
VLSI Design Concepts for Iterative Algorithms

Von der Fakultät für Elektrotechnik und Informationstechnik

der Technischen Universität Dortmund

genehmigte

Dissertation

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

eingereicht von

Chi-Chia Sun

Tag der mündlichen Prüfung: 11.04.2011

Hauptreferent: Univ.-Prof. Dr.-Ing. Jürgen Götze

Korreferent: Univ.-Prof. Dr.-Ing. Rüdiger Kays

Arbeitsgebiet Datentechnik, Technische Universität Dortmund

Abstract

Circuit design becomes more and more complicated, especially when
the Very Large Scale Integration (VLSI) manufacturing technology node
keeps shrinking down to nanoscale level. New challenges come up such
as an increasing gap between the design productivity and the Moore’s
Law. Leakage power becomes a major factor of the power consumption
and traditional shared bus transmission is the critical bottleneck in the
billion transistors Multi-Processor System–on–Chip (MPSoC) designs.
These issues lead us to discuss the impact on the design of iterative
algorithms.

This thesis presents several strategies that satisfy various design con-
straints, which can be used to explore superior solutions for the circuit
design of iterative algorithms. Four selected examples of iterative al-
gorithms are elaborated in this respect: hardware implementation of
COordinate Rotation DIgital Computer (CORDIC) processor for sig-
nal processing, configurable DCT and integer transformations based
CORDIC algorithm for image/video compression, parallel Jacobi Eigen-
value Decomposition (EVD) method with arbitrary iterations for com-
munication, and acceleration of parallel Sparse Matrix–Vector Multipli-
cation (SMVM) operations based Network–on–Chip (NoC) for solving
systems of linear equations. These four applications of iterative meth-
ods have been chosen since they cover a wide area of current signal
processing tasks.

Each method has its own unique design criteria when it comes to
the direct implementation on the circuit level. Therefore, a balanced
solution between various design tradeoffs is elaborated for each method.
These tradeoffs are between throughput and power consumption, com-
putational complexity and transformation accuracy, the number of in-
ner/outer iterations and energy consumption, data structure and net-
work topology. It is shown that all of these algorithms can be imple-
mented on FPGA devices or as ASICs efficiently.

Acknowledgements

This thesis was written while I was working as a research assistant at the
Information Processing Laboratory of the Dortmund University of Tech-
nology. I would like to thank Professor Dr.-Ing. Jürgen Götze, the head
of the laboratory, for all the interesting discussions that contributed es-
sentially to this thesis, for creating an open and relaxed atmosphere,
and for providing excellent working conditions.

Furthermore, I am very pleased to thank Professor Dr.-Ing. Rüdiger
Kays (TU Dortmund) for his interest in my works, his comments on my
thesis and his reviews for my DAAD scholarship, and his time.

I would also like to thank Professor Shanq-Jang Ruan (Low-Power
System Lab, National Taiwan University of Science and Technology) for
his guidance during my Master study in Taipei. I am especially grateful
to my present and former colleagues for providing such a stimulating
atmosphere at the laboratory. It was a pleasure to share so much time
with you. Special thanks goes to many students for their contributions
to this work too.

To my parents and my sister for their support and encouragements
during the long years of my education.

Dortmund Germany, April 2011

Contents

1 Introduction 1

2 Introduction to VLSI Design 9
2.1 Modern Digital Circuit Design 9
2.2 Moore’s Law . 11
2.3 Circuit Design Issues: Modular Design 12
2.4 Circuit Design Issues: Low Power 16
2.5 Circuit Design Issues: Synthesis for Power Efficiency . . 17
2.6 Circuit Design Issues: Source of Power Dissipation 19

2.6.1 Dynamic Power Dissipation 20
2.6.2 Short Circuit Power Dissipation 21
2.6.3 Static Leakage Power Dissipation 21

2.7 Design Consideration for Iterative Algorithms 23
2.8 Summary . 24

3 CORDIC Algorithm 25
3.1 Generic CORDIC Algorithm 25
3.2 Extension to Linear and Hyperbolic functions 30
3.3 CORDIC in Hardware 32
3.4 Hardware Performance Analysis 35
3.5 Summary . 36

4 Discrete Cosine Integer Transform (DCIT) 37
4.1 Introduction of DCIT . 37
4.2 DCT algorithms . 39

4.2.1 The DCT Background 39
4.2.2 The CORDIC based Loeffler DCT 40
4.2.3 4×4 Integer Transform 42
4.2.4 8×8 Integer Transform 43

4.3 Discrete Cosine and Integer Transform 46
4.3.1 Forward DCIT 46
4.3.2 Inverse DCIT . 48

4.4 The proposed 2–D QDCIT framework 51
4.4.1 The 2–D QDCIT 51
4.4.2 The CORDIC based Scaler 53
4.4.3 The CORDIC-Scaler Configurator and the LUT

Read Module . 57
4.4.4 The Post-Quantizer 61

4.5 Experimental Results . 63
4.5.1 Variable Iteration Steps of CORDIC 64
4.5.2 ASIC Implementation 65
4.5.3 Performance in MPEG–4 XVID and H.264 67

4.6 Summary . 75

5 Parallel Jacobi Algorithm 77
5.1 Parallel Eigenvalue Decomposition 78

5.1.1 Jacobi Method 78
5.1.2 Jacobi EVD Array 79

5.2 Architecture Consideration 81
5.2.1 Conventional CORDIC Solution 81
5.2.2 Simplified µ–rotation CORDIC 83
5.2.3 Adaptive µ–CORDIC iterations 85
5.2.4 Exchanging inner and outer iterations 86

5.3 Experimental Results . 87
5.3.1 Matlab Simulation 87
5.3.2 Using threshold methods 89
5.3.3 Configurable Jacobi EVD Array 91
5.3.4 Circuit Implementation 94

5.4 Summary . 98

6 Sparse Matrix–Vector Multiplication on Network–on–Chip 101
6.1 Introduction of Sparse Matrix–Vector Multiplication . . . 102
6.2 SMVM on Network-on-Chip 103

6.2.1 Sparse Matrix-Vector Multiplication 103
6.2.2 Conjugate Gradient Solver 105
6.2.3 Basic Idea . 106

6.3 Implementation . 108
6.3.1 Packet Format 108
6.3.2 Switch Architecture 109
6.3.3 Pipelined Switch Architecture 111
6.3.4 Routing Algorithm 112
6.3.5 Processing Element 113

6.3.6 Data Mapping . 113
6.4 Experimental Result . 115

6.4.1 FPGA Implementation 115
6.4.2 Influence of the Sparsity 116
6.4.3 Mapping to Iterative Solver 118

6.5 Summary . 120

7 Conclusions 121

A Appendix Tables 125

B Appendix Figures 129

Bibliography 137

List of Figures

1.1 Designer productivity gap (modified from SEMATECH) 2
1.2 Iterative algorithm design concept 3

2.1 Moore’s Law: Plot of x86 CPU transistor counts from
1970 until 2010 . 11

2.2 IC scaling roadmap for More than Moore (modified figure
from 2009 International Technology Roadmap for Semi-
conductors Executive Summary) [58] 13

2.3 Relative delays of interconnection wire and gate in nanoscale
level (regenerated figure from International Technology
Roadmap for Semiconductors 2003) [57] 14

2.4 The prediction of future multi-core SoC performance (re-
generated figure from 2009 International Technology Roadmap
for Semiconductors System Drivers) [59] 15

2.5 A typical NoC architecture with a mesh style packet-
switched network . 16

2.6 Power reduction at each design level [88] 18
2.7 A simple CMOS inverter 20
2.8 There are four components of leakage sources in NMOS:

Subthreshold leakage (ISub), Gate-oxide leakage (IGate),
Reverse biased junction leakage (IRev) and Gate Induced
Drain Leakage (IGIDL) 22

3.1 CORDIC rotating and scaling a input vector < x0, y0 >
in the orthogonal rotation mode 28

3.2 CORDIC rotating a input vector < x0, y0 > in the or-
thogonal vector mode . 29

3.3 Flow graph of a folded CORDIC (recursive) processor . . 33
3.4 Flow graph of an unfolded (parallel) CORDIC processor 34
3.5 Flow graph of an unfolded (parallel) CORDIC processor

with pipelining . 34

4.1 Flow graph of an 8–point Loeffler DCT architecture . . . 41

4.2 Flow graph of an 8–point CORDIC based Loeffler DCT
architecture . 42

4.3 Flow graph of the 4–point integer transform in H.264 . . 44
4.4 Flow graph of the 8–point integer transform in H.264 . . 46
4.5 Flow graph of an 8–point FDCIT Transform with five

configurable modules for multiplierless DCT and integer
transforms [106] . 47

4.6 Three sub flow graphs of the modules of Figure 4.5 . . . 48
4.7 Flow graph of an 8–point IDCIT Transform with seven

configurable modules for multiplierless IDCT and inverse
integer transforms . 49

4.8 Three sub flow graphs of the modules of Figure 4.7 . . . 50
4.9 The framework of the proposed CORDIC based 2-D FQD-

CIT with four CORDIC-Scalers, a Post-Quantizer, a CORDIC-
Scaler Configurator, a LookUp Table Read Module and
17 dedicated LUTs (8 are for DCT and the other 9 are
for integer transforms) 52

4.10 Framework of a CORDIC based 2-D IQDCIT 53
4.11 Schematic view of the first CORDIC-Scaler with one Fold

and four CORDIC compensation steps 54
4.12 Schematic view and IOs of the LUT reader module and

CORDIC-Scaler configurator module 60
4.13 Schematic view of the Post-Quantizer 62
4.14 Three flow graphs of CORDIC-Scaler with different num-

ber of CORDIC compensation steps 65
4.15 Final layout view of the 2–D CORDIC based FQDCIT

implementation in TSMC 0.18µm technology library . . 66
4.16 Timing waveform of the 2–D CORDIC based FQDCIT

in the DCT mode (requiring 29 clock cycles for latency) . 68
4.17 The average Forward Q+DCT, FNQDCT and FQDCIT

PSNR of the “foreman” and “paris” cif video test from
low to high bitrates in XVID 71

4.18 The average FQDCIT PSNR of the “foreman” and “paris”
cif video test from low to high bitrates in H.264 71

4.19 The average IQDCIT PSNR of the “foreman”, “paris”
and “news” cif video test from low to high bitrates in
XVID . 72

4.20 The average IQDCIT PSNR of the “crew” and “ice”
DVD video test from low to high bitrates in XVID . . . 73

4.21 The average IQDCIT PSNR of the “rush hour” and “blue
sky” Full–HD video test from low to high bitrates in XVID 73

4.22 The average IQDCIT PSNR of the “foreman”, “paris”
and “news” cif video test from low to high bitrates in
H.264 . 74

4.23 The average IQDCIT PSNR of the “crew” and “ice”
DVD video test from low to high bitrates in H.264 75

4.24 The average IQDCIT PSNR of the “rush hour” and “blue
sky” Full–HD video test from low to high bitrates in H.264 76

5.1 A 4×4 EVD array, where n=8 for 8×8 symmetric matrix 80

5.2 Flow graph of a folded CORDIC (recursive) processor
with the scaling . 83

5.3 Four simplified CORDIC rotation types 84

5.4 The block diagram of a scaling–free µ–CORDIC PE, in-
cluding 2 adders, 2 shifters and 4 multiplexers 86

5.5 The average number of sweeps vs. array sizes for four
rotation methods (µ–CORDIC, Full CORDIC and two
adaptive methods). 87

5.6 The number of shift–add operations for four rotation
methods on different size of array 89

5.7 The required number of sweeps vs. off–diagonal norm for
10×10 Jacobi EVD array with double floating precision . 90

5.8 The required number of sweeps vs. off–diagonal norm for
80×80 Jacobi EVD array with double floating precision . 91

5.9 The required number of sweeps vs. off–diagonal norm for
10×10 Jacobi EVD array with single floating precision . 92

5.10 The required number of sweeps vs. off–diagonal norm for
80×80 Jacobi EVD array with single floating precision . 93

5.11 The reduction of shift–add operations (in percent) for
three rotation methods with the threshold strategy and
preconditioned E index on different size of array in IEEE
754 single floating precision 94

5.12 3–D bar statistic view of the l = E− 127 index for adap-
tive index selection for 10×10 Jacobi EVD array with
single floating precision 95

5.13 3–D bar statistic view of the l = E− 127 index for adap-
tive index selection for 80×80 Jacobi EVD array with
single floating precision 95

5.14 The locations of six different PE types in a 4×4 Jacobi
EVD array . 96

5.15 A configurable parallel Jacobi EVD design 96
5.16 Final layout view of a 10×10 Jacobi EVD array with the

µ–CORDIC PE with TSMC 45nm technology library. . . 97
5.17 The energy consumption per EVD operation with each

size of EVD array (operating at 100 MHz) 98

6.1 The quadratic surface of the f(x) 105
6.2 A direct mapping of parallel SMVM operations based on

the NoC architecture . 107
6.3 The system level view of a 4×4 SMVM-NoC in Xilinx

Virtex–6 . 108
6.4 Detailed switch interconnection including two 3×3 cross-

bars, five I/O ports and four FIFOs 110
6.5 A 5–stage pipelined switch with two 3×3 crossbars, five

I/O ports and four FIFOs 112
6.6 Schematic view of the PE for the SMVM–NoC platform . 113
6.7 Performance analysis of different matrix size with ran-

dom sparsity on the Pentium-4 PC, non–pipelined 4×4/8×8
SMVM-NoC, 4×4/8×8 pipelined SMVM-NoC (operat-
ing at 200MHz) . 117

6.8 Influence of sparsity on different architectures with ran-
dom sparsity from 10% to 50% 118

6.9 Analysis of the packet traffics for the 4×4 pipelined SMVM–
NoC . 119

6.10 Two clock regions for the PE and the switch, one for PE
running at higher frequency, another lower frequency . . 120

B.1 CORDIC linear rotation mode 130
B.2 CORDIC linear vector mode 130
B.3 CORDIC hyperbolic rotation mode 131
B.4 CORDIC hyperbolic vector mode 131
B.5 Seven video sequences for test the QDCIT transformation 132
B.6 An inverse mapping of parallel SMVM operations based

on the NoC architecture 132

List of Tables

2.1 Typical switching activity levels [5] 21

3.1 Three different rotation types of CORDIC with both ro-
tation and vector modes used for implementing the dig-
ital processing algorithms (said n iterations and rotated
with a target angle φt) 26

3.2 Comparison of three different CORDIC dependence flow
graphs . 34

3.3 Implementation results of three different CORDIC de-
pendence flow graphs with the orthogonal rotation mode
in Xilinx Virtex–5 FPGA (xc5vlx110t-1ff1136) 35

4.1 Control Signals for the proposed framework of 2–D QDCIT 53

4.2 The corresponding QPs of Luma DC and Chroma DC
values in MPEG-4 . 54

4.3 Values of QStep dependent on QP in H.264 55

4.4 LUT organization of an entry for Quantization of DCT
coefficients . 58

4.5 LUT organization of an entry for Quantization of 4 ×
4/8× 8-integer transform coefficients 59

4.6 Complexity for each 2-D quantized transformation archi-
tecture . 63

4.7 2–D Transformation Complexity for arbitrary CORDIC
iterations . 64

4.8 Comparison of various DCT implementations and the
proposed 2-D FQDCIT in different design criteria (area,
timing, power, latency, throughput and architecture) . . 69

4.9 The list of test sequences 70

5.1 The lookup table for µ–rotations CORDIC with 32–bit
accuracy, showing the rotation type, the 2× tan θ an-
gle, the required shift–add operations for rotation and
scaling, the required cycle delay and repeat numner for
CORDIC–6 [109]. 99

5.2 Area, Delay and Power Consumption results of 4×4 and
10×10 Jacobi EVD arrays with the TSMC 45nm tech-
nology. 100

6.1 Packet Format . 109
6.2 An example of packing vector elements and nonzero ma-

trix elements into packet format (× denotes empty and
Bold/Italic fonts denote that these packets have to be
mapped on the same PE.) 114

6.3 Synthesis Results of pipelined SMVM-NoC Architecture
in Xilinx Virtex-6 (XC6VLX240T-1FF1156) 116

6.4 The performance comparison between non–pipelined 4×4
SMVM-NoC and pipelined 4×4 SMVM-NoC (NZs: Nonzero
Elements) . 116

A.1 The detailed information for each x86 based CPU from
1970 until 2010 . 126

A.2 The pseudo code for each type of Jacobi parallel EVD
code generation . 127

1 Introduction

Modern Very Large Scale Integration (VLSI) manufacturing technology
has kept shrinking down to Very Deep Sub-Micron (VDSM) with a very
fast trend and Moore’s Law is expected to hold for the next decade
[1, 41] or extend to the More than Moore concept (a prediction for the
integration of more than thousand cores before 2020) [21, 64, 95]. 10
years ago, for 0.35µm technology, design engineers focused on reducing
the area size to lower down the cost. Later, when it came to 0.13µm
technology, they paid huge efforts to improve the signal integrity and
reduce the power consumption for low power devices. More and more
functionalities can be integrated on an integrated circuit due to the
continuing improvements.

As the manufacturing technology node decreases to the 65nm, the
circuit design methodology poses new challenges: timing delay of the
global wire interconnection is increasing severely in relation to the local
processor element, leakage power becomes a major factor of the power
consumption, and shared bus transmission is the new bottleneck in the
billion transistors System–on–Chip (SoC) designs [24, 99, 125]. On the
other hand, as product life cycle continues to shrink simultaneously,
time–to–market also becomes a key design constraint. In consequence,
these problems result in the famous “designer productivity gap” as il-
lustrated in Figure 1.1 [85]. In this chart, the x–axis denotes the pro-
gression in time and the y–axis denotes the growing rate as measured
by the number of logic transistors per chip. The solid line shows the
growth rate based on the Moore’s Law, while the dotted line sketches
the average number of transistors that design engineers could handle
monthly. It can be noticed in Figure 1.1 that there is an increasing gap.
Consequently, silicon technology is far outstripping our ability to utilize
these transistors efficiently for working designs in a short time.

Several strategies have been proposed to solve this widening produc-

2 Introduction 1

Desi
gn Complix

ity
 by M

oore’
s L

aw 50%

Designer Productivity 20%~25%

D
es

ig
ne

r
P

ro
du

ct
iv

it
y

G
ap

Time

G
ro

w
th

 R
at

e

Figure 1.1: Designer productivity gap (modified from SEMATECH)

tivity gap. One of the most efficient solutions is using parallel comput-
ing, which has received great attention. It has been introduced in many
state-of-the-art applications in the past few years (e.g. Six-Core CPU,
MPSoC and parallel processor arrays) [104, 120, 121, 132]. In addition,
modulized circuit design has developed to very large SoC by utilizing
reusable/configurable Intellectual Property (IP) cores as much as pos-
sible [17]. Soon traditional bus transmission architecture will be unable
to satisfy the need for more than thousand cores on a single silicon die.
Hence, a better network switching method is desired.

These challenges motivate us to analyze their impact on parallel iter-
ative algorithms. We try to present a generalized VLSI design concept
that considers the significant impact on power, performance, cost, re-
liability, and time–to–market. To implement an iterative algorithm on
a multiprocessor array, there is a tradeoff between the complexity of
an iteration step (assuming that the convergence of the algorithm is
retained) and the number of required iteration steps. For example,
suppose we have a hardware platform with multiple processors which
requires an iteration step of the iterative algorithm to be executed K
times in order to obtain the convergence. The iteration step is exe-
cuted in parallel on the platform. We want to simplify the processors
in order to improve the logical utilization of the platform as shown in
Figure 1.2. This simplification will usually cause an increased number
of iterations for convergence. The number of required iterations will
increase from K to K + L. That means the number of data transfer in

1 Introduction 3

Hareware Platform

L K
Hareware Platform

Simplified

K

Figure 1.2: Iterative algorithm design concept

the interconnections also increases due to the behavior of the iterative
algorithm. Therefore, as long as the convergence properties are guaran-
teed, it is possible to adjust the architecture which is normally resulting
in an increased number of iteration steps. This reduces the complex-
ity with regard to the implementation significantly. However, it is not
easy to find a superior solution to balance the design criteria, especially
for the performance/complexity of the hardware, the load/throughput
of interconnects and the overall energy/power consumption. An exam-
ple of this in the SoC design is the area and the timing optimization.
Area is a metric that is aggressively optimized to achieve low chip cost.
In contrast, timing closure is achieved when a particular target clock
frequency is met (further timing optimization is not necessary). Opti-
mization of one metric can be traded off for the optimization of other
one. Obviously, it is extremely difficult to optimize all metrics at the
same time.

As we will emphasize throughout this thesis, a design engineer must
think carefully which strategy should be selected for the hardware im-
plementation of iterative algorithms. However, a proper decision be-
comes more and more difficult as VLSI technology is evolving. This
problem motivates us to study the design issues. Four different itera-
tive algorithms have been selected, which cover a wide area of current
signal processing tasks. All of them are implemented and realized in
order to discuss the relationship between circuit design issues and the
algorithmic complexity. The chosen algorithms are:

CORDIC processor A COordinate Rotation DIgital Computer (CORDIC)

4 Introduction 1

can perform a lot of mathematical computations to accelerate
many digital functions and signal processing applications in hard-
ware, including linear and orthogonal transformations by requir-
ing only shift and add operations. Since the CORDIC is also an
important iterative algorithm, a brief introduction to the generic
definition and the hardware implementation issues will be given
first. It is a simple, but very flexible arithmetical unit. Very sim-
ple modifications to the controller lead to linear and orthogonal
operating modes, capable of calculating vector rotations, angle
estimations or even multiplications/divisions. Various conditions
concerning the circuit design issues will be described and com-
pared, particularly on the architecture level. We elaborate the
way of implementing a CORDIC rotation with reasonable com-
putational complexity by trading off the throughput [6, 83].

Discrete Cosine Integer Transform (DCIT) VLSI implementation of
both forward and inverse CORDIC based Quantized DCIT (QD-
CIT) is presented. This configurable architecture not only per-
forms multiplierless 8×8 Quantized DCT (QDCT) and 4×4/8×8
integer transforms but also contains configurable modules such
that it can adjust the number of CORDIC rotations for arbi-
trary accuracy. Therefore, the presented architecture reduces the
number of iterations when the target resolution is small (QCIF/-
CIF). On the contrary, it will apply more iterations when the
target resolution is large (Full-HD/Ultra-HD). Moreover, it still
retains an acceptable transformation quality compared to the de-
fault methods in terms of PSNR. This leads to a high-accuracy
high throughput implementation [106,107,112,113].

Parallel Jacobi EVD method Parallel Jacobi method for Eigenvalue
Decomposition (EVD) is chosen as an example to explain the de-
sign concepts concerning tradeoff between the complexity and the
iteration (see Figure 1.2). Here, it is chosen since its convergence
property is very robust. Simplifying the hardware architecture is
paid by an increased number of rotations due to the behavior of
Jacobi’s algorithm. Nevertheless, the computational complexity is
actually decreased, which also results in lower energy consumption
per EVD operation [46,109]. The implementation results demon-
strate that using the simplified architecture is beneficial concern-
ing the design criteria since it yields smaller area overhead, faster

1 Introduction 5

overall computation time and less energy consumption.

Sparse Matrix-Vector Multiplication based on NoC Future integra-
tion of more than thousands IP cores for the very large SoC de-
sign will soon challenge the current shared bus transmission sys-
tem [133]. In this regard, a Sparse Matrix-Vector Multiplication
(SMVM) calculator with the chip-internal network is presented as
a novel solution for parallel matrix computation to further acceler-
ate many iterative solvers in hardware, such as solving systems of
linear equations, Finite Element Method (FEM) and so on [110].
This methodology is called Network–on–Chip (NoC). Using NoC
architecture allows the parallel processors to deal with irregular
structure of the sparse matrices and achieve a high performance
in FPGA by trading off the area overhead, especially when the
data transfers are unstable.

In this thesis, our major concern is to explore several VLSI design con-
cepts for iterative algorithms. Contrary to conventional circuit designs,
usually reducing the logical utilization and increasing the performance,
we will further look into parallel computing, configurable architecture
and packet–switched network. The goal is not to optimize one or several
criteria as much as possible, but trying to expose the complete tradeoff
curves and to have a global view on how large the range is for real-life
applications. The major contributions of this thesis are:

1. The description of different circuit design challenges is introduced
briefly, especially when the technology node is very small. This
leads us further to discuss the design impact on iterative algo-
rithms from the algorithmic and the architectural point of views.

2. The investigation of VLSI design concepts is presented for future
circuit design in nanoscale for four selected iterative applications:
CORDIC processor for signal processing, configurable transfor-
mations for video compression, parallel EVD for communication
and parallel SMVM for solving systems of linear equations. Each
application has its own unique design criteria requiring design en-
gineers to think carefully. They require investigating the tradeoffs
between throughput and power consumption, computational com-
plexity and transformation accuracy, the number of inner/outer

6 Introduction 1

iterations and energy consumption, data structure and network
topology. These tradeoffs are further elaborated to obtain a bal-
anced solution for each application.

3. The circuit implementations of both forward and inverse QD-
CIT transformations based on the CORDIC algorithm are pre-
sented. The CORDIC based FQDCIT requires only 120 adders
and 40 barrel shifters to perform the multiplierless 8×8 FQDCT
and 4×4/8×8 forward quantized integer transform by sharing the
hardware resources. Hence it can support different video Codecs,
such as JPEG, MPEG–4, H.264 or SVC. Furthermore, for a TSMC
0.18µm circuit implementation, it can achieve small chip area and
high throughput for future UHD resolution. On the other hand,
the inverse architecture requires only 124 adders and 40 barrel
shifters to perform the multiplierless 8×8 IQDCT and quantized
4×4/8×8 inverse integer transform. Meanwhile, the ability to
adjust CORDIC iteration steps can be used to support different
video resolutions.

4. A configurable Jacobi EVD array has been elaborated with both
Full CORDIC (exact rotation, executing W CORDIC iterations,
where W is the word length) and µ–CORDIC (approximate ro-
tation, executing only one CORDIC iteration) in order to further
study the tradeoff between the performance/complexity of pro-
cessors and the load/throughput of interconnects. Moreover, uti-
lizing a preconditioned E index method not only reduces more
than 35% computational overhead for the Full CORDIC and 10%
for the µ–CORDIC in average, but also omits the floating point
number comparators. For a TSMC 45nm circuit implementation,
a detailed comparison between area, timing delay and power/en-
ergy consumption is done.

5. A solution for sparse matrix computation based on the NoC con-
cept is presented. Parallel SMVM computations have been tested
in the Xilinx Virtex–6 FPGA. The advantages of introducing the
NoC structure into SMVM computation are given by high resource
utilization, flexibility and the ability to communicate among het-
erogeneous systems. This configurable solution can be configured
as a larger p×p array as long as there are enough hardware re-
sources (p = 2, 4, 8, . . . , 2k, k ∈ N). Moreover, the NoC structure

1 Introduction 7

can guarantee that arbitrary sparsity structures of the matrix can
be handled without interfering the performance by the sparsity of
the matrix.

This thesis is organized as follows: Chapter 2 gives a brief intro-
duction to recent VLSI design trends, on the parallel implementation
issues, and the low power design methodology. Then, in Chapter 3, the
CORDIC algorithm is introduced and it is shown how it is derived and
implemented. Two typical iterative algorithms based on the CORIDC
architecture, Discrete Cosine and Integer Transform and parallel Jacobi
EVD, will be presented and tested in Chapter 4 and Chapter 5 respec-
tively. After that, in Chapter 6, SMVM based NoC is presented and
preliminary implementation results are given. Finally, conclusions are
given in Chapter 7.

8 Introduction 1

2 Introduction to VLSI Design

In this chapter, a brief introduction to the future trend of VLSI design
and its circuit design problems will be addressed. Moore’s Law is ex-
pected to hold for at least 10 more years. Meanwhile, digital multimedia
devices will keep driving the demand for very complex SoC systems. A
single chip can contain more than billion transistors to support various
functionalities. Therefore, before looking into the design issues of iter-
ative algorithms, it is very important to review today’s nanoscale VLSI
technology in Section 2.1. The reason how Moore’s Law will continue
to influence the circuit design trend will be explained in Section 2.2.
Several strategies for obtaining the timing convergence and reducing
the power optimization from a higher design level to the lower level will
be described from Section 2.3 to Section 2.5. The power consumption
of CMOS circuit and the corresponding solutions will be introduced in
Section 2.6. At the end, our motivation on VLSI design concepts for
iterative algorithms will be clarified in Section 2.7.

2.1 Modern Digital Circuit Design

Silicon technology is now at the stage where it is feasible to incorporate
numerous transistors on a single square centimeter of silicon such that
Intel predicts the availability of 100 billion transistors on a 300mm2 die
in 2015 [17]. At this moment, multi-core SoC design emerged because it
allowed design engineers to integrate few cores together for simple par-
allel computing. This permits to build as a complete SoC for supporting
extremely complex functions, which would previously be implemented
as a collection of individual chips on a PCB board. Now, since the
nano-technology allows the integration of an ever-increasing number
of macro-cells on a single silicon die, parallel multiprocessor platforms
have received great attention and have been realized into several state-

10 Introduction to VLSI Design 2

of-the-art applications (e.g. Six–Core, MPSoC and parallel processor
array) [8, 17, 132].

Besides the issue of parallelism, the ability to integrate all parts of
applications on the same piece of silicon is also beneficial for lower
power, greater reliability and reduced cost of manufacturing for con-
sumer electronic devices. Consequently, increased pressure has been
put on design engineers to meet a much shorter time–to–market, now
measured in months rather than years. Particularly, with the new in-
dustry standards such as H.264, WCDMA, and WiMAX, which keep
driving the growth of High–Definition TV (HDTV) and smart phone.
However, the decreasing development period for a new Application-
Specific Integrated Circuit (ASIC) not only results in a very high Non-
recurring Engineering (NRE) cost, but also makes it hard to succeed
the goal of time–to–market. Therefore, another popular solution Field
Programmable Gate Array (FPGA) plays an important role for fitting
the gap between cost and flexibility.

FPGA is an integrated circuit, which is designed to be configured
after manufacturing. The FPGA configuration is generally specified us-
ing a Hardware Description Language (HDL), similar to that used for
an ASIC design. Hence, FPGAs can be used to implement any logical
function that an ASIC can do. In this way, the capability to update
the functionality, partial reconfiguration of the design and the low NRE
costs offer advantages to many applications [134]. However, the manu-
facturing cost per FPGA still makes it unsuitable for many consumer
standard devices. For example, the price of an FPGA die which can
be configured as a video decoder with MPEG–4 decoding functionality
will be much higher than a dedicated ASIC. Therefore, the choice be-
tween the FPGA and the ASIC design is simple the question if either
the size of market is large enough to afford ASIC development costs or
the devices need the reconfiguration for supporting new functionalities
after shipping.

