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Abstract

The motif discovery problem consists of uncovering exceptional patterns (called motifs)
in sets of sequences. It arises in molecular biology when searching for yet unknown
functional sites in DNA sequences.

In this thesis, we develop a motif discovery algorithm that (1) is exact, that means it
returns a motif with optimal score, (2) can use the statistical significance with respect
to complex background models as a scoring function, (3) takes into account the effects
of self-overlaps of motif instances, and (4) is efficient enough to be useful in large-scale
applications.

To this end, several algorithms and statistical methods are developed. First, the
concepts of deterministic arithmetic automata (DAAs) and probabilistic arithmetic automata
(PAAs) are introduced. We prove that they allow calculating the distributions of values
resulting from deterministic computations on random texts generated by arbitrary
finite-memory text models. This technique is applied three times: first, to compute
the distribution of the number of occurrences of a pattern in a random string, second,
to compute the distribution of the number of character accesses made by window-
based pattern matching algorithms, and, third, to compute the distribution of clump
sizes, where a clump is a maximal set of overlapping motif occurrences. All of these
applications are interesting theoretical topics in themselves and, in all three cases, our
results go beyond those known previously.

In order to compute the distribution of the number of occurrences of a motif in a
random text, a deterministic finite automaton (DFA) accepting the motif’s instances
is needed to subsequently construct a PAA. We therefore address the problem of
efficiently constructing minimal DFAs for motif types common in computational biology.
We introduce simple non-deterministic finite automata (NFAs) and prove that these NFAs
are transformed into minimal DFAs by the classical subset construction. We show that
they can be built from (sets of) generalized strings and from consensus strings with a
Hamming neighborhood, allowing the direct construction of minimal DFAs for these
pattern types.

As a contribution to the field of motif statistics, we derive a formula for the expected
clump size of motifs. It is remarkably simple and does not involve laborious operations
like matrix inversions. This formula plays an important role in developing bounds for
the expected clump size of partially known motifs. Such bounds are needed to obtain
bounds for the p-value of a partially known motif. Using these, we are finally able to
devise a branch-and-bound algorithm for motif discovery that extracts provably optimal
motifs with respect to their p-values in compound Poisson approximation. Markovian
text models of arbitrary order can be used as a background model (or null model). The
algorithm is further generalized to jointly handle a motif and its reverse complement.
An Open Source implementation is publicly available as part of the MoSDi software



package.

An experimental evaluation using synthetic and real data sets follows. On the
carefully crafted benchmark set of Sandve et al. (2007), the proposed algorithm outper-
forms Weeder (Bailey and Elkan, 1994) and MEME (Pavesi et al., 2004) in terms of the
commonly used average nucleotide-level correlation coefficient. With respect to this
measure, it is also superior to other algorithms tested by Fauteux et al. (2008) on the
same benchmark suite; namely Seeder (Fauteux et al., 2008), BioProspector (Liu et al.,
2001), GibbsSampler (Lawrence et al., 1993), and MotifSampler (Thijs et al., 2001).

Besides the comparison to other algorithms, we perform motif discovery on the
non-coding regions of Mycobacterium tuberculosis and on CpG-rich regions in the human
genome. In both cases, we report on found motifs that are strikingly over-represented.
While the function of most of these motifs remains unknown to us, some motifs found
in M. tuberculosis can be attributed to a known biological function.
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1 Introduction

Without sequence information encoded as deoxyribonucleic acid (DNA), none of the
known living cells could exist. Understanding sequences is therefore fundamental to
understanding biology. In this thesis, we study theoretical foundations and algorithms
for the motif discovery problem: given a set of such sequences over a finite alphabet, we
are asked to find exceptional patterns (called motifs). The reason for searching for
exceptional patterns is the hope that they carry a biological meaning. This hope is
justified by the assumption that exceptional patterns that do not play a role in a cell’s
function are likely to vanish in the course of evolution. Therefore, discovered patterns
can serve as a basis for new biological hypotheses and direct further experimentation.

Example 1.1. A DNA molecule consists of two anti-parallel chains of nucleotides
forming a double-helix. In DNA, each nucleotide contains one of the four bases
adenine, cytosine, guanine, or thymine and, thus, a strand of DNA can be formalized
as a string over the alphabet ¥ = {A,C,G,T}. Transcription factors are proteins that
bind to DNA in a sequence specific manner. That means they recognize special (sets
of) sequences of nucleotides, called binding motifs. Refer to Alberts et al. (2007) for
a detailed introduction to the molecular biology of cells and, in particular, to DNA,
proteins, and transcription factors. The motif discovery problem now arises when we
have experimental evidence that a set of DNA sequences contain instances of binding
sites of a transcription factor but the binding motif of this factor is unknown. Then, a
motif discovery algorithm might reveal a pattern that is shared by all sequences which
can then be hypothesized to be the transcription factor’s binding motif. In this thesis,
we use the terms pattern and motif interchangeably. A

The goal of this thesis is to develop motif discovery algorithms. To do this, several
questions need to be answered.

1. How should motifs be modeled in order to capture patterns with a biological
function best?

2. How can exceptionality be measured?

3. How can the most exceptional motifs be extracted?

These questions can be attributed to the areas of biology;, statistics, and algorithmics,
respectively. The focus of this thesis is on the last two questions. Our aim is to develop
methods that are exact, use a statistically sound definition of exceptionality, and at the
same time are fast enough to be applicable in practice.

We start with an introduction to motif models in Section 1.1. That is, we discuss
common answers to Question 1. In Section 1.2, we formulate the aims of this thesis in-
formally. After introducing notation in Section 1.3, a precise formal problem statement
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follows in Section 1.4. We survey existing approaches to motif discovery in Section 1.5.
The chapter is concluded with an overview of this thesis given in Section 1.6.

