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Introduction

The following thesis is, in general, concerned with numerical techniques for the Boltzmann equa-

tion
UEXE) L g.v,re.x) = 041). (L)

Above differential equation is continuous in time, space and microscopic velocity-space and de-
scribes transport of distributions f that undergo certain collisions Q(f) modeled by a complicated
integral term over the so-called velocities §. For a numerical treatment of , at first Q is ap-
proximated by a special kernel, then a finite set of velocities €;, i = 0,...,N — 1 is used, resulting
in the discrete velocity model (DVM):

aflgt’x) +&;-Vfi(t,x) = —%(fi(t,x) —fft,x)) i=0,....,N—1 (1.2)
This semi-discrete form of the Boltzman equation consists, on the one hand, of a differential
(transport) term in space along N constant characteristics — in two dimensions usually a special set
of 9 velocity directions is used, denoted as D2Q9 model. On the other hand, the above Bhatnagar-
Gross-Krook (BGK) approximation of Q describes single-time relaxation of the distributions f;
towards equilibrium on a typical timescale t. Other collision models are possible, in general they
introduce a local, nonlinear coupling of the specific distributions in velocity-space.

When discussing the Boltzmann equation, commonly the Lattice Boltzmann method (LBM) is
assumed foremost, because of its recent huge impact on the CFD community. However, the LBM
is just a standard discretisation of , wherein the total derivative D, = d; +& - V is discretised by
explicitly coupling space and time derivatives. The algorithm is described by two characteristic,
decoupled sub-steps:

fi*(t"i_Atax) = fi(l‘,X)—%(ﬁ(l‘,x)—f;q(ﬁx)) (13)
filt+Ar,x+A€;) = fF(r+At,x) (1.4)

After local collisions in step (I.3)), the new distributions are translated to neighbouring nodes in
step (I.4). The method can be regarded as an operator-splitting of Marchuk-Yanenko type which
can be carried out with high computational efficiency on uniform grids. However, the explicit
nature of this method causes tight restrictions concerning the standard Courant Friedrichs Levy
(CFL) condition and stability, as for instance discussed in [28]. The motivation of our work is
to overcome these drawbacks using an implicit approach which allows to choose larger timesteps
and to focus on accuracy while not struggling with stability. Also, we want to avoid the gilded
cage of the on-lattice algorithm and be allowed to use arbitrary discretisations and grids. Obvi-
ously, (I.2) is a system of partial differential equations (PDE), and talking about modern Numerics
for PDEs one has to be aware of recent advances w.r.t. implicit time discretisations, unstructured,
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2 Introduction

locally adapted grids and fast iterative solvers: In combination with high order methods in space
and time, they can provide more accurate results with few grid points and less time steps. A fully
implicit, monolithic approach even allows direct stationary solvers in an efficient and robust way
which is the focus of this thesis.

The LBM is extensively discussed in the literature concerning, for example, stability [28]], model
extensions [9]], boundary treatment [27], [S1] or its connection to the Navier-Stokes equations
170, [36], [37]. The method’s potential was demonstrated by benchmark computations for lam-
inar flows in [15], especially in comparison with the Finite Element method. On the other hand,
an implicit treatment of the DVM appears in only very few places. In [43] Tolke has applied an
upwind finite difference discretisation of second order on structured grids and used multigrid to
solve the resulting linear equation systems. In [31]] Mavriplis also took advantage of the multi-
grid method after trying various linear iterative solvers and encountering problems due to the high
stiffness of the system and bad conditioning for realistic configurations. In [34]] Noble introduced
an implicit discretisation of the LBM and successfully treated the resulting nonlinearities with
the Newton method. For the resulting sparse banded matrices he used a solver from LAPACK
and demonstrated for his scheme to be superior to the explicit method, with superlinear scaling
of CPU time and memory demands of the Newton/LAPACK combination. It is obvious that the
best direct linear solvers can perform only up to a certain memory limit, then, at the latest, iterative
schemes have to take over. However, most of the mentioned authors concentrated on the structured
framework, thereby staying close to the LBM.

Different authors tried to overcome the restriction of the LBM to Cartesian meshes, using Finite
Element and Finite Volume methods with more or less success. In part, severe problems due to
numerical instability and lack of efficiency were encountered (see [41] and the work cited therein).
An interesting approach was introduced recently in [11]], where a discontinuous Galerkin formula-
tion was used, obtaining accurate results with high order ansatz polynomials. In a discussion with
Diister it was stated that the idea to merge high order discretisations on unstructured meshes with
implicit time integration is very appealing, but the combination has a higher complexity than the
individual techniques.

The author’s work originated in radiative transfer equations (RTE, see [[19]), introducing a special
sorting technique for higher order finite difference upwind discretisations which leads to lower
triangular transport matrices. This technique yielded an efficient linear solver, using iterative
Krylov-space methods preconditioned by the transport part. Even for high absorption/scattering
rates, level-independent convergence rates were obtained by a generalized mean intensity (GMI)
approach with additional preconditioning. The DVM is treated here similarly as a special (semi-
discretised) integro-differential equation which consists of (linear) partial differential operators
of transport-reaction type with constant characteristics. Our new approach is to convey the same
FD scheme and algorithm to the DVM, taking advantage of the accurate and efficient treatment
on unstructured grids but extend the discretisation for implicit time stepping schemes. Moreover,
with a monolithic solver as a cornerstone of the work, our new method is supposed to play out its
advantages in directly obtaining steady state solutions, in contrast to the LBM approaching it with
tedious pseudo-timestepping.

In this thesis, we limit ourselves to the two dimensional DVM and apply mainly the D2Q9 model.

In view of given steady state problems, the considered set of equations is independent of time and
(L.2) is equivalent to the stationary form

§i~Vfl-+%(f,-—ffq):0 i=0,...,8. (1.5)
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However, the microscopic velocities §; = ce; correspond to the lattice vectors

«={0) (o)} 0) () ()0} GG

scaled by a parameter ¢ which determines the speed of sound, ¢, = ¢/+/3, of the system. Obvi-
ously, this lattice is specially chosen to coincide with a Cartesian mesh — the standard configu-
ration space of the LBM — but it has also some necessary conservation and symmetry properties
(see Section @ First of all, summation (quadrature) of the distributions has to yield accurately
macroscopic moments of density and momentum:

p=Yf . pu=)Eif (1.6)

The aforementioned equilibrium term f;? is given in these terms as

‘ 3 9 3
fi'(p,u) = oip <1+62(§i-u)+2&(§i-u)2 u2> (17

22

with quadrature weights ®; equal to g for the zero velocity, % for the orthogonal, resp., % for the
diagonal velocities. A simpler, so-called ’incompressible model’ that was applied in this thesis
reduces the above term to a quadratic polynomial in the primary simulation variables (see Sec.
. However, f;? results from a truncated small velocity expansion of the collision term which
introduces an error of order O(Ma?) (see [12], [37]]) in the Mach number Ma = U /c,. This is
consistent with the overall compressibility error resulting from an approximation of the the in-
compressible Navier-Stokes equations by means of a Boltzmann discretization what is usually
shown in a Chapman-Enskog analysis (see [36]). Velocity and pressure in the NSE are closely
connected to the moments while the dynamic viscosity V is related to the relaxation time of
the DVM by

v=clt. (1.8)

2

In the LBM above relation is modified as v = c; (T — %) to cancel artificial viscosity produced by

the method.

Applying an implicit time-discretization on nonuniform grids to Eq. (I.2)) results in a nonlinear
system of algebraic equations because an implicit treatment of the collision operator cannot be
avoided as in the LBM. We want to emphasize that the parameter ¢ appears as a linear scaling
factor to the differential operator, and quadratic in the collision term through % It follows that
for small ¢ the equation is dominated by convection operators, so for the linear sub-problems we
expect throughout good results using iterative solvers with a direct transport preconditioning. On
the other hand, for high Reynolds numbers due to low viscosity v and especially for large c the
system is collision dominated which requires additional preconditioning, motivating a new alge-
braic reformulation of the discretised Boltzman equation. In total, we discovered that ¢ influences
the approximation as well as the solution efficiency to a high degree, and discuss in Sec. [3.3.1|the
interplay between ¢ and & which is significant for the asympotic behaviour of the model. Up to
now, few publicacions can be found that analyse the contributions of discretisation and modeling
error seperately or give numerical results that cover a wide range of Mach numbers.

In the following, our thesis consists of three main parts: Part I deals with the theory of the Boltz-
mann equation and provides necessary foundations for the final discretisation methods. Chapter 2]
shows step-by-step the derivation of physical models based on simplifications and small velocity



4 Introduction

approximations of the continuous Boltzmann equation. At the same time, the somewhat confus-
ing naming convention used in the Boltzmann community and the connection with the Navier-
Stokes equations are enlightened. We show that the latter is obtained in the incompressible limit
(due to low Mach number) of the Boltzman equation. A representative account of the underlying
Chapman-Enskog theory is given in Section [2.4] trying to outline the advanced asymptotical anal-
ysis as simply as possible. The Chapman-Enskog ansatz using a small parameter expansion of the
distribution function proved to be a basic tool in the thesis.

On a different level of abstraction, in Chapter [3| we deal with the discrete Boltzmann equation
and discuss explicit/implicit discretisations on structured or unstructured grids. Dependent on the
chosen approach the nature and efficiency of the resulting numerical algorithms is significantly
affected. As main examples are presented two opposing approaches, for one the popular Lattice
Boltzmann method, confronted with our monolithic approach which is classified as an off-lattice,
collision/advection implicit scheme. The expected asymptotical behaviour (being a central theme
in this thesis) of the intended finite difference discretisation is discussed in detail with implications
that have to bear up against numerical verification.

Part II gives a full account of the Numerics for PDE that we applied to the discrete velocity
model, from discretisation to solver aspects. In the central Chapter fi] we describe implicit time-
discretisation techniques and various aspects of the constant characteristic upwinding. This space
discretisation scheme is closely connected to our special sorting technique introduced in [19] to
solve efficiently transport problems. We present also the boundary treatment for the Boltzmann
equation and finally give the main result of our work, namely the generalized equilibrium formu-
lation (GEF). This algebraic reformulation of the DVM implicitly contains the inverse transport.
In dealing with stiff systems due to low Mach number, the new approach allows additional pre-
conditioning, either by the collision part of the system matrix or by a sophisticated application of
multigrid schemes. We give an overview of diverse linear and non-linear solvers we applied to the
obtained discrete system in Chapters [5|and [6]

The last Part III includes a rigorous numerical analysis of our proposed methods. First, we vali-
date the consistency of our Boltzmann discretisation with the Navier-Stokes equations in Chapter
discussing spatial accuracy using several CFD testcases. Especially, we try to comprehend the
asymptotical behaviour due to the Mach number and its connection with the order of discretisa-
tion applied to the differential term. Moreover, Chapter [§] adds the aspect of temporal accuracy
to our numerical analysis by presenting multiple results for nonstationary flow around cylinder at
Reynolds number Re = 100. Finally, in Chapter [9] we analyse the convergence behaviour of our
linear/nonlinear solvers, with a special focus on the multigrid preconditioned GEF for the mono-
lithic approach. We give a concluding summary of our work in Chapter[I0]and look out on future
work planned to extend the new methods developed in this thesis. In the Appendix we give details
about numerical testcases used in this thesis. Moreover, we present separate numerical methods
for the use in Boltzmann simulations, advanced force-evaluation and initial-conditions schemes
which are based on the Chapman-Enskog theory. We extend our approach to the alternative D2Q7
model including numerical results for this case with reduced number of discrete velocities.
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Basic Principles of the Boltzmann
Equation
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Comprehensive derivation of Boltzmann physical models

In this chapter we will describe step by step the derivation of physical models based on the con-
tinuous, time-dependent Boltzmann equation (BE). For an outline of the consecutive steps see the
upper part of the derivation chart given in Figure down to the discrete velocity model. The
lower part denoted as *Total discretisation’ represents the content of the next chapter, which will
treat the derivation of numerical algorithms using feasible discretisations in space and time.

In Section [2.1] we start with formal definitions of the BE, with the parameters of time, space
and velocity-space. The equation is composed of transport of the distribution functions and a
collision operator given by a complicated integral. Moreover, we introduce how the microscopic
distributions are connected to macroscopic moments. The next step of the derivation introduces a
simpler operator for the collision integral, presented in Section Closely connected is a further
simplification, giving a special equilibrium term which results from a small velocity expansion
truncated in second order. In Section we shift from the continuous to the discrete Boltzmann
equation, discretising one of the given dimensions, that of the velocity-space. We obtain the so-
called Discrete-Velocity-Model which actually appears as a multitude of models in 2D and 3D,
this thesis is limited to two dimensions in space, though. Next, we introduce the incompressible
model which is a common simplification, before we present the Chapman-Enskog analysis for the
9-velocity DVM. By summarizing this important part of theory, we try to give a comprehensible
account how to derive Navier-Stokes hydrodynamics by means of the discrete Boltzmann equa-
tion, however, only in the incompressible limit of a small Mach number.

In Section[2.5] for the sake of completeness, we introduce the advanced multiple-relaxation-time
model (MRT). Latter appears little straightforward, instead of a uniform rate the MRT model uses
different relaxation times for the (physical) moments that are included inside the Boltzmann equa-
tion.
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2.1. Continuous Boltzmann equation

At the beginning of the derivation stands the continuous Boltzmann equation
of
ot

as a kinetic model describing the behaviour of microscopic particles by means of a function

f(t,%,8).

But, instead of providing information about every possible particle as in population models, f
describes the distribution — similar to a probability-distribution — of particles at a time ¢ and
position x moving in direction &. The term on the left hand side of Eq. is the total derivative
D, = 9, +& -V along the characteristic € and describes transport of the particles, on the right hand
side are modeled collisions, i.e. the local interaction between distributions f with varying &. These
collisions are expressed through the quite complicated integral

Q) = [ 0(@)(FE)1E) - FE)fE)dodE, )

+&-Vf=Q(f) Q2.1

for two ’particles’ with speeds &, &; before and &', &’ after collision, while @(®) is a function
of the enclosed angle. Above integral term has some specific properties, the main aspect is that
several invariants are given by the equation

0= [va(rd 23)

which is satisfied for y € {1,&,,E?} with &, denoting components of the velocity &. By integration
of the distribution function itself over the phase space we obtain the zeroth moment of the density

p= [ fdg, (2.4)
resp., the first order momentum
pu— | &y 25)

with the macroscopic velocity u. To express the equations of Navier-Stokes, higher order moments
are needed. We will use mainly the second-order momentum flux tensor

eg = [ Ziaiﬁf d&.

Taking advantage of property (2.3)), resp., integrating the Boltzmann equation with the specific

collision invariants
= (0f . of _
/J’(aﬁiﬁaxﬁ ‘QU‘)) =0

now yields the crucial macroscopic continuity equations:
For y = 1 we have mass conservation

aPp n opuy,

=0. 2.6
o + oxe (20
With ¢ = & we obtain momentum conservation
) 0
Pla | 9 0. 2.7)

a o ¥
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We use here and later the standard summation convention for greek indices only, mainly for the
2D case summing up two components

of of
éa E = (;1 &aa
. . _ 2p . . . : .
Using normalized pressure p = D, In 1' the equation approximates divergence free flow in or-

der 0(Ma2) (see [17]). However, we still need to evaluate the tensor I1yg to obtain a closed form
of the momentum equation. This last step is accomplished by the Chapman-Enskog method which
is quite laborious, introducing a small parameter expansion of the distributions (see Sec.[2.4). The
resulting tensors Hg}z in consecutive order yield the Euler equations for k = 0, while evaluating
the tensor for k = 1 we can compare with the stress tensor Sqg in the Navier-Stokes equations.
We summarize that in its original form, the Boltzmann equation seems to be quite an abstract
partial differential equation compared to the NSE, nevertheless reproducing important hydrody-
namic moments by ’averaging’ of the distributions. Similarly, conservative equations are obtained
quite easily. Instead of working directly on the macroscopic level with the moments velocity
and pressure, the BE solves for microscopic distributions in a velocity-space, therefore having an
additional dimension to be considered by the discretisation.
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2.2. Single Relaxation Time BGK model

Previously, we described the continuous Boltzmann equation which, in its original form, is hardly
suited for an efficient numerical treatment. Therefore, we substitute the complicated collision op-
erator Q and then present the first approximation which introduces an error in the small Mach
number limit. In the end we obtain a simpler model which is consistent with the original one and
preserves important properties.

For uniform gases with D;f = 0 the Boltzmann equation falls back to the integral (2.2). The
reduced equation is then solved by the so-called Maxwellian (local) equilibrium distribution [4]]

P (I u)2> (2.8)

o__ r _
7= Gmeapr < 22

which is a function of the microscopic velocity &, the density p and velocity u. On the way towards
a simplified operator one is satisfied with reproducing the summed up behaviour of the collisions
rather than microscopic details. Therefore, Bhatnagar, Gross and Krook (see [2]]) introduced an
operator that is simply based on the relaxation of the distributions towards the Maxwellian

o(f) = (7~ 1),

The relaxation rate T is here a small paramter, driving the distributions rapidly towards equilibrium,
in context of the Navier-Stokes equations it is proportional to the dynamic viscosity v, we will give
details about the physical meaning in the next section. Compared to the complicated original form
(2.2), this approach has the same invariants which is important for the derivation of continuity
equations. We obtain then the so-called single relaxation time BGK model (SRTBGK)

of 1
L +E-Vf=—=(f—fO). 2.9
5 76 V=== (2.9)

A small velocity expansion of the term (2.8)) yields the equilibrium term
g2 2 2
p (&), &Gw, Eu u

eq _ 2c§ 1 — . 2.10
/ (2mc2)P/2 P ( + c? * 2¢t 22 (2.10)

An equivalent expression for the lattice gas equation is given in [12]. Expansions with terms of
higher order than O(u?) are possible. For an explicit treatment of the collisions little changes
would be required, but for a fully implicit treatment of Eq. (2.9) the additional terms would have
to be considered in the nonlinear solver.

However, the given approximation (2.10) is consistent with the low Mach number expansion in
the Chapman Enskog method for deriving the Navier Stokes equations (see Sec. [2.4). Actually,
the approximation order O(Ma?) will be used several times in the following steps and presents an
essential limit for the derivation of Boltzmann schemes in this chapter.
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2.3. Discrete Boltzmann equation

Before we give the important result of deriving the full system of macroscopic continuity equa-
tions, we describe the discretisation of the velocity-space (or phase space) which is also preceding
the upcoming discretisation in time and space. We need to replace the continuous argument & by a
discrete set &; for a numerical treatment of the BGK model . The requirement for the discrete
velocity set to be coupled to configuration space is understandable in view of the nature of the
Lattice Boltzmann method, but it is not a must for general Boltzmann schemes. More important,
though, is the aspect of accuracy: The corresponding quadrature (to approximate the integral | d&)
must exactly preserve moments (2.4),(2.3) and conservative equations considered in the Chapman-
Enskog derivation of the NSE (see [[18]]) . Furthermore, the chosen set of velocities must possess
symmetry properties to retain the isotropy of the Navier-Stokes equations, i.e. the physical sys-
tem must behave the same regardless of the orientation in space. An obvious final requirement is
that for any &; the opposite —&; is contained in the set. Given a velocity set that conforms to all
requirements, we finally obtain the discrete Boltzmann equation
9fi

Ly i -
§+§i.Vﬁ_ S(fi= ) i=0, N1 (2.11)

which is also known as the discrete velocity model (DVM). A discrete form of the equilibrium

term is given by
. u)2 2
“d _ o1 G-u  Eiu _u
/i ,p< Tt T 2ct 2¢2

N
with weights ®; resulting from quadrature restraints (for an in-depth look we refer to the literature,
see [18]]). Finally, the moments in discrete velocity space are obtained by the quadratures

p=)fi . pu=)28fi . M=) Eiabipfi

The minimal lattice in 2D is a 6 speed model — corresponding to a uniform triangular mesh with
angles of 60 as seen in Fig.[2.2a] — the D2Q7 is able to approximate the Navier-Stokes equations,
in contrast to the D2Q6 model which contains no rest particle. The coupling of discretisation
space and configuration space will be discussed further in Sec. [3.1.1]in the context of on-lattice
Boltzmann schemes. The basic model used in the LBM community is the D2Q9 model (see Fig.
[2.2b), which corresponds to a Cartesian mesh. For convenience, and to step onto a common
ground we applied this set in our thesis, nevertheless we implemented without difficulty also the
D2Q7 model, as shown in the Appendix [A3] In 3D, models are usually constructed only on a
cubic square lattice. There, the number of lattice vectors is growing fast, we have D3Q13, D3Q15,
D3Q19, D3Q27 models, depending which subsets of lattice vectors are chosen. The subsets are
characterised by the vector lenghts (|e| € {0, 1,2,3}), resp., the distance to the neighbouring nodes:
Subset 0 is only the center. Subset 1 are the nearest neighbours situated on the 6 wall midpoints.
Subset 2 are the next nearest neighbours on the 12 cube’s edge midpoints. Finally, subset 3 are the
vectors pointing to the 8 cube-corners.

(0,0,0) , i=0 subset 0

o — (+1,0,0),(0,+1,0),(0,0,+1) , i=1,...,6 subset 1
"7\ (£1,£1,0),(£1,0,£1),(0,£1,£1) , i=7,...,19 subset 2
(£1,£1,£1) , i=20,...,27 subset 3

We choose the discrete Boltzmann equation to present the ideas of the Chapman Enskog analysis,
although basically the same methods can be applied to the continuous form. Moreover, we give
in the following another modification of the DVM which is quite common in practice. It concerns
mainly the equilibrium term but retains the overall consistency of the model.
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Figure 2.2: 2D Lattice sets

(a) D3Q15 with subsets 0, 1 and 3
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Figure 2.3: 3D Lattice sets

(b) D3Q19 with subsets 0, 1 and 2
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2.3.1. Incompressible model

Although it is impossible to obtain a constant density in discrete Boltzmann schemes for the sim-
ulation of incompressible flow, the changes in density are in practice very low. With the incom-
pressible limit being defined by the Mach number going to zero, the fluctuations dp of density
are of second order O(€?) in the small Knudsen number. In [I7] it was introduced the ansatz to
substitue p = pg + dp for the density in the equilibrium term. Then, all expressions in terms of
8p(u/c) and 8p(u/c)? are omitted, being of second or higher order in the Mach number. The new
“incompressible model’ defines the macroscopic moments as

p=Yf . pou=)8f 2.12)

which means a simpler momentum and an equilibrium term of the following form:

= o <P+Po <(§;'2") LG >> 2.13)

4 T o2
: 2c; 2ct

with the constant density usually being set to one. Especially in view of a numerical treatment of
the DVM, this expression is significantly easier, nevertheless it is consistent with the small veloc-
ity expansion of the Maxwellian equilibrium. Also, the overall compressibility limit of O(Ma?)
will not be violated during the following Chapman-Enskog method in deriving the Navier-Stokes
equations.
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2.4. Chapman-Enskog expansion

This section presents a cornerstone of the theory concerning the Boltzmann equation and in the
current Chapter [2 It is important in order to basically understand how the numerical solution of
first oder PDEs can give the same results as obtained from CFD for the Navier-Stokes equations.
The first ideas given in Section [2.1] were quite simple, we could express macroscopic quantities
and basic continuity equations like mass conservation by building the zeroth and first moments
defined as integrals over the microscopic velocity. However, to obtain higher order moments,
necessary to approximate the Navier-Stokes equations, is more difficult and there are several ap-
proaches presented in the literature. For example, in [24] it was shown that the Lattice Boltzmann
equation can be regarded as a finite difference representation of the NSE, a numerical method
for macroscopic equations with stencils obtained from central differences of second order for the
differential terms like divergence, gradient and Laplacian. In his work, Junk mainly uses the dif-
fusive scaling (see [25]]) for the so-called Chapman-Enskog expansion. His analysis using the
relation Ar = O(Ax?) leads directly to the incompressible Navier-Stokes equations. However, the
work presents advanced theory of asymptotical analysis, which needs time and study to be fully
understood. We will present a simplified Chapman-Enskog method, showing the small parameter
expansion of the primary distributions, but restricting ourselves to a straightforward derivation of
the main macroscopic equations.

In the following we will carry out the Chapman-Enskog analysis for the 9-velocity BGK model
(see also [[17]]). The integration over the phase space will now be replaced by quadrature which is
constructed to preserve the crucial physical quantities like conservative moments and symmetries.
The same holds for the equilibrium term of the incompressible model described in the previous
section. The Chapman-Enskog ansatz is an expansion of the distribution function f; with small
parameter € (in general O(g) is equivalent to O(Ma)), written as

ﬁ:ﬁ(0)+£ﬁ(l)+ezﬁ(2)+--- (2.14)

The equilibrium fi(o) will be accordingly represented by the simpler term f;? from |b in the
following calculations. The first two moments obtained from summation of the series (2.14)) are
conservative, it means they are given fully by the equilibrium term:

potta = ¥ &ic (f,-(o) eV pe2f ) — Zéaf,-(o)

while the momentum flux tensor is nonconservative, depending therefore on the nonequilibrium
functions

Mg = Z&z}a&iﬁ (fl-(o) —|—gfl,(1) +82fi(2) 4 )
= Ttakipf” e badipfi € Niakipfi” 4

_ @

o op T
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Starting with the zeroth order tensor, direct evaluation of HS)B) using f;7 results in the second and

third order terms

1
Zii,ocﬁi,ﬁfi(o) = gczpﬁa[ﬁrpouauﬁ (2.15)

|
Y &iokiplind” = 3¢°P0(Baptty + Saytp + Sgyc). (2.16)

i
Inserting the second order term (2.15)) in the momentum equation (2.7) results in the Euler equa-
tions

potte. . 9 _(0)
o axg o

Bpou 0
By *+ %(cfp&xﬁ + pouauﬁ) = 0.

By extension to the first order tensor H((llﬁ) one obtains the equation

dpotta. | 9 (0) )y _

al + %(Haﬁ =+ SHO‘B) —
WO O ity + Ppdop +eT)) = 0. 2.17)
o oxg sPOop T ap

Given the stress tensor in the Navier-Stokes equations with the dynamic viscosity v, i.e.

[ Oug  dug
S(XB =V (axB + axa> s

equation (2.17) is an approximation of the NSE of second order in the Mach number if it is possible
to identify the stress tensor with

Sop = —€I1) +O(e?). 2.18)

That is why it is necessary to obtain a closed form for f(1). As starting point of the actual analysis
we take the dimensionless form of the Boltzmann equation with the index i temporarily omitted:

of ¢ 0 , 1L 2 20
% & ?f = _E(f - )
The relations £
A~  f 2 . X A Cr
=— ==, =— , t=t—
! ny 5 Cr * L, L,
are determined by a typical distribution n,, characteristic length L, and typical microscopic veloc-
ity c,. In general, the small parameter in the expansion is defined as the Knudsen-number € = CL'—‘f,

giving the ratio of free mean path /. = ¢, T between collisions and characteristic length L,. Inserting
the Chapman-Enskog expansion (2.14) yields

gf(f(o)+£f(l)+82f(2)...)+§-aa)e(f(o) +ef) 427 )=
Loy e 2@ gy,

€

1

The next step is usually sorting above equation by terms in €', €°, !, etc. This results for €” in

\ O, 970
f == gf e g)e
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We obtain a closed form for (1) by reverting from the dimensionless form:

af € af

M _ 3

o= G az . o ax)
L o

cr( ot + * Oxg

Now we can insert this identity in terms of f(°) into the first order tensor, being able to resolve

equation (2.18) as
Sap = —SHSB) +0(&%)
(0) (0) )
- 782&1&&1 al +§l"{ a )+0(8 )

BH(O) 210
- Z&l Otél ng a ) + 0(82).