2.2 Moore’s Law 11

Figure 2.1: Moore’s Law: Plot of x86 CPU transistor counts from 1970 until 2010

2.2 Moore’s Law

In 1965 Gordon E. Moore has predicted a long-term trend of computing
hardware, in which the number of transistors that can be placed on an
integrated circuit will double approximately every two years [80]. Note
that it is often incorrectly cited as a doubling of transistors every 18
months. The actual average period is about 20 months. Historically,
Moore’s Law has precisely described a driving force of technological and
social change with respect to cost, functionality and performance in the
late 20th and early 21st centuries. For example, if we consider the CPU
transistor counts from 1970 until 2010 in Figure 2.1, it results in a con-
stant line corresponding to exponential growth due to the logarithmic
scale.

At the beginning, the first x86 Intel 4004 contained only thousand
transistors; 10 years ago, the transistor counts of an Intel Pentium in-
creased very fast to a million transistors. Until now a single Quad-
Core/Six-Core CPU can integrate more than a billion transistors. In
Appendix A, Table A.1 shows more detailed information for each x86

12 Introduction to VLSI Design 2

CPU model. In the future, Moore’s Law will continue until 2020 [41,90]
or maybe even further. After that, soon CMOS technology will meet
its physical limitation when the node size is smaller than 10nm. Now
many scientists are trying to replace the current silicon based MOS-
FET by a novel carbon based Carbon Nanotube Field Effect Transistor
(CNFET) or spintronics in order to shrink the node size into the atom
level [7, 61, 86]. If it comes true, the computer will usher in a new era
“Beyond CMOS” (also known as “More Moore”). Unfortunately, it
seems that this is probably not going to happen so easily in the next 10
years. On the other hand, other groups came out with another poten-
tial way to keep Moore’s Law alive by using a Three-Dimensional IC
(3D-IC) concept to increase the density of transistors [66,91]. As far as
we can see the Through-Silicon Via (TSV) technology for 3D-IC will be
feasible before 2012.

More and more evidences point out that the trend of Moore’s Law
becomes slow, especially the 2009 executive summary of International
Technology Roadmap for Semiconductors (ITRS) provides a taxonomy
of scaling in the traditional, “More than Moore” sense. Figure 2.2 shows
three possible trends. They envision future integrated circuit system
will perform diverse functions such as high-accuracy sensing of real-time
signals, energy harvesting, and on-chip chemical/biological sensors in a
System-in-Package (SiP) or a System-of-Package (SoP) design [64, 95].
In this way, the incorporation of functionalities into devices will not
necessarily scale according to Moore’s Law but provide additional value
to the end customer in different ways. The More than Moore approach
will allow for the non-digital functionalities (e.q. RF communication,
power control, passive components, sensors, actuators) to migrate from
the system board-level into particular SiP/SoP potential solutions [119].
So far, we still could not tell which solution will dominate the future
design trend, especially there are many design issues require engineers
further discuss.

2.3 Circuit Design Issues: Modular Design

Recently, the growing complexity of multi–core architectures will soon
require highly scalable communication infrastructure. Today most of

2.3 Circuit Design Issues: Modular Design 13

130nm

90nm

65nm

45nm

32nm

22nm

Analog/RF BiochipsPassives Power Sensors

Very large SoC
Digital content

Information Processing

New Standards

SiP/SoP design

Interacting with people and enviroment

Non−digital content

Beyond CMOS

M
oo

re
’s

 L
aw

More than Moore

Combing SoC and SiP/SoP, Many−Core system

3D IC

Figure 2.2: IC scaling roadmap for More than Moore (modified figure from 2009
International Technology Roadmap for Semiconductors Executive Summary) [58]

the current communication architectures in multi-core SoC are still
based on dedicated wiring. With shirking process technology, logic
components such as gates have also decreased in size. However, the
traditional wiring lengths do not shrink accordingly, resulting in rela-
tively longer communication path lengths between logic components.
For instance, when the technology node is 65nm, the metal–layer wire
delay is 10 times larger than the gate node delay as shown in Figure 2.3.
Moreover, the data synchronization issue with a single clock source has
also become a critical problem for circuit synthesis [14,51]. That means
the timing closure issue on the large SoC design is difficult to be solved.

In the meantime, design resource reuse concerns all additional activ-
ities that have to be performed to generate an easy–to–use and flexible
IP module. This is based on a hierarchical approach, which proceeds by
partitioning a system into many small modules and requires compati-
bility and consistency. Proper system partitioning allows independence
between the design of different modules. The decomposition is gener-
ally guided by structuring rules aimed at hiding local design decisions in
such a way that only the interface of each module is visible. This kind
of methodology is also called “a modular design”. The overall modular
approach can optimize the insertion of reusable IP component within

14 Introduction to VLSI Design 2

Figure 2.3: Relative delays of interconnection wire and gate in nanoscale level (regen-
erated figure from International Technology Roadmap for Semiconductors 2003) [57]

the circuit design.

As a result, ITRS has predicted for the next 20 years that a single
SoC design will integrate more than one thousand IP components. They
assumed the future die area will keep in a constant size and the number
of cores will increase by a factor of 1.4 per year. Each processor core’s
operational frequency and its computational architecture will be both
improved by a factor of 1.05 per year simultaneously. This means that
the IP core performance will increase by a factor of 1.1025 per year.
Figure 2.4 predicts a roughly 1000 times increase in a multi-core SoC
system, which is the product number of IP cores and the frequency/per-
formance. Therefore, the system performance with about 80-cores will
increase about 20 times compared to an 8-cores implementation in 45nm
technology in 2009. Note that these two anticipations are based on cur-
rent 8-cores for general PC workstations and 2-core for mobile handheld
devices.

In order to satisfy the needs for the very huge modular design (i.e.
more than thousand IP cores), the flexible reusable interface and the
nanoscale global wire delay problem, Network–on–Chip (NoC) was pre-

2.3 Circuit Design Issues: Modular Design 15

Figure 2.4: The prediction of future multi-core SoC performance (regenerated figure
from 2009 International Technology Roadmap for Semiconductors System Drivers) [59]

sented as a new SoC paradigm to replace the traditional bus based on-
chip interconnections by packet–switched network architecture [14,121,
133]. It can yield reduced chip size and cost with higher interconnec-
tion efficiency. The components of an on-chip network (e.g. switching
fabric, link circuitry, buffer and control logic) and the module inter-
faces, which are designed to be compatible with both heterogeneous IP
cores and homogeneous Processing Elements (PEs), are interoperable
and reusable.

The NoC can be used to structure the top-level wires on a chip and
facilitate the implementation into a modular design. As shown in Fig-
ure 2.5, a typical multi-core system based on a mesh style network
consists of a regular n×n array of tiles. Each tile could be a general-
purpose processor, a DSP, a customized IP core or a subsystem. The
network topology can be mesh, tours, ring, tree, irregular or hybrid
style. A Network Interface (NI) is embedded within each tile for con-
necting itself with its neighboring tiles. The communication can be
achieved by routing packets in a packet–switched network. This net-

16 Introduction to VLSI Design 2

Router

Tile

Figure 2.5: A typical NoC architecture with a mesh style packet-switched network

work is an abstraction of the communication among components and
must satisfy Quality-of-Service (QoS) requirements, such as reliability
and performance [51, 54].

2.4 Circuit Design Issues: Low Power

Besides the modular circuit design issue, power dissipation has also been
considered as a critical constraint in the design of digital systems. One
reason is the development of massively parallel computers, where hun-
dreds of microprocessors are used. In such systems, power dissipation
and required heat removal have become a major concern if each chip
dissipates a large amount of power, which will cause heat and reliability
problems. Therefore, a short review of the power aware methodology
for each design level will be given.

The increasing prominence of multimedia portable systems and the
need to limit power consumption in very-high density VLSI chips have
led to rapid and innovative developments in low power design during
the recent years [69,130]. The driving forces behind these developments
are portable applications requiring low power dissipation, such as tablet
computer, smart phone and portable embedded device. In most of these
cases, the requirements of low power consumption must be met along
with equally demanding goals of high performance and high throughput.

Meanwhile, the limited battery lifetime typically imposes very strict
demands on the overall power consumption of these portable devices.
Even new rechargeable battery types such as Nickel-Metal Hydride

2.5 Circuit Design Issues: Synthesis for Power Efficiency 17

(NiMH) have been developed with high energy capacity. So far, the
energy density offered by the NiMH battery technology is about 2300-
2700 mAh per AA size battery. It is still low in view of the expanding
applications of portable devices. Unfortunately, revolutionary increase
of the energy capacity is not expected in the near future. Therefore,
low power and energy efficient computing has emerged as a very active
and rapidly developing field of integrated circuit design.

2.5 Circuit Design Issues: Synthesis for
Power Efficiency

In order to meet not only functionality, performance, cost-efficiency but
also power-efficiency, automatic synthesis tools for IC design have be-
come indispensable. The recent trend has considered power dissipation
at all phases of the design levels. As we can see in Figure 2.6, large
improvements in power dissipation are possible at the higher levels of
design abstraction. The opportunities for reducing power consumption
are higher if we start the design space from the system design level or
the behavioral level. However, with the increasing power dissipation of
VLSI, all possible power optimization techniques are used to minimize
power dissipation at all levels.

• System level - For the first stage, the system architectural and
topological choices are made, together with the boundary between
hardware and software. This design phase is referred as hardware
& software co-design. Obviously, at this stage, the design engineer
has a very abstract view of the system. The most abstract repre-
sentation of a system is the function it performs. A proper choice
between the efficient algorithm and energy budget for perform-
ing the function (whether implemented in hardware or software)
strongly affects system performance and power dissipation [13,53].

• Behavioral level - After determining the implementation of the
function by hardware or software, this stage targets on the opti-
mization of hardware resources and the optimization of the aver-
age number of clock cycles per task required to perform a given

18 Introduction to VLSI Design 2

Figure 2.6: Power reduction at each design level [88]

set of modularized tasks [96]. Moreover, refined task arrangement
for parallelism choosing an appropriate topology of the intercon-
nection network also play important roles at this level.

• RTL level - RTL level design is the most common abstraction
level for the manual design concept. The description is then
transformed into logic gate implementation. At this level, all syn-
chronous registers, latches and combinational logics between the
sequential elements are described in a HDL program such as Ver-
ilog or VHDL. Moreover, the right choice of clock optimization
strategy and pipelining will strongly affect the power consump-
tion [67, 138].

• Logic level - The goal of this level is to generate a structural view
of a logic-level model. Logic synthesis is the manipulation of logic
specifications to create logic models as interconnection of logic
primitives. Thus logic synthesis determines the micro structure of
a circuit at gate-level. The task of transforming a logic model into
an interconnection instance (netlist) of library cells (i.e. the back–

2.6 Circuit Design Issues: Source of Power Dissipation 19

end logic synthesis tools), is often referred to as a library binding
or a technology mapping [78]. At logic level, low power synthesis
for a large SoC chip can be further reduced in average 10%–20% by
applying these methodologies: Multi–Voltage, Multi–Threshold
CMOS (MTCMOS) or Power Gating [20, 67].

• Physical level - In the last stage, the circuit representation is con-
verted into a layout of the chip. Layout is created by converting
each logic component (cells, macros, gates or transistors) into a
geometric representation with specific shapes in multiple layers,
which performs the intended logic function of the corresponding
instance. Connections between different instances are also ex-
pressed as geometric patterns, typically lines, in multiple layers.
Various power optimization techniques such as partitioning, fine
placement, MEMS based power switch, transistor resizing, dy-
namic voltage scaling are employed [89, 92]. However, only 5%–
10% power reductions could be obtained at this level.

2.6 Circuit Design Issues: Source of Power
Dissipation

Power consumption in a CMOS technology can be described by a simple
equation that summarizes the three most important contributors to its
final value [15, 87].

PTotal = PDynamic + PShort + PLeakage. (2.1)

These three components are dynamic power dissipation (PDynamic),
short circuit power dissipation (PShort) and leakage power dissipation
(PLeakage). PLeakage considers the static power consumption when the
circuit is in static mode. This static power consumption is important for
battery life in standby mode because the power is consumed whenever
the device is powered up. PShort and PDynamic are both considered as
dynamic power which is important for battery life when operating as it
represents the power consumed when processing data.

20 Introduction to VLSI Design 2

VDD

VSSVSS

IN

CLIN

IP

ISC

Figure 2.7: A simple CMOS inverter

2.6.1 Dynamic Power Dissipation

For the dynamic power consumption, Figure 2.7 illustrates the currents
of a simple CMOS inverter. Assume that a pulse of data is fed into
the transistor charging up and charging down the device. Power is con-
sumed when the gate drives its output to a new value. It is dependent
on the resistance values of the pmos transistor and the nmos transistor
in the inverter. Hence, the charging and discharging of the capacitors
result in the dynamic power consumption [131,134]:

PDynamic = CL(VDD − VSS)
2fα. (2.2)

When the ground voltage VSS is assumed to be 0. It reduces to a
better-known expression:

PDynamic = CLV
2
DDfα, (2.3)

where CL is the loading capacitance at the output of the inverter, VDD

denotes the supply voltage and f is the clock frequency. These three
parameters are primarily determined by the fabrication technology and
circuit layout. α is the switching activity level and is dependent on
the target applications (referred as the transition density), which can
be determined by evaluating the logic function and the statistical prop-
erties of the input vectors. Table 2.1 lists the probability for the dif-
ferent kind of input singles. Obviously, Equation 2.2 shows that the
dynamic power dissipation is proportional to the average switching ac-
tivity, which means that it is influenced by the target application. In a

2.6 Circuit Design Issues: Source of Power Dissipation 21

Signal Activity (α)

Clock 0.5
Random data signal 0.5
Simple logic circuits driven by random data 0.4-0.5
Finite state machines 0.08-0.18
Video signals 0.1(MSB)-0.5(LSB)
Conclusion 0.05-0.5

Table 2.1: Typical switching activity levels [5]

typical case, dynamic power dissipation is usually the dominant fraction
of total power dissipation (50%–80%).

2.6.2 Short Circuit Power Dissipation

Short-circuit currents occur when the rise/fall time at the input of a
gate is larger than the output rise/fall time, causing imbalance and
meaning that the supply voltage VDD is short-circuited for a very short
space of time. This will particularly happen when the transistor is
driving a heavy capacity load. Fortunately, the short circuit current is
manageable and can easily be avoided in a good design or synthesized
by a well condition back–end logic synthesis tool. Therefore, the PShort

power dissipation is usually a small fraction (less than 1%) of the total
power dissipation in CMOS technology.

2.6.3 Static Leakage Power Dissipation

The scaling of VLSI technology has provided the inspiration for many
product evolutions as it gives a scaling of the transistor dimensions, as
illustrated in Figure 2.8, where the length and the width are scaled by a
factor of k. That means the new dimensions are given by L = L

k
, L = L

k

and Tox = Tox

k
. This will result in a transistor area reduction up to 1

k2

and also increase the transistor speed. Moreover, an expected decrease
in transistor power dissipation as known as currents should be equally
reduced.

22 Introduction to VLSI Design 2

�����
�����
�����

�����
�����
�����

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

Oxide

W

L

n+ n+

Gate

DrainSource

IRev IRev

Tox

P-well

ISub

IGIDL

IGate

Figure 2.8: There are four components of leakage sources in NMOS: Subthreshold
leakage (ISub), Gate-oxide leakage (IGate), Reverse biased junction leakage (IRev) and
Gate Induced Drain Leakage (IGIDL)

However, when the node size is smaller than 65nm, a formerly ignor-
able gate leakage current (IGate) keeps raising explosively when the Tox is
reduced to Tox

k
because the depth of gate oxide between first metal layer

and P-well is too short. Fortunately, this problem had already been
solved by using high-k dielectric materials to replace the conventional
silicon based dioxide to improve the gate dielectric. This allows similar
device performance, but with a thicker gate insulator, thus avoiding
this leakage current. In a similar situation, the Reverse biased Junction
(IRev) leakage and the Gate Induced Drain Leakage (IGIDL) can both be
suppressed efficiently in the manufacturing process with new materials.

On the other hand, in order to avoid excessively high electric fields
in the scaled structure, the input voltage VDD is required to be scaled.
This forces a scaling in the threshold voltage VT , too, otherwise the
transistor will not turn off properly. In the past, subthreshold conduc-
tion was generally viewed as a parasitic leakage in a state that would
ideally have no current. However, now the reduction in VT will result
in an increase of subthreshold drain current (ISub) with a direction from
the drain to the source in a MOSFET. When the transistor is in the
subthreshold region or weak-inversion region, it can be defined as [67]:

ISub = (µCoxV
2
th

W

L
)e

VGS−VT
nVth , (2.4)

where W and L are the dimension of the transistor, µ is a carrier mobil-

2.7 Design Consideration for Iterative Algorithms 23

ity, Cox is the gate capacitance, Vth is the thermal voltage kT/q (25mV
at a room temperature), VGS is the gate-source voltage, n is a num-
ber of the device manufacturing process with a range from 1.0 to 2.5.
These parameters are considered as constant coefficients for subthresh-
old leakage problem. Therefore, the major coefficient is the exponent
of VGS − VT . Once we decrease the VDD and VT during shrinking the
size of the transistor nodes simultaneous, this results in an exponential
increase of the subthreshold leakage power dissipation. In early VLSI
circuits, ISub leakage was a small fraction (far less than 5%) of the total
power dissipation. However, this expected decrease in power consump-
tion now becomes a nightmare when the node size is smaller than 65nm
(could be more than 50%). So far, the most efficient way to reduce the
ISub leakage power is power gating, when the entire macro is turned off.

2.7 Design Consideration for Iterative
Algorithms

With aforementioned design issues, we have to consider the relationship
between iterative algorithms and design criteria for circuit implemen-
tation. First of all, as mentioned in Section 2.4, we already know that
the system level stage provides the most opportunities to reduce the
power dissipation. On the other hand, according to the source of power
dissipation in Section 2.6, the major sources of power dissipation are
dynamic and leakage power dissipations in CMOS circuit. Therefore,
to design a low power iterative architecture that can reduce both dy-
namic and static power dissipations significantly at the system level is
one of the major topics in this thesis. In the following chapters, a VLSI
design concept will be clarified by four different iterative algorithm-
s/methodologies. These hardware solutions not only balance with the
circuit design criteria (area, timing and power) but also retain the good
quality of results.

Iterative algorithms usually have a common character, more precise
computation or approximation per iteration step will result in more
area overhead for iterative hardware core. On the one hand, less pre-
cise iteration steps will cause slower convergence property. On the other
hand, more precise iteration steps will consume more energy. Here we

24 Introduction to VLSI Design 2

will elaborate two iterative examples, CORDIC based QDCIT trans-
formation for video compression and parallel Jacobi method for EVD.
They will be handled carefully with a balance between the cost/area,
convergency/timing and energy/power.

On–chip network emerges for the next generation SoC and becomes
more and more important. With the need for supporting many mul-
timedia standards in a single chip, it has been predicted more than
one thousand processor units will be integrated together in the future.
However, current bus methodology is facing a critical challenge of data
switching for supporting large scale SoC, especially when these proces-
sor units are heterogeneous. Moreover, the timing closure will become
extremely difficult to be obtained. Therefore, the choice between the
ordinary bus-based system and switching based network is a critical
design issue especially when the data transfers are irregular. Later, we
will show how to utilize this switching feature for Sparse Matrix-Vector
Multiplication (SMVM) when solving systems of linear equations iter-
atively.

2.8 Summary

In this chapter, a brief introduction to the concerns of today’s nanoscale
VLSI design concepts was given. It was shown that dealing with the
power dissipation problem became one of the important tasks concern-
ing an ASIC development. It will cause very huge efforts for both verifi-
cation and implementation when the power sources are not guaranteed.
Therefore, design engineers must carefully think about the relationship
between the design criteria (area, timing and power/energy) and the
proper way how to realize iterative algorithms in hardware. In next
chapter, we will start to discuss the relationship between these im-
portant design issues by a well–known iterative algorithm, “CORDIC”
algorithm, which can be used to accelerate many digital functions and
applications in signal processing.

3 CORDIC Algorithm

COordinate Rotation DIgital Computer (CORDIC) is a typical itera-
tive algorithm which is used to accelerate many digital functions and
applications in signal processing. In this chapter, a brief introduction
to the generic definition of the CORDIC algorithm with orthogonal ro-
tation mode will be given first in Section 3.1. Then the extension of
CORDIC to linear and hyperbolic modes will be further explained in
Section 3.2. In Section 3.3, three different dependence flow graphs for
the CORDIC hardware implementation will be described and compared
in Section 3.4.

3.1 Generic CORDIC Algorithm

Digital Signal Processing (DSP) algorithms exhibit an increasing need
for the efficient implementation of complex arithmetic operations. The
computation of trigonometric functions, coordinate transformations or
rotations of complex valued phases are almost naturally involved with
modern DSP algorithms. Popular application examples are algorithms
used in digital communication technology and in adaptive signal pro-
cessing. There are many applications using the CORDIC algorithm,
such as solving systems of linear equations [2,4,55,60], computation of
eigenvalues and singular values [30,38,102], Discrete Wavelet Transform
(DWT) [28,103], Discrete Cosine Transform (DCT) [75,112] and digital
filters [31, 32, 115]. The CORDIC algorithm offers the opportunity to
calculate all the desired functions and applications in a rather simple
and elegant way in circuit design [6].

The CORDIC algorithm was first presented by Jack Volder in 1959
[122] for the computation of trigonometric function, multiplication, divi-
sion, data type conversion, and later generalized to hyperbolic function

26 CORDIC Algorithm 3

Table 3.1: Three different rotation types of CORDIC with both rotation and vector
modes used for implementing the digital processing algorithms (said n iterations and
rotated with a target angle φt)

Mode Operation

Orthogonal xn = x0 cosφt − y0 sinφt

Rotation yn = y0 cosφt + x0 sinφt

zn = 0

Orthogonal xn =
√

x20 + y20
Vector yn = 0

zn = arctan(y0/x0) = tan−1(y0/x0)
Linear xn = x0
Rotation yn = y0 + x0 · z0

zn = 0
Linear xn = x0
Vector yn = 0

zn = z0 − y0/x0
Hyperbolic xn = x0 coshφt − y0 sinhφt

Rotation yn = y0 coshφt + x0 sinhφt

zn = 0

Hyperbolic xn =
√

x20 − y20
Vector yn = 0

zn = arctanh(y0/x0) = tanh−1(y0/x0)

by Walther [124]. A large variety of operations can be easily realized by
the structure of CORDIC algorithm [50,56,83]. There are three primary
types of CORDIC algorithm, the orthogonal, the linear and the hyper-
bolic. Each type has two basic operation modes, rotation and vector,
which are summarized in Table 3.1. The CORDIC algorithm can be
realized as an iterative sequence of add, sub and shift operations. Due
to the simplicity of the involved operations, the CORDIC algorithm is
very well suited for VLSI implementation.

A CORDIC algorithm provides an iterative method of performing
vector rotations. The general form of the orthogonal rotation CORDIC

3.1 Generic CORDIC Algorithm 27

mode is defined as:

x′ = x cosφt − y sinφt

y′ = y cosφt + x sinφt,
(3.1)

which rotates the input vector < x, y > in the Cartesian coordinate
system by a rotation angle φt. Then this equation can be rearranged
as:

x′ = cosφt(x− y tanφt)
y′ = cosφt(y + x tanφt).

(3.2)

To further simplify it, we can restrict the rotation angle tanφt to
tanφt = ±2−i, such that the multiply operation by the tangent part
is reduced to shift operations. This alters Equation 3.2 to become a
sequence of arbitrary elementary rotations. Since the decision at each
iteration i is fixed, the cos2−i = cos2i becomes a constant number. The
new iterative rotation can now be defined as:

xi+1 = Ki(xi − yi · di · 2−i)
yi+1 = Ki(yi + xi · di · 2−i)
Ki = cos(tan−1 2−i) = 1√

1+2−2i

di = ±1
i = 0, 1, 2, 3, . . . n.

(3.3)

Removing the scaling factor Ki from the iterative part yields a sim-
ple shift-add algorithm for orthogonal rotation CORDIC. After several
iterations, the product of Ki factors will converge to a constant coef-
ficient 0.607252. The exact gain depends on the number of iterations:
An =

∏

n

√
1 + 2−2i ≈ 1.646762 = 1

Kn
. In the mode of orthogonal rota-

tion, the angle accumulator is added to the Equation 3.4.

xi+1 = xi − yi · di · 2−i
yi+1 = yi + xi · di · 2−i
zi+1 = zi − di · tan−1 2−i
di = −1 when zi < 0 else + 1.

(3.4)

The angle accumulator is initialized with the input rotation angle.
The rotation direction at each iteration i is decided by the magnitude
of the residual angle in the angle accumulator. If the residual angle is

28 CORDIC Algorithm 3

ScalingRotating

< xn, yn >

< xs, ys >

< x0, y0 >

< xn, yn >
< x2, y2 >

< x1, y1 >

n times

φt

Figure 3.1: CORDIC rotating and scaling a input vector < x0, y0 > in the orthogonal
rotation mode

positive, then the di is set to +1 otherwise -1. After serveral iterations,
it will produce the following results:

xn = An(x− y tan z0)
yn = An(y + x tan z0)
zn = 0.

(3.5)

In Figure 3.1, an example for the generic CORDIC processor rotating
an input vector < x0, y0 > with a target rotation angle φt is shown. The
CORDIC processor rotates it by the desired rotation angle iteratively,
said n times (usually n = 32 with the single floating precision). After
that, a constant scaling value K = 0.607252 will be applied to the
rotated vector < xn, yn > in order to scale the rotation results.

Moreover, for the orthogonal vector mode, the CORDIC rotates the
input vector through whatever angle is necessary to align the resulting
vector with the x axis. That means the direction di is dependent on the
current yi instead of zi. Equation 3.4 can be modified as:

xi+1 = xi − yi · di · 2−i
yi+1 = yi + xi · di · 2−i
zi+1 = zi − di · tan−1 2−i
di = −1 when yi ≥ 0 else + 1.

(3.6)

3.1 Generic CORDIC Algorithm 29

Rotating

n times

< xn, yn >

< x0, y0 >

< x1, y1 >

< x2, y2 >
φn

Figure 3.2: CORDIC rotating a input vector < x0, y0 > in the orthogonal vector
mode

Then:

xn =
√

x20 + y20
yn = 0
zn = z0 − di · tan−1 2−i.

(3.7)

The CORDIC with orthogonal vector mode can obtain the arctan-
gent result, φ = arctan(y

x
), if the angle accumulator is initialized with

zero (z0 = 0). Since the arctangent result is taken from the angle accu-
mulator, the scaling factor An can be ignored and does not affect the
result.

zn = arctan(y0
x0

). (3.8)

Figure 3.2 shows an example when a CORDIC processor rotates an
input vector < x0, y0 > to the x axis iteratively. After n iterations, the
φn=arctan(y0

x0

), will converge into the zn accumulator. Note that the
constant scaling value K = 0.607252 for correcting the < xn, yn > is
not necessary if we only need the arctangent result.

30 CORDIC Algorithm 3

3.2 Extension to Linear and Hyperbolic
functions

A simple modification to Equation 3.4 allows the computation of func-
tion in the linear coordinate system using the same architecture:

xi+1 = xi − 0 · yi · di · 2−i = xi
yi+1 = yi + xi · di · 2−i
zi+1 = zi − di · 2−i

i = 1, 2, 3, 4, . . . n.

(3.9)

For the linear rotation mode, di = -1 if zi < 0 else +1, the linear
rotation CORDIC produces:

xn = x0
yn = y0 + x0 · z0
zn = 0.

(3.10)

This operation is more and less like a multiplier but requires only the
shift and add operations. It is a very efficient approximated solution
for iterative hardware design [82]. Of course there are more efficient
implementations of MAC like structures and especially multipliers, but
if a CORDIC is already available it may be used as such [53]. On the
other hand, if we redefine di = -1 if yi ≥ 0 else +1, the linear vector
mode results will be converted as:

xn = x0
yn = 0
zn = z0 − y0

x0

.
(3.11)

On the contrary, the linear vector mode now can approximate a divide
operation iteratively, which is very important for DSP system. Note
that the rotations in the linear coordinate system have only a unity
gain, so there is no scaling factor for compensation. In Appendix B,
two linear CORDIC examples with the rotation mode and the vector
mode are described in Figure B.1 and Figure B.2.

3.2 Extension to Linear and Hyperbolic functions 31

The difference between trigonometric function and hyperbolic func-
tion is very small, they can share the same CORDIC architecture with
a little modification to Equation 3.4. In this case the formulas for the
hyperbolic rotation mode are:

xi+1 = xi + yi · di · 2−i
yi+1 = yi + xi · di · 2−i
zi+1 = zi − di · tanh−1 2−i

i = 1, 2, 3, 4, 4, 5, . . . 12, 13, 13, 14, . . . n,

(3.12)

where di = -1 if zi < 0 else +1, then the hyperbolic rotation CORDIC
will produce:

xn = An(x+ y tanh z0)
yn = An(y + x tanh z0)
zn = 0

An =
∏

n

√
1− 2−2i ≈ 0.80.

(3.13)

Moreover, for the hyperbolic vector mode, di = +1 if yi < 0 else -1,
then the hyperbolic vector CORDIC produces:

xn =
√

x20 − y20
yn = 0
zn = z0 + tanh−1 y0

x0

.
(3.14)

It should be noticed that the rotations in the hyperbolic coordinate
system do not converge. It will only converge if we select a particular
iteration sequence, i.e. i = 4, 13, 40, . . . , k, 3k + 1, . . . are repeated once
[2, 124]. The hyperbolic equivalents of all the functions as the circular
coordinate system can be computed in a similar fashion. In Appendix B,
two hyperbolic CORDIC examples for the rotation mode and the vector
mode are described in Figure B.3 and Figure B.4. Essentially, these six
different rotation modes can be summarized into an unified formula
as (i.e. orthogonal rotation, orthogonal vector, linear rotation, linear

32 CORDIC Algorithm 3

vector, hyperbolic rotation and hyperbolic vector):

xi+1 = xi −m · yi · di · 2−i
yi+1 = yi + xi · di · 2−i
zi+1 = zi − di · ei

ei =







tan−1 2−i when m = 1
2−i when m = 0
tanh−1 2−i when m = −1

,
(3.15)

where ei is the elementary angle of rotation for iteration i in the selected
coordinate system. For orthogonal mode in the Cartesian coordinate
system, the ei = tan−1 2−i and the m=1. For linear mode in the linear
coordinate system, the ei = 2−i and the m=0. For hyperbolic mode in
the hyperbolic coordinate system, the ei = tanh−1 2−i and the m=-1.
This universal representation, credited to Walther, permits the design
of a general purpose CORDIC rotation processor. However, the focus
of this thesis will be only on the orthogonal rotation and the orthogonal
vector modes.

