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Chapter 1

Introduction

When analyzing data on disease incidence or mortality, one way is to perform indi-
vidual studies with individual information on exposition to risk factors. Statistical
regression models can be used to identify the relationship between exposure to cer-
tain factors of influence and the health outcome of the individual. Such a statistical
analysis is very detailed, with respect to the individuals under study. If the sample
survey is appropriately chosen and large enough, risk factors can be identified and
the interdependencies found in the sample can be generalized to a larger population.
This individual-based approach to statistical analysis is commonly used in biome-
try and epidemiology. Nevertheless, many sources of error can be brought into the
analysis through inappropriately chosen samples, sample surveys, misspecification
of covariates, or leaving out of important risk factors. Some studies then include

additional effects to account for unstructured heterogeneity.

An alternative to this person-related analysis is the more general observation of
an area-specific appearance of disease incidence and mortality. Instead of data on
individuals, with individual covariates, the analysis is based on aggregated numbers
of disease counts with population related covariates. A crucial assumption in statis-

tical modelling is the assumption of independence. When regarding aggregated data
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in a certain region of study, this assumption is likely to be violated, as observations
are now spatial aggregates over units of the study region with similar underlying
mixtures of covariates. On the basis of specific models for spatially dependent data,
an epidemiologic approach can possibly lead to the identification of risk factors on
the area level. The data underlying this analysis do not only have a spatial correla-
tion structure, but consist of repeated observations over time. Therefore, we extend

the models to a temporal dimension.

In this thesis we model data on cancer mortality. Geographical differences in
frequency of occurrence of the various forms of cancer are largely due to environ-
mental risk factors and personal behavioral patterns. Person-related data, however,
on variables like occupation, family status, social status, nutrition, smoking habits,
or alcohol and drug consumption are usually not available on a personal basis, but
sometimes on an areal level. A strong interaction and mixing of the factors within
the individuals has the effect that an analysis based on only these factors must be
seen with caution. Considering the fact that the time lag between exposure and
development of the cancer disease usually takes years, direct or even causal effects
will not be easy to identify. We therefore include area specific random effects to

account for this unobservable mixture of known and unknown covariates.

The aim of this thesis is the presentation of autoregressive statistical models
that account for dependence structures within the area specific data. We present
modelling approaches that lead to spatial smoothing after the exclusion of covariate
effects. The study area for this analysis is the Federal Republic of Germany, for
which the data set is called Germany data, and the state of North Rhine Westphalia
(NRW) in particular, with NRW data. For Germany we consider mortality counts
of stomach cancer and lung cancer among men and women. These two cancer types
show a strong spatial clustering, and are therefore suitable for a spatial modelling

approach. The data on Germany have been kindly provided by the German Cancer



Research Institute in Heidelberg, and they are published in two different data sets,
e.g. Becker et al. (1984), pp. 51-66 and pp. 153-168. Due to privacy protection
laws, data with the highest spatial and temporal resolution are not available for
Germany. Therefore, the data set is published at different levels of temporal and
spatial aggregation. More precisely, one data set contains annual mortality data
from 1976 to 1990 given in the 30 regions (Regierungsbezirke) of West Germany,
aggregated over the 328 districts (Kreise). On the other hand, temporally aggregated
data are available with a higher spatial resolution of 328 districts for Germany. Here,

we have data for the three five-year blocks 1976-1980, 1981-1985, and 1986-1990.

Data on cancer mortality for east Germany (former GDR) is only available from
1981 on. When modelling the dependence structure and changes over space and
time, we therefore consider only the data on West Germany, in order to have full
lengths of the series. This implies for the regions of Germany, that we base the
analysis on the 30 regions of West Germany, excluding West Berlin, which lies too

far apart from the rest of the study area to exhibit local correlation.

Apart from the data on lung cancer and stomach cancer mortality for Germany,
we analyze data for North Rhine Westphalia. Here we have chosen lung cancer
among women because this data set contains, apart from the positive spatial corre-
lation, a clear upward temporal trend. The data has been kindly provided by the
Landesinstitut fiir den Offentlichen Gesundheitsdienst in Bielefeld, see e.g. Nolte
et al. (1997). The difference of this data set is that yearly mortality counts are
available for 19 years from 1980-1998, with the highest spatial resolution based on
54 districts.

We begin with an exploratory data analysis in the following chapter, describing
the temporal as well as the spatial structures within the data. In chapter 3 we give a
short summary of Bayesian modelling. Emphasis is put on specific tools for Markov

chain Monte Carlo simulation. As most of the inference in this thesis is drawn
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from Bayesian approaches we describe sampling algorithms that are required for the
stochastic simulation. Additionally we introduce diagnostic methods to check for
convergence and mixing of the Markov chains. The idea of sensitivity analysis is
presented to evaluate the influence of prior settings on the posterior outcome. Only
recently the deviance information criterion (DIC) (Spiegelhalter et al. 2002) has
been proposed as a basis for choosing between Bayesian models. We describe this

measure of fit at the end of chapter 3.

In chapter 4 we present vector-autoregressive and innovation processes in prepa-
ration for a joint modelling of spatial and temporal dependence. We begin with a
purely temporal analysis of lung cancer among women in NRW, and stomach cancer
mortality among men for Germany. Partial autocorrelation functions are used to
determine the order of the vector autoregressive process. Additionally, we introduce
Markov random fields for the spatial analysis of temporal slices of the NRW data
set in a Bayesian framework. We use a surrogate for smoking behavior as a covari-
ate to model the lung cancer mortality rates among women, which we deduce from
the population density of the spatial units. We compare a Gaussian and a Poisson

modelling approach with respect to posterior mean estimates.

The knowledge that we have gained from separate temporal and spatial analyses
will be used in chapter 5 to estimate spatial and temporal autocorrelation param-
eters in a combined space-time model. The idea is to present a classical and a
Bayesian modelling approach, and to compare the resulting parameter estimates
with supported range for the data set on stomach cancer in Germany and on lung
cancer in NRW. We use the DIC to assess the model fit to the data with and without
covariates. Additionally, we regard computational aspects of the frequentist and the

Bayesian approach.

Based on these parameters we perform a model based type of small area esti-

mation in chapter 6. As mentioned above, cancer mortality data with the highest



11

spatial and temporal resolution are not published in Germany, and we therefore aim
for estimates of cancer mortality counts with that resolution. The unknown mortal-
ity counts are modelled as unknown parameters in a Bayesian setting. The problem
is how to sample from the posterior distribution under the restriction of preserving
the spatial and temporal marginals. To solve this problem we introduce an approach
with which we can avoid to assign given data to a sum of stochastic nodes which is
cumbersome in the Bayesian framework. The results of different small area alloca-
tion models will be compared and the goodness of fit is evaluated by comparing the

parameter estimates with the observed data for North Rhine Westphalia.

In chapter 7 we summarize the results of the thesis and we give an outlook to

further fields of application of the presented methods.
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CHAPTER 1. INTRODUCTION



Chapter 2

Space-time Data on Cancer

Mortality

2.1 Standardization

When analyzing and comparing aggregated incidence or mortality data for different
years or in different regions, it is obvious that absolute case figures, i.e. raw mortality
counts alone are not suitable. The underlying area specific populations usually differ
in size and age structure. When aiming for the detection of regional and temporal
changes, these should not be caused by superficial differences in population structure.
One approach is to include the underlying population sizes and age structures into
the statistical model for the mortality counts. We explain suitable Poisson models
in chapter 4. Age-period-cohort (APC) models can be used when the stratification
into age groups should be preserved (Knorr-Held and Rainer 2001). An alternative
is to standardize the data in advance, usually with respect to age structure and

gender, and model the standardized data.

If a standardization is used to make the results within different areas or years of

13
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study comparable, the choice of a sensible standard population is crucial. Depend-
ing on the comparison one aims for, several different populations can be thought
of. For instance, if the mortality rates of East and West Germany in 1976 are to
be compared, the population of either one region can be chosen as the standard
population. The mortality cases of the other region will be standardized with re-
spect to that standard population. This standardization is then called internal. In
our case, where we aim to draw conclusions about the same area of study in the
change of years, we rather base the rates on an artificial population. This could be
an aggregated population over the years for the study area. A standard population
of that kind preserves the temporal trend within the data and population specific
features, and because of that it is probably the most suitable standard population.
However, the rates cannot be used for an international comparison, which is desir-
able for cancer registries. They suggest using a European standard population, or
the Segi world population (Becker et al. 1984, p. 5, and Becker 1998). The cancer
mortality rates of the German cancer atlas are age-standardized mortality rates with
weights according to Segi’s world population. We have chosen the same approach
for the standardization in this thesis. Figure 2.1 gives an idea of how the artificial
Segi population weights for age compare to the German age structure in 1976. As
one can see clearly, there are considerably more older people in the German pop-
ulation, which gives these age groups more weight compared to Segi’s population.
The cancer mortality rates will therefore be underestimated systematically when
standardizing with the world population. For the interpretation of the standardized

rates this should be kept in mind.

Apart from the choice of a suitable internal or external standard population, the
standardization can be undertaken directly and indirectly. From the epidemiological
point of view an indirect standardization is mainly used for rare incidence or mor-
tality (Kreienbrock and Schach 2000, p. 41). We are considering lung cancer and

stomach cancer, which are relatively frequent causes of death. Therefore, a direct
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Figure 2.1: Age structure of the standard population after Segi, and of the German
population in 1976.

standardization is more appropriate. In order to actually calculate the rates, we
need the following notations, where k£ denotes the age group, with £ =1,... , K for
the 18 individual age groups 0-4 years, 5-9 years, ... , 80-85 years, 85 years and older.
The spatial index ¢ runs from ¢ = 1,... ;I through the administrative units of the
study region, and ¢ = 1,... ,7T indicates the temporal index. The standardization

is performed separately for each gender. Furthermore, define

Dy, »= number of deaths of the defined cancer type in the study population
nyy; = number of people at risk in the study population

ny,; = number of people at risk in the standard population.

The population figures n,; are based on official population figures per year. The data
have been obtained from the Federal Bureau of Statistics (Statistisches Jahrbuch

der Bundesldnder). They are based on yearly averages of monthly compilations of
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community figures (Melderegister). On the basis of these figures, the raw mortality
rates mry;, with

K
k=1 Dkti

mry; = =E=L7E 100, 000 (2.1)

k=1 Nkt
can be calculated. The age-specific mortality rates are defined through mry,; :=
(Dyi /ngi) * 100,000, k = 1..., K, and based on them, the mortality rates can be

rewritten as

SOE g mrgy &
mry; = w = Z W mryy;. (2.2)
D ke T k=1

The weight Wy :=ny_/ Z,ﬁil ny.. adjusts for the proportion of people in the k-th age
group of the study population. If instead of the age structure of the study population
the age structure of the standard population is used, the resulting mortality rate is
a standardized mortality rate, as stated in Kreienbrock and Schach (2000), p. 38.
Assuming a constant structure of the standard population over space and time, the

standardized mortality rate can be written as

K .
D MpMIgy
Ty = —— =

ZK - W];k MY, (23)
k=1""k

K
k=1
where Wy, k =1,..., K, is the weight function for the age structure of the standard
population. An asterisk indicates that the population figures are based on the stan-

dard population. The use of this type of standardization, with a constant standard

population after Segi, preserves the temporal trend within the data.

The data on both lung cancer and stomach cancer have been standardized with
the described method, each cancer type stratified by the variables gender, individual

age group, region, and year.
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2.2 Cancer types under examination

There are several reasons, why lung cancer and stomach cancer have been chosen
for this analysis. First of all, both cancer types show relatively high average stan-
dardized mortality rates of more than 20 per 100,000 for stomach cancer in the
study period and even more than 50 per 100,000 for lung cancer among men. The
corresponding figures for women lie around 12 per 100,000 for stomach cancer and
between 5 and 10 per 100,000 for lung cancer. Therefore, the analysis of the spatial
and temporal tendencies and changes is of outstanding importance. As mentioned
before, the aim of this analysis is only to a minor extent to look for yet unknown
causes for these cancer types. We rather aim for the detection of regional differences
and temporal changes in order to make spatio-temporal predictions and extrapola-
tions. Both lung cancer and stomach cancer show distinct regional patterns, and
strong spatial clustering. For stomach cancer, a strongly decreasing trend is visible,

and for lung cancer, the temporal structure seems to depend on the region.

2.2.1 Lung cancer

There is much information available about the causes of lung cancer. The fact that
lung cancer mortality is increasing, is partly due to a refusal to apply this knowledge
about established risk factors. Smoking is by far the most important risk factor, but
also there have been surveys to show that asbestos dust, especially with exposition
at the work site, plays an important role. Air pollution, however, does not seem to
have a considerable influence, as described by Becker et al. (1984), p. 155. However,
Wichmann et al. (1991) claim, that for those regions in Germany, in which the air
pollution is high, the mortality rates of lung cancer are higher than expected when

only the risk factors smoking and exposition at work are taken into account.

The time lag between being exposed to one or more of the major risk factors
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and developing or even dying of lung cancer ranges between 10 to 30 years. As de-
scribed by Becker et al. (1984), p. 153, there is an age specific increase in mortality,
especially when the persons at risk are 60 years and older. This tendency has been
found for both genders. Regarding the regional distribution of death rates, above
average death rates have been found in western parts of Germany, especially in
Rhineland-Palatinate, Saarland, North Rhine Westphalia, and the city states Bre-
men and Hamburg. The regional differences are very similar for males and females.
However, female lung cancer death cases are only about 1:10 of those of men. For
men the general tendency is an increase of the observed rates. For women, except for
the regions Schleswig-Holstein, Lower Saxony, Hesse, Baden Wurthemberg, Bavaria,
and Saarland, the same holds. When regarding the level of urbanization of the ob-
served region, there seems to be an indication for lower death rates in more rural
areas and vice versa. According to Becker et al. (1984), p. 155, this is due to the
fact, that there are more smokers in urban than in rural areas. Additionally, not
only the percentage of smokers (for both male and female) grows with the number of
inhabitants of a city, also the number of cigarettes smoked among those people who
smoke increases, as stated by Wichmann et al. (1991). On the other hand, Munich
and Stuttgart have strikingly low mortality rates compared to other conurbations, in
all of which mortality is elevated, as stated by Becker et al. (1984), p. 155. This phe-
nomenon remains unexplained by knowledge about lung cancer risk factors. Figure
2.2 shows the spatial and temporal relative change of age-standardized lung cancer
mortality rates for women in North Rhine Westphalia. A clear temporal increase
in lung cancer mortality among women over the 15 years from 1981 to 1995 can be
seen in figure 2.2. The spatial clustering also seems to increase over that period of
time. Hopker (1998), however, points out that maps of un-smoothed standardized
rates should be interpreted with caution. The districts with the highest rates tend
to cluster around the densely populated area called Ruhr area (Ruhrgebiet).

When analyzing area specific count data, the problem usually arises that areas
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Figure 2.2: Lung cancer among women in NRW. Age-standardized mortality rates

over 15 years.

with small population sizes show more variation than densely populated areas. This
problem is called over-dispersion. It can be accounted for through a suitable trans-
formation. Cressie (1993), p. 395, proposes to use a square-root transformation, a
log transformation, or a transformation after Freeman and Tukey (1950). Figure 2.3
displays the dependence of the standard deviation on the mean of the 54 districts in
North Rhine Westphalia over the study period from 1981-1995. As the dependence
of the standard deviation on the mean is approximately linear, a log transformation
has been chosen as it is "stronger” than a square root transformation in order to
remove this dependence. Figure 2.4 shows how the dependence can be removed
with the transformation. For Gaussian modelling we will use log transformed age
standardized mortality rates throughout the analysis, also in the case of stomach

cancer.
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Figure 2.3: Lung cancer among women in NRW. Age standardized rates: mean

versus standard deviation.

2.2.2 Stomach cancer

Non only in Germany the frequency of stomach cancer is clearly decreasing. Espe-
cially in the Western industrialized countries and with a time lag also in Eastern
Europe, incidence as well as mortality have decreased over the past 20 years. The
comparison between male and female mortality shows, that the mortality among
males with mortality rates of 15-20 per 100,000 is more than double the mortality
among women with rates among 5-15 per 100,000. The spatial distribution of stom-
ach cancer mortality reveals large regional differences with relatively low rates in
the north of Germany. In the south of Germany, especially in the area of Bavaria,
the mortality rates for men as well as for women are rather high. Although the

temporal trend shows a steady decrease, according to Becker et al. (1984), p. 51,
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Figure 2.4: Lung cancer among women in NRW. Log-transformed age-standardized

rates: mean versus standard deviation.

the regional differences remain constant. Figures 2.5 and 2.6 display the temporal
changes in age standardized mortality rates for the districts within West Germany.
In the box plots the length of the whiskers is 1.5 times the inter quartile range, if
the minimum or maximum has not been reached before. Mortality rates that are
not lying within the interval of 1.5 times the inter quartile range are displayed as
individual lines, above or below the whiskers. The two outlying regions in both
figures for males and females are Lower Bavaria and Upper Palatinate, which show

extraordinary high rates throughout the study period.

The etiology of stomach cancer is discussed for example in Risch et al. (1985),
or in Willett and McMahon (1984). Various endogenous and exogenous factors have

been identified either as protective or as risk factors. An increased consumption of
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Figure 2.5: Stomach cancer mortality rates among men in Germany. Box plots of

the temporal trend.

starchy cereal products, strongly salted food, preserved vegetables, and smoked food
seems to increase the risk of stomach cancer. Becker et al. (1984), p. 51, however,
name personal and familial disposition, and typical occupational groups as special

risk factors.

2.3 Exploratory data analysis

The descriptive analysis in this section will be performed for the Germany data set,
i.e. a data set with a yearly temporal resolution, which is spatially aggregated over

30 administrative regions (Regierungsbezirk, RB) for the period from 1976 to 1990.
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Figure 2.6: Stomach cancer mortality rates among women in Germany. Box plots

of the temporal trend.