We have two remaining terms on the right side, a time derivative of Hg)ﬁ) and a space derivative of

the third order moment given by (2.16)), resulting in

oa1® 9
Sip = T ¥ g, Dhiakigd ")+ 0E)
oa1l® 9
= T(—5—+ 5—¢;Po(Saptty + Sayp + Spylte)) + O(%)
ot axy
o1l Juty 8u|3 dug,
= ’C( 3 +C po(SaBa axa aXB ))+0( )

The divergence 5 Iy _y. u, although it is of order O(Ma?) due to the low compressibility limit,

cannot be neglected as it is scaled by c2. Instead, we will show that it corresponds up to a certain
degree to the time-derivative of the zeroth-order momentum flux tensor. With the previously given
definition and using a first approximation

aH(O)
op 2
or = i (cs p80c[3 + PO”OL”B)
d
A(5)30p + O(Ma?)
we replace the time-derivative of density using mass conservation (2.6))

of 2, 9PUy 2

5 = cs ( o, )00 + O(Ma”)

d
_ cfpo(—a“ )8+ O(Ma?).
Xy

This term with negative sign cancels out the divergence in second order of the Mach number and
we obtain in the same order the viscous Stress tensor
dug  Jug

_ 2 _p e
SOLB - TCSPO(a a+a B)+O(Ma)
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Overall, we succeeded in approximating the Navier-Stokes equations with the consistency order
of O(Ma?)with the important practical result of identifying the dynamic viscosity as v = tc2py in
our simulation. The constant density pg is usually set to one. In [17], the stress tensor is obtained
differently in the last steps, also the authors give a better approximation of O(Ma?) in the NS
momentum equation, but we find the present derivation sufficient and more clear, at the same
time giving the main ideas. Besides, the compressibility error of order O(Ma?) is dominating in
practice.
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2.5. Multiple Relaxation Time model

The previously decribed SRT model applies a uniform relaxation time which is a basic treatment
in discrete Boltzmann schemes. But, instead of relaxing all distributions towards equilibrium
using the same T, a diversified look at the moments m = (my, ...,mg)" appearing inside the kinetic
system is possible (as seen in [8[], [9]). In the D2Q9 model the separate moments m; are taken
from

{p,e,e, pO”xW]}capOMyW]yapxx»pxy} (2.19)
with the following interpretation (see [8]):

p density
e energy
€ energy square
Pou, momentum (X-component)
qx energy flux (x-component) (2.20)
Pouy momentum (y-component)
qy energy flux (y-component)
P Stress tensor (diagonal entry)
Dxy  stress tensor (off-diagonal entry)

Actually, only 6 moments are necessary in the kinetic system of the Navier-Stokes equations in two
dimensions, taken from the density, velocity and symmetric momentum flux tensor. The linear,
regular transformation matrix M (with m = Mf) consists of orthogonal eigenmodes and is given
by

1@ 1 1 1 11 1 1 1)
& (=4 -1 -1 -1 =12 2 2 2
4 2 -2 -2 21 1 1 1
c © 1 -0 -1 01 -1 —1 1)
M=|c (0 =2 2 01 -1 -1 1)
c @ o 1 0 —-11 1 —1 —1)
S0 0 -2 0 21 1 -1 -1
¢ (0 1 -1 1 -1 0 0 0 0
2 (0 0 0 0 01 -1 1 —1)]

Then, the collision step, presented exemplarily as part of the explicit two-step Lattice Boltzmann
method with MRT, is carried out as follows: After transforming the f; into the moments m;, they
are relaxed using variable collision-rates s; towards the equilibrium moments m;? given by

eq

my, = p

m{? = = -2c"p+3pou’

my! = &4 =c'p+3pou’

mgq = Poux

my! = ¢ =—c*pouy (2.21)
mgq = Poly

= gt = —pouy

my! = pgl = polu; —uy)

mg = pl = pouiy.

Afterwards, the relaxed values are transformed back and the resulting collisions are given by

Q= -M'S[(Mf) —m], (2.22)
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with the relaxation rates included in S = diag(so,...,s3). As seen from Egq. , the rates
S0, §3, §5 belong to conserved moments which cancel out anyway after collision. On the other
hand, rates s7, sg determine the relaxation time of the tensor IT and have to be choosen equal to
1/7 in order to obtain the viscous stress of the Navier Stokes system. We can only influence the
system by means of the remaining moments which are not fixed and do not cancel out.The rates
S1, S2, S4, S can be used to improve conditioning and stability, in order to solve the system more
efficiently. In case of the LBM with stability problems for T close to % (in practice At = 1), so
for 57, sg ~ 2 the adjustable parameters are set close to 1 (see [28]). However, in practice it is not
trivial to find *optimal’ values for different Reynolds numbers and to search the whole parameter
space is expensive (see [9]). In the framework of an implicit, resp., monolithic discretisation of the
Boltzmann equation, the described step-by-step collision process has to be replaced by a system of
equations. We need to calculate the alternative collision matrix M —1SM, which, however, remains
a local operator coupling all 9 local distributions f;(x),i = 1,...,9. We still obtain a nonlinear sys-
tem, as the equilibrium term f*? is replaced by the moments m®?, which are quadratic polynomials
in terms of the velocity for m{?,m5?, m5? mg?. In our numerical tests, we will analyse at first the
influence of relaxation rates smaller than 1/t, but we will also give results for values bigger than
1/7 and some interesting observations in Sec.
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Derivation of numerical Boltzmann methods

After presenting the theoretical background concerning Boltzmann models and the approximation
of the Navier-Stokes equations in the previous chapter, here we will discuss practical aspects con-
cerning efficient numerical methods. We will show that the popular Lattice Boltzmann method
is just one elegant discretisation scheme for the Boltzmann equation on structured meshes, while
other, more variable treatments are possible. In the following sections, several approaches for
alternative discretisations are presented and our work — modern numerics for PDEs applied to
the BE — is placed in the respective context. Refering to different authors, we define categories
mainly based on the explicit, resp., implicit treatment of advection and collision, while struc-
tured/unstructured grids play another important role. One of the derived schemes is the actual
Lattice Boltzmann equation, a special discretisation coupling space and time and thereby being
an intrinsically collision implicit scheme. High computational efficiency is achieved by the corre-
sponding Lattice Boltzmann method, an on-lattice algorithm suited for structured grids. We show
that quite similarly are obtained off-lattice Boltzmann schemes, without difficulty avoiding the
structured framework.

Another approach is characterized by implicit treatment of the transport term, yielding colli-
sion/advection implicit schemes. Only this class — leading to a system of coupled equations
— enables to finally overcome the CFL condition. In our approach we pick up the thread given
in the literature, applying special finite difference schemes on unstructured grids in combination
with implicit time-discretisation which even allows a fully stationary, monolithic approach.

3.1. Collision implicit, advection explicit Lattice-Boltzmann schemes

In the last chapter, the derivation arrived at the DVM with the two variants of single and multi
relaxation time models. In view of the following discretization, the models are quite similar, only
the resulting local ’collision matrix’ has different coefficients. Without loss of generality, we will
use the SRT represantation for Q in the following.

The next step in the derivation process is a discretisation in space and time, to this purpose we
come back to the discrete (in microscopic velocity space) Boltzmann equation, which can be
written using the total derivative as

lei = Ql(f)a

Usually, one performs time integration on the interval [0, Ar]:

At
filt+Arx+AE) — fi(t,x) = | Qu(f(e+1,x+1'E))dl’ (3.1)
0
The integral on the right hand side is then approximated by
AOD, (f (1 -+ At x+ AE)) + (1 — B)Qu(£(1,%))].

21
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For the special case of discretisation on a lattice, we can use distribution functions f on the char-
acteristic. We substitute the new variables, denoted f = f(t,,x) and fl-”ﬂ = f(ta+ Ar,x + AE))
and obtain

= = AreQ ! 4 (1-0)97). 3.2)

The parameter 0 < 8 < 1 must be chosen 6 = 1/2 to obtain second order accuracy However, the
crucial point is that one strongly wants to avoid implicit treatment of Q! = —L(fr+! — feo "+])
because of the nonlinearity in the equilibrium term. One possibility is to use extrapolatlon as in
[30] which has serious stability problems. Fortunately, He et al. (see [16]) succeded in removing
the implicitness for 6 = 1/2, and the extended procedure by Guo et.al. (see [[14]) for any choice
of 0 is easily accomplished by introducing a modified distribution function

gi(t,x) = fi(t,x) — Ar0Q;(f(2,%)). (3.3)

Due to invariance of Q under quadrature, we have
Yea=Yfi=p Y&g=)&fi=pu
i i i i

which implies g;? = f{. Following this approach, we can replace all terms containing 8 in above
Eq. (3.2) with the new variable g; (one at time ¢ and one at time #"*):

gl =g+ My (f)
The remaining, original f; can be removed using the resorted identity (3.3), i.e.
1 |
fi +At65f,- = g;JrAtGEfi

1 Arol
78+ lfeq
1+AteE 1+Ate

fi=

By further evolving this form, we can finally replace Qf’ (f) with the equation

1,1, 1 AOL 1,

T T e Tt A *f
_ 1 Ate; o 1+Azeifeq

1:+Ate 1:+Ate T+ At0
_ 1 eq
= trae& )
_ 1 eq
= TrAe& s
and obtain A

_ 5 !
gf“—g?—f(g? gr.

This final form is actually the expression known as the Lattice Boltzmann equation, with the modi-
fied relaxation time A = T+ Ar0. But instead of obtaining A by a tedious Chapman-Enskog analysis
for the discrete equations (see Section[3.1.T)), we showed more clearly the implicit character of the
LBM. The collision implicit approach results in a scheme which is unconditionally stable, with
the only limitation on the time step size — due to the explicit treatment of the advection term —
remaining from the standard CFL condition.
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3.1.1. Lattice Boltzmann Equation

Apart from the (still) uncommon ansatz using a modified distribution function, there is a classic
way to obtain the standard LBE. It can be derived from the discrete Boltzmann equation using a
special FD approach coupling space and time on a structured grid, the implicitness of the collisions
is also omitted, but less obviously than in the previous section. Nevertheless, we want to present
this approach due to its historical meaning, as it is closely connected to lattice gas cellular automata
(see [12]). Remarkably, the Lattice Boltzmann equation was first derived from LGCA, before it
was shown that it corresponds to the special finite difference discretisation. Another motivation
for this section is to show why the viscosity in the LBM is given by

v:cf('c—g) (3.4)
2

which is different from the relation we use in our thesis and might be confusing. Naturally, the
question might arise how to use relation (3.4)) in a monolithic stationary approach without the sim-
ulation parameter Ar. To forestall the answer, we will show that Eq. is valid only for the
following special discretisation using finite differences in space and time. However, the applied
first order schemes introduce significant numerical viscosity and loss of accuracy compared to
the original DVM. We show how it can be identified using the Chapman-Enskog expansion (see
Section[2.4)) and finally eliminated resulting in a second order accurate scheme.

Starting from the DVM @, the time derivative is discretised using a forward Euler difference
quotient
afi(t,x) N fi(t 4+ Ar,x) — fi(t,x)
ot At

The transport is discretised at time ¢ 4+ Ar by an upwind scheme on a spatial grid spanned by the
lattice vectors and scaled by the particle speed

fi(t+At,x+ Axe;) — fi(t + At,x)
i Vit +At,x) ~ .
& Vilt+ar,x) ~ o

Substituting the above terms in the DVM equation yields

fi(t + Az, x) — fi(t,x) f,'(t+At,X+Axe,~)—fi(t+At7X)__1 . 0
At te Ax = ,C(fl(tvx) i (t,x)).

In contrast to the transport, the terms in the right hand side (corresponding to the collisions) are
evaluated explicitly at time . We will analyse below the implications of this approach, concerning
the original differential equation.

The crucial step to obtain the Lattice Boltzmann Equation (LBE) is to fix the grid spacing as
Ax = cAt. Then, two terms on the left side cancel out, and multiplication by A yields the final
form

Fi(t+ At x+EA) = fi(t,x) — %(f,-(ux) — 2% x)). (3.5)

This scheme shows how the discretisation fits together with the chosen Cartesian lattice. The dis-
tributions move from a grid point positioned in x with particle speed ¢ along the characteristic &;.
After one time step, they are displaced by Ar€; and arrive exactly at the next grid point situated in
X+ Axe,-.

As mentioned above, due to explicit treatment of collisions, the difference scheme (3.5) is in-
troducing some numerical viscosity. We want to accurately identify it and show how it can be
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eliminated in consequence. To this purpose we look at the Taylor-series expansion of the term

ofi ofi
filt+Atx+8A1) = fi+ fAt+§,a Ji At+ (3.6)
1% f; 5 &’ fi /i
= A =Gia; A% +§; A2 +0(A
2o +2§“§Ba o™ FBiag A T OW)
where all terms on the right side are evaluated in (¢,x). Substituting this expansion into the LBE
(3.5) yields
a f 1% 82ﬁ 2ﬁ 2
i A ioSi i Al
1 0
=i~ 5"). 3.7)

The time derivatives which are part of the error term O(Ar) can be eliminated using the equation

a, 1
i el L g,

ax(x

The second derivatives in space and time are calculated from this term as

’f 0 ofi 1, 0
et~ g\ g, iSO

fi 19

= 5 Oxgxg T A /)o@
Ffi 9, . 9fi 1.
52 g(—‘:za%—;(ﬁ—fi ))+0(Ar)
2f 10
= Bt D (- 7))+ o)
-
0% f; 1.8 ORI
~Ciokipy S o, Sy (i fi ) — 5 i fi7) +0(An)

2 . .. .
and are inserted into (3.7). All terms giaaiﬁaii'aﬁ;% cancel out, we obtain an additional collision
term, and overall an equivalent differential equation g; that is satisfied by the introduced difference
scheme, denoting

At 0

55+ ﬁza o) — N+ o) =o.

Ui Lo 0fi (10 0
5 Tyt Ui A1) -

The additional term yields a modified, somewhat complicated relaxation time, but we can resolve
it by building the continuity equations similar to Sec. 2.1}

%P a2
;g, 3o, TO0)

apua d At 0 (0) 5
Z&»z oa8i = —x, aixﬁnaﬁ"i_ﬂaixﬁ(nocﬁ_naﬁ)'i_o(At )
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Inserting the Chapman Enskog expansion with small parameter € (see Sec. [2.4), we obtain the
following equation up to second order, i.e. up to O(Ar?) and O(&?)

At 0

y opu 9, (0) (1) 0) 1 _
7 Siasi = ata + oxg (Mg +€llgg) = E%(Haﬁ +ellyg — g ) + 0(Ar") +0(&)
opu 9, (0) Ar| (1)
— at“ +gﬁ(naﬁ+€(1_E)HaB)JFO(AtZ)J“O(SZ)-

Matching the terms with the Navier-Stokes equations yields for the viscous Stress tensor the rela-
tion

At
E)ngg +O0(AP) + O(eY).

In the Chapman-Enskog analysis we performed for the DVM the derivation resulted in

S(xﬁ = —8(1 —

At (1)

Sep = —€(1 - E)HOLB

and evaluation of the first order tensor gave the relation v = c¢2pgt. Now, with the numerical

viscosity identified as the term é—;, it can be eliminated by using it as part of the physical model,
resulting for the Lattice Boltzmann equation in the modified relation

At

At
77

5)- (3.8)

v=—g(l-=)=c?po(t—
Obviously, to retain positive viscosity, the restriction At < 27T has to be considered in practice. In
total, it was possible to efficiently apply a discretisation which is basically first order accurate and,
taking advantage of the Chapman Enskog method, to remove artificial viscosity. The obtained
scheme is second order accurate and consistent with the Mach-error in the Boltzmann small ve-
locity approximation of the Navier-Stokes equations. However, the relation (3.8)) can be only used
when solving the Lattice Boltzmann equation on a square lattice, with the explicit coupling of Az
and Ax. In case that time and space are treated independently by arbitrary numerical schemes,
or even for a discretisation of the steady-state BE, the obtained order of convergence has to be
reconsidered, especially in view of the accuracy against the NSE.
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3.1.2. Lattice Boltzmann Method

Finally, we present the main advantages and also some disadvantages of the previosuly described

special distretization. The LBE can be easily extended to obtain the characteristic Lattice Boltz-

mann method. In an operator-splitting approach of Marchuk-Yanenko type, the LBM divides

equation (3.5) into two explicit sub-steps that can be performed with high computational effi-
ciency. First, the f; are distributed according to local collisions in the velocity-space:

. At eq

fi e+ %) = filrx) = — (filr, %) = £7(1,%)) 3.9)

Second, the distributions are transported to the next grid point along the characterstics by the

simple shift
filt + At x+ A€)) = f7(t + Ar,x). (3.10)

Obviously, no solution of linear or nonlinear equations is necessary. The method can be naturally
combined with parallelization and recently the use of modern hardware, for instance GPUs or su-
percomputers, is explored in scalable algorithms (see www.skalb.de).

Remark

We will present finally some practical implications introduced by the special discretisation of
the LBE. Basically, it is restricted by At < 271 (see [37]) and the numerical scheme suffers stability
problems for values of T close to the limit (see [28]]).

Moreover, the LBE is due to construction consistent with the modeling error of order O(Ma?), by
fixing space-width and time-step on the configuration space through ¢ = 4*. Consequently, we

Ar-
obtain directly a restriction on the time-step by

2 1o Aty
O(Ma) = () = O((5)?)
which means that At is a fixed simulation parameter in terms of Ax>. Apparently, this is coherent
for the translation of distributions to neighbouring nodes in the transport step. However, conver-
gence against the incompressible Navier Stokes solution can only be achieved in the asymptotic
limit of both Ax — 0 and Ma — 0 (see [37]]). During a grid refinement step the spacing is regularly
divided with Ax — % at the same time the Mach number must be reduced. Increasing the sound
speed by a factor of 2 results in an increased number of time-steps to drive the simulation (reach
the simulation end, determined for example by a characteristic eddy turnover time) by a total factor

of 4 with the equation

Ax At
A, DA
2 Ty

ensuring that the transport to adjacent nodes remains consistent. This means the number of (micro)
timesteps grows fast and can result in extreme computation times.
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3.2. Advection explicit off-lattice Boltzmann schemes

To overcome the limitation to uniform grids, various approaches are possible, for example finite
difference, finite element, finite volume or discontinuous Galerkin discretisations. A few can
be found in literature, one of the first FD schemes appeared in [37], in [14] a FD method for
curvilinear coordinates was given and recent examples are [41] (FV), [30] and [1] (FE) or [11]
(DG), giving some 'modern’ numerical approaches. The crucial point compared to the LBM
is that the on-lattice approach enabled an explicit treatment for the implicit collision term. In
one of the first off-lattice Boltzmann schemes, derived by Mei et al. in [32], this treatment was
no longer valid. The authors used an extrapolation for the equilibrium distribution of the form
feantlt — o fi— ff”’"_l which is subject to severe stability restrictions. Bardow et al. (see [1]])

1
described an alternative approach in the spirit of the previous section. After obtaining the form

. . A .
g?“—g?*f(g? )

)

the authors applied the characteristic Galerkin discretisation of the advection equation by Zienkiewicz
et al. [50] to their method.
Alternatively, Guo et al. were starting from the equation

I — 4 A V= A BQT 4 (1 - 0)Q7],

where it should be noted that the transport term is evaluated at time #,. For any choice of 6 and
again substituting a modified distribution function as in Eq. (3.3)), they obtained the explicit form

g+ A VT = (1—% —e)f ATt(l )",
It is obvious that a scheme without any (iterative) solution steps is obtained for the distribution
function g;, which can then in each successive time step be used to determine explicitly the needed
fisresp., fi1. As discretisation of the continuous transport term in above equation the authors pro-
posed finite difference schemes, a central and an upwind scheme, both of second order accuracy.
Additionally, a mixed scheme was proposed in case of strong numerical dissipation in flows at
high Reynolds number. Finally, Guo et al. obtained

At At At
S A Vi ff = (1= —+ 0 +—(1=0) "

with V,,;, denoting the mixed-difference scheme, controlled by a parameter €:
Vmi)c — E':Vupw + (1 - 8)Vcentml

This shows that a treatment of the DVM in the spirit of Section but without the restriction
to structured grids is possible and was even accomplished in many cases. An important example
is found in [L1], where a discontinuous Galerkin discretisation was used and the order of the
discretisation space was arbitrary. The gain, however, is only relative as the advection is treated
purely explicitly, so again the CFL restriction holds. A remedy as mentioned in [1] would be
treating the advection implicitly, but this sophisticated extension makes arise some interesting
questions:

* Would it be possible to develop an intrinsically advection implicit method as was done for
the collision operator and with this preserve the explicitness of the whole algorithm?

* Having an efficient, direct transport solver, what would be the advantage compared to the
Lattice Boltzmann method, or to advection explicit off-lattice Boltzmann schemes?

During the thesis we will try to find some answers by looking closely at the possibilities to modify
the equation, resp., at the numerical implications for the efficiency of the solution process.
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3.3. Collision/advection implicit schemes

To perform a general time-discretisation of the discrete Boltzmann equation
oFf
a*];l +& Vfi=Q

we use a straightforward time-integration on |f,,,,+1] quite similarly to Sec. and obtain

1 thtl Tn1
- —i—At/ E -Vfidt = Q;dt.
In In
The difference now is that we approximate both integrals using the 6 scheme (compare to Li et
al. [29]), instead of evaluating advection explicitly as in the previous section. The full 6-scheme

reads
S A0 - VAT 4 (1 0)E; - VT = A[0QM ! + (1 —0)QY). (3.11)

Usually 8 = 1/2 is implemented, which corresponds to the Crank-Nicholson scheme and we will
see that the resulting second order accuracy is especially important for time-dependent flows.
Whatever space discretisation is used, the implicit treatment of the advection — while the only
way to overcome the CFL restriction — always requires the solution of a linear (or nonlinear)
system of equations. Li et al. used a least-squares finite-element (LSFE) space discretisation, but
extrapolated the collision term in time f¢""" = 27" — 4"~ o avoid implicit treatment of
nonlinearities. However, we refrained from this back-door solution, and faced the (fully) implicit
coupling of advection and collision in our work. This approach can be even applied in a mono-
lithic way to obtain directly steady-state solutions. A monolithic solver is on the one hand the
’simplest’ possible method which avoids time-stepping, on the other hand it is numerically most
demanding because the (nonlinear) coupling of the variables requires efficient solvers. We will
present important implications in the next section.



3.3. Collision/advection implicit schemes 29

3.3.1. Monolithic approach

In [21] we performed a similar time-discretisation as in Eq. (3.11]), but wrote the scheme in the
form

(xf,-—i—&,--Vﬁ:—%(ﬁ—ffq)—i—gi , i=0,....N—1. (3.12)

Different time-stepping schemes can be obtained by varying o with corresponding ’right hand
side’ g;. However, for stationary problems at low Reynolds numbers it is just a coherent step to
look at the limit # — co. Consequently, in [21]] the temporal argument ¢ was dropped by setting
a =0, g; = 0 and we obtained a time-independent system of hyperbolic equations to be solved
directly, i.e.

gi.Vﬁ+%(ﬁ—ﬁq):0 , i=0,...,N—1. (3.13)

One can say that this approach is contrary to the Lattice Boltzmann method. Instead of approach-
ing the steady state solution of a given problem with (pseudo) time-stepping, we simply solve Eq.
(3.13). However, in the new, monolithic approach we need to blend the transport and collision
operators, as well as the boundary treatment, assuming that we find sufficiently powerful tools to
deal with the nonlinearity and possibly very ill-conditioned linear problem.

Looking at Eq. (3.13) one can find it almost trivial being stripped from the temporal dimension:
We have a (linear) differential operator together with a nonlinear coupling due to collisions, both
’simple’ compared to the Navier Stokes equations composed of a nonlinear differential term and a
second order Laplacian. However, we have nine local unknowns f; in the standard D2Q9 lattice-set
compared to pressure p and velocity (u,u,) in the Navier Stokes model. Fortunately, the coupling
of the nine distributions is quite sparse. What is more, though, is an additional dimension we have
to consider, hidden at first sight, but attributable to the fact that using the Boltzmann equation
to obtain Navier Stokes hydrodynamics, we use basically a compressible model to approximate
incompressible flow. We identify this additional dimension with the Mach number Ma = % of the
system, which is closely connected to the systems speed of sound ¢; = \L@ These terms in inverse
relation we will discuss in detail.

In the derivation of Boltzmann schemes, a modeling error of order O(Ma?) is taken into account
starting with the BGK model of the collision term. Furthermore, the Chapman-Enskog expansion
with small parameter € ~ % introduces several approximations in terms of order €> throughout the
analysis. In the Lattice Boltzmann method are introduced finite difference schemes with further
assumptions which couple the discretisation of time and space. Grid length and timestep size are
fixed by Ax = cAr (see [128]]) through the ’unit of velocity’ ¢, generally being set to one. It can
be shown that the resulting discretisation errors are consistent with the overall second order com-
pressibility error which is considered to determine the quadratic convergence of the LBM against
the Navier-Stokes equations.

Unfortunately, using alternative discretisation schemes for the Boltzmann equation, it is not easy
to leave this strict framework, mostly one has to decouple the treatment of space and time (and
microscopic velocity) and make new assumptions. With our monolithic treatment of the DVM, ¢
is no longer the unit of velocity %. Here, we have no more any timestep and, for that matter, no
uniform grid spacing either, when we discretise the DVM on general meshes. Nevertheless, we
found that the choice of ¢ influences significantly the accuracy and computational efficiency of our
model. Starting the work on the discrete Boltzmann equation it was not clear how to treat ¢, which
appears throughout our discretisation. The idea to choose it as big as possible to reduce the Mach-
error proved to be a wrong assumption because for a fixed mesh it resulted in errors proportional to
c. A similar behaviour appeared in [6]], wherein Dellar discussed the Mach number dependence of
MRT models. Different authors dealing with an asymptotical analysis for the BE state that ¢ must
be chosen depending on /4 (see [23]], [37]). Generally speaking, without the dependence of the two
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variables we would not achieve a consistent approximation of the Navier-Stokes equations in the
asymptotic limit. Quantitatively, the aim is to achieve an algorithm with quadratic convergence in
O(Ma?), because even the best discretisation cannot achieve a higher accuracy than given by the
modeling error. But what exact relation gives optimal results?

In order to obtain an answer, we look at Eq. and assume an arbitrary discretisation of order
vy of the convective term

1 e 1 e
F:i’Vfi—FE(fi—fiq) = C(ei'Vfi)‘FE(fi—fiq)
1 e
= (Vi OUM) + (i~ )
= Vit Ol )+ (i )

= Vit OMa )+ (i~ £,
We obtain a mixed error term in the grid-spacing ~ and c in accordance with the observed nu-
merical behaviour. However, in view of the fundamental compressibility error of order O(Ma?),
we attempt a simplified analysis. In Figure we plot the asymptotic behaviour of the basic
functions Ma? representing the modeling error and the discretisation-error on a fixed grid repre-
sented by Ma~!. Obviously, when assuming the overall error being obtained by summation of
both functions, we have two antipodal contributions in Ma. The second term has to be reduced
by successive grid refinement and higher order space-discretisation techniques. In Figure [3.2] we
plot the theoretical overall error as a function of Ma? +Ma ™! h}(, with &; = 27" and different values
Y€ {1,2,4}. Even in this coarse diagram it becomes obvious that (only) after the range falls below
a certain compressibility limit, the resulting accuracy can be improved by choosing / very small
and with high order 7. Finally, the asymptotic behaviour of the complete numerical approach can
be optimized by choosing & dependent on the parameter c. From the stipulation

B =0Ma®) = 0(1/c)

it follows that the discretisation error O(Ma~'hY) will behave like O(Ma?), therefore being con-
sistent with the modeling error.

This assumption will have to undergo verification by various numerical tests. In Section [7.1| we
present corresponding numerical results in good agreement with the theory for our monolithic ap-
proach with finite difference upwind discretisation of first and second order. But we think that
similarly, arbitrary schemes are able to yield accurate results with small number of grid-points
due to higher order space discretisations on unstructured, adapted grids. Quite early, a fourth or-
der centered difference scheme was used for the convective term by Reider in [37] and, recently,
Duester introduced in [11]] a discontinuous Galerkin discretisation up to eigth order. However,
we will present an important advantage of our FD upwind scheme, which yields lower triangular
transport matrices due to a special numbering technique, and is supposed to improve considerably
the efficiency of solving the resulting system of linear equations.
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Figure 3.1: Logarithmic plot of Ma® (modeling error) against Ma ™"
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first order asymptotic
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3.4. Summary of Part |

The aim of Part I was to provide a basic understanding of the Boltzmann equation and to look
beyond the popular but limited LBM. On the one hand it is important to understand that numerical
schemes for the discrete Boltzmann equation yield — in the asymptotic limit of both, mesh size
h and Mach number Ma — the same flow results as the incompressible Navier-Stokes equations.
On the other hand, we showed that the explicit, two-step Lattice Boltzmann algorithm is just one
basic, though computationally efficient discretisation.

To give a sufficiently complete round-up, we started by explaining the BGK model which intro-
duces a single relaxation time approximation of the collision integral in phase space, compared to
the advanced multiple-relaxation-time model. The discrete velocity model was derived by fixing a
special set of lattice vectors, obtaining a PDE with constant characteristics. The Chapman-Enskog
analysis on a discrete level was demonstrated for the incompressible 9-velocity BGK model, de-
riving the viscous stress tensor of the Navier-Stokes equations.