1.1 Motif Models

The purpose of motif models is to generalize a limited number of observed motif
instances to a larger set of similar strings that we predict to be motif instances as well.
That means, when we encounter one of these strings in an unknown piece of DNA,
we would annotate this position as a putative motif instance. Motif models differ
in the way this generalization is done. The most widely used models are consensus
strings with a Hamming neighborhood (i.e. the set of strings with a limited Hamming
distance to the consensus), position weight matrices (PWMs) along with a score threshold,
and generalized strings (also known as IUPAC strings in the context of DNA). In the
following, we explain the three models using the example of a DNA binding site,
namely record MA0107 .1 in the Jaspar database (Sandelin et al., 2004) which represents
the binding site of the Rel protein domain as described by Kunsch et al. (1992). The
database contains 18 experimentally verified binding sites that are shown in Figure 1.1a.
Some of these sites occur multiple times such that the set of all sites contains 14 distinct
sequences.

Consensus Strings with Hamming Neighborhood. When confronted with a set of
motif instances, a consensus string can be obtained by majority vote at each position as
depicted in Figure 1.1b. In the shown case, the consensus GGGAATTTCC has a Hamming
distance of up to three to the original sequences. Therefore, the motif might be modeled
as the set of all strings with a Hamming distance of at most three to the consensus. Thus,
the given 18 strings are generalized to all 3676 strings with at most three differences
to GGGAATTTCC. The underlying assumption is that only the number of mismatches is
important and not their position. Whether or not this assumption is justified depends
on the application. In case of transcription factor binding sites, some positions are
usually more conserved than others, challenging this assumption. Nonetheless, the
Weeder algorithm by Pavesi et al. (2004), which uses this motif model, outperformed
many other methods in a benchmark study by Tompa et al. (2005).

Position Weight Matrices. A position weight matrix (PWM) of length ¢ is a |X| x ¢
matrix, where each entry w,; gives the score to be counted when character o is found at
position i (Staden, 1984). Given a putative motif instance, the scores for the characters
at all positions are summed up to obtain a score for the instance. When the score is
above a pre-chosen threshold, the string is said to be a motif instance. A common
method to obtain a PWM is the translation of a position frequency matrix (PFM) into
log-odds scores, where the PFM contains, for each position, the number of times
each character occurred at this position in the sample sequences. An example is
shown in Figure 1.1d. Formally, the PWM entries are defined by wy; := log(7:i/ps),
where r,; is the observed relative frequency of character o at position 7 and p, is the
background probability of o (i.e., the assumed probability of o in non-motif sequences).
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(a) GGGAATTTCC (d)
GGGAATTTCC A: 0 0 01110 2 0 O O O
GGGAATTTCC c: 4 00 0 3 0 0 21818
TGGAATTTCC G: 111718 7 4 0 0 0 0 0
TGGAATTTCC
CGOAATTTCC T: 3 1 0 0 1161816 0 0
GGGGATTTCC ©)
GGGACTTTCC A: 230 -2.30 230 0.83 074 -0.69 -2.30 -2.30 -2.30 -2.30
CGEAGTTICC . 11 230 -230 -2.30 -0.36 230 -230 -0.69 131 131
GGGAATTCCC
ppp—— G: 0.83 125 131 041 -0.11 -2.30 230 -2.30 -2.30 -2.30
CGGACTTTCC T: -036 -1.20 230 -2.30 -1.20 119 131 1.19 -2.30 -2.30
GGGGAATTCC

TaeeeTTTee ()

GGGGATTCCC
GGGGTTTTCC
GGGGGATTCC
GTGGGTTTCC A R
(b)  Consensus: GGGAATTTCC —w . —_——— -
3 4 5 6 7 8 9

0 1 2

(c) IUPAC string: BKGRNWTYCC

Figure 1.1: Different motif models of the binding site MA0107.1 from the Jaspar
database are shown: (a) original sequences (b) consensus string obtained
by position-wise majority vote (c) minimal IUPAC string matching all se-
quences (d) position frequency matrix (e) position weight matrix containing
log-odds scores computed assuming uniform background distribution and
0.5 pseudocounts (f) sequence logo.

When computing the relative frequencies 7,;, pseudocounts should be used to avoid
singularities: ry; := (v + foi)/(|X|y + >,/ fori), Where the f;; are absolute frequencies
and v is a small pseudocount constant. Refer to Rahmann et al. (2003) for a detailed
discussion of pseudocounts. For the PWM shown in Figure 1.1e, the largest score
threshold such that all sample sequences obtain a score equal to or larger than this
threshold is 7.55. There exist 75 strings with a score above this threshold. Thus, the
motif model is less degenerate, that is, more specific, than that obtained in the previous
paragraph using a consensus string. PWMs are commonly visualized by sequence logos
as exemplified in Figure 1.1f.

Remark 1.2 (PWM score reflects binding affinity). For a PWM derived from the binding
sites of a transcription factor, the PWM score of a sequence can be interpreted in terms
of the binding affinity of the transcription factor to this sequence. Roider et al. (2007)
use a biophysical model to derive a monotonic function mapping the PWM score to
the binding probability. Depending on the application, this probability can be used
directly rather than imposing a score threshold to make a binary decision whether or
not a string is a motif instance. A
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Generalized Strings. A generalized string is a sequence of character sets. Each set gives
the allowed characters at that position. The generalized string g = {A, G} {A}{A, T}, for
example, matches AAA, AAT, GAA, and GAT. Sets containing more than one letter (like
{A,G} or {A, T}) are called wildcards. In case of nucleotide sequences, all possible sets
are commonly abbreviated by IUPAC one-letter codes (IUPAC stands for International
Union of Pure and Applied Chemistry, the one-letter codes for sets of DNA characters
have been proposed by Cornish-Bowden, 1985). Using these codes, g is written RAW.
Appendix A.2 contains a table of all IUPAC codes. Therefore, generalized strings
over the nucleotide alphabet are sometimes called IUPAC strings. The minimal IUPAC
string matching all sample sequences shown in Figure 1.1a is BKGRNWTYCC. It matches a
total of 192 strings. Thus, it is more specific than the consensus string with Hamming
neighborhood and less specific than the PWM model.