We begin with the analysis of lung cancer among men. The highest mortality rate
for men of 75.38 per 100,000 persons at risk has occurred in the region of Trier in
the year of 1981. The mortality rate of the Saarland with 75.34 in 1986 is only
a little smaller. The lowest rates have been found in Tiibingen. The rate here
was only 30.42 in the year of 1989. When considering the data set by region, the
maximum mean has been found in Diisseldorf, with an average rate of 66.14 over
the 15 years from 1976 to 1990. The minimum rate occurred in Stuttgart. Here
the mean over the observed period of time is 33.47. It remains to mention that
mean and median of the observed time series for the rates differ only to a very small

extent, as displayed in figure 2.7. This indicates that the data can be considered



24 CHAPTER 2. SPACE-TIME DATA ON CANCER MORTALITY

symmetric. The standard deviation of the regions varies between a minimum of 1.13

.
o | L4 Y
—
0 | . o L4
% o ° ° L4 .
8 ° .
ie) L Y
L o | Y ® [ )
E o °
- e o ) ) .
S 1 . .
L S [ ]
g ° . .
o
2
Te}
3
.
1 1 1 1 1 1 1
0 5 10 15 20 25 30
region

Figure 2.7: Lung cancer among men in Germany. Difference of mean and median.

in Stuttgart and a maximum of 5.51 in the region of Trier. Considering the data
set now over time instead of region, the year with the lowest average mortality rate
is 1976, the beginning of the observation period. In 1978, the highest average rates
have been found. The mean lies at 47.66 per 100,000.

A descriptive analysis of female lung cancer mortality rates reveals that the low-
est cancer rate of 2.8 for women in the observed period of time has been found
in Upper Franconia in the year of 1979. The maximum rate has been observed in
Bremen in 1990. Here the mortality rate was 13.45. Again, the regional differences
over time shall be examined. The resulting average rate is 6.0, with a minimum
of 4.07 for Tiibingen and a maximum of 10.07 for Hamburg. The standard devia-

tion varies between 0.61 and 2.64 among the regions. The analysis of female lung
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cancer for the 15-year observation period reveals a strong upward temporal trend,

as visible in figure 2.8. The increase of female lung cancer mortality over the years
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Figure 2.8: Lung cancer mortality among women in Germany. Box plots of the

temporal trend.

is indicated by the increasing medians over the observation period. As mentioned
in section 2.2.1, the city states show higher mortality rates for women, than the
more rural areas. Figure 2.9 shows the age standardized rates for the 54 districts
(5 RB’s) in 1995 in North Rhine Westphalia. The two different symbol sizes indi-
cate whether a district is urban or rural. So called ”Stadtkreise” are considered as
urban, whereas ”Landkreise” are labeled rural. Figure 2.9 shows a tendency of an
increased mortality rate in urban districts. A question is, whether there are not only
higher rates in urban districts, but also whether a stronger increase over time can
be observed. Figure 2.10 displays the average mortality rates of the urban districts

compared to the average mortality rates of the rural districts for NRW over time.
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Figure 2.9: Lung cancer mortality among women in NRW. Rural and urban districts

in 1995.

We can see that throughout the observation period the average rates of the urban
districts lie above those of the rural districts, which clearly shows an effect of the
risk factor urbanization. Least squares fits of the data demonstrate that the slope
for the urban time series is significantly higher than that for the rural population.

Because of that, we must consider the degree of urbanization as an effect modifier.

For an exploratory analysis of stomach cancer we again consider male and female
mortality separately. Looking at the stomach cancer mortality rates of men, the
lowest rate of 10.22 can be found in Trier in the year of 1990. The highest rate of
43.87 has been observed in the region of Upper Palatinate in 1976. This indicates
that there has been a decrease in mortality, as will be described in more detail.
When averaging over time of the 30 regions under examination, the lowest mean

has been found in Giessen, the highest in Upper Palatinate. The standard deviation
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Figure 2.10: Lung cancer mortality among women in NRW. Least squares smoothed

rates over time.

lies between a minimum of 2.83 and a maximum of 7.58, with a mean value of 4.20.
The temporal development of the mortality rates is clearly decreasing, as described
in the previous section. The highest average rate over the regions of 26.64 has been
observed in 1976, the beginning of the study period. The lowest average of 14.21
occurred in 1990, the end of the study period. Therefore, even though regional
differences can be found within male stomach cancer, the general temporal trend

turns out to be strongly monotonously decreasing over time.

The female stomach cancer mortality rates seem to develop rather similar to
those of men. The minimum observation of 5.44 has been found in Trier in 1989, in
the same region with the lowest male stomach cancer rate. The highest rate of 23.19
occurred in Lower Bavaria in 1976. The year of this observation is the same, as the

year of the highest male rate, and the region of Lower Bavaria is a neighboring region
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of Upper Palatinate. Looking at the regional averages over time, the minimum rate
of 8.10 can be found in Giessen, as for men, and the highest rate of 15.81 has been
observed in Upper Palatinate, again as for men. The standard deviation varies
between 1.35 and 3.94, with an average of 2.24. When averaging over the regions
and analyzing the data temporally, the highest average rates have been found in the
year of 1976, the lowest in the year of 1989. The temporal development of male and
female stomach cancer mortality therefore runs almost parallel, as visible in figures

2.5 and 2.6.

2.4 Related data analyses

In the foregoing sections we have described data on cancer mortality that are suit-
able for a combined spatio-temporal analysis. For this thesis we have concentrated
on lung cancer and stomach cancer mortality. Obviously other cancer types, other
causes of death, or disease incidence data can be analyzed with the methods pre-
sented in the following chapters. Well-known data sets suitable for an analysis
with the methods of this thesis are the data set on Ohio lung cancer (Xia et al.
1997), and the data set on Scottish lip cancer (Cressie 1993, p. 537). Not only epi-
demiologic data, but data on socio-demographic variables like unemployment rates,
average income, or deprivation indices can be used for a spatio-temporal analysis,
as well. Furthermore, when considering regular lattices, the methods are useful for
image analysis, as described by Besag, York, and Mollié (1991). Recently published
work by Gossl, Auer, and Fahrmeir (2001) deals with spatio-temporal imaging of

functional magnetic resonance, or applications in ophthalmology (Krahnke 2001).



Chapter 3

Bayesian Modelling and Inference

This chapter deals with Bayesian aspects of modelling and inference in prepara-
tion for the analysis of our space-time data. We begin with a short passage about
preliminaries of Bayesian theory, and we continue with the specification of Markov
chain Monte Carlo (MCMC) tools for Bayesian inference. We assume that the
observations supporting the statistical analysis, z1, ..., z,, are sampled from a pa-
rameterized probability distribution. Thus, f(z; | #) in IR is the density from which
z; is drawn and the parameter or parameter vector 6 is unknown. In order to analyze
parameter vectors of this type, we introduce the definition of a parametric statistical

model.

Definition 3.1 Let 6 denote a subset of a finite dimensional vector space, let f(z |
), 0 € © be a family of probability distributions, and let Z be a random variable
with probability density f(z | 0). Then a sample z,...,z, of Z is a parametric

statistical model.

29
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3.1 Introduction to Bayesian theory

At the end of the eighteenth century, Bayesian statistics was often called inverse
probability, as statistical analysis is fundamentally based on an inversion. Statistical
inference aims at retrieving the causes from the effects, which are the observations

(Robert 1994, p. 7).

Theorem 3.1 [Bayes Theorem] If A and E are events such that P(E) # 0, P(A |
E) and P(E | A) are related by

P(E | A) P(A) _ P(E|A) P(A)
(E[A) P(A)+P(E|A) P(A)  P(E)

P(A|E)= 2 (3.1)

According to Robert (1994), p. 8, equation 3.1 appears as a major conceptual
step in the history of Statistics, being the first inversion of probabilities. Especially
a transformation of equation 3.1 shows that for two equally probable causes A and
B, given a specific effect F, the ratio of their probabilities is the same as the ratio of
the probabilities of the effect F, given the two causes A and B. A continuous version
of this result has been proved by Bayes (1763), where the two random variables Z
and @ are specified, with the conditional density f(z | #) and marginal density g(6).
Then the conditional density of 6 given z is

f(z10) 9(0)

J f(z10)g(6)do

f(=19) 9(6)
fz)

9(0'] 2)

(3.2)

In this context the term density refers to both the Lebesgue measure and the
counting measure. Hence, the discrete case is included. If one models the uncer-
tainty on a parameter vector 6 through a probability distribution for discrete random
variables, or a probability density 7 on © for continuous variables, m(f) is the re-

sulting distribution or density called prior distribution. 3.2 can then be rewritten
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as

_ 119 m0)
w(012) = Sy

which incorporates the main idea of Bayesian modelling that parameters are assigned

(3.3)

a probability distribution.

Definition 3.2 A Bayesian statistical model is composed of a parametric statistical

model, f(z | 0), and a prior distribution on the parameters, m(0).

f(z ] 0) is often referred to as sampling distribution or observation model. As the

denominator of 3.3 is independent of , an equivalent form of 3.3 is
(0| 2) < f(z]0)w(0). (3.4)

The conditional density is obtained by normalizing the right hand side of the equa-
tion yielding the posterior density. The observed data affect the posterior distri-
bution of the unknown parameters 7(6 | z) only through the sampling distribution
f(z | ). Thus, for fixed z, the likelihood function f(z | #) can be considered as
a function of #. In this notation € is the vector which includes all unobservable
quantities. If covariates are included in the model, the distribution of the unknown

parameters is conditional on these as well.

We can summarize the process of Bayesian modelling through the three following
steps. Initially, a full probability model needs to be set up, with a prior distribution
for the unknown parameter vector 7(6), and the distribution f(6, z) for the observ-
able quantities, based on the observation model f(z | #). Secondly, the posterior
distribution of the unknown parameters is obtained by conditioning on observed
data. The major aim in Bayesian modelling is the evaluation of the posterior distri-
bution, which leads to the estimation of posterior quantities. The third step includes
assessment of the model fit to the data. This issue will be discussed in more detail

in section 3.3.2.
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The specification of a suitable prior distribution is of great importance in Bayesian
modelling. In the case that prior information is available, e.g. from earlier or related
studies, the additional knowledge about certain parameters should be built into the
model via a sensibly chosen prior distribution. However, it may be difficult in some
cases to elicit a priori information or even a well-defined prior distribution. A lack
if communication between the statistician and the decision maker, time delay, or
costs are just a few reasons that may lead to little prior knowledge about the pa-
rameters. The following two subsections about conjugate and noninformative priors

reveal possible approaches of choosing appropriate prior distributions.

3.1.1 Conjugate prior distributions

A common parametric approach to find a suitable prior distribution is to use a so-
called conjugate prior distribution. According to Robert (1994), p. 97, this useful

approach involves a subjective input as limited as possible.

Definition 3.3 A family F of probability densities f(z | 0) on © is said to be

conjugate if, for every m € F, the posterior density w(0 | z) also belongs to F.

A justification of the conjugate prior approach has been proposed by Raiffa and
Schlaifer (1961). When the observation of Z is distributed according to f(z | ),
then the change of m(0) to m(# | z) is contributed through the data z only. This
additional information about the prior distribution should then not lead to a com-
plete structural change, but only to a change in the parameters of the distribution.
Additionally, conjugate priors are attractive to use, as the posterior distributions are
always computable (Robert 1994, p. 98). According to Gelman et al. (1995), p. 37,
conjugate priors can also be interpreted as additional data. However, using conju-
gate priors only for simplicity and technical reasons can be dangerous, especially if

proper prior information is available.
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It has been shown by Brown (1986) and Robert (1994), p. 99ff., that conjugate
prior distributions are associated with the class of sampling distributions that are
exponential families. As there exists an automated way to deduce a conjugate
distribution from the model f(z | §), conjugate distributions for exponential families

are usually referred to as natural conjugate distributions.

One conjugate family that shall be described in more detail is the family of
Gaussian distributions. The family of Gaussian distributions is conjugate to itself.

This implies that for a Gaussian observation model with
7 | 0 ~ Gau(d, 0?)

the corresponding natural conjugate prior is again Gaussian, parameterized as 6 ~

Gau(pu, 7%). The resulting posterior distribution can be calculated analytically as
0|z~ Gau(p(o’u + 7°2), po’7?)

with p=' = 02 + 72. Let us consider the example of a Gaussian observation model
with unknown mean #, but known variance o?. Then the posterior mean of 4 is a
weighted average of the mean of the prior distribution x4 and the sample mean 6.
DeGroot (1986), p. 326, gives additional properties of the relative weight given to
0. Moreover, it can be seen that the posterior variance of 8 depends on the number
of observations, but does not depend on the observed magnitudes. Therefore, the
posterior variance can be calculated in this case before any observations have been
taken. A further discussion of this example with a generalization to the case of a

multivariate Gaussian distribution will be given in section 3.1.3.

Advanced algorithms to sample from the posterior distribution make the use of
conjugate families less important. However, in the context of this work, we will use
conjugate prior distributions in the following situations. We assign a Gamma prior
distribution to the inverse of the normal variance in the chapters 4 and 5. We also

use a Wishart prior distribution for the multivariate normal covariance matrix in
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chapter 6. Throughout this thesis we use the fact that the Gaussian distribution is

a conjugate family to itself.

3.1.2 Noninformative prior distributions

As we have described above, conjugate priors can be a useful approximation to a
prior distribution. However, when no information about the parameters is available,
the use of conjugate priors is solely justified for analytical reasons. Alternatively, so
called flat, diffuse, or noninformative priors can be used. Due to the lack of prior
information they are derived from the sampling distribution alone. That means the
model determines the family of the prior distribution to achieve conjugacy which
can lead to closed form expressions of the posterior quantities. The idea is to
construct a prior distribution, that contains as little a priori information about
the parameter as possible. As it is often impossible to assign uniform priors over
the entire support of 6, 7(6) is usually assigned a Gaussian distribution with large
variance, or a uniform prior restricted to a certain area of the support. Depending
on the parameter, of course, other distributions, such as the Gamma distribution
for dispersion parameters on the positive support of # may be used. The advantage
of noninformative priors, at least for large samples, is that they are guaranteed to
play a minimal role in the posterior distribution and allow the data to ”speak for

themselves”, unaffectedly of additional information.

Noninformative priors have the disadvantage that transformations of the param-
eter of interest may lead to an informative prior distribution. This in turn leads to

the invariance re-parameterization problem. For example the problem occurs, when

2

assigning a uniform prior on [0, 1] to the dispersion parameter o® of the normal
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distribution. Then

0 u<0
ng(u):P(a2<u) = u 0<u<l
1 u>1

and for 0 < u < 1 we obtain the density dFjiii(u) = 1. In the same interval, we obtain

for o itself

F,(u) = P(oc < u) = P(0? < u?) = v

dF 5 (u)

2= = 2u which is clearly informative.
u

and hence

A second problem with noninformative priors is that they easily lead to improper
priors, which implies that their densities do not integrate to 1. It can be desirable,
e.g., to assign a uniform prior on (—oo,00) to some parameter. In that case, an
improper prior can be used, but it should not be interpreted as probability distribu-
tion. There exist prior proposals like Jeffreys noninformative prior (Jeffreys 1961)
that is based on the Fisher information matrix. Jeffreys prior usually results in
improper priors, however it fulfills the invariance re-parameterization property for
specific transformations. Especially when considering subvectors of the parameters
of interest, problems with Jeffreys prior may occur. Bernardo (1979) has developed
a modification of Jeffreys prior, namely the reference prior approach, that distin-

guishes between parameters of interest and nuisance parameters.

In the context of this work noninformative and improper priors play a role in

three further situations.

1. In many situations the ideal form of a noninformative prior is a uniform distri-
bution over an interval of infinite length. Suitable software has been developed
which generates samples from such flat distributions. The WinBUGS software
(Spiegelhalter, Thomas, and Best 2002) uses the specification dflat(), and in

BayesX (Lang and Brezger 2002) such diffuse priors are the default choice.
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2. Under extreme circumstances the posterior distribution for a well defined prob-
lem with proper prior might not exist, since the integral [ f(z | 8)7(0)df = occ.

In this case the posterior distribution cannot be computed.

3. In situations where a noninformative improper prior is desired, one frequently
uses a proper prior that is essentially constant over an interval in which the
parameter can be expected to lie. For example it is common use to substitute
a flat prior by a Gau(0,0?) distribution with large 0% (> 10%), or a uniform

prior over a large interval.

3.1.3 Example for multivariate Gaussian data

In this section we consider the case, that our observations are drawn from a multi-

variate normal distribution, i.e. the model is of the following form
Z | oy 2~ Gaup(/% Z)a

where p is a column vector of length p and X is a p X p covariance matrix, symmetric

and positive definite. The likelihood for a sample of iid. observations z1,... , z, is

n

2ty | 1y B) o |22 exp{—% Z(ZZ — ) Yz — )} (3.5)

i=1
Consider the case of an unknown mean vector p but known covariance matrix .
Then the conjugate prior distribution for yu is again the multivariate normal distri-
bution which is parameterized as p ~ Gau, (g, Ag). After rearranging terms, it is

easily seen that the posterior distribution of p is

m(p | 2 %) o exp{—%(z — )7z = )} exp{—%(u — o)’ NG (= o)} (3.6)

Expanding and completing the quadratic form for ;s leads to the posterior distribu-

tion

p| 2,2~ Gauy (pn, (AEI +n 271)71)
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with

o= (Ao +n 277 (Ag o +nI712).

From this result we can draw some conclusions about the posterior mean and
variance. In the multivariate Gaussian context the posterior mean is a weighted
average of the prior mean and the sample mean. The weight of the sample mean
increases as the number of observations increases. In the limit the posterior mean
is equivalent to the sample mean. The posterior covariance is smaller than the one
prior to data collection. With an increasing number of observations, the posterior
covariance approaches the covariance of the mean of the sample. In this example
the posterior distribution can be calculated explicitly due to the conjugacy of the

Gaussian distribution which in general proves to be difficult.

To conclude it can be said that if no information on the parameter vector is
available, the choice of noninformative priors is a good alternative that leads to a

posterior distribution which solely depends on the observation model and the data.