3.3 CORDIC in Hardware

In this section, three different dependence flow graphs are presented for
the hardware implementation of the CORDIC. Note that we restrict
only to the conventional CORDIC iteration scheme as shown in Equa-
tion 3.15. In Figure 3.3, the structure of one stage of the CORDIC
iteration is presented, which requires a pair of adders for rotation and
another adder for steering the next angle direction (di). All internal vari-
ables are buffered in the registers separately until the iteration number
is large enough to obtain convergence. The signs of all three interme-
diate variables are fed into a control unit which generates the rotation
direction flags di to steer the add or sub operations and keeps tracking
of the rotation angle zi. This folded dependence graph is typical for
the orthogonal rotation mode and has its benefit in small area for VLSI
design. However, the throughput is very low and requires an extra stor-
age (lookup table) to store the rotation angles for following iterations.
Moreover, it requires a number of different shifting lengths according

3.3 CORDIC in Hardware 33

add

add

adder or substractor

buffer register

right shift k bit

2x1 multiplexer

Look-Up Table

R
eg

R
eg

R
eg

Reg

add

>>k

>>k

>>k

add

mux

ROM

ROM

di

zout

yout

xoutx0

y0

z0

−mdi

−di

m
u
x

m
u
x

m
u
x

Figure 3.3: Flow graph of a folded CORDIC (recursive) processor

to the chosen shift sequence, additional barrel shifters are required in
folded CORDIC architecture.

We can unfold it to improve the throughput and obtain a new flow
graph where n = 32 stages are cascaded together as shown in Fig-
ure 3.4. Note that the fixed shift operations are assumed to be hard-
wired, hence they do not represent any propagation delay or further
hardware resources. In this way, the lookup table is not required and
each stage has a specified constant number for steering the next stage’s
angle direction.

Besides having a purely combinational implementation, buffers can
also be inserted between successive stages as indicated in Figure 3.5. In
this way, the throughput of the unfolded CORDIC can be improved by
using a pipelined architecture. Table 3.2 lists the overall comparison for
each flow graph in terms of area, speed and power consumption. It can
be noticed that the folded CORDIC is smaller than the other two flow
graphs but the processing speed is much slower. On the contrary, the
pipelined CORDIC achieves higher throughout but requires larger area
overhead. Therefore, the choice between folded, unfolded and pipelined
simply becomes a tradeoff problem. Design engineers must further con-
sider which solution is best for their system design.

34 CORDIC Algorithm 3

right shift k bit

add

add add

add

adder or substractor >>k

>>0

>>0

>>1

>>1

>>2 >>31

>>31>>2

add

add add addadd

const

x0 xout

yout

zout

const

add

add

const

add

add

const

y0

z0

d0

−md0

d1 d2

−md1 −md2

d31

−md31

Figure 3.4: Flow graph of an unfolded (parallel) CORDIC processor

R
E

G
R

E
G

R
E

G

add

add

R
E

G
R

E
G

R
E

G

R
E

G
R

E
G

R
E

G

right shift k bit REGadder or substractor pipeline buffer

add

add

>>1

>>1

>>2

>>2

>>31

>>31

>>kadd

>>0

>>0

add add

const

d1

−md1

add

add

add

const

d2

−md2

add

xout

yout

zout

add

add

const

d31

−md31

const

x0

y0

z0

d0

−md0

Figure 3.5: Flow graph of an unfolded (parallel) CORDIC processor with pipelining

Table 3.2: Comparison of three different CORDIC dependence flow graphs

Mode Area Speed Power

folded small very slow low
unfold large slow high
pipeline very large very fast very high

3.4 Hardware Performance Analysis 35

Table 3.3: Implementation results of three different CORDIC dependence flow graphs
with the orthogonal rotation mode in Xilinx Virtex–5 FPGA (xc5vlx110t-1ff1136)

folded unfold pipeline

Slice Regs 502 162 3,204
Slice LUTs 477 3,528 3,106
Timing 7.340 ns 94.732 ns 5.347 ns
Frequency 136.2 MHz 10.6 MHz 187 MHz
Throughput (MByte) 34.04 MB 84.8 MB 1496 MB
Power Consumption 27.44 mW 14.92 mW 53.38 mW
Energy (per byte) 0.8061 nJ 0.1759 nJ 0.0357 nJ

3.4 Hardware Performance Analysis

In order to further analyze these three different dependence flow graphs,
they are directly generated from the Xilinx IP core library and synthe-
sized by the Xilinx ISE 11.5 in Virtex–5 FPGA, where Table 3.3 lists the
synthesis results. Note that each generated CORDIC hardcore requires
32 iterations and the input/output word length is 32 bits.

First of all, the area size of the folded CORDIC is very small compared
to the others, but the throughput is very low. Although the pipelined
CORDIC can achieve higher throughput, the area overhead is very high
(due to cascaded units and pipeline buffers) and the power consump-
tion is also high. Second, the timing delay of the unfold CORDIC flow
graph is much larger than the others due to its very long data path for
clock tree synthesis. Third, if we further consider the energy consump-
tion per byte, the pipelined CORDIC is much more efficient than the
folded CORDIC, because the computation period is shorter. Finally,
the FPGA synthesis results show that the pipelined CORDIC archi-
tecture can achieve higher throughput and low power but require more
logical utilization resources in FPGA. On the other hand, the folded
CORDIC is small and simple. However, it is very slow and not efficient
concerning the energy consumption.

36 CORDIC Algorithm 3

3.5 Summary

In this chapter, a brief introduction to the fundamental CORDIC algo-
rithm with different rotation modes and the corresponding VLSI circuit
design of three dependence flow graphs was given. The folded CORDIC
flow graph is smaller than the pipelined CORDIC but the throughput
is slow. Furthermore, the energy consumption is also higher. Therefore,
the design tradeoff is between the throughput and the energy consump-
tion. The choice is dependent on the target application. Although only
the orthogonal rotation and orthogonal vector modes are used in this
thesis, the presented VLSI design concepts can also be applied to other
CORDIC rotation modes.

4 Discrete Cosine Integer Transform
(DCIT)

In this chapter, the integration of DCT and integer transform on a con-
figurable IP Core for supporting multi–standard image/video Codecs is
presented. In Section 4.1, a short review on today’s video transforma-
tion and quantization will be given first. Section 4.2 briefly introduces
the algorithms of the DCT, Loeffler DCT, CLDCT and the integer
transforms. In Section 4.3, a configurable forward and inverse DCIT
for supporting the multiple transformations is presented. Later, the
framework of the proposed CORDIC based Quantized DCIT architec-
ture on a schematic design level will be described in Section 4.4. The
implementation results are shown in Section 4.5. Section 4.6 summa-
rizes this chapter.

4.1 Introduction of DCIT

As the demand for multi-function devices has been growing severely
in recent years, more and more requirements have been posed for SoC
design, such as low power, high performance, quality awareness and
multi-standard integration. The DCT transformation is a very im-
portant video coding component of many modern Image/Video com-
pression standards (e.g. JPEG, MPEG–2, MPEG–4, H.263 and so
on [26, 94]). In H.264 Codec, which is a joint standard of the ITU-T
video compression and the ISO/IEC MPEG-4 Part 10 Advanced Video
Coding (AVC), the DCT part is replaced by an integer transform using
a block size of 4×4 pixels. For adding profiles for High Definition (HD)
videos, an integer transform using a block size of 8×8 pixels has been
added [74]. Recently, the H.264/AVC has been extended to support
Scalable Video Coding (SVC) by Joint Video Team of ITU-T VCEG

38 Discrete Cosine Integer Transform (DCIT) 4

and ISO MPEG (JVT) [100,101]. Furthermore, Ultra–HD (UHD) TV,
producing a 7,680×4,320 pixel resolution (a.k.a. Super Hi-Vision) and
the next generation High Efficiency Video Coding (HEVC), will soon
need very high throughput performance [25, 79]. Therefore, the multi-
function integration of different Codecs with very high throughput is a
challenge to design engineers implementing the Codecs for supporting
3D/UHD displays.

A low–power and high-quality CORDIC based Loeffler DCT (CLDCT)
is presented. It can reduce the computational complexity from 11 mul
and 29 add operations to 38 add and 16 shift operations [112]. It ob-
tains a transformation quality as good as the original Loeffler DCT.
Furthermore, 4–point integer transform and 8–point integer transform
are integrated in this CLDCT [106], such that a configurable architec-
ture for Discrete Cosine and Integer Transform (DCIT) is obtained. It
can be configured to perform the multiplierless One–Dimensional (1–
D) 8–point DCT and the 1–D 4–point/8–point integer transforms in
multi-standard Video Codecs.

In general, the Two–Dimensional (2–D) DCT coefficients are usu-
ally followed by a quantization procedure in image/video compressions.
Quantization can be uniform or nonuniform. The uniform quantiza-
tion method is typically implemented as a division by a quantization
step size followed by a rounding operation. The nonuniform quantiza-
tion method can be implemented in a large lookup table or by utiliz-
ing a search algorithm in a code book. Incorporating the quantization
into the DCT transformation, resulting in Quantized DCT (QDCT),
has been considered as an efficient way to improve the computational
complexity for video compression. Essentially, only the uniform quan-
tization can be incoperated into the DCT transformation due to its
regular structure, which is more efficient for VLSI implementation. In
the literature, Alen Docef et al. [34] proposed a joint implementation
of Chen’s DCT [23] and Quantization (i.e. a conventional QDCT de-
sign). Later, Hanli Wang et al. [126] merged the quantization process
represented by a quantization matrix that has variable quantization
step sizes into Chen’s DCT. They called it Novel QDCT (NQDCT).
However, both QDCT designs require multipliers to perform DCT and
Quantization. Even if the multiplier could be replaced by Canonical
Signed Digit (CSD) representation, the QDCT and NQDCT will need
more than 300 add operations, in the worst case.

4.2 DCT algorithms 39

In this chapter, instead of realizing the QDCT architecture with mul-
tiplications, CORDIC compensation steps are used to approximate the
quantization procedure iteratively. As for CLDCT in [112], the number
of CORDIC compensation iterations is reduced, resulting in a CORDIC
based Scaler (CORDIC-Scaler). This CORDIC-Scaler has five stages
and requires 8 adders and 10 shifters to approximate two scaling oper-
ations. The combination of two 1–D DCITs, a row-column transposi-
tion memory and four CORDIC-Scalers forms a 2–D Forward QDCIT
(FQDCIT) which requires 120 adders and 40 shifters. On the other
hand, an extended version of Inverse QDCIT (IQDCIT) has also been
modified with seven configurable modules which requires 124 adders
and 40 shifters. The proposed core can save more than the half number
of adders by using a shared configurable architecture. This CORDIC
based IQDCIT can support arbitrary scaling values for quantization
by updating the lookup tables for different Codecs which are based
on scaler dequantizer, such as JPEG, MPEG–4, H.264 or DivX. Af-
ter that, different numbers of CORDIC iterations are applied to the
Inverse DCIT (IDCIT) and different numbers of compensation steps
to the CORDIC-Scaler, respectively, because in most image/video de-
coders, the required transformation precision is dependent on the target
resolution. For example, the concept of dynamic Bit-width adaptation
by decreasing the bit length of the high frequency coefficients in DCT
has also been adopted into our design [84]. Therefore, it will perform
fewer iterations when the target resolution is small (QCIF/CIF). On
the contrary, when the target resolution is large (Full-HD/Ultra-HD),
more iterations will be applied. Providing arbitrary accuracy for various
resolutions is important for embedding video decoders in any consumer
electronic devices.

4.2 DCT algorithms

4.2.1 The DCT Background

A 2–D DCT can transform an 8× 8 block sample from spatial domain
X(i, j) into frequency domain Y (k, l) as follows:

40 Discrete Cosine Integer Transform (DCIT) 4

Y (k, l) = 1
4C(k)C(l)

7
∑

i=0

7
∑

j=0

X(i, j) · cos[(2i+1)kπ
16] cos[(2j+1)lπ

16]

C(k) =

{ 1√
2

if k = 0

1 otherwise
C(l) =

{ 1√
2

if l = 0

1 otherwise

k and l = 0, 1, 2, . . . 7.

(4.1)

Since computing the above 2–D DCT by using matrix multiplication
requires 84 multiplications, a commonly used approach to reduce the
computational complexity is row-column decomposition. This decom-
position performs row-wise 1–D transformation followed by column-wise
1-D transformation with intermediate transposition. This approach has
two advantages. First, the computational complexity is significantly re-
duced. Second, the original 1–D DCT can be easily replaced by different
DCT algorithms. A 1–D 8–point DCT can transform 8 samples X(i)
into the frequency domain Y (k) as follows:

Y (k) = 1
2C(k)

7
∑

i=0

X(i) cos[(2i+1)kπ
16]

C(k) =

{ 1√
2

if k = 0

1 otherwise

k = 0, 1, 2, . . . 7.

(4.2)

4.2.2 The CORDIC based Loeffler DCT

Lately, a simplified 1-D 8–point CLDCT has been presented requiring
only 38 add and 16 shift operations [112]. The original Loeffler DCT is
selected as the starting point for optimization as shown in Figure 4.1.
The trigonometric plane rotation with the angle 3π/8, 3π/16 and π/16,
can be calculated using only 3 mul and 3 add operations instead of 4 mul
and 2 add operations using the equivalence function. Hence, including

4.2 DCT algorithms 41

0

1

2

3

4

5

6

7

0

4

2

6

1

5

3

7

cos π
16

cos 3π
16

− sin 3π
16

sin 3π
16

sin π
16− sin π
16

√
2

√
2

√
2 cos 3π

8√
2 sin 3π

8−
√
2 sin 3π

8√
2 cos 3π

8

cos π
16

cos 3π
16

Figure 4.1: Flow graph of an 8–point Loeffler DCT architecture

two
√
2 multiplications, a 1-D Loeffler DCT requires in total 11 mul

and 29 add operations. In the meantime, the theoretical lower bound of
the number of multiplications required for the 1-D DCT had also been
proven to be 11 [36, 73].

Implementing the Loeffler DCT with the CORDIC method by ignor-
ing some unnoticeable iterations and shifting the compensation steps
of each angle to the quantizer yields the simplified CLDCT. Figure 4.2
shows the RTL flow graph of the CLDCT, where the white circles are
adders, and the dark circles are shifters, including eight scaling factors
incorporated into the quantization table. Here, Module 1 represents an
orthogonal CORDIC rotation with the angle φ = 3π/8. The number
of CORDIC iterations is reduced to three with 6 adders and 4 shifters.
All compensation steps are shifted to the quantizer. For Module 2, it
is a simplification of an orthogonal CORDIC rotation with the angle
φ = π/16, the compensation iterations of the π/16 rotation are first
ignored and then the iterations are reduced to 4 adders and 4 shifters.
For Module 3 with the rotation angle 3π/16, the number of iterations
are reduced to 4 adders and 4 shifters. Since there is a data correlation
between the subsequent stages of the π/16 and the 3π/16, two CORDIC
compensation steps with 4 adders and 4 shifters are still required to ob-
tain the correct correlation. Although simplifying these rotation angles

42 Discrete Cosine Integer Transform (DCIT) 4

0

1

2

3

4

5

6

7

3

43

1

1 4

4

44

0.31551

0.5

0.3536

0.31551

0.3536

0.5

0.3536

0.3536

Module 1

Module-2

Module 3

1

63 3

3 6

1

3

3π
8

π
16

3π
16

Figure 4.2: Flow graph of an 8–point CORDIC based Loeffler DCT architecture

will decrease the quality of the transformation results, the influences are
not noticeable in video sequence streams or image compression. This
DCT architecture not only has a similar computational complexity as
the binDCT [118] but also keeps the transformation quality as good
as Loeffler DCT. More detailed information about this low-power and
high-quality DCT can be found in [42–44,112].

4.2.3 4×4 Integer Transform

The DCT transformation was used in all MPEG-Standards up to the
MPEG-4 Visual standard. Since H.264, it has been replaced by a 4×4-
integer transform. This transform is implemented similar to the DCT
with the difference that all the operations can be directly implemented
as integer arithmetics without any loss of accuracy. In H.264, a 4×4

4.2 DCT algorithms 43

integer transform is defined as:

Y = (CfXCT
f)⊗ Ef

=

















1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1









[

X
]









1 2 1 1
1 1 −1 −2
1 −1 −1 2
1 −2 1 −1

















⊗









a2 ab
2 a2 ab

2
ab
2

b2

4
ab
2

b2

4

a2 ab
2 a2 ab

2
ab
2

b2

4
ab
2

b2

4









,

(4.3)
where the size of input matrix X is 4×4 and CfXCT

f is the 2–D integer

transform. E is a matrix of scaling factors where a=1
2 , b=

√

2
5 and d=1

2 .

Note that the operator ⊗ represents the multiplication of two matrices
element by element (i.e. C = A ⊗ B means cij = aij · bij, ∀i, j). The
corresponding formula of the inverse transform is given by [74, 94]:

X ′ = CT
i (Y ⊗ Ei)Ci

=









1 1 1 1
2

1 1
2 −1 −1

1 −1
2 −1 1

1 −1 1 −1
2

















[

Y
]

⊗









a2 ab a2 ab
ab b2 ab b2

a2 ab a2 ab
ab b2 ab b2

























1 1 1 1
1 1

2 −1
2 −1

1 −1 −1 1
1
2 −1 1 −1

2









.

(4.4)

Although the inverse integer transform contains shift operations to
the right side, it has no loss of accuracy since the coefficients are prescaled
by the corresponding matrix Ei. The scaling with the matrices Ef and
Ei are usually approximated by the quantizer and the dequantizer. Fig-
ure 4.3 shows the flow graph of the 4–point integer transform that is
based on Equation 4.3. Here the multiplication with the factor 2 from
matrix Cf is implemented by a left shift operation. In the correspond-
ing inverse transform the multiplication by 1

2 can be implemented by a
right shift operation in a similar way [74].

4.2.4 8×8 Integer Transform

In 2004 the H.264 was expanded by an additional profile so called high
profile for HD resolutions. The profiles ”Baseline”, ”Main” and ”Ex-
tended” use the 4×4 integer transform. The new profile uses an 8×8

44 Discrete Cosine Integer Transform (DCIT) 4

0.5

1

1

0.6324

0.6324

0.5 2

0

3

13

2

1

0

Figure 4.3: Flow graph of the 4–point integer transform in H.264

integer transform, which was incorporated by the standard [94]. The
8 × 8 integer transform can also be separated into one for horizontal
transform and another one for vertical transform. Each transform can
be explained as the sum of two 4–point integer transforms. One of the
4-point integer transforms is identical to the transform in Figure 4.3,
while the other one is a modification of it. The first one is executed
on all the lines and columns with even index, while the modified one is
executed on all the lines and columns with an odd index. The following
equation explains this interrelation:

T8 =

(

Q1









0 1 −1 1.5
−1 −1.5 0 1
1 0 1.5 1
−1.5 1 1 0

















1 0 0 −1
4

0 1 1
4 0

0 1
4 −1 0

1
4 1 0 1









QT
1

+W1









1 1 1 0.5
1 0.5 −1 −1
1 −0.5 −1 1
1 −1 1 −0.5









W T
1

)

M,

(4.5)

4.2 DCT algorithms 45

where the matrices Q1, W1 and M are defined as follows:

Q1 =

























0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

























, W1 =

























1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0

























and

M =

























1 0 0 0 0 0 0 1
0 1 0 0 0 0 −1 0
0 0 1 0 0 1 0 0
0 0 0 1 −1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 −1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 −1

























.

(4.6)

Therefore, the 8× 8 integer transform is defined as:

Y = T8XT T
8 . (4.7)

The left summand from Equation 4.5 shows the modified part of
the transform, which is executed on the lines and columns with an
even index according to the matrix Q1. The right summand shows the
unmodified part of the transform, which is executed on all the lines and
columns with an odd index. Figure 4.4 shows the flow graph of the
8–point integer transform based on Equation 4.5. The end of the flow
graph shows the scaling quantization factors.

46 Discrete Cosine Integer Transform (DCIT) 4

2

2

2

2

1

1

1

1

1

1

2

5

0

1

2

3

4

6

7

2

6

4

0

5

1

7

3

0.3328

0.4472

0.3536

0.3536

0.4472

0.3328

0.3328

0.3328

Figure 4.4: Flow graph of the 8–point integer transform in H.264

4.3 Discrete Cosine and Integer Transform

4.3.1 Forward DCIT

In order to combine the DCT transformation and the integer trans-
forms, the CLDCT’s flow graph has been modularized, where Figure 4.5
shows the RTL flow graph of the proposed 1–D Forward DCIT (FDCIT)
transformation with all required resources. Five configurable modules,
which can execute different operations, are used for performing both
the multiplierless DCT and integer transforms.

First of all, the proposed DCIT architecture can execute an 8–point
DCT with a dedicated sub flow graph as shown in Figure 4.6(a), where
Module 1–4 are the original operations for the CLDCT and Module 5
is a bypassing circuit. Note that two data paths have to be switched
between Module 2 and Module 3. Furthermore, after Module 2–3 the
four adders inside the shaded box and the four data paths indicated
by dashed lines have to be bypassed. The required scaling values are
identical to Figure 4.2 with a specified order of the outputs.

Next, the five configurable modules have been modified in order to
perform the 8–point integer transform on the resulting hardware as

4.3 Discrete Cosine and Integer Transform 47

Module 5

Module 4

Module 1

Module #

0.3328

0.6324

0.5

0.5

0.5

0.6324

0.6324

0.5

Bypass DCT

Bypass Int−4

0.3536��

�
�
�
�

��

��

�
�
�
�

4

5

7

6

3

2

1

00a

1a

3a

2a

0b

3b

2b

1b

T T T T T

T T T T T

T T T

T T T

T

adder or substractor

pipeline buffer configurable module

0.3536

0.4472

0.4472

0.3328

0.3328

0.6324

0.3536

0.3155

0.3155

0.3536

0.3536 0.3536

0.3328

0.5

Int−8 Int−4 DCTInt−8 Int−4 DCT

0

4

6

1

7

0

4

2

7

1

3

2

3

5

6

5

2b

0a

2a

3a

1a

0.5

0b

Int−4

1b

3b

Int−4

Int−4 DCT
Int−8

Module 2

Module 3

Figure 4.5: Flow graph of an 8–point FDCIT Transform with five configurable
modules for multiplierless DCT and integer transforms [106]

shown in Figure 4.6(b). In detail, in the upper part of the flow graph,
a pair of shifter and adder is required in Module 1. In the lower part of
the flow graph, Module 2 and Module 3 have been simplified into one
single CORDIC compensation step with two shifters and two adders
for each. Two further shifters are inserted in Module 4 and one pair of
shifter and adder is inserted in Module 5. The required scaling values
and the output order for the 8–point integer transform are also given
at the end of the flow graph.

In the same way, two 4–point integer transforms are configured by
reusing the flow graph. There are three configurable modules and two
bypassing modules. Figure 4.6(c) shows the related sub flow graphs of
the 4–point integer transform. First of all, the first stage consisting of
butterfly operations, 8 adders, Modules 2-3 and the four adders in the
shaded box after Modules 2–3 have to be bypassed in Figure 4.5. Mod-
ule 4 is simplified into a butterfly operation. Module 1 and Module 5
have one pair of shifter and adder for each. Then, one 4–point integer
transform is executed by the upper part of the flow graph, and another
one is executed by the lower part. Additionally, the order of the input
values has to be changed. The different order of the input/output and

48 Discrete Cosine Integer Transform (DCIT) 4

1
1

1

4

4

4

2
3

3

4

4

3

6

6

3

3

1

1

3
3

Bypass
5

T T

T T

(a) Function of the modules for an 8–point CLDCT

1

1

1

1 31

4

1

1 2

2

2

5
2

2

(b) Function of the modules for an 8–point in-
teger transform

1

1

4 5
1

1

1 Bypass Bypass
2 3

(c) Function of the modules for two 4–point
integer transforms

Figure 4.6: Three sub flow graphs of the modules of Figure 4.5

scaling values are represented by the dashed boxes.

Overall, Figure 4.5 shows an integration of one 8–point DCT, two
4–point integer transforms and one 8–point integer transform with five
configurable modules. The proposed architecture can perform these in-
teger transforms and the DCT with a very small area overhead. More-
over, if we insert two pipeline buffers into Module 2, three buffers in
front of Module 1 and five buffers at the upper part of the flow graph,
then it will simply result in an 8–stage pipelined 1–D DCIT.

4.3.2 Inverse DCIT

Additionally, an inverse design of the DCIT (IDCIT) is implemented in
a similar way as shown in Figure 4.7. This flow diagram can execute
an 8-point IDCT, two 4-point inverse integer transforms and an 8-point
inverse integer transform. The order of inputs and the corresponding
coefficients for each input signal are marked at the beginning. There
are seven configurable modules that perform various operations for dif-
ferent transform modes. For the IDCT mode, Modules 1–3, as shown

4.3 Discrete Cosine and Integer Transform 49

0a

0b

1b

1a

2a

3a

3b

2b

0

1

3

2

4

5

6

7

Module #

0

1

3

2

4

5

0.3536 0.5 0.3536

T

adder or substractor

pipeline buffer configurable module

0.3155

0.3536 0.35360.5

0.5

0

4

2b

Int−4IDCT

6

2

3b

1a

2a

IDCT Int−4 Int−8

1b

3a

3

7

5

1

0.33280.63250.5

0.3536 0.3328

0.3536 0.33280.6325

0.33280.6325

0b

0a

Int−8

0

4

2

6

7

3

1

5

0.4472

0.5

Module 2

Module 1

Module 3

Module 4

7

Module

Module 5

Module 6

0.5 0.44720.3155

0.6325

IDCTInt−4Int−8

6

7

Int−4 Int−4

T T T

T T T T T

T T T T T

T T T

T

T

T

T

T

T

Figure 4.7: Flow graph of an 8–point IDCIT Transform with seven configurable
modules for multiplierless IDCT and inverse integer transforms

in Figure 4.8(a), are represented based on the CORDIC algorithm. The
length of signal flows in these three modules depends on the number of
iterations and the amount of corresponding compensation steps. Mod-
ule 4 and Module 6 are neglected. Module 5 is a butterfly operation for
connecting with Module 1–2. Module 7 is a bypassing circuit.

Figure 4.8(b) shows the mode of 8-point inverse integer transform.
Module 4 and Module 6 will perform one step CORDIC compensation
with two shifters and two adders for the following add and sub oper-
ations. Module 5 will bypass the input signals. Then the signals are
switched in Module 7. At the same time, Module 1–3 has a pair of
shifter and adder for each. Moreover, Figure 4.8(c) shows the configu-
ration of two 4-point inverse integer transforms. Note that only the area
bordered by dashed lines in Figure 4.7 will be activated, other parts are
bypassed directly. Therefore, the input signals will be shifted to the
highlighted area and further processed by Module 1–2. On the other
hand, if we insert one pipeline buffer into Module 3 and three buffers
into Module 2, three buffers in front of Module 1 and five buffers at the
upper part of the flow graph, and six buffers at the lower part of the
flow graph, then it will result in an 8–stage pipelined 1–D IDCIT.

50 Discrete Cosine Integer Transform (DCIT) 4

3

6

6

3

3

1

1

3

51

7

4 and 6

3 4

4

2
3

1

1

4

4

3

T

T

T T T

T T T

(a) Function of the modules for an 8–point inverse CLDCT

2

2
1

2

2

2

1

1

35

1

1

4 and 6 7

(b) Function of the modules for an 8–point in-
verse integer transform

1

1

1

1

1

2

4 and 6

3, 5 and 7

(c) Function of the modules for two 4–point
inverse integer transforms

Figure 4.8: Three sub flow graphs of the modules of Figure 4.7

4.4 The proposed 2–D QDCIT framework 51

4.4 The proposed 2–D QDCIT framework

In this section we will describe how a CORDIC based QDICT is wired
up in a block schematic view. Figure 4.9 shows the framework of the
CORDIC based 2-D FQDCIT. This block diagram shows how the com-
ponents of the 2–D DCIT transformation and the quantization modules
are connected to each other. The inner part of Figure 4.9 which is in-
dicated by dashed lines gives an overview of the 2–D DCIT core. The
first 1–D DCIT, which can execute a 1–D DCT, two 1–D 4–point in-
teger transforms or a 1–D 8–point integer transform over the rows by
configuring the shared hardware resources, has already been described
in Figure 4.5. The results of the 1–D DCIT over the rows of one block
with a size of 8× 8 pixels (or two 4× 4 pixels in the case of the 4–point
integer transform) are buffered in the transpose memory. Behind the
memory buffer, there is a second DCIT transform core, which is ex-
tended from the first transformation core with longer bit lengths. After
that, there are four CORDIC-Scalers with 17 dedicated LookUp Tables
(LUT) executing the quantization. Note that not all the control signals
are shown in this figure and the width of input/output wires are marked
by numbers.

4.4.1 The 2–D QDCIT

The input signals of the quantizer are the output signals from the 2–
D DCIT transformation. In each case, two of the output signals are
connected to one CORDIC-Scaler, which can scale up or quantize the
coefficients. The configuration for each CORDIC-Scaler is dependent on
the type of transformation to be executed, on the current scaling factor,
and on the quantization level. These configurations can be obtained
from a LookUp Table read module. They are first analyzed and then
stored in 17 dedicated lookup tables (8 are for DCT, and another 9 are
for integer transforms). In order to perform the pipelined quantization,
a CORDIC-Scaler Configurator is used to configure each pipeline stage
of the four CORDIC-Scalers dynamically. At the end, the output signals
from the CORDIC-Scalers will be sent to the final Post–Quantizer block.

Table 4.1 lists all the necessary control signals. The mode signal tells

52 Discrete Cosine Integer Transform (DCIT) 4

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

in_2

in_3

in_6

in_7

in_0

in_1

in_4

in_5

clk

rst

mode2

LUT
DCT
0.250

LUT
DCT
0.125

LUT
DCT
Luma

LUT
DCT
Chro

LUT
Int
0.250

LUT
Int
0.316

LUT
Int
0.40

CORDIC−Scaler 1

CORDIC−Scaler 3

CORDIC−Scaler 4

CORDIC−Scaler
Configurator

Look Up Table

Read Module

P
ost−

Q
uantizer

192

CORDIC−Scaler 2

CORDIC based 2−D QDCIT

1D
 D

C
IT

 T
ransform

T
ranpose M

em
ory

8

8

8

8

8

8

8

8

CORDIC based 2−D DCIT

1D
 D

C
IT

 T
ransform

15

15

15

15

15

15

15

15

48

48

48

48

out_2

out_3

out_6

out_7

out_0

out_1

out_4

out_5

6
frame_intra

luma
chroma
q_par

frame_sync

DCT
LUT

0.158

LUT

0.0990.176
DCT
LUTLUT

DCT
0.112

DCT

LUT
Int
0.125

LUT
Int

LUT
Int

LUT
Int

LUT
Int

0.118 0.158 0.111 0.149

LUT
Int
0.20

Figure 4.9: The framework of the proposed CORDIC based 2-D FQDCIT with four
CORDIC-Scalers, a Post-Quantizer, a CORDIC-Scaler Configurator, a LookUp Table
Read Module and 17 dedicated LUTs (8 are for DCT and the other 9 are for integer
transforms)

the IP core which transformation should be configured. The q par gives
the value of the quantization scaling level. The frame intra indicates
that the incoming frame is an intra frame or an inter frame in MPEG-
4. Chroma and Luma need one bit each to decide which kind of intra
frame is coming in. If the incoming intra frame belongs to Chroma, the
Chroma bit is set to “1”. On the other hand, when a Luma intra frame
is coming in, the Luma bit is set to “1”. At the end, the frame sync
signal is very important to inform the IP core that a new frame is
coming in (i.e. the first pixel is arrived).

