∆m̂,θ(x)− ∂

∂θ
∆m,θ(x)

)
dx

+

∫
A

(m(Tθx)−m(Sθx))

(
∂

∂θ
∆m̂,θ(x)− ∂

∂θ
∆m,θ(x)

)
dx

+

∫
A

(m̂(Tθx)−m(Tθx)− (m̂(Sθx)−m(Sθx)))
∂

∂θ
∆m,θ(x)dx

There is

∆m,θ(x)T (∆m̂,θ(x)−∆m,θ(x)) = (ai,j(x))1≤i,j≤k
∂

∂θ
∆m̂,θ(x)− ∂

∂θ
∆m,θ(x) = (hi,j(x))1≤i,j≤k

with

ai,j(x) =
d∑
s=1

d∑
t=1

(
∂

∂xs
m(Tθx)

∂

∂θi
(Tθx)s −

∂

∂xs
m(Sθx)

∂

∂θi
(Sθx)s

)
∂

∂θj
(Tθx)t

(
∂

∂xs
m̂(Tθx)− ∂

∂xs
m(Tθx)

)

−
d∑
s=1

d∑
t=1

(
∂

∂xs
m(Tθx)

∂

∂θi
(Tθx)s −

∂

∂xs
m(Sθx)

∂

∂θi
(Sθx)s

)
∂

∂θj
(Sθx)t

(
∂

∂xs
m̂(Sθx)− ∂

∂xs
m(Sθx)

)

hi,j(x) =
d∑
s=1

[
∂2

∂θi∂θj
(Tθx)s

(
∂

∂xs
m̂(Tθx)− ∂

∂xs
m(Tθx)

)
− ∂2

∂θi∂θj
(Sθx)s

(
∂

∂xs
m̂(Sθx)− ∂

∂xs
m(Sθx)

)]
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+
d∑
s=1

d∑
t=1

[
∂

∂θi
(Tθx)s

∂

∂θj
(Tθx)t

(
∂2

∂xs∂xt
m̂(Tθx)− ∂2

∂xs∂xt
m(Tθx)

)
− ∂

∂θi
(Sθx)s

∂

∂θj
(Sθx)t

(
∂2

∂xs∂xt
m̂(Sθx)− ∂2

∂xs∂xt
m(Sθx)

)]
=

d∑
s=1

I [1]s (x, i, j) +
d∑
s=1

d∑
t=1

I
[2]
s,t(x, i, j)

From the definition of Tθ and Sθ it is immediately clear, that terms like ||∂/∂θTθx|| are uniformly
bounded over θ and x ∈ B. By applying the Cauchy-Schwarz inequality several times it therefore
suffices to show that∫

A

(m̂(Tθx)−m(Tθx))2dx = oP (1),

∫
A

(m̂(Sθx)−m(Sθx))2dx = oP (1),∫
A

(
∂

∂xi
m̂(Tθx)− ∂

∂xi
m(Tθx))2dx = oP (1),∫

A

(
∂

∂xi
m̂(Sθx)− ∂

∂xi
m(Sθx))2dx = oP (1), 1 ≤ i ≤ d∫

A

(
∂2

∂xi∂xj
m̂(Tθx)− ∂2

∂xi∂xj
m(Tθx))2dx = oP (1),∫

A

(
∂2

∂xi∂xj
m̂(Sθx)− ∂2

∂xi∂xj
m(Sθx))2dx = oP (1), 1 ≤ i, j ≤ d

uniformly over θ. We obtain for example, if max{|∂2/∂θi∂θj(Tθx)s|, ∂2/∂θi∂θj(Sθx)s|} ≤ C for
some C > 0∫

A

|(m̂(Tθx)−m(Tθx)− (m̂(Sθx)−m(Sθx)))I [1]s (x, i, j)|dx

≤ C

∫
A

|m̂(Tθx)−m(Tθx)− (m̂(Sθx)−m(Sθx))|
∣∣∣∣ ∂∂xs m̂(Tθx)− ∂

∂xs
m(Tθx)

∣∣∣∣ dx
+C

∫
A

|m̂(Tθx)−m(Tθx)− (m̂(Sθx)−m(Sθx))|
∣∣∣∣ ∂∂xs m̂(Sθx)− ∂

∂xs
m(Sθx)

∣∣∣∣ dx
= C2

(∫
Aθ

(m̂(z)−m(z))2dz

)1/2
(∫

Aθ

(
∂

∂zs
m̂(z)− ∂

∂zs
m(z)

)2

dzz

)1/2

≤ C2

(∫
B

(m̂(z)−m(z))2dz

)1/2
(∫

B

(
∂

∂zs
m̂(z)− ∂

∂zs
m(z)

)2

dz

)1/2

= oP (1)

by using Theorem 4. The other terms are estimated similarly.

A.3 Proof of Theorem 3

We use the decomposition

L̂n(ϑ̂) = L̂n(ϑ)− (ϑ− ϑ̂)T l̂n(ϑ̂)− (ϑ− ϑ̂)T ĥ(ξn)(ϑ− ϑ̂)
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and immediatly see from the previous proof that the second term on the right is 0 and the last
term on the right is of order OP (n−1a−1n ) = oP ((ndh2β+d/2a

3d/2
n )−1). Therefore it suffices to show

the weak convergence of the first term to the desired distribution. It is

Ln(ϑ) =

∫
A

(∑
r

(wr(Sϑx)− wr(Tϑx))εr

)2

dx

+2

∫
A

(∑
r

(wr(Sϑx)− wr(Tϑx))εr

)(∑
s

(ws(Sϑx)− ws(Tϑx))Ψm(xs)

)
dx

As in the proof of Theorem 4 one easily sees that the last two terms on the right are of order
oP ((ndh2β+d/2a

3d/2
n )−1). We get

Ln(ϑ) =
∑
r

∫
A

(wr(Sϑx)− wr(Tϑx))2dxεr +
∑
r6=s

∫
A

(wr(Sϑx)− wr(Tϑx))(ws(Sϑx)− ws(Tϑx))dxεrεs.

The rest of the proof now follows along the lines of the proof of Theorem 4 when considering I
(j)
1 .
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