3.2 Likelihood inference

In the beginning of this section we have described the inversion principle of statistical
analysis. According to Robert (1994), p. 7, this aspect results in the notion of the
likelihood function, which is just the sampling distribution rewritten as a function

of the unknown parameter vector #

00 ]2)=f(z]0),

depending on the given and fixed observed data. The inversion principle, and espe-
cially equation 3.1, can be seen as an actualization principle. In the context of the
likelihood function, it can be transferred to consider the likelihood of event A, and

update P(A) to P(A | E) given the observed event E.
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According to Gelman et al. (1995), p. 107, we can often interpret classical
point estimates as exact or approximate posterior summaries based on some implicit
full probability model. Asymptotic theory can be used to construct a theoretical
Bayesian justification for classical maximum likelihood inference under certain reg-
ularity conditions. DeGroot (1986), p. 339, mentions a possible difficulty of Bayes
estimation, if the parameter 6 is actually an unknown (high dimensional) parameter
vector. Then multivariate prior distributions must be specified for all components
of the parameter vector 6, even if there are only one or two components of inter-
est. In such a problem it is especially difficult to specify meaningful priors on the
multidimensional parameter space ©. However, we have discussed the influence of
prior specifications in Bayesian modelling, and therefore we aim to perform both
likelihood and Bayesian inference for the case of the space-time model in chapter 5.
We will show the modelling strategies in the frequentist and the Bayesian case, we
will compare the resulting parameter estimates and posterior quantities, and we will

discuss computational issues of frequentist and Bayesian inference for that example.

Maximum likelihood estimators

In order to obtain point estimates of the desired parameters in the frequentist case,
we use maximum likelihood estimation. This subsection gives a short summary on
the theory of maximum likelihood point estimation. Suppose that the random vari-
ables Z1,..., Z, form a random sample from a discrete or continuous distribution
with probability distribution function or density f(z | #), where the unknown pa-
rameter or parameter vector ¢ belongs to the parameter space ©. For any observed
vector z = (21,...,2,) in the sample, the value of the joint probability distribution
function as a function of € for a given vector z is called the likelihood function [(6, z).
The idea of maximum likelihood estimation is now to obtain a parameter estimate

0(z) € O for the observation z such that for this parameter estimate the proba-
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bility density of the observation is maximized. Thus § = 6(z) is called maximum

likelihood estimate for 6 if

1(0,2) >1(0,z)  forall§e®.

For n — oo, and under regularity conditions the maximum likelihood estimator
is a sufficient statistic, and according to Gelman et al. (1995), p. 107, so is the
posterior mode, mean and median under the Bayesian point of view. Sufficiency
implies that the estimator contains essentially all the information available about
0 from the data. Therefore, asymptotic irrelevance of the prior distribution can
be shown, which allows for the use of noninformative priors for a large number of

observations.

An important feature of this thesis is that the analyzed data are not indepen-
dent. Even in the case of dependent observations, maximum likelihood theory can
be applied under very general conditions using Martingale limit theory. In this con-
text, asymptotic behavior of maximum likelihood estimators can be derived, i.e. for
the much more general case of departure from independence. These topics will be

discussed in more detail in chapter 5.

3.3 Bayesian inference with Markov chain Monte

Carlo

In recent years Markov chain Monte Carlo techniques have been rapidly developed,
providing new methods firstly in the field of Physics, and then later also for statis-
ticians. Monte Carlo (MC) importance sampling as introduced by Hammersley and
Handscomb (1964) has been used to simulate directly from the distribution of inter-
est, as the integrals that are required for Bayesian computation need an analytic or

numerical approximation. In a Bayesian setting the aim is usually the evaluation of
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the posterior distribution. However, Monte Carlo simulation is restricted to simple
problems, with a small number of dimensions. The idea of the more sophisticated
MCMC simulation is to construct a Markov chain that has the posterior distribution
as its stationary distribution. This technique is applicable for more complex and
high dimensional models, and its applications within various sampling algorithms
will be explained in more detail in the following sections. The idea underlying the
generation of an ergodic Markov chain with the posterior distribution as its sta-
tionary distribution is made possible through the following theorem (Kulkarni 1995,
p. 105). Let pl(-;-) be the probability that the Markov chain is in state j at time ¢

when it starts from state 7 at time 0.

Theorem 3.2 [Limit theorem for ergodic Markov chains/
Assume that {Z;,t > 0} is an irreducible, aperiodic, and positive recurrent Markov
chain. Then we have
(a) limy pg-) = limy_, o p§? =: 7,
(b) {m;,j € S} are given by the unique solution to
Wj:Zmpij, Zﬂ'jzl.
i€s j€S

The proof can be found in standard literature for stochastic processes, such as
Kulkarni (1995), p. 105f., or Fahrmeir, Kaufmann, and Ost (1981), p. 59. Irreducible,
aperiodic Markov chains are also called ergodic. Transferring the content of theorem
3.2 to our application in MCMC simulation, it follows that for any irreducible and
aperiodic chain there exists a unique, positive solution, i.e. the limiting distribution
{m;} of Z, as t — oo. The limiting distribution is also called the steady-state

distribution. It can be shown that
P{Z, =j}=m; for all n > 1.

The distribution of Z; is independent of ¢ if the Markov chain starts with the initial

distribution {r;,j € S}. For this reason {7;,j € S} is called a stationary distribu-
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tion. The consequences of this theorem for Markov chain Monte Carlo methods will

be discussed after the introduction of specific sampling techniques.

In the context of MCMC methods it is clear that the state space of the Markov
chain is finite since there is only a finite collection of real numbers available on the
computer. Hence, even in the case of continuous distributions the theory for discrete
Markov chains can be applied, provided that the chain is irreducible and aperiodic.

The latter assumption is usually given for granted.

3.3.1 Sampling techniques

Suppose it is the aim to generate a sample from a distribution 7 on X C IR", but it
is impossible to do it directly. However, it is possible to construct a Markov chain
with state space X', which is straightforward to simulate from and whose equilibrum
distribution is 7. 7 is typically the posterior distribution, and observations drawn
from the Markov chain are dependent. However, if the chain is run long enough
simulated values of the chain can be used as a basis for summarizing features of
7, such as mean, median, or measures of dispersion. The crucial part is to find
algorithms for constructing chains with specific equilibrum distributions. Consider
M 23 as a realization from an appropriate chain, then according to Smith

and Roberts (1993) typically available results in the sense of theorem 3.2(a) include

limy oo X L X ~ 1 (3.7)

and

% Z f(x(m)) — B A{f} almost surely. (3.8)
m=1

Equation 3.8 implies that ergodic averaging of a function of interest over realiza-

tions from a single run of the chain provides a consistent estimator of its expectation.
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Typical sampling algorithms that shall be described in more detail are the Gibbs

sampler, and the Metropolis-Hastings sampler.

As mentioned, successive X will be correlated, thus suitable spacings or long
runs of the chain are required to form the sample. The autocorrelation can be
reduced by subsampling the chain by keeping only every kth iteration. This method
is called ’thinning’. Another possibility is to run parallel independent chains. The
question which of the methods is preferable will be discussed at the end of this
chapter. Keeping in mind that the chains need a certain time to converge towards
the stationary distribution, a so called ’burn-in’ phase is necessary for every chain,
and must be discarded for the analysis. Moreover, sophisticated models require
sampling algorithms that usually need even longer phases to adapt. These cases

will be discussed in the context of Metropolis sampling.

Gibbs sampler

One of the best known sampling algorithms is the Gibbs sampler. It has been
introduced by Geman and Geman (1984) and transferred to the use for Bayesian
inference by Gelfand and Smith (1990). Applications can be found, e.g., in Casella
and George (1992), Brooks (1998), and Brooks and Gelman (1998). To apply the
Gibbs sampling algorithm, firstly, the Bayesian model needs to be specified as a joint
distribution of all parameters and observable quantities. Given the observed data,
it is the aim to sample values of the unknown parameters from their conditional
posterior distributions. The sampling is done by conditioning the distribution of
each single node successively on all remaining nodes of the model. More formally,
let 6 = (6,,0,,...,60,)" be a p-dimensional vector of parameters, and let 7(6 | 2)

be its posterior distribution given the data. Then the basic scheme of the Gibbs
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sampler, according to Chen, Shao, and Ibrahim (2000), p. 20ff., is:

Step 0 Choose an arbitrary starting point 6y = (61,6020, ... ,6,0)’
and set the iteration index 7 =0

Step 1  Generate 0,1 = (6141,02,+1, .. ,0,j+1)" as follows:
Generate 0y j 1 ~ (01 | O, ...,0,,,2)

Generate 0y 41 ~ m(0y | 61 11,05;...,0,,,%2)

Generate ) 1 ~ (0 | 01511,02541 - Op-1,11,2)

Step 2 Set j = 7+ 1 and continue with step 1.

The conditional distribution of the individual components of 6 given all the
other components including the data used in step 1 of the algorithm are called full

conditional distributions.

The basic justification of the Gibbs algorithm is as follows. Consider a random
element 0 € IRP with density m with respect to a measure v. If a new element 6* is
constructed by keeping the elements 05, ... , 0, fixed and drawing a new 67 from the
conditional distribution (6, | s, ... ,0,) then the new vector 6* = (67,6,...,6,)

has the same distribution as 6, since

Po" € B) — /W(QQ,...,ep)w(emeQ,...,ap)dy(a)

_ / (0)dv(6) = P(6 € B). (39)

This process is repeated for the components of 0, ... ,0,. We denote the resulting
vector by 6. The transition of 6 to 6 can be repeated independently and the sequence
0, 9~, 5, ... obviously constitutes a Markov chain. From equation 3.9 it follows that
this Markov chain is stationary and if we take 7 to be the posterior density 7(6 | x) =

”(6}{3‘0) with fixed z, then the stationary distribution coincides with the posterior

distribution.
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Thus, in practice we do not construct the posterior distribution, but rather start
at an arbitrary starting value for the vector 6 and rely on the fact that under very
general conditions the Markov chain converges to its stationary distribution. Details
have been worked out by Geman and Geman (1984), Gelfand and Smith (1990), and
Besag, Green, Higdon, and Mengersen (1995). There exists a sufficient condition

that guarantees geometric convergence, as proved by Schervish and Carlin (1992).

In the context of the spatial and spatio-temporal models considered in later chap-
ters, a natural ordering of the site specific random effects is impossible. Therefore,
the approach using full conditionals is not directly applicable, and this requires a
modification of the Gibbs sampler, the so called sliced sampler (Neal 1997 and Neal
2002) must be applied. The simulation software WinBUGS (Spiegelhalter et al.
2002) uses this modification for inference problems that cannot be expressed in the
context of directed acyclic graphs (dag). The idea is to simulate from the joint

distribution, to avoid an ordering, in the sense of chain graphs.

For the more complex allocation models introduced for the small area estimation
in chapter 6, we need an algorithm which is not restricted to sampling from the full
conditional distributions. We employ the Metropolis-within-Gibbs sampler, a special

case of the Metropolis-Hastings algorithm.

Metropolis-Hastings sampler

The very general Metropolis-Hastings (MH) algorithm has been firstly introduced
by Metropolis et al. (1953), and it has then been generalized by Hastings in 1970.
As mentioned above the Gibbs sampler generates random draws from the full con-
ditional distributions, which are often unknown or only known up to a normalizing
constant. Application of an algorithm of the much more general class of Hastings

algorithms has the advantage that it suffices to know the ratio 7;((00*|L23)' The idea

of Metropolis-Hastings or Hastings steps is that a proposed new value for a given
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component is accepted only with a certain probability less or equal to one. The
steps of the algorithm can be described as follows, according to Chen et al. (2000),
p. 23. Chib and Greenberg (1995) introduce the term candidate generating density
for the so-called proposal density ¢(6,6*).

Step 0 Choose an arbitrary starting point ¢, and set j =0

Step 1 Generate a candidate point §* from ¢(6;,-) and u from the uniform distri-

bution U(0, 1)

Step 2 Set 0,11 = 0" ifu < a(f;,6*) and 6,;, = 0, otherwise, where the acceptance
probability is given by a(f, 6*) = mln{7T 1}

Step 3 Set j =j + 1, and go to step 1.

Many well-known algorithms such as the Gibbs sampler and the Metropolis sam-
pler are special cases of the MH sampler, dependent on suitably chosen proposal
densities. The Gibbs sampler has an acceptance probability of 1. The Metropolis
sampler has a symmetric proposal density with ¢(6, 6*) = ¢(0*, ), which leads to a
simplification of the acceptance probability. The MH sampler depends strongly on
the choice of the proposal, especially on the spread of the proposal density. Accord-
ing to Chen et al. (2000), p. 24, it affects the behavior of the chain in the following
two directions: the acceptance rate and the region of covered sample space. For the
covered sample space, it can be said that if the spread is extremely large, some of
the generated candidate values will have low probability of being accepted. On the
other hand, if the spread is chosen too small the chain will take longer to traverse
the support of the density. Both of these situations are likely to be reflected in
high autocorrelations across sample values. The acceptance rate is the percentage
of times a move to a new value is made. Spiegelhalter et al. (2002) aim for ac-

ceptance rates between 20 and 40 percent, and Lang and Brezger (2002) propose
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acceptance rates between 30 and 80 percent. Chen, Shao, and Ibrahim (2000), p. 24,
let the acceptance rate depend on the number of dimensions. For one-dimensional
problems the acceptance rate is tuned to 45 percent, for increasing dimensionality it
is reduced to, e.g., 25 percent in a six-dimensional example. In the WinBUGS soft-
ware (Spiegelhalter et al. 2002) the following ” Metropolis-within-Gibbs sampler”

has been implemented.

Metropolis-within-Gibbs sampler

A special case of the MH algorithm is the Metropolis-within-Gibbs sampler. The
algorithm works as follows: an intractable full conditional density is sampled with
the general form of the MH algorithm, as described above. The other values are
sampled directly from their full conditionals using the Gibbs algorithm. In the
WinBUGS context, the standard deviation of the proposal distribution is tuned
to obtain acceptance rates that lie between 20 and 40 percent. Common proposal
distributions include the Gaussian distribution, the t-distribution, and the triangular
distribution. The tuning is performed within the first 4,000 iterations, which are
discarded from further summary statistics. These iterations will simultaneously be

considered as the burn-in phase for the models presented here.

In general there is great flexibility in constructing Markov chains that converge
to a given distribution, and in theory all such chains will converge eventually. In
practice however, fast convergence is important. Approaches like block sampling
improve the mixing of the Markov chains by aiming for a more rapid moving of the
chain through the state space X'. Especially in models where the components of the
parameter vector  are already correlated in the prior, single and successive updating
leads to slow mixing of the chains. This usually results in strong autocorrelation and
slow convergence. The software BayesX (Lang and Brezger 2002) uses the possibility

of a simultaneous updating of blocks of parameters.
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3.3.2 Convergence diagnostics

Despite the existence of literature concerning the convergence of MCMC methods
(e.g. Tierney 1994, Brooks and Gelman 1998, Kass, Carlin, Gelman, and Neal 1998),
results do not easily translate into clear guidelines for the practitioner (Smith and
Roberts 1993). Theoretical assessment does not provide useful bounds on rates of
convergence and any kind of pragmatic output analysis to estimate the length of the
transient phase. A sensible output analysis, however, is crucial. Without it one is
endangered to overlook important aspects of the multidimensional behavior of the
chain. Ideally, the samples from the posterior distribution will be independent, and
the Monte Carlo (MC) standard error of the mean will be minimal. The MC error
is calculated as o/v/N, where o is estimated according to a method introduced by
Roberts (1996), and N is the number of iterations of the chain. Simple diagnostic
methods for convergence and mixing behavior of the chain are trace plots of param-
eter samples, autocorrelation functions based on parameter samples, and sometimes

bivariate scatter plots of pairs of parameters.

The first approach to output analysis is to monitor visually the ergodic averages
of selected scalar quantities for stationarity. The length of the burn-in phase, i.e. the
number of observations until the chain has reached its stationary distribution needs
to be determined. Geyer (1992) recommends discarding the first one or two percent

of a run long enough to give sufficient precision.

The number of samples to be drawn from the Markov chains depends on the
strength of the correlation between the samples. The accuracy of the estimated
quantities of interest is more dependent on the correlation between the realizations
than on the number of realizations. If the autocorrelation of successive states of the
generated chain is high, a large number of iterations may be required for reliable
estimates. Thinning, i.e. keeping only every kth iteration for the estimation, can be

used to reduce the dependence between the samples, and the necessary storage size
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for the chains decreases. An empirical autocorrelation can be calculated to deter-
mine the amount of thinning needed. According to Knorr-Held (1997), p. 25, one or
two thousand nearly independent samples are usually sufficient for the estimation
of standard posterior characteristics, such as the mean, median, or other quantiles
of the marginals. Variances need to be considered with more care, and the mixing
of the chains should be monitored with caution. Gelman and Rubin (1992) suggest
monitoring multiple runs from dispersed starting points. An output analysis based
on several runs is more likely to detect multimodality of the posteriors, as described
by Besag and Green (1993). For complex models, however, a long adaptive phase
and a suitable burn-in for each chain may be time consuming and therefore inef-
fective. Specific diagnostic tools for convergence are implemented in the WinBUGS
software, which are based on the CODA language and which use a convergence
statistic according to Brooks and Gelman (1998). In general, Smith and Roberts
(1993) propose to apply an exploratory data analysis to the chains, similar to one

for multivariate observations.

3.3.3 Estimating posterior quantities

The fundamental goal of Bayesian computation is to assess posterior quantities of
interest. After convergence of the Markov chain, we obtain typically dependent
samples from the posterior distribution. Posterior mean and standard deviation,
median, and other quantiles can easily be estimated through the empirical evaluation
of the posterior distribution. Furthermore, credible intervals, or supported range,
and other characteristics like functionals of the parameters result directly from the
posterior marginal densities of the parameters. More formally, posterior quantities
are usually of the following form (Chen et al. 2000, pp. 67-68)

BE(h(0) | 2) = / h0) 7(0 | =) db, (3.10)

IRP
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where h(-) is a real valued function of 6 = (6,,...,6,)".