To account for the next discretisation steps, we tried to break down the DVM and analyse its parts
regarding a numerical treatment, starting with the collision operator which is responsible for a
local coupling of the microscopic variables. The implicitness which is necessary for stability is
in general successfully avoided by a modified distribution function on structured grids, but also in
off-lattice methods, if the advection is treated explicitly. Summing up the work of Bardow et al. [1]]
and Guo et al. [14] and based on [30]], [32], [16] we categorized two classes of Boltzmann meth-
ods, the first one being advection explicit schemes which require usually no solution of any system
of equations, instead, an explicit time-stepping is carried out with small timestep-size due to the
CFL condition. Into the other main class fall methods with advection implicit treatment. They can
overcome the CFL condition and obtain the solution of time-dependent flows with large time-steps
using accurate, higher order time-stepping schemes. However, we focus on the specific case of
steady-state problems in constructing a new, monolithic solver for the DVM on unstructured grids.
In this approach we can no longer avoid implicit treatment of the collision operator which results
in a coupled, nonlinear system of equations and requires efficient linear and nonlinear (iterative)
solvers.
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4

Total discretisation of the DVM

The actual work on the topic of this thesis started by developing our own approach to the discreti-
sation of the DVM. The motivation behind the following steps was to apply special techniques
from Numerics for PDE in order to obtain an extended and more variable model based on the
discrete Boltzmann equation, focusing on advection implicit schemes and thereby following the
ideas from Section[3.3] The whole process will be covered by five sections in this chapter:
Firstly, in Section .| we describe our time-discretisation wherein both collision and transport
are included in the presented implicit schemes. Our second main aspect is high order spatial dis-
cretisation on unstructured grids which will be described in Section [4.2] by introducing constant
characteristic upwind of first and second order. Additionally, we describe a special feature of the
upwinding, which makes possible to solve directly pure convection problems by exploiting a spe-
cial numbering of the unknowns. The next part shortly describes the boundary treatment which is
a quite important and non-trivial part of the solution process. In Section 4.4| we combine all in-
gredients and write the resulting (monolithic) system of algebraic equations to be solved. Finally
we give one main result of this thesis in Section [4.5] by introducing the generalized equilibrium
formulation. Therein, we rewrite the discrete velocity model (I.2)), resp., the obtained algebraic
system, proposing a new Boltzmann-type equation that is directly connected to our special trans-
port discretisation and is therefore advantageous in the solution process.

37
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4.1. Implicit time-discretisation

We start the time-discretisation from the discrete velocity model

9 i _ L e

5 TE V= (i f) (@.1)
with a given set of discrete velocities &; in phase space, most commonly the D2Q9 model is
employed. To overcome typical stability restrictions, we want to treat the entire DVM implicitly to
allow large time steps or even to solve directly for stationary flow in a monolithic approach, while
a time-stepping scheme shall be used only for configurations with high Reynolds number and for
fully nonstationary flow problems. For the latter, we denote f'*' = fi(x,t), f = fi(x,t — At)

and the collisions as Qf = —%( ' — £"“?) and introduce for the above equation a general time-
discretisation, a 6-scheme similar to Eq. (3.11)) and resorted into
I 0Ar (& - VT — Q) = (1-0)Ar (Qf =& V) + f7. 4.2)

0 can be chosen arbitrary from the interval [0, 1], for example

* 0 = 0 corresponds to the explicit Euler, which we will omit in order to focus on implicit
numerical schemes.

* 0 =1 yields the implicit Euler discretisation of first order in time:

f_i’l+l + At i Vfﬂ+l o QI_’!‘FI — fn (43)
l 1 4 14
* 8 =1/2 yields the second order Crank-Nicholson scheme:
T At n n At n n T
fi+l+j(§i'vfi+1—9i+l):§(9i—r;i'Vfi)ﬂLfi (4.4)

In order to treat transient flow problems a high (higher than first) order time-discretisation is neces-
sary to obtain sufficient accuracy using moderate up to large time steps, while a first order scheme
usually demands micro-timestepping. Furthermore, we can proceed straightforwardly by com-
bining the stability of with the accuracy of in the so-called fractional step 6 scheme
described in [47]].

It is also possible to omit the time-dependence for the direct treatment of steady-state problems
with equation

& Vilx) + < (i(x) — () =0 @5

which was mainly discussed in [21]].

In this work, we concentrate on Eq. (4.5) when we treat steady state problems up to moderate
Reynolds numbers, but we need to introduce solvers with sufficient numerical efficiency for this
monolithic approach. On the other hand, we use the first order scheme (@.3)) only as a model equa-
tion to compare convergence rates in (pseudo) time-stepping simulations, in case the stationary
case is too ill-conditioned. For nonstationary flow problems, in our case a periodically oscillat-
ing flow, we use mainly the second order scheme (4.4)) to obtain sufficient accuracy in time. We
demonstrate its superiority over the simple implicit Euler for the flow around cylinder benchmark
by comparing against given reference numbers for drag and lift.

Independent of the applied time-scheme the discretisation needs to be completed in space, which
will be accomplished by a special finite difference technique in the next section. Unfortunately, it
will turn out that with our proposed implicit treatment of the advection, which is a main part of
this thesis, the implicitness of the collision term cannot be avoided like described in Section
The nonlinear, local coupling of distributions will be part of a whole algebraic system to be solved
in each timestep, resp., in the monolithic approach.
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4.2. The short-characteristic discretisation procedure

The transport operator for each constant characteristic in Eq. (I.2)) can be described in the stan-
dard LB method as a trivial streaming process of particles to neighbouring nodes (see Section
@), due to the intertwining of space discretisation and mesh. However, in this Section we will
describe our quite general finite difference discretisation of the differential term, since we allow
unstructured meshes. This task has been performed very efficiently in [[19], [20] using a back-
ward difference scheme of up to second order accuracy. For each of the constant characteristics
we regard the transport problem as a simple onedimensional differential equation. Actually, this
procedure does not only apply for the set of lattice velocities, but for any arbitrary characteristic 3
(see Fig.[d.1)). Therefore, and for reason of simplicity, we assume a hyperbolic equation with pure
convection

ng - Vu(x) = f(x), (4.6)

for a function u : R? — R with the unity vector ng. In the following we describe the construction
of the so-called upwind discretisation procedure for the transport term in (#.6)), of first and second
order accuracy, respectively.

transport with characteristic 3

weights oin [0,1]
midpoints m;
(virtual) nodes v;
distances h;

degrees of freedom

Figure 4.1: Constant characteristic upwind
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4.2.1. First order upwind

Due to the constant characteristics in the Boltzmann equation as well as in the exemplary con-
vection equation (4.6), we can view the problem as purely onedimensional as in Fig. d.2] Conse-
quently, we can write the spatial derivative as

u(vo) —u(vi)

+ 0(]’11), 4.7
h

ng - Vu(vo) =u'(vo) =
using an upwinding of first order (to be denoted as upw1). This approximation yields a backward
difference quotient and we denote the linear operator as

u(vo) —u(vi)

I (4.8)

Vupwlu(VO) =

This means we discretise in each grid-point using local and backward information, in Fig. .1]
represented by nodes vy and v, respectively.

N 4 7

Figure 4.2: 1D view along the characteristic
Interpolation

Using unstructured meshes, we cannot expect to come across actual grid nodes going back along
the characteristics. Instead, we assume virtual nodes right on the intersection with the edge of the
next backward element. The function value in the virtual node has to be interpolated from the
function values in the neighbouring nodes. For first order upwind we apply linear interpolation
between the solution in the corners p{, p% of the respective edge, obtaining

u(vi) = aqu(py) + (1 — o u(pi).

This scheme is of first order for the interpolation of u(v;) and therefore sufficient for the overall
consistency of the discretisation scheme (4.8).
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4.2.2. Second order upwind

It is obvious that in every point the difference quotient for the second order upwinding needs in
total 3 function values, from the local and two backward nodes, to achieve the improved accuracy
on arbitrary grids. The coefficients in the scheme can be found using the so-called *polynomial
fitting’ technique as shown in [19]. It is also possible by a simple Taylor expansion in 1D; as
previously we can assume a simplified onedimensional problem due to our constant characteristic
approach. We give the Taylor series for 4 := hy:

h2

u(vi) =u(vo—h) = u(vo) = hut (vo) + Z-u" (vo) + O(h")
However, we take into account a non-equidistant distribution of the grid-points, so we give for
r-h := hy + h; the Taylor series

)2
u (vo) + O(h?).

u(va) = u(vo —rh) = u(vo) — (rh)u' (vo) + (FZ

Merging the two equations and cancelling the 42 term yields
Pu(vl) —u(vy) = (* = Du(vo) + (rh— r*h)u (vo) + O(h?)

respectively
(1 —=r?)u(vo) + rPu(vl) —u(vy)
h(r—r?)
We summarize that we found the coefficients for the second order upwind scheme (to be denoted
as upw2) in vg:

=u'(vo) + O(h?).

—(1=r®)u(vo) — r*u(vi) +u(v2)
hy(r?2—r)

nB . VM(V()) ~ Vupr”(VO) =

The equidistant case (7 = hy < r = 2) results in the well known scheme

3u(vo) —4u(vy) + M(Vz)‘

oh 4.9

Vupr”(VO) =
Analogously, the differential operator in the DVM will be discretised for each of the 8 constant
characteristics using either V1 or V,,,» and scaling by parameter c:

& -Vf— en;-Vf; , othogonal vectors
b V2en;-Vf; , diagonal vectors

The scaling factor of v/2 for the diagonal characteristics is due to the specific construction of the
D2Q9 model with an underlying square lattice.

The requirement of two backward nodes for upw2 cannot be satisfied in a layer one node away
from the inflow boundary. The second order could be retained by applying a central scheme for
these points, but such treatment would contradict the overall upwind character which is necessary
to obtain lower triangular matrices from the discretisation. Instead, the scheme simply switches
to the first order difference quotient (4.8)), giving results which are considered accurate enough, as
showed various numerical tests (see [[19]]).
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FEM-like interpolation

We extend the view again from 1D to our unstructured, twodimensional mesh and consider the
aspect of interpolation in virtual nodes as in the case of first order upwinding. However, to sustain
the total second order of the previously described scheme, it is not sufficient to use linear interpo-
lation using two points per edge. Instead, we upgrade our mesh falling back on basic theory from
Finite Element methods. This means that we need some additional degrees of freedom — to obtain
second order accuracy on triangular grids we need 6 nodes per element — which we place in the
edge midpoints. Function values in the virtual nodes, for example in v, are then interpolated from
3 nodes situated on the edge by in the following scheme (compare Fig. 4.1)

u(v1) = Mu(py) +hou(pi) + Ate(my)
with weights depending on the value o;:
7\,1 = (1 —0(1)(1 —20(1),7\,2 :(X1(20L1 — 1),7\,»,, :4061(1 —0(1)

The following exemplary o values show how the interpolation scheme collapses back into the
actual grid nodes:

o =00= 7\1:1,7»2:0,7\,,,,:0
o =10= 7\.1:0,7\,2:1,7\.,71:0
o =05= 7\.1:0,7\,220,7\.,”:1

Mixed upwind

The second order scheme can exhibit unphysical oscillations in areas of strong gradients, while
the first order scheme lacks accuracy and tends to ’smearing’ of the solution, as shown in [19]. A
simple remedy presented therein was to use a linear combination of both schemes in the way of

Viix = Vw2 + (1 =€)Vypw1 . €€ [0,1]

obtaining a mixed order scheme which obviously has the same lower triangular matrix property
as the two upwindings. In general, an appropriate local strategy for the linear parameter should
be chosen, in order to achieve high accuracy by setting € to 1 where it is allowed, while shifting
€ — 0 in case of steep gradients in the solution and thereby smoothing out possible over- and
undershoots. In the results to be presented later, the obtained solutions were not so critical as to
give immediate need for the mixed scheme. An extreme case given by the flow in the cavity, which
is unsteady in the upper corners of the domain, was approximated accurately. In the future, we
will analyse the discretisation V ,;, in connection with the Lattice Boltzmann equation, as soon as
there will arise a promising field of application.
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4.2.3. Special sorting technique

Due to the upwind discretisation using information from ’backward’ nodes, one is inclined to
think that, starting from the inflow boundary and ’traversing’ the domain to the opposite wall, one
can directly solve a pure convection problem as in Eq. (.6). In fact, as described in [20], for
each constant characteristic f, resp., lattice vector &;, it is possible to find a numbering of the grid
nodes so that the resulting discretisation matrix is lower triangular. The numbering is determined
in a preprocessing routine and differs for each direction. At simulation time, whenever one has to
solve a transport step (for example in preconditioning), it is possible without actually inverting a
matrix but by following the numbering and performing a simple backward insert of the solution
starting from the given boundary values. The sorting algorithm is based on topological sorting
from the field of graph theory (see [[7]]) and can be written in pseudo-code (see Alg. which
was previously presented in [[19].

Algorithm 4.2.1 Topological Sorting
ORDER (QUEUE[*], IN-NODES[*][*], OUT-NODES[*][*], NVT)

0. INIT:

i.) QUEUE[*]=0, OUTDEG[*] =0, k=1

ii.) FOR EACH ENTRY IN OUT-NODES[i][*] DO OUTDEG[i]++
iii.) FOR EACH i WITH OUTDEG/i]=0DO i — QUEUE

1. DO WHILE k < NVT

a.) v=QUEUE[k]

b.) IF v=0 THEN OUTPUT ’Graph is cyclic!’, STOP!
¢.) FOR EACH j IN IN-NODES|[v][*] DO:

d.) OUTDEG]j]- -

e.) IF OUTDEG[j]=0 THEN j — QUEUE

f.) END FOR

g)k=k+1

The corresponding algorithm to sort a total number of n nodes is based on topological sorting used
in the proof of the proposition in [[7]]. The graph’s adjacency matrix as well as its transposed are
stored using sparse matrix techniques. Another array is initialized which stores the number of
row entries of the matrix during the algorithm (corresponding to the out-degree of every node). A
queue is used to work off all nodes, at the same time it will contain the resulting numbering. In
step 0, all inflow boundary nodes are written into the queue. They have out-degree 0 by definition,
because the solution is given there and they are not using other nodes in any difference scheme. In
step 1, nodes being in the queue are successively removed from the graph, and for the vanishing
edges the algorithm decrements the out-degrees using the information from the transposed matrix.
If an out-degree falls to zero, the node is written into the queue. The order in which the nodes have
been written to the queue depicts the new numbering of the nodes. If the queue ended before all n
nodes were extracted, this would mean that the graph contained a circle. So, the algorithm yields
the desired numbering requiring O(n) operations and the runtime to solve our transport problem
using this numbering is linear, too.

Finally, we visualize the result of the resorting in Fig. The standard allocation of the matrix
entries is shown in Fig. #.3a] After applying the permutation matrices (representing the new
numbering) to the 8 transport parts situated on the block-diagonal of the system matrix, we see a
change of the original allocation. Those entries, that belong to the finite difference discretisation
of the differential operator are permutated into a lower triangular allocation in the matrix, see Fig.
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M.3bl The off-diagonals contain the collision-term entries. Additionally, we can implement this
discretisation in a matrix-free style, i.e. we can calculate all matrix entries (including the difference
quotient and collision coefficients) ’on-the-fly’.

0 ez

(b) Sorted

Figure 4.3: Symbolic representation of effect of sorting algorithm



4.3. Boundary treatment 45

4.3. Boundary treatment

In CFD simulations there is a multitude of possible boundary conditions, in general defined by
imposing velocity and pressure in the case of the Navier-Stokes equations. These macroscopic
moments can easily be used to define Dirichlet-, Neumann- or Robin conditions. Other ways
are to use a pressure drop that drives the flow, or periodic boundary conditions for example on
the opposing walls of a channel. In the case of the Boltzmann equation, we have to use given
macroscopic values to impose boundary conditions on the microscopic distributions. From the set
of distributions in a boundary node (and in the case of a Dirichlet boundary) we impose values
only on the distributions facing into the domain Q, i.e. variables f;(x) on the sub-set

I[T:={x€dQ | ny-e<0}
with the outward normal unit vector n,.

The boundary configuration is in our case quite simple as we are using unstructured meshes. These
are adapted to the geometry of the domain, therefore we can easily place all boundary nodes right
on the wall. In contrast, for the Lattice Boltzmann method on uniform grids a boundary node
can occur which is between a fluid node and an ’outside’ node. A special treatment is therefore
required to obtain higher order accurate schemes, approximations of the exact distributions lead
to so-called Knudsen layers as studied in [5]]. Bouzidi et al. apply therefore interpolation (see [3]])
using four post-collision populations from the last two fluid nodes before the boundary along a
characterictic. Third-order kinetic accuracy was obtained by Ginzbourg et al. in [[13]] by introduc-
ing multireflection boundary conditions and using six populations in a sophisticated way.
However, it should be distinguished between time-dependent and steady-state flow, higher order
boundary schemes in time are not so important for the latter case. It is also not clear how schemes
in the spirit of [3] and [13] would be implemented in our aspired monolithic solver and what
would be their potential gain, especially compared to implicit boundary treatment. Therefore, we
restrict ourselves in this thesis to local boundary schemes and use information from neighbouring
nodes only for special cases. We will present in the following different local (bounce-back) meth-
ods, but first it is necessary to fix a numbering of the lattice vectors. In our implementation we
worked consecutively, starting from the eastern point and successively numbering the directions
anticlockwise. Expressed as cardinal points, e;, i = 1,...,8 were taken from

{E,NE,N,NW,W,SW,S,SE}

with the rest particle as 9th direction. However, in literature it is common to take first the orthog-
onal vectors, followed by the diagonals, with the numbering according to

{E,N,W,S, NE,NW,SW,SE}.
We will apply the second convention while discussing boundary schemes.

Bounce-back scheme

In the case of a no-slip wall, boundary conditions u,. = 0 are enforced by ’reflecting’ distribu-
tions f_;(x) which go out at the boundary back into the domain, it means we prescribe

fi(x)=f-i(x) on T;. (4.10)

It follows that opposing contributions in the sum ¥ ;&; f; resulting in a zero momentum. This so-
called bounce-back scheme causes, as in the case of collisions, a coupling of distributions with
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varying characteristics.
Ladd scheme

CFD models simulated in this work mostly define a slip-velocity up.. In order to impose this
Dirichlet boundary conditions we chose mostly a scheme described by Ladd in [27]. Therein, the
above bounce-back treatment is extended by adding components of the momentum of the wall,
obtaining

fi= fi+290-0)i§i;bc- (@.11)

N

The implementation of {#.T1) is simple, as example we give the resulting equations for the D2Q9
model in case of a south wall aligned with the x-axis:

2u

Hh = f4+§—x

c
- Lu, Tlu
fs = f7+6c+6c
_ Lu, 1lu
fo = Js 6c+6c

Zou-He scheme

Zou and He introduced in [S1] a new bounce-back scheme which takes into account the nonequi-
librium term of the distributions. From the assumption f; + fi? = f_; + f°¢ one can compute a
scheme which differs from Ladd’s conditions especially in the case of a slip boundary. We present
the modified scheme again for a south wall:
2u
L = fut+ 3 =
c
Lu, Tu, lu,
376 T
Luy, 1u
6c 6¢
In practice it means that the macroscopic slip-condition is enforced by taking into account the
distributions aligned with the wall and an additional term of the wall velocity.

1
fs = fi— E(fl —f3)
Je

fS"’%(fl —f3)— %ux—

Implementation of boundary conditions into the system-matrix

The results in this thesis are given for Ladd’s scheme and in our monolithic approach we include
the boundary conditions into our matrix in a fully implicit way as

i " Upe
fi—f-i :2po-mi§ c2b : (4.12)

N

The components of velocity u,. appear in the right hand side of our algebraic system.
However, it is possible to use an explicit boundary scheme in the nonstationary model of Eq. (4.2).
Then the bounce back contribution of the outgoing f_; is taken from the last time step, and appears
in the right hand side:
.u
="+ 2p0 - m,-gl = be (4.13)

N

We treated the boundary implicitly throughout this thesis for two main reasons: One, in the case
of the direct stationary solution an impicit treatment is necessary for the efficient solution of the
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nonlinear equation (see Section [5.2)), and, two, for nonstationary flow it improves stability when
using large time stepping.

Singular points

In some situations, we have special boundary nodes that are not by definition in the set of I'g,
that is we cannot apply the scheme described above, instead we have to introduce a special treat-
ment. In Fig. 4.5al we have a pair of opposing distributions exactly in the corner enclosing the
flow domain, which cannot be treated by the bounce-back equation {.12)), nor by the upwind-
discretisation of the LBE, because in this case both f; and f_; are facing out of the domain and are
located in a singular point. In addition to this case, the grid processing routines which are part of
FEATFLOW [45]] define some points at concave walls (secant running through solid) as incoming
boundary values, for example the north and south distributions in Fig. 4.5b). In both cases, it is
out of question to neglect these values because we need the complete sum of 9 distributions to
obtain the local density, resp., pressure. We found and implemented two consistent ways how to
treat special boundaries. First, assuming a no-slip boundary with u = 0, we insert the moments u
and p into the equilibrium term, resulting in

£4(p,0) = wip. (4.14)

Identifying the distribution f; with its equilibrium, which is a common scheme for boundary-
conditions, we can account for the missing equation by

fii=1(p,0) = & ) fi-

We can derive the opposing distribution in an analoguous way, or just identify f_; := f; according
to Eq. (4.12)) for the considered no-slip case where opposing contributions must cancel out.

Boundary by extrapolation

The second way to treat exceptional configurations is especially suited for the case of a slip bound-
ary with u # 0, where equation does not hold. Looking again at Figure we want to
compute values of f; and f_; in the corner with a nonzero wall-velocity. In this case we want to
derive the unknows by extrapolation and to this purpose use our finite difference discretisation.
We exploit upwind information of an adequate characteristic and use known values from inside of
the domain in the constant extrapolation scheme

f2(o) = fa(v1) = M fa(p1) + M fa(m1) + Ao fa(p1), (4.15)

or the linear extrapolation

faloo) = (1 ) falv) = o fa(w).

Neumann boundary

The final configuration to be discussed is the Neumann boundary condition (natural BC in NSE) as
used for example for the outflow of the channel in the flow around cylinder benchmark ([39]). To
satisfy the natural condition g“ = (, we use the constant extrapolation (4.15), following the char-
acteristic pointing in the outward direction n. We apply this scheme on all distributions fi,k # 0
except the rest particles. This corresponds to the treatment in the LBM, where the values are
"copied’ from the last layer before the boundary in the structured mesh.
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(a) West boundary in D2Q9 model (b) Boundary treatment in D2Q7 model

Figure 4.4: Standard boundary configurations

(a) Treatment in corners (b) Concave case

Figure 4.5: Special boundary configurations
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4.4. Algebraic system resulting from basic discretisation

Having introduced a number of semi-discrete schemes in time and the special space discretisation
of upwind type, we can finally write the equations derived from the DVM as a fully discretised
system. For this purpose we denote

1
Tifi~ & Vit =,

with the operator 7; according to the first, resp., second order upwind discretisation of the transport
term. Then we obtain the following discrete, nonlinear algebraic systems withi =0, ...,8:

0-scheme:
‘ﬁ“+ﬂm<ijﬁ4—iﬁH“ﬁ:41—®N<1ﬂ““Jﬂﬁ>+ﬂl (4.16)
Implicit Euler system (6 = 1):
£ A (Tifin-i-l B iﬁn+l,eq> _ g

Crank-Nicholson system (6 = 1):

Monolithic system for stationary problems:

1 e
Eﬁ—gﬁqzo (4.17)

Finally, in view of a reformulation of the obtained systems and also in preparation of nonlinear
solution methods in Chapter[5] we introduce a linearization of the algebraic system.

Linearization of the collisions

All 4 algebraic systems stated above are, due to implicit treatment of the collisions, nonlinear
in the primary variables f;. In the macroscopic variables we have the two quadratic terms (&; - u)?
and u? appearing in the equilibrium term

o= mi(p+p0((§ic'2“)+(§i'u)2_(”%JF”%)))

] 2
‘ 2cs 2cs

of the (incompressible) SRTBGK model, but their linearization is quite straightforward: The gen-
eral product ugug composed of velocity-components is substituted by uqiig where @ can be chosen
for example from the solution at the previous time-step or as the last iterate in a fixed-point non-
linear solver (see also Section . In the primary distributions we write it = ¥;&; ;. This ansatz
is sufficient for a linearization of the above schemes and we complete it by eliminating the macro-
scopic variables. We apply the summation for p and u = (u;,u;)” and introduce the constant
coefficients D;; = e; - e, formally devising

& -w)=cY Dufi , w=cY Dufc . w=cy Dyfi.
k k k
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Altogether, the equilibrium is linearized as

= g <p+(§ic'2u)+(§i'u)(§i'ﬁ) (ulﬁl+u2ﬁz))

i 4 o 2
z 2c; 2cs

= (Di(ka +3) Difi
% %
+gZDikkaDikfk
% %
_%(Zlefk Y Diifi+ Y. Dafi ZDZkfk)>
% % % %
= Zd’ikfk- (4-18)
%

Thus resolving above equation down to the distribution level we get rid of macroscopic terms
and all ¢ in the denominator cancel out. Even without them, one has to keep in mind the low Mach
number nature of the approximation of the BGK model, i.e. the limit of Ma = -- — 0, and 2

appearing in the dominating term % However, the resulting coefficients are independentent of c,
so formally @ = ®; x( f) holds.

Compressible vs. incompressible model:

The equilibrium term in the compressible model, i.e.

i = op(1+ G0 B ()

2 4 2
s 2c; 2cs

in the macroscopic variables density p and momentum pu would introduce a different nonlinearity
due to f; appearing as rational polynomials which makes use of a Newton solver especially diffi-
cult. After some initial tests, improved accuracy was not to be expected using this model, so we
refrained to the equilibrium term of the incompressible model which is only a quadratic polyno-
mial in f;.

Complete linear system and regularity:

We obtain the full system according to the linearization of our stationary monolithic approach
by:

[T, 1 @op o1 o2 -+ g [ fo
T, @9 0O @ fi
1] . ~ . .
T, 3 Wy Wy o2 : 2 l=0
L TS_ _6)8() (I)gg_ _f8_

The coefficients of above system can be computed on-the-fly, but it is also possible to save the
global, sparse matrix (with implicit boundary conditions) and obtain the solution using a direct
linear solver (see Sec. [6.1). However, a careful treatment is required in this case. This is due
to the density which is uniquely defined only up to a constant (similarly to the pressure in the
Navier-Stokes equations). Consequently, the original system is singular and the direct solver (like
UMFPACK) might not give any solution. In some CFD simulations, one can normalize the average
pressure after each matrix-vector multiplication in an iterative scheme. In the Boltzmann context,
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we have no actual simulation-variable for the pressure, only the density p (which is the scaled
pressure p = c2p) given by the sum of the local distributions. Consequently, as a regularisation-
step of the system, we chose one outgoing distribution, say a boundary variable f, and fix it
by setting f;" = ;. Using a direct solver, it means introducing an identity row in the assembled
matrix.

Variations in the solution are then usually given by f; = ®;po + O(Ma) which can result in roundoff
errors when computing the difference of f; and ffq which is of the same order (see [6], [40]).
Skordos therefore rearranged the simulation variables to f; — ®;po by substracting out the equal
term. We can obtain similar positive effect by setting f;" = 0. This yields solutions of order O(Ma),
with negative distributions appearing what is actually no unphysical behaviour. However, in the
case with f;" = ®; no errors could be observed using 16 digit arithmetics. In practive, the solution
in the vicinity of the fixed point looks slightly distorted especially for small sound parameter c.
Reducing the Mach number makes this distortions disappear, but it would be interesting to analyse
this behaviour further.
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4.5. Generalized equilibrium formulation (GEF)

In [20],[46] the concept of the generalized mean intensity (GMI) had been successfully com-
bined with a direct transport solver to treat radiative transfer problems. The idea is to convey this
technique from that integro-differential equation to the LBE: In this case we cannot improve the
storage cost like in the GMI approach due to the coefficients ®; in Eq. (4.I8) varying with each
characterisitic i. Nevertheless, the GMI was also able to combine the advantages of an efficient
transport discretisation on the one hand with special preconditioning to deal with stiff problems
due to large scattering on the other hand. When we draw the connection between radiative trans-
fer and the Boltzmann equation, we can assume that dominant collision in the latter would, just
as in the case of dominant scattering, require special preconditioning. The spectral analysis of
the system matrix in Section confirmed that the sole use of an efficient transport solver can
be insufficient. Therefore, we introduce an algebraic reformulation of the Boltzmann equation,
which is completely new and was only recently published by the author in [21]]. The procedure we
carry out in the following is analoguous for the time-stepping 6-schemes (#.16). However, here
we refrain to the monolithic steady scheme and start our reformulation with the discrete algebraic
equation (4.17). Equation

1
Tefi= _fe' k=0.....8 (4.19)

can be formally rewritten as
1
‘ﬁ:ngﬁW k=0,...,8 (4.20)

by applying the inverse transport operator (discrete transport-matrices). Next, we multiply with
the corresponding weights @; from equation (4.18) for each i = 0,...,8 and continue with the
generalized form

- g 1
it fr = O T, 1; 1 k=0,...,8.
Summing up over k finally gives us for each equilibrium term f;?:
- | .
=Y oufi =) ouT, lgf,fq i=0,...,8
k k

respectively
1
Z ~ —1 .
fi' = 2 @y T, Ef:q:() i=0,....8 “4.21)

The f,f ? in equation li are linearized exactly as previously, resulting in the generalized equi-
librium formulation (GEF) written in the new matrix form:

~ 1m—1 ~  1p—1 ~ Ip—1 e
(DOOETQ wOI;T] O)()gETg f()q
®10iT, ! @ iT]! : 0
[—| "'0r0 Pz h ' =0 (4.22)
S o 1 ¢q
g0 T o g Tg /3

This means that in order to solve equation , we first solve for the terms f;? and afterwards we
obtain the f; from a simple post-processing step according to equation (4.20). It is even possible
to compute the moments of density and velocity directly from the equilibrium values, according
to the chapter treating the Chapman-Enskog expansion and Equations (2.15) and (2.13)) therein.
To evaluate higher order moments like stress, though, the distributions f; are necessary (see Sec.