In a similar way, we can reverse the 2–D FQDCIT as a configurable
inverse flow graph by rearranging the components and rewiring them.
Figure 4.10 shows this inverse framework. First of all, the inverse Post–
Dequantizer is not required for MPEG-4 and H.264. The input pixels
will first be dequantized by four CORDIC–Scalers. There is also a
CORDIC–Scaler Configurator module, which configures the four paral-
lel modules, to perform the scaling operations dynamically. The con-
figuration of each CORDIC-Scaler is dependent on the type of trans-
formation to be executed, on the current scaling factor, and on the
dequantization level. After that, there is a sub–block which is indicated
by dashed lines. There is an 1–D IDCIT followed by a row-column

4.4 The proposed 2–D QDCIT framework 53

Table 4.1: Control Signals for the proposed framework of 2–D QDCIT

Signal Bits Functionality

clock 1 Bit Synchronous clock input
rst 1 Bit Low reset input

mode 2 Bits
Transformation modes
“00”:8×8 DCT, “01”:4×4 Int and “10”:8×8 Int

frame intra 1 Bit Indication of the intra frame or the inter frame
frame sync 1 Bit Assert signal for the first input pixel

q par 6 Bits Index for the QP scaling level
chroma 1 Bit Indication of the Chroma DC intra frame
luma 1 Bit Indication of the Luma DC intra frame

in_0

in_1

in_2

in_3

in_4

in_5

in_6

in_7

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

8

8

8

8

8

8

8

8

1D
 Inverse D

C
IT

 T
ransform

T
ranpose M

em
ory

1D
 Inverse D

C
IT

 T
ransform

CORDIC based 2−D Inverse QDCIT

CORDIC based 2−D Inverse DCIT

CORDIC−Scaler 1

CORDIC−Scaler 2

CORDIC−Scaler 3

CORDIC−Scaler 4

CORDIC−Scaler
Configurator

Look Up Table
Read Module

DCT LUTs for XVID

Int LUTs for H.264

48

48

48

48
out_0

out_1

out_2

out_3

out_4

out_5

out_6

out_7

192

clk
rst

mode

q_par

frame_sync

6

2

Figure 4.10: Framework of a CORDIC based 2-D IQDCIT

transpose memory, then followed by another 1–D IDCIT to perform
the 2–D multiplierless IDCT and inverse integer transforms. The first
and second 1–D IDCIT transform is the transform core that has already
been described in Figure 4.7.

4.4.2 The CORDIC based Scaler

QDCT is one of the most efficient methods to reduce the transformation
complexity compared to the conventional one (i.e. Quantization follows

54 Discrete Cosine Integer Transform (DCIT) 4

15 15

4 4 44 44 44 44

15 15
+/- +/-+/-+/-FoldF_xin F_xout

+/-

c_
sc

al
er

_1
_f

la
g_

2_
x

c_
sc

al
er

_1
_f

la
g_

1_
x

c_
sc

al
er

_1
_f

la
g_

2_
y

c_
sc

al
er

_1
_f

la
g_

1_
y

c_
sc

al
er

_1
_s

hi
ft

_1
_x

c_
sc

al
er

_1
_s

hi
ft

_2
_x

c_
sc

al
er

_1
_s

hi
ft

_3
_x

c_
sc

al
er

_1
_f

ol
d_

y

c_
sc

al
er

_1
_f

ol
d_

x

c_
sc

al
er

_1
_s

hi
ft

_1
_y

c_
sc

al
er

_1
_s

hi
ft

_2
_y

c_
sc

al
er

_1
_s

hi
ft

_3
_y

c_
sc

al
er

_1
_f

la
g_

3_
x

c_
sc

al
er

_1
_f

la
g_

3_
y

c_
sc

al
er

_1
_s

hi
ft

_4
_x

c_
sc

al
er

_1
_f

la
g_

4_
x

c_
sc

al
er

_1
_f

la
g_

4_
y

F_yin F_yout

CORDIC-Scaler 1

c_
sc

al
er

_1
_s

hi
ft

_4
_y

+/-+/-+/-Fold

X3 X4X2X1

Y3 Y4Y2Y1

Figure 4.11: Schematic view of the first CORDIC-Scaler with one Fold and four
CORDIC compensation steps

Table 4.2: The corresponding QPs of Luma DC and Chroma DC values in MPEG-4

Block type QP ≤ 4 5 ≤ QP ≤ 8 9 ≤ QP ≤ 24 25 ≤ QP

QPs for Luma 8 2×QP QP + 8 (2×QP)− 16
QPs for Chroma 8 (QP + 13)/2 (QP + 13)/2 QP − 6

the 2-D DCT). However, direct implementation of the corresponding
quantizer by multipliers with the CSD representation is not ideal for
VLSI implementation. Besides CSD representation, there is another
rather simple and elegant way to approximate multiplierless QDCT
by utilizing the compensation phase of the CORDIC algorithm with
sequential shifters and adders [83].

In order to integrate both DCT for MPEG-4 and integer transform for
H.264 in a single configurable IP core, utilizing the CORDIC compensa-
tion iteration method is applied for integration of two different quanti-
zation methods. First of all, we look at the scaling factors at the end of
the flow graph in Figure 4.2. These scaling factors are deduced from the
CORDIC compensation steps and the integer transforms. On the other
hand, since the quantization phase behind the DCT/Integer transforms
for image/video compression are usually fixed steps, we could combine
the transformation scaling factors and the quantization scaling levels
together by utilizing the CORDIC compensation circuit, and then store
the pre-computed compensation parameters in the lookup tables.

4.4 The proposed 2–D QDCIT framework 55

Table 4.3: Values of QStep dependent on QP in H.264

QP 0 1 2 3 4 5 6 7 8 9
QStep 0.625 0.6875 0.8125 0.875 1 1.125 1.25 1.375 1.625 1.75

QP 10 11 12 ... 18 ... 24 51
QStep 2 2.25 2.5 ... 5 ... 10 224

According to the dependence flow graph of the unfolded CORDIC ar-
chitecture presented in [83], a CORDIC based Scaler (CORDIC-Scaler)
with one fold operation and four compensation steps has been imple-
mented as shown in Figure 4.11. This CORDIC-Scaler can approximate
a predefined scaling value and one of the three different quantization
values shown at the end of the flow graph in Figure 4.5. In MPEG-4
quantization “method 2” has a range of Quantization Parameter (QP)
from 1 to 31. In H.264 the range of Quantization Step (QStep) is from 0
to 51 but results into a nonlinear QStep value as shown in Table 4.3. The
combination of transformation scaling factors and quantization steps is
described as:

Y q
i = Yi×Si

[QP or QStep] ,

with i ∈ {0, 1, 2, . . . , 7},
(4.8)

where Yi are the transformed results, Y q
i are the quantized results, Si

are the scaling values, QP as given in Table 4.2, and QStep as given
in Table 4.3. Equation 4.8 shows the typical case of quantization phase
when the inputs Fi are results from DC values for MPEG-4 (Luma or
Chroma) in the DCT mode [93] or result from H.264 in the integer
mode [94]. Note that the range of QPs for DC values is not linear as
indicated in Table 4.2. On the other hand, when the inputs are AC
values for MPEG-4 intra frame in the DCT mode, the quantization
formula is described as:

Y q
i = Yi×Si

2QP

= (Yi×Si

QP
) >> 1,

with QP ∈ {1, 2, 3, . . . , 31},

(4.9)

where QP is doubled compared to the Equation 4.8 and >> k denotes
a right shift by k bits. In order to perform the quantization by sharing
the hardware resources, we move the division by 2 out as a right shift
by 1 bit. Next, when the inputs are AC values for MPEG-4 inter frame

56 Discrete Cosine Integer Transform (DCIT) 4

in the DCT mode, the quantization formula is described as:

Y q
i =

Yi×Si−QP
2

2QP

= Yi×Si

2QP
− 1

4

= ((Yi×Si

QP
<< 1)− 1) >> 2,

with QP ∈ {1, 2, 3, . . . , 31}.

(4.10)

Equation 4.10 can also be modified by first performing a left shift by
1 bit, then subtracting one, and right shift by 2 bits. All these three
quantization equations have a common part Yi×Si

QP
, which can be fur-

ther approximated by the proposed CORDIC–Scaler. At first, there is
a stage called “Fold”. This Fold is a barrel shift operation which is
used to pre-scale down the input values. The implementation of these
Folds before the CORDIC compensation steps is required, because the
scaling factors are too small after the 2–D transformation and become
extremely tiny after combination with the quantization scaler. By using
this pre-scaling “Fold” technique the inner iteration number of CORDIC
compensation steps can be reduced from 9 or 10 steps to about 4 or 5
steps in average. This Fold operation is followed by 4 CORDIC com-
pensation steps. Note that the shadowed circles represent the barrel
shifters, and the white circles represent an adder or a substractor. It
has 4 adders and 5 shifters (1 fold and 4 compensation steps) for each
input, so each CORDIC-Scaler component has a computational com-
plexity of 8 adders and 10 shifters. Since the bit shifting operations are
not fixed, we have to use the barrel shifter to perform variable shifting
operation instead of wire shifting as in the transform part. Furthermore,
this CORDIC–Scaler can also support the scaling up procedure for the
inverse transformation by modifying the direction of barrel shifters and
the fold, this could be easily achieved by modifying the configurator
and regenerating the lookup tables.

4.4 The proposed 2–D QDCIT framework 57

4.4.3 The CORDIC-Scaler Configurator and the LUT

Read Module

In our frameworks, four CORDIC-Scalers are simultaneously config-
ured by the component “CORDIC-Scaler Configurator” as shown in
both Figure 4.9 and Figure 4.10. For each bit shifting operation in a
CORDIC-Scaler it is required to shift by maximal 16 bits. Hence 4
bits for the configuration of each bit shifting operation are enough. To
configure the CORDIC compensation step concerning addition or sub-
traction, there is one bit necessary for each adder/substractor. This
results in 48 bits for the configuration of each CORDIC-Scaler. After
the 2–D DCIT, the 8× 8 blocks of the transformed coefficients need to
be further scaled and quantized. In the following equations, the scaling
factors will be summarized into a vector, which is called eDCT .

eDCT =
[√

2

4

√
2

4

1

3.1694
1

2

√
2

4

1

2

1

3.1694

√
2

4

]

=
[

0.3536 0.3536 0.31551 0.5 0.3536 0.5 0.31551 0.3536
]

.
(4.11)

In order to scale the coefficients of a 2-D CLDCT, which has been
separated into two 1–D CLDCTs, the scaling must be further processed.
If we describe the 2-D CLDCT as a multiplication of matrices, the
operation can be described as:

Y = (CDCTXCT
DCT)⊗ EDCT , (4.12)

where CDCTXCT
DCT represents the 2–D 8×8 CLDCT transformation

without the scaling. The matrix EDCT is a matrix of scaling factors
and is defined by the outer product of eDCT :

58 Discrete Cosine Integer Transform (DCIT) 4

Table 4.4: LUT organization of an entry for Quantization of DCT coefficients

Fold Flag 1 Flag 2 Flag 3 Flag 4 X1/Y1 X2/Y2 X3/Y3 X4/Y4

4 Bits 1 Bit 1 Bit 1 Bit 1 Bit 4 Bits 4 Bits 4 Bits 4 Bits

EDCT = eTDCT × eDCT

=



















0.125 0.125 0.112 0.176 0.125 0.176 0.112 0.125
0.125 0.125 0.112 0.176 0.125 0.176 0.112 0.125
0.112 0.112 0.099 0.158 0.112 0.158 0.099 0.112
0.176 0.176 0.158 0.25 0.176 0.25 0.158 0.176
0.125 0.125 0.112 0.176 0.125 0.176 0.112 0.125
0.176 0.176 0.158 0.25 0.176 0.25 0.158 0.176
0.112 0.112 0.099 0.158 0.112 0.158 0.099 0.112
0.125 0.125 0.112 0.176 0.125 0.176 0.112 0.125



















. (4.13)

If we take a closer look at the scaling matrix EDCT we can notice that
there are only 6 different scaling factors: 0.125, 0.112, 0.176, 0.099, 0.158
and 0.25, which means that only these 6 different scaling factors must be
stored in lookup tables. In the current architecture, each scaling factor
has one lookup table, which contains the configuration of CORDIC-
Scalers to scale with the respective value dependent on the QP. The
QP has a range from 1 to 31 for the DCT mode. Each entry of the
table contains 24 bits configuration data. Table 4.4 shows the structure
of one single entry in the lookup table. Therefore, 6 tables for the
DCT transformation contain in total 31×24×6=4464 bits. On the other
hand, the QPs of DC values in MPEG-4 are not linear as shown in
Table 4.2. This results in only 28 possible combinations because the
first four QPs are constant numbers. Hence we have created two more
lookup tables for Luma DC values and Chroma DC values, respectively.
The size of the Luma and Chroma tables are 28×24×2=1344 bits.

In the same way, there are only three scaling factors which are dif-
ferent after the 2–D 4×4 integer transform: 0.25, 0.316 and 0.4. So
in the mode of the 4 × 4-integer transform, CORDIC-Scalers perform
a multiplication with the current scaling factors divided by the QPs,
which have a range from 0 to 51. Similar to the 4 × 4 integer trans-
form, there are 6 different scaling factors for the 8×8 integer transform
which must be stored in the lookup tables: 0.125, 0.118, 0.158, 0.111,
0.149, 0.2. If we take a closer look at Table 4.3 we can notice that the

4.4 The proposed 2–D QDCIT framework 59

Table 4.5: LUT organization of an entry for Quantization of 4 × 4/8 × 8-integer
transform coefficients

Flags X1/Y1 X2/Y2 X3/Y3 X4/Y4 fold values 1...9

4 Bits 4 Bits 4 Bits 4 Bits 4 Bits 36 Bits

value of QStep doubles for each increment of 6. This means that for
each increment of 6 the configuration is the same except for the “Fold”
value, which increases by 1. It is not necessary to store all combinations
in the lookup tables for each value of QP. It is enough to store only 6
entries with the “Fold” values in order to reduce the size of the table.
As there are 52 different values of QP there can be up to 9 increments
of 6 for each value from 0 · · · 5. Hence for each entry there are 36 bits
necessary for the fold. Table 4.5 shows how one entry in a table for the
integer transforms is organized. The size of the 4×4 and 8×8 integer
transform tables are 6×56×9=3024 bits.

Therefore, 6 tables for DCT scaling factors and two further tables for
Luma DC values and Chroma DC values are needed in MPEG-4, and
9 tables are required for 4×4 and 8×8 integer transforms in H.264. In
total 17 tables are required for the proposed architecture. In a similar
way, for supporting the inverse transformation, the CORDIC–scaler can
perform the scaling up and dequantization by regenerating the lookup
tables.

The CORDIC-Scaler configurator will first get all the data from the
component “LookUp Table Read Module” and forward the relevant con-
figuration to each CORDIC-Scaler. Figure 4.12 shows the inputs and
outputs of the CORDIC-Scaler configurator module and the LUT read
module. First of all, there are two methods to configure the CORDIC-
Scalers, dynamic or static. In the static case the configuration is varied
when ever the value of QP changes. In the dynamic case the config-
uration of the CORDIC-Scalers changes with the clock cycle, because
the matrix of scaling factors contains different scaling factors for each
column.

Since the architecture is pipelined, the CORDIC-Scalers have to be
configured dynamically during each clock cycle. Of course, the overhead
of hardware resources is higher compared to the static method due to
the extra registers for the buffering and the more complex scheduling

60 Discrete Cosine Integer Transform (DCIT) 4

rst

clk

luma

chroma

frame_sync

q_par
mode

6

2

DCT

LUT

en

addr

out24 5

DCT

LUT

en

addr

out24 5

24 24 24 24 24 24 24 24 56 56 56 56

en

out

LUT
Integer

Transform

addr

56

3

en

out

LUT
Integer

Transform

addr

56

3

9 LUTs

CORDIC−Scaler

Configurator

Look Up Table

Read Module

rst

clk

luma

chroma

frame_sync

q_par
mode

6

2

4 4 4 44

8 LU
T

s

c_
sc

al
er

_y
_f

ol
d_

y
c_

sc
al

er
_4

_s
hi

ft_
1_

y
c_

sc
al

er
_4

_s
hi

ft_
2_

y
c_

sc
al

er
_4

_s
hi

ft_
3_

y
c_

sc
al

er
_4

_s
hi

ft_
4_

y
c_

sc
al

er
_4

_f
la

g_
1_

y
c_

sc
al

er
_4

_f
la

g_
2_

y
c_

sc
al

er
_4

_f
la

g_
3_

y
c_

sc
al

er
_4

_f
la

g_
4_

y

c_
sc

al
er

_1
_f

ol
d_

x
c_

sc
al

er
_1

_s
hi

ft_
1_

x
c_

sc
al

er
_1

_s
hi

ft_
2_

x
c_

sc
al

er
_1

_s
hi

ft_
3_

x
c_

sc
al

er
_1

_s
hi

ft_
4_

x
c_

sc
al

er
_1

_f
la

g_
1_

x
c_

sc
al

er
_1

_f
la

g_
2_

x
c_

sc
al

er
_1

_f
la

g_
3_

x
c_

sc
al

er
_1

_f
la

g_
4_

x
4 4 4 4 4

56 56 56 56 56

Figure 4.12: Schematic view and IOs of the LUT reader module and CORDIC-Scaler
configurator module

4.4 The proposed 2–D QDCIT framework 61

state machine for the configurations. The configuration signals contain
48 bits per CORDIC-Scaler. Dependent on the mode and the chroma
and the luma signals, the CORDIC-Scalers are configured.

These four CORDIC-Scalers are configured dynamically to process 8
input values per clock cycle through a controller. This state machine
will first be triggered by the input signal “frame sync”. And then the
state machine will know that there is a new frame coming in and pre-
pare to configure the CORDIC-Scalers. Before it starts to configure
the CORDIC-Scalers, it has to wait for 21 clock cycles until the first
transformed input pixels arrive in the DCT mode. Similarly, for the
4×4 integer transform 8 clock cycles are required and for the 8×8 inte-
ger transform 16 clock cycles are required. After these delays, the state
machine will start to configure the CORDIC-Scalers, whose configura-
tions change during each clock cycle. Note that the scaling inside a
CORDIC-Scaler is separated into 5 stages, the fold and the 4 CORDIC
compensation steps. Each of these stages is configured independently
from the others.

4.4.4 The Post-Quantizer

For the forward transformation, the Post-Quantizer is required to per-
form the remaining compensations after the CORDIC-Scalers. There
are three cases for the Post-Quantizer stage. First, if the inputs are
zeros, belong to DC values or in the integer transformation modes, it
will bypass them as indicated in Equation 4.8. Second, if the inputs
belong to the intra frame in the DCT mode, it will perform right shift
by 1 bit. Third, if the inputs belong to the inter frame in the DCT
mode, it will perform left shift by 1 bit, minus one then right shift by
2 bits for the reason explained in Equation 4.10. Figure 4.13 shows the
schematic view of the Post-Quantizer. Note that the Post-Quantizer is
not required for the inverse transformation.

62 Discrete Cosine Integer Transform (DCIT) 4

15

in_6

sub 1 >> 2<< 1

>> 1

sub 1 >> 2<< 1

>> 1

sub 1 >> 2<< 1

>> 1

sub 1 >> 2<< 1

>> 1

sub 1 >> 2<< 1

>> 1

sub 1 >> 2<< 1

>> 1

sub 1 >> 2<< 1

>> 1

sub 1 >> 2<< 1

>> 1

15

in_2

15

in_4

15

in_5

15

in_7

out_0

15

out_2

15

out_1

15

out_3

15

out_4

15

out_5

15

out_6

1

out_7

15

frame_intra

15

in_0

15

in_1

15

in_3

clk mode

2

frame_syncrst

Figure 4.13: Schematic view of the Post-Quantizer

4.5 Experimental Results 63

Table 4.6: Complexity for each 2-D quantized transformation architecture

X
X
X
X
X

X
X
X
X

X
XX

Type
Operation

Mul Add W–Shift B–Shift Mux

Conventional Q+DCT [34] 40 52 8 0 0
Novel QDCT [126] 32 52 8 0 0
Novel QDCT (CSD) 0 308 224 72 0
CORDIC based FQDCT 0 108 32 40 0
CORDIC based FQDCIT (with integer transforms) 0 120 40 40 56
CORDIC based FQDCIT (unshared) 0 268 60 120 8

4.5 Experimental Results

Table 4.6 summarizes the number of arithmetic units for each quan-
tized architecture. At first, the conventional Q+DCT requires 40 mul,
52 add and 8 shift operations to perform 2-D QDCT. For the 2-D Novel
QDCT 32 mul, 52 add and 8 shift operations are required [126]. The
required multiplications for both methods are not ideal for VLSI design.
Even if we use the CSD representation to carry out the multiplications,
the Novel QDCT still needs 302 add and 72 barrel shift operations
in the worst case. The presented 2-D Quantized CLDCT based on
CORDIC architecture with four CORDIC-Scalers reduces the compu-
tational complexity dramatically to 108 add operations. The number of
barrel shifters is reduced, too. Furthermore, for integration of the 8×8
and 4×4 integer transforms only 12 add, 8 barrel shift and 56 multiplex
operations are required additionally. Of course, the FQDCIT requires
extra multiplexers for performing the multi-functional transformations.
However, the row “CORDIC based FQDCIT (unshared)” shows the
complexity, if we implement the three quantized transformations with-
out sharing hardware by using five configurable modules. It requires
much more arithmetic units compared to the shared one.

64 Discrete Cosine Integer Transform (DCIT) 4

Table 4.7: 2–D Transformation Complexity for arbitrary CORDIC iterations

Type/Operation Mul Add W–Shift B–Shift Mux

Novel IQDCT [126] 32 52 8 0 0
scaled CORDIC DCT [139] 4 64 + 80×6 80×6 0 0
CORDIC DCT/IDCT [116] 0 36 + 80×10 80×10 0 0
CORDIC based DCT [62] 0 208 176 0 0
CORDIC Loeffler DCT [112] 0 76 32 0 0
IQDCIT–S1 0 92 24 24 44
IQDCIT–S2 0 112 36 32 52
IQDCIT (default) 0 124 40 40 60
IQDCIT–C1 0 184 80 56 76

4.5.1 Variable Iteration Steps of CORDIC

Since the proposed IDCIT is executed based on the CORDIC algorithm
iteratively, we can adjust the iterations of trigonometric operations in
the IDCIT (module 1–3) and the compensation steps of CORDIC-Scaler
as different configurations. Table 4.7 lists the computational complex-
ity if different number of CORDIC iterations are applied to the inverse
transforms, where IQDCIT–S1 is a simplified version from the default
IQDCIT with only 2 iterations/steps and IQDCIT–S2 has 2–3 itera-
tions/steps. The number of iterations/steps is treated as a variable in-
fluencing on the precision. On the other hand, IQDCIT–C1 extends the
number of iterations to 6–8 iterations/steps in order to obtain a better
quality. For example, Figure 4.14 shows the configuration with different
CORDIC compensation steps for the default IQDCIT with 4 CORDIC
compensation steps, IQDCIT–S1 with 2 steps and IQDCIT–C1 with 6
steps. Note that the number of iteration is selected by the brute force
search with a target resolution. Clearly, the proposed IQDCIT not only
reduces more than half arithmetic units than other regular CORDIC
DCTs but also executes the dequantization. In [116,139], besides adders
for butterfly operations and multipliers, additional CORDIC processors
are required. They assumed the DSP inside FPGA will satisfy the need
for CORDIC rotations. Therefore, additional number of shift and add
operations is required in here (80 shift–add operations for each pipelined
CORDIC with compensation steps as mentioned in Section 3.3).

4.5 Experimental Results 65

15

15

15

15

+/- +/-+/-

+/-

+/-Fold

F_yin

F_xin F_xout

F_yout+/-+/-+/-Fold

X3

Y3

X4

Y4Y2

X2

Y1

X1

(a) Flow graph of the default CORDIC-Scaler with 4 iterations

15

15

15

15

F_xout

F_yout

+/-

+/-

+/-Fold

F_yin

F_xin

+/-Fold

Y2

X2

Y1

X1

(b) Flow graph of the CORDIC-Scaler S1 with 2 iterations

15

15

15

15

F_xout

F_yout

+/-+/-

+/-

+/-Fold

F_yin

F_xin +/-+/-+/-

+/-+/-Fold +/-+/-+/-

X3

Y3Y2

X2

Y1

X1 X4

Y4

X5

Y5

X6

Y6

(c) Flow graph of the CORDIC-Scaler C1 with 6 iterations

Figure 4.14: Three flow graphs of CORDIC-Scaler with different number of CORDIC
compensation steps

4.5.2 ASIC Implementation

A full-pipelined CORDIC based 2-D FQDCIT has been modeled in
VHDL, including two 1-D DCITs, one transposition memory, four CORDIC-
Scalers, one Post-Quantizer, one CORDIC-Scaler Configurator, one LUT
reader and 17 dedicated lookup tables. Later, these RTL codes are
synthesized by Synopsys Design Compiler 2009 with TSMC 0.18µm
standard cell libraries. At the end, the final Place & Route stage is per-
formed with the Cadence SoC Encounter 8.1 [19,117]. The final version
of the chip ready for fabrication is shown in Figure 4.15. Note that the
total number of the IOs required for this design is 198 IO pads, which
would result in a low chip density as in [71]. Hence we have to remove
the IO pads and treat it as a macro IP design. The input and output
IOs are located in the left and lower side of the chip layout. Table 4.8
lists the comparison between our final layout results and other available
cores in terms of several design criteria. Note that no further advanced
methodologies are introduced to improve the performance. Neverthe-
less, a simple and straightforward pipelined design is presented (8–stage
pipeline for the first 1–D DCIT, 8–stage pipeline for the transpose mem-
ory, 8–stage pipeline for the second 1–D DCIT and 5–stage pipeline for
the CORDIC-Scaler). Figure 4.16 shows the timing waveform of the

66 Discrete Cosine Integer Transform (DCIT) 4

Figure 4.15: Final layout view of the 2–D CORDIC based FQDCIT implementation
in TSMC 0.18µm technology library

post simulation in the mode of DCT transformation (QP=13) requiring
29 clock cycles until the first pipeline outputs are ready.

There are some important points can be observed. First, we can
see that the proposed pipelined FQDCIT occupies small core size in
chip area, because the CORDIC method enables a very simple architec-
ture for implementation. For example, the core area is a little smaller
than [97], but the proposed core can achieve much higher throughput
and supporting multi-functions for different Codecs. Note that inverse
version of the FQDCIT can be easily modified by reconfiguring the
modules and flushing the lookup tables. Second, in [97] and [9], the
cores achieve very high frequency by optimizing the pipeline stage (as-
suming better arithmetic units), but provide very low throughput due

4.5 Experimental Results 67

to the serial output, i.e. one pixel per cycle. Contrary to the previous
approaches, the proposed one processes 8 samples in parallel per clock
cycle, leading to a higher throughput, which is very suitable for Full–
HD or even future 4K/8K UHD resolution [25,33]. This, however, does
not lead to a very high increase in the chip area.

The latency is shorter than other designs due to the fine–gained
pipeline architecture. The critical timing delay is 7.121ns. Of course,
we can further reduce the critical timing by replacing the default “Rip-
ple Carry Adder” in current implementation by “Carry Save Adder”
or “Carry Look-ahead Adder” for each pipelined stage [49]. On the
other hand, the size of the core can be further shrieked if we remove the
pipeline and folding the row-column decomposition as one single DCIT
and one CORDIC-Scaler with a buffer memory [9].

The presented implementation consumes more power than others due
to the higher operational frequency and the parallel output character-
istic. However, synthesizing with the multiple voltage threshold library
and the clock/power-gating methodology can help reduce the power
consumption dramatically [67]. It can be reduced by slowing down the
operational frequency, too. Moreover, Dynamic Bit-width adaptation in
DCT could also be applied into our design by decreasing the bit length
of the high frequency coefficients [84]. The zero prediction algorithm
can also reduce the power consumption significantly by omitting the un-
necessary computational efforts [63, 127, 140]. These two methods can
reduce the computational efforts and power consumption by trading off
the transformation quality in PSNR. Finally, the VLSI implementation
results show that the presented CORDIC based QDCIT architecture
can provide a good solution for integration of different transformations
and their quantization methods by utilizing the CORDIC algorithm to
share the hardware resources.