3.3.4 Sensitivity analysis and model selection

Two topics left to mention in this section are sensitivity analysis and Bayesian ways
of model selection. Sensitivity analysis is the assessment of the influence of the
prior distribution on the posterior outcome. Especially in the context of Bayesian
hierarchical modelling the hyperprior settings of the precision parameters can have
a large influence on posterior results. The prior distributions used in this thesis
are often non-informative and sometimes even improper. In that case, according to
Robert (1994), p. 120, the arbitrary part of the prior distribution should not get
predominant. If prior knowledge is not available, different choices of prior settings
should be compared in order to detect discrepancies, and dependencies in the results
on the prior. Further discussion about sensitivity analysis can be found in Robert
(1994), p. 120, and Gelman, Carlin, Stern, and Rubin (1995), p. 161. Bernardinelli,
Clayton, and Montomoli (1995) discuss the importance of prior specifications in
the context of disease mapping. Mollié (2000) compares different choices of the
prior mean for inverse variance parameters in a hierarchical Bayesian framework. In
chapter 5 we evaluate the influence of prior specifications on the posterior densities
of the temporal and spatial autocorrelation parameters, on covariate effects, and on
the dispersion parameter. The prior settings are modified with respect to the type
of distribution, and within one distribution type we have additionally changed the

parameters.

Model selection in Bayesian (hierarchical) modelling is yet challenging and a
topic of current research. Han and Carlin (2001) discuss the use of Bayes factors
for complex models to calculate posterior probabilities for a collection of competing
models. However, they suggest that less formal Bayesian model choice methods may

offer a more realistic alternative in many cases. For this thesis we use a Bayesian
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measure of comparing models according to Spiegelhalter, Best, Carlin, and van der
Linde (2002). It is based on the effective number of parameters in the model (de-

noted by pp) and the posterior mean deviance (D). Then the deviance information

criterion (DIC) is defined as
DIC :=pp + D.

The complexity of the model, pp, is measured through the difference between the
posterior mean of the deviance and the deviance at the posterior means of the pa-
rameters of interest. The effective number of parameters will be close to the nominal
number of parameters in simple models. In more complex, or hierarchical models,
pp is typically much smaller than the nominal number of model parameters, due to
prior dependence between parameters. The posterior mean deviance is suggested by
Spiegelhalter et al. (2002) as a measure of fit. The DIC can be seen as a Bayesian
version of the Akaike’s information criterion, and model specifications with a smaller
DIC are preferable. For this thesis the DIC has been used to compare purely spatial,

and spatio-temporal models with and without covariates.



Chapter 4

Temporal and Spatial Markov

Dependence Structures

his chapter deals with modelling approaches for temporally and spatially dependent
data using stochastic process theory. Stochastic processes are families of random
variables Z;, depending on a parameter . We begin with the statistical theory for
vector-autoregressive processes. The area specific data over the observation period
form the multivariate time series. The time series definition of a Markov process
will be transferred to spatially dependent data in section 4.2. Here we regard yearly
slices of observations in the spatial units of the study region. Markov random fields
are introduced to specify spatial departures from independence for each year. The
separate temporal and spatial analyses are used as preparation for the combined

analysis in chapter 5.

A K-dimensional vector stochastic process or multivariate stochastic process is
a function Z : T x Q — IRE, where for each fixed t € T, Zy(w), w € Q, is a
K-dimensional vector, a measurable function on an underlying probability space
(Q,2(, P). The underlying stochastic process is said to have generated the multi-

variate time series Z;.

ol
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4.1 Vector-autoregressive processes

We begin with modelling the multivariate time series of yearly observations of cancer
mortality over the study region. The spatial units within the region form the vectors
of temporally dependent data. A special case of multivariate stochastic processes are
autoregressive processes, on which we will concentrate for our applications. Finite
order autoregressive processes are based on the idea of a structural analysis with
linear functions dependent on past observations. We investigate first order vector-
autoregressive (VAR) processes that satisfy relationships according to the following

definition.

Definition 4.1 Let C be a fired K x K coefficient matriz, v = (v1,...,vg)" is
a fized (K x 1) vector of intercept terms. Furthermore, let ¢, = (€. .. ,€xt) be
a K-dimensional white noise vector, or innovation process, with the properties that
E(e;) =0, E(ee;) = X and E(e€l) = 0 for s # t. X, is assumed to be non-singular.

Then a vector process Zy = (Zyy ... , Zi)' satisfying
Zt:l/—i-OZt,l—f—Gt tzl,,T (41)
15 called a vector-autoregressive process.

Due to the structure of the error term, processes as specified in definition 4.1
are usually seen to be determined by their innovation process €. An important case
to consider is the assumption that €; is Gaussian white noise, i.e. ¢, ~ Gaug (0, 2;)
for all ¢, and ¢, and €, are independent for s # t. In that case Z; is a Gaussian
process which implies that all subcollections Z,,, ... , Z;, have multivariate normal
distributions for all ¢, ... ,t,. The data under examination in this thesis are cancer
mortality data. We assume that the multivariate time series has started in the
infinite past. This assumption can easily be justified, as this process will have

reached equilibrum, i.e. it will have converged to its stationary distribution.
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In the following we analyze the relationship between the innovation process ¢;
and the Z process. If we assume that the generating mechanism starts at time ¢t = 1

we can rewrite 4.1 as follows

leV+CZQ+€1
Zo=v+CZi+e=v+Cv+CZy+¢)+ e
=Ug+Clw+C?*Zy+C e + e

Zy=Ug +C+ ...+ C" Y+ 0 Zy+ 30 Ch ey,

with K-dimensional identity matrix Ug. This shows that Zg, €;,... , ¢ uniquely de-
termine the vectors 71, ..., Z;, and the joint distribution of Zy, €1, ... , ¢ determines
the joint distribution of Z;,... , Z;. The above equation can also be rewritten as

Zy=v+CZ 1+¢
—(Ug+C+...+CHv+ 0t Z, i +37 Cle s

Under certain conditions concerning the matrix C, the sequence {C%,i =0,1,...}
converges to the zero matrix of dimension K x K and ZLO C' is absolutely summable,

which results in the existence of the infinite sum

io: CZ €t—; (42)
i=1

in mean square.

A sufficient condition for the convergence of 4.2 is that a suitable matrix norm
of C is less than 1 (Fahrmeir and Hamerle 1984). Liitkepohl (1991), p. 10, proposes

to use the following spectral matrix norm based on an eigenvalue condition on C
|C|| := max{V/X : \ is eigenvalue of C'C'}. (4.3)

According to Horn and Johnson (1985), p. 295f., definition 4.3 satisfies the usual

properties of a norm, including the triangle inequality and submultiplicativity.



o4 CHAPTER 4. MARKOV DEPENDENCE STRUCTURES

We assume that C satisfies the norm condition
IIC|| < 1.

Since then C7 converges to a matrix of zero as j — oo, we can ignore the term
CI*t1 Z,_;_1 in the limit because {Z;_;_; } is stationary. Hence, Z, is the well-defined

stochastic process
Zy=p+Y Cley,  t=0,+1,42 ... (4.4)
i=0

where p = (Ux — C)"'v is the limit of the geometric series of constant terms. Of
special interest in this context are the first and second moments of the process Z;.

These are
E(Z)=pn  forallt
and

E(Z = p)(Zip —p)t = lim Y ) CE(ami€y; (C)
i—0 j—0
_ : h+i i\/
= Jim 3 CMEAC)

o0

= ) _cMin (Y

1=0

= ChiCiEG(Ci)’ =: Ay (h), (4.5)

as E(ee,) = 0 for s # t and E(ee;) = X, for all t. Thus, neither the first nor
the second moment of the process are dependent on ¢, which implies second order
stationarity or weak stationarity. In case of a Gaussian vector-autoregressive process,
the joint density of {Z,; };c7 is Gaussian as well, and hence weak stationarity implies
strong stationarity, i.e. all joint distributions of the process are time invariant. For

h = 0 we obtain the covariance matrix of the stationary process as

cov(Z) = Z ci s, (O (4.6)
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The innovation process can also be specified through the Z process. To see this
let us consider a second order stationary Gaussian vector-autoregressive process with

Zero mean

Zy ~ Gaug(0,Y)  t=1,...,T.

Then Z; can be represented on the basis of its innovation process ¢; as follows

Zy = CZiq+¢

& ¢ = Zi—CZ 4 t=0,+1,4+2,.... (4.7)
If C is chosen as
C =cov(Zy, Z,_) X7,
then ¢; is independent of Z;_;. Since ¢; and Z; are Gaussian, it suffices to show that
E(e Z, ) = 0.

This follows from

Ele Zi_y) = E(Z, — C Z1-1) Z;_4]
=E(Z Z,_,) — C E(Z1 Z;_y)
=cov(Zy, Zy 1) —CX
= cov(Zy, Zy_1) —cov(Zy, Zy_1) 7' 8
=0.

From now on we consider "mean polished” processes Z;, centered around zero.

This implies a simple transformation of the data for the analysis.

The results obtained for first order vector-autoregressive processes can be easily
extended to higher order vector-autoregressive processes of order p, as illustrated by
Liitkepohl (1991), p. 11. For this thesis we will restrict to first order processes and

rather deduce ways of incorporating the multivariate spatial dependence structure
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within the vector time series. Thus, more emphasis is put on a sensible choice of the
C matrix, which will be extended to joint temporal and spatial modelling in chapter

d.

Application to the data

We begin with a time series analysis of the districts in North Rhine Westphalia, with
respect to lung cancer among women (dataset NRW). In this context, we consider
the multivariate time series of I = 54 spatial units, which we assume for the moment
to be independent. The length of the series is 19 years, from 1980 to 1998. To justify
the assumption of a Gaussian distribution of the process, we have chosen to display
histograms of the log-transformed the age standardized rates of two years within

the study period in figure 4.1.

These figures show that we can consider the multivariate time series of lung
cancer mortality rates to be Gaussian. If we shift the data by mean polishing,
the assumption of a Gau;(0,Y) Z-process can be justified. As a first order vector-
autoregressive process is to be fitted, we plot the partial autocorrelations to visualize
the time series correlation. The partial autocorrelation in this context measures
the correlation of the time series with lagged series of itself. The average partial
correlations with lags from 1 to 10 over the 54 time series of log-transformed age
standardized mortality rates have been calculated and plotted in figure 4.2. The
dotted line indicates the upper 95 % confidence limit of the partial correlations.
The figure shows a first order autoregressive structure of the multivariate process

through an exponential decrease of the partial autocorrelations.

Besides lung cancer mortality among women in North Rhine Westphalia we
have analyzed the temporal structure of stomach cancer in West Germany (dataset
Germany). Figure 4.3 shows the corresponding partial autocorrelations for men.

The correlation between subsequent observations over the years is apparently even
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Figure 4.1: Lung cancer mortality among women in NRW. Histograms of the log-

transformed rates for 1985 and 1995.

stronger than for lung cancer. Again the assumption of a first order autoregressive

structure can be justified.

4.2 Markov random fields

In the foregoing section, we have introduced vector-autoregressive processes to model
the temporal dependencies between annual cancer mortality data. We have discussed
the multivariate time series, but we have not considered any specific correlation
structure between the single vectors of the time series. Now we take into account

that we have observations over the spatial units of the study region for each year.
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Mean partial ACF for North Rhine Westphalia
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Figure 4.2: Lung cancer among women in NRW. Mean partial autocorrelation.

The data on cancer mortality collected in the ¢ = 1,... , I sites should be modelled
as (spatially) dependent data, since there is much spatial variation and large regional
differences as described in chapter 2. For most cancer types, the pattern of variation
does not seem to be spatially random. More specifically the lung cancer and stomach
cancer maps of the age-standardized rates show strong clustering mainly caused by
similar underlying distributions of risk factors or behavioral patterns. From page
66 we apply the presented methods to the data, and Moran’s I statistic is used to
justify a spatial modelling approach. Unlike for infectious diseases we do not need
to incorporate the dynamic and fast moving spread over space (and time), where
transmission of the disease between individuals is likely (Cargnoni, Miiller, and West

1997). However, for our non-infectious cancer data our models should rather aim



4.2. MARKOV RANDOM FIELDS 99

Mean partial ACF for West Germany

0.8

0.6

0.4

partial AC

0.2
1

-0.2
L

Figure 4.3: Stomach cancer among men in West Germany. Mean partial autocorre-

lation.

at a basis for prediction incorporating the spatial dependence. As mentioned, the
detection of causality is difficult, not only because of long time lags between exposure

to risk factors and dying of the specific cancer type.

When modelling spatially dependent data, the common idea of stochastic inde-
pendence between observations is usually not applicable. Hence, it can be assumed
that spatial units lying closer to each other are more alike than those which are
further apart. Besag (1974), Cressie and Chan (1989), and Cressie (1993), p. 410,
explain the idea of a spatial probability distribution at each of the given sites for

fixed time t.

There are two different modelling approaches towards the specification of such
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a probability measure. One is based on geometric model assumptions on a regular
or irregular grid, considering two sites as neighbors if they share a common border,
or if their centers lie within a certain distance of each other. As every model, this
is only an attempt to depict the real underlying (correlation) structure of the data.
However, depending on the number of sites and on the shape of the study region,

this approach can be useful.

The alternative, as introduced by Besag (1974), is to begin with the examination
of the probability distribution of Z;, given all other sites on the lattice, ignoring their
location. This approach can be seen as a probabilistic approach and the full condi-
tional distributions for every site can be calculated. Often, it can be assumed that
only a few sites have an influence on a particular site i. Hence, the (full) conditional
distribution for site ¢ depends only on those. However, symmetry of the correla-
tion matrix is often needed for computational reasons, which can cause problems
when using the probabilistic approach. Although these two models arise from two
completely different views, they often lead to very similar dependence structures.
The approach by Besag (1974) can also be seen as an example of the wider class of
mixed, or random effects models (Best, Spiegelhalter, Thomas, and Brayne 1996).
Generalized linear mixed models (GLMM) or generalized linear models with random
effects are a very general class of models and they can be used in a wide range of
statistical inference problems. Due to the introduction of random effects, besides the
fixed effects, the approach allows for correlation or heterogeneous variability among
the data. Thus, mixed models extend the generalized linear models by allowing for
a more flexible specification of the covariance matrix of the error terms. The model

can be formulated as follows
Z=Xv+Db+e (4.8)

Here, X+ consists of the fixed effects, whereas Db incorporates the random effects. In

our case, these are spatially structured. D is the design matrix and b is the parameter
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vector of the random effects. When implying a Gaussian modelling approach it is

easy to show that

Z ~ Gauy(X v, D var(b) D' + var(e)). (4.9)

From the distribution of Z in 4.9 it is clear that the fixed effects enter the model
through the mean only, whereas the random effects enter only through the covariance
matrix. If D = 0 and var(e) = 02 I, the generalized linear mixed model reduces to

a generalized linear model.

The estimation of the parameters for fixed and random effects is more difficult
in the mixed model environment, than in generalized linear models. Least squares
estimation is no longer the best method. With frequentist approaches, strong restric-
tions are needed to reduce the number of parameters. These are then obtained with
estimated generalized least squares. Maximum likelihood or restricted maximum
likelihood methods are preferred to an expectation maximization (EM) approach.
A short excursion of a frequentist analysis of spatial linear models is given in section
4.2.3. We rather use MCMC techniques for the estimation of the random effects, as

will be explained in the sections 4.2.1 and 4.2.2.

To model the spatial dependence structure we need the following definition of a

set of neighbors of site i.

Definition 4.2 [Besag 197/] Site j (# 1) is said to be a neighbor of site i, denoted by
i~ g, 0,j=1,...,1 if and only if the functional form of P(Z; | Z1,... , Zi 1, Zis1, - - -

is dependent upon the variable Z;.

We introduce the notation of the set of neighbors of site i as A; := {k :
k is a neighbor of i}. As a simple example for illustration, Markov chains of time se-
ries theory can be used. Direct transformation yields that every site 7, 2 <¢ < T—1

has the two neighbors ¢ — 1 and 7 + 1. The two edge sites 1 and I have only one

:ZI)
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neighbor, i.e. 2 and I — 1 respectively. In the spatial context, an example on a

regular (rectangular) lattice is illustrated in figure 4.4.

(4, 7)
° [e] o [e] °

Figure 4.4: First order spatial neighbors on a regular lattice.

For this example only, the sites within the lattice are labelled by integer pairs
(,7). Then, if P(Z;; | all other sites) depends only upon Z;_1;, Zit1,4, Zij—1 and
Z; j+1 for each internal site on the lattice, then we have a so called "nearest-neighbor”
lattice scheme, as described by Besag (1974). This model for spatial dependence re-
sults in a geometric approach. Figure 4.4 displays spatial neighbors of order one,
second order neighborhood structures can be thought of. Besag and Kooperberg
(1995) give an idea of second-order properties of lattice processes. However, dif-
ficulties arise when increasing the order of the dependence structure. There will
be proportionately more sites lying on an edge leading to more complex likelihood
terms. Cressie (1993), p. 422, gives an idea of how to incorporate the problem of

edge sites into the likelihood function.

Coming back to first order nearest neighbor models, two definitions of Markov

chains exist in spatial stochastic process theory. One is based on a joint, or simul-
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taneous specification for the process {Z;,i =0, 1,...} through

J
P(Zy.....Z;| Zy) = |[Qi(Zi. Zi1)  forall j > 1, (4.10)

i=1
where (); is some function of z; and z;_;, which are generic realizations of Z; and
Zj_1. However, there is a more familiar definition of a Markov chain based on

conditional probabilities
P(Z] | Z(], Ce 7Zj—1) = P(Z] | Z]’_l) for all] Z 1. (411)

In time series problems the two specifications for Markov chains via 4.10 and 4.11 are
equivalent, due to the unidirectional flow of time. In the spatial context, however,
these two modelling approaches can lead to considerable differences (Cressie 1993,

p. 404).

4.2.1 Auto-Gaussian models

In the Gaussian context of modelling spatially dependent data, we now describe the

simultaneous and the conditional approach in detail.