Limits of flexibility of each of these three types of motif models can be judged in
terms of the number of different expressible motifs. For length ¢, there are 4¢ different
consensus strings and 15 different [IUPAC strings. Every string set expressible as
a consensus string with its Hamming neighborhood or a IUPAC string can also be
expressed by a PWM with a threshold. Additionally, PWMs allow us to express string
sets that cannot be described using the former two models. Therefore, PWMs are most
flexible. In all data mining tasks and in particular in motif discovery, however, higher
model flexibility comes with an increased risk of over-fitting. Or, speaking from a
statistician’s perspective, when a larger motif space is explored, more hypotheses are
tested, leading to a higher number of false positive results.

All three types of models do not infer dependencies between different positions
within the sample sequences. However, in a set of observed sites, two (either neigh-
boring or distant) positions might be correlated. For example, the characters observed
at position ¢ might vary but at the same time equal the character at position j in all
sample sequence. If such dependencies can reliably be detected, then they allow a
more informed generalization. To this end, Zhang and Marr (1993) propose an ex-
tended matrix model incorporating dependencies between adjacent positions. The
method by Agarwal and Bafna (1998) identifies, for each position, the most influential
other positions and models their dependency. An even more general approach using
Bayesian networks is given by Barash et al. (2003). Other approaches include mixtures
of PWMs (King and Roth, 2003) and models based on dense subgraphs in a k-mer
graph (Fratkin et al., 2006). All these methods have in common that they introduce
larger motif spaces compared to approaches that do not model position dependencies.

In this thesis, motifs are assessed according to their statistical significance. For two
models that capture the same motif instances in a set of sample sequences, the more
specific one usually leads to a higher significance. On the other hand, too flexible
models lead to many false predictions due to multiple testing. Therefore, the type
of motif model we choose should be neither too inflexible nor have too many free
parameters. Although most ideas presented in this work also apply to other motif
models, we focus on generalized strings which we consider to be a suitable compromise
between these demands. This choice is further justified in Chapter 6, where this model
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is shown to yield good results in applications.

1.2 Aims

In this section, we identify desired properties of the motif discovery algorithm to be
developed in this thesis. Before doing that, we discuss the user input to be made to
such an algorithm.

Every motif discovery algorithm should require that the user provides three pieces
of information; first, a set of input sequences to be searched, second, some hypothesis
on the kind of pattern to be looked for, and third, knowledge on sequence composi-
tion, that is, a specification of sequence features that are to be expected and should
hence not be reported as new motifs. While it is clear that input sequences must be
provided, the second and third aspect are often not recognized as input to be made
by the user. Both are, however, fundamental to motif discovery. To exemplify that,
let us assume that no assumptions on pattern type are made. Then, in an extreme
case, an algorithm might report the whole input text itself as a long motif with one
occurrence and a high significance score. Testing a larger space of motifs is therefore
not always an advantage, even when runtimes are not considered. A motif space
should therefore consciously be chosen by the user based on the scientific question
to be addressed. When searching for transcription factor binding sites, for instance,
we can use knowledge on known binding motifs to specify a suitable range of motif
lengths to be considered and possibly a maximal allowed degree of degeneracy, that is,
a limit on the use of wildcard characters. The third requirement, providing information
on expected sequence composition, can be seen as answering the question of what is
already known about the studied sequences. For example, if nothing is known, it is a
new result that a genome contains overrepresented patterns comprised of many Cs and
Gs. If, in contrast, a biologist knows that the GC content (i.e. the fraction of nucleotides
that are C or G) is high, these news are hardly surprising. As the goal of automated
motif discovery is to find novel sequence features, it is inevitable that information
about what is already known needs to be available. Therefore, the user should provide
a background model or null model.

This analysis of input to be made by the user directly translates into the first two
requirements on a motif discovery algorithm listed below. Additionally, we formulate
two further requirements.

Flexibility of background models. Background text models should be general enough
to describe complex dependencies. I.i.d. models and first order Markovian models are
insufficient for many applications, especially those concerning DNA. Text models are
discussed in detail in Sections 1.4 and 2.3.

Appropriate scoring functions. The scoring function used to assess motifs should
reflect the statistical significance with respect to the background model. The statistical
properties of motifs can strongly be affected by self-overlaps (see Example 1.8). Hence,
overlapping must be accounted for.



1 Introduction

Exactness. To eliminate the risk of missing significant motifs, the algorithm should
not work heuristically but extract a motif that is provably optimal with respect to the
scoring function.

Practicality. The algorithm should be able to solve practical problem instances on
current hardware in reasonable time.

The development of mathematical and algorithmical means to achieve this is the
main goal of the present thesis. Before we can formalize the problem, we need to
introduce some notation.

1.3 Notation and Conventions

Random variables are represented by capital Latin letters (in normal typeface), for
example, X might be the number of occurrences of a motif in a random text and S;
might be the character at position ¢ in this random text. Sets are also named by capital
Latin letters, either in normal or script typeface; script is used, for instance, when
disambiguation from names of random variables is needed. For example, Q might be
a set of states and (Q);)i;en a sequence of random variables taking values in Q. Power
sets are also commonly typeset in script; we might, for instance, write K to denote 2%,
the power set of K. For elements of sets, the same letter as for the set is used, but in
lower case; e.g.astate g € Q.

Due to the limited supply of different letters, some have to be reused in the course
of this thesis. It will be clear from the context which variable is meant. The meaning of
the most important symbols and variables, however, is the same throughout the whole
text. A list can be found on pages 149ff. Important symbols include the following: X is
a finite alphabet, ¥* denotes the set of all finite strings; ¢ is the empty string; S C £*
is a finite set of texts; N := ) __|s| is the total text length; / is the pattern length.
By IP, we refer to a probability measure and £(X') denotes the distribution or law of the
random variable X. It will always be clear from the context which probability measure
is referred to. All stochastic processes considered in this thesis are discrete. Therefore,
appropriate probability spaces can always be constructed; we do not clutter notation by
stating them explicitly. The set of all values that can be taken by a random variable X,
that is, the image of X, is denoted by range(X). The convolution of two probability
distributions ¢ and 1, written ¢ x ¢, is defined by (¢ * ¢) (k) := Z?:o (i) - Y(k —1)
for all k£ € Ny. The j-fold convolution of ¢ with itself is denoted by ¢*/. Iverson
brackets are written [-], i.e. [A] = 1 if the statement A is true and [A] = 0 otherwise.
The sign function is written sgn. Multisets are written {{1,2,2,7}}. All indices are