[A2.1)
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In practice, the resulting system matrix is not given explicitly and cannot be used in direct lin-
ear solvers as the basic discretisation for instance. Here, the system contains the transport steps
in an inverse manner, which means that we obtain an implicit matrix only as we do not calcu-
late the actual inverses Ti’l. What is done, though, is applying the inverse to a vector which is
implemented as the solution of a linear system for a given right hand side. Due to our special dis-
cretisation and the assumed lower triangular form of the transport matrices 7;, this step is very cost
efficient. The GEF even allows additional preconditioning for example if we succeed in obtaining
information on the actual matrix-entries. The implicit matrix in (4.22) consists of an identity and
the (weighted) inverse transport blocks. We can directly obtain at least the diagonal entries of each
T, ! linear algebra states that they are simply given by the inverse of the diagonal entries of T;.
It follows that all diagonals of the composed system are known explicitly, scaled by weights ®;;
and the relaxation time %, based on this part we will present a special preconditioner for collision
dominated configuration in Section [6.4]

How is a matrix-vector multiplication of the above system carried out in practice? Although
the matrix looks very dense with 81 inverse transport steps, the implementation of applying it to a
vector looks slightly different in our code . First, we apply transport solution steps for the 9 charac-
teristics towards the vector f¢4 and, second, the resulting vector is multiplied by weights ®;; which
corresponds to building the sum as in Eq. (4.21)). So the implicit system matrix is implemented in
the efficient manner

G)OO 6)01 . 6)08 Tal 0 5(1
. -1 eq
1| & & T, 1
) - 10 11 —0
T
~ —1 eq
30 gg 0 T, fg

4.6. Summary and outlook

In this chapter we showed how to apply modern numerics for PDEs to obtain a discretisation of the
DVM in the spirit of collision/advection implicit schemes described in Section [3.3] By introduc-
ing implicit Euler and Crank-Nicholson schemes we showed that arbitrary time-discretisations are
valid for the time-dependent Boltzmann equation. What is more, we introduced a monolithic, fully
coupled nonlinear system for steady-state problems, for this purpose applying implicit boundary
conditions. The presented finite difference space discretisation of 1st and 2nd order is just one pos-
sible way to treat the advection, applying FEM-like interpolation for the second order scheme on
arbitrary triangular grids. However, a high numerical efficiency is obtained due to a special sorting
technique that yields lower triangular matrices for the transport steps. This technique was used
in a pioneering work for an algebraic transformation of the given discrete system. The developed
generalized equilibrium formulation incorporates the inverse transport steps into the equations.
This results in a system matrix which is known only implicitly but can be efficiently applied to a
given vector.

In the following, we can exploit the obtained numbering also directly in a transport precondi-
tioner in view of iterative (Krylov-space) linear solvers. This combination is supposed to give
for convection dominated configurations excellent, level-independent convergence rates which we
expect also in solving the plain GEF system. The GEF approach, however, has potential to deal
with stiff configurations and bad condition numbers by using additional preconditioning. In par-
ticular, we will show that the GEF can be efficiently embedded in a multigrid framework, both
as smoother and coarse grid solver. We present details about nonlinear and linear strategies for
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the basic discretisation as well as the advanced generalized equilibrium formulation in the next
chapters and a proof of concept for our numerical methods is given in Part III of this thesis.



5

Nonlinear solvers

In the previous chapter we derived a system of algebraic equations which is obviously nonlinear
(quadratic) due to the terms (&; -u)? and u? in the collision operator of the SRTBGK model.
Using the linearization it would be possible to update f = £ only once every step or
apply extrapolation f = 2f" — f"~! in a (pseudo) time-stepping with very small Az. However,
the stability and accuracy of such a scheme would be poor, a fully stationary approach impossible.
In view of modern numerics we aim to obtain full control of the nonlinear defect, either by fixed-
point iteration or the Newton method. In the following, we will see that both schemes applied to
the Boltzmann equation are similar in view of computational cost and implementation, but differ
extremely in efficiency. Therefore, our description of the nonlinear problem can be discharged
shortly, in contrast to the section about linear problems and solution tools.

5.1. Damped fixed point iteration
We denote the system we derived in Section [4] as
N(x)x=g 5.1

with x representing the solution vector for the distributions f; and N(x) the full operator consisting
of discrete transport and collision. Equation (5.1]) can be solved by simple fixed-point iteration

X" =x" 4+ oN(x") " INE)X"—g) , ®@>0

with optional damping by a factor ®. The results in Sec. [9.1] will show that the convergence of
this basic scheme is too poor to fully reduce the nonlinear defect of the stationary problem (4.17).
In case of strong nonlinearities appropriate damping is recommended, but the convergence can be
easily and significantly improved by a Newton scheme described in the next section.

5.2. Newton method

As alternative to the fixed-point iteration we present Newton’s scheme and discuss some implica-
tions in using this method. To that purpose we write system (5.1) in residual form

R(x) =N(x)x—g=0. (5.2)

The Jacobian [aRgn)} is then used in the following iterative scheme:
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The application of the full Newton method in the Navier-Stokes equations proves difficult when
dealing with terms of the form uVu which are not given analytically in the discretised equations.
Mostly one reverts to an approximation of the Jacobian by a difference quotient in the so-called
Newton-Raphson scheme. Fortunately, in our case we have given a fully analytical representa-
tion in our discrete equations, making it easy to obtain a full Jacobian. In the algebraic systems
#.16) — we have mostly linear operators due to transport and mass terms. An exception is
the equilibrium term which in the incompressible model is a quadratic polynomial in the macro-

scopic velocity and density. Written in the primary variables it is quadratic as well, therefore the
af!
dfx

derivation of f{? is easy. In short, summing up the partial derivatives
similarly to previous Section .4] yields:

for all k and linearizing

dff?t = O)i(ka+3ZDikfk+C%ZDikfk(éi'ﬁ)—%(Zlefklll—i—ZDZkfkﬂz))
3 % % 3 3
=) Oufi (5-3)
%

So, the derivation simply results in a scaling by 2 in each quadratic term and gives us the linearized
collision entries @ of the Jacobian, quite similar to ®;; in Eq. . The remaining terms of the
Jacobian are trivial, they include the constant coefficients due to the transport difference quotient
or possible identity terms from the time-stepping variants. The Jacobian used to solve the steady
state equation is therefore given by

[T, i Moo o1 @p2 -+ g
T, ®p O W
JR(x") T 1] B B
= 2 —— | o W 2
0x ] T .
L Tg i i 6)80 6)88 ]

while in an analoguous way the GEF monolithic approach results in the Jacobian

~ 1=l & 1p—1 ~ 1mp—1
(DOOETO (‘001%’1‘1 0)0ng8

=|1-

GEF _ _ _ _
|:aR(Xn):| mlo%Tol mll%Tl 1
ox :

~ 1p—1 ~ 1p—1
m80§T0 e - mSSETg

The next section will widely discuss linear solution methods for these systems, we will distinguish
the two variants especially in view of applied preconditioners.
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Solution of the linear system

The outer nonlinear solver iterates on a system we denoted as N(x)x = b with x representing
the discrete solution vector of all f;. After linearization of N(x) (resp., the equilibrium term) we
obtain a system matrix A corresponding to the time and space discretisation previously described
in Section @ In this section we will focus on the linear solution tools that we actually used
throughout the thesis.

Beforehand, let us look at the obtained structure of the linear system to have a basic understanding
of the problem. The main (block) diagonal of the system matrix is determined by two basic
numbering techniques. The ’standard’ case, listing for every direction the spatial nodes just as
they were identified by the grid generator, produces nine so-called "transport blocks’ of size n x n
(see Fig.[6.1a). The solution vector is then given by

fi (xl),...,fl(x,,),\..,._/,fg(xl),...,fg(x,,).

fy fi fo

Instead of the directional variable, we can use the local unknowns as the first index, obtaining a
narrower block-diagonal of 9 x 9 blocks (see Fig. [6.1b), with the solution vector enumerated as

Sioa)s o o), oo 10m)s o fol) -

f(x1) (i) f(xn)

In both cases we see additional entries outside of the block-diagonal, otherwise the solution of the
system would be trivial. All in all, the matrix allocation is dependent on the node numbering (for
example to obtain lower triangular matrices as described in Section[4.2.3] see Fig. 4.3)) and on the
primary index being either the spatial or directional variable. In detail, the collisions cause in ev-
ery grid-point a coupling of the distributions. In every row we have 9 (diagonal and off-diagonal)
matrix-entries corresponding to the discrete velocities, it means a 9 by 9 collision block for the
distributions in each grid point. If boundary conditions are treated implicitly, the incoming dis-
tribution f; is coupled to the outgoing f_; which can be regarded as a small collision. In contrast
to this example of local coupling, neighbouring nodes are mainly coupled through the transport
term, in this case we talk about distributions with the same microscopic velocity. Altogether, the
resulting matrix allocation is quite sparse.

There are different ways how to deal with the given system: Direct solvers like LAPACK or UMF-
PACK are efficient for smaller problems, but scale badly with increasing number of unknowns (see
Sec.[6.1)), so that iterative methods have to be used for many gridpoints. The Richardson iteration
is just a basic possible solver. This well-known, but usually very slow defect correction method,
especially in the case of an ill-conditioned matrix A (see Sec.[6.2)), can be accelerated by precondi-
tioning techniques. The same holds for Krylov-space methods like BiCG-Stab [48]] and GMRES
[38]] presented in Sec.[6.5] These schemes are especially efficient in case of strong clustering of
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(a) Indexing due to directions (b) Local index first

Figure 6.1: Matrix allocation depending on primary index (and sorting)

eigenvalues, we present two different preconditioners also in view of this advantageous feature in
Sec.[6.4] Finally, we describe the multigrid algorithm as an advancement of our iterative solvers
with special preconditioning.
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6.1. Direct linear solvers

Wherever any systems of linear equations occur in science or engineering, the first ‘natural’ im-
pulse is to use direct solution methods, be it using Gaussian elimination for small ’pen and paper’
systems, or implement the scheme with few lines of code. With modern computers, the cubic
complexity of the algorithm is no hindrance, at least at the beginning. With growing number of
unknowns, as the next logical step engineers avail themselves of powerful linear algebra libraries.
Using LAPACK or UMFPACK in a black-box manner they can comfortably obtain (sooner or
later) the exact solution, until they hit the memory wall with RAM and runtime demands of O(n?),
resp., O(n?) in the worst case, even sophisticated libraries have superlinear complexities.

Also for the author of this thesis, a direct linear solver became a very useful tool at the beginning of
his work, when the implementation of efficient iterative solvers was still some way ahead. UMF-
PACK yielded important initial results, i.e., wrong boundary conditions became obvious from the
plotted pictures, well-posedness and regularity of the system obtained by our discretisation were
indicated by the software. Additionally, we had to deal with the 'new’ parameter of the sound-
speed, which on the one hand significantly influences the conditioning of the system matrix (see
Sec.[6.2) and on the other hand shows a specific (asymptotic) behaviour concerning the overall ac-
curacy (see Sec.[7.1)). Analysing the latter, while not being overcome by extreme ill-conditioning,
was feasible using an efficient direct solver. In Table [6.1] we show the memory and cpu-time re-
quired by UMFPACK to solve a linear system, in this case resulting from a discretisation of the
driven cavity model on a structured mesh (see Appendix [AI.I). The superlinear scaling of the
runtime is obvious and the memory of a 4GB machine is only sufficent to solve problems on a
grid with 66049 points, even less for the 2nd order upwind which uses a more complex difference
quotient. However, the runtime was independent of arbitrary choices for the sound-parameter ¢
and we obtained comparable results.

Having overcome the first obstacles, we could start designing efficient linear iterative solvers —
knowing at last the appropriate range of configurations — which will be presented in the following
sections.

upwl upw?2
#dof entries memory  runtime entries memory runtime
81 6920 37928 1,60E-2 8502 41544  2,01E-2
289 26232 135016  5,20E-2 32918 147368 1,44E-1
1089 102104 508904  3,80E-1 129558 554280 2,00E+0
4225 402840 1975528 341E+0 514070 2149160 1,98E+1

16641 1600280 7784168 2,97E+1 2048022 8463144 2,97E+2
66049 6379032 30903016 3,02E+2 8175638 — —

Table 6.1: Number of non-zero entries, resp., memory-usage (in bytes) and runtime (sec.) for
UMFPACK direct solver
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6.2. Analysis of the matrix condition numbers and preconditioning

In this section we will present important preliminaries before dealing with the special linear it-
erative solvers and preconditioning. Given the full discretisation of the D2Q9 discrete velocity
model, we take a look at the resulting (linearized) system of equations in order to analyse the
conditioning of the system matrix A. The system we take into account here is obtained with-
out the generalized equilibrium formulation, as the implicit matrix is not directly given. Instead,
we take the Jacobian obtained in the previous section in the Newton method, with our upwind
space discretisation and fully implicit boundary conditions included in the matrix. We analyse
the monolithic steady approach, but also take a look at the system obtained by an Implicit Euler
time-discretisation with different A¢r. Early tests using a simple damped Richardson scheme as
linear solver showed a rapidly degrading convergence behaviour for ¢ — oo, s0 a detailed analysis
of the condition k¥ = K(c) was necessary. Furthermore, in view of applying preconditioners, two
aspects are of main interest:

* What spectrum of eigenvalues is characterizing A and how is it influenced by parameters c,
h, At or by the matrix’ parts (basically the transport part and the collision part)?

e What is in short the overall condition k¥ and how can it be improved in view of iterative
solvers by special preconditioning?

As testcase was chosen the driven cavity configuration on a structured grid at Re = 10 and the
distribution of all eigenvalues for 1st order uwpind was obtained with sufficient accuracy by 100
iterations of the QR-algorithm. The first Figures show results for the time-dependent sys-
tem at At = 1, while together with cases At = e (monolithic approach) and the easier configuration
At = 0.1 condition numbers due to extreme values are given in the tables The spectrum
plotted in Figure [6.2|for initially n = 81 gridpoints shows for the eigenvalues a strong dependence
on parameter c. For ¢ = 1 the distribution is moderate, with maximum values at 32 and a number
of lowest values at 1. Looking still at the first figure, we see that with increasing ¢ to 10 and
100 the conditioning of the system matrix becomes ill with the largest eigenvalues growing fast
with c. Nevertheless, we have throughout positive values due to the upwind-disctretization of the
differential term.

In the following tables the influence of ¢ onto the condition of the plain system is also obvious,
being almost of order O(c?). The resulting ¥ for the case At = 0.1 (Table is moderate com-
pared to the case At = oo (Table [6.4). The conditioning is also influenced by the refinement level
h. In the left column of all tables we see that A, is of order O(hfl), additionally A,,;, in Table
is decreasing with A resulting in a strong h-dependence even quadratic with the number of
unknowns for the direct solution approach. The time-dependent cases always show A,,;, = 1 and
an interesting observation is that for the extreme case of ¢ = 100 almost no level-dependence of
the condition number is visible, like in the moderate cases.

The two observed influences we attribute to the discretisation of the collision term (c-dependence)
and the transport term (h-dependence). We expected to improve condition numbers by special
preconditioning techniques, for example remove the level-dependence (if existing) by transport
preconditioning. In order to verify this assumption we tried to systematically analyse parts of the
system, by extracting them from the matrix and computing their inverses which we applied to
A. The large transport-blocks gathered into a matrix 7" and the collisions on the (off-)diagonals
assembled into a matrix C consisting of small 9 x 9 blocks were obvious candidates.

Operator T consisting of N x N transport blocks:

In the middle columns of Tables [6.2H6.4] we present the corresponding eigenvalues of the ma-
trix T~'A. The largest eigenvalues are throughout bounded by 1.8. On the other hand, A,y
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was also reduced, but the overall condition number is improved by an order of magnitude, be-
ing level-independent except for the case ¢ = 100. The case Ar = o also is an exception, but
here the condition number is even lowered by two orders. In Figure [6.3] we look at the influence
of transport-preconditioning on the time-dependent system for the whole range of ¢, showing a
clustering which is especially favourable for Krylov-space iterative solvers, although eigenvalues
close to zero for ¢ = 100 can be problematic. Figure [6.5]shows the important monolithic steady
case and clearly we see once more the level-independence for the transport-dominated case ¢ = 1,
where the distribution of eigenvalues shows a strong clustering around 1. With this configuration
we can expect to obtain the steady-state solution efficiently, even with increasing refinement level.

Operator C due to local 9 x 9 collision blocks:

The eigenvalues of C~!A now all have negative sign, as seen in Fig. but are still bounded
inside [—2,0), the condition is mainly influenced by A with smallest absolute value. The right
columns of the tabulated results show that the collision preconditioned system is quite robust
against increasing c, especially for a small system size. The level-dependence, however, is much
stronger than for the matrix modified by inverse transport blocks. An interesting observation can
be made in the last Figures[6.6H6.8]| presented for the monolithic steady approach. The eigenvalues
of C~'A show a specific allocation around —1, an extreme example is given by ¢ = 100 where all
values are almost aligned. Higher refinement levels mean more deviations from this line, and for
¢ = 1 the values are more scattered with just a small group of —1 values.

In summary we showed that the proposed preconditioners improve the condition numbers, de-
pending however on the range for ¢ and 4. Convection dominated configurations can be solved
very efficiently using the lower triangular transport blocks resulting from our special numbering
technique. A strong clustering effect on the eigenvalues is additionally favourable for Krylov-
space solvers. Stiff configurations due to large ¢ can be also dealt with, using a block-Jacobian
approach for the local collisions. On the way to combine both techniques we developed the gen-
eralized equilibrium formulation approach, we will give results only numerically in Section [9.2]
without eigenvalue analysis because the GEF system matrix is only implicitly known.

plain tr-pre bl-jac
gl‘ld xmax xmin K }\'mux xmin K kmax }\'min K
c=1

81 4.1E4+0 1.0E+0 4.1E+0 1.1E+0 84E-1 13E+0 14E+0 509E-1 24E+0

289 73E+0 1.0E+0 7.3E+0 1.1E+0 84E-1 1.3E+0 1.6E+0 3.6E-1 4.5E+0

1089 14E+1 1.0E+0 14E+1 1.1E+0 8.4E-1 13E+0 1.8E+0 2.0E-1 &.8E+0
c=10

81 63E+1 1.0E+0 6.3E+1 1.7E+0 1.0E-1 1.7E+1 1.7E+0 24E-1 7.0E+0

289 9.5E+1 1.0E+0 9.5E+1 1.8E+0 8.5E-2 2.1E+1 19E+0 1.0E-1 1.8E+1

1089 1.6E+2 1.0E+0 1.6E4+2 1.8E+0 7.4E-2 24E+1 19E+0 4.6E-2 4.3E+1
c=100

81 3.6E+3 1.0E+0 3.6E+3 1.8E+0 6.1E-3 29E+2 1.8E+0 14E-1 1.3E+1

289 3.9E+3 1.0E+0 39E+3 1.8E+0 3.6E-3 5.0E+2 19E+0 4.2E-2 4.7E+1

1089 4.6E+3 1.0E+0 4.6E+3 1.8E+0 2.2E-3 82E+2 2.0E+0 1.2E-2 1.6E+2

Table 6.2: Extrema of absolute eigenvalues and condition numbers of the system matrix, Re = 10,
Ar=0.1
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plain tr-pre bl-jac
gl‘ld xmax xmin K }\'max xmin K kmax }\'min K
c=1
81 3.2E+1 1.0E+0 3.2E+1 14E+0 54E-1 27E+0 1.7E+0 3.4E-1 S5.0E+0
289 6.4E+1 1.0E+0 64E+1 14E+0 54E-1 2.7E+0 1.8E+0 1.6E-1 1.1E+1
1089 1.3E+2 1.0E+0 1.3E+2 14E+0 54E-1 2.6E+0 19E+0 8.0E-2 24E+1
c=10
81 6.2E+2 1.0E+0 6.2E+2 1.8E+0 6.7E-2 2.7E+1 1.8E+0 1.7E-1 1.0E+1
289 9.4E+2 1.0E+0 9.4E+2 1.8E+0 4.8E-2 3.7E+1 19E+0 6.0E-2 3.2E+1
1089 1.6E+3 1.0E+0 1.6E4+3 1.8E+0 3.7E-2 4.8E+1 2.0E+0 2.3E-2 8&.7E+1
¢=100
81 3.6E+4 1.0E+0 3.6E+4 1.8E+0 5.7E-3 3.2E+2 1.8E+0 1.3E-1 1.3E+1
289 39E+4 1.0E+0 39E+4 1.8E+0 3.1E-3 5.8E+2 19E+0 3.7E-2 5.3E+1
1089 4.6E+4 1.0E+0 4.6E+4 18E+0 1.8E-3 1.0E+3 2.0E+0 1.0E-2 1.9E+2

Table 6.3: Extrema of absolute eigenvalues and condition numbers of the system matrix, Re = 10,
At=1

plain tr-pre bl-jac
grld }\'max 7\'min K kmax }\'min K 7‘-max lmin K
c=1

81 29E+1 1.1E-2 28E+3 1.7E+0 6.9E-3 25E+2 2.0E+0 3.7E-3 5.3E+2

289 6.3E+1 49E-3 13E+4 1.8E+0 3.2E-3 5.7E+2 2.0E+0 8.5E-4 2.3E+3

1089 1.3E+2 24E-3 53E+4 19E+0 1.5E-3 1.3E+3 2.0E+0 2.0E-4 9.8E+3
c=10

81 6.2E+2 4.1E-2 15E+4 18E+0 1.7E-3 1.0E+3 19E+0 6.8E-3 2.7E+2

289 94E+2 1.8E-2 53E+4 1.8E+0 7.0E-4 25E+3 19E+0 1.4E-3 14E+3

1089 1.6E+3 7.6E-3 2.1E+5 1.8E+0 29E-4 6.1E+3 2.0E+0 3.0E-4 6.5E+3
c=100

81 3.6E+4 S58E-2 6.2E+5 1.8E+0 23E-4 79E+3 18E+0 9.0E-3 2.0E+2

289 39E+4 3.0E-2 13E+6 1.8E+0 1.1E-4 1.7E+4 19E+0 2.1E-3 9.0E+2

1089 4.6E+4 14E-2 3.2E+6 1.8E+0 5.0E-5 3.6E+4 2.0E+0 5.0E-4 3.9E+3

Table 6.4: Extrema of absolute eigenvalues and condition numbers of the system matrix, Re = 10,
At = o0
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Figure 6.5: Eigenvalues for Ar = o: Level independence of transport preconditioning ¢ = 1
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Figure 6.6: Eigenvalues for Ar = oo: Level-dependence of bl-jac preconditioning ¢ =1
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Figure 6.8: Eigenvalues for Ar = oo: Level-dependence of bl-jac preconditioning ¢ = 100
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6.3. Scaling

Before closing the aspect of conditioning as presented previously, we take again a closer look at
the given system of equations. Especially, aiming towards a monolithic steady solver, we saw that
the lack of a small Ar and any identity term as in Eq. (4.2) yielded us very ill-conditioned matrices
for large parameters up to ¢ = 100. We consider again equation (4.5) wherein ¢ appears in the
transport-term on the left and as ¢? in the collisions on the right. The relaxation time % = % can
reach very large values for example due to low viscosity v = 0.001 in the flow around cylinder
benchmark. We computed the eigenvalues again, but this time we tried to improve numerical
stability by scaling the whole equation by % and in fact the condition could be improved
significantly as seen in Table [6.5] and Figure [6.9] However, this applies only to the plain system
A, the *preconditioned” matrices 7~ 'A and C~'A yielded exactly the same results as previously.

Obviously the scaling factor is already included therein.

plain tr-pre bl-jac
grld }\'max 7\'min K kmax }\'min K kmax lmin K
c=1

81 29E+1 1.1E-2 2.8E+3 1.7E+0 609E-3 25E+2 2.0E+0 3.7E-3 5.3E+2

289 6.3E+1 49E-3 1.3E+4 1.8E+0 3.2E-3 5.7E+2 2.0E+0 8.5E-4 2.3E+3

1089 1.3E+2 24E-3 53E+4 19E+0 1.5E-3 1.3E+3 2.0E+0 2.0E-4 9.8E+3
c=10

81 6.2E+1 2.0E-2 3.1E+3 1.8E+0 1.7E-3 1.0E+3 19E+0 6.8E-3 2.7E+2

289 94E+1 8.4E-3 1.1E+4 1.8E+0 7.0E-4 25E+3 19E+0 14E-3 1.4E+3

1089 1.6E+2 3.5E-3 4.5E+4 18E+0 29E-4 6.1E+3 2.0E+0 3.0E-4 6.5E+3
¢c=100

81 3.6E+2 2.6E-2 14E+4 18E+0 23E-4 79E+3 1.8E+0 9.0E-3 2.0E+2

289 39E+2 1.2E-2 32E+4 18E+0 1.1E-4 1.7E+4 19E+0 2.1E-3 9.0E+2

1089 4.6E+2 5.8E-3 7.9E+4 1.8E+0 5.0E-5 3.6E+4 2.0E+0 5.0E-4 3.9E+3

Table 6.5: Extrema of absolute eigenvalues and condition numbers of the system matrix, Re = 10,
At = oo, scaled
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6.4. Preconditioning techniques

As hinted initially in this chapter, a basic example of improving linear convergence is to apply
suitable preconditioning in the Richardson iteration

xD = x _ A~ 1(Ax") — p)

where A should be easy to invert in order to apply it efficiently in numerous iteration steps. At the
same time, while usually it is not feasible to take A=A, the preconditioner should be ’similar’ to
A in the sense that A~'A ~ I. This suggests to take one part of the matrix (as in Fig. that
dominates the system, while the structure is sufficiently simple or, for that matter, solvable. Once
we find the appropriate A, we can substitute the expression A~'A for A as iteration matrix in any
given iterative (Krylov-space) method to solve the modified system A=A = A~ 'p with signifi-
cantly improved convergence. We showed in Section [6.2] that the condition number was reduced
by multiplying A with the inverse block-diagonal which in one case consists of the transport matri-
ces. Accordingly, we will describe the so-called transport-preconditioner in the first place. In the
second part we will discuss an alternative preconditioner that focuses on the collisions. Finally,
the GEF model allows advanced techniques which are in the presented form not possible in the
original discretisation.

L L L L L L S P! L L L L
o 100 200 500 400 500 500 700 o 100 200 300 400 500 00 700
nz = 6925 2 = 6925

(a) Block-diagonal of transport matrices (b) Collisions on block-diagonal

Figure 6.11: Matrix allocation depending on primary index (and sorting)
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6.4.1. Direct transport preconditioning (tr-pre)

Our special numbering technique as described in Section|.2.3]makes it possible to turn our upwind
characteristic discretisation into a very efficient preconditioner. Especially for transport dominated
configurations, it is quite obvious to choose the convection part as the analogon A to the whole
system A. In this case we improve the condition number of A1A significantly and independently
of the mesh size as seen from our eigenvalue analysis. Furthermore, the resulting clustering of
the eigenvalues is advantageous for Krylov-space methods like BiCG-Stab or GMRES. These and
other iterative solvers sometimes need many ’solution steps’ of the preconditioner, which accord-
ingly needs to be accomplished very efficiently. Here we can directly invert A consisting of lower
triangular blocks — taking for every characteristic the prepared numbering as shown in Fig.[6.12]
This results in a linear runtime in the number of unknowns, additionally we find a parallelization
approach in the fact that transport blocks for the different characteristics are solved independently
of each other. In the D2Q9 model 9 processors could be used in parallel, while in 3D the number
would increase to 15 or 19 depending on the model and set of used lattice vectors.