Simultaneous autoregressive approach (SAR)
First order autoregressive processes are characterized by the equation
Zy=p+C(Z1—pn)+e
or equivalently
U—-C)Z—p) =¢ (4.12)

where U is the unity matrix of dimension I x I, and ¢, is independent of Zy, Z1,... , Z; 4.
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Let {Z;,;i = 1,...,1} be a Gaussian random vector. If we generalize equation

4.12 to the spatial context we obtain
U—-C)Z—p)=¢,

where € has expectation vector 0 and covariance matrix .. It is then easy to show

that Z must have the structure (Cressie 1993, p. 406)

7 ~ Gauy(p, (U —-C) ', (U—-C") (4.13)

Conditional autoregressive approach (CAR)

If we assume a spatial regression approach of the form

I
E(Zi| Zy, ..o s Ziay Zigay -5 Z1) = i + Z bij(Z; — 1j), i=1,...,1,
J=1j#1

satisfying the conditions

2 __p.. 2

and b; = 0, then it can be shown (Cressie 1993, p. 407) that Z must have the

structure

Z ~ Gauy(u, (U — B)™' M), (4.14)

where M = diag(o?,...,07), u = (p1,... ,p1) and B = (b;;) is an I x I matrix

whose (ij)th element is b;;. Probability measures of equations 4.13 and 4.14 are
called Markov random fields, which can be seen as a generalization of temporal

Markov processes.

Definition 4.3 A probability measure with conditional distributions that define a
neighborhood structure {N;,i = 1,... 1}, where N; are sets of neighbors, is called
Markov random field.
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According to Kaluzny, Vega, Cardoso, and Shelly (1998), p. 129, the condi-
tional approach leads to consistent estimates. Cressie (1993), p. 408, mentions that
least-squares estimates of the simultaneous autoregressive approach with a Gaussian
model yield correlated residuals. In terms of building spatial models for Markov-
type departures from independence, it is, as stated by Cressie (1993), p. 404, the
conditional approach that turns out to be more natural. We will therefore assume
conditional dependence for the following spatial, as well as spatio-temporal models,
based on neighboring sites in space and time. Neighboring sites in time are sub-
sequent observations of the time series, and two sites are considered as neighbors
in space if they share a common border. An extension of Markov random fields
for a spatio-temporal analysis can be found in Lavine and Lozier (1999), where the
authors include not only longitude and latitude in an ecological setting, but also the

temporal dimension.

From now on we consider the by, ... ,b; to be spatially structured random effects,
constructed on the basis of a conditional autoregressive approach. In a Bayesian set-
ting, this leads to the well-known Markov random field prior (Besag et al. 1991,
Bernardinelli, Clayton, and Montomoli 1995, Bernardinelli, Clayton, Pascutto, Mon-
tomoli, Ghislandi, and Songini 1995)

1
7(by,... b | 0?) x exp{—ﬁZ(bi —b;)?}

i~j

which is equivalent to the assumption that the observations of neighboring sites are

identical if the number of neighbors is the same. This prior is also called spatial

2

smoothing prior. The dispersion parameter ¢© is used to determine the strength

of the spatial correlation or smoothing of the quantities of interest. In hierarchical

2

Bayesian modelling 0° is used as a hyperparameter. The conditional distribution

of one parameter b; given all the other parameters by_; has an intuitive form as it
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depends only on those parameters b; of adjacent areas. It can be shown that

2
o
bi | by_iy ~ Gau(l/nizbj, n_)a

inj
where n; denotes the number of neighbors of site i. Hence the conditional mean is

modelled as the average of the neighboring parameters.

Application to the data

We apply the spatial random effects model to lung cancer among women in North
Rhine Westphalia. To justify the need for spatial modelling, we measure the strength
of spatial autocorrelation for this data set. Moran’s correlation coefficient as an
exploratory measure of clustering (Cliff and Ord 1973, p. 17, and with application to
cancer mortality data in Z6llner 1991) is applied to the nearest neighbor conditional
model of the age-standardized mortality rates. Under the assumption of constant
mean and variance of the process {Z;,7 = 1,... , I} the spatial correlation coefficient
after Moran is defined as

P iZi;ﬁj bijI(Zi ~2) (_Z] ~27)

24 Zi:l(Zi —Z)

’

where b;; are the elements of the neighborhood matrix B = (by;)i 1.1 € R,
and A =1/2 Zi# b;;. In this context, b;; = 1 if ¢ ~ j, i.e. share a common border,

and 0 otherwise.

Figure 4.5 shows the correlations with Moran’s I over the study period from
1980 to 1998. One can see clearly that the spatial clustering for female lung cancer
in NRW tends to increase over the years from 1980 to 1998. The values of p; lie
between 0.1 in the beginning of the study period and 0.4 at the end. A permutation
test based on Moran’s I can be constructed to test for spatial autocorrelation. The
correlations for the NRW data set over 19 years prove to be significantly different

from 0 on a 95 % level. The maps of North Rhine Westphalia lung cancer in figure 2.2
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Moran'’s correlation coefficient for lung cancer mortality among women
in North Rhine Westphalia
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Figure 4.5: Lung cancer among women in NRW. Spatial autocorrelation with CAR

model and smoothed with lowess curve.

have already given an indication for this tendency. More sophisticated approaches
in the direction of the detection of clusters can be found in Knorr-Held and Rafler
(2000). For this thesis, however, Moran’s correlations simply serve as an indication

for the need of spatial modelling.

We begin with an application of the auto-Gaussian model. The following mod-
elling assumption will be made for the log-transformed age standardized lung cancer

mortality rates (denoted by r;) among women in North Rhine Westphalia
log(r;) ~ Gau(u;, o?) i=1,...,1 (4.15)

As mentioned, the dispersion parameter is modelled as 0} = 02 /n;, which implies

that with an increasing number of neighbors (n;) the variance decreases. The cor-
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responding functional relation for p; can be denoted as an overall level v, plus the

individual spatial random effects b;
/1,1:’}/0+bz 221,,I
Prior distributions have been assigned to b;, 7o and o2 as follows

bi ~ Gau(i)i,af), Zzl,,l

%~ U(=o0,00)

0? ~ InvGamma(r*,d*).

The mean of the Gaussian distribution for the spatial random effects, b;, is con-
structed based on the assumption of a conditional autoregressive distribution of b;,
given its neighboring sites by_;;. As the overall mean of the b; is not defined, the
model specification is improper. We need a suitable sum-to-zero constraint on the
spatial random effects to ensure identifiability. In this model, the parameters of the
inverse Gamma distribution * and d* have been chosen to be equal to one, accord-
ing to Spiegelhalter et al. (2002). This implies a mean and variance of one. Other
specifications are possible, such as choosing both parameters to be 0.01. In that
case the mean is equal to 1, but the variance results to be 100. Spiegelhalter et al.
(2002) mention however, that with a mean equal to one, the prior mass is placed
away from zero, where we expect it to lie. This can lead to an artefactual spatial
structure. Kelsall and Wakefield (1999), p. 151, discuss the prior belief that the
standard deviation of the random effects is centered around 0.05, with one percent
prior probability of being smaller than 0.01 or larger than 2.5. According to Breslow
and Clayton (1993), the CAR structure of the random effects leads to an improper

prior for the intercept term, as implemented for the parameter .

We have chosen a burn in of 10,000 iterations. The WinBUGS software uses
a modification of the Gibbs sampler to generate the chains. The resulting mean

estimates are based on additional 5,000 draws from the posterior distribution, with a
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1981-85 1986-90 1991-95
mean st. dev. mean st. dev. mean st. dev.
Y% 1.88 0.03 2.08 0.04 2.34 0.03
o 0.26 0.02 0.26 0.03 0.25 0.02

Table 4.1: Lung cancer among women in NRW. Parameter estimates for the Gaus-

sian spatial model.

thinning of 100. The model has been applied to three 5-year blocks within the study
period, i.e. 1981-85, 1986-90, and 1991-95. The analysis provides mean estimates for
the vector of spatial random effects, the overall level 7, and the dispersion parameter
o. Table 4.1 displays the resulting estimates for the parameters v, and ¢ over the
three 5-year blocks. The level parameter v, increases over time, whereas its standard
deviation remains constant. The dispersion parameter ¢ has been estimated rather
constantly around 0.26 for the three 5-year periods. Figure 4.6 shows the smoothed
rates over time, which have been back-transformed to their original scale. Each map

displays the 20 % quantiles within the corresponding period.

Smoking is by far the most important risk factor for lung cancer. The smoking
behavior of women especially depends on the area of living. As described in chapter
2, fewer women in rural areas are smokers, whereas women in urban living areas
have a greater prevalence of smoking. However, data on smoking behavior with the
high spatial resolution of districts, cannot be obtained. Kafadar and Tukey (1993)
propose to use the logged population density of the largest city within every spatial
unit to adjust for urbanization. However, in North Rhine Westphalia there are many
rural districts with no large cities at all. To avoid a binary splitting into rural and
urban areas, as in figure 2.9, we use a continuous covariate as a surrogate for smoking
behavior. We assume the log-transformed population density of the district in the

fixed year of 1995 (denoted by z;) to represent the "urbanicity” of a district. We
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Figure 4.6: Lung cancer among women in NRW. Smoothed rates in 1981-85, 1986-90,
1991-95.

use this covariate to improve the model for lung cancer mortality rates. The model

assumption for y; can be specified as follows

pi = + @i+ b; i=1,..., 1

A priori we have chosen v; ~ Gau(0, 10000), which results in a proper but flat prior

2 are as described on

with large variance. The prior specifications for vy, b;, and o
page 68. The resulting mean parameter estimates with estimated standard devia-

tions are given in table 4.2.
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1981-85 1986-90 1991-95
mean st. dev. mean st. dev. mean st. dev.
Y% 0.92 0.30 0.99 0.30 1.35 0.28
v 0.15 0.05 0.16 0.05 0.15 0.04
o 024 0.02 0.24 0.02 0.23 0.02

Table 4.2: Lung cancer among women in NRW. Parameter estimates for the Gaus-

sian spatial model with covariate population density.

The estimated level 7, is clearly increasing over the three periods of observation.
The influence of the surrogate for smoking behavior remains relatively constant over
time. Figure 4.7 shows the mean smoothed mortality rates in 20 % quantiles over
time for North Rhine Westphalia. Compared to the smoothed maps without the
covariate, we can see that the extreme clusters in the south west of NRW have been

broken up.

Finally, we take a look at the residuals of the Gaussian models with and without
covariate. Figure 4.8 shows the mapped residuals shaded in 20 % quantiles for the
model without the population density (left), and with the covariate (right). One
can see clearly that the range of the residuals in the plot without covariate lies
between -2.1 and 4.1, whereas the residuals of the map including the covariate only
range between -1.5 and 3. Furthermore, the spatial structure of the map without
the covariate still reveals clusters in the north and in the south of NRW, whereas

the map of the residuals including the covariate are spatially at random.

4.2.2 Auto-Poisson models

An alternative modelling approach is to use a Poisson model to describe the under-

lying variation in disease risk. Especially when the number of death cases is small,
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Figure 4.7: Lung cancer among women in NRW. Smoothed rates with covariate

urbanization in 1981-85, 1986-90, 1991-95.

Poisson models have the advantage to allow for over-dispersion, without transfor-
mation of the data. In addition to the observed counts of cancer mortality O; for
every site we need to calculate the expected numbers of death cases, F;, depending
on gender and age structure of the underlying population. For simplicity we did not
calculate the expected counts based on an artificial population with an additional
weighting, but on the basis of the population (1V;) in each site of the study area di-
rectly. Again we consider aggregated 5-year blocks of mortality and population, like

in the auto-Gaussian modelling approach. We obtain the expected counts according
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Figure 4.8: Lung cancer among women in NRW, 1986 - 1990. Comparison of the

residuals without (left) and with (right) the surrogate for smoking behavior.

to

I
E;,=N;- Z};l -100, 000 (4.16)

i=1+V1
Following Breslow and Clayton (1993) we consider a random effects Poisson

model for the observed mortality counts. The model can be specified as

with the natural link function log()\;) = logE; + vo + 71 #; + b;. As for the Gaussian
model, the surrogate for smoking behavior (z;) serves as a covariate proxy. The vec-
tor of spatial random effects b; is assigned a Gau(b;, 0?) distribution, again implying
a conditional autoregressive structure. b; is the arithmetic mean of the neighboring
sites of b;, i.e. of the sites sharing a common border with site 7. As in the Gaussian
model, the dispersion parameter o? serves as a hyperparameter for the spatial ran-

dom effects. 0? = 0%/n;, where n; is the number of neighbors of district 7, and o

i =
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1986-90

mean st. dev.

v -1.59  0.26
v 023 0.04
o 036  0.04

Table 4.3: Lung cancer among women in NRW. Parameter estimates for the Poisson

spatial model with covariate population density.

is assigned an inverse Gamma prior, i.e. 0% ~ InvGamma(r*, d*). 7, is given a flat

prior, whereas 7, is assigned a Gau(0, 10000) non-informative prior.

Application to the data

We apply the Poisson model to lung cancer mortality among women in North Rhine
Westphalia for the 5-year period from 1986-90. After a burn-in of 10,000 iterations
we have recorded the posterior quantities based on 5,000 draws from the posterior
distribution with a thinning of 10. The resulting parameter estimates are displayed

in table 4.3.

We have calculated the DIC for the spatial Poisson model without the covariate
population density to be 460.519. The DIC for the model including the estimation
of the parameter 7, as in table 4.3 is 454.843. The reduction of the DIC shows
the slightly improved fit of the model to the data using the surrogate for smoking

behavior.

We want to compare the spatial smoothing of the Gaussian and the Poisson
model, both including the covariate proxy for smoking behavior. Therefore, we
plot a so called probability map of the estimated smoothed rates in the Gaussian

case, which we have transformed back to its original scale. For the Poisson data
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we calculate the quotient of observed and expected case counts, a rate ratio called
standardized mortality ratio (SMR)

O .
SMRZ:E, Z:]_,...,I.

We have chosen the 5-year period from 1986 to 1990 for the comparison between
the auto-Gaussian and the auto-Poisson model. Figure 4.9 shows the 90 % quantiles
of the resulting mean rates and rate ratios for the Gaussian and the Poisson model.
The areas with the most extreme 10 % of the rates and ratios have been colored black.

The two figures are similar in the sense that they indicate high lung cancer mortality

0 55-10.5
m 105-12.2

Figure 4.9: Lung cancer among women in NRW, 1986 - 1990. Comparison of the
districts with the highest 10 % of mortality with Gaussian model (left) and Poisson
model (right).

in the densely populated areas of NRW. However, the districts they identify of
having the highest 10 % of lung cancer mortality are not exactly the same. For the
districts Aachen, Diisseldorf, Cologne, and Krefeld the results are the same in both

models. Furthermore, with Gaussian smoothing Duisburg and Monchengladbach
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are identified, whereas with the Poisson model Essen and Wuppertal lie within the

highest 10 % of the SMR’s.

However, the use of either a Gaussian or a Poission model, or age-standardized
rates or the SMR’s respectively, must also be seen from the epidemiologist point of
view. The age-standardized rates are easier to calculate. For the calculation of the
SMR’s we need the expected number of death counts, and additional assumptions
concerning the population structure. Furthermore, it is common to use the SMR’s
only for rare events, which lung cancer death cases are clearly not. The most popular
example for an application of the Poisson model based on SMR’s is the data set on
lip cancer in Scotland with observed cases varying between 0 and 39 for the 56
regions of Scotland. Using the SMR’s for rare events makes the results more robust
with respect to small changes in the data which can have a great influence. In our

data sets on lung cancer and stomach cancer, however, this problem does not occur.

4.2.3 A spatial linear model approach

In this section an additional spatial modelling approach and its application to the
data set will be discussed in brief. It is a simplification of the most general correlation
structure resulting in a conditional autoregressive approach, the spatial linear model
(SLM). It is a model of the class of generalized linear models, that incorporates the
correlation structure of the data through a specified covariance matrix. A general

form of these models is
Zi = J; + €, 1=1,...,1,

separating the levels of variation in area specific large scale variation p; and iid. ran-
dom errors, € ~ Gau(0, X.) accounting for the small scale variation. The small scale
variation can be modelled in different approaches, e.g. a conditional, a simultane-

ous, or a moving average approach. Again, we imply a conditional autoregressive
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structure, which enters in the model through the specific type of covariance matrix.
1; may be constant or a linear model with covariates. We have set up the dispersion

matrix following Kaluzny, Vega, Cardoso, and Shelly (1998), p. 128 as

Y=0>U-pB)~". (4.18)

p and o are scalar parameters, estimated iteratively along with regression coef-
ficients of the GLM. B is a weighted neighbor matrix, that consists of the assumed
neighborhood structure. The covariance of 4.18 is a special case of the class of more
general spatial covariance functions described by 4.14. With this simplification it
is possible to obtain the parameter estimates through a frequentist estimating ap-
proach using generalized least squares. The parameters of small scale and large scale

variation interact, which is why the model is fitted iteratively.

Application to the data

The log-transformed age standardized rates for the three five year blocks have been
examined with respect to lung cancer among women in North Rhine Westphalia. p;

is modelled as a linear function of the intercept term and the covariate as follows.

Wi = Yo+ 71 i 1=1,...,1

The log-transformed population density of 1995 has again been used as a covariate.
The number of necessary iterations lies between 8 and 11 for these data. Table 4.4
gives the results for the fitted spatial linear model. The scalar p is a measure of
spatial correlation, as described in equation 4.18. The results of the spatial linear
model compared to those obtained with Bayesian inference in table 4.2 are very
similar. The estimated level 7, is increasing over time, whereas the parameter ~; is

almost constant.