zero-based, i.e. s = s[0]...s[|s| — 1]. Substrings are written s[i...j] := s[i]...s[j],
where s[i...j] := ¢ for j < i. Furthermore, prefix, suffix, and reverse are written
sl..i] == s[0...1], s[i..] == s[i...|s] — 1], and 5= s[|s| — 1] ... s[0], respectively. N is the

set of natural numbers (excluding zero) and Ny := IN U {0}. The set of real numbers
is denoted by R, while R* and Ra“ refer to the real numbers greater than zero and
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greater than or equal to zero, respectively. R"*™ is the set of n x m matrices over R;
the zero matrix is written 0, and the identity matrix is denoted by 1. We adopt the
bra-ket notation, also known as Dirac notation, for vectors. That means that a row
vector is written (x| and its transposed is written |z). Then, using the standard inner
product, we have (z| - |y) = (z|y). Furthermore, |0) € R™ and |1) € R™ refer to the
vectors whose components all equal zero and one, respectively.

Experiments

Unless stated otherwise, experiments have been performed on an Intel Core 2 Quad
CPU at 2.66 GHz with 8 GB RAM running Linux. Although many algorithms discussed
in this thesis are parallelizable, the reported times refer to a single core. Algorithms
have been implemented in Java. Implementations are available as part of the MoSDi
software package at

http://mosdi.googlecode.com/ .

It is distributed under the terms of the GNU General Public License (GPL).

Human Genome

We use Build 36.1 of the human genome as provided by the National Center for
Biotechnology Information (NCBI). This assembly is also known as HG18.

1.4 Problem Formalization

Based on the goals given in Section 1.2, we now formally state the problems to be
solved. As an objective function, we use the statistical significance which is also called
p-value. In order to introduce it formally, we need definitions of random texts and text
models.

Definition 1.3 (Random text). A random text is a stochastic process (.St):en,, Where each

S; takes values in a finite alphabet >. Then, the concatenation of Sy, ..., Sy_1, written
So - - - Sn—1,1s called random text of length N. Furthermore, we define Sf =S5 Site—1,
that means S/ refers to the substring of length ¢ starting at position i. O

Definition 1.4 (Text model). A text model P : 2(=%) [0,1] is a probability measure
assigning probabilities to sets of infinitely long strings. O

Therefore, each random variable S; is a function from XN to ¥ returning the i-th
character of the given infinite string. As probability measures are countably additive,
this definition of text models implies that all probabilities are consistent. In particular,
P(Sk! =) > P(SE! = 50) forall s € ©*and o € 5.

According to Kolmogorov’s existence theorem (see, for instance, Billingsley, 1995),
consistently specifying the probabilities I’(Sp - - - S|5—1 = s) for all s € X* ensures the
existence of a corresponding text model.
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Example 1.5 (Uniform Text Model). The uniform text model is obtained by setting

1
113uniforrrz (SO T S|s\—1 = 5) = W

for all s € X*. AN

Example 1.6 (Li.d. Text Model). Let a probability p, for each character o € ¥ be given.
Furthermore, let all S; be independent and identically distributed (i.i.d.). Then, we get
an i.i.d. text model with

|s|—1

Piia(So - Sjg-1 = 5) == H Psli]
=0

for all s € X*. AN

In this thesis, text models are used as background models. That is, they encode what
we know or assume a priori about the composition of the input sequence(s). We might,
for instance, use an i.i.d. model with py = pr = 0.6 and pc = pg = 0.4 to reflect the
nucleotide composition of the human genome. As we see in Example 1.8, however,
the use of more elaborate models is advisable for DNA. Therefore, we discuss general
finite-memory text models in Section 2.3.

Definition 1.7 (p-value for the total number of occurrences in a single string). Let a
motif p, an input text s € ¥*, and a text model IP be given. The p-value of p in s with
respect to the text model IP is given by

pualue (p, s) := P (occy (So -+ Sjsj—1) > occp (s) ),
where occ), (s) is the number of occurrences of p in s. O

That means, when a motif occurs k times in a given text, the p-value is the probability
that it occurs k or more times in a random text of the same length.

Example 1.8. Suppose we have analyzed a portion of human DNA of length 10 000
and have found the motifs shown in Table 1.2. They differ in frequency, character
composition, and overlap potential. The p-values allow a comparison despite these
differences. Regarding the overlap potential, for example, note that the first two
motifs AAAAATTTTT and ATATATATAT have different p-values, even with respect to a
uniform text model, although the number of occurrences and character composition
are the same. The first one cannot overlap itself, while the second has a quite strong
tendency to do so. This leads to an increased probability of observing many instances
in a random text. When using an i.i.d. model reflecting the character composition in
the human genome instead of a uniform model, the p-values for the AT-rich motifs
increase, while they decrease for the CG-rich motifs. According to a second order
Markovian model, that is, a model where the character distribution depends on
the two preceding characters (see Section 2.3), the motif with the lowest p-value is
CGCGNNCGCG. The information that the dinucleotide CG is largely avoided in the human



1.4 Problem Formalization

Table 1.2: Assuming that the shown IUPAC motifs (left column) have been observed
in a stretch of human DNA of length 10000, their p-values with respect to
different text models are given, namely (from left to right) a uniform text
model, an i.i.d. text model, and a second order Markovian text model. The
latter two models have been estimated from the human genome. Refer to
Example 1.8 for more details.

Motif Occurrences  p-value  p-value p-value
(uniform)  (ii.d.) (Markovian)

AAAAATTTTT 6 1.0-10® 22.10"  6.8.10%
ATATATATAT 6 12-10% 6.0-10 3.1-10%
ANANNNTTNT 50 6.6-107° 77.10 1.1-10
CGCGNNCGCG 5 21-10% 91.10%” 11-101
GGCCNNGGCC 5 92.10% 55.101° 1.7.10%

genome is encoded in the text model and, thus, finding CGCGNNCGCG five times is
rightly considered surprising. This example shows that the p-value is a powerful tool
to compare the significance of motifs. It also shows that an appropriate text model
must be used to make relevant findings. A

Instead of searching a single string s for motifs, a finite set of strings S might be
given as input. In this case, we use a set of random texts to define the p-value.