4.5.3 Performance in MPEG–4 XVID and H.264

The proposed 2-D forward and inverse QDCIT transformations have
been tested with the video coding standard MPEG–4 and H.264 by
using publicly available software, XVID Codec 1.2.2 [137] and JM-
16.1 Codec [105]. The default DCT algorithm in the Codec of the

68 Discrete Cosine Integer Transform (DCIT) 4

0

13

88 8f ea 22 59 f0 0b e9 88 8f ea 22 59 f0 0b e9 53 48 da 84 63 fc 8e 23 de 31 2d 59 84 fd 70 56 6c b0

27 c9 c6 d3 df 06 bf aa 27 c9 c6 d3 df 06 bf aa 84 45 d1 2d 45 fe a0 05 01 13 52 62 ac 5f 17 d8 7d 75

bf d0 56 65 bb d3 38 2b bf d0 56 65 bb d3 38 2b fb b8 6e 33 57 03 06 c6 91 92 70 c1 97 2d 05 d5 b9 c9

37 24 51 4e 0d 57 1d 24 37 24 51 4e 0d 57 1d 24 4e 20 bc 07 8e 7c 13 62 32 cd 55 c8 35 82 43 d6 51 56

b3 1e 4c 9f 0e c5 d5 82 b3 1e 4c 9f 0e c5 d5 82 8b ea 77 4d 6c 72 ab fe 44 1c ce e7 d9 58 a0 69 f1 db

ee 90 25 96 b8 90 03 27 ee 90 25 96 b8 90 03 27 f4 c8 15 d3 bd c5 a8 40 9d 87 ad 62 24 d2 3f e7 08 df

bb 3c d0 ce 0b c1 60 8d bb 3c d0 ce 0b c1 60 8d 1e 47 16 c2 ef 75 87 b2 95 72 ba 23 8b 75 5d 72 34 ad

a1 03 39 b3 76 29 99 41 a1 03 39 b3 76 29 99 41 20 93 f8 ec b5 15 e1 9c cf af 32 83 1b 7f 86 3d 86 23

0 68 2 3 2 -6 -4

0 1 -1 -5 1

0 -2 -1 1 0

0 1 -4 -5 0 -1 0

0 -4 0 -1 -2 -3

0 1 -8 -2 2 -3

0 2 0 3 2 6

0 -3 0 1 -3 -1 -4

0 ns 50 ns 100 ns 150 ns 200 ns 250 ns 300 ns

clk

rst

mode 0

q_par 13

frame_sync

frame_intra

chroma

luma

in_0 88 8f ea 22 59 f0 0b e9 88 8f ea 22 59 f0 0b e9 53 48 da 84 63 fc 8e 23 de 31 2d 59 84 fd 70 56 6c b0

in_1 27 c9 c6 d3 df 06 bf aa 27 c9 c6 d3 df 06 bf aa 84 45 d1 2d 45 fe a0 05 01 13 52 62 ac 5f 17 d8 7d 75

in_2 bf d0 56 65 bb d3 38 2b bf d0 56 65 bb d3 38 2b fb b8 6e 33 57 03 06 c6 91 92 70 c1 97 2d 05 d5 b9 c9

in_3 37 24 51 4e 0d 57 1d 24 37 24 51 4e 0d 57 1d 24 4e 20 bc 07 8e 7c 13 62 32 cd 55 c8 35 82 43 d6 51 56

in_4 b3 1e 4c 9f 0e c5 d5 82 b3 1e 4c 9f 0e c5 d5 82 8b ea 77 4d 6c 72 ab fe 44 1c ce e7 d9 58 a0 69 f1 db

in_5 ee 90 25 96 b8 90 03 27 ee 90 25 96 b8 90 03 27 f4 c8 15 d3 bd c5 a8 40 9d 87 ad 62 24 d2 3f e7 08 df

in_6 bb 3c d0 ce 0b c1 60 8d bb 3c d0 ce 0b c1 60 8d 1e 47 16 c2 ef 75 87 b2 95 72 ba 23 8b 75 5d 72 34 ad

in_7 a1 03 39 b3 76 29 99 41 a1 03 39 b3 76 29 99 41 20 93 f8 ec b5 15 e1 9c cf af 32 83 1b 7f 86 3d 86 23

out_0 0 68 2 3 2 -6 -4

out_1 0 1 -1 -5 1

out_2 0 -2 -1 1 0

out_3 0 1 -4 -5 0 -1 0

out_4 0 -4 0 -1 -2 -3

out_5 0 1 -8 -2 2 -3

out_6 0 2 0 3 2 6

out_7 0 -3 0 1 -3 -1 -4

24 ns
256 ns

232 ns

Figure 4.16: Timing waveform of the 2–D CORDIC based FQDCIT in the DCT
mode (requiring 29 clock cycles for latency)

4.5
E
x
p
erim

en
tal

R
esu

lts
69

Table 4.8: Comparison of various DCT implementations and the proposed 2-D FQDCIT in different design criteria (area, timing,
power, latency, throughput and architecture)

Year Function Tech Area(mm) Gates Power Frequency Gbits/sec Latency Architecture

Ours 8×8/4×4 FQDCIT 0.18um 1.8V 2.05 47.1(K) 269(mW) 125 MHz 15.0 29 cycles FGA TB Pipe PL

2007 [123] 8×8 DCT 0.18um 1.6V 1.32 N/A 4.08(mW) 80.6 MHz 0.967 N/A AIR RC TB Pipe

2006 [97] 8×8 DCT/IDCT 0.35um 3.3V 3.00 11.7(K) N/A 300 MHz 2.4 178 cycles FGA RC TB Pipe

2005 [71] 4×4 QInt 0.18um 1.8V N/A 51.6(K) N/A 68 MHz 10.3 N/A FGA Pipe PL

2005 [27] 8×8 DCT 0.18um 1.55V 0.12(Chip) N/A N/A 5 MHz 0.24 46 cycles FGA RC Pipe TB

2004 [40] 8×8 DCT 0.18um 2.16 N/A 7.5(mW) N/A 0.9 80 cycles AIR RC TBRAM

2004 [9] 8×8 DCT 0.18um 1.8V N/A 14.7(K) N/A 180 MHz 0.352 392 cycles MUXRC TB

2000 [22] 8×8 DCT 0.6um 2.0V 50.5 38(K) 138(mW) 100 MHz N/A 198 cycles DA PL

1998 [135] 8×8 IDCT 0.7um 1.3V 20.7(Chip) 40(K) 4.65(mW) 14 MHz 0.896 N/A RC TB Pipe

DA (Distributed Arithmetic), FGA (Flow-Graph Arithmetic), AIR (Algebraic Integer Representations), RC (Row–Column Decomposition),

MUXRC (Multiplexed Row–Column Decomposition), Pipe (Full Pipeline), PL (Parallel Architecture), TB (Transpose), TRAM (Transpose RAM).

70 Discrete Cosine Integer Transform (DCIT) 4

Table 4.9: The list of test sequences

video sequence frames resolution

foreman 300 CIF (352×288)
paris 1065 CIF (352×288)
news 300 CIF (352×288)
crew 300 DVD (720×576)
ice 240 DVD (720×576)
rush hour 250 Full–HD (1920×1080)
blue sky 217 Full–HD (1920×1080)

selected XVID implementation is based on Loeffler’s factorization using
floating-point multiplications (see Figure 4.1) and MEPG–4 Quantiza-
tion “method 2”. Both the NQDCT and the QDCIT are implemented
in a System–C like style with fixed point shift–add operations into the
XVID software and the H.264 JM-16.1 software. To test the perfor-
mance of our configurations, video test sequences with CIF, DVD and
Full–HD formats are used, where Table 4.9 lists all the test sequences,
where the framerate is 60 FPS (original figures are attached in Ap-
pendix B.5).

Figure 4.17 illustrates the average Peak Signal to Noise Ratio (PSNR)
of the “foreman” and “paris” CIF video test sequences from low to high
bitrates in XVID. The proposed architecture performs very close to the
original Forward Q+DCT design and almost the same as the Forward
NQDCT (FNQDCT). Figure 4.18 shows that the comparison results
between the FQDCIT and the default method in H.264, where Int–4
mode and Int–8 mode are compared separately. Obviously, the FQDCIT
architecture can obtain a good transformation quality. Note that the
video sequences are first encoded with the FQDCIT architecture of these
two referenced softwares, then decoded by using the default decoder.

On the other hand, the inverse version has also been implemented
with different iteration numbers and compensation steps from Table 4.7,
where Figure 4.19 illustrates the average PSNR of the “foreman”, “paris”
and “news” CIF video test sequences from low to high bitrates in XVID.
Obviously, these results agree with our expectation that the configura-
tions with more shift and add operations or CORDIC iteration steps
can obtain better PSNR results. Moreover, the default “IQDCIT” is

4.5 Experimental Results 71

Figure 4.17: The average Forward Q+DCT, FNQDCT and FQDCIT PSNR of the
“foreman” and “paris” cif video test from low to high bitrates in XVID

Figure 4.18: The average FQDCIT PSNR of the “foreman” and “paris” cif video
test from low to high bitrates in H.264

72 Discrete Cosine Integer Transform (DCIT) 4

Figure 4.19: The average IQDCIT PSNR of the “foreman”, “paris” and “news” cif
video test from low to high bitrates in XVID

a good solution that can keep the balance between the hardware ex-
pense and the accuracy. It is very close to the original XVID decoder.
However, since the resolution of the CIF is very small, the quality of
“IQDCIT–S1” is enough for mobile devices.

Next, for testing the DVD format, the video sequences “crew” and
“ice” are used to verify the four different configurations. Figure 4.20
shows the average PSNR. The results demonstrate that the four con-
figurations can provide various precisions in terms of their hardware
complexity. In this figure, a significant fall at the bitrate with 700kb/s
is noticeable due to the insufficient shift and add operations stages of
the “IQDCIT–S1”. This means that the number of iteration is not
enough. The “IQDCIT–S2” can achieve a reasonable tradeoff between
the video quality and the computational complexity.

Finally, the arbitrary decoding test for Full–HD format is illustrated
in Figure 4.21. The video sequences “rush hour” and “blue sky” are
used. These results also prove that various configurations can cover
the needs for video quality in consideration of their hardware expense.
Clearly “IQDCIT–C1” should be selected for the Full–HD resolution.

In contrast to the arbitrary decoding tests on XVID Codec, the four

4.5 Experimental Results 73

Figure 4.20: The average IQDCIT PSNR of the “crew” and “ice” DVD video test
from low to high bitrates in XVID

Figure 4.21: The average IQDCIT PSNR of the “rush hour” and “blue sky” Full–HD
video test from low to high bitrates in XVID

74 Discrete Cosine Integer Transform (DCIT) 4

Figure 4.22: The average IQDCIT PSNR of the “foreman”, “paris” and “news” cif
video test from low to high bitrates in H.264

inverse configurations have also been evaluated for baseline profile and
high profile in H.264. In consideration of that it is very practical to
decode the high resolutions with the high profile. Hence, we have only
tested the CIF format files with the baseline profile (4×4 integer), the
DVD format files and the Full–HD format files with the high profile
(8×8 integer). Figure 4.22 shows the average PNSR value of three test
files for the baseline profile. The PSNR results increase monotonically
when the CORDIC compensation steps increase. It can be noticed that
the accuracy improves with higher complexity. Moreover, the configu-
ration with “IQDCIT S2” can provide a good compromise performance
as expected, while it has relative low hardware expense.

For high resolution video tests, the video sequences “ice” and “crew”
are selected to test the configurations for DVD sequences, and then
used the video sequences “river bed” and “ rush hour ” to measure

4.6 Summary 75

Figure 4.23: The average IQDCIT PSNR of the “crew” and “ice” DVD video test
from low to high bitrates in H.264

the performance for Full–HD resolution. Figure 4.23 and Figure 4.24
illustrate the performance for each, respectively. Obviously, all four
configurations show relative good performances. First, the results meet
the conclusion for CIF sequences that the more expensive configuration
is, the better it performs. In total, these four configurations can pro-
vide a balanced performance in terms of their hardware expense. The
IQDCIT-S1 and the IQDCIT-S2 fit for small resolutions or low bitrates.
However, when the bitrates are high, IQDCIT and IQDCIT-C1 are pre-
ferred. Therefore, these results agree with our expectation that the
configurations with more shift–add operation stages/iteration steps can
provide better accuracy. Moreover, the configuration “IQDCIT” is a
good solution that can keep the balance between the hardware expense
and the accuracy for both XVID and H.264 Codecs.

4.6 Summary

In this chapter, a low-complexity and highly-integrated QDCIT based
on the CORDIC architecture was presented. The proposed 2-D FQD-

76 Discrete Cosine Integer Transform (DCIT) 4

Figure 4.24: The average IQDCIT PSNR of the “rush hour” and “blue sky” Full–HD
video test from low to high bitrates in H.264

CIT architecture requires only 120 add and 40 barrel shift operations
to perform the multiplierless 8×8 FQDCT and 4×4/8×8 forward quan-
tized integer transform by sharing the hardware resources as much as
possible. The proposed design had been implemented with TSMC
0.18µm cell library. On the other hand, an inverse version based on
the CORDIC algorithm with arbitrary iteration numbers had also been
implemented. The proposed 2–D IQDCIT architecture requires only
124 add and 40 barrel shift operations to perform the multiplierless
8×8 IQDCT and quantized 4×4/8×8 inverse integer transform. The
proposed architecture can reduce more than half of the add operations
compared to the conventional Q+DCT and NQDCT architecture. Fur-
thermore, it achieved a smaller chip area and higher throughput com-
pared to the other architectures for future UHD resolution. Moreover,
both XVID and H.264 simulations showed that the proposed QDCIT
architecture can provide a good compromise between PSNR and com-
putational effort, and is also highly satisfactory compared to the refer-
enced implementations in terms of video quality. Also note that using
arbitrary iteration steps can adjust the complexity of the architecture
according to the target device’s resolution.

5 Parallel Jacobi Algorithm

In this chapter, a configurable Jacobi Eigenvalue Decomposition (EVD)
array using a scaling–free µ–rotation CORDIC (µ–CORDIC) processor
is presented in order to further study the tradeoff between the perfor-
mance/complexity of processors and the load/throughput of intercon-
nects. Computing the EVD in parallel with Jacobi’s iterative method is
selected as an important example in this thesis, because the convergence
of this method is very robust to modifications of the homogeneous pro-
cessor elements [18,46,47,70]. It is simple, concise and inherent parallel
for both implementation and computation. In [108,109], a Jacobi EVD
array was realized by implementing the µ–CORDIC processor, which
only performs a predefined number of CORDIC iterations (e.g. only one
µ–rotation). In this way, the size of the processor array can be further
reduced, such that a larger size of EVD array can be implemented. In
order to further study the design impact in VDSM level, a 10×10 EVD
array (i.e. computing the EVD of a 20×20 symmetric matrix) was im-
plemented in TSMC 45nm technology. After that, several modifications
of the algorithm/processor were studied and their impact on the design
criteria were investigated for different sizes of EVD array through a con-
figurable interface (10×10 to 80×80). At the end, a strategy to comply
with the design criteria is presented, especially in terms of balancing
the number of iterations and the computational complexity.

This chapter is organized as follows: serial and parallel Jacobi meth-
ods will be described in Section 5.1. In Section 5.2 the design issues of
the parallel Jacobi EVD array are discussed, which lead to the simplifi-
cation from a regular Full CORDIC to the µ–CORDIC processor with
adaptive number of iterations. Section 5.3 shows the implementation
results and Section 5.4 summarizes this chapter.

78 Parallel Jacobi Algorithm 5

5.1 Parallel Eigenvalue Decomposition

5.1.1 Jacobi Method

An eigenvalue decomposition of a real symmetric n×n matrix A is ob-
tained by factorizing A into three matrices A = Q ∧ QT , where Q is
an orthogonal matrix (QQT = I) and ∧ is a diagonal matrix which
contains the eigenvalues of A. The Jacobi method approximates the
eigenvalues iteratively as follows:

Ak+1 = QkAkQ
T
k , with k = 0, 1, 2, . . . ,

(5.1)

where Qk is an orthonormal rotation by the angle θ in the (i, j) plane.
It is an identity matrix containing four nonzero elements, qii = qjj =
cos θk, and qij = −qji = sin θk:

Qk =

col i col j
↓ ↓









































1 0 · · · 0

0 . . .
cos θk sin θk ← row i

...
− sin θk cos θk ← row j

. . . 0
0 · · · 1

(5.2)

The plane rotations Qk, where k = 0, 1, 2, · · · , can be executed in
various orders to obtain the ∧. The most common order of sequential
plane rotations {Qk} is called cyclic–by–row, i.e. (i, j) is chosen as
follows:

(i, j) = (1, 2)(1, 3) . . . (1, n)(2, 3) . . . (2, n) . . . (n− 1, n) . (5.3)

The execution of all N = n(n − 1)/2 index pairs (i, j) is called a
sweep. If several sweeps are applied, the matrix A will converge into a

5.1 Parallel Eigenvalue Decomposition 79

diagonal matrix ∧, which contains the eigenvalues λ1, λ2, . . . , λn:

lim
k→∞

Ak = diag[λ1, λ2, . . . , λn] =











λ1 0 · · · 0

0 λ2
...

... . . . 0
0 · · · 0 λn











. (5.4)

Besides the cyclic–by–row order, many different sequential orders
have already been presented, such as butterfly–like permutation order-
ing, odd-even ordering or dynamic ordering by searching the best rota-
tion set [10–12]. These specialized orderings are chosen according to the
topology of network in order to guarantee good load balancing during
the whole computational process. For example, for a parallel computer
with ring style network topology, the odd-even ordering should be se-
lected for the goal of shortest path data transmission. However, the
influence from the network topology on different orders becomes less
important due to the shorter timing delay between SoC processors, es-
pecially when the packet–switched network is gradually replacing the
bus transmission in large SoC systems. Therefore, the cyclic–by–row
order has been selected for the parallel EVD design.

5.1.2 Jacobi EVD Array

Instead of performing the plane rotations Qk one by one in a cyclic–by–
row order, we can separate them into multi–subproblems and execute
them in parallel on a (logn)–dimensional multi-core platform. A parallel
array for Jacobi’s method was first presented by Brent and Luk [18].
It consists of n

2 × n
2 homogeneous PEs and each PE contains a 2×2

sub-block of the matrix A. Figure 5.1 shows a typical 4×4 Jacobi EVD
array with 16 PEs. This Jacobi array can perform n

2 subproblems in
parallel. Initially, each PE holds a 2×2 sub-matrix of A:

PEpq =

(

a2p−1,2q−1 a2p−1,2q
a2p,2q−1 a2p,2q

)

, where p and q = 1, 2, · · · , n2 . (5.5)

80 Parallel Jacobi Algorithm 5

a65

a55 a56

a66 a67

a57 a58

a68

a85

a75 a76

a86 a87

a77 a78

a88

PE11 PE13

PE21 PE22

PE14

PE24PE23

PE44

PE34PE33PE31

PE41 PE42 PE43

PE12

PE32

Figure 5.1: A 4×4 EVD array, where n=8 for 8×8 symmetric matrix

A rotation angle has to be choosen in order to zero the off–diagonal
elements of the submatrix by solving a 2×2 symmetric EVD subproblem
as shown in the following:

[

a′ii a′ij
a′ji a′jj

]

= R ·
[

aii aij
aji ajj

]

· RT ,

where R =

[

cos θ − sin θ
sin θ cos θ

]

.

(5.6)

We obtain the maximal reduction {a′ij, a′ji} = 0 by applying the op-
timal angle of rotation θopt:

θopt =
1
2 arctan(

2aij
ajj−aii), (5.7)

where the range of θopt is limited to |θopt| ≤ π
4 .

This optimal angle θopt, which can annihilate the off–diagonal ele-
ments (a2p−1,2q and a2p,2q−1), is computed by diagonal PEs using Equa-
tion 5.7. After these rotation angles are computed, they will be sent to
the off–diagonal PEs. This transmission is indicated by the dashed lines
in the vertical and horizontal direction in Figure 5.1. All off–diagonal
PEs will perform a two-sided rotation with the corresponding rotation
angles who are obtained from the row (θr) and column (θc) respectively.

5.2 Architecture Consideration 81

After these rotations are applied, the matrix elements are interchanged
between processors as indicated by the solid lines in diagonal direction
in Figure 5.1 for execution of the next n

2 rotations. One sweep needs
to perform n - 1 of these parallel rotation steps. After several sweeps
(iterations) are executed, the eigenvalues will concentrate in the di-
agonal PEs. In practice, we can observe the Frobenius norm of the
off–diagonal elements until it is close to zero or perform a predefined
number of sweeps, which depends on the size/structure of matrix A.

5.2 Architecture Consideration

5.2.1 Conventional CORDIC Solution

Inside each PE, the most hardware efficient solution to solve the sub-
problem of Equation 5.6 for zeroing the off–diagonal elements is using
the CORDIC algorithm (see Chapter 3). The CORDIC orthogonal ro-
tation mode can be used to compute Equation 5.6 by separating the
two side rotation into two parts, G =

[

GT
1 ;G

T
2

]

= A ·RT and R ·G, and

then using two CORDIC rotators to perform A ·RT :

G1 =
[

arii, a
r
ij

]T
=

[

cos θ − sin θ
sin θ cos θ

]

· [aii, aij]T

G2 =
[

arji, a
r
jj

]T
=

[

cos θ − sin θ
sin θ cos θ

]

· [aji, ajj]T ,
(5.8)

where the desired rotation angle θ is approximated by two CORDIC
rotators iteratively. The CORDIC processors will usually apply n = 32
µ–rotations for single floating precision. After that, a constant scal-
ing value K = 1

An
= 0.6073 is required to fix the rotated vectors

G1 =
[

arii, a
r
ji

]T
and G2 =

[

arij, a
r
jj

]T
in order to retain the orthogo-

nal property. In a similar way, we can use these two CORDIC rotators

82 Parallel Jacobi Algorithm 5

to compute R ·G:

[

a
′

ii, a
′

ji

]T
=

[

cos θ − sin θ
sin θ cos θ

]

·
[

arii, a
r
ji

]T

[

a
′

ij, a
′

jj

]T
=

[

cos θ − sin θ
sin θ cos θ

]

·
[

arij, a
r
jj

]T
.

(5.9)

Meanwhile, the optimal rotation angle can be also approached by
using the CORDIC orthogonal vector mode (see Table 3.1). The θopt
angle can be approximated iteratively as: 2× θopt = arctan(

2aij
ajj−aii).

In VLSI design, there are two common ways to realize the CORDIC
dependence flow graph in hardware, the folded (serial) or the parallel
(pipelining) as earlier described in Section 3.3. Note that we restrict
only to the conventional CORDIC iteration scheme as mentioned in
Equation 3.15. Although the folded CORDIC flow graph consumes
more energy than the pipelined CORDIC, it is still selected here in
order to satisfy the need for large EVD array computation. Figure 5.2(a)
shows a folded CORDIC PE. It requires a pair of adders for the plane
rotation and another adder for steering the next angle direction, which is
identical to Figure 3.3. However, after the plane rotation, the remaining
scaling procedure has to be further proceeded by the Figure 5.2(b) for
fixing the An, where two multiplexers are required for selecting the
inputs to the barrel shifters for CORDIC compensation steps. This
folded dependence graph is typical for the orthogonal rotation mode and
benefits in a small area in VLSI design. Moreover, it requires a number
of different shifts according to the chosen shift sequence, additional
barrel shifters are required in folded CORDIC architecture for successive
recursive processing.

In practice, the angle accumulator is not required for the off–diagonal
PEs. We can directly use the di from Equation 3.15 to steer the rotators.
This means that the transmission on the dashed lines in the vertical and
horizontal direction in Figure 5.1 will be replaced by a sequence of di
flags. In this way, the computation effort for the θopt can be omitted.

5.2 Architecture Consideration 83

adder or substractor

buffer register

right shift k bit

2x1 multiplexer

Look-Up Table

(b) Rotating

add

add

(b) Scaling

add

add

Reg

add

>>k

R
eg

R
eg

R
eg

R
eg

R
eg

>>k

>>k

>>k

>>k

mux

ROM

add

ROM
ROM

di

zout

yout

xoutx0

y0

z0

−di

−di

m
u
x

m
u
x

m
u
x

yout

xoutx0

y0

−di

m
u
x

m
u
x

di

Figure 5.2: Flow graph of a folded CORDIC (recursive) processor with the scaling

5.2.2 Simplified µ–rotation CORDIC

In this subsection, the methodology how to simplify the regular CORDIC
architecture will be clarified. As the process technologies continue to
shrink to the VDSM level, it becomes possible to directly implement
a full parallel Jacobi EVD array [3, 72]. However, the size of EVD ar-
ray with the regular CORDIC that could be implemented on current
device is still small. Therefore, it is necessary to simplify the architec-
ture in order to integrate more processors for solving larger matrices.
A scaling–free µ–CORDIC for performing the plane rotation in Equa-
tion 5.6 is used, where the number of inner iterations is reduced (from
32 iterations to only one iteration [46, 70]). Here, the µ–CORDIC will
be implemented as a circuit and verified under different design criteria
(area, timing, power/energy).

The definition of µ–CORDIC can be developed from Equation 3.15
as:

xi+1 = m̂
[

xi − yi · di · 2−i
]

yi+1 = m̂
[

yi + xi · di · 2−i
]

m̂ =
√

cos2 θ + sin2 θ = 1 + ǫ,

(5.10)

where m̂ is the required scaling factor per iteration and ǫ is the off-
set error. The idea of µ–CORDIC rotation is to reduce the number of

84 Parallel Jacobi Algorithm 5

iterations of the full CORDIC to only few iterations. Meanwhile, the
offset error ǫ will be small enough to be neglected as long as the or-
thonormal property is retained. Figure 5.3 shows four different subtype
methods for different size of µ–rotation angles and Table 5.1 shows a
lookup table for the µ–CORDIC. This lookup table lists 32 approxi-
mated rotation angles for each µ–rotation type, the required number
of shift–add operations and its computation cycles. Note that the ap-
proximated angles are stored as two times of tan θ. When the rotation
angle is very tiny (i.e. ǫ is tiny too), the Type I with only one iteration
will satisfy the limited working range 1− 2−(nm+1) < m̂ < 1 + 2−(nm+1),
if the nm (nm ∈ 1 · · · 32) is selected lager than 16. In Figure 5.3(a), a
pair of shift–add operation realizing one iteration is enough. Further-
more, it is scaling free when the angle 2 tan θ <= 3.05176×10−5. These
orthonormal µ–rotations are chosen such that they satisfy a predefined
accuracy condition in order to approximate the original rotation angles
and constructed by the cheapest possible method.

buffer register

right shift k bit

adder or substractor

>>k

>>k

R
eg

R
eg

R
eg

R
eg

>>k

>>k

>>k

>>k

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

>>k

>>k

>>k

>>k

>>k

>>k

>>k

>>k

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

Reg

add

>>k

>>k

>>k

>>k

>>k

>>k

>>k

x′

y′

a) Type I

add

add

x

y

k

k −d

d

x′

y′

k − 1 −1

k − 1 −1

add

add

b) Type II

add

add

x

y

k

k −d

d

add

add

x

y

k

k −d

d

k − 2 −1

k − 2 −1

add

add

d) Type IV

4k − 4 +1

4k − 4 +1

add

add

2k − 2 +1

2k − 2 +1

add

add

x′

y′

x′

y′

add

add

x

y

k

k −d

d

k − 1 −1

k − 1 −1

add

add

k − 2 d

k − 2 −d

add

add

c) Type III

Figure 5.3: Four simplified CORDIC rotation types

5.2 Architecture Consideration 85

Next, for the µ–rotation Type II as shown in Figure 5.3(b), when the
nm is selected from 8 to 15, two pairs of shift–add operations are enough
to retain the orthonormal property. Moreover, when the nm is selected
from 5 to 7, Type III repeats three times µ–rotation without any scaling.
Finally, for large rotation angles, the offset errors cannot be omitted
without scaling. Figure 5.3(d) shows the corresponding dependence
flow graph for Type IV. Besides two pairs of shift–add operations for
rotation itself at the beginning of the sub flow graph, 2∼4 pairs of
shift–add operations are required to fix the scaling factor m̂:

m̂ = (1 + 2−2(k+1))(1 + 2−4(k+1)) · · · (1 + 2−2
M (k+1)). (5.11)

Note that the scaling costs M=2∼4 pairs of shift–add operations. In
general, we can say that the cost of Type IV is given by 2+M pairs of
shift–add operations. For example, when the index k is 2, the scaling
is:

m̂2 = (1 + 2−6)(1 + 2−12)(1 + 2−24). (5.12)

These four subtypes have three identical parts: Type I with one it-
eration, the scaling part of Type IV and the second iteration of Type
II. These three parts can be integrated together by using multiplexers
to select the data paths as shown in Figure 5.4, which has 2 adders,
2 shifters and 4 multiplexers. More detailed information about the µ–
CORDIC can be found in [46, 108].

5.2.3 Adaptive µ–CORDIC iterations

To improve the computational efficiency, we perform 6 iterations per
cycle and name it CORDIC–6. Since the global clock in a synchronous
circuit is determined by the longest path, which also means that the
maximum timing delay per iteration is 6 cycles (when the index k is 1,
Type IV). Therefore, the inner iteration steps are repeated until they
are close to the critical one. The required numbers of repetition are
quoted in Table 5.1. For example, when the rotation angle index is
k=8, it will repeat three times from the index k=8 to the index k=10.
When the rotation angle index is k=20, it will repeat six times from
the index k=20 to the index k=25. On the other hand, the number of
iterations can be adjusted by selecting the average angle during the last

86 Parallel Jacobi Algorithm 5

2 5 32 32

8

8

32

32

32

32 32

32

adder or substractor

buffer register

right shift k bit

2x1 multiplexer

Controller

>>k

>>k

Reg

Reg

Reg

Reg

Reg

>>k

add

m
u
x

m
u
x

m
u
x

mux

add

add

x′
a

x′

y′a

y′

x

dy

kx

ky

m
u
x

dx

xa

y

ya

type index xin yin en

yout

xout

S0 S1

Figure 5.4: The block diagram of a scaling–free µ–CORDIC PE, including 2 adders,
2 shifters and 4 multiplexers

sweep and name it as CORDIC–mean. In this way, the iteration steps
of adaptive µ–CORDIC are defined according to the structure of the
matrix.

5.2.4 Exchanging inner and outer iterations

Modifying the inner iteration number of CORDIC processor will cause
a tradeoff issue. Decreasing the iterations will result in an increased
number of outer sweeps due to the imprecise inner iterations. Therefore,
the Full CORDIC architecture requires fewer sweeps but needs more
area. On the other hand, the simplified µ–CORDIC architecture can
reduce the area but results in an increased number of outer sweeps.
This problem becomes a tradeoff between the iteration numbers and the
computational complexity. In the next section, we will further compare
these rotation modes in Matlab.

5.3 Experimental Results 87

5.3 Experimental Results

The regular Full CORDIC and the adaptive µ–CORDIC methods have
been simulated in Matlab and implemented as circuit designs with the
TSMC 45nm technology library for further detailed comparison.

5.3.1 Matlab Simulation

The Full CORDIC with 32 iteration steps, the µ–CORDIC with one it-
eration step and two different adaptive modes have been tested using nu-
merous random symmetric matrices A of size 8×8 to 160×160 (i.e. EVD
array size from 4×4 to 80×80). Figure 5.5 shows the average number
of sweeps needed to compute the eigenvalues/eigenvectors for each size
of EVD array, where the sweep number increases monotonically. Note
that the stop criterion is ||Aoff ||F×10−8. The ||Aoff ||F is the Frobenius
norm of the off–diagonal elements of A, i.e. Aoff = A− diag(diag(A)).
That means the sweep k will stop when the current ||Ak

off ||F is smaller

than the ||Aoff ||F × 10−8.

10 20 30 40 50 60 70 80

2

4

6

8

10

12

14

16

18

Size of Jacobi EVD Array

N
um

be
r

of
 S

w
ee

ps

Full CORDIC

u−CORDIC

CORDIC−6

CORDIC−mean

Figure 5.5: The average number of sweeps vs. array sizes for four rotation methods
(µ–CORDIC, Full CORDIC and two adaptive methods).