To conclude, the spatial linear model requests a simplification of the more general

covariance matrix of the Markov random field approach described in 4.14. However,
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1981-85 1986-90 1991-95
v  0.80 0.83 1.35
v 0.16 0.19 0.15
o 017 0.17 0.14
p 014 0.15 0.15

Table 4.4: Lung cancer among women in NRW. Parameter estimates for the Gaus-

sian spatial linear model.

the assumption of equal variances of the site specific observations seems to be rea-
sonable in this application, since cancer rates as well as underlying population sizes
do not differ very much between the sites. Furthermore, it is also plausible to assume
that only neighboring sites influence each other, which is the justification for using
a particular neighborhood matrix B. p then acts as a regression parameter for the

degree of spatial influence.

Using Bayesian methods, it is possible to estimate p and o. Additional to fixed

covariate effects, site specific random effects can be estimated.

Finally, it remains to mention that the spatial linear model as presented in the
GLM environment needs the assumption of a Gaussian observation model. Hence,
possibly more appropriate models in other applications, such as Poisson models are

not feasible.



Chapter 5

Autoregressive Spatio-Temporal

Modelling

When modelling data dependent on space and time, it becomes clear that separate
approaches for a temporal and a spatial analysis are not satisfactory. This chapter
deals with the combined analysis of temporal and spatial dependence structures,
which leads to an increased complexity of the model. The results obtained in the
foregoing chapter will be used, where we have learned from the purely temporal
and purely spatial analyses. We aim to apply the model to stomach cancer among
men and women in Germany over the 15 year observation period from 1976 to 1990
(Germany data). Figure 5.1 gives an idea of the relative changes of the quintiles
of stomach cancer among men over time. In the south of Germany the rates are
constantly high. In the north, however, there is a clear relative increase, especially in
the region of Schleswig-Holstein. We use a frequentist approach based on maximum
likelihood and a Bayesian approach to estimate autocorrelation parameters of the

spatio-temporal model.

Furthermore, we use the data set on lung cancer among women in NRW (NRW

data) for a spatio-temporal analysis. As the observation period is 19 years, and

79
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Figure 5.1: Stomach cancer among men in the regions of Germany. Relative changes

of the rates over time.

we have 54 spatial units, computing times in the likelihood approach are largely
increased, and hence the frequentist approach is infeasible. Therefore, we use solely
Bayesian inference to estimate the unknown parameters and perform model selection

according to the DIC.

At the end of the chapter we compare the results of the likelihood and the
Bayesian approach for stomach cancer. Emphasis will be put on the comparison of

the parameter estimates with supported range, and on computational aspects.

5.1 Space-time vector-autoregressive processes

In the first section of chapter 4 we have described the autoregressive structure of the
temporal component of the stomach cancer and the lung cancer data set. Therefore,

we again assume a first order VAR structure. In order to model the spatial depen-
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dencies we employ the conditional autoregressive approach, with a neighborhood
structure based on common borders through the adjacency matrix B. In combi-
nation, we have chosen a spatio-temporal modelling approach that uses a Markov
type dependence in space and time. Figure 5.2 displays the assumed autoregressive

correlation structure in time and space.

. . o . . time ¢
° o [e) IO (] tlmet—].

Figure 5.2: First order neighborhood scheme on a regular lattice in space and time.

In words, we consider the outcome of site ¢ at time ¢ to be influenced by the
neighbors of i at time ¢ — 1, the set of units {—i}, and the outcome of site i at
time £ — 1. We have chosen this approach to model cancer mortality data, as we
find it reasonable to assume that subsequent sites in time are likely to be highly
correlated. Neighboring sites are assumed to have an influence on the outcome at
time t as well, but not directly. There is a time lag of one year, in this application,
after which the the influence expresses. More formally, we assume {Z;,t =1,... ,T}
to be a multivariate stochastic process of spatially dependent time series. In section
4.1 we have introduced multivariate VAR time series to model the area specific
cancer mortality rates over time. However, we have considered the time series to

be independent. If we generalize the assumptions of section 4.1 to the case of
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dependent time series, we may assume {Z;} to be a stochastic process with the

following characteristics (Schach 2002a):

i) Z1,..., 7 ~ Gauy(0,),
ii) {Z;} has the Markov property,

iii) {Z;} is second order stationary.

Let ¢; be an innovation process as in equation 4.7. The aim is to build the spatial

dependence structure into the process via a suitable matrix C'.

We have chosen to model the influence of the neighbors of ¢ with a temporal lag
of 1, as we assume a stronger temporal than spatial relationship. In a simultane-
ous approach of spatial and temporal correlation, identifiability problems can occur
for the autocorrelation parameters. We assume additivity of spatial and temporal

effects, and hence arrive at the model according to Schach (2002a)
Zt:OéZt_l—f—ﬁBZt_l—f—Et, t:]_,,T (51)

Again, €, ¢€,,... are independently and identically distributed random errors, dis-
tributed according to Gauy(0,%.). Especially, €, are independent of Zy, ..., 7Z; ;.
The parameter a measures the temporal autocorrelation, and [ is a spatial regres-
sion parameter. B is the neighborhood, or adjacency matrix. The (i, j)th element
of B is zero, if the regions ¢ and j share no common border, or if © = j. Other-
wise, b;; = 1/n;, where n; is the number of neighbors of region . The question is,
whether the process as specified in 5.1 is admissible, in the sense that it converges
to a stationary distribution. Therefore it is the aim to investigate, whether we can
construct a matrix, that incorporates the type of spatial and temporal dependence

structure as specified in figure 5.2. If we define

C:=alU+BB (5.2)
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then equation 5.1 is a special case of 4.1 for a mean polished process with v = 0. The
process {Z;,t =1,... ,T} can be expressed recursively on the basis of the constant

matrix C', based on the initial distribution at time ¢ = 1, and the independent

innovation terms €_;,7 = 0,... , 00 through the relation
o
Zi=Y Cle . (5.3)
=0

Parameters of the model can be estimated iteratively, including the estimation of
the covariance matrix of the process (X) based on the innovation covariance (3.), as
will be described in the following section. The conditions under which the matrix C'
converges are determined indirectly through the autocorrelation parameters a and
. We have chosen the spectral matrix norm, which satisfies the triangle inequality

and hence

ICll = llaU+ 3B
< e Ul + 115 Bll
< lal[UI+1B] 1B

The spectral norm of the identity matrix is 1, the spectral norm of the neigh-
borhood matrix B depends on the study area, of course. If we consider the regions
of West Germany, we have 30 spatial units, and the corresponding spectral norm
is 1.089. For North Rhine Westphalia, with its 54 districts, the result is 1.171.
Obviously, this resulting matrix norm is strongly dependent upon the choice of the
specific neighborhood structure with corresponding weights. It follows that a suffi-
cient condition for convergence of the infinite series and thus for the admissibility

of the model is
|a|+1.089 |8 | <1
for the spatial structure of West Germany, and

o | +1171 | 8] < 1
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for the structure of North Rhine Westphalia.

5.2 Parameter estimation with likelihood approach

Due to the Markov property of the stochastic process Z;, the likelihood function
can be written as a product of the conditional transition probabilities, although the
observations are not independent. Yet, the covariance matrix of the process X is
unknown, but we know that ¥ = C' ¥ C" + 3. ¥ can be derived after transforming
the Z-process as follows. The recursive specification of 5.3 leads to the following

equation for the covariance matrix, similar to equation 4.6

[o.0]
=) 75 ().
§=0
If we assume homogeneous variances and independent innovation terms, the
innovation covariance matrix reduces to ¥, = o2 U. Hence, 3 can be rewritten as
[o.0]
S =05 Y CI(CY). (5.4)
§=0
We consider ¢; as noise, which acts on the components of the process. Hence,
it is reasonable to assume that all components have the same variance and are
independent of each other and the assumption X, = o2 U is plausible. We use a
sensible stopping rule for the approximation of the infinite geometric series in 5.4

dependent on the spectral matrix norm.

The likelihood function for the three unknown parameters a, 3, and of for the

above model can be formulated as follows

1 1
W, Byog | 21y y2r) = (%)%—d@ eXP{—§ 25 2} (5.5)
T
1 11
exp{—= — ||z — C z_1||*}.

t=2 (27T)é (03)é 2 08
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When including a matrix of covariates and a vector v = (7, ... , ;)" of regression
coefficients in the model, two different cases can be formulated. In the first case the

covariates are constant over time, which results in the following model formulation
Zt:OZZt_l—F/BBZt_l—F’YX—f—Gt, t:]_,,T

Thus the likelihood of 5.5 can be generalized to

1 1
o, B,7,00 | 21, v2r) = ————=exp{—5 (a1 = X 7)' T (21 = X 7)}
’ (27)7 /detS 2
T
1 11 9
———exp{—= =5 ||z —Cz 11— X[}
B entepr Mz In ool
Here, 7, ... , 7, are the unknown regression coefficients and X is a constant regressor

matrix.

In the second case, the covariates have a temporal structure, i.e. X is replaced

by X . Hence
Zi=aZi1+BBZ14+vXY+¢, t=1,....T.

The regressor matrix can be considered to form a separate stochastic process over

the observed time period. In that case, the resulting likelihood is written as

1 1
e, B,7v, 02 | 21, or) = ————exp{—=(z1 — XM ) 27 (2 — XV »
( ol T) e (=5 )X (= )}
T
1 11
—————exp{—= = ||z — C 21 — XD 4|2
Lentopr ag o .

(5.6)

This specification of the likelihood function can be used to model a linear temporal
trend within the data. More specifically, with X®) = ¢ the model formulation

including fixed covariate effects results in

Zt:Cth,1+6BZt,1+’)/X+5t+€t, tzl,,T (57)
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In this special case the time points themselves will be viewed as a covariate depen-

dent on time.

As mentioned in section 3.2, the parameters of the space-time model will be es-
timated using a frequentist approach based on the maximum likelihood estimator.
The ML estimator has been chosen for this problem, since it has good asymptotic
behavior for ergodic Markov chains under relatively weak regularity conditions, as
examined in Schach (2000). According to Hall and Heyde (1980), p. 156, it can be
shown that the ML estimator is asymptotically normal, consistent, and sufficient,
even in the case of dependent observations. Hence, statistical tests and confidence
intervals based on the normal distribution can be built. However, it is not always
possible to maximize the log-likelihood analytically, especially in a high dimensional
multivariate problem. We consider a model without covariates but with temporal
trend & as specified in 5.7, therefore # = («, 3,03,5)". In this case the estimates
can only be obtained using a numerical or iterative procedure. One possible al-
gorithm is based on a modified quasi-Newton method, which is used by S-Plus in
order to avoid calculating the Hessian matrix of second derivatives for four un-
known parameters. As the quasi-Newton method is endangered to provide local
instead of global extrema, different starting values will be given to obtain reliable
results. Further discussion on m-dimensional time series and the calculation of the
exact likelihood function for spatially and temporally correlated data can be found
in Abraham (1983) and Aroian (1980). Cressie and Huang (1999) discuss classes of
spatio-temporal stationary covariance functions in the context of point source data,

or geostatistics.

Application to the data

We begin with the application of the space-time model to the stomach cancer mor-

tality data in West Germany. The observed period of time begins in 1976 and runs
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for 15 years until 1990. We consider the rather coarse spatial structure of 30 regions.
We begin with a model without covariates, and the likelihood of equation 5.6 is used
for the analysis. We include the linear temporal trend parameter 9, as the figures
2.6 and 2.5 show clearly a nonconstant decreasing mean for stomach cancer. The
maximization of the likelihood function from dispersed starting values has lead to

the following parameter estimates for men and women.

parameter men  women
temporal AC Q 0.691  0.699
spatial AC 15} 0.197  0.115
dispersion o 0.119 0.194
temporal trend 0 -0.005 -0.003

Table 5.1: Stomach cancer in Germany. Parameter estimates of the space-time

model with likelihood approach.

We can see that the temporal correlation is stronger than the spatial dependence.
It turns out that the results are very similar if we compare men and women. The
largest difference lies in the parameter estimation of the spatial autocorrelation. As

we have expected, the temporal trend is negative.

We have performed the purely temporal and purely spatial analyses for lung
cancer among women in North Rhine Westphalia, but we would like to apply the
spatio-temporal model to this data, as well. However, the state consists of 54 dis-
tricts and the observation period is 19 years, which leads to an infeasible increase
in computing time with the likelihood approach compared to the 30 regions over
15 years. For that reason the parameters of the space-time model for lung cancer

cannot be estimated using the ML method.
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5.3 Parameter estimation with Bayesian approach

We have indicated that apart from the classical maximum likelihood estimation,
we aim to use Bayesian inference for the space-time model. Similar approaches to
a combined space-time modelling can be found in Knorr-Held and Besag (1998),
where the number of cancer deaths is assumed to follow a binomial distribution
dependent on time, space, age-group, and site-specific covariate effects. The two
models presented there aim for the adjustment of unmeasured spatial covariates via
random effects, and with a surrogate for smoking behavior. Waller et al. (1997)
introduce a Poisson modelling approach, and propose to use a first order temporal
autoregressive structure, and an auto-Gaussian model (Besag 1974) for the spatial

component.

According to Schach (2002a), we begin with a three-stage Gaussian hierarchi-
cal model for the age standardized and log-transformed mortality rates r;. The
parameters «, 3, and 0 are assigned non-informative Gaussian prior distributions,
centered around zero. As the time series is modelled assuming an autoregressive
structure, we need to consider time ¢ = 1 separately from the following points in
time t = 2,...,T, similar to the likelihood approach. For ¢ = 1 we introduce a
generalized linear mixed model for the spatially structured random effects b; with
a conditional autoregressive structure. In the Bayesian approach we deal with two
dispersion parameters o7 and o3. 02 = 0% /n; is the dispersion parameter for the spa-
tial random effects at time ¢ = 1, and it is assigned an inverse Gamma distribution
with shape parameter 0.0001, and inverse scale parameter 0.01. Furthermore, o7 is
the dispersion of the rates, which we assign an inverse Gamma distribution with the

same parameters. Based on the model assumptions, the Bayesian space-time model

is set up as follows.
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t = 1: Modelling of the spatial random effects b;;
bli ~ Gau(Bli, 0'12)

As in the purely spatial random effects model, b;; denotes the mean of the adjacent

regions of 7 at time ¢t = 1.

t=2,...,T: Autoregressive modelling of the rates ry
i ~ Gau(puy, op)
The expectation of 74 is modelled through the functional relation
P =ar_y;+ gy +ot t=2,.... T, 1=1,... I

Here, 7;_; {_;) indicates the average rate among the neighbors of r;_;;. In contrast
to the purely spatial model with spatial random effects, as presented in section 4.2.1,
the mixed model approach is only entering at time ¢ = 1. From ¢ = 2 we imply a
temporally autoregressive structure, and we do not aim for the estimation of spatial
random effects for ¢ > 1. Again, the stochastic simulations of the Markov chains

have been carried out with the WinBUGS software.

Application to the data

We have chosen a burn-in phase of 5,000 iterations. The parameter estimates are
based on 1,000 observations recording every 10th iteration. Table 5.2 gives the
resulting mean estimates again for stomach cancer among men and women for West
Germany. The resulting parameter estimates are very similar to those obtained with
the likelihood approach. Additionally, the dispersion of the spatial random effects
(0) has been estimated with 0.154 (standard deviation 0.005) for men, and 0.179

(standard deviation 0.006) for women.

We have carried out a sensitivity analysis to evaluate the dependence of the

posterior on the prior distribution. Instead of assigning non-informative Gaussian
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parameter men  women
temporal AC Q 0.691  0.698
spatial AC 15} 0.197 0.114
dispersion o 0.170  0.152
temporal trend ) -0.005 -0.004

Table 5.2: Stomach cancer in Germany. Bayesian parameter estimates of the space-

time model.

priors to the autocorrelation parameters o and  and the trend parameter §, we
have replaced them by improper flat priors, by Gau(0,25) priors, and by U(-2,2)
prior distributions. The corresponding posterior distributions for the parameter «
are displayed in figure 5.3. Figure 5.3 shows identical posteriors of the parameter «
for the considerably different prior distributions. The evaluation of 5 and ¢ leads to
similar results. We have also changed the hyper-parameters of the inverse Gamma
distribution for o2 and 02 to InvGamma(0.001,0.01) (according to Spiegelhalter,
Thomas, and Best 2002), and to InvGamma(0.5, 0.0005) as proposed by Kelsall and

Wakefield (1999). The resulting parameter estimates for the dispersion parameters,

as well as the other parameters were not affected.

Apart from modelling stomach cancer mortality in Germany, we have applied
the spatio-temporal model to lung cancer mortality among women in North Rhine
Westphalia. After a burn-in phase of 5,000 iterations, and again based on a sample
of 1,000 from the posterior distribution with thinning 10, we have obtained the
parameter estimates as displayed in table 5.3. It is interesting to see that the spatial
autocorrelation seems to be much stronger for lung cancer than in the stomach cancer
example. The trend is estimated to be positive, as the lung cancer rates among
women increase. Again, the dispersion parameter o for the spatial random effects

at time ¢t = 1 has been estimated as 0.298 with an estimated standard deviation of
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Figure 5.3: Evaluation of the prior influence on the estimated posterior density for
the autocorrelation parameter «; improper prior (indicated by a dotted line at 0)

for a), proper priors for b) and c¢).

0.007.

We have calculated the DIC, which results to be 400.667 for the model without
covariate. We want to quantify the influence of the covariate smoking behavior.
Similar to the purely spatial model in chapter 4 we use the log-transformed popula-
tion density in 1995 as a constant regressor over time, denoted by x. This changes

the functional relation of u;; as follows
Mg =1+ BTy +nxi+ot t=2,.... T, i=1,... 1

We have assigned a non-informative Gaussian prior to the corresponding parameter
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parameter post. mean st. dev.
temporal AC Q 0.373 0.029
spatial AC 15} 0.622 0.032
dispersion o 0.177 0.028
temporal trend 0 0.008 0.003

Table 5.3: Lung cancer among women in NRW. Bayesian parameter estimates of

the space-time model.

v1. The resulting parameter estimates are displayed in table 5.4. The dispersion

parameter post. mean st. dev.
temporal AC Q 0.212 0.031
spatial AC 15} 0.276 0.039
dispersion o 0.172 0.029
temporal trend ) 0.031 0.003
smoking Y 0.130 0.011

Table 5.4: Lung cancer among women in NRW. Bayesian parameter estimates of

the space-time model with covariate.

parameter at time ¢ = 1 has been estimated as 0.278, with an estimated standard
deviation of 0.006. Compared to the model without covariate effects, much of the
spatial correlation seems to be explained by the surrogate for smoking behavior. The
reduction in spatial correlation is clearly visible, and smoking has been estimated
to have a significantly positive effect in the sense that 0 does not lie within the 95
% confidence interval. The DIC is reduced to 267.826 for this model, and therefore

indicates the superiority over the model without covariate.