The transport preconditioning is closely connected to the generalized equilibrium formulation in-
troduced in Section4.5] An improvement of the condition number due to tr-pre’ is there already
built in, as the inverse transport becomes part of the GEF equations. So the linear convergence of
iterative solvers using the plain (meaning without preconditioning) GEF is expected to be com-
parable to results obtained with ’tr-pre’ as preconditioner. A further improvement of ’tr-pre’ used
in the basic discretisation showed to be only achievable by the multigrid method where the use is
feasible and can be accomplished with high efficiency. In case of stiff configurations due to low
Mach number avantages using ’tr-pre’ cannot be expected, so an alternative approach is presented
next.
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(a) Special characteristic sorting (b) Transport-block for one direction

Figure 6.12: Preconditioning by transport part
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6.4.2. Block-diagonal collision preconditioning (bl-jac)

Our spectral analysis clearly showed that large values of ¢ cause for the linear system a very
bad condition number, which is even beyond remedy of the proposed transport-preconditioner.
This is due to the collisions situated on the off-diagonals (see Fig. [6.12a) becoming dominant as
they scale with —% = —%. As alternative to 'tr-pre’, we constructed a preconditioner that takes
into account the collision term. We implemented another numbering of the unknowns taking the
coordinate as primary index instead of the direction. We start the numbering with the distributions
fi, i=1,...,9 for all discrete velocities in the first point x;, then the next 9 variables for x,, and
so on for all remaining points. Consequently, the local collisions consist of 9 x 9 blocks on the
diagonal. At the same time, the entries for the spacial coupling due to transport are freely scattered
off the block-diagonal (see Fig.[6.13). The solution process of the preconditioner (to be denoted as
’bl-jac’) is accomplished efficiently, as we need to invert therein a block-Jacobian matrix C. The
inverse C~! consist of the inverses of n decoupled matrices (with  denoting the number of grid
points), i.e.
C ' =diag(C),Cs,....C,) ' =diag(C;', G ¢Y), GeR™

which we can calculate by a Gaussian elimination of each 9 x 9 system. The overall runtime,
even using this plain direct solver, is of the order O(n) due to the constant number of operations
to invert a matrix with 81 entries (although the constant in the expression O(n) is not small).
Unfortunately, bl-jac does not longer contain information about the transport part of the Boltzmann
equation, we lost it in giving up the special numbering and consequently the lower triangular form
of the transport blocks. This means that even we can expect good results for small systems with
¢ — oo, the convergence will be strongly dependent on the level, resp., number of unknowns. The
following, final chapter concerning preconditioning will show a technique which combines the
advantages of both numbering techniques.

c2f e . . . . . . . o

sk e 0 . . . . 0 . o

500 200 500 500 700 55 5 57 58 59
nz = 6925 nz = 6925

(a) Local collision numbering (b) One 9 x 9 block

Figure 6.13: Block-Jacobian preconditioning by collision part
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6.4.3. Special preconditioning of the GEF system-matrix

In Section [4.5| we described how the inverse transport became part of the generalized equilibrium
formulation, and how the special numbering following the characteristics gives a significant gain
applying the implicit system matrix. Most importantly, in contrast to the original system which
solves for the distributions f;, the new formulation allows additional preconditioning. The first
candidate to improve the condition number follows directly the proposed collision precondition-
ing from Sec.[6.4.2] while the second candidate uses advanced multigrid methods.

Additional preconditioning by collisions

The GEF matrix at hand (see Eq.[4.22)) consists mainly of weighted inverses of transport matrices,
easily to be solved due to their lower triangular form. Following basic linear algebra theory, we
take advantage of this triangular matrices to construct a preconditioner. The system is composed
of blocks

1
G =1— CoikETk‘l € R

with I the corresponding identity matrix. So each G; contains information about the (possibly
dominating) collisions mainly due to the relaxation rate % Even though the overall structure of
the Gy is not known explicitly, we know diag(Gy), they are easily obtained since diag(T,”") =
diag(T;)~! with T; lower triangular. We construct a local preconditioner (similar to the previous
section) by collecting the 81 matrix entries per grid point and calculating the corresponding 9 x 9
inverse matrices. The full block-Jacobian preconditioner can be expressed as (or assembled into)

the global matrix
diag(Goo) diag(Gor) --- diag(Gog)

diag(Gio) diag(Gn) :

C=

diag(Gso) -+ diag(Ggs)

although the implementation is matrix-free. However, applying C~! in iterative solvers we expect
an additional stabilising effect in the case of large ¢ (or collision rate %), while the solution of the
GEF even without preconditioning should perform well for transport dominated configurations
due to the fundamental construction. Results in Sec. confirm the suppositions for the scheme
denoted as GEF (\).

Multigrid as preconditioner

Instead of the quite simple collision preconditioning, we propose an alternative scheme using the
multigrid method. Suppose we apply the GMRES iterative solver for the generalized equilibrium
formulation which intrinsically holds the inverse transport. In place of the preconditioner C~! in
algorithm[6.5.2] we call a multigrid routine with a given accuracy. For example, gaining one or two
digits in each multigrid call will boost significantly the convergence of the outer GMRES algo-
rithm. It is also possible to run only one full multigrid cycle as preconditioner, sweeping from the
given level L down to coarsest level 1, with adjustable number of smoothing steps after assembling
the intermediate results (see Alg.[6.6.1). As smoother can be chosen an arbitrary iterative scheme
with good smoothing property giving optimal overall convergence, in practice 16 GMRES steps
of the plain GEF is a good choice. Repeated MG cycles and smoothing steps can be performed
then with good numerical efficiency due to the fast algorithm directly solving the transport steps.
As coarse grid solver it is applicable to use the GEF approach with collision preconditioning, be-
cause GEF(\) is supposed to yield good linear convergence even for stiff configurations in case
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the number of unknowns on the coarsest level is not too high. Using multigrid as preconditioner
in Krylov-space iterative schemes we expect advantages compared to the basic algorithm which is
“just’ iterating MG cycles to reduce the linear defect.

Remark:

In contrast to the GEF which allows the combination of two efficient and robust preconditioning
techniques, we regard the operator splitting approach. We have introduced two efficient solvers
aimed for the operators appearing in the DVM. As we can easily deal with transport and collision
independently, the idea to apply operator splitting techniques to solve the complete system is quite
obvious. However, we did not follow the concept beyond some initial tests, because it contra-
dicts the fully implicit (monolithic) approach towards solving the Boltzmann equation. Operator
splitting often needs to revert to small time-steps for stability reasons, which our tests confirmed.
Nevertheless, one should keep in mind the described preconditioners in this context for possible
future research.
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6.5. Krylov-space iterative solvers

The class of Krylov-space methods consists of various algorithms like the CG method for sym-
metric matrices or, for more general problems, the improved BiCG-Stab algorithm[6.5.1] In short,
the method iterates the solution with reference to the matrices A and A” but without actually com-
puting the transposed (see see [48]]). Three auxiliary vectors are sufficient for an implementation
of the method, it means a small usage of memory, especially compared to direct linear solvers.
In each BiCG iteration two matrix vector multiplications are performed. In view of solving the
preconditioned system

Ax = b
AlAx = A

it means corresponding two solution steps of the preconditioner, which can be the solution of a
lower triangular matrix or, somewhat more expensive, a multigrid step, each. Furthermore, the
GMRES [38] method given in Alg. [6.5.2]is a commonly popular linear solver, and we used it
extensively to obtain results. In contrast to the previous algorithm, GMRES stores all solution
vectors and uses them to compute the next iteration. For large systems, this can mount up and
exceed available memory before the stopping criterion is satisfied, in this case a restart strategy
is applied when the maximum number of iterations — the so-called restart-level — is reached.
However, only one matrix-vector operation is performed in every GMRES step.

The main advantage of GMRES over BiCG-Stab is its more monotone convergence behaviour.
The defect is decreasing in every step, so much the faster, in case the stored basis is considerably
larger (see Figs. [6.14]—[6.16). In contrast, the changes in the defect of the BiCG-Stab are larger
but not monotonously decreasing, it reaches the final convergence usually faster than GMRES,
but can fail for ill-conditioned systems. We obtained very good and stable convergence rates
using GMRES in combination with preconditioning by the multigrid method. The results were
considerably better than using the multigrid algorithm [9.4.1] as linear solver (see results in Sec.

03).

Algorithm 6.5.1 (BiCG-Stab method)
BiCG-Stab(x,b,A,C,K)

0.INIT:r=C'(b—Ax) , f=r , py=oa=mp=1, , v=p=0
1. DO WHILE (|r| > stopping criterion) AND k < K
k=k+1
_ P o R o
—ma s p—l‘—l—B(p (DI‘)
v=C"4p
o=-"P | s=r—ar , t=Cl4s
rop v
T A
w:Htthz . Pre1 = —0ry t
X =X+ 0op + s
r=s—ot

Now we preview the results from Section [9.2] in order to demonstrate the convergence be-
haviour of both solvers: Most obvious is the strong dependence on c¢ in Fig. [6.14] due to the
condition k¥ = K(c). Only the block-Jacobian preconditioning is very robust on the small chosen
level with 81 gridpoints. The second aspect to be noted is the highly oscillating behaviour of
the BiCG-Stab solver, especially for the extreme case of ¢ = 100. The transport preconditioner
gives no improvement there, either. In contrast to the BiCG solver, we see strictly monotone
behaviour of the GMRES solver, the slope is at the beginning quite small, but increases for a
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growing vectorspace used in the iteration. In configurations with moderate condition number,
however, BiCG-Stab proves to be very efficient, even overtaking the monotone GMRES scheme.
Next, in Fig. [6.15] we confront the results obtained so far with plots for the scaled system: Scaling
the stationary equation by % (compare Sec. , the overall convergence is greatly improved, only
the results for the block-Jacobian preconditioning do not change much as this variant had large
values of ¢ already under control. Apart from that, the defect is decreasing quite monotonously,
with less *wiggles’ than in the non-scaled case.

Next, we have a look at Figure[6.16] with changed configuration (Re = 100 and increased level with
289 gridpoints) and facing ’scaled’ results: With increased Reynolds number the plain schemes
have difficulty to reduce the defect without help of preconditioners. The schemes using block-
Jacobian preconditioner have no longer top performance due to the increased problem size, and
the rates will decrease further on higher refinement levels.

All in all, in view of constructing a monolithic solver, the use of GMRES is promising to be more
stable, while the BiCG-Stab/tr-pre combination still should give peak performance for transport
dominated problems and time-stepping schemes (with small Ar) which are better conditioned.

Algorithm 6.5.2 (GMRES(M) method)
GMRES(x,b,A,C,M)
0. INIT: ro=b—Axy , SOLUTIONIFry=0

ro
ro||2

V1=

1. DO WHILE j <M
FORi=1,...,j: hjj = (vi,C"'Avj)
0; = CflAVj — {:1 h,’jVi

FORi:l,...,j—l:( hij >:<Cf+1 Sit >< hij )
hit1,j Sit1  —Ciyl hit1,j

_ 2 2 o b by L
B_ h]]+h’j+]~] ’ sj+1_ B ’ Cj+l_ B ’ hjj_B
Yi+1 =S8j+1% > V= Cj+1Yj

IF (1 < stopping criterion ) THEN
FORi=j,...,0 0= ;-(Vj— Lj_y 1 hix0)
SOLUTION x =xo+ Y, a;vj

ELSE

Vieg =
1= h
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Figure 6.14: Linear convergence of BiCG vs. GMRES on 81 grid, Re = 10
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Figure 6.15: Linear convergence of BiCG vs. GMRES and of scaled system on 81 grid, Re = 10
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6.6. Multigrid method

Algorithm 6.6.1 Basic twogrid algorithm

TG (x,b,l)

auxiliary vectors d,v
pre-smoothing X = S5'(x,b)
compute defect d; = Ax-—b
restriction d,_y = Rd
correction Vi1 = Al__l1 (dj—1)
prolongation V) = Pv;_;
assemble solution X = X—vV
post-smoothing X = S’(x,b)

The multigrid algorithm is a powerful solver generally applied for problems showing level-dependent
convergence behaviour. The sophisticated tool needs a hierarchy of grids (see Sec. [AT]) and ap-
propriate grid transfer operators. To complete the round up, we need to use an efficient coarse
grid solver and choose an iterative solution method as smoother. As basis we used the general-
ized equilibrium formulation with GMRES linear solver. At first, we give a standard two-grid
algorithm in [6.6.1| which is performed with a certain number s = s; + s> of smoothing steps and
iterated until the linear defect is sufficiently reduced. In Section [9.3| we present correspondingly
linear twogrid contraction rates, mainly for the driven cavity testcase. A full multigrid algorithm
is obtained when the routine is called recursively in the correction step, and the inverse matrix is
applied only on the coarsest level. Such V-cycle can be further altered by modifying the number
of defect-correction calls on each level. However, better results were obtained using *multigrid as
preconditioner’, i.e. performing one coarse-grid correction gaining several digits of accuracy in
every GMRES iteration. The linear contraction rates given in the results section are significantly
improved and we perform also numerical comparisons against a Navier-Stokes solver. In Sec-
tion[9.4|we give CPU times for the monolithic solution of stationary flow around cylinder using a
multigrid sweep on a mesh hierarchy with W-cycle.

The implementation of grid transfer operators is a main part in obtaining a multigrid solver. While
the prolongation is performed elementwise, an efficient implementation of the restriction is more
difficult. For the restriction operator, which is the transposed to the prolongation, values from a
node need to collect information from neighbouring elements. In unstructured meshes, the num-
ber of elements meeting in one point is arbitrary, while it amounts to 4 in the case of a uniform
rectangular mesh (in 2D), resp., 6 elements in the case of a uniform triangular mesh. Moreover,
we will distinguish in the following between the first and second order discretization.

Prolongation

We present the prolongation P, from a coarse grid G, (with NEQ nodes) to a refined grid Gg
(with NEQNEW nodes). At first we discuss the upwinding of first order which is more straight-
forward, because we have degrees of freedom only in the element corners. In general, during one
grid refinement step each element in the triangulation is divided into 4 elements. To this purpose,
for an element as depicted in Fig. we create 3 new nodes in the edge midpoints, which are
then connected by new edges. In this way a whole hierarchy of unstructured meshes is generated
and any level can be traced back to the starting coarse grid. In the actual prolongation, the solution
vector X, is interpolated onto the fine grid and the projection x b= Pyx;, is obtained. The first part
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of the prolongation is an identity mapping of the values in the existing, old nodes:
x,=x/  j=1,...,NEQ
2
The second part is an interpolation of the values in the new nodes from the adjacent, old nodes:

. 1 a
x}/ :7( dj1(j)

! N Zd/Z( )Y j=NEQ,...,NEQNEW
2

N N

= =
= =

(a) Refinement of a first order triangular element with(b) Refinement of a second order element with
corners (circles) midpoints (squares)

Figure 6.17: Hierarchical grid refinement

This procedure is somewhat more complicated for the upwinding of second order, mainly due
to the additional degrees of freedom in the midpoints. In the refinement step as depicted in Fig.
the former corners become corners of 3 new elements which are created by connecting the
existing midpoints, which on their part become the corners of the fourth new element. For this
inner element are created new midpoints situated inside the area of the original element. For the
three outer elements, additional midpoints are created on the edges. In the prolongation step one
must distinguish between these two kinds of midpoints.

As before, an identity mapping is performed for the existing nodes. The values in the new mid-
points which are situated on the edges of the original element, are obtained by quadratic interpo-
lation. Because of the regular refinement the interpolation is always of the form

| s
X = - (3 ad j1(j )+6 adj2(j) _ 4 Zd13(1))’
2 8
where xzdj 10) and xzdj 30) are values in the closer, resp., remote corner and dej 20) is the value

in the adjacent midpoint of the original coarse element. This treatment is second order accurate,
to obtain similar accuracy for the ’inside-midpoints’, we have to construct a Finite Element like
interpolation between the 6 adjacent nodes

xi = (4 adj1(j )+4 ad j2(j )_|_2 adj3(j) _ 4 Zdj4(j) L ddjs( )+0 ad j6(j ))’
3

8

adj1(j) 720 3(J)

with x,, and x being values from the adjacent midpoints, resp., xhd from the remote

ad j4(j) ad js(j)
X

midpoint of the orlglnal element. x, and x

d j6()

belong to the remote corners, while the

contribution from the closer corner xz
triangular meshes with regular refinement.

is always zero. This interpolation is valid for arbitrary
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Restriction

The next operator Rj is needed for the restriction of a solution vector X from a fine grid Gh
to the corresponding coarse grid Gy,. In general the restriction is deﬁned as the adjoint opera—
tor to the prolongation. The procedure is in practice similar for the two upwindings and can be
graphically explained as each node ’collecting’ the values it was ’distributing’ previously in the
prolongation-step. Due to the arbitrary number of adjoining elements for each node, the imple-
mentation is a little tricky. Lets assume that the value from x; was used for interpolation to new
nodes ylﬁ , I =1,...,L with a weighting of % Additionally we had an identity mapping to its
2

corresponding node x{, on the fine grid. Then the restriction is defined as
2

26, + X1

J
n = 2+L

Similarly can be obtained a quadratic restriction operator for the second order upwinding, by
saving the coefficients and neighbouring nodes used in the prolongation and then dividing the
summed up values with an appropriate weight. Another possible treatment is a constant restriction
operator which obtains the result by a simple injection. We implemented both schemes and we
found that for the second order upwinding a constant restriction gave more stable results so far,
while a linear operator was better for the first order discretisation.

6.7. Summary

The linear solution of our fully (time and space) discretised system was, from the beginning, more
difficult than solving the nonlinearity. An eigenvalue analysis showed that the conditioning is
extremely challenging, especially in the asymptotic limit of small Mach number which is neces-
sary to approximate the solution of the incompressible Navier-Stokes equations. The proposed
Krylov-space methods are just basic iterative tools applied in this thesis, without preconditioning
they cannot efficiently solve stiff problems (¢ — o) with a large number of unknowns (& — 0).
The system obtained from our basic discretisation can be preconditioned by the convection-part of
the DVM. The matrix-free implementation of the inverse transport is a central point in this thesis,
achieving high efficiency due to a special numbering technique. Alternatively, the condition can
be improved using the collision part of the system in a block-Jacobian approach.

The advantages of both variants were combined using the generalized equilibrium formulation.
The obtained GEF (\) scheme is expected to do well for transport dominated problems due to
construction, while the additional collision preconditioning should make it robust and, at least for
moderate refinement levels, also fast.

In order to obtain excellent results for large systems and low Mach numbers, we further improved
the GEF approach with the application of multigrid as a solver in the spirit of modern numerics. A
straightforward way is to use GEF(\) as a robust coarse grid solver and in smoothing steps. But
we will show that best results are obtained with a more sophisticated extension of MG methods
to the GEF approach. In practice, the use of multigrid as preconditioner in a GMRES iteration
to solve the GEF system is an interesting combination which will prove superior to the ’simple’
multigrid iteration.
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Validation of the monolithic approach

As already mentioned in the previous Section[6.1] the discretisation we applied to the DVM had to
be initially verified. The development of space discretisation techniques can be quite straightfor-
ward (see Sec.[d.2). In case of a simple convection equation (4.6)), the implementation of a finite
difference scheme is followed by verification using analytical (polynomial) functions with easily
obtained right hand side and boundary values. Then, using our second order method, the error
would naturally behave as O(h?) compared to the given exact solution.

Unfortunately, we found that obtaining analytical solutions for the DVM itself is practically im-
possible due to the complicated collision term and not trivial coupling of several distributions on
the boundaries. Instead, we will show that our approach to the discrete Boltzmann equation yields
(asymptotically) the same results as the Navier-Stokes equations, by taking into account theory
presented in Part I of the thesis. First of all, we note that we do not deal directly with the con-
tinuous Boltzmann equation (2.1]), but with the BGK approximation which introduces a quadratic
error in the Mach number. Additional consistent approximations of order O(Ma?), as described in
the Boltzmann derivation-process in Chapter 2] are made in the DVM for the phase space, which
is at last followed by our special discretisations of space and time with main focus on our mono-
lithic approach. Only in this last step we can improve accuracy by using higher order numerical
schemes as for the convective term, but the overall accuracy against the NSE is essentially influ-
enced by the Mach number. Unfortunately, the computational effort is increased for low Ma which
means a fundamental trade-off between accuracy and efficiency. In practice Ma < 0.15 (see [171])
is a common choice to reduce simulation time while Ma® ~ 0.02 is considered sufficiently low.
On the other hand, in complex transient flows the arising compressibility can affect the numerical
results considerably, as shown in [15]], with errors exceeding 10% which is not acceptable in high-
accuracy computations.

In this Chapter we will not focus on lowest possible simulation times, but analyse how to choose
optimally ¢ depending on 4, as discussed in Section Based on our numerical results we will
confirm that, without the correct asymptotical dependence, the error can remain constant while
the mesh is successively refined. Conversely, while c is increased keeping / constant, the error
is growing with the asymptotic rate of Ma~! (compare [6]]). Given our finite difference upwind
discretisation of first and second order for the convective term, we follow the assumptions from
Sec. in order to match the discretisation error of order O(Ma~'h), resp., O(Ma~'A?) with
compressibility effects of the model in O(Ma?). In our monolithic approach we apply for the mesh
width / and discretization parameter ¢ = O(Ma~!) the relations

h = 0((1/c)®) for first order upwind,
W = 0((1/c)®) for second order upwind.

Then, we should achieve optimal convergence of O(Ma?) in the asymptotic limit, but we will also
try to find the minimal error for every refinement level. In the following, extensive numerical tests

89
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against steady-state solutions (analytical or CFD reference) of the Navier-Stokes equations will be
followed by analysing the influence of multiple relaxation times on the results.

7.1. Accuracy and dependence of c <> K

For our analysis we calculate the L-error on successive levels and start with arbitrary initial hg
and cg. In order to conform to the aforementioned asymptotical dependence, we have to keep
the relation cl3 . h}( always fixed, depending on the order y of the discretisation. Practically, with
h being reduced by a factor of 2 in every refinement step, the simulation parameter ¢ has to be
accordingly increased by a factor of 2!/3 for first order upwinding, resp., 2%/3 for second order
upwinding. In Fig. we plot the theoretical slope of quadratic convergence, the points in the
slope are indicating the distance for a refinement step. Against the theoretical numbers we enter
the relative error computed for three different CFD testcases: Driven cavity, rotating couette flow
and flow around cylinder (see Appendix [AT). The results show a good agreement with the theory,
neglecting the initial results as we are interested mainly in the asymptotic behaviour. Compared
to the 1st order upwinding, the 2nd order discretisation obviously gives a smaller error and needs
less grid refinement steps, at the cost of bigger sound parameter c. We can extend the asymptotical
analysis to higher refinement levels using powerful linear solvers.

Although the asymptotic behaviour was confirmed, it is interesting to see if we can distinguish be-
tween modeling and discretisation error and get more information about the separate contributions
to the overall error. With this information we could find a good starting guess for ¢y and obtain
optimal results on all successive levels. That is why we continued with the numerical analysis,
now varying c for fixed mesh width 4. The plots (see Fig. show the L2-errors for different
testcases and we can effectively observe on each level the existence of a (unique) optimal choice,
say a cop;. Using a finer mesh, this optimal point is shifting to the right, so cop = copi(h) is ob-
viously level-dependent. But a fundamental observation is that in the parameter range beyond
Copt» the error is again increasing continuously with the rate of O(c) = O(Ma™!). This confirms
our assumptions regarding the discretisation error, and the obtained numerical results are basically
similar to the plots in Figure[3.2| which showed simplified and purely theoretical graphs. A special
observation is made for the rotating couette flow which has given analytical solutions independent
of the viscosity v. Consequently, the approximation only depends on the overall value of T = %
Comparing Figures[7.2a]—[7.2b]it is clear that any alteration in v can be exactly compensated by a
shift in ¢, resulting in a similar solution.

This observation is transferable to problems which are dependent on the Reynolds number. Al-
though there we cannot arbitrarily exchange shifts in v and ¢, nevertheless it follows that very low
values of viscosity should be solved with smaller parameter c, like for example in the case of the
flow around cylinder benchmark (see Fig. . Similar results were obtained for the driven cavity
testcase at varying Reynolds numbers, see the plots in Figure Obviously, a higher Reynolds
number results in a slightly larger L,-error comparing similar refinement levels. Apart from that,
Copr 1 getting smaller for increasing Re, so it shifts together with the viscosity v of the simulated
medium. This eventually faces us two problems, one is that for both, increasing Re and smaller c,
the nonlinearity is more difficult to solve (see Sec.[9.I). The other is the increased compressibility
error for larger Mach numbers. As remedy it is proposed to use multiple-relaxation-time models
(MRT, see [8], [9], [10], [28]) which are subject of our current research (see results in Sec. .
So far we could derive a rule of thumb for the choice of ¢ in each testcase, which is also rele-
vant for the linear and nonlinear solvers. We should keep in mind that small ¢ means transport
dominated equations, while large ¢ means dominant collisions. However, c,,; seems to be in an
intermediate range, where both effects have to be considered. Consequently, it is by far not trivial
to solve systems with a larger number of unknowns.
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7.2. MRT results

The first numerical tests using multiple relaxation times for a stationary driven cavity configura-
tion were intended to verify convergence of the MRT model against Navier Stokes references. The
relaxation rates s7, sg (see Section@) were chosen to keep a fixed Reynolds number of Re = 100
for the whole range of parameters ¢, while the relaxation rates s, s, s4 could be freely adjusted.
In literature concerning the MRT model for the LBM these are usually fixed around 1, see [28]] for
reasons of stability. We should keep in mind that the LBM is a special time-discretisation which
introduces a time-stepping with small Az included in a modified relaxation time and that we cannot
transfer the results directly to our monolithic model. In our case, similar treatment gave unphysical
results and the solver did not converge. Consequently, we chose the free relaxation rates smaller
than the physical relaxation time by a factor of 10, resp., 100. Effectively, the conditioning of the
system was slightly improved due to the reduced rates. To evaluate the accuracy we present the
obtained L, error in Figs. in comparison to the previous SRT results.

It is obvious that for small ¢ a reduction of the relaxation time is giving worse results, it seems that
the Mach-error is even increased. The results for second order upwind show that the accuracy is
increased in the range of ¢ > ¢, but asymptotically merges with the graphs for the SRT model.
Moreover, we tested further variations of the MRT-model, but this time increasing the free relax-
ation rates by a factor of 10 (see Fig. [7.4c). Especially the accuracy of the first order upwind was
improved, obtaining good results for ¢ = 1, even improving the respective c,p;-result of the SRT
model. The optimal results of second order upwind were not so much improved, but the valley in
the graph became wider, which means that very good results were obtained with small simulation
parameter c.

We attempt a final interpretation of the results based on Sec.[3.3.1] The discretization-error, which
is scaled by the paramter ¢ (see Eq. and is dominating the right side of plots|/.4] seems not to
be affected by the MRT model. In contrast, the compressibility-error on the left side of our plots is
directly influenced by reduced, resp., increased relaxation rates. However, we did not obtain any
strict rule which we could use, for example to finally optimize results of the nonstationary flow
around cylinder benchmark at Re = 100 (see Sec. [8.I). Further investigation of the MRT model
in combination with our implicit approach is planned in future work, but it is not clear yet if the
application of MRT is a strategy specifically for the stability of the LBM or concerns the discrete
Boltzmann equation in general.
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7.3. Stationary flow around cylider

After mainly comparing the L, error for the different testcases, we continue the tests for the flow
around cylinder benchmark at Re = 20 (see plots for the pressure and x-component of the velocity
field in Fig. [AT.6). Here, the choice of parameter ¢ with optimal accuracy is presumably lower
than in the channel flow at Re = 2 (see Fig.[7.2c]), where the viscosity was set to v = 0.01, which
is comparably easy and leads, as mentioned before, to higher c,,;. The Re = 20 case has quite low
viscosity of v =0.001 so that the crucial ¢ will range close to 1, increasing for higher refinement
levels. The benchmark results focus on the forces acting on the cylinder by computing the line
integral of the overall stress, crucial reference values from ([39]) for drag and lift are 5.5795 and
0.0106, respectively, and Ap = 0.1175 for the pressure difference between front and back of the
circle. In the LBM, the stress is usually obtained by evaluating the nonequilibrium distributions
1Y = fi— 1 (see Sec.[A2.1). An FEM-like method would evaluate the non-primary variables
u resulting from summation of the primary distributions f;, but impending loss of accuracy due to
differentiation and cancellation of opposing distributions in the term Y e; f; (see [33]]) is expected.
By a first look at the results in Table the FEM like evaluation based on pointvalues of p
and the gradient of u gives very few results within 1% of the reference drag (the range being
5.524 — 5.635), although it is difficult to discern a convergence of the values with ¢ or 2. The
corresponding 1%-range for lift being 0.0105 — 0.0107, good results there are, in general, even
more difficultly obtained. However, the LBM method yields better results for every configuration,
although the values for the grid with 1092 points are insufficient. A higher refinement level and
small to moderate ¢ gives a drag within 1% of the reference, also the lift is accurately reproduced.
Looking at the obtained values for the pressure difference, Ap is getting closer to the reference
with mesh refinement, but higher values of ¢ give worse results again. It seems that the parameter
c is significantly affecting the solution in boundary nodes, also taking into account that the second
order upwinding is not positivity preserving and can oscillate in areas of strong gradients. Alter-
natively, we tried to obtain improved pressure difference by extrapolation of the values from the
interior flow domain, instead of taking the actual solution from the boundary. The extrapolated
values for Ap given in the rightmost column are less extreme and the results are significantly im-
proved.