88 Parallel Jacobi Algorithm 5

When the Jacobi EVD array size is 10×10, the µ–CORDIC requires
12 sweeps while the Full CORDIC only requires 6 sweeps. If we adjust
the inner rotations to six times, the sweep number will be 10, smaller
than the µ–CORDIC but more than the Full CORDIC. On the other
hand, using the average rotation angle to decide the rotation number
as CORDIC–mean will require more sweeps than the others. Although
the µ–CORDIC requires twice more sweeps per EVD computation than
the Full CORDIC, it actually reduces the number of the inner CORDIC
rotations, which results in an improved computational complexity. For
example, a 10×10 array with the Full CORDIC PE needs 6 sweeps
× 32 inner CORDIC rotations, the CORDIC–6 needs 10 sweeps × 6
inner CORDIC rotations, while the µ–CORDIC PE only requires 12
sweeps × 1 inner CORDIC rotation. In Figure 5.6, the average shift–
add operations required for each rotation method with different size of
testing EVD arrays is demonstrated, where Full CORDIC needs much
more shift–add operations than others and the adaptive CORDIC–6
method can offer a compromise between the hardware complexity and
the computational effort. Consequently, from an algorithmic point of
view, doubtless we would prefer to realize the Jacobi method by utilizing
the µ–CORDIC method. However, when it comes to nanoscale VLSI
implementation, other design issues become also important.

Figure 5.7 shows the off–diagonal Frobenius norm versus the sweep
numbers. When the array size is 10×10 with double floating precision,
each rotation method will easily converge to the predefined stop cri-
terion. Here the stop criterion is also defined as ||Aoff ||F × 10−8. In
a similar situation, when the array size is 80×80 as illustrated in Fig-
ure 5.8, the convergence is also obtained. However, when using the
single floating precision (default IEEE 754 single), it will no longer con-
verge due to the insufficient operand precision.

Figure 5.9 and Figure 5.10 show the reduction of the off–diagonal
Frobenius norm versus the sweep numbers for single floating precision.
It can be noticed that the off–norms do not reach the convergence.
Each size of EVD array has its own stop criterion (maximum offNorm
reduction vs. sweep number). Therefore, we must first analyze the
Frobenius norm of the off–diagonal elements in Matlab and then observe
it until it reaches its maximal reduction. Afterwards, a lookup table has
to be generated and directly assigned these stop criteria to the target
hardware circuit or IP component.

5.3 Experimental Results 89

10 20 30 40 50 60 70 80
10

4

10
5

10
6

10
7

10
8

10
9

10
10

Size of Jacobi EVD Array

N
um

be
r

of
 S

hi
tf

an
d

A
dd

 o
pe

ra
tio

ns

Full CORDIC

u−CORDIC

CORDIC−6

CORDIC−mean

Figure 5.6: The number of shift–add operations for four rotation methods on differ-
ent size of array

5.3.2 Using threshold methods

In Figure 5.9 and Figure 5.10, the decrease of the off–diagonal norm
becomes slower with single floating precision, it is obvious that the ro-
tations along these plateaus do not contribute to the overall result for
small rotation angles. A simple way to reduce such inefficient oper-
ations is to apply a threshold strategy. That means in each sweep a
threshold value is used to decide if a rotation is computed or not. The
threshold method was already mentioned by Wilkinson in [128]. He
worked with a fixed sequence of threshold values, lowering from sweep
to sweep to reduce computation time. Every transformation regarding
an off–diagonal element that is below the threshold value is bypassed.
However, there is a problem for comparing floating point numbers in
circuit design. Since the design complexity of the floating comparator is
same as the floating adder, the benefit we could obtain from the simpli-
fied µ–CORDIC will become oblivious. Therefore, another simple way
to predict the index E is presented in here, which came from m×2E−127,
where m is the mantissa and E is the exponent of an IEEE 754 single
floating point number. Figure 5.12 shows the frequency distribution of

90 Parallel Jacobi Algorithm 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Sweep

O
ff

N
or

m

Full CORDIC

u−CORDIC

CORDIC−6

CORDIC−mean

Figure 5.7: The required number of sweeps vs. off–diagonal norm for 10×10 Jacobi
EVD array with double floating precision

the optimal rotation angle θopt’s exponent E over the sweep number for
a Jacobi EVD array of size 10×10 in single floating precision. Addi-
tionally, Figure 5.13 shows the frequency distribution for the array size
of 80×80.

It can be noticed that both average peaks appear in a range from
127 to 96 (equal to 0 to -32). It is very similar to the rotation index
n = 32 for both Full CORDIC and µ–CORDIC. In order to simplify the
comparator operations, this prediction can be utilized to bypass those
small rotation angles which have very little contribution to the conver-
gence. Figure 5.11 further shows the reduction of shift–add operations
with the threshold strategy and the preconditioned E index method on
different size of the array in IEEE 754 single floating precision. If the
regular Full CORDIC is selected, a maximal reduction up to 40% can be
achieved. For the µ–CORDIC and CORDIC–6, a reduction up to 10%
of shift–add operations is obtained. Therefore, using the preconditioned
E index method not only achieves a similar reduction of shift–add op-
erations compared to the threshold strategy (sometimes even better),
but also replaces the floating comparators by a lookup table.

5.3 Experimental Results 91

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Sweep

O
ff

N
or

m

Full CORDIC

u−CORDIC

CORDIC−6

CORDIC−mean

Figure 5.8: The required number of sweeps vs. off–diagonal norm for 80×80 Jacobi
EVD array with double floating precision

5.3.3 Configurable Jacobi EVD Array

One of the major contributions in this thesis is to design a configurable
Jacobi EVD interface, where a n×n (n = 2, 4, 8, . . . , 2k, k ∈ N) parallel
systolic processor array can be generated through the C++ program di-
rectly as long as there is enough logic for implementation. In Figure 5.1,
it can be easily noticed that there are similar interconnection properties
between the neighbor PEs in this 4×4 systolic array. Essentially, these
PEs can be categorized into six different types which are highlighted by
dashed boxes in Figure 5.14. These six different types can help discover
the similar property coding style for parameters design, especially in
the data switching behavior between the neighbor PEs. According to
their locations, they are “top”, “bottom”, “inner”, “left”, “right” and
four “corner”. The pseudo code for each type is listed in Appendix
Table A.2.

In theory, once the off–diagonal elements of matrixA are small enough
or the computation reaches the predefined maximal sweep number ac-
cording to the Matlab analysis, then the systolic processor array will

92 Parallel Jacobi Algorithm 5

2 4 6 8 10 12 14
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Sweep

O
ff

N
or

m

Full CORDIC

u−CORDIC

CORDIC−6

CORDIC−mean

Figure 5.9: The required number of sweeps vs. off–diagonal norm for 10×10 Jacobi
EVD array with single floating precision

stop the computation immediately. Therefore, a stop criterion can be
defined as:

PC = sweepmax× [3(n− 1) + ∆ + 3],
(5.13)

where n is the size of matrix A, ∆ is the offset length of the N−1=n
2−1,

and sweepmax denotes the sweep number when the off–diagonal Frobe-
nius norm is smaller than the predefined torrence value. Each sweep
requires 3×(n−1)+∆+3 computational steps. Usually, the predefined
sweep number can be predicted through testing numerous random ma-
trices. In order to configure the EVD array for the matrix A with the
size of n × n, a parameterized design which depends on the size n for
computing the eigenvalues in parallel is presented. This configurable
parallel EVD array includes a PC counter, a controller and a config-
urable parallel systolic processor array as illustrated in Figure 5.15.

In Figure 5.15, “CT” is a counter for PC counting. The input “sweep-
max” is a predetermined number according to the Equation 5.13. The

5.3 Experimental Results 93

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Sweep

O
ff

N
or

m

Full CORDIC

u−CORDIC

CORDIC−6

CORDIC−mean

Figure 5.10: The required number of sweeps vs. off–diagonal norm for 80×80 Jacobi
EVD array with single floating precision

signal “off” is the stop flag. The signal “stop” tells the parallel sys-
tolic array when to stop the computation. The signal “store” notifies
the eigenvalues are ready for transmission to the output ports. The in-
structions for controlling the PEs are identical, if their ∆ are equal too.
There are N lines for “store” and “stop” singles to notify the N parallel
subproblems. Note that the signal “loads” has 6 different instructions.
One “load” instruction is for diagonal PEs. There are N − 1 “loadt”
instructions, N 2−N “loada11” instructions, N 2−N “loada12” instruc-
tions, N 2−N “loada21” instructions and N 2−N “loada22” instructions
for off-diagonal PEs. These six instructions will notify the PEs when
to load the input matrix, transmit the output eigenvalues/eigenvector
or exchange the matrix elements with its neighbors.

For instance, when the single“LW” is asserted, the matrix A will first
be assigned to the array through the “input” ports. Once “enable” is
asserted, the EVD array will start to compute the eigenvalues. After
several sweep rotations, if the “pc in” is equal to the “sweepmax”, it
will stop the computation. The diagonal PEs will forward the results to
the output ports. So far we assumed the n should be even for simplicity.

94 Parallel Jacobi Algorithm 5

4 8 10 15 20 25 30 40 60 80
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Size of Jacobi EVD Array

R
ed

uc
tio

n
of

 S
hi

tf
an

d
A

dd
 o

pe
ra

tio
ns

Full CORDIC (th)

Full CORDIC (E)

u−CORDIC (th)

u−CORDIC (E)

CORDIC−6 (th)

CORDIC−6 (E)

Figure 5.11: The reduction of shift–add operations (in percent) for three rotation
methods with the threshold strategy and preconditioned E index on different size of
array in IEEE 754 single floating precision

For odd n we can simply expand the matrix A by zeros.

5.3.4 Circuit Implementation

The presented µ–CORDIC has been modeled and compared with the
folded Full CORDIC in VHDL. Later, these two methods are imple-
mented into parallel EVD arrays with size 4×4 and 10×10 through a
configurable interface separately. After that, they are synthesized by
the Synopsys Design Compiler with TSMC 45nm standard cell library.
It should be noticed that the word-length is 32 bits for IEEE 754 single
floating precision. At the end, the SoC Encounter is used to perform the
Place & Route. Figure 5.16 shows the chip layout with 100 µ–CORDIC
PEs. We did not add any IO pads to the implementation and treated
it as a standard macro design. Table 5.2 lists the synthesis results for
area, timing delay and power consumption.

First of all, the combinational logic area and the power consumption
of the µ–CORDIC PE is much smaller than for the Full CORDIC.
Furthermore, in order to determine the time required to compute the
EVD of a n× n symmetric matrix, we obtain:

5.3 Experimental Results 95

85

90

95

100

105

110

115

120

125

130

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

0

1000

2000

3000

4000

5000

6000

IEEE 754 exponet

20x20 u−CORDIC

Sweep

Figure 5.12: 3–D bar statistic view of the l = E − 127 index for adaptive index
selection for 10×10 Jacobi EVD array with single floating precision

85

90

95

100

105

110

115

120

125

130

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

0

1

2

3

4

x 10
5

IEEE 754 exponet

160x160 u−CORDIC

Sweep

Figure 5.13: 3–D bar statistic view of the l = E − 127 index for adaptive index
selection for 80×80 Jacobi EVD array with single floating precision

Ttotal = Tdelay ×Kiteration ×Ksweep × [3(n− 1) + ∆ + 3],
n = 8, 16, 20, 30, . . . 160,
∆ = n

2 − 1.
(5.14)

The total timing delay per EVD operation is defined as “ the criti-
cal timing delay × the number of inner CORDIC rotations × average
number of outer sweeps × size of the matrix A”. We can observe that
the total operation time is dependent upon the relation between the
inner CORDIC rotations and the outer sweeps. For instance, comput-

96 Parallel Jacobi Algorithm 5

PE11 PE13

PE21 PE22

PE14

PE24PE23

PE44

PE34PE33PE31

PE41 PE42 PE43

PE12

PE32

∆=0

∆=0

∆=0

∆=0

∆=1

∆=2

∆=3

∆=1

∆=1

∆=1

∆=1

∆=1

∆=2

∆=2

∆=2

∆=3

Figure 5.14: The locations of six different PE types in a 4×4 Jacobi EVD array

LW

Counter

clk

rst

enable

sweepmax

off
pc_inPC

input

Parameterized EVD array

Configurable

NN

st
op

st
or

e

lo
ad

s N+4N(N-1)

Controller

N×N Array
n×32bits

(n×n matrix)n×n×32bits

Figure 5.15: A configurable parallel Jacobi EVD design

ing the EVD on the 10×10 EVD array with the Full CORDIC, requires
4.286×32×7×(3×19+9+3) ∼= 66.24 us. Using the µ–CORDIC PE only
requires 2.247×2×10×(3×19+9+3) ∼= 3.1 us. Therefore, a speed up
by a factor of 21.4 can be obtained from reducing the number of inner
CORDIC rotations. Although the reduction of power consumption is
not so much due to extra multiplexers, µ–CORDIC’s controller and a
lookup table, it actually consumes much less energy per EVD compu-
tation due to the shorter computation time. Note that the µ–CORDIC
PE requires two inner iterations in average due to the different rotation
cycles (from six to one inner iteration) as shown in Table 5.1. Therefore,
we can incorporate the synthesis results from Table 5.2 and the precon-
ditioned E index to normalize the energy consumption with different

5.3 Experimental Results 97

Figure 5.16: Final layout view of a 10×10 Jacobi EVD array with the µ–CORDIC
PE with TSMC 45nm technology library.

size of EVD array. Figure 5.17 shows the predicted energy consumption
results for size of the array from 4×4 to 80×80. Note that the energy
consumption is shows on the logarithmic scale on the Y–axis. Both
rotation methods consume much less energy than the Full CORDIC,
where the CORDIC–6 can obtain an energy reduction factor of 40.9
and the µ–CORDIC can obtain an energy reduction factor of 104.3 in
average compared to the Full CORDIC. In short, the µ–CORDIC not
only achieves less combinational logic cell area and faster frequency,
but also less energy consumption compared to the Full CORDIC. On
the other hand, the CORDIC–6 consumes two times more energy than
the µ–CORDIC, but the convergence speed is faster. Therefore, this
becomes a tradeoff issue between the µ–CORDIC and the CORDIC–6
(computation time vs. energy consumption).

98 Parallel Jacobi Algorithm 5

Figure 5.17: The energy consumption per EVD operation with each size of EVD
array (operating at 100 MHz)

5.4 Summary

Computing the EVD by the parallel Jacobi method was selected as a
typical example due to its robust convergence property. A configurable
Jacobi EVD array has been implemented with both Full CORDIC and
µ–CORDIC to explain the design concepts for parallel iterative algo-
rithms. Using the preconditioned E index method not only reduced
more than 35% shift–add operations for the Full CORDIC and 10% for
the µ–CORDIC in average, but also omits the floating point number
comparators. Afterwards, for a TSMC 45nm implementation, a detailed
comparison between area, timing delay and power/energy consumption
was made. It was shown that the modification of inner iterations not
only reduced the size of the combinational logic, improved the overall
computation time but also saved the energy consumption. Furthermore,
the CORDIC–6 provided a compromised solution between the compu-
tation time and the energy consumption compared to the µ–CORDIC.

5.4
S
u
m
m
ary

99

Table 5.1: The lookup table for µ–rotations CORDIC with 32–bit accuracy, showing the rotation type, the 2× tan θ angle, the
required shift–add operations for rotation and scaling, the required cycle delay and repeat numner for CORDIC–6 [109].

index type angle shift–add cycle index type angle shift—add cycle
k 2× tan θ rot. sca. cnt. re. k 2× tan θ rot. scl. cnt. re.

1 IV 1.49070 4 8 6 1 17 I 1.52588 10−5 2 0 1 6
2 IV 0.54296 4 6 5 1 18 I 7.62939 10−6 2 0 1 6
3 IV 0.25501 4 6 5 1 19 I 3.81470 10−6 2 0 1 6
4 IV 0.12561 4 4 4 1 20 I 1.90735 10−6 2 0 1 6
5 III 6.25841 10−2 6 0 3 2 21 I 9.53674 10−7 2 0 1 6
6 III 3.12606 10−2 6 0 3 2 22 I 4.76837 10−7 2 0 1 6
7 III 1.56263 10−2 6 0 3 2 23 I 2.38419 10−7 2 0 1 6
8 II 7.81266 10−3 4 0 2 3 24 I 1.19209 10−7 2 0 1 6
9 II 3.90627 10−3 4 0 2 3 25 I 5.96046 10−8 2 0 1 6
10 II 1.95313 10−3 4 0 2 3 26 I 2.98023 10−8 2 0 1 6
11 II 9.76563 10−4 4 0 2 3 27 I 1.49012 10−8 2 0 1 6
12 II 4.88281 10−4 4 0 2 3 28 I 7.45058 10−9 2 0 1 5
13 II 2.44141 10−4 4 0 2 3 29 I 3.72529 10−9 2 0 1 4
14 II 1.22070 10−4 4 0 2 4 30 I 1.86265 10−9 2 0 1 3
15 II 6.10352 10−5 4 0 2 5 31 I 9.31323 10−10 2 0 1 2
16 I 3.05176 10−5 2 0 1 6 32 I 4.65661 10−10 2 0 1 1

10
0

P
ar
al
le
l
J
ac
ob

i
A
lg
or
it
h
m

5

Table 5.2: Area, Delay and Power Consumption results of 4×4 and 10×10 Jacobi EVD arrays with the TSMC 45nm technology.

4×4 Full CORDIC 4×4 µ–CORDIC 10×10 Full CORDIC 10×10 µ–CORDIC

Area
Combinational 0.847 mm2 0.296 mm2 5.143 mm2 1.829 mm2

Noncombinational 0.390 mm2 0.123 mm2 2.306 mm2 0.833 mm2

Total 1.237 mm2 0.419 mm2 7.449 mm2 2.662 mm2

Power

Cell 62.283 mW 18.239 mW 388.379 mW 123.215 mW
Net 0.465 mW 0.433 mW 2.993 mW 2.678 mW
Leakage 11.909 mW 3.765 mW 86.136 mW 23.966 mW
Total 74.657 mW 22.437 mW 477.508 mW 149.859 mW

Timing
Critical 4.454 ns 1.213 ns 4.286 ns 2.247 ns
Frequency 224.5 MHz 824.4 MHz 233.3 MHz 445 MHz

6 Sparse Matrix–Vector
Multiplication on Network–on–Chip

A new concept for accelerating Sparse Matrix–Vector Multiplication
(SMVM) operations by using Network–on–Chip (NoC) is introduced
in this chapter. In traditional circuit design on-chip communications
have been designed with dedicated point-to-point interconnections or
shared buses. Therefore, regular data transfer is the major concern of
many parallel implementations. However, when dealing with the paral-
lel implementation of SMVM, which is the main step of most iterative
algorithms for solving systems of linear equations, the required data
transfers are usually dependent on the sparsity structure of the matrix
and can be extremely irregular. Using a NoC architecture makes it
possible to deal with an arbitrary structure of the data transfers. In
this chapter, a configurable SMVM calculator based on the NoC archi-
tectures (SMVM–NoC) is implemented with arbitrary size of p × p
(p = 2, 4, 8, . . . , 2k, k ∈ N) with the IEEE-754 single floating point pre-
cision in an FPGA.

This chapter is organized as follows: In Section 6.1, a brief introduc-
tion to recent works on SMVM will be given first. After that, Section 6.2
shows the main concept of the parallel NoC based SMVM architecture.
Then, the hardware implementation will be described in Section 6.3 in
detail. In Section 6.4, the experimental results are given. Section 6.5
summarizes this chapter.

102 Sparse Matrix–Vector Multiplication on Network–on–Chip 6

6.1 Introduction of Sparse Matrix–Vector
Multiplication

Over the past 30 years, researchers and scientists have tried various
approaches to mitigate the poor performance of sparse matrix compu-
tations, such as reordering the data to diminish wasted memory band-
width, modifying the algorithms to reuse the data, and even building
specialized memory controllers. Despite these efforts, the sparsity of
the matrices still dominates the performance of the SMVM computa-
tions [81].

SMVM is used in many applications. For example, Finite Element
Method (FEM) is a widely applied engineering analysis tool which is
based on obtaining a numerically approximate solution for a given math-
ematical model of a structure. The resulting linear system is char-
acterized by the system matrix A which is usually large and sparse
[29,37,83,98]. In general, iterative solvers, such as the Conjugate Gra-
dient (CG) method, are almost dominated by SMVM operations (usu-
ally more than 95%). The CG method is the most popular iterative
method for numerically solving a system of linear equations, A · x = b,
where A is a Symmetric Positive-Definite (SPD) sparse matrix [52,77].
Moreover, Google’s PageRank (PR) Eigenvalue problem is considered
to be the world’s largest sparse matrix calculation. This problem is also
dominated by SMVM operations where the target matrix is extremely
sparse, and unstructured.

In the last decade, many researchers were dealing with the integra-
tion of pipelining and parallelism inherent in the SMVM computation
in hardware designs. Sun et al. [114] proposed a SMVM design con-
taining many Processing Elements (PEs) with pipelined floating-point
units in FPGA. Gregg et al. [39] built a specialized memory controller
to accelerate the SMVM. Götze and Schwiegelshohn [48] presented a
systolic algorithm which allows the parallel execution of SMVM in a
dedicated VLSI circuit. Williams et al. [129] used multi-core environ-
ment, using the heterogeneous x86 based quad-core CPU to accelerate
the SMVM computation in parallel. Google’s PR problem has also been
investigated for acceleration with FPGA in [76, 141].

6.2 SMVM on Network-on-Chip 103

Conventional SMVM architectures are usually focused on a dedicated
internal chip interconnection to forward vector components and nonzero
matrix elements among several processors. For instance, the fat-tree
style design, which requires pre-sorting and pre-ordering before the data
input [65], will become extremely difficult when the matrix is very large
and sparse. This motivates to use a packet–switched network for solving
these design issues. This packet switching architecture is called NoC as
earlier described in Section 2.3.

In this chapter, an FPGA accelerator for SMVM–NoC architecture
is presented in order to solve the design problems which arise from
large sparse matrices with their extremely irregular structures. The
basic idea of this concept is to implement an on-chip internal network
as the main transmission bone for the data transfers required for the
SMVM computation. The presented vision provides a superior method
to handle large sparse matrices, especially it can deal with arbitrary
sparsity structures. The 2×2, 4×4 and 8×8 SMVM-NoC calculators
have been implemented on Xilinx Virtex-6 platform. According to the
implementation results, utilizing the packet forwarding functionality is
beneficial concerning heterogeneous IP integration and flexibility.

6.2 SMVM on Network-on-Chip

6.2.1 Sparse Matrix-Vector Multiplication

A typical SMVM operation can be expressed as follow:

A · x = b, (6.1)

where x and b are vectors of length n and A is a n × n sparse matrix.
Since the matrix A can be very large and sparse, iterative solvers are
typically used to solve the system of linear equations due to their low
storage requirements [45]. Many researchers have already utilized the
pipelining and the parallelism to improve the performance. However,
the computational complexity is still determined by the sparsity of the
matrix A [29].

104 Sparse Matrix–Vector Multiplication on Network–on–Chip 6

In practice, the sparse matrix is usually stored in a Compressed
Sparse Row (CSR) format, in which only the nonzero matrix elements
will be stored in contiguous memory locations. In CSR format, there
are three vectors: val for nonzero matrix elements; col for the column
index of the nonzero matrix elements; and ptr stores the locations in
the val vector that start a new row [141]. As an example, consider a
simple SMVM operation with 5×5 sparse matrix A as follows:













4 0 8 0 0
6 0 3 0 0
0 1 0 0 0
0 0 0 5 0
7 0 0 0 4













·













x1
x2
x3
x4
x5













=













b1
b2
b3
b4
b5













. (6.2)

The CSR format of this matrix can be described by three vectors
given below:

————————————–
val: 4 8 6 3 1 5 7 4

————————————–
col: 1 3 1 3 2 4 1 5

————————————–
ptr: 1 3 5 6 7 8

————————————–

When a CSR format matrix is read in successively, the column index
of the nonzero element can be obtained from col, while the row index
is indirectly indicated by ptr. This format can be easily facilitated into
the data packets for a switching network.

6.2 SMVM on Network-on-Chip 105

−20
−10

0
10

20 −20

−10

0

10

20

−1000

0

1000

2000

3000

x2

x1

f
(x

)
=

1 2
x

T
A

x
−
bT

x
+

c

Figure 6.1: The quadratic surface of the f(x)

6.2.2 Conjugate Gradient Solver

CG iterative solver, which was presented in 1952 by Magnus Hestenes
and Eduard Stiefel [52], is perhaps the best known iterative method used
for solving very large and extremely sparse systems of linear equations.
The starting point in the derivation is to consider how we might be able
to minimize the quadratic function: f(x) = 1

2x
TAx− bTx+ c, where c ∈

R, b ∈ R
n and A ∈ R

n×n is assumed to be a SPD matrix. The minimum
value of f(x) is −bTA−1b/2, achieved by setting x = A−1b. Therefore,
minimizing f(x) and solving A · x = b are equivalent problems. For
example, when we define them as:

A =

[

3 2
2 6

]

, b =

[

2
−8

]

and c = 0, (6.3)

we obtain a (n+1)–dimensional convex parabolic surface as illustrated
in Figure 6.1. Minimizing f(x) corresponds to the solution for A ·x = b.
That means the solution is the lowest point on the surface, which can
be obtained by using the steepest descent method [45].

However, when the condition of A increases, the steepest descent
method will barely converge to the solution. A better approach is to
use A-conjugate direction for the descent. Algorithm 1 briefly describes

106 Sparse Matrix–Vector Multiplication on Network–on–Chip 6

a simple scenario of the CG algorithm. This while loop approximates
the next value of x (estimated solution), r (residual) and p (search di-
rection) iteratively. Each iteration step will yield a better x by “walking
downhill” in the A-conjugate direction of vector p. A convergence test,
as idealized by the while clause set, causes the CG algorithm to ter-
minate if the residual r vector is smaller than the predefined tolerance
value. More than 95% of the computational efforts are SMVM opera-
tions: q ⇐ Apk [29].

Algorithm 1 Conjugate Gradient Algorithm [45]
Require: A is n× n SPD matrix, x and b are vectors of length n.
Ensure: Congate(A, x, b, tol)
x(0) ⇐ x0 initial guess
p(0) ⇐ r(0) ⇐ b⇐ Ax(0)

k ⇐ 0
while (norm(rk) ≥ tol) do
q ⇐ Apk (SMVM operation)
α⇐ (rk, rk)/(pk, q)
x(k+1) ⇐ xk + αpk

r(k+1) ⇐ rk − αq
β ⇐ (r(k+1), r(k+1))/(rk, rk)
p(k+1) ⇐ r(k+1) + βpk

k ⇐ k + 1
end while

6.2.3 Basic Idea

In order to accelerate the performance of the iterative solvers, a SMVM
platform was built based on the NoC architecture according to the ear-
lier reports [110, 111], which contains p × p PEs (p = 2, 4, 8, . . . , 2k

k ∈ N). It is connected by a 2–D mesh network. The packet forwarding
function is used to transmit the data.

For instance, Figure 6.2 shows a simple scenario (see Equation 6.2)
for mapping a parallel SMVM–NoC computation. The circle symbols
denote the nonzero elements from the sparse matrix, the square symbols
denote the vector elements, and the rhombus symbols denote the results,
respectively. First of all, the vector components xj have already been

6.2 SMVM on Network-on-Chip 107

assigned to PE according to the predefined routing addresses. After
that nonzero matrix elements Aij will be distributed to the correspond-
ing PE according to the coordinate index i and j through the mesh
network; i.e. vector x1 arrives at the PE with A11, A21, and A51 ele-
ments, vector x2 arrives at the PE with A32 element, vector x3 arrives
at the PE with A13 and A23 elements, vector x4 arrives at the PE with
A44 element, and vector x5 arrives at the PE with A55 element in the

network, respectively. Now the partial products b
(j)
i = Aij · xj must

be computed and then the b
(j)
i are accumulated to form bi =

∑

b
(j)
i .

Note that the number of nonzero elements nz is usually larger than the
number of PEs. The detailed mapping method will be explained in
Section 6.3.6.

Figure 6.2: A direct mapping of parallel SMVM operations based on the NoC ar-
chitecture

On the other hand, we can also reverse the first and second step so
that nonzero matrix elements Aij will be distributed to the PE array
before broadcasting the vector components xj. This inverse mapping
is shown in Appendix Figure B.6. In this way, dense matrix problem
can be handled when the number of nonzero matrix elements is far
more than the vector components. This, however, does not lead to any
modification of the proposed architecture, because this could be done
by using the MicroBlaze to modify the packet’s headers. For reason of
simplicity at beginning, the first scenario is selected.

108 Sparse Matrix–Vector Multiplication on Network–on–Chip 6

6.3 Implementation

In this section, the method for mapping the proposed parallel SMVM
operations into NoC architecture will be described in detail. Figure 6.3
shows the system level view of a 4×4 SMVM-NoC in Xilinx Virtex–6,
including two OPB interfaces for communication between the SMVM–
NoC and the MicroBlaze embedded processor (using as packet con-
troller). Therefore, we can first store those CSR based sparse matrices
in DDR2 memory and then decompose the CSR format through the
MicroBlaze. After that, packets will be injected into the SMVM–NoC.

Figure 6.3: The system level view of a 4×4 SMVM-NoC in Xilinx Virtex–6

6.3.1 Packet Format

In packet switching, a message can be transmitted with a fixed-length
packet. The head part of a packet contains routing and control informa-
tion, which is referred to as a packet header, the rest is referred to as a
payload. Each packet is individually routed from source to destination
by using the given routing algorithm. Packets are buffered in the FIFO
before they are forwarded to next hop in the network.

6.3 Implementation 109

Table 6.1: Packet Format

Bit Functionality

50 Finish flag
49 OPCode:0⇒Multiplication and 1⇒Accumulation
48 DataType:0⇒Matrix and 1⇒Vector

40-47 Y–Coordinate
32-39 X–Coordinate
0-31 Payload

The packet format that is used to communicate over the proposed
NoC architecture is summarized in Table 6.1. The packet is mainly
constituted by the header and the payload. The header contains three
flags and two addresses. The three flags are named Finish, OPCode, and
DataType. The Finish flag tells the routers that this packet contains
the result of the SMVM operation and needs to be forwarded to the
MicroBlaze controller through the exit port. The OPCode informs the
PE which floating-point operation (i.e. multiplication or accumulation)
is going to be performed, and the DataType flag represents the type of
input data (i.e. matrix element or vector element). The objective of
two addresses (i.e. X–Coordinate and Y–Coordinate) is to locate the
position of the PE for the multiplier or the accumulator.