Definition 1.9 (p-value for the total number of occurrences in a set of strings). Leta
motif p, a finite set of input strings S = {so, ..., st }, and a text model I° be given. The
p-value of p in S with respect to the text model IP is given by

k k
poalue (p, S) = P(Zoccp (Sio- - Sijsij-1) = Zoccp (si)) :
=0 1=0

where (5;+)1eN, are random texts distributed according to IP for i € {0, ..., k}. O

Furthermore, we can consider not only the total number of occurrences, but also the
number of strings a pattern occurs in.

Definition 1.10 (Number of matching strings). Given an finite set of strings S C ¥~
and a motif p. The number of matching strings is given by

occ-seqs,, (S) = Z[[occp (s)>0].

seS
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Definition 1.11 (p-value for the number of matching strings). Let a motif p, a finite set
of input strings S = {so, ..., s;}, and a text model P be given. The p-value of p in S
with respect to the text model PP is given by

k
poalueg,,, (p,S) = IP(Z [(ocey, (Sio- -+ Sijsij=1) > 0] > occ-seqs, (S)) ,
i=0

where (5;¢)ten, are random texts distributed according to P for i € {0, ..., k}. O

The above definitions are applicable for any kind of motif model. In this thesis, we
model motifs as generalized strings, that is, as sequences of sets of characters.

Definition 1.12 (Generalized string). Given an alphabet 3, we call the set G, := 2%\ {0}
generalized alphabet over ¥ and a string g € G, generalized string. We say that a string
s € ¥* and a generalized string g € G5, match, written s < g, if |s| = |g| and s[i] € g[i]
for0 <i<|g|. O

We write G instead of Gy if the used alphabet is clear from the context. Every string
s € 3 can be translated into the generalized string {s[0]}{s[2]} ... {s[|s| — 1]}. In this
sense, strings can be seen as special cases of generalized strings.

Now we can state those two variants of the motif discovery problem whose solution
is the main goal of this thesis.

Problem 1 (Discovery of generalized string w.r.t. the total number of occurrences).
Given a finite set of input sequences S C ¥*, a text model P, and a pattern length ¢,
compute a motif p € G* with minimal p-value according to Definition 1.9. That means,
choose p such that there does not exist a p’ € G* with pualue (p/, S) < poalue (p, S).

Problem 2 (Discovery of generalized string w.r.t. the number of matching strings).
Given a finite set of input sequences S C ¥*, a text model P, and a pattern length ¢,
compute a motif p € G* with minimal p-value according to Definition 1.11. That means,
choose p such that there does not exista p’ € G¢ with pvalueseqs ,S) < pvalueseqs (p,S).

A subproblem that needs to be solved first is to compute the p-value for a given
motif with respect to a given text model.

1.5 Related Work

On the one hand, motif discovery is a hard task. This can be exemplified by the fact
that even simple formalizations of the problems are NP-hard; respective references to
hardness results are given in Section 1.5.1. On the other hand, the problem needs to
be solved in order to aid the understanding of biological sequences. This dichotomy
might explain why the topic has received an enormous amount of attention. More
than 400 articles on motif discovery algorithms have been published. Most of these
algorithms work heuristically. That means they do not guarantee to find a motif that
maximizes the chosen objective function. We call motif discovery algorithms that do
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make this guarantee exact. This thesis aims at the development of exact algorithms. For
the sake of completeness, we briefly explain the most successful strategies for heuristic
motif discovery in Section 1.5.2 before surveying the literature on exact algorithms in
Section 1.5.3.

1.5.1 Complexity Results

One formalization of motif discovery is the Closest Substring Problem: Given a pattern
length ¢ and a finite set S of length-n sequences over a finite alphabet >, find a
minimal distance threshold d and a string p € X such that each s € S has a length-¢
substring with a Hamming distance to p of at most d. This problem was shown to
be NP-hard by Lanctot et al. (1999). An algorithm by Ma and Sun (2009) solves it
in O((16/3))¢ - |S| - nl°2d1+2) time. Solving the Closest Substring Problem yields
motifs represented as a consensus string with a Hamming neighborhood. Searching
for the best IUPAC string can similarly be formalized when minimizing the motif’s
degeneracy instead of the parameter d, where the degeneracy of a IUPAC string is
defined as the number of strings it matches. Thus, the string ANNC has a degeneracy
of 16. Now the problem is formalized as follows. Given a set S C X" and a pattern
length /, find a length-¢ IUPAC string p with minimal degeneracy such thatall s € S
contain a substring that matches p. Precisely this problem has been encountered in
the context of PCR primer design and was shown to be NP-hard, too (Linhart, 2002;
Linhart and Shamir, 2005).

To be useful in practical applications, a motif discovery problem should be formu-
lated as an optimization problem where the objective function takes a background
model into account. The effect of self-overlaps of motifs should be paid attention to as
well. Both requirements are further discussed in Sections 1.2 and 1.4. The focus of this
thesis is not on formal hardness proofs, but it can be said that, in general, considering
background models and overlaps does not make problems easier. Therefore, the sub-
ject of this thesis are hard problems which we cannot hope to find polynomial time
algorithms for.

1.5.2 Heuristic Algorithms

The advantage of heuristic algorithms lies in their speed. In general, however, their
use implies the risk of missing motifs, especially when the signal is weak. Therefore,
trying a heuristic algorithm is advisable whenever short running times are important
and strong signals are expected in the input sequences.