In the following section the parameter estimates of the frequentist and the
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Bayesian approach with respect to stomach cancer among men in West Germany

will be compared and discussed.

5.4 Comparison

The tables 5.1 and 5.2 show, that the parameter estimates obtained with classical
ML estimation and with Bayesian inference are approximately the same, especially
for the temporal autocorrelation parameter o, and the temporal trend ¢§ in the case

of stomach cancer in Germany.

We have described the computational infeasibility of the frequentist approach
if the number of spatial units, or the length of the times series increases. The
parameter estimates obtained with ML estimation are based on an average of six
iterations until convergence. Computing times are relatively long, whereas in the
Bayesian approach hundreds of samples of the posterior distribution can be drawn

within seconds of time.

Furthermore, the dependence of the parameter estimates on the starting values is
problematic in the likelihood approach, because for many combinations of starting
values, the maximization procedure of the likelihood function breaks off and no
estimates can be obtained. The independence of the parameter estimates of the
starting values in the Bayesian approach is visible in figure 5.4, with the dispersion
parameter of the rates o for female stomach cancer as an example. Starting values
have been set to 1, 0.5, and 0.1 for the parallel chains. After the first five iterations,
all three chains have passed the transient phase independently of the starting values,
whereas starting values for oy larger than 0.2 have turned out to be infeasible in the

likelihood approach. The same behavior can be observed for the other parameters.

The estimation of the confidence intervals with the likelihood approach is rather

difficult, as it is necessary to calculate the variance-covariance matrix of the unknown
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!

sigma_0

iteration

Figure 5.4: First 50 iterations of 3 chains for the standard deviation of the rates in

the space-time model.

parameters. We have used S-Plus functions for the calculation, where computing
times for the 4 unknown parameters have been relatively long. The corresponding
credible regions can easily be calculated for the Bayesian posterior quantities. Table
5.5 gives the results for stomach cancer mortality data among men. The results
obtained with the two approaches match to a large extent. The confidence intervals
of the likelihood approach show a slight tendency to be larger than those obtained

with Bayesian inference.

We have mentioned the difficulty to obtain parameter estimates with likelihood
inference for this model. Computing times are extremely prolonged when calculating
the variance-covariance matrix to test for significance of the parameters. It does not

seem possible to obtain the parameter estimates and the variance-covariance matrix
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parameter Bayesian frequentist
temporal AC (0.691 + 0.066) (0.691 + 0.080)
spatial AC (0.197 + 0.077) (0.197 + 0.090)
dispersion o (0.170 + 0.061) (0.119 + 0.012)
temporal trend J (-0.005+ 0.001) (-0.005+ 0.001)

Table 5.5: Stomach cancer among men in Germany. 95 % credible regions and

confidence intervals for the Bayesian and the frequentist approach.

analytically. On the other hand, the generation of credible regions with Bayesian
inference is fast and easy. To conclude, we have seen clear advantages of the Bayesian
approach especially with respect to computational feasibility, computational speed,

and independence of starting values.
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Chapter 6

Application to Small Area

Estimation

The frequency and distribution of cancer mortality in Germany is published in two
different data sets, with a different spatial and temporal resolution. One set has a
coarse, aggregated spatial structure of the 30 regions (" Regierungsbezirke”) of West
Germany, but contains yearly data. The other data set contains cancer mortality
data for the 328 districts (" Landkreise”) within the same study region, but the data
are aggregated over 5-year periods in time. The data with the highest spatial and
temporal resolution is not available for further analysis due to privacy protection
and tabulation procedures in Germany. When regarding further subdivision by age-
group, or rare cancer types, the time-by-location cell frequencies become too small to
be published. We have examined the spatial and temporal dependence structure of
the marginal data in the foregoing chapter. Based on the knowledge gained from the
data sets, we now aim for a spatio-temporal small area estimation. We present here
a model based small area estimation to obtain estimates with the highest temporal
resolution. We begin with a brief description of the idea of a typical synthetic

(section 6.1) and model based small area estimation (section 6.2).

97
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6.1 Conventional small area estimation

Many large socio-economic or health related samples were originally designed to
give national and regional estimates for population specific parameters. For the
high level of aggregation, they are constructed to provide a certain accuracy. In
Germany for example, the so called ” Mikrozensus” survey is a yearly survey based
on one percent of German households. The survey is designed to obtain estimates
only for the whole of Germany, or for large areas within, e.g. states, and it is based on
a stratified cluster sample. However, estimates are also needed for regions, districts,
cities, or even smaller administrative units, which are not well represented by the
large survey data. One way to meet this demand is to redesign these surveys, or
design new surveys, but this is usually too expensive and time consuming. Small
area estimation is an alternative, as it can be seen as an intra-polation of information
collected on a larger spatial scale to local areas within the study region, see Schach
(2002b). It is concerned with the estimation of parameters corresponding to small
geographical areas or subpopulations. The underlying idea is to pool data from other
areas to estimate the parameters for a particular area. One approach would be to use
direct or design based estimators. These, however, are not available, or would have
unacceptably large standard errors. Schaible, Brock, Casady, and Schnack (1979)
give an overview of conventional and synthetic estimators. These estimators are,
however, poststratified based on area specific covariates like age structure, gender,
race, and so on. Synthetic estimators additionally use survey results collected within
the small area. Such additional information on cancer mortality is not available in
the context of this thesis. Nandram (2000) describes that some countries like Canada

attempt to design large-scale surveys to include small areas directly.
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6.2 Model based small area estimation

Hierarchical Bayes and empirical Bayes estimators are well applicable for the sys-
tematic connection of small areas. Clayton and Kaldor (1987) introduce empirical
Bayes estimates, Ghosh and Rao (1994) and Nandram (2000) give an overview of
current Bayesian and non-Bayesian approaches. An attractive approach in the con-
text of disease mapping with empirical Bayes are shrinkage estimators towards the
grand mean. The shrinkage is done adaptively, estimates with large sample size are
shrunk less than those based on smaller samples, as proposed by Marshall (1991).
The crude rates are shrunk towards a local neighborhood rate, with a given specified

neighborhood structure.

Areas of application of small area estimation need not be data on geographical
areas, but Hulting and Harville (1991), e.g., present an example of small are esti-
mation in which the areas correspond to batches of raw material in an industrial
application. Nandram and Petruccelli (1997) give another example of transferring
small area estimation to the problem of prediction of time series, by pooling similar
series. The hierarchical Poisson regression model introduced by Waller et al. (1997)
includes area specific auxiliary data and models regional disease rates over space

and time with space-time interactions.

We have introduced the possible use of census data to strengthen the small area
estimation. For cancer mortality, however, we face the additional problem that a
direct linkage between person related data and cancer mortality is impossible. Thus,
the conventional approaches to improve the estimation are not directly applicable. In
our case, we employ spatial and temporal marginals, the knowledge about spatial and
temporal dependence structures, and further covariates to strengthen the estimation.

We introduce the following notation:
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year \ district | i=1|i=2| ... |i=1| X
tzl Dl.

t:2 .DQ_
t:T DT.

)Y Dy | Dy | ... | Dy | D.

Table 6.1: Given marginal data for the small area estimation.

Dy; : number of cancer cases at time ¢ in district ¢
Ny population size at time ¢ in district i (known)
T mortality rate at time ¢ in district 1,

where 7 = 1,...,I denotes the districts within the study region, and ¢t = 1,...,T
represents the time points (years) for the analysis. The aim of the small area es-
timation is to obtain cancer death estimates ﬁti for the unknown random variable
Dy; using the given marginals D; and D; where a dot indicates summation over the
dotted index. The underlying population size n; with the highest spatial and tem-
poral resolution is known and available for the analysis. Table 6.1 shows the given
marginals and it is the aim to fill up the table and obtain data with the highest

spatial and temporal resolution.

6.2.1 Proportional partitioning

An intuitive way of partitioning the D; into {ﬁti,i =1,...,I} consists of splitting
the given sum D, according to the corresponding population sizes {n;;,i =1,... ,I}.
The number of cancer mortality cases is weighted by the underlying population size
of the district. In that sense we can speak of a proportional partition for every year

t=1,...,T. The overall estimated rate

ﬁt:Dt./nt. t=1,...,T
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is used for the area specific estimation of cancer death cases. It is natural to define
Di=nup t=1,...,T, i=1,..., I

The binomial model can be used to calculate confidence intervals for the estimated
number of cancer deaths by standard methods. We assume that the unknown num-

ber of cancer death cases Dy; is distributed according to Bin(ny, p;). In that case

Var (btz) = Var(nti ﬁt)

= ni Var(p;)
2 ﬁt(l - ﬁt)

= .—_—
! ny.

which results in a confidence interval for Dy;

ﬁt(l - ﬁt)]
Tg. '

Dy + Ul—q/2 T (6.1)

The proportional partitioning, however, based on a binomial model has some dis-
advantages. The data in different regions are considered to be independent, which
is obviously not true in our example. In the chapters 4 and 5 we have discussed the
complex spatial and temporal dependencies within the data. Thus, the resulting
confidence intervals usually are anti-conservative and therefore misleading. Further-
more, the proportional partitioning can only be performed individually for each year
t =1,...,T. Even if we could implement the spatial dependence into the model,
the problem of temporal autocorrelation would remain unsolved. For the case that
covariates are to be included in order to strengthen the small area estimation, the
weight of the single covariates must be specified prior to the estimation. Without
doing so the estimation is not straightforward in the proportional case. We aim
to avoid problems like these by a Bayesian model formulation, which is capable of
incorporating the spatial as well as the temporal correlations, and which allows for

posterior quantification of the covariate effects.



102 CHAPTER 6. APPLICATION TO SMALL AREA ESTIMATION

6.2.2 Allocation with space-time dependence

In this section we describe model based approaches for small area estimation, that
include the space-time dependence structure within the data. Again, we consider
table 6.1, with its given spatial and temporal marginals. We begin with a Poisson

modelling approach of the D;; as described by Schach (2002c¢).

We assume space-time specific mortality rates r; as in chapter 5, and include
the underlying population n;; with the highest spatial and temporal resolution. The

Poisson parameters \; can be specified as follows
)\ti:ntirti tzl,...,T,’izl,...,I, (62)

where r;; represents the rate at time ¢ in district 2. We have learned in the previous
chapter that the multivariate time series can be modelled via a multivariate vector-
autoregressive process including a spatial dependence structure with time lag 1. If
we aim to incorporate this structure into the small area model, we again need to
differentiate between the time ¢t = 1 and the remaining time points £ > 1. We set

up the functional relation for the rates r;; at site 7 at time ¢ as follows

t=1: Tli:/,bl—f—bli Z:]_,,I

t>1 1y =4 (e — pu—1) + B (Feo1 oy — tu—1) i=1,...,1.

At time t = 1 we begin with modelling the rate ry; dependent on the overall level
1 plus the spatial random effects vector by;. This vector is used to model the spatial
heterogeneity of the mortality rates at time ¢t = 1. For ¢ > 1 we imply the vector
autoregressive structure of the space-time model of section 5. Thus, the rates r;; for
t > 1 are modelled based on three additive components. One is again the overall level
i, the others are the components of temporal and spatial autoregression. For the
temporal autoregression we compare the rate in district ¢ at time ¢t — 1 (14— ;) with
the overall level at time ¢ — 1 (y;_1). For the spatial autoregression, the neighboring

sites of 4 at time ¢ — 1 (7;_; ;) are compared to the overall level at time ¢ — 1.
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An alternative approach that rather aims for the estimation of a spatial and
temporal trend surface than using autoregressive structures can be specified as an
overall mortality rate for every year, estimated through p; = D; /n;, assuming that
this overall rate p; needs to be adjusted for time specific and area specific random

effects, and even interactions. This leads to the following relationship

ﬁti:ﬁteXP{Oft‘f‘ﬁi‘Féti} t:17"':T7i:1:"'71'

If we assume a Poisson model, the Poisson parameters again are \; = py; ny;. In

general py; = py;(0), with 0 = (o, f;, 04;) for this case.

Coming back to our autoregressive allocation model, the number of known data
points (which are the row and column sums) is rather small compared to the num-
ber of missing data (entries of the table). With an increasing number of rows and
columns (i.e. years and districts) the unknown entries of the table increase propor-
tionately. In the Bayesian framework, it is easy to treat the missing data D,; as
unknown parameters. These parameters can be estimated given the spatial and
temporal marginals. As the model is highly parameterized frequentist solutions are
difficult or even impossible to apply. We have introduced proportional partition-
ing and a binomial model for the construction of confidence intervals. However,
the complex dependence structure within the data cannot be accounted for. Other
frequentist approaches can be thought of, but restrictive assumptions need to be
made. Therefore, we concentrate on Bayesian approaches throughout the rest of

this chapter.

Combinatorial approach

Apart from the choice of a suitable model for the D,; along with a link function, we
need to find a way of MCMC sampling given the marginals. In the updating process

of the Markov chains it is cumbersome to assign given data, i.e. the marginals, to
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a sum of estimated parameters. A combinatorial approach to solving this problem
would be to update the cell counts Dy; by choosing a 2 x 2 subtable and then adding
+c —c
—c +c
to the counts in the subtable. Moving the subtable across the rows and columns of
the contingency table necessarily preserves the marginals. Adding or subtracting c
at the intersection of two rows and two columns, where rows represent years, implies

a type of temporal Markov dependence.

However, a sensible choice of a proposal distribution for ¢ goes beyond stan-
dard Bayesian estimation. Additionally, we would possibly face the problem of
non-identifiability when estimating c¢. Apart from computational problems the in-
terpretation of ¢ in this context is more complex than in conventional contingency
table, or 4-fold table applications. We therefore concentrate on the stochastic ap-
proach of MCMC sampling with given marginals. For further discussion of MCMC
sampling preserving the marginals see McDonald, Smith, and Forster (1999).

Stochastic approach

In trying to obtain parameter estimates for the unknown cell frequencies, we have
though of the following computational trick (Schach 2002b). We use an indirect
adjustment of the sum of the estimated parameters towards the observed data. As
the small area estimation is two-dimensional, in the direction of time and space,
the adjustment is also two-dimensional. We assign the following highly informative
Gaussian prior distributions to the observed marginal numbers of cancer deaths

D, ~ Gau(D,,,0.001)

D; ~ Gau(D,,0.001).

In every updating step of the chain, the sum of the estimated number of cancer

deaths is indirectly pulled towards the observed marginals. As the variances of the
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prior distributions are small, the adjustment has strong influence on the parameter
estimates, and thus the marginals are preserved. The estimation is invariant under

the change of the order of the two adjustments.

6.3 Parameter estimation

We have set up the Poisson model for the spatio-temporal small area estimation
in section 6.2.2. In order to perform the parameter estimation of the missing cell
frequencies, along with the estimation of spatial and temporal autocorrelation pa-
rameters, trend, and dispersion, we need suitable prior distributions. We begin
with the vector of spatial random effects, by, at time ¢ = 1 which we assign a

non-informative multivariate Gaussian prior
b(] ~ Gall](’)/, V):

where v and V' are hyperparameters. Instead of assigning a conditional autoregres-
sive structure to the by directly, we expect the spatial dependence between neigh-
boring sites at time £ = 1 to arise through the model assumptions and the data. = is
assigned a non-informative Gaussian prior, v ~ Gauy(0,U). U represents the unity
matrix of dimension I x I. The covariance matrix V' is assigned a Wishart(U, I) dis-
tribution. The model specification of 6.2 for the rates includes the restricted vector
of spatial random effects by;, as proposed by Besag and Kooperberg (1995). Again,

the sum to zero constraint on by assures identifiability at time ¢ = 1.

For the vector autoregressive development of the rates we use the following prior

for the overall levels y;, dependent on ¢

Mt ~ Gau(ﬂt,(].(]()l), [Lt = Dt./nt..

The Gaussian prior for i, has the overall rate for each year ¢ as expectation, with

a small variance. The temporal and spatial autoregression parameters, however, are
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assigned non-informative Gaussian priors centered around zero:

a ~ Gau(0,1000)
B ~ Gau(0,1000).

Figure 6.1 displays the graphical representation of our allocation model. Full
arrows indicate stochastic links to which a probability distribution is attached. Dou-
ble arrows denote deterministic relationships, i.e. logical links. Boxes contain given

data, and circles represent stochastic nodes. The matrix V' and the vector v are hy-

temp_ac Y

ratel[t,i]

poplt,]

niv_barft]

neighbor

for(tIN2:T)

sumDI.,i] sum DIt,.]

Figure 6.1: Graph of the small area model.

perparamters for the vector of spatially structured random effects (b.init;) at time
t = 1. After a sum-to-zero constraint on b.init; we obtain b;. The overall level
(niveau) plus the spatial random effects determine the rate at time ¢ = 1. For all

subsequent time points the rate depends on the spatial and temporal autocorrelation
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parameters (temp_ac and spat_ac), and the overall level. The estimated number of
cancer deaths in location 7 at time ¢ follows a Poisson distribution with parameter
Aii, which is determined by the rate 7; and the underlying population. The dashed
arrows at the bottom of the graph indicate the indirect adjustment of the estimated
number of cancer deaths through the spatial and temporal marginals based on the

stochastic approach.

6.4 Application of allocation model

We begin with the application of the small area Poisson model to stomach cancer
among men in the region of Braunschweig, which is located in Lower Saxony. The
region consists of 11 districts, thus ¢ = 1,... ,11. We consider the aggregated 5-year
(t=1,...,5) period from 1986 to 1990. Due to the complexity of the model, the
full conditionals for the parameters cannot be set up and the Gibbs sampler is not
applicable. We use a Metropolis-within-Gibbs algorithm for the updating of the
Markov chains. We have chosen the WinBUGS default burn-in of 4,000 iterations.
The parameter estimation is based on 400 recorded updates, keeping every 20th

1teration.