6.3.2 Switch Architecture

The switch is the most important component concerning the NoC per-
formance. However, the area and the power consumption are also im-
portant design criteria for embedded systems. For this reason, a con-
ventional 5×5 crossbar switch is now separated into two small 3×3
crossbar switches in order to reduce the area overhead [68]. Figure 6.4
illustrates a typical switch component for the local PE to communicate
with its neighbor PEs consists of a set of input/output ports, dual-
crossbar switches, four input FIFOs and controllers. The switch has
five data input ports and five data output ports, named North, East,
West, South, and Local, respectively. The Local port is connected to
its PE, and the North, East, West, South ports are connected to the
mesh network.

110 Sparse Matrix–Vector Multiplication on Network–on–Chip 6

Figure 6.4: Detailed switch interconnection including two 3×3 crossbars, five I/O
ports and four FIFOs

Each packet needs at least four cycles for transmitting a packet to
next hop. In the first cycle, the PE will read a packet from the FIFO
and then decomposes the packet in the second cycle.

The packet will be routed in the third cycle. If the desired port is
available the packet will be output, otherwise it will wait until the out-
put port is free. Here the Round-Robin strategy is selected to prevent
the deadlock hazard when multiple packets arrive in a switch at the
same time [35]. This switching approach is usually known as the store–
and–forward method. It is a packet switching protocol in which the
node stores the complete packet and forwards it based on the informa-
tion within its header. Thus the packet may stall if the router in the
forwarding path does not have enough buffer space [16]. However, for
the simple and easy implementation of the presented SMVM–NoC in
the FPGA, store–and–forward routing is preferred at beginning.

On the other hand, wormhole switching combines packet switching
with the data streaming quality of circuit switching to achieve a min-

6.3 Implementation 111

imal packet latency. In here the packets are divided into many small
flits. The router will first check the header of the packet for determin-
ing the next hop and immediately forward it. The subsequent flits are
also forwarded as they arrive. This causes the packet to worm its way
through the network. Flits are acting like ants, hence gave the name.
However, when a stalling happens, this method has an unpleasantly
expensive side effect of occupying all the links that the worm spans.
Furthermore, virtual cut–through has a forwarding mechanism similar
to the wormhole switching. However, before forwarding the first flit,
the node waits for a guarantee that the next hop in the path will accept
the entire packet. Thus if the packet stalls, it collects and waits at the
current node without blocking any links. Of course, the performance of
wormhole switching method and virtual cut–through method are bet-
ter than the simplest store–and–forward routing, but they also require
larger area overhead for implementation.

6.3.3 Pipelined Switch Architecture

In order to improve the performance of the switch, the selected 3×3
crossbar switch is divided into five pipelined stages as shown in Fig-
ure 6.5. These five stages are named as Fetch, Routing, Channel Re-
quest, Channel Acknowledgment and Output. The structure of pipelined
switch is similar to non–pipelined switch, but pipeline buffers are in-
serted between these five stages. Fetch stage reads a packet when there
is a packet available in the FIFO and forwards it to the next stage.
Routing stage receives a packet from the Fetch stage and decomposes
the header information for routing. Channel Request stage receives in-
formation from the Routing stage and sends a channel request to the
crossbar. The packet will be forwarded if the desired channel is not
occupied, otherwise it will be stalled until the requested channel is free.
Ideally, a three-port switch can transmit three packets at each clock
cycle. There are two conditions that stall the pipeline, either output
FIFO full or the requested channel has been occupied by another re-
quest. When a stall event happens, the switch will first move the packet
in the last stage to a stall register since the Fetch stage cannot predict
the stall event while reading the input FIFO. This might result in one
more packet that has been read after stall happened. After the stall
event is dissolved, the switch will retrieve the packet from the stall

112 Sparse Matrix–Vector Multiplication on Network–on–Chip 6

register.

Figure 6.5: A 5–stage pipelined switch with two 3×3 crossbars, five I/O ports and
four FIFOs

6.3.4 Routing Algorithm

Although the packet–switched network can forward the data automat-
ically, the design of the network communications is still complicated.
The routing decisions are only made locally and some routes can be
more efficient than others. Therefore, different kind of network topolo-
gies (ring, star, spider, mesh or irregular), routing schemes (direct-
route, adaptive-route, broadcast or multi-cast) and switch architectures
(store–and–forward, wormhole switching or virtual cut-through) influ-
ence the performance intensively [54]. For simplicity and flexibility of
the proposed SMVM–NoC hardware implementation, the direct routing
algorithm is selected (a.k.a. XY deterministic routing). In XY routing,
the switches in the network are indexed by their XY coordinates. When
a switch receives a packet, it will first extract the header information
of this packet and arbitrate the direction, then transmit to the next
hop. Each packet is first routed along X coordinate and then along Y
coordinate until the packet reaches its destination.

6.3 Implementation 113

6.3.5 Processing Element

The PE is designed to deal with the floating-point operations for the
SMVM computation as illustrated in Figure 6.6. This dedicated PE
contains a controller, a single floating point multiplier, a single floating
point adder, a data arbiter, a 2×1 multiplexer, and four FIFOs. Mul-
tiplier and adder are used to perform multiplication and accumulation,
respectively. The data arbiter receives the packet from the switch and
extracts the header. Then it forwards the data to the FIFOs or data
lookup tables. The multiplexer is used to select one of the two result
FIFOs as data output. The Vector Table and the Sum Table can con-
tain at most 16 matrix vector elements and 16 accumulation results for
each. Note that the default data length is 32 bits for the single float-
ing precision operands, which is directly generated from the Xilinx ISE
core library. It is also possible to configure it as 64 bits for the double
precision or 80 bits for the extended double precision.

Figure 6.6: Schematic view of the PE for the SMVM–NoC platform

6.3.6 Data Mapping

When mapping a SMVM operation into a 4×4 SMVM-NoC, we first
need to pack the nonzero elements from the CSR based sparse matrix
and the corresponding vector elements with a proper header. Packing
examples are listed in Table 6.2, the two addresses (X–Coordinate and
Y–Coordinate) are separated into three sub parts for each. The lower 2

114 Sparse Matrix–Vector Multiplication on Network–on–Chip 6

bits of the two addresses are used to indicate the horizontal and vertical
positions of PE for multiplication. The third and fourth bits are used to
address the PE for performing the accumulation operation in the same
way. Note that these two address lengths should be long enough when
the size p of SMVM-NoC increases. The higher 4 bits of X-Coordinate
are used as an index for Vector Table to cache 16 entries in PE for
multiplication, whereas the higher 4 bits of Y-Coordinate are used for
Sum Table to buffer 16 entries for accumulation.

If we look at Figure 6.2 and Table 6.2 as an example, the nonzero
elements A11, A21 and A51 need to perform multiplications with the
vector element x1. The addresses of these three nonzero elements and
one vector element should be mapped to the same PE. This means that
the lower 2 bits in those packets have to be identical (emphasized in
italic style). On the other hand, the multiplication results (A21 × x1)
and (A23×x3) need to be accumulated in the same PE so that the third
and fourth bits of A21 and A23 and sum index (emphasized in bold style)
should be identical, too.

Table 6.2: An example of packing vector elements and nonzero matrix elements into
packet format (× denotes empty and Bold/Italic fonts denote that these packets have
to be mapped on the same PE.)

Finish Operation Data Y–Coordinate X–Coordinate Pay
Flag Code Type Sum Acc Mul Vector Acc Mul load

0 × 0 ×××× ×× 10 0110 ×× 11 x1

0 × 0 ×××× ×× 10 0001 ×× 10 x3

0 0 1 0111 11 10 0110 11 11 A11

0 0 1 0100 10 10 0110 10 11 A21

0 0 1 1010 10 10 0110 11 11 A51

0 0 1 0100 10 10 0001 10 10 A23

However, sometimes the sparse matrix will be larger than the maxi-
mal capacity. In this case, we need to collect as many nonzero elements
as the maximum capacity of vector elements can hold. Then we send
those packets to the SMVM-NoC for computation. Once the computa-
tion is finished, we receive the result from SMVM-NoC as a temporary
result, and send another data set for further computation. Finally, all
temporary results will be combined in the MicroBlaze processor to get
the multiplication result.

6.4 Experimental Result 115

6.4 Experimental Result

6.4.1 FPGA Implementation

The proposed SMVM-NoC platform as illustrated in Figure 6.3 has
been modeled in Verilog HDL, synthesized by the Xilinx ISE 11.5 and
verified on the Xilinx ML–605 development kit with the Xilinx Plat-
form Studio 11.5 [136]. The synthesized resource utilization reports
with pipelining are listed in Table 6.3. After that, a set of random
matrices from the size of 16×16 to 256×256 with sparsity from 10% to
50% is tested. In Figure 6.7, an overall comparison was made between
Pentium-4 PC, non–pipelined SMVM-NoC and pipelined SMVM-NoC
with different size of sparse matrice. Obviously, the pipelining can im-
prove the performance but results in a huge area overhead. For exam-
ple, when the matrix size is 128×128, the performance of the proposed
pipelined SMVM–NoC can reach 580 MFlops with the size of 4×4 and
910 MFlops with the size of 8×8 in average. Therefore, it can obtain a
speed up by a factor of 2.8∼4.4 compared to the Pentium-4. The 8×8
pipelined SMVM–NoC is too large for device mapping on the Xilinx
Virtex–6. The peak performance of the proposed SMVM-NoC platform
with the mesh network is 25.47 GFlops in theory. Each PE can perform
at most two floating-point operations for each clock cycle. The peak
performance can be obtained as:

Performancepeak = FPOPC ∗ PEC ∗ f, (6.4)

where FPOPC, PEC and f are the Floating-Point Operations Per
Cycle in a single PE, the number of processor and the maximal clock
frequency.

Table 6.4 shows the comparison between the non–pipelined and the
pipelined switches in terms of performance, resource utilization and
power consumption. An average performance enhancement by 74% is
achieved by integrating the pipelined switch into the SMVM-NoC. The
insertion of pipeline registers results in an increase of resource utilization
in terms of Slice Registers and Slice LUTs by 35% and also an increase
of dynamic power consumption by 13%.

116 Sparse Matrix–Vector Multiplication on Network–on–Chip 6

Table 6.3: Synthesis Results of pipelined SMVM-NoC Architecture in Xilinx Virtex-6
(XC6VLX240T-1FF1156)

Size Logic utilization Used Available Util. Freq. Peak Flops

2×2
Slice Registers 16,171 301,440 5%

286 MHz 2.29 GFlopsSlice LUTs 18,002 150,720 11%
DSP48E1 20 768 3%

4×4
Slice Registers 69,224 301,440 22%

275 MHz 8.8 GFlopsSlice LUTs 77,540 150,720 51%
DSP48E1 80 768 10%

8×8
Slice Registers 254,960 301,440 84%

199 MHz 25.47 GFlopsSlice LUTs 318,076 150,720 211%
DSP48E 320 768 41%

Table 6.4: The performance comparison between non–pipelined 4×4 SMVM-NoC
and pipelined 4×4 SMVM-NoC (NZs: Nonzero Elements)

Item Non–pipelined Pipelined Comment

MFlops

256 NZs 171.24 318.5 +86%
1024 NZs 235.27 454.8 +93%
4096 NZs 227.58 382.75 +68%
16384 NZs 244.7 367.05 +50%

Util.
Slice Reg 52,609 69,224 +32%
Slice LUTs 56,322 77,540 +38%
DSP48E1 48 48 0%

Power
Dynamic Power 0.80626W 0.90937W +13%
Static Power 2.20761W 2.21330W +0.3%
Total Power 3.01387W 3.12267W +4%

6.4.2 Influence of the Sparsity

The performance of SMVM-NoC is not influenced by the sparsity of the
matrix. It is more stable than the general processor (i.e. GPP’s perfor-
mance is highly depending on the sparsity). 500 random matrices with
the matrix size of 128×128 and 256×256 are generated. They are with
random sparsity from 10% to 50%. Figure 6.8 shows that the perfor-
mance of the proposed SMVM–NoC is not depending on the sparsity,
whereas the sparsity affects the performance of SMVM in a general pur-
pose processor. However, the performance of pipelined SMVM-NoC has
a huge variance compared to the non–pipelined one. On the other hand,
according to Figure 6.7 currently only an average performance in the

6.4 Experimental Result 117

Figure 6.7: Performance analysis of different matrix size with random sparsity on
the Pentium-4 PC, non–pipelined 4×4/8×8 SMVM-NoC, 4×4/8×8 pipelined SMVM-
NoC (operating at 200MHz)

range of hundreds of MFlops could be obtained from the experimental
results. If we further look into the packet distribution analysis between
the PEs and the switches as shown in Figure 6.9, we can see that most of
the time the packets are stuck in the switches due to the traffic conges-
tion and poor throughput of the switches. This is because the switches
transmitting packets over the network have much shorter latency com-
pared to the PEs and then results in an unbalanced performance be-
tween the pipelined PEs and the pipelined switches. Therefore, the
switch is compromised with the PE concerning clock rate, which results
in performance decrements. To solve this problem, we can separate the
clock source into two parts, one for PE running at a lower frequency,
another for the switch running at a higher frequency. Figure 6.10 shows
a simple scenario that the clock domain is divided into two parts by
utilizing the asynchronous FIFO buffer. This asynchronous FIFO is a
special customized design, which can receive and transmit the data be-
tween different clock domains. This is already highly adapted in todays
analog and mixed–signal VLSI design. Therefore, using different clocks
for NI and PE should enable to improve the performance.

118 Sparse Matrix–Vector Multiplication on Network–on–Chip 6

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450
Random Sparse Matrix

P
er

fo
rm

an
ce

 (
M

F
lo

ps
)

Pipelined Non-pipelined Pentium-4 3.0G

(a) 500–sets random 128×128 sparse matrice

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450
Random Sparse Matrix

P
er

fo
rm

an
ce

 (
M

F
lo

ps
)

Pipelined Non-pipelined Pentium-4 3.0G

(b) 500–sets random 256×256 sparse matrice

Figure 6.8: Influence of sparsity on different architectures with random sparsity from
10% to 50%

6.4.3 Mapping to Iterative Solver

When we have to map the proposed SMVM-NoC architecture into cur-
rent iterative solvers, more sophisticated methods (steepest descent,
CG) are required. So far, the current architecture can be used for cer-
tain methods for solving sparse systems of linear equations, such as
the Jacobi and Gauss Seidel methods. The convergence of these meth-
ods, however, depends on certain properties of the matrix (e.g. spectral
radius, diagonal dominance and so on). Furthermore, there is an impor-
tant fact specific to the iterative methods. The routing paths are not

6.4 Experimental Result 119

0

100

200

300

400

500

600

700

800

0 2 5 7 10 12 15 17 20 22 24 27 29 32 34 37 39 41 44 46 49 51 54 56 59 61 63 66 68 71 73 76 78 81 83 85

Time(�s)

N
um

be
r

������� �	
�������������� �	 �
�

(a) 128×128 sparse matrix

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Time(�s)

N
um

be
r

������� �� ��������������� �� ���

(b) 256×256 sparse matrix

Figure 6.9: Analysis of the packet traffics for the 4×4 pipelined SMVM–NoC

known during the first iteration, especially when the sparsity structure
is still unknown. However, the sparsity structure and the routing paths
on the NoC will be determined once the first iteration is finished. These
paths will be identical for the remaining iterations.

Although these methods are dominated by the SMVM concerning
their complexity, there are other operations which must be executed
between the successive SMVM computations. Incorporating these op-
erations into the overall data flow must be investigated for the different
methods.

120 Sparse Matrix–Vector Multiplication on Network–on–Chip 6

�����
 !"��#$%��

&'(')* &'('+,(-./

Figure 6.10: Two clock regions for the PE and the switch, one for PE running at
higher frequency, another lower frequency

6.5 Summary

In this chapter, a new design concept for accelerating the SMVM based
on NoC in an FPGA was presented. Matrix-vector multiplications with
various random sparse matrices in IEEE–754 single floating point pre-
cision have been tested on the Xilinx Virtex–6 FPGA. The advantages
of introducing the NoC structure into SMVM computation were given
by high resource utilization, flexibility and the ability to communicate
among heterogeneous systems, such that more accelerators can be con-
figured into a larger p × p array (p =, 2, 4, 8, . . . , 2k, k ∈ N). The syn-
thesis results showed that the advanced FPGA with the chip-internal
NoC network can provide a solution for sparse matrix computation to
further accelerate many iterative solvers in hardware. Moreover, the
NoC structure can receive data from and forward results to different
entries simultaneously. This makes it possible to deal with very large
sparse matrices with arbitrary sparsity structure of the matrix without
interfering the performance by the sparsity of the matrix.

7 Conclusions

Lately, the ever increasing speed of production and standardization cy-
cles for electronic devices drives the VLSI manufacturing technology.
It is evolving into VDSM level with a very fast trend. This trend
is expected to be continued for at least 10 more years. However, it
also causes many nasty side effects like the famous design productivity
gap, short development period for time–to–market, increasing of leak-
age power and the bus transmission bottleneck. In this regard, these
challenges motivate to analyze their impact on iterative algorithms and
to present generalized VLSI design concepts, which consider the signif-
icant impact on area, timing, power, performance, cost, reliability and
so on.

Implementing an iterative algorithm on a multiprocessor array, there
is a tradeoff between the complexity of an iteration step and the number
of required iterations. As long as the convergence property is retained,
it is possible to modify the algorithm (i.e. mainly the iteration step).
However, it is not easy to find a balanced solution to satisfy all design
criteria, especially for the performance/complexity of the hardware, the
load/throughput of interconnects and the overall energy/power con-
sumption. Therefore, in order to understand the relationship between
the circuit design issues and the iteration steps, we have elaborated
the design issues through four different selected iterative algorithms:
CORDIC processor for signal processing, configurable QDCIT trans-
formations for video compression, parallel Jacobi method for EVD and
parallel SMVM–NoC for solving systems of linear equations. In all
cases, it was shown how the iterative algorithm is derived from the
system model, and how it can be implemented in a circuit efficiently.

A brief introduction to the fundamental CORDIC algorithm with
different rotation modes and their corresponding VLSI circuit imple-
mentations was given first. Different flow graphs of the CORDIC archi-

122 Conclusions 7

tectures influence the throughput and the energy consumption deeply.
It simply becomes a tradeoff problem between the hardware cost (log-
ical utilization) and the throughput (byte per second). For example,
the area of the folded CORDIC flow graph is smaller than the pipelined
CORDIC but the throughput is much lower. On the contrary, the use
of pipelining not only obtains a higher throughput, but also achieves
low energy consumption. However, the logical utilization is higher.

Second, a low-complexity and fully configurable QDCIT with arbi-
trary iteration steps was presented. Since most of the video and image
standards require the DCT and integer transform, these two transfor-
mations were integrated together by using various modules which are
based on the CORDIC iterations and the compensation steps. The pro-
posed 2-D FQDCIT architecture requires only 120 adders and 40 barrel
shifters to perform the multiplierless 8×8 FQDCT and 4×4/8×8 for-
ward quantized integer transform by sharing the hardware resources as
much as possible. An inverse version with arbitrary iteration numbers
has also been implemented. The proposed 2–D IQDCIT architecture
requires only 124 adders and 40 barrel shifters to perform the inverse
transformations. According to the ASIC implementation results, the
QDCIT achieved a smaller chip area and higher throughput compared
to the other architectures. Most important is that it provided a good
compromise between PSNR and computational effort, and also satisfied
the referenced implementations in terms of video quality (both XVID
and H.264). On the other hand, the arbitrary iteration steps can further
adjust the hardware complexity according to the device’s resolution.
That means the tradeoff between the video quality and the computa-
tional complexity is highly adaptable. Therefore, the presented iterative
architecture for video compression is very suitable for low-complexity
and multi-standard SoC designs.

Third, a Jacobi EVD method was selected as a typical example for
modification of the iteration step, because of its very robust convergence
property as long as the orthogonality of the similarity transformation
is retained. A configurable 10×10 Jacobi EVD array has been imple-
mented as an ASIC with the Full CORDIC and the µ–CORDIC to
explain the circuit design concept for parallel iterative algorithms. An
adaptive method was also applied to improve the convergence speed.
A detailed comparison was made concerning the tradeoffs between the
inner iteration numbers of CORDIC processor and the outer sweep num-

7 Conclusions 123

bers. It was shown that the modified Jacobi method can further improve
the area overhead of combinational logic, reduce the computation time
and save the energy consumption.

Fourth, a novel design to accelerate the SMVM based NoC concept
was presented. In this architecture, the advantages of introducing the
NoC structure into SMVM computation were high resource utilization,
flexibility and the ability to communicate among heterogeneous sys-
tems. The performance of SMVM-NoC is not depending on the spar-
sity structure of the sparse matrix. Since the NoC structure can receive
data from and forward results to different entries simultaneously, it is
able to deal with very large sparse matrix without caring about the
structure of the sparse matrix. The implementation results show that
the chip-internal NoC network can achieve a good balanced solution
for sparse matrix computation to further accelerate many numerically
problems in hardware, such as solving a system of linear equation (CG
Method), FEM problem and so on.

The comparison to the established iterative architectures showed sig-
nificant differences of the system in many respects, such as the achieved
PSNR, the need of logical utilization, the power/energy consumption,
the computational complexity and others. As we have always empha-
sized throughout this thesis, a design engineer must think carefully
which strategy should be selected for the hardware implementation of
iterative algorithms. These four examples indicate that a proper deci-
sion can be made efficiently for different design issues.

For future work, FFT algorithm, wavelet transformation or 16×16
integer transform can be also integrated into our configurable DCIT
core by using the CORDIC architecture. This will make the transform
core be able to support next generation of scalable video Codecs, such
as H.264 scalable profiles, High Efficiency Video Coding (HEVC/H.265)
and JPEG 2000.

Furthermore, instead of selecting a fixed size parallel EVD array, we
will try to design a block Jacobi method, where a smaller array, say
10×10 to 40×40, can solve the EVD/SVD problems with size of more
than 1000×1000.

The pipelined SMVM-NoC design is facing a performance bottleneck

124 Conclusions 7

due to the unbalanced packet distribution between PEs and switches.
This caused a huge performance gap between them. The floating-point
units in the PEs can have a critical latency compared to the switch
which only performs data transmission. For this reason, we will extend
this architecture to speed up the clock rate of the switch by separating
the clock signal into NI clock and PE clock. Furthermore, the pipeline
stage of PE can also be adjusted in order to reduce the packet injection
rate.

In addition, the general concept of exchanging inner and outer it-
erations in parallel iterative algorithms can be investigated for other
iterative algorithms and their applications.

A Appendix Tables

126 Appendix Tables A

Table A.1: The detailed information for each x86 based CPU from 1970 until 2010

Year CPU chip short name vender transistor counts die size (mm)

1971-11-15 4004 4004 Intel 2,300 12

1972-4-1 8008 8008 Intel 2,500 15

1974-4-1 8080 8080 Intel 6,000 20

1978-6-8 8086 8086 Intel 29,000 33

1982-2-1 80268 80286 Intel 134,000 47

1985-10-17 80386 80386 Intel 275,000 104

1989-4-1 80486 80486 Intel 1,185,000 81

1993-3-22 Pentium P5 Pentium Intel 3,100,000 293

1996-3-27 AMD K5 K5 AMD 4,300,000 251

1997-4-2 AMD K6 K6 AMD 8,800,000 157

1997-5-7 Pentium II P2 Intel 7,500,000 113

1999-2-26 Pentium III P3 Intel 9,500,000 128

1999-6-23 Athlon K7 K7 AMD 22,000,000 184

2000-11-20 Pentium 4 P4 Intel 42,000,000 217

2001-6-1 Itanium Itanium Intel 325,000,000 300

2003-9-23 Athlon 64 K8 AMD 105,000,000 193

2005-7-18 Itanium Processor 9M Itanium II Intel 592,000,000 432

2005-8-1 Athlon 64 X2 Dual-Core K9 AMD 233,200,000 199

2006-8-1 Core 2 Duo Dual-Core Core 2 Intel 291,000,000 143

2007-10-31 Itanium 9152M Dual-Core Itanium II Dual Intel 1,720,000,000 596

2007-11-19 Phenom X4 9600 Quad-Core Phenom AMD 463,000,000 283

2008-5-29 Nano U2350 VIA Nano VIA 94,000,000 63

2008-11-17 Core i7 Quad-Core i7 Intel 731,000,000 263

2009-8-13 Phenom II X4 965 Quad-Core Phenom II AMD 758,000,000 258

2010-1-7 Core i5 Dual-Core i5 Intel 774,000,000 296

2010-2-8 Itanium 2 9350 Quad-Core Itanium II Quad Intel 2,046,000,000 698.75

2010-3-11 Core i7-980X Extreme Six-Core i7 980X Intel 1,170,000,000 248

2010-4-26 Phenom II X6 Six-Core Phenom II X6 AMD 904,000,000 346

A Appendix Tables 127

Table A.2: The pseudo code for each type of Jacobi parallel EVD code generation

top, when (p = 1) and (1 < q < N)








a11 in PEp,q ↔ a12 in PEp,q−1; a12 in PEpq ↔ a11 in PEp,q+1

a21 in PEp,q ↔ a12 in PEp+1,q−1; a22 in PEpq ↔ a11 in PEp+1,q+1









bottom, when (p = N) and (1 < q <N)








a11 in PEpq ↔ a22 in PEp−1q−1; a12 in PEpq ↔ a21 in PEp−1q+1

a21 in PEpq ↔ a22 in PEpq−1; a22 in PEpq ↔ a21 in PEpq+1









inner, when (1 < p < N) and (1 < q < N)








a11 in PEp,q ↔ a22 in PEp−1,q−1; a12 in PEp,q ↔ a21 in PEp−1,q+1

a21 in PEp,q ↔ a12 in PEp+1,q−1; a22 in PEp,q ↔ a11 in PEp+1,q+1









left, when (1 < p < N) and (q = 1)








a11 in PEpq ↔ a21 in PEp−1q ; a12 in PEpq ↔ a21 in PEp−1q+1

a21 in PEpq ↔ a11 in PEp+1q ; a22 in PEpq ↔ a11 in PEp+1q+1









right, when (1 < p < N) and (q = N)








a11 in PEpq ↔ a22 in PEp−1q−1; a12 in PEpq ↔ a22 in PEp−1q

a21 in PEpq ↔ a12 in PEp+1q−1; a22 in PEpq ↔ a12 in PEp+1q









four corner

when (p = 1 and q = 1)








a11 in PE11 ↔ a11 in PE11; a12 in PE11 ↔ a11 in PE12

a21 in PE11 ↔ a11 in PE21; a22 in PE11 ↔ a11 in PE22









when (p = 1) and (q = N)








a11 in PE1N ↔ a12 in PE1N−1; a12 in PE1N ↔ a12 in PE1N

a21 in PE1N ↔ a12 in PE2N−1; a22 in PE1N ↔ a12 in PE2N









when (p = N) and (q = 1)








a11 in PEN1 ↔ a21 in PEN−11; a12 in PEN1 ↔ a21 in PEN−12

a21 in PEN1 ↔ a21 in PEN1; a22 in PEN1 ↔ a21 in PEN2









when (p = N) and (q = N)








a11 in PENN ↔ a22 in PEN−1N−1; a12 in PENN ↔ a22 in PEN−1N

a21 in PENN ↔ a22 in PENN−1; a22 in PENN ↔ a22 in PENN









128 Appendix Tables A

B Appendix Figures

130 Appendix Figures B

ResultRotating

< x0, y0 >

< x1, y1 >

< xn, yn >

n times

< xn, yn >

< x0, y0 >

x0 · z
φt

x0 x0

Figure B.1: CORDIC linear rotation mode

ResultRotating

< x0, y0 >

n times
< x2, y2 >

< x0, y0 >

< x1, y1 >

< xn, yn > < xn, yn >

y0
x0

x0x0

Figure B.2: CORDIC linear vector mode

B Appendix Figures 131

Rotating

n times

Scaling

φt

< x0, y0 >

< x1, y1 >

< xn, yn >

< xs, ys >

< xn, yn >

Figure B.3: CORDIC hyperbolic rotation mode

n times

Ratating

< x0, y0 >

< xn, yn >

< x1, y1 >

φt

Figure B.4: CORDIC hyperbolic vector mode

132 Appendix Figures B

(a) foreman CIF sequence (b) paris CIF sequence (c) news CIF sequence

(d) crew DVD sequence (e) ice DVD sequence

(f) rush–hour Full–HD
sequence

(g) blue–sky Full–HD sequence

Figure B.5: Seven video sequences for test the QDCIT transformation

Figure B.6: An inverse mapping of parallel SMVM operations based on the NoC
architecture

Notation and Abbreviations

Notation

x Vectors
m̂ offset errors
b Matrix vector mutlication results
c Constant, scalar system parameters
A Matrices
x(i) The ith element of vector x
A(i, j) The element in row i, column j of matrix A
aij The element in row i, column j of matrix A
AT Transpose of A
A−1 Inverse of A
AH Conjugate transpose of A
diag(A) Diagonal matrix with elements of A on diagonal
x(t) Time-continous scalar function
x(n) Time-discrete scalar function
C = A⊗ B Element–by–element matrix multiplication

Abbreviations

1-D One-Dimensional
2-D Two-Dimensional
3D-IC Three-Dimensional Integrated Circuit
µ-CORDIC µ-rotation CORDIC
AC Alternating Current
AIR Algebraic Integer Representations
ALU Algorithmic Logic Unit

ASIC Application Specific Integrated Circuit
CG Conjugate Gradient
CIF Common Intermediate Format (352×288)
CLDCT CORDIC based Loeffler DCT
CMOS Complementary Metal-Oxide-Semiconductor
CNFET Carbon Nanotube Field Effect Transistor
Codec enCoding/decoding
CORDIC COordinate Rotation for DIgital Computer
CPU Central Processing Unit
CSD Canonical Signed Digit
CSR Compressed Sparse Row
DA Distributed Arithmetic
DC Directing Current
DCT Discrete Cosine Transform
DCIT Discrete Cosine Integer Transform
DFT Discrete Fourier Transform
DSM Deep Sub-Micron
DSP Digital Signal Processor
DVD Digital Video Disc
EVD Eigenvalue Decomposition
FEM Finite Element Method
FFT Fast Fourier Transform
FGA Flow Graph Arithmetic
FP Floating Point
FPGA Field Programmable Gate Array
FQDCIT Forward Quantized Discrete Cosine Integer Transform
GPS Global Positioning System
GSM Global System for Mobile communication
H.263 ITU-T H.263 standard
H.264 ITU-T H.264 standard
H.265 ITU-T H.265 standard
HD High-Definition
HDL Hardware Description Language
HDTV High-Definition Television
HEVC High Efficiency Video Coding
IDCT Inverse Discrete Cosine Transform
IDCIT Inverse Discrete Cosine Integer Transform
IEEE 754 IEEE Standard for Floating-Point Arithmetic
IFFT Inverse Fast Fourier Transform
IO Input/Output

IP Intellectual Property
IQDCIT Inverse Quantized Discrete Cosine Integer Transform
ITU-T Telecommunication Standardization Sector
ITRS International Technology Roadmap for Semiconductors
JPEG Joint Photographic Experts Group
LSB Least Significant Bit
LUT Lookup Table
MAC Multiply Accumulate
MEMS Micro Electro Mechanical Systems
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
MPEG Moving Picture Experts Group
MPEG-4 AVC MPEG-4 Advanced Video Coding
MPSoC MultiProcessor System-on-Chip
MSB Most Significant Bit
MTCMOS Multi-Threshold CMOS
MUXRC Multiplexed Row-Column Decomposition
NI Network Interface
NiMH Nickel-Metal Hydride
PMOS P-type Metal-Oxide-Semiconductor
NoC Network-on-Chip
NQDCT Novel QDCT
NRE Non-Recurring Engineering
OFDM Orthogonal Frequency Domain Multiplexing
OPB Xilinx On–chip Peripheral Bus
PR PageRank
P & R Place and Route
PE Processor/Processing Element
PMOS P-type Metal-Oxide-Semiconductor
PSNR Peak Signal-to-Noise Ratio
QCIF Quarter Common Intermediate Format (176×144)
QDCT Quantized Discrete Cosine Transform
QDCIT Quantized Discrete Cosine Integer Transform
QP Quantization Parameter
QRD QR Decomposition
QStep Quantization Step
RC Row-Column Decomposition
RTL Register Transfer Level
SiP System-in-Package
SMVM Sparse Matrix-Vector Multiplication
SMVM-NoC Sparse Matrix-Vector Multiplication based on Network-on-Chip

SoC System-on-Chip
SoP System-of-Package
SPD Symmetric Positive-Definite
SVD Singular Value Decomposition
TRAM Transpose RAM
TSMC Taiwan Semiconductor Manufacturing Company limited
UHD Ultra High-Definition
VDSM Very Deep Sub-Micron
VHDL VHSIC Hardware Description Language
VLSI Very Large Scale Integration
x86 Intel 80x86 CPU family
WCDMA Wideband Code Division Multiple Access
WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Network

Bibliography

[1] 15 Moore’s Years: 3D chip stacking will take Moore’s Law past
2020. Technical report, IBM, Mar 2010.