Expectation Maximization

The Expectation-Maximization (EM) method allows estimating parameters of proba-
bilistic models with hidden variables by iteratively improving the model’s likelihood.
That means, given observed data, the algorithm tries to find a model that explains the
data best. The EM principle has first been generically formulated by Dempster et al.
(1977). One important application is the estimation of mixture models; that is, models
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composed of several simpler models called components. The assumption is that a da-
tum is drawn by choosing one of the components with fixed yet unknown probability
and generating the datum according to this component. Here, the hidden variables
tell which datum was generated by which component. Starting from a randomly (or
informedly) chosen set of model parameters, new parameters are computed in each
iteration. One EM step consists of calculating new model parameters that maximize
the expected (log-)likelihood, where the expectation is taken over the hidden variables
with respect to the current model. By using the expectation with respect to the current,
and therefore known, model parameters, the maximization is usually computationally
inexpensive. One key feature of this EM update strategy is that the likelihood cannot
decrease and, thus, converges to a local optimum.

The first EM-based motif discovery algorithm we are aware of was published by
Lawrence and Reilly (1990). Based on their work, Bailey and Elkan (1994) developed
the widely known and used MEME algorithm. Given a set of sequences and a length ¢,
MEME views the input sequences as a sequence of (overlapping) /-grams generated
by a mixture model consisting of two components. The first component models the
background, that means, those parts of the sequences not part of the motif. The
parameters for this component are the probabilities of each character in the alphabet,
that is, all letters are assumed to be independent and identically distributed (i.i.d.). The
second component models the motif by specifying a separate character distribution
for each position from 1 to ¢. The information which /-gram was generated by which
model, that is, the positions of motif occurrences, is missing and seen as a hidden
variable in the EM framework. The parameter estimation is then run until convergence
using the EM algorithm.

Recent improvements of EM algorithms for motif discovery include the combination
with Monte Carlo sampling (Jackson and Fitzgerald, 2007; Bi, 2009), the integration of
false discovery rate control (Li et al., 2008), and the parallelized implementation on
graphics processing units (Chen et al., 2008).

Gibbs Sampling

Gibbs sampling produces a series of samples from a multidimensional probability space
by fixing all dimensions but one in each step and sampling the non-fixed dimension
conditionally on the fixed ones. This is often much easier than sampling all dimensions
at once from the joint distribution. The application of this paradigm to motif discovery
has been proposed by Lawrence et al. (1993). In this case, the multidimensional data
consists of the positions of motif occurrences in each input sequence. It is assumed
that each sequence contains exactly one occurrence and random positions are chosen
initially. In each iteration, one of the occurrence positions is resampled. To do this, all
other occurrences are fixed and a PWM is constructed out of them. The new position
is now sampled such that each window’s sample probability is proportional to its
probability as given by the PWM. That means the sum of PWM scores for all windows
is normalized to one to give the sample distribution.

The initial contribution of Lawrence et al. (1993) has inspired many authors to work
on improvements and various implementations. A similar algorithm, for instance, has
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been implemented in the AlignACE program (Roth et al., 1998; Hughes et al., 2000). An
adaptation of the idea to gapped alignments was given by Rocke and Tompa (1998). As
further elaborated by Rocke (2000), the performance of this algorithm can be improved
by using suffix trees. The BioProspector program by Liu et al. (2001) is able to handle
Markovian background models and motifs consisting of two blocks separated by a gap.
Thijs et al. (2002) discuss the use of Markovian background models as well. Shida (2006)
proposes to modify the constructed PWM in each step such that strongly conserved
columns are slightly weakened. It is argued that this is useful when the positions of
differences of motif instances are distributed uniformly. In a study by Reddy et al.
(2007), the robustness against the presence of sequences with no motif occurrence is
found to increase when multiple runs are performed and only those positions found
most often are retained. The GIMSAN software by Ng and Keich (2008) combines
Gibbs sampling with motif significance assessment based on Gamma distributions
whose parameters are fitted by running the Gibbs sampling algorithm on random
sequences. Defrance and van Helden (2009) modify the sampling such that it explicitly
targets the PWM'’s information content; that means the sampling distribution is chosen
such that selecting positions that increase the information content is encouraged.

Random Projections

EM and Gibbs sampling methods have in common that they iteratively improve a
candidate motif and therefore can get stuck in a local optimum. In fact, EM cannot
even theoretically leave a local optimum. Thus, the attained motif strongly depends
on the initial (usually random) choice of a candidate motif to be refined. To make
an informed initialization, Buhler and Tompa (2002) put forward a random projection
strategy for choosing good candidates. When searching for motif candidates with
width /, a number of £ < £ column indices is chosen randomly. The selected column
indices resemble a spaced seed (see Ma et al., 2002). Then, each /-mer in the input
sequences is translated into a k-mer by retaining the chosen columns and discarding
the rest. This can be seen as a hash function mapping every ¢-mer into one of 4% buckets.
For each bucket, the number of /-mers that hash into it is determined. Each bucket
for which this number exceeds a threshold is further investigated by using the /-mers
in it as an initial motif to be refined by local search. For details on choosing k¥ and a
threshold appropriately, refer to Buhler and Tompa (2002). Then, the steps of choosing
a projection, that means, selecting columns, determining which buckets exceed the
threshold, and running local search on them can be iterated and the overall best
motif be reported. Regarding this procedure, Raphael et al. (2004) have noted that
the strategy of uniformly sampling from the space of all projections can imply long
waiting times until the right subset of columns is contained in the projection. They
propose a modified sampling strategy that favors projections containing subsets not
contained in the projections considered so far.

In general, random projections can often be used to speed up algorithms based on
¢-mers. In the motif discovery algorithm given by Chin and Leung (2005), for example,
each /-mer in the input makes votes for all strings in its Hamming neighborhood. This
approach is costly as it requires to enumerate these neighborhoods, but it becomes
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feasible for larger values of ¢/ when using random projections.

Other Methods

Many other data mining techniques have been applied to the problem, including
neural networks (e.g. Heumann et al., 1994; Workman and Stormo, 2000; Liu et al.,
2006), evolutionary algorithms (e.g. Fogel et al., 2004; Rahmann et al., 2009), particle
swarm optimization (Chang et al., 2004), greedy algorithms (e.g. Stormo and Hartzell,
1989; Hertz and Stormo, 1999), and support vector machines (Schultheiss et al., 2009).
We do not go into the details of all these heuristics but continue with a survey of exact
methods.