Finally, in order to improve the overall results and showing the possibilities of grid-adaptivity,
we constructed a highly adapted grid with a large concentration of points around the cylinder
which was accomplished without difficulty using triangular elements (see Fig. [AT.3). With the
new mesh, we obtain good results for drag and lift, and significantly improve the results for Ap
even with fewer number of unknowns.

However, the improvement of Ap due to extrapolation for the highly adapted grid is marginal,
because both strategies smooth out high jumps in the solution, either by avoiding direct evaluation
of the wall pressure or by a higher resolution in the critical area.
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FEM force eval. LBM force eval.
nodes  drag lift drag lift Ap Ap extrap.
Results on standard benchmark grid
c=1
1092 6.3801 0.0280 6.3293 0.0270 0.1766 0.1326
4264 5.8841 0.0419 5.6676 0.0413 0.1418 0.1161
16848 5.9149 0.0107 5.5287 0.0121 0.1243 0.1125
66976 6.3263 0.0071 5.5398 0.0102 0.1196 0.1128
c=2
1092 6.3759 0.0519 6.3800 0.0507 0.1827 0.1263
4264 5.6531 0.0451 5.6490 0.0448 0.1546 0.1139
16848 5.5755 0.0120 5.5403 0.0123 0.1270  0.1122
66976 5.8075 0.0090 5.5863 0.0103 0.1205 0.1145
c=4
1092 7.9013 0.1660 7.9062 0.1642 0.2269 0.1463
4264 54817 0.0579 5.5508 0.0594 0.1744 0.1068
16848 5.3840 0.0143 5.4923 0.0143 0.1316 0.1097
66976 5.5902 0.0100 5.6014 0.0106 0.1219 0.1148
Results on highly adapted grid
c=1
762 44639 0.0494 4.3681 0.0513 0.1409 0.1206
2948 59034 0.0451 5.6422 0.0466 0.1240  0.1140
11592 59151 0.0209 5.5191 0.0226 0.1188 0.1124
45968 6.1069 0.0105 5.5228 0.0128 0.1177 0.1127
183072 6.3378 0.0075 5.5284 0.0105 0.1174 0.1130
c=2
762 49233 0.1439 4.9295 0.1450 0.1596 0.1316
2948 6.0262 0.0937 5.9606 0.0938 0.1314 0.1201
11592 5.7718 0.0310 5.6453 0.0315 0.1209 0.1158
45968 5.7835 0.0134 5.5801 0.0143 0.1184 0.1154
183072 5.8641 0.0097 5.5695 0.0109 0.1178 0.1156
c=4
762 5.4634 0.1463 5.4949 0.1472 0.1830  0.1412
2948 6.2414 0.1266 6.2388 0.1267 0.1398 0.1243
11592 5.7711 0.0404 5.7388 0.0405 0.1231 0.1178
45968 5.6735 0.0160 5.6080 0.0163 0.1188 0.1166
183072 5.6857 0.0110 5.5812 0.0114 0.1178 0.1166

Table 7.1: Evaluation of drag and lift coefficients, resp., pressure difference (with extrapolation)
on standard and highly adapted grid, references: drag= 5.5795, lift=0.0106, Ap = 0.1175
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8

Extended results for nonstationary flow

8.1. Time/space accuracy for nonstationary flow

Finally, the nonstationary flow around cylinder benchmark was used to verify the accuracy of the
applied time-discretisation schemes, starting with the basic implicit Euler time-stepping (4.3) and
expecting improved results with the second order Crank-Nicholson scheme (@.4). The maximum
inflow velocity is increased to up = 1.5 with the same viscosity v = 0.001 as before which results
in Re = 100 and a transient flow regime.

This benchmark configuration is thoroughly analysed by many important CFD codes. It shows
strong vortices forming behind the cylinder and the flow is oscillating with a specific frequency f
which defines the Strouhal number St = %f with reference St ~ 0.300 (see [39]). With the given
period length T = 1/f the lift value shifts above and below zero with an amplitude of about 2
while the drag and Ap exhibit a double period for the same length. The most recent simulations
performed by FEATFLOW produced improved reference values compared to [39]], giving for the
lift Crpin = —1.023 and Cp0 = 0.987, resp., for the drag Cpin = 3.168, Cpar = 3.230 which
are supposed to be correct for at least 2 digits. The aim, besides accurately reproducing this widely
accepted CFD benchmark, was to analyse the combined space- and time-discretisation in view of
accuracy and stability of the low and high order schemes. By obtaining good results using large At,
our implicit approach was supposed to distinguish itself from standard Lattice Boltzmann methods
which have to use micro time-steps for this challenging problem.

We omit the results for first order upwind, as the simulated flow remained stationary. Only on the
refined grid with 66 976 (denoted 66K) nodes a very small oscillation evolves inside the channel.
In contrast, the second order upwinding clearly showed vortices developing behind the cylinder
even on a low refinement level with 4 264 (denoted 4K) or 16 848 (16K) grid-points, where it was
possible to obtain nice pictures and movies at low computational cost. We show a sequence of
pictures representing one full period in Fig. obtained on a refined grid with 66K nodes and
for high choice of ¢ = 20 which, as we will see, gives highly accurate results. We present the
x-component of velocity on the left and a 3D view of the pressure on the right, starting at fo = 0
where the lift reaches the peak Cy,,,, and continuing with snapshots every 0.055s which exactly
divides the period length 7 = 0.330 into 6 parts. The pictures are presented in grayscale with 10
contour levels. The bright shades of grey mean high velocity (up to 2.15), while the darker shades
show descreasing values reaching even below —0.5 for the black contour level. This means we
have a main vortex just behind the cylinder which appears in the pictures as an oscillating *black
tail’. In the first step, the tail is just in the middle of the downswing, in its wake we see develop
a patch of low pressure, a similar depression is forming in the third picture below the tail which
is then on an upswing. The depressions are then transported down the channel, along with the
vortices of the velocity u. Obviously, in front of the cylinder we have a large pressure gradient, the
pressure difference Ap between the extreme points of the object is oscillating around 2.5 which is
significantly larger than for the stationary benchmark.
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Figure 8.1: Flow around cylinder visualization of u; and p representing one full period of length
T =0.330 on first part of channel (x € [0, 1]), snapshots taken from times fo = 0 (CLyay), 11 = 0.055,
tp =0.11, 13 = 0.165 (CLmin), t4 = 0.22, t5 = 0.275, 66K grid with ¢ = 20, Ar = 0.001
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However, pictures give only a slack understanding of scientific results, so have a strict look at
the tabulated numbers for maximum lift and drag and Strouhal number obtained on the standard
grid (see Fig.[AT.2). The low time accuracy of the implicit Euler method becomes obvious in
Table Looking at the lift on two refinement levels with 4K and 16K grid points, a time-step
of At = 1072 gives values far away from the reference. For At = 1073 the amplitude (in gen-
eral lift,in ~ —liftyay) 1s improved. However, we see more changes in the numbers for the last
At = 1074, so a smaller time-step still would be needed using this first order scheme. Amazingly,
the results obtained by the Crank-Nicholson time-stepping at Ar = 1072 (see Table are com-
parable to that of the first order scheme with time-step two orders of magnitude smaller. It means
a similar accuracy with 1% of the number of timesteps, also the results of the second order scheme
do not change significantly for Ar < 10~2 which means a small error due to the time-discretisation.
Having ensured a good time-accuracy, let us evaluate the convergence with reference to reduced
grid-spacing and Mach number. We will again try to distinguish between the compressibility-
error O(Ma?) vanishing for large ¢ and the discretisation-error O(Ma~!4Y) which is amplified by
the simulation parameter c. Increasing the refinement level up to 66K grid points, the results in
general are improving, but show a strong dependence on the choice of c¢. Therefore, let us have
a look at the plots which show lift, drag and Ap for about one period-length. From these
plots and Tables [8.2] and [8.3] we collect the following observations:

* maximum lift is above the reference for some c from the discrete parameter set, the ampli-
tude decreases after a turning point and is too low for large ¢

* maximum drag behaves similar to /i f?,,,, (here reference oscillates between 3.2 £ 0.03) the
absolute values get too low for large ¢ but the amplitude improves

* Ap is double periodic like drag (reference oscillates between 2.45 4 0.04) with amplitude
better for small Mach number, but gradually shifted above reference with increasing ¢ (but
here again extrapolation gives very good results)

St is continuously improving with ¢ but in the end it is above the reference 0.300 which
means the period is too short, the exact value is usually not estimable for large At

We can deduct that the compressibility-error obviously dominates for small ¢, ¢ = 2 for example
means a Mach number of Ma = ”C‘—‘: ~ 1. The resulting lift/drag are below the references for a
range of small ¢ up to a certain turning point, then they decrease again, so we do not have clear
information as from the L,-error plots for stationary problems. Moreover, we cannot look at &
and ¢ as decoupled in our numerical analysis: For certain values of ¢ depending on the refinement
level (¢ =4 on the 4K grid, ¢ = 8 on 16K grid, etc.) the maximum lift is larger than the reference
and smaller for the following c. Based on the assumptions from Sec.[3.3.1| we suppose that after
compressibility effects are sufficently reduced, mainly the discretization-error becomes dominant.
Due to the two opposing error-terms of order O(Ma?) and O(Ma~'#Y), it is feasible to choose ¢
rather too large than too small so that the quadratic Mach error is surely avoided. Focusing on the
highest refinement level and range around ¢ = 20 (accordingly Ma? = 0.0075), we obtained very
accurate results as seen in Table Remarkably, the reference values were approximated with
similar accuracy for large time-step size up to Ar = 1/100 without any stability problems. In these
simulations the fastest solver was a BiCG-Stab iteration of the GEF approach without additional
preconditioning, showing the good performance of our special transport solver for nonstationary
problems.

Finally, we try to apply strategies to further improve results, based on the techniques introduced
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previously in this thesis. The values of Ap are easily and significantly improved by extrapolation
of the pressure on the cylinder (see Fig. [8.3), but this does not affect the stress tensor as already
discussed for the stationary results. In the LBM community the flow around cylinder benchmark is
frequently approached using the MRT model (see Sec. [2.5)). Accordingly, we took the developed
flow obtained by the SRT model, to be precise, only the saved results for ¢ > 8, and continued with
a reduced relaxation time. The restarted simulation with changed relaxation-rates is not forcibly
disturbed as for example when suddenly altering the system’s speed of sound, instead, the modified
MRT rates take effect steadily, yielding different results for the *developed’ flow (see Table [8.4).
There is no significant change in the St numbers, which were already good. The lift values are
slightly increased and thereby improved. The drag is most visibly improved, the divergence due to
large ¢ was obviously antagonized by shifting the values upwards, close to the reference (see plots
[8.6). Also results for Ap are improved by the MRT model (see plots[8.7)). A feasible application of
the MRT model would be therefore, to take a developed flow and increase, resp., reduce the free
relaxation rates, that is if one can guess if the Mach-error should be further decreased, or rather
the conditioning improved. In any case, the flow adapts quickly to the new values, while changing
the viscous rates has grave effects on the result and requires a complete restart.

4K grid 16K grid
¢ Cimax  Cpmax St Crmax  Cpmax St
Ar=1/100 Ar=1/100
2 042 280 0.1887 0.57 3.03  0.2041
4 0.63 292 0.2381 0.55 3.08 0.2500
8 0.37 2.86 0.2564 0.42 3.01 0.2778
16 0.15 2.84 0.2632 0.29 299 0.2941
Ar = 1/1000 Ar = 1/1000
2 063 289 0.1961 0.83  3.18 0.2128
4 1.06 3.14 0.2500 0.89 3.33  0.2632
8 080 299 0.2778 1.04  3.21 0.2857
16 062 292 0.2703 0.85 3.14  0.2941
At = 1/10000 At = 1/10000
2 067 289 0.1991 0.84 3.21 0.2152
4 109 3.17 0.2515 090 336 0.2670
8 085 3.00 02777 1.09 325 0.2917
16 0.67 2.93  0.2761 092 3.17 0.3012

Table 8.1: Benchmark results: Implicit Euler, references: Crax = 0.987, Cpuax = 3.230, St =
0.300
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4K gridpoints 16K gridpoints
c CLmax CDmax St CLmax CDmax St
Ar=1/100 Ar=1/100
2 066 290 0.2041 0.85 321 02174
4 108 319 0.2500 092 337 0.2632
8 084 3.01 02778 1.10 324 0.2941
16 068 293 0.2703 090 3.16 0.3030
At =1/1000 At =1/1000
2 0.67 289 0.2000 0.85 322 02151
4 1.11 3.19 0.2519 0.91 337 0.2674
8 0.85 3.01 0.2786 1.11 325 0.2915
16 0.68 293 0.2762 093 3.18 0.3012
At =1/10000 At =1/10000
2 067 289 0.1992 0.84 321 0.2155
4 110 3.17 0.2516 090 337 0.2672
8 085 3.01 02779 1.10 326 0.2920
16 0.68 294 0.2762 093 3.18 0.3014

Table 8.2: Benchmark results:

0.300

66K gridpoints
¢ Cimin Cimax  Cpmin  CDmax St
Ar = 1/1000
4 -0925 0908 3.082 3.373 0.2710
8 -1.211 1.165 3.163 3.278 0.2924
12 -1.117 1.081 3.138 3.228 0.2985
16 -1.054 1.019 3.119 3.202 0.3003
20 -1.027 0.992 3.110 3.189 0.3021
24 -0.998 00968 3.104 3.170 0.3021
At = 1/200
16 -1.055 1.022 3.119 3.203 0.3030
20 -1.029 0994 3.111 3.188 0.3030
24 -1.004 0973 3.105 3.170 0.3030
At =1/100
16 -1.054 1.016 3.117 3.200 0.3030
20 -1.028 0.994 3.109 3.187 0.3030
24 -1.010 0.979 3.106 3.171 0.3030

Crank-Nicholson, references: Cr,ux = 0.987, Cpmax = 3.230, St =

Table 8.3: Benchmark results: Crank-Nicholson, high refinement level, references: Cri =
—1.023, Crinax = 0.987, Cppin = 3.168, Cpmax = 3.230, St = 0.300
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¢=20, Ar = 1/1000
SRT MRT
gfld CLmin CLmux CDmin CDmax St CLmin CLmax CDmin CDmax St
4k -0475 0.616 2.849 2.885 0.2710 -0.540 0.680 3.039 3.077 0.2732
16k -0.922 0.877 3.115 3.163 0.3021 -0.948 0.899 3.156 3.212 0.3021
66k -1.027 0992 3.110 3.189 0.3021 -1.044 1.004 3.146 3.229 0.3021

Table 8.4: Benchmark results: SRT vs. MRT with relaxation 0.1 /7, references: Cpyin = —1.023,
Crmax = 0.987, Cppin = 3.168, Cpax = 3.230, St = 0.300

8.2. Remarks

In this chapter we focused on important questions which arose initially and during the work on the
thesis, they are:

* Does (our discretisation of) the discrete velocity model in practice yield the same results as
Navier-Stokes-based CFD tools?

* Are higher order (spatial and temporal) schemes stable enough and accurate?

* How does the Mach number, resp., free simulation parameter ¢ influence the accuracy/be-
haviour of the results?

By calculating different steady state CFD problems and showing convergence of the velocity pro-
files against analytical and FEATFLOW ([45]) results, we answered the first question positively.
The results of the nonstationary flow around cylinder benchmark showed that higher order discreti-
sations in space and time are not only stable and yield better results, but that they are absolutely
necessary to solve advanced flow-problems. Only the second order upwind was able to show
vortex shedding in the channel and reproduce crucial reference numbers for forces acting on the
cylinder, while the Crank-Nicholson scheme approached the periodically oscillating flow accu-
rately with large steps in time. It is interesting to approach (higher-order) semi-implicit schemes
as an alternative to the Newton method, although the stability should be affected. Corresponding
results will be included in a forthcoming paper ([22]).

With mesh refinement a proportional increase of the sound parameter c is necessary, on the other
hand one should be careful to avoid dominating error-terms of the order O(Ma~'). It is not yet
clear in how far nonstationary results can be improved by using multiple relaxation times. The
use of extrapolation in certain areas is a simple strategy to improve the results, mostly the pressure
along the inner boundary.

Low viscosity and Mach number lead to high values of the relaxation time % which again means
ill-conditioning of the system matrix. By using our generalized equilibrium formulation with spe-
cial preconditioning we hope to possess an efficient and robust solver for stiff systems and large
number of unknowns, steady state results should be otained by a monolithic approach combined
with the multigrid method. The MG overhead can be avoided in time-dependent simulations, their
condition number is improved by the additional identity term in the equation, so in each time-step
few iterations of the BiCG-Stab solver (with GEF) reduce the linear defect. We refer to detailed
results in the following chapter.
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Solver efficiency and robustness

In this section we discuss the behaviour and efficiency of our nonlinear and linear solvers. Regard-
ing the latter, we will verify mainly the special abilities of our preconditioners and the generalized
equilibrium formulation. The analysis in Section [6.2] showed a significant influence of the sound
speed ¢ onto the condition numbers, which could be improved by modifying the system. We
expect the proposed transport preconditioner — consisting of lower triangular blocks due to our
special renumbering — to improve the condition especially for systems with dominating advec-
tion, independent of the refinement level. Convergence rates of the Krylov-space iterative solvers
should improve significantly due to strong clustering of eigenvalues. The matrix allocation (see
Fig. [6.1) already showed that the collision can become dominant (with a negative sign) on the
off-diagonals. We expect to gain robustness against any large ¢ with our collision preconditioner
— obtaining a Block Jacobian by an alternative numbering — at the cost of giving up the transport
oriented approach, loosing independence of the system size. Significant improvement of conver-
gence rates and robustness is supposed to result from the GEF with special preconditioning, at
least preserving the advantages of each special preconditioner. However, this stand-alone algo-
rithm cannot be expected to give both, level- and c-independent convergence rates. An close look
at the implicit system matrix reveals that the special preconditioner for our GEF "only’ takes into
account the diagonals of the inverse transport operators weighted mainly by 1/71. It leaves out of
the account a significant part of the remaining entries of the advection discretisation, especially
with increasing the system size. A Multigrid aproach is supposed to give satisfactory results in this
case, finally removing the level-dependency of the convergence behaviour. We will analyse the ef-
ficiency of the proposed MG algorithms especially in combination with the GEF approach, which
could not be determined a priori by looking at the eigenvalues. We try to find the most efficient
solver/smoother combination used inside a MG cycle, and try the promising approach of using
MG as precondtioner in Krylow-space iterative solvers, mainly for the generalized equilibrium
formulation.

111
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9.1. Nonlinear results

In this section we present shortly the results for the nonlinear solvers, comparing the performance
of the fixed point iteration with the Newton scheme. The first tests are carried out for the mono-
lithic approach which is naturally more difficult than time-stepping schemes with different Ar.

In Table 9.1] we provide the number of nonlinear iterations for driven cavity at Re = 100 and
Re = 600, due to v = ﬁ, resp., Vv = ﬁ. We use a direct linear solver in each step, optimal for
reducing the linear defect, and consider the second order upwinding. In Table [0.2] we show also
results for the flow around cylinder benchmark (see [39]) on an unstructured grid at Re = 2 and
Re =20, due tov = ﬁ, resp., V= 101%. Latter viscosity is the most demanding configuration
among our testcases. We find that the fixed point iteration is only able to cope with small nonlin-
earities (low Re and number of unknowns). For higher values of Re, an appropriate damping has
to be applied to ensure convergence. Also, increasing the number of grid points N is obviously
affecting the fixed point solver. Remarkably, the choice of bigger ¢ results in throughout less non-
linear iteration steps, while we showed that the linear problems then become more difficult due to
bad condition number.

In contrast, the Newton scheme performs well in all cases and needs only few iterations without
damping to effectively solve the nonlinear defect (similar to [44]). It means our monolithic ap-
proach can become a powerful tool for steady-state problems as, in case the linear solvers perform
well, even starting from zero solution we are mostly done after 5 nonlinear iterations.

In Table we show the convergence behaviour of both solvers for driven cavity at Re = 1000,
now with implicit Euler time-stepping. The initial defect is given for a zero starting vector and
different time-step sizes. In the first iteration the defect is rising equally in the fixed point and
Newton step, then the defects are starting to decrease quite moderately. But once the Newton
scheme gets close to the solution, the quadratic convergence takes over reducing the defect to ma-
chine accuracy, while the fixed point solver needs more iterations, especially for the largest Ar = 1.
Of course in the following time-steps, the Newton would perform even better, taking the solution
from the previous time-step as initial guess, for example in the non-stationary flow around cylinder
simulation.

Remark:

In practice it is easy to prolongate the obtained solution from the previous level and use it as
starting guess on the refined mesh. The so gained initial defect is not zero, but in the first nonlin-
ear step it does not grow so much like shown in Table [9.3] and will get sooner below the crucial
bounds for the Newton scheme. On the other hand, moving from one sound parameter ¢ to an-
other, no matter if making ¢ smaller or bigger, is not as trivial as increasing the level. Using the
primary distributions without modification results for the new Mach regime in a flow profile some
factor away from the actual solution. More feasible is taking the obtained macroscopic solution in
p and u and either use the approximation f; ~ f;?(p,u) as initial guess, or add the nonequilibrium
part as a better approximation in the Chapman-Enskog expansion (see Appendix[A2.2). However,
in solving the discrete Boltzmann equation, we found that restart algorithms do not significantly
reduce simulation times, as mostly not more than one nonlinear Newton step could be saved.
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Re 100 Re 600
grid fixed point Newton fixed point fp (®) Newton
c=1

289 15 4 23 27 6

1089 20 5 81 34 6

4225 24 5 > 300 59 8
c=10

289 8 4 9 21 4

1089 12 4 17 21 5

4225 17 4 88 36 6
c=100

289 5 3 5 22 3

1089 7 3 7 22 3

4225 10 4 14 22 4

Table 9.1: Driven cavity: No. of iterations to reduce the nonlinear defect by 1079 starting from
zero, Newton against fixed point method (damping by parameter ® is required for small ¢)

Re 2 Re 20
grid fixed point Newton fixed point fp (®) Newton
c=1

572 13 4 180 22 5

2184 15 4 > 300 23 5

8528 16 4 > 300 23 5
c=10

572 11 4 30 20 4

2184 14 4 211 26 5

8528 16 4 > 300 46 5
c=100

572 6 3 8 20 3

2184 11 4 23 21 4

8528 15 4 > 300 118 6

Table 9.2: Same as above for flow around cylinder
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At =0.01 At =0.1 Ar =1
step Newton  fixed point Newton  fixed point Newton  fixed point

0 1.63E-1 1.63E-1 1.63E-1 1.63E-1 1.63E-1  1.63E-1
1 6.03E+1 6.03E+1 6.53E+2  6.53E+2 7.25E+3  7.25E+3
2 297E-1 1.61E+0 421E+0 231E+1 2.50E+2  7.44E+2
3 9.05E-4 3.52E-1 242E-2  4.65E+0 2.28E+0  1.26E+2
4 122E-8 7.02E-2 1.60E-6  1.12E+0 1.56E-4  5.22E+1
5 943E-13 1.68E-2 8.36E-12 3.27E-1 7.66E-11 1.41E+1
6 4.07E-3 9.90E-2 4.01E+0
7 1.02E-3 3.08E-2 1.50E+0
8 2.60E-4 9.72E-3 4.02E-1
9 6.66E-5 3.08E-3 1.40E-1
10 1.72E-5 9.79E-4 4.76E-2

Table 9.3: Convergence behaviour of nonlinear schemes for driven cavity at Re = 1000, ¢ = 10
and different Az, reduction of nonlinear defect starting from zero, using a direct linear solver for
4225 grid points
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9.2. Linear, single-grid results

We tested the proposed linear solvers and preconditioners for all our configurations at various
Reynolds and Mach numbers. The direct stationary approach for interesting configurations
proved to be too difficult using a simple Richardson solver. In this section we will focus there-
fore on presenting results for the more advanced Krylov-space methods, starting with the driven
cavity configuration at Re = 10. First we provide the number of iterations to gain 6 digits for the
linear defect using a preconditioned BiCG-Stab ([48]) solver (see Table 0.4). It gives very good
results in those fields our preconditioners were made for: First, at ¢ = 1 with "tr-pre”, the very
mild dependence of 4 for transport dominated problems due to the almost exact preconditioner is
shown on all levels. Second, for small numbers of grid points N with bl-jac” preconditioning, this
preconditioner is stable with increasing ¢, however, the results are highly level-dependent. Unfor-
tunately the convergence behaviour can fail unexpectedly, even for moderate configurations which
is known for the BiCG-Stab scheme. Therefore, we also implemented a GMRES (see [38]) solver,
taking advantage of its more monotone convergence behaviour. It still provides good results for
transport dominated configurations, resp., for small N. Additionally, we get useful information
about moderate and extreme configurations. While it is obvious that the separate use of “tr-pre”
and “’bl-jac” is not satisfactory, because it does not combine the advantages of both, the results
(see Table[0.5) show the expected advantageous behaviour of the (preconditioned) GEF approach.
For ¢ = 1, the GEF without preconditioning still yields very good convergence on all levels. With
our diagonal preconditioning GEF(\) we gain additionally robustness w.r.t. high values of c. This
means that our preconditioned GEF combines two positive effects, which is due to our special
discretisation technique. Nevertheless it remains the dependence on 4, resp., N, for moderate and
large values of c. That is why we use multigrid methods to overcome this last drawback.
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upwl upw?2
grid tr-pre bl-jac GEF GEF(\) tr-pre bl-jac GEF GEF(\)
c=1

81 28 71 21 18 26 182 20 17

289 30 135 20 21 36 1000 23 20

1089 44 1000 24 30 43 1000 30 26

4225 52 1000 39 39 54 1000 41 36

c=10

81 110 56 82 51 95 62 110 44

289 100 229 161 88 96 179 148 164

1089 111 716 153 133 141 1000 1000 1000

4225 137 1000 1000 351 143 1000 199 937
c=100

81 1000 75 1000 60 1000 76 1000 92

289 1000 1000 1000 194 1000 349 1000 550

1089 1000 1000 1000 833 1000 1000 1000 1000

4225 1000 1000 1000 1000 1000 1000 1000 1000

Table 9.4: Driven cavity at Re = 10, No. of iterations to gain 6 digits, using BiCGStab

upwl upw?2
grid tr-pre bl-jac GEF GEF(\) tr-pre bl-jac GEF GEF(\)
c=1

81 42 91 33 28 40 146 34 28

289 48 178 36 31 49 334 37 32

1089 56 336 40 45 63 716 44 42

4225 67 718 49 53 83 1000 56 53
c=10

81 107 66 96 51 109 81 106 55

289 130 154 128 88 138 180 144 90

1089 158 351 158 129 164 423 182 147

4225 190 771 188 174 197 935 209 194
c=100

81 235 67 211 67 227 78 246 77

289 360 170 407 155 409 203 502 182

1089 524 400 744 340 619 539 1000 461

4225 714 950 1000 689 838 1000 1000 1000

Table 9.5: Driven cavity at Re = 10: No. of iterations to gain 6 digits, using GMRES
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upwl upw?2

unskaliert skaliert unskaliert skaliert
plain tr-pre | plain tr-pre plain tr-pre | plain tr-pre
c=1 N=81 108 28 | 108 28 131 26 | 131 26
N=289 | 256 30 | 256 30 400 36 | 400 36
N=1089 | 661 44 | 661 44 1000 43 | 1000 43
N=4225 | 1000 52 | 1000 52 1000 54 | 1000 54
c=10 N=81 | 180 110 92 55 179 95 | 102 48
N=289 | 345 100 | 172 57 346 9% | 217 58
N=1089 | 711 111 | 398 66 895 141 | 483 72
N=4225 | 1000 137 | 889 85 1000 143 | 1000 87
c=100 N=81 | 1000 1000 | 263 207 1000 1000 | 362 333
N=289 | 1000 1000 | 360 258 1000 1000 | 497 292
N=1089 | 1000 1000 | 652 329 1000 1000 | 1000 390
N=4225 | 1000 1000 | 1000 519 1000 1000 | 1000 482

Table 9.6: Driven cavity at Re = 10, No. of iterations to gain 6 digits, using BiCG-Stab

upwl upw?2

unskaliert skaliert unskaliert skaliert
plain tr-pre | plain tr-pre plain tr-pre | plain tr-pre
c=1 N=81 165 42 | 165 42 199 40 | 199 40
N=289 | 353 48 | 353 48 482 49 | 482 49
N=1089 | 810 56 | 810 56 1000 63 | 1000 63
N=4225 | 1000 67 | 1000 67 1000 83 | 1000 83
c=10 N=81 | 204 107 | 136 86 223 109 | 144 86
N=289 | 362 130 | 240 101 429 138 | 281 106
N=1089 | 764 158 | 493 122 989 164 | 637 129
N=4225 | 1000 190 | 1000 146 1000 197 | 1000 152
c=100 N=81 | 311 235 | 218 198 350 227 | 239 199
N=289 | 478 360 | 399 294 788 409 | 489 332
N=1089 | 1000 524 | 747 411 1000 619 | 1000 500
N=4225 | 1000 714 | 1000 558 1000 838 | 1000 645

Table 9.7: Driven cavity at Re = 10, No. of iterations to gain 6 digits, using GMRES
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9.3. Linear, twogrid results

We showed already that the GEF solver performs well for configurations with dominating trans-
port operator, independent of the number of unknowns. Additionally, it is robust against large
values of ¢ with the block-diagonal preconditioning, but shows level-dependent convergence rates
for the relevant, intermediate c-range and above. For this reason we extended our solver tool-box
with the multigrid method, adapting our code for the use in a mesh-hierarchy and implement-
ing grid-transfer operators. We apply linear and quadratic prolongation for the 1st and 2nd order
upwind discretisation, respectively. However, the influence of restriction is not yet completely re-
solved. We obtain slightly better results using linear restriction for upw1, but for upw?2 a constant
(canonical) injection gave more stable results than a quadratic operator using the transpose of the
saved prolongation matrix. So an optimization of effiency using second order upwind is feasible
in this context.