[2] H.M. Ahmed, J.M. Delosme, and M. Morf. Highly Concurrent
Computing Structure for Matrix Arithmetic and Signal Process-
ing. IEEE Computer Magazine, 15:65–82, 1982.

[3] A. Ahmedsaid, A. Amira, and A. Bouridane. Improved SVD sys-
tolic array and implementation on FPGA. In IEEE International
Conference on Field-Programmable Technology, pages 3–42, De-
cember 2003.

[4] M. Ali and J. Götze. A VLSI-Suited Algorithm for Solving Lin-
early Constrained Least Squares Problems. In Algorithms and
Parallel VLSI Architectures, pages 87–96, 1991.

[5] Chandrakasan P. Anantha and Robert W. Brodersen. Low Power
Digital CMOS Design. Kluwer Academic, 1995.

[6] Ray Andraka. A survey of CORDIC algorithms for FPGA based
computers. In International Symposium on Field Programmable
Gate Arrays, pages 191–200, 1998.

[7] I. Appelbaum. Silicon spintronics. In International Conference
on Ultimate Integration of Silicon, pages 5–8, 2009.

[8] S. Asaad and T. Bapty. Performance modeling for adaptive par-
allel embedded systems. In IEEE International Performance,
Computing, and Communications Conference, pages 57–64, April
2002.

[9] N.J. August and Dong Sam Ha. Low power design of DCT and
IDCT for low bit rate video codecs. IEEE Transactions on Mul-
timedia, 6(3):414–422, June 2004.

[10] Martin Becka, Gabriel Oksa, and Marian Vajtersic. Dynamic or-
dering for a parallel block-Jacobi SVD algorithm. Parallel Com-
puting, 28(2):243–262, 2002.

[11] Martin Becka and Marian Vajtersic. Block-Jacobi SVD algorithms
for Distributed Memory System I: Hypercubes and Rings. Parallel
Algorithms and Applications, 13(3):265–287, 1999.

[12] Martin Becka and Marian Vajtersic. Block-Jacobi SVD algorithms
for Distributed Memory System II:Meshes. Parallel Algorithms
and Applications, 14(1):37–56, 1999.

[13] Luca Benini and Giovanni De Micheli. System-Level Power Op-
timization: Techniques and Tools. ACM Transactions on Design
Automation of Electronc Systems, 5(2):115–192, April 2000.

[14] Luca Benini and Giovanni De Micheli. Networks on Chips: A
New SoC Paradigm. Computer, 35(1):70–78, January 2002.

[15] Luca Benini and Givanni De Micheli. Dynamic Power Manage-
ment: Design Techniques and CAD Tools. Kluwer Academic,
1998.

[16] Tobias Bjerregaard and Shankar Mahadevan. A Survey of Re-
search and Practices of Network-on-Chip. ACM Computing Sur-
veys, 38(1):1–51, 2006.

[17] S. Borkar. Thousand Core Chips A Technology Perspective. In
Design Automation Conference, pages 746–749, 2007.

[18] Richard P. Brent and Franklin T. Luk. The Solution of Singular-
Value and Symmetric Eigenvalue Problems on Multiprocessor
Arrays. SIAM Journal on Scientific and Statistical Computing,
6(1):69–84, January 1985.

[19] Cadence. The Cadence Website. www.cadence.com, Dec 2010.

[20] B.H. Calhoun, F.A. Honore, and A.P. Chandrakasan. A leakage
reduction methodology for distributed MTCMOS. IEEE Journal
of Solid-State Circuits, 39(5):818–826, May 2004.

[21] K. Chakrabarty, R.B. Fair, and Jun Zeng. Design Tools for Digi-
tal Microfluidic Biochips: Toward Functional Diversification and
More Than Moore. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 29(7):1001–1017, July
2010.

[22] Hao-Chieh Chang, Jiun-Ying Jiu, Li-Lin Chen, and Liang-Gee
Chen. A Low Power 8×8 Direct 2-D DCT Chip Design. VLSI
Signal Processing, 26(3):319–332, November 2000.

[23] Wen Hsiung Chen, C. Smith, and S. Fralick. A Fast Computa-
tional Algorithm for the Discrete Cosine Transform. IEEE Trans-
actions on Communication, 25(9):1004–1009, September 1977.

[24] Yuhua Chen. Cell Switched Network-on-Chip Candidate for
Billion-Transistor System-on-Chips. In IEEE International SOC
Conference, pages 57–60, September 2006.

[25] Chang Cho, Jun Heo, and Joon Kim. An extension of J.83 annex
B transmission systems for ultra-high definition (UD) TV broad-
casting. IEEE Transactions on Consumer Electronics, 55(1):63–
68, February 2009.

[26] R. C. Conzalez and R. E. Woods. Digial Image Processing.
Prentice-Hall, 2001.

[27] Philip P. Dang, Paul M. Chau, Truong Q. Nguyen, and Trac D.
Tran. BinDCT and Its Efficient VLSI Architecture for Real-Time
Embedded Applications. Journal of Imaging Science and Technol,
49(2):124–137, April 2005.

[28] B. Das and S. Banerjee. A low complexity architecture for com-
plex discrete wavelet transform. In IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, volume 2, 6-10
2003.

[29] Michael deLorimier and André DeHon. Floating-point sparse
matrix-vector multiply for FPGAs. In International Symposium
on Field-Programmable Gate Arrays, pages 75–85, February 2005.

[30] J.-M. Delosme. A Processor for Two-Dimensional Symmetric
Eigenvalue and Singular Value Arrays. In Asilomar Conference
on Circuits, Systems and Computers, pages 217–221, 1987.

[31] E. Deprettere, P. Dewilde, and R. Udo. Pipelined CORDIC Ar-
chitecture for Fast VLSI Filtering and Array Processing. In IEEE
International Conference on Acoustics, Speech, and Signal Pro-
cessing, pages 250–253, 1984.

[32] E. Deprettere and F. Ed. Synthesis and Fixed Point Implementa-
tion of Pipelined True Orthogonal Filters. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, volume 1,
pages 217–220, 1983.

[33] Li-Fu Ding, Wei-Yin Chen, Pei-Kuei Tsung, Tzu-Der Chuang,
Pai-Heng Hsiao, Yu-Han Chen, Hsu-Kuang Chiu, Shao-Yi Chien,
and Liang-Gee Chen. A 212 MPixels/s 4096 2160p Multiview
Video Encoder Chip for 3D/Quad Full HDTV Applications. IEEE
Journal of Solid-State Circuits, 45(1):46–58, January 2010.

[34] A. Docef, F. Kossentini, Khanh Nguuyen-Phi, and I.R. Ismaeil.
The quantized DCT and its application to DCT-based video cod-
ing. IEEE Transactions on Image Processing, 11(3):177–187,
March 2002.

[35] Jose Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnec-
tion Networks: An Engineering Approach. Morgan Kaufmann,
2003.

[36] P. Duhamel and H. H’Mida. New 2n DCT algorithms suitable
for VLSI implementation. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, volume 12, pages 1805–
1808, April 1987.

[37] Y. Elkurdi, D. Fernández, E. Souleimanov, D. Giannacopoulos,
and W. J. Gross. FPGA architecture and implementation of

sparse matrix-vector multiplication for the finite element method.
Computer Physics Communications, 178:558–570, April 2008.

[38] M.D. Ercegovac and T. Lang. Redundant and On–Line CORDIC:
Application to Matrix Triangularization and SVD. IEEE Trans-
actions on Computers, 39:725–740, 1990.

[39] David Gregg et al. FPGA Based Sparse Matrix Vector Mul-
tiplication using Commodity DRAM Memory. In International
Conference on Field Programmable Logic and Applications, pages
786–791, August 2007.

[40] M. Fu, G.A. Jullien, V.S. Dimitrov, and M. Ahmadi. A low-power
DCT IP core based on 2D algebraic integer encoding. In IEEE In-
ternational Symposium on Circuits and Systems, volume 2, pages
765–768, May 2004.

[41] Pat Gelsinger. Moore’s Law: ”We See No End in Sight,”. Tech-
nical report, Intel Chief Technology Officer, May 2008.

[42] Juergen Goetze, Benjamin Heyne, Shanq-Jang Ruan, and
Chi-Chia Sun. European Union Patent Application:
EP1850597,Method and circuit for performing cordic based
loeffler discrete cosine transformation (dct) for signal processing,
2007.

[43] Juergen Goetze, Benjamin Heyne, Shanq-Jang Ruan, and Chi-
Chia Sun. USA Pending Patent: US20070250557, Method and
circuit for performing cordic based loeffler discrete cosine trans-
formation (dct) for signal processing, 2007.

[44] Juergen Goetze, Benjamin Heyne, Shanq-Jang Ruan, and Chi-
Chia Sun. Taiwan Patent: TW200600143651, Method and circuit
for performing cordic based loeffler discrete cosine transformation
(dct) for signal processing, 2010.

[45] Gene H. Golub and Charles F. Van Loan. Matrix computations
(3rd ed.). Johns Hopkins University Press, 1996.

[46] J. Götze and G.J. Hekstra. An Algorithm and Architecture Based

on Orthonormal Micro-Rotations for Computing the Symmetric
EVD. Integration, the VLSI Journal, 20:21–39, 1995.

[47] J. Götze, S. Paul, and M. Sauer. An Efficient Jacobi-Like Algo-
rithm for Parallel Eigenvalue Computation. IEEE Transactions
on Computers, 42(9):1058–1065, September 1993.

[48] J. Gotze and U. Schwiegelshohn. Sparse matrix-vector multipli-
cation on a systolic array. In IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 2061–2064 vol.4,
April 1988.

[49] Jiun-In Guo, Rei-Chin Ju, and Jia-Wei Chen. An efficient 2-D
DCT/IDCT core design using cyclic convolution and adder-based
realization. IEEE Transactions on Circuits and Systems for Video
Technology, 14(4):416–428, April 2004.

[50] Gerben J. Hekstra and Ed F. Deprettere. Floating Point Cordic.
In IEEE Symposium on Computer Arithmetic, pages 130–137,
July 1993.

[51] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oeberg, M. Mill-
berg, and D. Lindquist. Network on a Chip: An Architecture for
Billion Transistor Era. In Proceeding of the IEEE NorChip Con-
ference, pages 24–31, November 2000.

[52] Magnus Hestenes and Eduard Stiefel. Methods of conjugate gradi-
ents for solving linear systems. Journal of Research of the National
Bureau of Standards, 49(6):409–436, December 1952.

[53] Benjamin Heyne. Efficient CORDIC Based Implementation of
Selected Signal Processing Algorithms. PhD thesis, Technology
University of Dortmund, October 2008.

[54] Jingcao Hu and R. Marculescu. DyAD - smart routing for
networks-on-chip. In Design Automation Conference, pages 260–
263, June 2004.

[55] Y.H. Hu and H.M. Chern. VLSI CORDIC Array Structure Im-
plementation of Toeplitz Eigensystem Solvers. In IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing,
pages 1575–1578, April 1990.

[56] Yu Hen Hu. CORDIC-based VLSI architectures for digital signal
processing. IEEE Signal Processing Magazine, 9(3):16 –35, July
1992.

[57] ITRS. 2003 Edition, Interconnect. Technical report, International
Technology Roadmap for Semiconductors, 2003.

[58] ITRS. 2009 Edition, Executive Summary. Technical report, In-
ternational Technology Roadmap for Semiconductors, 2009.

[59] ITRS. 2009 Edition, System Drivers. Technical report, Interna-
tional Technology Roadmap for Semiconductors, 2009.

[60] K. Jainandunsing and Deprettere E.F. A New Class of Parallel
Algorithm for Solving Systems of Linear Equation. SIAM Journal
on Scientific Computing, 10:880–912, 1989.

[61] Ali Javey, Jing Guo, Qian Wang, Mark Lundstrom, and Hongjie
Dai. Ballistic Carbon Nanotube Field-Effect Transistors. Letters
to Nature, 424:654–657, August 2003.

[62] Hyeonuk Jeong, Jinsang Kim, and Won Kyung Cho. Low-power
multiplierless DCT architecture using image correlation. IEEE
Transactions on Consumer Electronics, 50(1):262–267, February
2004.

[63] Xiangyang Ji, S. Kwong, D. Zhao, H. Wang, C.-C.J. Kuo, and
Qionghai Dai. Early Determination of Zero-Quantized 8 8 DCT
Coefficients. IEEE Transactions on Circuits and Systems for
Video Technology, 19(12):1755–1765, December 2009.

[64] Andrew B. Kahng. Scaling: More than Moore’s law. IEEE Design
Test of Computers, 27(3):86–87, May 2010.

[65] Nachiket Kapre and André DeHon. Optimistic Parallelization of
Floating-Point Accumulation. In IEEE Symposium on Computer
Arithmetic, pages 205–216, June 2007.

[66] G. Katti, M. Stucchi, K. De Mayer, and W. Dehaene. Electrical
modeling & characterization of through silicon via (TSV) for 3D
ICs. IEEE Transactions Electron Devices, 57(1):256–262, January
2010.

[67] Michael Keating, David Flynn, Rob Aitken, Alan Gibbons, and
Kaijian Shi. Low Pwoer Methodology Manual For System-on-Chip
Design. Springer, 2008.

[68] Jongman Kim, C. Nicopoulos, Dongkook Park, V. Narayanan,
M.S. Yousif, and C.R. Das. A Gracefully Degrading and Energy-
Efficient Modular Router Architecture for On-Chip Networks. In
International Symposium on Computer Architecture, pages 4–15,
2006.

[69] N.S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J.S. Hu,
M.J. Irwin, M. Kandemir, and V. Narayanan. Leakage current:
Moore’s law meets static power. IEEE Computer, 36(12):68–75,
December 2003.

[70] S. Klauke and J. Götze. Low Power Enhancements for Parallel
Algorithms. In IEEE International Symopsium on Circuits and
Systems, pages 234–237, May 2001.

[71] R.C. Kordasiewicz and S. Shirani. ASIC and FPGA implemen-
tations of H.264 DCT and quantization blocks. In IEEE Inter-
national Conference on Image Processing, volume 3, pages III–
1020–3, September 2005.

[72] Y. Liu, C.-S. Bouganis, and P.Y.K. Cheung. Hardware architec-
tures for eigenvalue computation of real symmetric matrices. IET
Computers and Digital Techniques, 3(1):72–84, January 2009.

[73] C. Loeffler, A. Lightenberg, and G. S. Moschytz. Practical fast 1-
D DCT algorithms with 11-multiplications. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, volume 2,
pages 988–991, May 1989.

[74] H.S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky.
Low-Complexity Transform and Quantization in H.264/AVC.

IEEE Transactions of Circuits and Systems for Video Technol-
ogy, 13(7):598–603, July 2003.

[75] E.P. Mariatos, D.E. Metafas, J.A. Hallas, and C.E. Goutis. A
fast DCT processor, based on special purpose CORDIC rotators.
In IEEE International Symposium on Circuits and Systems, vol-
ume 4, pages 271–274, May 1994.

[76] S. McGettrick, D. Geraghty, and C. McElroy. An FPGA archi-
tecture for the Pagerank eigenvector problem. In International
Conference on Field Programmable Logic and Applications, pages
523–526, September 2008.

[77] Gerard Meurant. The Lanczos and Conjugate Gradient Algo-
rithms: From Theory to Finite Precision Computations (Software,
Environments and Tools). Society for Industrial Mathematics,
2006.

[78] Giovanni De Micheli. Synthesis and Optimization of Digital Cir-
cuits. Electrical Engineering. McGraw-Hill, 1994.

[79] MAEDA MIKIO. Steps Toward the Practical Use of Super Hi-
Vision. In Proceedings of 2006 NAB BEC, pages 450–455, January
2006.

[80] Gordon Moore. Cramming More Components Onto Integrated
Circuits. Electronics Magazine, 38(8), 1965.

[81] Gerald R. Morris and Viktor K. Prasanna. Sparse Matrix Com-
putations on Reconfigurable Hardware. Computer, 40(3):58–64,
March 2007.

[82] Keshab K. Parhi. VLSI Digital Signal Processing Systems - De-
sign and Implementation. John Wiley & Sons, 1999.

[83] Keshab K. Parhi and Takao Nishitani. Digial Signal Processing
for Multimedia Systems. Marcel Dekker, 1999.

[84] Jongsun Park, Jung Hwan Choi, and Kaushik Roy. Dynamic bit-
width adaptation in DCT: image quality versus computation en-

ergy trade-off. In Design, Automation and Test in Europe, pages
520–521, March 2006.

[85] Sudeep Pasricha and Nikil Dutt. On-Chip Communication Ar-
chitectures: System on Chip Interconnect. Morgan Kaufmann,
2008.

[86] Nishant Patil, Albert Lin, Jie Zhang, H.-S. Philip Wong, and Sub-
hasish Mitra. Digital VLSI logic technology using Carbon Nan-
otube FETs: frequently asked questions. In Design Automation
Conference, pages 304–309, 2009.

[87] Massoud Pedram. Power Minimization in IC Design: Principles
and Applications. ACM Transactions on Design Automation of
Electronc Systems, 1(1):3–56, January 1996.

[88] Massoud Pedram and Jan M Rabaey. Power Aware Design
Methodologies. Springer, 2002.

[89] Massoud Pedram and Hirendu Vaishnav. Power Optimization
in VLSI Layout: A Survey. Journal of VLSI Signal Processing
Systems, 15(3), 1997.

[90] James R. Powell. The Quantum Limit to Moore’s Law. Proceed-
ings of the IEEE, 96(8), August 2008.

[91] Arifur Rahman and Rafael Reif. System-level performance evalu-
ation of threedimensional integrated circuits. IEEE Transactions
on Very Large Scale Integration Systems, 8(6):671–678, December
2000.

[92] A. Raychowdhury, Jeong II Kim, D. Peroulis, and K. Roy. Inte-
grated MEMS Switches for Leakage Control of Battery Operated
Systems. In IEEE Custom Integrated Circuits Conference, pages
457–460, 2006.

[93] Iain E. G. Richardson. Video Codec Design. John Wiley & Sons,
2002.

[94] Iain E. G. Richardson. H.264 and MPEG-4 Video Compression.

John Wiley & Sons, 2003.

[95] K. Roy, Byunghoo Jung, and A.R. Than. Integrated Systems in
the More-than-Moore Era: Designing Low-Cost Energy-Efficient
Systems Using Heterogeneous Components. In International Con-
ference on VLSI Design, pages 464–469, 2010.

[96] Kaushik Roy and Sharat C. Prasad. Low-Power CMOS VLSI
Circuit Design. John Wiley, 2000.

[97] G. A. Ruiz, J. A. Michell, and A. Burón. High Throughput
Parallel-Pipeline 2-D DCT/IDCT Processor Chip. Journal of
VLSI Signal Processing, 45(3):161–175, 2006.

[98] Youssef Saad. Iterative Methods for Sparse Linear Systems. Soci-
ety for Industrial Mathematics, 2003.

[99] K. S. Sainarayanan, C. Raghunandan, and M.B. Srinivas. De-
lay and Power Minimization in VLSI Interconnects with Spatio-
Temporal Bus-Encoding Scheme. In IEEE Computer Society An-
nual Symposium on VLSI, pages 401–408, March 2007.

[100] H. Schwarz and M. Wien. The Scalable Video Coding Extension of
the H.264/AVC Standard [Standards in a Nutshell]. IEEE Signal
Processing Magazine, 25(2):135–141, March 2008.

[101] IlHong Shin and Hyun Wook Park. Adaptive Up-Sampling
Method Using DCT for Spatial Scalability of Scalable Video Cod-
ing. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 19(2):206–214, February 2009.

[102] L.H. Sibul and A.L. Fogelsanger. Application of Coordinate Ro-
tation Algorithm to Singular Value Decomposition. In IEEE In-
ternational Symposium on Circuits and Systems, pages 821–824,
1984.

[103] S. Simon, P. Rieder, C. Schimpfle, and J.A. Nossek. CORDIC-
based architectures for the efficient implementation of discrete
wavelet transforms. In IEEE International Symposium on Circuits
and Systems, volume 4, pages 77–80, 12-15 1996.

[104] B. Stackhouse, S. Bhimji, C. Bostak, D. Bradley, B. Cherkauer,
J. Desai, E. Francom, M. Gowan, P. Gronowski, D. Krueger,
C. Morganti, and S. Troyer. A 65 nm 2-Billion Transistor Quad-
Core Itanium Processor. IEEE Journal of Solid-State Circuits,
44(1):18–31, January 2009.

[105] Karsten Suehring. The JM 16.1 H.264/AVC.
iphome.hhi.de/suehring/tml/, December 2010.

[106] Chi-Chia Sun, Philipp Donner, and Jürgen Götze. Low-
complexity multi-purpose IP Core for quantized Discrete Cosine
and integer transform. In IEEE International Symposium on Cir-
cuits and Systems, pages 3014–3017, May 2009.

[107] Chi-Chia Sun, Philipp Donner, and Jürgen Götze. VLSI Im-
plementation of a Configurable IP Core for Quantized Discrete
Cosine and Integer Transforms. International Journal of Circuit
Theory and Applications, 2011.

[108] Chi-Chia Sun and Jürgen Götze. A VLSI Design Concept for
Parallel Iterative Algorithms. Advances in Radio Science, 7:95–
100, 2009.

[109] Chi-Chia Sun and Jürgen Götze. VLSI Circuit Design Concepts
for Parallel Iterative Algorithms in Nanoscale. In International
Symposium on Communications and Information Technologies,
pages 688–692, September 2009.

[110] Chi-Chia Sun, Jürgen Götze, Hong-Yuan Jheng, and Shanq-Jang
Ruan. Sparse Matrix-Vector Multiplication Based on Network-
On-Chip. Advances in Radio Science, 8:289–294, 2010.

[111] Chi-Chia Sun, Hong-Yuan Jheng, Jurgen Gotze, and Shanq-Jang
Ruan. sparse Matrix-Vector Multiplication Based on Network-on-
Chip in FPGA. In International Symposium on Advanced Top-
ics on Embedded Systems and Applications, pages 2306–2310, jul
2010.

[112] Chi-Chia Sun, Sanq-Jang Ruan, Benjamin Heyne, and Juergen
Goetze. Low-power and high-quality Cordic-based Loeffler DCT

for signal processing. IET Circuit Devices and System, 1(6):453–
461, December 2007.

[113] Chi-Chia Sun, Ce Zhang, and Jürgen Götze. A Configurable IP
Core for Inverse Quantized Discrete Cosine and Integer Trans-
form with Arbitrary Accuracy. In IEEE International Conference
on Asia Pacific Circuits and Systems, pages 915–918, December
2010.

[114] Junqing Sun, Gregory Peterson, and Olaf Storaasli. Sparse
Matrix-Vector Multiplication Design on FPGAs. In IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, pages
349–352, April 2007.

[115] T.Y. Sung and Y.H. Hu. Parallel VLSI Implementation of the
Kalman Filter. IEEE Transactions on Aerospace and Electronic
Systems, 23(2):215–224, 1987.

[116] Tze-Yun Sung, Yaw-Shih Shieh, Chun-Wang Yu, and Hsi-Chin
Hsin. High-Efficiency and Low-Power Architectures for 2-D DCT
and IDCT Based on CORDIC Rotation. In International Con-
ference on Parallel and Distributed Computing, Applications and
Technologies, pages 191–196, December 2006.

[117] Synopsys. The Synopsys Website. www.synopsys.com, December
2010.

[118] T. D. Tran. The binDCT: fast multiplierless approximation of the
DCT. IEEE Signal Processing Letters, 7:141–144, June 2000.

[119] R.R. Tummala. Moore’s law meets its match (system-on-
package). IEEE Spectrum, 43(6):44–49, June 2006.

[120] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman,
Y. Hoskote, and N. Borkar. An 80-Tile 1.28TFLOPS Network-on-
Chip in 65nm CMOS. In IEEE International Conference Solid-
State Circuits, pages 98–589, February 2007.

[121] Francesco Vitullo, Nicola E. L’Insalata, Esa Petri, Sergio

Saponara, Luca Fanucci, Michele Casula, Riccardo Locatelli,
and Marcello Coppola. Low-Complexity Link Microarchitecture
for Mesochronous Communication in Networks-on-Chip. IEEE
Transactions on Computer, 57(9):1196–1201, September 2008.

[122] Jack E. Volder. The CORDIC trigonometric computing tech-
nique. IRE Transactions on Electronic Computers, EC-8:330–334,
1959.

[123] K.A. Wahid, V.S. Dimitrov, and G.A. Jullien. On the Error-Free
Realization of a Scaled DCT Algorithm and Its VLSI Implemen-
tation. IEEE Transactions on Circuits and Systems II: Express
Briefs, 54(8):700–704, August 2007.

[124] J.S. Walther. A unified algorithm for elementary functions. In
Spring Joint Computer Conference, volume 38, pages 379–385,
May 1971.

[125] Alice Wang, Benton H. Calhoun, and Anantha P. Chandrakasan.
Sub-threshold design for ultra low-power systems. Springer, 2006.

[126] Hanli Wang, Ming-Yan Chan, S. Kwong, and Chi-Wah Kok. Novel
quantized DCT for video encoder optimization. IEEE Signal Pro-
cessing Letters, 13(4):205–208, April 2006.

[127] Hanli Wang and Sam Kwong. Hybrid Model to Detect Zero Quan-
tized DCT Coefficients in H.264. IEEE Transactions on Multi-
media, 9(4):728–735, June 2007.

[128] James Hardy Wilkinson. The Algebraic Eigenvalue Problem.
Clarendon Press, Oxford, 1995.

[129] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf,
Katherine Yelick, and James Demmel. Optimization of sparse
matrix-vector multiplication on emerging multicore platforms. In
ACM/IEEE conference on Supercomputing, pages 1–12, Novem-
ber 2007.

[130] T.W. Williams. The Future Is Low Power and Test. In European
Test Symposium, page 4, May 2008.

[131] Wayne Wolf. FPGA-Based System Design. PRENTICE HALL,
2004.

[132] Wayne Wolf. The future of multiprocessor systems-on-chips. In
Design Automation Conference, pages 681–685, June 2004.

[133] Wayne Wolf. The future of multiprocessor systems-on-chips. In
Design Automation Conference, pages 681–685, July 2004.

[134] Roger Woods, John Mcallister, Richard Turner, Ying Yi, and
Gaye Lightbody. FPGA Based Implmentation of Signal Process-
ing Systems. Wiley, 2008.

[135] T. Xanthopoulos and A.P. Chandrakasan. A low-power IDCT
macrocell for MPEG-2 MPML exploiting data distribution prop-
erties for minimal activity. IEEE Journal of Solid-State Circuits,
34(5):693–703, May 1999.

[136] Xilinx. The Xilinx Website. www.xilinx.com, December 2010.

[137] XVID. The XVID Website. www.xvid.org, December 2010.

[138] Gary Yeap. Practical Low Power Digital VLSI Design. Kluwer
Academic, 1998.

[139] Sungwook Yu and Jr. Swartzlander, E.E. A scaled DCT architec-
ture with the CORDIC algorithm. IEEE Transactions on Signal
Processing, 50(1):160–167, January 2002.

[140] Maojun Zhang, Tao Zhou, and Wei Wang. Adaptive Method for
Early Detecting Zero Quantized DCT Coefficients in H.264/AVC
Video Encoding. IEEE Transactions on Circuits and Systems for
Video Technology, 19(1):103–107, January 2009.

[141] Ling Zhuo and Viktor K. Prasanna. Sparse Matrix-Vector mul-
tiplication on FPGAs. In International Symposium on Field-
Programmable Gate Arrays, pages 63–74, 2005.

Personal Information

Name: Chi-Chia Sun
Born: 7th December 1981
Born in: Taipei / Taiwan

Curriculum Vitae

2000.09–2004.06 Bachelor of Science in Computer Science and Engineering,
National Taiwan Ocean University, Keelung, Taiwan.

2003.04–2004.09 IC Design Engineer, Trumpion Microelectronics Inc.,
Taipei, Taiwan.

2004.09–2006.06 Master of Science in Electronic Engineering,
National Taiwan University of Science and Technology,
Taipei, Taiwan.

2006.05–2006.07 Visiting Graduate Student, Hong Kong University
of Science and Technology, Hong Kong.

2006.07–2007.08 Communication Sergeant, Department of Defense,
Kaohsiung, Taiwan.

2008.04–2011.03 Research Assistant, Information Processing Lab,
Dortmund University of Technology, Germany.