1.5.3 Exact Algorithms

Exact motif discovery algorithms guarantee to return a motif with maximal score.

Analysis of k-mer composition

One approach is to analyze the frequency of all k-mers in the input sequences (for a
reasonable value of k). As we discuss below, there are many different ways to count
k-mers and to decide whether or not the obtained k-mer distribution indicates the
presence of an overrepresented motif.

An early contribution was made by Waterman et al. (1984). Their idea is to simulta-
neously slide a length-¢ window over all given sequences and examine the windows’
k-mer compositions (for a k£ smaller than ¢). Thus, their algorithm requires the input
sequences to be (at least roughly) aligned and to have equal lengths. Although this sim-
ple approach suffices to detect signals with a fixed distance to some known sequence
features such as transcription start sites (Galas et al., 1985), we are more interested in
methods that do not require any kind of prior alignment.

To this end, Staden (1989) has proposed to analyze the /-mer composition of the
complete input sequences by constructing a data structure that he terms fuzzy dictio-
nary. It contains, for each /-mer, the number of its occurrences plus the number of
occurrences of similar /-mers; i.e., those /-mers within a Hamming neighborhood. All
¢-mers for which a similar one occurs more often are discarded. Of the retained ones,
those with occurrence counts above a threshold are further analyzed by computing
the information content of the derived PWM. This strategy does not require the input
sequences to be aligned, but is limited to small pattern lengths. Furthermore, the
method only guarantees to find motifs with a high number of occurrences; it does not
guarantee to discover one with maximal information content.

Several other methods based on the enumeration of all /-mers have been developed.
Given a set of input sequences, Pesole et al. (1992) compare the number of sequences
each /-mer occurs in to the expectation with respect to a first order Markov model
and compute a x? statistic. The number of occurrences per sequence is assumed to
be Poisson distributed. In the end, all patterns with a x? value above a threshold are
considered significant. Rather than approximating it, the probability that a sequence
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contains one or more occurrences of an /-mer with at most one mismatch is exactly
computed by Tompa (1999) using finite automata. Based on that, exact z-scores, that
is, deviations from expectation divided by standard deviations, are obtained directly.
Shortly after that, Sinha and Tompa (2000) generalized this approach to allow limited
use of [IUPAC wildcard characters like a number of Ns as spacers in the middle of motifs.
Furthermore, their improved method takes all occurrences into account, including
multiple occurrences in the same sequence, and computes exact z-scores. These are
two of few prior articles on motif discovery that take the effects of self-overlaps into
account. These algorithms are implemented in the YMF software (Sinha and Tompa,
2002, 2003).

To analyze yeast promoters, van Helden et al. (1998) also enumerate all /-mers (for
¢ = 6). They assume all length-/ windows to be independent and thus neglect overlaps.
The significance of the total number of occurrences of each /-mer is then computed
by using a binomial distribution as a null model. This is approximately the same as
using a Poisson distribution as the binomial distribution converges to the Poisson
distribution when the number of trials goes to infinity (see Section 2.2). To correct for
multiple testing, the p-value is then multiplied by the number of tested /-mers. As van
Helden et al. (2000) point out, this procedure can at once be adapted to the detection
of pairs of short /-mers separated by a fixed-width spacer. Another enumerative
algorithm is proposed by Sze and Zhao (2006); it handles arbitrarily placed “don’t care”
characters (equivalent to [IUPAC symbol N) and mismatches at the same time. Motif
candidates are judged according to an E-value (refer to Sze and Zhao, 2006, for the
precise definition). Although mismatches and don’t care characters further the number
of possible overlaps, the motif’s overlapping structure is ignored when computing
E-values.

Irredundant Motifs

7

When considering motifs of symbols from the input alphabet ¥ plus a “don’t care”
character, a maximal motif is a motif that cannot be made more specific without losing
occurrences. Research has been carried out on irredundant motifs which are maximal
motifs that cannot be decomposed into multiple other maximal motifs. That means
there does not exist a set of other maximal motifs that covers precisely the same
sequence positions. Parida et al. (2000) seemingly proved that the cardinality of the set
of irredundant motifs grows at most linearly with the length of the input sequence,
but Pisanti et al. (2005) disproved this result by giving a counterexample. Even when a
set of irredundant motifs has been extracted, for example by using the algorithm of
Apostolico and Tagliacollo (2008), the problem of efficiently combining the resulting
motifs in order to obtain the most statistically significant ones is, to our knowledge,
unsolved.

Clustering Algorithms

Pevzner and Sze (2000) point out that motif discovery can be viewed as a clustering
problem. They propose an algorithm called Winnower that builds a graph of all
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length-¢/ windows in a set of input sequences. Two vertices are connected when the
windows come from different sequences and their Hamming distance is below a
threshold. Then, motifs are discovered by searching for cliques. Jensen et al. (2006)
formulate the procedure generically: Given input sequences, a distance measure, and a
length ¢, compute the distance of all pairs of /-mers in the input sequences and subject
the resulting matrix to a clustering algorithm. On the one hand, this approach has
the advantage of permitting the use of arbitrary distance measures and clustering
paradigms. On the other hand, long inputs render this approach infeasible as the
size of the matrix of distances grows quadratically with the input length. A related
approach is taken by Fratkin et al. (2006) who cast motif discovery into a maximum
density subgraph problem on a graph of /-mers. Zaslavsky and Singh (2006) use a
weighted graph where the edge weights are given by /-mer similarity. Then, they
apply integer linear programming to find a maximum weight clique with exactly one
¢-mer from each input sequence.

Walking Suffix Trees

Among the first motif discovery algorithms using suffix trees were those of Brazma
etal. (1998) and Sagot (1998). The former authors propose to construct a tree of putative
motifs represented by IUPAC strings. That means that the tree is not built over the
DNA alphabet, but over the IUPAC alphabet or a subset thereof. It is built lazily as
described by Giegerich and Kurtz (1995), that is, a set of occurrence positions is stored
within each node and only the needed nodes are actually constructed. Brazma et al.
(1998) give several heuristic criteria to decide whether parts of the tree cannot contain
interesting motifs and can therefore be omitted. They do not create a node, for instance,
if the number of corresponding occurrences is below ten.