In order to compare with single grid results from the previous Section 9.2 we will use a similar
configuration. The first tests were performed for the driven cavity problem again at Re = 10 to
as in Table As basic linear solver we used GMRES iterations due to the sustained monotone
behaviour. Moreover, we consider only the generalized equilibrium formulation with optional ad-
ditional preconditioning as superior to the basic discretisation where one has to decide exclusively
between transport and collision preconditioning. Initial tests showed that the GEF has most po-
tential in combination with MG, simply using iterative solvers based on the new formulation as
smoothers. However, a special advantage of the GEF is that the optional collision precondition-
ing can be replaced by a multigrid preconditioner, possibly resulting in an improved algorithm.
Therefore, we implemented several multigrid variants which differ significantly regarding effi-
ciency. As mentioned before, the use of ’basic’ multigrid cycles, simply iterating restriction,
correction, prolongation and post-smoothing, gave unsatisfactory results. The idea to use multi-
grid as a preconditioner came up, this variant which we denote as MGPREC was very promising,
even in an early stage of implementation. In the following, it is sufficient to give only the linear
contraction rates of the respective twogrid algorithms, these can be extrapolated for a whole multi-
grid hierarchy. To avoid confusion, we enclose results for different multigrid variants in separate
subsections. Subsection [9.3.1] contains tables for the basic MG iteration while in subsection [0.3.2]
we show improved results using MG as preconditioner for the same testcase, both for our mono-
lithic approach. Finally, in subsection [9.3.3| we show that the rates of MGPREC improve for the
time-dependent system with decreasing time-step size.
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9.3.1. Results for basic multigrid algorithm

As in Section the starting guess is already close to the solution and we solve the linear defect
for one final nonlinear iteration. We list the twogrid iteration with the main steps and practical
specifications as

A compute initial defect
B1 restrict defect
B2 gain 4 digits on level-1 using GMRES with GEF ()
B3 prolongate and assemble solution
C perform s smoothing steps using GMRES with GEF or GEF ()
D if new defect is above 10~° of initial defect, continue iteration with B1

So we have relative stopping criteria of €, = 10~ for the coarse grid solver and €, = 10~ for the
whole linear iteration. In practice, higher accuracy of the defect correction on the coarse grid did
not improve the final result, even a criterion of €| ~ 1072 is feasible.

We obtain single grid results for comparison simply by omitting steps B1-B3 and only repeating
s = 16 steps of the solver on the fine level, until the relative stopping criterion is reached. In Ta-
bles[9.§] we mainly compare the convergence depending on the number of smoothing steps
s =4,8,16 and the influence of collision preconditioning in the smooothing step C. We consider
the upwinding of first and second order, observe the convergence bahaviour on different levels and
especially for three sound parameters ¢ = 1,10, 100 which cover all configurations from transport
dominated, through an intermediate case to a collision dominated configuration with extreme ill-
conditioning.

For the final numbers we computed the average linear contraction between the second and last
MG iteration. Remarkably, the best performance occurs always in the first iteration, easily gaining
2-3 digits on the initial defect. By not taking into account this initial jump, we obtain a faithful
account on the effective performance throughout the whole linear iteration. We will now take a
look at the actual results:

Starting with the first columns, we see that the single grid iteration performs well enough for
the transport dominated case, but on the third level and for higher values than ¢ = 1 the conver-
gence rates degrade, especially since the problem is solved monolithically. For ¢ = 10 and ¢ = 100
the collision preconditioned GEF (\) is better than the plain GEF, but anyway the single grid it-
eration stalls at 0.9999. This is because the slope of linear convergence of the GMRES method
starts almost horizontally when dealing with stiff configurations (compare Table[6.16). More than
16 iterations each would be needed to acquire a sufficient basis and drive the defect towards zero.
A remedy is given by switching on the coarse grid correction, the rates improve significantly even
using only s = 4 smoothing steps. Only the case ¢ = 1 seems not suited for the multigrid method,
here also s = 16 smooothing steps are necessary to have potential gain over the single grid solver.
Although Table shows that this multigrid approach is far from optimized, on the other hand it
demonstrates the efficiency of our transport discretisation due to the special numbering technique.
The whole MG overhead can be avoided and transport dominated problems can be solved with the
GEF approach on a single grid.

To continue with the twogrid results, we observe general improvement of the results with higher
refinement level up to 4225 grid points in the current tables. If only few smoothing steps are used,
GEF (\) with block-diagonal preconditioning is first choice, while the plain GEF is continuously
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catching up with the better rates up to s = 16. Another implication is that GEF may fail conver-
gence, like in the case of ¢ = 100 for the second order upwind. This lack of stability, although
it does not disqualify completely the proposed method, was to be corrected in an alternative ap-
proach.

In total, looking superficially at the separate tables, the rates are improving from the top-left to
bottom-right corner. More smoothing is obviously better and higher refinement has positive influ-
ence, but due to several runaway values which we account to lack of stability of the algorithm, we
are not satisfied with the results. Therefore we will switch now to the multigrid preconditioned al-
gorithm, which gives not only improved convergence rates but also shows more definite behaviour.
The basic advantage of the first order upwind or the dependence on the number of smoothing steps
are two aspects which will become more obvious in the following section.

single grid multigrid s =4 multigrid s = 8 multigrid s = 16

GEF GEF()) GEF GEF()) GEF GEF(\) GEF  GEF(\)

upwl 289 0.1331 0.0557 0.54 0.48 0.52 0.47 0.18 0.05
1089 0.5145 0.5512 0.54 0.56 0.52 0.47 0.44 0.34

4225 0.7289  0.7729 0.61 0.92 0.51 0.50 0.47 0.44
upw2 289 0.0497 0.0573 0.56 0.52 0.53 0.49 0.14 0.05
1089 0.1881 0.3422 0.49 0.48 0.51 0.50 0.33 0.29

4225 0.7988 0.7774 0.43 0.46 0.45 0.44 0.46 0.45

Table 9.8: Comparison of convergence rates using GMRES smoother, Re=10, c=1

single grid multigrid s =4 multigrid s = 8 multigrid s = 16

GEF GEF()) GEF GEF(\) GEF GEF(\) GEF  GEF(\)

upwl 289 0.9617 0.9178 0.57 0.52 0.54 0.53 0.55 0.55
1089 0.9829  0.9621 0.53 0.51 0.53 0.53 0.54 0.54

4225 0.9999 0.9892 0.46 0.45 0.47 0.46 0.47 0.47
upw2 289 0.9414 0.8718 0.52 0.48 0.41 0.51 0.46 0.53
1089 0.9747 0.9404 0.45 0.40 0.43 0.39 0.42 0.45

4225 0.9874 0.9782 0.45 0.35 0.43 0.43 0.42 0.44

Table 9.9: Comparison of convergence rates using GMRES smoother, Re=10, c=10

single grid multigrid s =4 multigrid s = 8 multigrid s = 16

GEF GEF(\) GEF GEF(\) GEF GEF(\) GEF  GEF())

upwl 289 0.9903 0.9669 0.81 0.52 0.63 0.50 0.54 0.50
1089 0.9970  0.9882 0.70 0.53 0.59 0.51 0.53 0.51

4225 0.9990 0.9969 0.64 0.54 0.57 0.53 0.54 0.53
upw2 289 0.9999  0.9399 - 0.68 - 0.65 0.56 0.60
1089 0.9999 0.9843 - 0.67 0.61 0.66 0.57 0.64

4225 0.9999  0.9999 - 0.57 0.50 0.57 0.48 0.55

Table 9.10: Comparison of convergence rates using GMRES smoother, Re=10, c=100



9.3. Linear, twogrid results 121

9.3.2. Results for multigrid as preconditioner

Although the last drawback of our linear solvers was removed, with on the whole level-independent
results given in the previous section, the method obviously lacked stability. Next, we tried to
combine the special properties of the GEF approach with modern numerical methods in a more
sophisticated way. The result is a variable scheme which we denote as MGPREC and list with the
following steps

O perform outer GMRES iteration until relative stopping criterion of 107 is reached, for
each matrix-vector multiplication v = Ax call following preconditioning and use vector v =
MG~ 'Ax instead

A compute defect

B1 restrict defect

B2 gain 4 digits on level-1 using GMRES with GEF (\)

B3 prolongate and assemble solution
C perform s smoothing steps using GMRES with GEF or GEF(\)
D give resulting preconditioned vector to outer iteration

How would a similar algorithm be implemented without GEF? The outer GMRES would not im-
plicitly hold the inverse transport and would depend completely on the MG-preconditioner. For
smoothing steps, a linear solver with either transport or collision preconditioning would be used,
while we want to take advantage of both. Finally, in a nested algorithm, these drawbacks would
be accumulated.

Now look at the results for our new scheme at first in Tables 0.TTH9.13] The set-up corresponds
exactly to the previous Tables[9.8H0.10] but here we give the average linear convergence between
the second and last outer GMRES iteration. We notice a total improvement of the results while
stability was also recovered. This behaviour is comparable to [49], [26] and shows the advantage
of Krylov-space methods compared to ’simple iterative schemes’ even in a multigrid framework.

Nevertheless, we want to discuss the results in detail. Compared to the previous section, the
single grid results have significantly improved in the nested algorithm. It seems that the inner
iterations are taking effect and no stalling takes place although s is still fixed to 16 steps. At the
same time, the outer GMRES has good potential due to the ’small preconditioner’. Even the case
¢ = 100 (Table 9.13) is manageable, but a level-dependence can be observed so the convergence
behaviour would degrade further for higher refinement levels. At the latest when solving huge sys-
tems, for example an unstructured grid for flow-around-cylinder with ~ 66 000 nodes, the linear
convergence would definitely stall.

For the new MGPREC scheme, we look first at Table 0.11] The case ¢ = 1 is obviously cov-
ered completely by our discretisation focusing on the transport operator. Therefore, the excellent
contraction rates around 0.1 obtained on a single grid cannot be further improved by use of MG.
Increasing the number s of our efficient smoother is better suited to improve the results than any
coarse grid correction. However, the situation changes when comparing Tables 0.11] and 0.12]
While the single grid results get worse for the sound constant ¢ = 10, the excellent MG results
remain and even improve in some cases. What is more, we acquire not only level-independent
numbers, but mostly improvement for successive grid-refinement.
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Another important aspect is that we have no divergent behaviour even for the smallest given num-
ber of smoothing steps. Now both discretisation methods are stable, while the first order upwind
is continuosly better probably due to the sparser matrix. A final increase to ¢ = 100 gives only
slightly worse results, here the use of GEF (\) is advisable on lower levels and if few smoothing
steps are used. However, the plain GEF smoother is at least as good for larger s. For upw2 on
the highest levels it even just overtakes GEF (\) while it is cheaper, as no cumbersome collision
blocks need to be inverted in a block-Jacobian approach. Performing a whole MG sweep, collision
preconditioning should be only applied on lower levels where the effort is manageable, while the
plain GEF would be considerably faster on the finest level and obviously as effective.

Comparing the results from left to right columns, in practice probably 8 smoothing steps would
be applied, as the potential gain with doubling s is not sufficient. In general, increasing s does not
boost the results as much as expected. The rates seem to improve with the order 0(%) rather than

0(%) Therefore, we have some discrepancy from common multigrid theory which might be due
to the non-optimal restriction.

A next test for our monolithic approach is presented in Tables [9.14H9.16] where the Reynolds
number was increased to 100. While a simple MG iteration would show more instable behaviour,
the rates here are still very good and can be sustained using GEF (\). We have to keep in mind that
higher Re means a higher relaxation rate % and to obtain optimal accuracy, according to Section
smaller values of ¢ than for Re = 10 are necessary. Consequently, increasing Re does not
always mean that our solver will get worse. We should look at the efficiency depending on the

2
overall optimal value % = %‘, and here our new MGPREC algorithm shows throughout excellent,
level-independent convergence rates.
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single grid multigrid s = 4 multigrid s = 8 multigrid s = 16

GEF GEF(\) GEF GEF()) GEF GEF(\) GEF  GEF())

upwl 289 0.0602  0.0475 0.16 0.12 0.05 0.04 0.11 0.03
1089 0.1228 0.0813 0.21 0.26 0.07 0.06 0.04 0.07

4225 0.1265 0.1384 0.24 0.32 0.13 0.17 0.06 0.09
upw2 289 0.0459  0.0756 0.21 0.14 0.09 0.07 0.06 0.06
1089 0.0498 0.0708 0.26 0.19 0.14 0.12 0.06 0.09

4225 0.1277  0.1590 0.31 0.31 0.14 0.17 0.13 0.13

Table 9.11: multigrid as preconditioner in GMRES, Re=10, c=1

single grid multigrid s =4 multigrid s = 8 multigrid s = 16

GEF GEF()) GEF GEF(\) GEF GEF(\) GEF  GEF(\)

upwl 289 0.4212 0.2379 0.24 0.18 0.17 0.14 0.12 0.08
1089 0.4561 0.4310 0.19 0.16 0.15 0.14 0.14 0.11

4225 0.4825 0.5088 0.17 0.15 0.12 0.12 0.12 0.10
upw2 289 0.4374 0.3190 0.39 0.29 0.23 0.21 0.16 0.15
1089 0.5094  0.4578 0.30 0.25 0.15 0.17 0.11 0.13

4225 0.5488  0.5337 0.25 0.20 0.11 0.14 0.08 0.10

Table 9.12: multigrid as preconditioner in GMRES, Re=10, c=10

single grid multigrid s =4 multigrid s = 8 multigrid s = 16

GEF GEF(\) GEF GEF(\) GEF GEF(\) GEF  GEF(\)

upwl 289 0.7312  0.4293 0.64 0.26 0.37 0.19 0.24 0.14
1089 0.8312 0.6350 0.49 0.24 0.28 0.19 0.21 0.16

4225 0.8887  0.7908 0.36 0.22 0.23 0.18 0.19 0.16
upw2 289 0.8000 0.5129 0.83 0.47 0.61 0.33 0.40 0.28
1089 0.8880 0.7518 0.76 0.49 0.51 0.39 0.36 0.35

4225 0.9376  0.8819 0.62 0.43 0.38 0.35 0.27 0.30

Table 9.13: multigrid as preconditioner in GMRES, Re=10, c=100
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single grid multigrid s =4 multigrid s = 8 multigrid s = 16

GEF GEF()) GEF  GEF(\) GEF GEF(\) GEF  GEF(\)

upwl 289 0.4122 0.2910 0.30 0.21 0.20 0.16 0.16 0.12
1089 0.5090 0.4406 0.23 0.19 0.17 0.15 0.12 0.13

4225 0.5439 0.4618 0.17 0.16 0.09 0.08 0.07 0.07
upw2 289 0.4840 0.3276 0.46 0.35 0.27 0.23 0.19 0.14
1089 0.5532  0.4589 0.34 0.27 0.18 0.19 0.13 0.12

4225 0.5894  0.5419 0.30 0.27 0.14 0.15 0.10 0.11

Table 9.14: multigrid as preconditioner in GMRES, Re=100, c=1

single grid multigrid s =4 multigrid s = 8 multigrid s = 16

GEF GEF()) GEF GEF(\) GEF GEF(\) GEF  GEF(\)

upwl 289 0.7719 0.5002 0.63 0.29 0.43 0.23 0.30 0.20
1089 0.8435 0.6505 0.50 0.25 0.29 0.20 0.22 0.18

4225 0.8971 0.8145 0.36 0.23 0.24 0.19 0.20 0.17
upw2 289 0.8155 0.5104 0.84 0.48 0.61 0.35 0.42 0.28
1089 0.9070  0.7800 0.76 0.48 0.51 0.40 0.38 0.37

4225 0.9443 0.8924 0.63 0.46 0.42 0.39 0.33 0.35

Table 9.15: multigrid as preconditioner in GMRES, Re=100, c=10

single grid multigrid s =4 multigrid s = 8 multigrid s = 16

GEF GEF(\) GEF GEF(\) GEF GEF(\) GEF  GEF(\)

upwl 289 0.8887 0.6412 0.86 0.32 0.73 0.23 0.48 0.19
1089 0.9372  0.7502 0.84 0.29 0.64 0.24 0.39 0.20

4225 0.9685 0.8617 0.77 0.27 0.53 0.22 0.32 0.19
upw2 289 09119 0.7094 0.92 0.56 0.87 0.46 0.75 0.40
1089 0.9706 0.8735 0.94 0.61 0.85 0.52 0.73 0.50

4225 0.9860 0.9432 0.94 0.62 0.80 0.55 0.61 0.53

Table 9.16: Multigrid as preconditioner in GMRES, Re=100, c=100
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9.3.3. Multigrid as preconditioner, time-dependent simulations

After showing results for the monolithic approach, we want to discuss the solution of nonstation-
ary problems. Again we use the driven cavity testcase with the higher Reynolds number Re = 100,
but now we solve the nonstationary equation (4.3)) with implicit Euler time-stepping. In the present
Tables(9.17 we apply an initial timestep size of At = 1. Although the additional identity term
improves the condition of the discrete system, obviously the results are not far from the monolithic
case due to the large Ar. The results for ¢ = 1 are very good, the convergence rates are reduced by
the time-stepping and here even the single grid solver performs well. Higher values of ¢ degen-
erate significantly the single grid results, so for that parameter range the multigrid-preconditioned
variant is advisable. An interesting observation is that, compared to the previous tables[9.14H0.16]
rather the convergence using the plain GEF smoother is improved, while the results for GEF ()
barely change.

For the next configuration, with corresponding results given in Tables [9.20H9.22] we reduce the
time-step further to Az = 0.01. This choice is rather suited to simulate non-steady flow problems
like the flow around cylinder benchmark at Re = 100, we would not use it to solve for steady-state.
Starting again with ¢ = 1, we explain that convergence rates lower than 1076 signify the stopping
criterion was reached after one iteration. Since the MG solver performs best in the first step, ex-
cellent results as in Table [@] are relative. However, the decision for MGPREC is not anymore
clear, since the numbers obtained with the single grid solver are quite good. In simulations where
At is as low as 0.001, usually stability is not an issue. Instead of the GMRES method one should
consider therefore to use the BiCG-Stab algorithm on a single grid with the plain GEF to avoid
computational overhead.

Looking at the last numbers for ¢ = 10, we see some dependency on the number of unknowns for
s = 16, but on a high level. The asymptotic is at least better for s = 4. Similarly, for the case
¢ = 100 the multigrid results are level-independent. Considered the quite small time-step size, the
final convergence is not excellent, but anyway some rates are reduced from 0.49 for single grid
GEF(\) to 0.11 for multigrid GEF (\) using first order upwind, resp., from 0.84 to 0.34 for plain
GEF smoothing with second order upwind.

Finally, these numbers also demonstrate the severe impact of extreme configurations due to low
Mach number on the linear solvers and condition number. It is possibly even more severe than the
monolithic steady approach.
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single grid multigrid s = 4 multigrid s = 8 multigrid s = 16
GEF GEF(\) GEF GEF(\) GEF GEF(\) GEF GEF(\)

upwl 289 0.0210 0.0023 0.13 0.08 0.04 0.02 6.67E-3 1.30E-3
1089 0.0523  0.0206 0.09 0.08 0.04 0.03 8.98E-3 4.93E-3
4225 0.0845 0.0532 0.09 0.08 0.03 0.02 9.43E-3 6.32E-3

upw2 289 0.0392  0.0045 0.21 0.16 0.07 0.05 1.24E-2  3.78E-3
1089 0.0835  0.0255 0.18 0.14 0.05 0.05 1.32E-2 9.33E-3
4225 0.1400 0.0618 0.16 0.13 0.04 0.04 7.62E-3  9.85E-3

Table 9.17: Multigrid as preconditioner in GMRES, Re=100, At = 1, c=1

single grid multigrid s =4 multigrid s = 8 multigrid s = 16

GEF GEF(\) GEF GEF(\) GEF GEF(\) GEF  GEF(\)

upwl 289 0.3856 0.1414 0.41 0.22 0.25 0.15 0.16 0.07
1089 0.5530 0.3607 0.32 0.22 0.21 0.18 0.16 0.13

4225 0.6804 0.5818 0.24 0.19 0.19 0.17 0.16 0.14
upw2 289 0.5382 0.2576 0.64 0.39 0.40 0.25 0.24 0.16
1089 0.7435 0.5888 0.60 0.45 0.36 0.36 0.28 0.29

4225 0.8346  0.7580 0.46 0.42 0.30 0.36 0.26 0.29

Table 9.18: Multigrid as preconditioner in GMRES, Re=100, Ar = 1, c=10

single grid multigrid s =4 multigrid s = 8 multigrid s = 16

GEF GEF(\) GEF GEF(\) GEF GEF(\) GEF  GEF())

upwl 289 0.6391 0.1349 0.74 0.26 0.47 0.17 0.26 0.08
1089 0.7937 0.4524 0.66 0.26 0.40 0.21 0.24 0.16

4225 0.8958 0.7253 0.54 0.26 0.34 0.22 0.23 0.20
upw2 289 0.7772  0.3798 0.79 0.49 0.70 0.36 0.45 0.28
1089 0.9272 0.7674 0.81 0.58 0.84 0.49 0.51 0.44

4225 0.9645 0.8941 0.79 0.62 0.67 0.53 0.49 0.52

Table 9.19: Multigrid as preconditioner in GMRES, Re=100, At = 1, c=100



9.3. Linear, twogrid results 127

single grid multigrid s = 4 multigrid s = 8 multigrid s = 16
GEF GEF(\) GEF GEF(\) GEF  GEF(\) GEF GEF(\)

ul 289 &8.81E-7 6.85E-8 1.87E-5 3.21E-8 1.19E-7 3.21E-8 1.19E-7 3.21E-8
1089 7.86E-7 2.62E-7 3.19E-7 9.20E-8 3.32E-8 9.20E-8 3.32E-8 9.20E-8
4225 5.62E-7 9.41E-8 7.24E-5 4.15E-5 3.31E-7 8.26E-7 3.31E-7 8.26E-7

u2 289 2.06E-7 5.99E-8 6.61E-5 8.07E-7 1.96E-7 4.32E-8 1.96E-7 4.32E-8
1089 6.17E-7 9.46E-7 8.96E-5 4.39E-5 6.15E-7 1.21E-7 6.15E-7 1.21E-7
4225 1.89E-7 4091E-7 1.80E-4 1.62E-4 2.42E-7 7.00E-7 2.42E-7 7.00E-7

Table 9.20: Multigrid as preconditioner in GMRES, Re=100, Ar = 0.01, c=1

single grid multigrid s =4 multigrid s = 8 multigrid s = 16
GEF GEF(\) GEF GEF(\) GEF GEF(\) GEF GEF(\)

ul 289 3.81E-3 9.11E-7 1.84E-1 2.28E-2 4.17E-2 9.34E-4 1.60E-3 2.16E-7
1089 1.59E-2 1.05E-3 1.77E-1 5.79E-2 4.45E-2 8.54E-3 3.21E-3 2.04E-4
4225 4.46E-2 1.37E-2 1.48E-1 7.48E-2 4.30E-2 1.97E-2 6.55E-3 1.68E-3

u2 289 6.35E-3 3.90E-5 249E-1 6.29E-2 4.17E-2 5.74E-3 2.26E-3 3.84E-5
1089 2.32E-2 1.96E-3 2.63E-1 1.22E-1 4.82E-2 2.52E-2 547E-3 1.17E-3
4225 7.31E-2 2.34E-2 248E-1 1.57E-1 5.67E-2 5.43E-2 1.04E-2 7.51E-3

Table 9.21: Multigrid as preconditioner in GMRES, Re=100, At = 0.01, c=10

single grid multigrid s =4 multigrid s = 8 multigrid s = 16
GEF GEF(\) GEF  GEF(\) GEF  GEF(\) GEF GEF(\)

ul 289 5.09E-1 5.82E-2 7.13E-1 1.86E-1 4.39E-1 8.84E-2 1.89E-1 2.26E-2
1089 6.61E-1 2.45E-1 6.40E-1 2.19E-1 3.61E-1 1.33E-1 1.90E-1 6.78E-2
4225 7.77E-1 4.89E-1 5.25E-1 2.35E-1 3.19E-1 1.69E-1 1.86E-1 1.13E-1

u2 289 590E-1 9.73E-2 7.37E-1 3.19E-1 6.07E-1 1.72E-1 2.80E-1 6.15E-2
1089 7.56E-1 3.58E-1 7.76E-1 4.40E-1 6.90E-1 2.72E-1 3.35E-1 1.65E-1
4225 8.41E-1 5.97E-1 7.65E-1 5.15E-1 5.90E-1 3.56E-1 341E-1 2092E-1

Table 9.22: Multigrid as preconditioner in GMRES, Re=100, Ar = 0.01, ¢c=100
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9.4. CPU-time results for multigrid with W-cycle

Finally, we compare the performance of our current code (denoted FeatLBE) against FEATFLOW
[45]] using again the stationary flow around cylinder benchmark. We use in both codes the same
coarse mesh, but convert in the Boltzmann simulation each quadrilateral into 4 triangular elements
(see Fig.[AT.2)). So, the total number of unknowns on a similarly configured mesh differs, we have
for level [ in FeatLBE approximately the same matrix size like for level / + 1 in FEATFLOW.

For a better interpretation of the runtime, we provide in Table 0.23] additionally numbers for ac-
curacy which should be good for both codes due to the unstructured mesh with refinement around
the cylinder. FEATFLOW yields reasonable results for drag and lift with the Upwind method, but
267072 grid points are needed to get close to the reference values. However, the edge-oriented
stabilisation method (EOFEM) gives excellent results already for 16848 nodes, which shows the
potential of modern numerics and the advantage after a decade of development in FEATFLOW.
Our code provides results within 1% of the reference (drag between 5.524 — 5.635) only from
16848 grid points. Better results require a higher refinement level and also the sound param-
eter ¢ must be chosen accurately. However, too large c¢ affects performance and amplifies the
discretization-error. Our numerical tests (see Sec. indicate in this case c,p; < 5 on the highest
shown refinement level.