Figure 6.2 shows the acceptance rates of the sampler based on the proposal
distribution chosen within the WinBUGS software. Displayed are the successive
minimum, maximum and average acceptance rates over 100 iterations each. The
horizontal axis shows the number of random quantities generated. Apparently, the
rates lie well within the recommended range. To check for low autocorrelation of
the parameters, we have chosen the level in 1990 as an example and figure 6.3 shows

that the chain is mixing well.

Apart from the application of the space-time allocation model to stomach cancer

among men in the region of Braunschweig, we apply the model to the estimation
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Figure 6.2: Metropolis-within-Gibbs acceptance rates for stomach cancer among

men in RB Braunschweig.
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Figure 6.3: Trace plot for the level p5 for stomach cancer among men in RB Braun-

schweig in 1990.

of lung cancer mortality among women in North Rhine Westphalia. Data with the
highest spatial and temporal resolution are available for this state, and therefore
an evaluation of the fit is easier. We have chosen the region of Arnsberg, which
includes 12 districts. Three 5-year periods from 1981 to 1995 have been used to
consider the whole length of the time series over 15 years. The Metropolis-within-
Gibbs acceptance rates for the allocation model in Arnsberg are displayed in figure

6.4.

Trace plots of the unknown parameters have been used to check for convergence
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Figure 6.4: Metropolis-within-Gibbs acceptance rates for lung cancer among women

in RB Anrnsberg.

and for mixing behavior of the chains, and the results have been satisfactory. We
have modified the hyperpriors of the dispersion parameter for the spatially struc-
tured random effects. Whereas in a typical Markov random field prior specification
the amount of spatial smoothing is usually strongly dependent on the choice of the
dispersion hyperprior, in our space-time allocation model the multivariate distribu-
tion of the spatial random effects enters only at time ¢ = 1. Therefore changes in
the dispersion hyperprior in this case have only a minor influence on the estimated

numbers of cancer deaths Dy;.

6.4.1 Results

Firstly, we display the estimated stomach cancer mortality rates among men in the
region of Braunschweig. Figure 6.5 shows the estimated parameters for the years

1986 to 1990.

In general, the explorative data analysis of male stomach cancer has shown a
clearly decreasing trend. The parameter estimates for the overall levels uq, ... , us,

as well as the estimated rates from 1986 to 1990 indicate this.
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Figure 6.5: Stomach cancer among men. Spatial and temporal resolution of the

rates for RB Braunschweig for the years 1986-1990.

On the other hand, we have applied the small area estimation to lung cancer
among women in North Rhine Westphalia. The resulting parameter estimates for
the region of Arnsberg are displayed in figure 6.6. The credible regions are based
on a posterior linkage of the three 5-year periods. The dots represent the estimated
raw cancer mortality rates per 100,000 inhabitants at risk, with 99 percent credible
intervals for all 12 districts within Arnsberg. The results show the clear increasing

temporal trends.

In this section we have presented a model based small area estimation, which
guarantees a preservation of the given spatial and temporal marginals. However, as
figure 6.6 shows, there is a tendency of the presented method to produce ”laced”
credible regions after each 5-year period. This is due to the fact, that the estimation
is performed separately for each 5-year period. A subsequent small area estimation
of all 3 periods is not possible, as the number of unknown parameters with the
present, version of the software is too large when considering 12 districts. In the
following we demonstrate the estimation for two 5-year periods, but based on a
reduced number of spatial units. We have divided the region of Arnsberg into 4

spatial units, with 3 districts per unit as follows:
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Figure 6.6: Lung cancer among women in NRW. Spatial and temporal resolution of

the smoothed rates (SAE) for RB Arnsberg 1981-1995.

area 1: Bochum, Dortmund, Herne,

area 2 : Hamm, Soest, Unna,

area 3: Hagen, Ennepe, Markischer Kreis,
area 4 : Hochsauerlandkreis, Olpe, Siegen.

The four new units have been constructed to form coherent regions, with similar lev-
els of urbanization. We have applied the small area allocation model, and we have
obtained the parameter estimates with a burn-in phase of length 4,000, and addi-
tional 400 recorded updates with a thinning of 20. Figure 6.7 shows the estimated
posterior means with 95 % credible regions of the levels for each year, fitted with a
lowess curve. The autocorrelation parameters with lower and upper 95 % credible

bound have been estimated as & = 1.058 (1.00,1.11), and 3 = 0.066 (-0.36,0.38).
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Figure 6.7: Lung cancer among women in NRW. Estimated levels with 95 % credible
regions for RB Arnsberg 1986-1995.

Finally, it remains to mention that we have expected the estimated rates to

be strongly correlated over space and time which can result in poor mixing of the

chains as discussed in section 3.3.2. Therefore, we find it necessary to demonstrate

that suitable thinning and long enough runs of the chains have lead to satisfactory

mixing. Figure 6.8 shows the autocorrelations in area 1 for the years 1986, 1989,

1993, and 1995.

the Bayesian allocation model.

Furthermore, we have described the possibility of including covariates when using

Hence, we again take the area specific data on

population density as a surrogate for smoking behavior among women to improve
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Figure 6.8: Lung cancer among women in NRW. Autocorrelations for the rate in

area 1 for the years 1986, 1989, 1993, and 1995

the fit. We generalize the functional relation for the rates of the allocation model to

t=1 ry=p+b;+vX; 1=1,...,1

t>1 vy =+ a(r; — 1) + B (Feoifmiy — 1) +7 Xi 1=1,...,1.
We have assigned a non-informative Gaussian prior distribution to the parameter
v. The parameters of spatial and temporal autocorrelation, and the covariate effect
with 95 % credible regions have been estimated as follows: & = 1.083 (1.04,1.13),
B =-0.170 (-0.67,0.27), and 4 = —0.028 (-0.09,0.002).

6.4.2 FEvaluation of fit

We have introduced a proportional partitioning given the spatial and temporal
marginals, and with confidence intervals based on the binomial model. Figure 6.9
shows the parameter estimates resulting from the spatio-temporal allocation model

and the proportional partitioning.

As the raw mortality counts are displayed, the exceptionally large numbers for
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Figure 6.9: Stomach cancer among men in the region of Braunschweig. Small area
estimates and 95 % supported range of the Bayesian approach and the binomial

model in 1990.

the first and the fifth district are not surprising, as these are the two most densely
populated urban districts Braunschweig and Gottingen. The comparison between
the allocation model and the proportional partitioning reveals very similar mean
estimates, but the standard deviations differ considerably. The binomial model
leads to much smaller confidence intervals. However, the larger credible regions of
the allocation model are more realistic. They account for the spatial and temporal
dependence structures within the data, whereas the binomial small area estimation

model is based on the assumption of independence.

When considering the data sets within North Rhine Westphalia the advantage is

that data with the highest spatial and temporal resolution are available. Therefore
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an evaluation of the fit is easy. Figure 6.10 shows the true observed rates as solid

dots, and the small area estimates as circles. The 99 % credible regions are again

based on separate analyses of the three 5-year periods.

rates with 99% CI rates with 99% CI rates with 99% CI

rates with 99% CI

SAE for district BO

40

10 -

1981 1983 1985 1987 1989 1991 1993 1995

SAE for district HAM

1981 1983 1985 1987 1989 1991 1993 1995

SAE for district HSK

2 === >
10 Y5 L .

1981 1983 1985 1987 1989 1991 1993 1995

SAE for district Sl

1981 1983 1985 1987 1989 1991 1993 1995

rates with 99% CI rates with 99% CI rates with 99% CI

rates with 99% CI

SAE for district DO

SAE for district HA

40 _ a0
. 2 .
30 . 20 £ 30 . A 0
3 o o Q
201 o4 g Vg owxowe s eo®
10 E 10 L4
g
0 I
1981 1983 1985 1987 1989 1991 1993 1995 1981 1983 1985 1987 1989 1991 1993 1995
SAE for district HER SAE for district EN
40 — 40
LY o o 2 3
30 Yo g S § 30 —o—
0] g 0o o oo . ° 2 —4
s g 0%
10 . ° ; 0] e
0 g 0
1981 1983 1985 1987 1989 1991 1993 1995 1981 1983 1985 1987 1989 1991 1993 1995
SAE for district MK SAE for district OL
40 — 40
(5]
30 § 30 .
20 < 20 g
] 5
10 i v e
0 g o
1081 1983 1985 1987 1989 1991 1993 1995 1081 1983 1985 1087 1989 1991 1993 1995
SAE for district SO SAE for district UN
40 = 40
(5]
30 £ 30
3 8
20 ‘_—‘g s AR 2 5 2
& oo H
10 0 2 10
2
g

1981 1983 1985 1987 1989 1991 1993 1995

1981 1983 1985 1987 1989 1991 1993 1995

Figure 6.10: Lung cancer among women in NRW. Estimated and observed rates

with 99 % credible regions for RB Arnsberg 1981-1995.

It turns out that the small area estimation is not of the same quality in all

12 districts.

In districts with lower population density the fit is better than in

the others. The observed rates for the districts Ennepe (EN), Méarkischer Kreis

(MK), Siegen (SI), and Unna (UN) lie almost completely within the 99 % credible

intervals. For the other districts, however, there are more data points lying outside

the supported range.

An explanation for this can be that the smoking behavior of women in highly
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urbanized districts differs from that in more rural areas. Throughout this thesis
we have found that the model fit could be improved by introducing a covariate for

smoking behavior when analyzing lung cancer data.

For the reduced number of spatial units in the region of Arnsberg, we have been
able to include the covariate proxy for smoking behavior, and in the Bayesian frame-
work it was straightforward to estimate its effect. Figure 6.11 shows the estimated
mortality rates per 100,000 people at risk, displayed as circles, over 10 years from
1986 to 1995 with estimated 95 % credible regions. The true observed rates are

included as solid dots. The observed rates lie relatively well within the credible
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Figure 6.11: Lung cancer among women in NRW. Estimated and observed rates

with 95 % credible regions for RB Arnsberg 1986-1995.

regions obtained with the model including the population density as covariate.
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We have discussed the question, whether the ”lacing” of the credible regions of
the estimated rates can be reduced by a simultaneous estimation over more than
one 5-year period. In figure 6.11 one can see clearly the "smooth” supported range

at the ”critical” transition from year 1990 to 1991.

6.5 Generalization of allocation model

We have introduced a model based small area estimation for the missing cell fre-
quencies given the spatial and temporal marginals. We have included the covariate
proxy urbanization for smoking behavior. However, additional to the implementa-
tion of data on smoking behavior among women, the inclusion of other covariables
is straightforward. The influence of those covariates can be estimated automatically
and simultaneously within the model, without the necessity of prior specification
of the impact of the covariate. Compared to a classical model based partitioning,
where the extension of the (proportional) partitioning in the direction of including
covariates implies a prior knowledge of the covariate weights, the Bayesian modelling
approach is more general. It allows the data to express the weight of one or more
covariates through the MCMC simulation, which makes its superiority compared to

the frequentist approach clear.

When analyzing mortality data, it is common among epidemiologists to aggregate
the data over several years, or to calculate running means in order to avoid extreme
variation among the data, possibly due to errors in data collection. Our allocation
model for small area estimation can be applied in this kind of problem, as well.
When we split up aggregated data into data with the highest resolution in space
and time, the results will be "smoothed” automatically, which can lead to the fact
that for some areas or years the observed rates tend to lie outside of the estimated

credible regions.
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Chapter 7

Discussion and Outlook

The subject of this thesis has been the analysis of dependent data. The field of ap-
plication was data on lung cancer and stomach cancer mortality in different regions
of Germany over time. The dependence structure within the data arises through the
fact that both cancer types show distinct spatial patterns, but also are dependent
over time. We have applied separate time series analyses for the areal data, and
we have analyzed temporal slices of the data with Markov random field modelling
approaches to learn about the spatial dependence structure. The knowledge gained
from separate analyses has been used to build a spatio-temporal model on the ba-
sis of vector-autoregressive process theory of spatially dependent time series. The
parameters of the space-time model have been estimated with Bayesian and with
likelihood methods. Different cancer types, and different regions of study have been
analyzed. Models with and without covariates have been fitted and compared on
the basis of the deviance information criterion. We have discussed the computa-
tional difficulties of the likelihood approach, and the elegance of the evaluation of

the posterior quantities in the Bayesian approach with MCMC methods.

Finally, we have transferred the spatial and temporal autoregressive dependence

structures to a small area estimation problem. Due to the fact that cancer mor-

119
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tality data with the highest spatial and the highest temporal resolution are not
published, we have applied a model based small area estimation. Instead of solely
using covariates to base the partition on, we have additionally implied knowledge of
spatial and temporal dependence within the data. We have modelled the missing
data as parameters, and we have estimated data with the highest spatial and tem-
poral resolution given the spatial and temporal marginals. We have compared the
resulting estimates with a proportional partitioning according to a binomial mod-
elling approach. The comparison reveals larger and more reliable credible regions
of the allocation with space-time dependence. Finally, we have used data on lung
cancer with the highest spatial and temporal resolution for the state of North Rhine
Westphalia for a comparison with the estimated data according to the allocation
model. In the case of lung cancer among women it turns out that for the rural areas
the estimation is better than for the urban districts. We believe this to be due to

different behavioral patterns among women in rural compared to urban areas.

In chapter 4 and chapter 5 we have worked with first order vector-autoregressive
processes. Further research could be undertaken in the direction of higher order
autoregressive structures. For the estimation of the temporal trend in chapter 5, we
have assumed linearity. Alternatively, non-parametric approaches like first or second
order random walks can be applied to improve the fit of the underlying temporal
trend. The small area estimation in this application has been used to break down
spatial aggregates of regions into districts, and temporally aggregated data to yearly
figures. Without considering computational feasibility problems, the allocation with
our model can be used to break down spatial data to a finer resolution than districts.
In Germany, for example, this could be postal area codes. A new law on notifiable
infectious diseases has come into force in North Rhine Westphalia in 2001. From then
on incidence cases must be notified on 3-digit area code level. Further research could
be undertaken in the direction of spatial dynamic modelling or disease surveillance

of these infectious diseases. In the direction of the temporal component, the small
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area estimation model could be extended to the case of breaking down yearly data
into monthly data, with additional seasonal effects. For a more dynamic modelling,

it might be worth thinking of a simultaneous spatio-temporal structure.
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Appendix A

Probability Distributions

A.1 Discrete distributions

A.1.1 Binomial distribution

The binomial distribution, Bin(n, p) is used to represent the number of ”successes”
Z in a sequence of n iid. Bernoulli trials, with probability of success p in each trial.

For 0 < p <1 the probabilities for Z are given by

fz]p) = <Z> p* (1 =p)"" I,.. n}(2)-

The expectation of Z equals np and the variance is np (1 — p). The usage in the

WinBUGS language is z ~ dbin(p,n).

A.1.2 Poisson distribution

The Poisson distribution, Poi()\) is used to represent count data. According to
Gelman et al. (1995) simulation for the Poisson distribution can be somewhat

cumbersome, as it is a problem to invert the cumulative distribution function. For
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A > 0 the Poisson distribution can be written as

IO

2!

f(z]A) =e Iy (2).

For this discrete distribution the expectation and the variance are A. The WinBUGS

code is z ~ dpois(]\).

A.2 Continuous distributions

A.2.1 Multivariate Gaussian distribution

Consider g € IR? and ¥ a (p x p) symmetric positive-definite matrix. Then the

parameterization of the normal distribution, Gau,(p, X) results in a density

flz | B) = 2n) P22 ) Pexp{—(z =) =" (2 — ) /2}.

The vector of expectations is E(Z) = p and the covariance matrix E[(Z — p)(Z —
u)'] = X. For p =1 the log-normal distribution is defined as the distribution of ¢
with Z ~ Gau(u,o?), see Robert (1994), p. 381. The WinBUGS language uses the
function z[] ~ dmnorm(u[],X7'[].

A.2.2 Gamma distribution

The gamma distribution, Gamma(a, () is the conjugate prior distribution for the
inverse of the normal variance and for the mean parameter of the Poisson distri-
bution. A non-informative distribution is obtained, as & — 0 and g — 0. With

positive parameters o and [ the gamma density can be expressed as follows

1l ,6) = foers"™ exp{=.2} Tooo ().

Then the expected value of the gamma distribution is E(Z) = «/ and the variance

var(Z) = a/3%. Special cases of the gamma distribution are the Erlang distribution,



A.2. CONTINUOUS DISTRIBUTIONS 125

the exponential distribution, and the y?-distribution. To call the gamma distribution

in WinBUGS, use z ~ dgamma(«, 3).

A.2.3 Inverse Gamma distribution

The inverse gamma distribution InvGamma(a, 3) is the distribution of Z~! when
Z ~ Gamma(a, (), and it is the conjugate prior distribution for the normal variance.
A non-informative distribution is obtained in the limit as  and § — 0. Again with
positive values for o and 3 the inverse gamma density can be formulated as

a ,—B/z
f(z]a,B)= F‘Eoz) ZO‘T Ip ) (2).

E(Z) = a/f and var(Z) = a/3? as for the gamma distribution.

A.2.4 Wishart distribution

The Wishart distribution, Wishart,(X, V) is the conjugate prior distribution for the
inverse covariance matrix in a multivariate normal distribution. It is a multivariate
generalization of the x?-distribution, for the case that p = 1, or the gamma distri-
bution. A random random variable Z of dimension p follows a Wishart distribution,

if it is proportional to
o 1
f(z| 2, N) | z |N-P-/2 exp(—§tr(2 2)) I 150(2).

The usage in the WinBUGS language is z[] ~ dwish(X, N).

A.2.5 Inverse Wishart distribution

If Z~!' ~ Wishart, (X, N) then Z has the inverse-Wishart distribution. The inverse
Wishart distribution is the conjugate prior distribution for the covariance matrix in

a multivariate normal distribution.
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