The computational times shown in Table [9.24] result from a monolithic steady approach for the
benchmark problem. We start from the Level-1 solution (by interpolation) and use stopping crite-
ria of 1078 for the nonlinear defect, resp., 10~* linear gain each. The Boltzman equation (with the
GEF) is solved in a GMRES iteration with a multigrid sweep as preconditioner in each step. We
implemented a W-cycle as shown in algorithm [9.4.1] and decided to perform 16 smoothing-steps.
The combination of CPU times and accuracy of our code (omitting the coarse grid solver) is on a
level with the Upwind method of FEATFLOW, giving on the whole similar results for a compa-
rable number of unkowns. FeatL.LBE needs similarly few linear multigrid sweeps of the W-cycle.
The rates for ¢ = 2 are decreasing compared to ¢ = 1, but remain stable for a higher number of
unknowns. However, FeatLBE needs less nonlinear steps due to the continuous Newton method.
In FEATFLOW the nonlinear efficiency is significantly improved due to the symmetry of the
EOFEM and an unperturbed Jacobian (see [35]). The edge-oriented approach is giving superior
accuracy at the cost of a slight increase in CPU times, if any. On the whole, FeatL.BE cannot (yet)
compete with the highly optimized CFD code, nevertheless our Boltzmann discretization solves
the problem with good accuracy. At the same time we observe linear convergence independent of
the refinement level due to efficient use of multigrid as preconditioner in the GEF approach.
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FEATFLOW Upwind EOFEM

grid points  total unkn.  drag lift drag lift
16848 42016 5.7460 0.0070 5.5803 0.0101
66976 167232  5.6196 0.0103 5.5789 0.0104
267072 667264 55882 0.0108 5.5793 0.0106

FeatLBE c=1 c=2

grid points  total unkn.  drag lift drag lift
4264 38376 5.6676 0.0413 5.6490 0.0448
16848 151632 5.5287 0.0121 5.5403 0.0123
66976 602784  5.5398 0.0102 5.5863 0.0103

Table 9.23: FEATFLOW vs. FeatLBE results for flow around cylinder: Drag and lift coefficient,

references 5.5795, resp., 0.0106

FEATFLOW Upwind EOFEM
grid points  total unkn. NL/AVMG CPU NL/AVMG CPU
16848 42016 7/6 47 3/7 32
66976 167232 6/5 145 3/6 125
267072 667264 5/5 443 3/7 613
FeatLBE c=1 c=2
grid points  total unkn. NL/AVMG CPU NL/AVMG CPU
4264 38376 4/8 31 4/11 45
16848 151632 3/7 139 3/11 225
66976 602784 3/7 774 3/12 1308

Table 9.24: FEATFLOW vs. FeatLBE results for flow around cylinder: Nonlinear (NL)/Average

multigrid sweeps (AVMG) and CPU time, compare Table[9.23|

Algorithm 9.4.1 Recursive multigrid algorithm with W-cycle

MG (x,b,])
auxiliary vectors d,v
if (Leq.0) then
exact solution X = A b
else
compute defect d; = Ax-—b
restriction d_1 = Rd
1. recursive MG step viog = MG(vi_1,dj_y,l—1)
prolongation \7i = Pv;
assemble solution X = X—vV
smoothing X = Sj(x,b)
compute defect d; = Ax-—b
restriction d_1 = Rd;
2. recursive MG step Vit = MG(vi_y,dj_1,1—1)
prolongation vy = Pv,_;
assemble solution X = X—vV
smoothing X S;(x,b)
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9.5. Conclusions

To estimate the results given in this chapter, we must view them in the context of basic DVM
theory — especially Sec. concerning the dependence of space discretisations on the Mach
number — which assumptions were validated in Chapter [/l For reasons of accuracy, the sec-
ond order upwind discretisation is essential, but we can only fully exploit the superior scheme by
simultaneously choosing the sound parameter c large, otherwise the gain of accuracy will be can-
celed by compressibility errors. The same holds for systems with increased number of unknowns
due to grid refinement. Consequently, mere convection dominated (steady-state) configurations,
that we can solve efficiently due to our special transport preconditioning, play only a minor role
in practice.

The convergence behaviour exhibited by our iterative solution methods confirms that higher ¢ im-
mediately affects the condition number of the system matrix. Focusing on the dominant collisions
in constructing a block Jacobian preconditioner was a remedy only for small systems. We could
always wear out the efficiency of our basic solvers, mostly by a combination of high grid refine-
ment and large c¢. Against such objective testing even the GEF approach could not make a stand,
although it gave some robust results, combining the advantages of our preconditioning techniques.
A critical look reveals that the first order upwind gave mostly better linear convergence rates than
the second order scheme on a similar mesh. This is surely due to the sparser matrix; we needed
only three variables for the difference quotient (with interpolation) for upw1, while upw?2 needs
twice the number of entries. This is a fundamental observation for the GEF with special precon-
ditioning which takes into account only the diagonals of the submatrices (see Sec. [6.4.3). A less
sparse matrix means more entries not ’covered’ by the preconditioner, the condition number of the
system C~'A unlikely being close to unity and consequently more work for the proposed Krylow-
space methods resulting in more iteration steps.

The use of a coarse grid correction removed most level-dependent behaviour in the first implemen-
tation. However, a basic MG iteration lacked stability, we obtained best results with the new MG-
PREC solver. In this variant the additional block-Jacobian preconditioning in GEF (\) is replaced
by one MG cycle, which gives a more complete preconditioner than the inverse collision-part on
a single grid. Anyway, this sophisticated algorithm is only possible due to our special generalized
equilibrium formulation and the use of GEF (\) is still important as an efficient smoother. The
new convergence rates were significantly better, because in each preconditioning step the MG cy-
cle gains 1-3 digits so a couple of Krylow-space iterations is enough to reduce the linear defect
even in the monolithic approach. Excellent rates around 0.1 are obtained for the range of ¢ be-
tween 1 and 10. Beyond, a contraction rate below 0.5 is usually obtained with 8-16 smoothing
steps, also improving with higher refinement level, while for the single grid solver it is increasing
with the number of unknowns, reaching 0.98 and worse.

On the whole, surely our numerical results cannnot challenge high-end codes which deal easily
with poisson-problems on a unit square with zero boundary. Established CFD tools have years of
advance to develop better grid-transfer operators, efficient coarse grid solvers and sophisticated
stabilisation methods. This is not (yet) our pretence, we have a prototypical discretisation, a new
GEF approach for the discrete Boltzmann equation and a multigrid algorithm which still needs
verification and optimization. The initial results are interesting and significant and, in view of
developing numerical alternatives for the Lattice Boltzmann method, the efficiency shown in this
chapter is promising for the extreme case of monolithically obtaining steady state solutions. A
first implication which directly presents itself is an heuristic approach for a whole MG sweep with
maximum depth: As coarse grid solver one should apply a fast direct method, but also our GEF ()
can deal with small systems due to collision preconditioning. Similarly, smoothing steps on the
coarser levels should be performed with GEF (\), where the effort is manageable, while on the
higher levels smoothing with the plain GEF would be similarly effective but faster. Especially



9.5. Conclusions 131

on the finest refinement-level, additional work makes a difference for CPU-times, so all processes
there should be computationally cheap.

The results for our nonstationary simulations gave further practical conclusions. The condition
number of the discrete system with small Az can be significantly improved, as far as making the
use of multigrid unnecessary. For our benchmark calculations of oscillating flow around cylinder
we refrained therefore to plain GEF iterations of the BiCG-Stab solver, even without collision
preconditioning. This combination turned out to be most efficient, usually few (around 5) iter-
ations were effectively performed. The BiCG-Stab algorithm needs less CPU-time per iteration
compared to the GMRES which has superlinear runtime with the number of accumulated basis-
vectors. The efficient transport discretisation in the GEF can deal with most time-stepping simu-
lations when applied in Krylow-space methods.

On the other hand, when the Mach number is chosen very small and the time-step size should
be rather large, we can provide sufficient time-aacuracy using the second order Crank-Nicholson
scheme and, if necessary, good efficiency with the MGPREC solver. However, the direct solution
of steady-state problems is where we expect most gain in efficiency over the LBM which often
needs micro-timestepping.
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10

Summary and outloook

In this thesis, an efficient space discretisation introduced for the radiative transfer equation was ap-
plied to the Boltzmann equation with discrete velocities and the numerical methods were widely
advanced. In our final summary, we review the main achievements and evaluate the ongoing re-
search.

Spatial discretisation aspects. A finite difference upwind discretisation of first or second order
was applied to the DVM. Due to a special sorting technique we obtained lower triangular matrices
for the transport operator of the PDE with constant characteristics. We introduced a new, algebraic
reformulation, solving the equation for the equilibrium term. The resulting system matrix implic-
itly holds the inverse transport and is well conditioned for convection dominated configurations.
Additional preconditioning is possible for other relevant cases with dominating collisions.

Time discretisation aspects. The GEF is applicable to time-stepping discretisations and to
the monolithic approach which we use primarily to solve directly for steady-state problems. We
apply the second order Crank-Nicholson scheme to simulate time-dependent behaviour. Large
timesteps and the direct-solution approach require efficient nonlinear and linear iterative solvers.

Nonlinear solver aspects. In our monolithic approach the collision operator has to be treated
implicitly, resulting in a nonlinear system. For the common incompressible model it was easy
to use a continuous Newton method, obtaining throughout excellent convergence independent of
mesh refinement.

Linear solver aspects. The low Mach number regime which is needed to approximate an in-
compressible limit leads to bad conditioning. Separate preconditioners with focus on the lower
triangular transport blocks or off-diagonals due to local collisions were not sufficient. The GEF
approach could combine the advantages of both, solving efficiently small collision dominated
systems and all transport dominated problems but lost performance for the intermediate case on
high refinement levels. A sophisticated application of the GEF resulted in a prototypical algorithm
where multigrid is used as a preconditioner in Krylow-space methods and achieves very good con-
vergence rates for all configurations. Extensive numerical results were obtained for the stationary
and nonstationary flow around cylinder benchmark on unstructured grids in accordance with CFD
reference values.

The recent development of computer-systems with enhanced performance mainly resulting from
clustering of compute-power has an increasing impact on the CFD community. This development
not only accelerates — although the speed-up of established software due to higher FLOP/s is
demonstrably stagnating — but also shifts the focus of traditional numerical methods. In short,
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the use of hardware-oriented numerics is supposed to have higher potential and close the developed
gap. The Lattice Boltzmann method seems predestined for large scale computing and experimen-
tal GPU clusters due to its simple arithmetic, we mention the SKALB project (www.skalb.de) as a
recent initiative.

Nevertheless, one should not forget the importance of efficient numerics, we mainly contradicted
the use of a time-stepping method to obtain the solution of steady-state problems. Moreover, it
was a very interesting and challenging task to approach the discretisation of the Boltzmann equa-
tion without prejudice. Eventually, we obtained a second order discretisation in space (and time)
that can be adapted to all D2QX lattice-sets on arbitrary triangular meshes. The efficient transport
solver, resp., GEF approach can be in future extended to the 3D case, as the underlying node num-
bering is based on topological sorting and graph theory.

Another question is whether this technique can be reasonably retained for higher than second or-
der finite differences. Such schemes would have a similar implementation, but an upwind of third,
fourth etc. order makes arise some stability problems. Therefore, we should consider for example
a discontinuous Galerkin approach as a higher order scheme to reduce the discretisation error and
the number of unknonws considerably. We would obtain smaller systems while the Mach number
should be chosen significantly small to reduce compressibility errors in parallel.

Also in view of future alternative discretisations, theoretical aspects were a fundamental part of
our research. We took apart the aggregate error in the Boltzmann discretisation, and analysed the
specific Mach number dependence. The compressibility error is hardly discussed per se in liter-
ature. Usually, the combined asymptotical behaviour of the on-lattice discretisation is given, but
rarely absolute numbers which play an important role in practice. We derived methods for selec-
tive explicit or implicit treatment of the Boltzmann equation and demonstrated the high complexity
of a collision/advection implicit off-lattice discretisation. However, at the latest with the mono-
lithic solver, we showed that it is possible to overcome stability restraints which apply to the LBM.

In our numerical comparison against the incompressible Navier-Stokes solver FEATFLOW, we
had to account for the higher number of variables in the Boltzmann approach and compressibil-
ity effects which would vanish only in the asymptotic limit of Ma — 0. Solving a steady state
problem on similar grids and hardware, the tests showed for the obtained computation times some
advantage for the macroscopic approach.

Another pending, important test is a numerical comparison against the LBM. However, simple
CPU-time results running our serial working-code on a workstation against a supercomputer sys-
tem would be less important. The interperetation should be more elaborate, involving for example
the overall operations needed until a target steady-state is reached. Comparing the arithmetic op-
erations performed mainly by our linear solvers and by the explicit time-stepping algorithm, we
should obtain a measure for numerical efficiency of the two methods. Another aspect of the set-up
should deal with local accuracy, testing some advanced problems on highly adapted against uni-
form meshes.

In the end, we expect different results for non-stationary and stationary problems, and the pre-
sented monolithic approach should prevail for the latter and for configurations where stability is
too restrictive for the LBM.
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A1

Numerical testcases on hierarchical grids

For a rigorous numerical analysis of our discretisation techniges, resp., numerical solution meth-
ods we chose three different ’classical’ problems from the field of CFD with varying difficulty
level. First, we compared to the given analytical solution for Rotating Couette flow, also used in
[L1]]. Second, we performed simulations of the driven cavity problem at various Reynolds numbers
as in [31]]. We took given CFD results from FEATFLOW on a highly refined mesh as reference,
the same accounts for the flow around cylinder benchmark (see [39]). Furthermore, the latter pro-
vided a basis for the nonstationary simulations presented in the thesis, comparing different time

stepping schemes.

As seen in Fig. our spatial discretisation is designed for general (triangular) grids. Thereby,
we have 3 degrees of freedom (DOF) per element for the 1st order upwinding, and 3 additional
unknowns in the edge midpoints for the 2nd order upwinding. Starting from a coarse mesh we get
one level of refinement - and successively a mesh hierarchy used in a multigrid algorithm - simply
by connecting the edge midpoints. Thus, each element is divided into 4 new ones. In Fig.
we present a structured grid on the unit square, used for the driven cavity testcase, together with
another less structured grid which we use for the Rotating Couette flow. Finally, in Fig. a
sequence of grids is shown which is locally adapted around the inner boundary component. On
these grids we calculate the flow around cylinder benchmark. However, the upwind discretisation

is carried out similarly on all three meshes.

(a) Uniform square lattice for driven cavity

P 24NN
XSS
SIS,

\YR N
774 me
=Sl

A

N
NSy
=3

N
i

N>
i
x

I

</

22

<7
Iz
G
S
<X
W
=

\ 4
NN GV
N
=R

SRS

(b) Unstructured grid for Rotating Couette flow

Figure A1.1: Simple domains for numerical tests
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(b) Grid hierarchy

Figure A1.2: Standard grid for flow around cylinder

Figure A1.3: Highly adapted grid for flow around cylinder
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Mesh information upwl upw?2
Level Elements Vertices Midpoints Total unknowns Total unknowns
0 2 4 5 4 9
1 8 9 16 9 25
2 32 25 56 25 81
3 128 81 208 81 289
4 512 289 800 289 1089
5 2048 1089 3136 1089 4225
6 8192 4225 12416 4225 16 641
7 32768 16641 49 408 16 641 66 049
Table A1.1: Driven cavity mesh information
Mesh information upwl upw?2
Level Elements Vertices Midpoints Total unknowns Total unknowns
0 520 286 806 286 1092
1 2 080 1092 3172 1092 4264
2 8320 4264 12 584 4264 16 848
3 33280 16848 50128 16 848 66 976
4 133120 66976 200 096 66 976 267072

Table A1.2: Flow around cylinder mesh information

configuration Vv Unax Re regime
lid driven cavity
dcgelo 1/10 1 10 stationary
dCRre100 1/100 1 100  stationary
dcRre1000 1/1000 1 1000 stationary
flow around cylinder
benchge. 1/100 0.3 2 stationary

benchgeo 1/1000 0.3 20 stationary
benchge100 1/1000 1.5 100  nonstationary

Table A1.3: Main testcases (driven cavity and flow around cylinder) and their configurations
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\_/

Figure A1.4: Grid and u; velocity for driven cavity

1.1. Driven cavity

The first presented configuration depicts our standard testcase, i.e. most results for linear solvers
are calculated using the /id driven cavity model. The model is defined on a unit square by way of
Dirichlet conditions for the velocity. To obtain the given macroscopic boundary-velocity we use
Ladd’s scheme described in Sec.[d.3] The west, south and east walls have no-slip conditions, only
the north ’lid’ is moving with velocity u = ((1)) The Reynolds number is therefore adjusted solely
using the viscosity and it holds Re = % as seen in Table Finally, we use a structured mesh as
seen in Fig.[AL.T] and obtained a reference solution from FEATFLOW on a highly refined mesh
with 263 169 unknowns. Despite the structured configuration, the situation is not comparable to
the Lattice Boltzmann method. The transport step in our case is not modeled as a simple shift
to neighbouring nodes along the edges. Our finite difference upwind discretization up to second
order goes back along the characteristics and on the intersection of elements usually interpolation
between the nodes on an edge is necessary. So, while a matrix corresponding to on-lattice Boltz-
mann schemes would require one entry off the main diagonal, we have up to 6 of them in the case
of second order upwinding, resp., 2 for the first order scheme. Only a structured hexagonal mesh
would reduce this number and the FD scheme with interpolation would fall back to the actual
nodes for every direction.

Remark: The prescribed boundary velocity is discontinuous due to the lid moving with con-
stant speed of u = 1 while the walls are at rest. The question is how to define the values right in
the upper corners, that means if the given discretisation defines there degrees of freedom, as in
the case of our method. We chose the variant that the corners belong to the walls with velocity
u = 0. The discontinuity might be a reason why the asymptotic behaviour is slightly worse than
second order in the Mach number. However, the results reproduce the interesting behaviour of the
pressure tending to 4o, —oo for the right, resp., left corner.
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Figure A1.5: Grid and rotation velocity for rotating couette flow

1.2. Rotating couette flow

The setting for our second configuration is a domain bounded by two concentric circles, with inner
and outer radius of R; = 3, resp., R, = 6. The rotating couette flow is driven by the outer boundary
moving with a rotational speed of U, = 10(1)—& while the inner circle is at rest, i.e. U; =0. The
analytical, time-independent solution for this model is given by

1

urad (r) = s g2
o 1

R?R?
((U(,Ri —uiR)r+ (U; - U,) lr ")

this means it is not dependent on the viscosity v of the simulated fluid, either. Nevertheless, we
chose this model to analyse the asymptotic convergence behaviour concerning refinement level
and sound speed, finding a strong influence of the parameter ¢ on the obtained solution (see Sec-
tion[7.1)) As seen in Fig.[AT.T|we used an unstructured mesh which has —the grid being accurately
adopted to the domain — some difficult aspect ratios close to the wall, which also provided veri-
fication of our flexible finite difference space discretisation.
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Figure A1.6: Flow around cylinder visualisation of u; and p

1.3. Flow around cylinder benchmark

The flow around a cylinder benchmark from [39]] is generally viewed as a challenging test for any
CFD tool and is modeled in the following. The flow is driven by a parabolic inflow profile in a
channel of height 0.41 and length 2.4, near the entrance is fixed a circular object and free-slip
boundary conditions are defined at the outflow. The Reynolds number of the flow field is defined
by the cylinders diameter of D = 0.1, the average inflow velocity Uy = %umax and the viscosity as
Re = UV—D. In Table we present three configurations we used in our simulations, stationary
flows for Reynolds numbers 2 and 20, resp., the nonstationary benchmark at Re number 100.

In course of the test one can measure forces acting on the cylinder, better results are expected
using a high (local) resolution around the inner boundary. Consequently, spatial discretisations
which can deal with adaptive grids are important for high computational efficiency. In general Re
is chosen as 20 or 100, the latter case being in the nonstationary regime and exhibiting a periodic
behaviour of the developed flow. It is relatively easy to obtain nice movies of vortex shedding
behind the cylinder, but it is crucial to use higher order time — and space — discretisation to
reproduce accurate numbers for the oscillating forces. In Figure [AT.2] we present our locally
adapted benchmark grid: To better approximate the forces acting on the circular cylinder, we have
more elements gathered around the cylinder than at the channel’s outflow region. This example is
especially capable of showing the advantage our general FD scheme on unstructured grids has over
uniform schemes which require many unknowns to obtain the needed resolution in local areas.
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Applications based on Chapman-Enskog analysis

In this section we will present advanced concepts developed in the thesis, applications for the
DVM which are decoupled from the main discretisation, but are nevertheless important for numer-
ical simulations. The problem with working in the Boltzmann framework is that, while in standard
CFD software macroscopic conditions are quite straightforwardly implemented, here one has to
use microscopic distributions and deal with approximations in the small Mach number limit. For
example, in Boltzmann schemes the evaluation of forces using derivatives of velocity to obtain
the viscous stress tensor is ill-conditioned. In practice, one has to evaluate the primary simulation
variables to obtain accurate results.

Another example is the transformation of macroscopic moments (back) to the distribution func-
tions, as in the case of prescribing initial conditions for the flow. Both applications are not trivial,
but adequate methods were developed based on the Chapman-Enskog theory. We will relate the
details and important implementation aspects, therefore the following sections should be consid-
ered after reading Section [2.4] and with an understanding of the Chapman-Enskog ansatz given
therein.

2.1. Force Evaluation

In the Chapman-Enskog expansion we used the first order distribution f(!) as a final step towards
the derivation of the Navier-Stokes equation. By this means we obtained the viscous stress tensor
and in the same way — instead of using spatial derivatives of the macroscopic moments — it is
possible to derive forces working on the microscopic level. We start from the approximation of
the stress tensor up to second order in € (without second viscosity):

au au 1
S(Xﬁ = TC?p() <ax§ + axz> = _EH&B) =+ 0(g2)

To calculate the term Hgﬁ) we use the identity up to first order from the series (2.14), namely

— 0
=11 o)

W is denoted as the nonequilibrium term which can be used to calculate the first order tensor

= [t = ¢ [Eatplr— 1)+ 0te)

The pressure tensor Py = pOug + Sep used in CFD for force evaluation, is obtained in the contin-
uous Boltzmann equation with p = c2p as

Pyp = cfpﬁaB—SHgB)JrO(sz)
— pdup— [ Eukplf ~ £0)+O(e)
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while in the discrete velocity model we obtain Pyg by quadrature and use of the equilibrium term
f7? with overall second order compressibility error:

Pup = c?pﬁa[} — Z&i.,a&iﬁ(fi - fieq) + 0(82)
Remarks:

Remarkably, in the above force evaluation method the tensor Pyg is independent of p. This is
because the contributions from the term ¢? pdyp and the density contribution from £ just cancel
out. For a proof it is sufficient to look only at the density appearing in

74— g <p+ (Gi-u) n &i-u? (u%—ku%))

4 2
2c; 2c%

N

In the sum of Pj; the term &; 1&; ; results in 1 for i = 1,2,4,5,6,8, it means in total

2
;ii,lii,lmip = (é + % + % + é + % + %)CZP = %P =cip
Analogously, in Py the term &y 2&y » results in 1 for k =2,3,4,6,7,8 giving the same result. For
P13 (and Py;) the term & &2 results in 1 for k = 2,6 and —1 for k = 4,8 so the density anyway
cancels out. Consequently, the forces calculated by the method are only determined by
the distributions and macroscopic velocity, while the density has no influence as an independent
variable. This explains why the resulting values for drag and lift in our tests for the flow around
cylinder benchmark were not influenced by extrapolation of the pressure on the boundary.
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2.2. Initial conditions

In the Boltzmann framework there arise some problems from the discrepancy between using dis-
tributions as primary simulation variables and including macroscopic moments, for example as
initial conditions or taking saved pressure and velocity to consistently recover f;. Although it is
easy to transform distributions into macroscopic variables, we do not have a simple inverse map-
ping in the form of a linear matrix, even the number of variables is not equal.

One possibility applied in practice is to set f; equal to f;?(p,u). To obtain an accurate represen-
tation however, we have to fall back again on Chapman-Enskog theory. Skordos showed in [40]]
that it is possible to obtain accurate initial values from p and u by calculating the nonequilibrium
part and applying the relation

[~ fO4ef. (A2.1)

The term fi(l) has to be calculated from the given equilibrium in the following way. As previously,
the basic step is inserting the expansion in the dimensionless Boltzmann equation. Then taking
the terms of first order in €, we obtain as previously

PO (af(o)+§ af@).

Cr ot % 9x,

ot
L

L [of©® o7
n - =2 e
! T’Ccr ( ot & 0xg,
B T [of©® o7
- e ( o o

Finally, we insert this identity in the series (A2.1)) and use the equilibrium ;¥ which results in the
approximation of the discrete variables

In the next step and by substitution of € = <= we obtain

eq
fi = ffq—r<ag"t +§,~-Vﬁq>+0(sz).

This treatment gives in practice a gain of one order in Ma compared to identifying the distribution
with the equilibrium. Again, this is not an exact representation of the macroscopic moments,
even if it were possible to compute the gradient exactly. We have only an approximation which
improves in the limit of Ma — 0 or ¢ — oo.

We were able to use our finite difference discretisation of second order for the gradient and to
compute fl-(l) for steady-state problems. The procedure can easily be extended to a full restart
algorithm, on the other hand in our tests accurate initial conditions were not needed yet.
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A3

D2Q7 model

In the following, we will introduce a reduced lattice set and describe the D2Q7 model. We want
to apply our special discretisation techniques and monolithic solver for the 7-velocity DVM and
make comparisons for efficiency and accuracy. At the same time, we will show the flexibility of
our approach, not only regarding unstructured grids but also arbitrary models. Compared to the
D2Q9 model, which is especially suited for Cartesian grids, the D2Q7 model has a set of lattice
vectors that corresponds to a uniform triangular grid (see Fig.[2.2b). The discrete velocities include
a rest particle and are defined by

B B (070)T , i=0
§i_cei—{c(cos((i1)7t/3,sin((i1)75/3)T » i=1,...,6

This means a configuration reduced by two local variables and a matrix-size reduced by 40%
compared to the standard 9-velocity model. The collisions consist only of 7 x 7 blocks (see Fig.
A3.1). Furthermore, we have new weights ; resulting from quadrature restraints for f;7, given

0

(a) first numbering (b) second numbering

Figure A3.1: D2Q7 matrix allocation

by the following uniform coefficients:

1/2 , restfy
0W; = ..
1/12 , remaining f;
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These have to be included into the small velocity approximation of the equilibrium term, given in

general form as
i u)? o u?
(&c ), &)

——).
2 2¢t 2¢?

However, due to the sound speed defined in the the D2Q7 model as ¢; = ¢/ V4, we obtain for the
coefficients different results (see [18])):

fI=wp(l1+

a

1 {32 ,  D2Q9 model 1 {2894 ,  D2Q9 model
A

. D2Q7 model 20 . D2Q7 model

GM“‘;

We implemented the new (incompressible) equilibrium term as

4

it = oip+po(5 &)+ %(éi-u)z - C%<u%+u§)))

Boundary treatment

Due to the reduced number of velocities, with an angle of 60 degrees in between, we have a
slightly different situation at the boundary, compared to the 9 velocity model. Looking at a rect-
angularly bounded domain, at south and north walls we have only 2 incoming distributions, while
at east and west walls the number is still 3, but without distributions parallel to the wall. The
general scheme of Ladd f; = f_; +2po - a)i% is still valid, but with modified ®; = ﬁ, c_% = %

ande; € { (iol) , % ( f\}g) } with the index i = 1,.. ., 6 starting at the east cardinal point and following

anticlockwise (approximately {E,NE,NW,W,SW,SE}). At the north wall for example, we get the
following bounce-back scheme

fs = h—5———F%— (A3.1)

fo = pym-22

s = Lp+thi—fa)—5——5———F%=— (A3.2)
fo = H-(i—ft3 +3 -~ %

One can validate scheme easily by summation of the distributions which results in Y.&; f; =
(uty, uy)T = uyp.. Numerical results (see Fig. confirm the (locally) accurate treatment of the
boundary by Zou-He’s scheme. In Figure [A3.2a] we give the cutlines of u, along the moving
lid (north boundary with u, = 1, u, = 0) and the bottom (south wall with u, = u, = 0) of the
cavity. In comparison, the bounce-back scheme by Ladd is not reproducing accurately the given
macroscopic Dirichlet velocity of the wall. However, for increasing ¢ the deviation from the exact
values is getting significantly smaller. Also, the overall L,-error of Ladd’s scheme is comparable
(even slightly better as seen in Fig. so one should investigate further possible advantages
resulting from the advanced boundary treatment.

Altogether, the implementation of the 7-velocity discretisation was successfull and further tests
are planned to analyse accuracy of the *'minimal’ model. Especially the nonstationary flow around
cylinder benchmark should be reproduced with accurate results for the forces at the boundary
despite the few local distributions, in which case the reduced system size can lead to more efficient
solvers.
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