Instead of creating a tree of all patterns, Sagot (1998) uses the suffix tree of the input
sequences and traverses it while searching for motifs. Despite this difference, the key
technique is the same: for each visited node, it is decided whether the subtree below
it can safely be skipped without missing relevant motifs. Or, speaking in terms of
the string representing the motif, given a prefix, it is determined whether all motifs
with this prefix can be skipped. Besides looking for exactly repeated patterns, the
algorithm by Sagot (1998) is able to discover consensus strings. The input to the
algorithm is a sequence, the number of allowed errors, and a quorum. All strings
that occur (possibly overlapping) at least as often as the quorum with at most the
given number of mismatches are returned by the algorithm. Allowing mismatches
is achieved by branching in the suffix tree; instead of one node, a set of nodes can
be active. The algorithms developed in this thesis use similar techniques which are
described in more detail in Section 5.1. The main problem of Sagot’s algorithm is the
need to specify one global quorum. In general, the occurrence count is a bad measure
of over-representation; it neither takes a background model nor a motif’s degeneracy
into account. Using a fixed quorum thus inevitably leads to a detection bias towards
degenerate motifs and produces false positive hits that can often be explained by an
appropriate background model.

Similar techniques to discover motifs while traversing a suffix tree are used in other
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articles. Eskin and Pevzner (2002), for instance, combine the idea with the graph-based
approach by Pevzner and Sze (2000). For each examined pattern prefix, it is determined
whether the corresponding vertices in a (virtual) /-mer graph can form a clique. If not,
the pattern prefix is discarded. A speed-up of the initial algorithm by Sagot (1998)
is reported by Pisanti et al. (2006). They propose to avoid duplicate computations:
when it has been detected that a motif p cannot be extended to a certain length while
meeting the quorum, this information is stored and reused when motifs having p as
a substring are examined. The Weeder algorithm introduced by Pavesi et al. (2001)
obtains a speed-up by imposing constraints on the placement of mismatches. A string
is only considered to be a motif instance if, in all its prefixes, only a user-specified
fraction of characters mismatch. This forbids, for example, to have all mismatches
at the beginning, reducing the average size of the set of “active” suffix tree nodes
during the search. Marsan and Sagot (2000) generalize the original algorithm to detect
structured motifs which consist of several conserved blocks separated by spacers of
different, possibly variable, lengths. A speed-up of this algorithm by augmenting
the suffix tree with so called box links is reported by Carvalho et al. (2006). Although
significance of found motifs is assessed by a x? test, a fixed quorum is again used for
initial motif extraction. Another approach to detect structured motifs is proposed by
Federico et al. (2009). They outline an algorithm to combine several single motifs into
structured motifs.

Based on prior work of Eskin (2004), it is shown by Leung and Chin (2005) that a
branch-and-bound strategy on suffix trees can be used to extract a PWM with optimal
likelihood. The idea is to partition the space of all theoretically possible PWM columns;
then, a sequence of partitions corresponds to a set of PWMs. In other words, an
alphabet is defined where each character is an infinite set of PWM columns. The
partitioning is done such that, for each “character”, the information content can be
bounded. Now, the algorithm searches for sequences over that alphabet, i.e., sets of
PWDMs, that can potentially contain the optimal PWM. Large parts of the sequence tree
can be pruned by using the bounds. The set of candidates is narrowed by iteratively
refining the partitions.

Another way of using suffix trees to detect overrepresented words is described
by Apostolico et al. (2000). They give an efficient algorithm to annotate each suffix
tree node with expectation and variance of the corresponding string. This allows the
computation of z-scores for all words represented by a suffix tree node. Moreover, the
authors observe that z-scores are monotone in the sense that whenever appending a
letter keeps the number of occurrences constant, the z-score increases. This implies that
the words with maximal z-score must be explicitly represented by nodes in the suffix
tree. In another article, Apostolico et al. (2003) further elaborate on such monotonicity
properties of the z- and other scores. Nonetheless, the method has the drawback that
it cannot handle mismatches or wildcard characters.

Conclusion

In summary, some existing algorithms meet some of the demands discussed in Sec-
tion 1.2, but no algorithm fulfills all these requirements.
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1.6 Organization of the Thesis

Before approaching Problems 1 and 2, we develop necessary mathematical and algo-
rithmic techniques. In Chapter 2, fundamental concepts are introduced. This includes
classical ones like (non)deterministic finite automata and hidden Markov models, but
also new ones like probabilistic arithmetic automata (PAAs) to whose development the
author has made contributions. The formal definition of PAAs and its application to
pattern matching statistics have been previously published as

Marschall and Rahmann (2008). Probabilistic Arithmetic Automata and their
Application to Pattern Matching Statistics. Proceedings of CPM.

As an illustrative example on the utility of PAAs, Chapter 2 furthermore contains a
digression on the analysis of pattern matching algorithms that is based on

Marschall and Rahmann (2010a). Exact Analysis of Horspool’s and Sunday’s
Pattern Matching Algorithms with Probabilistic Arithmetic Automata. Proceedings
of LATA. An extended version has been submitted. A preprint is available
from arXiv (Marschall and Rahmann, 2010c).

Further examples for applications of PAAs that are not included in this thesis can be
found in
Marschall, Herms, Kaltenbach, and Rahmann (submitted). Probabilistic Arith-
metic Automata and their Applications. A preprint is available from arXiv
(Marschall et al., 2010).

One result of Chapter 2 is that a motif’s significance can be computed based on
a deterministic finite automaton (DFA) accepting its instances. Algorithms for the
efficient construction of minimal DFAs are therefore helpful and presented in Chapter 3
which is based on
Marschall (2011). Construction of Minimal Deterministic Finite Automata from
Biological Motifs. Theoretical Computer Science.

Clumps are maximal sets of overlapping occurrences of motifs. Hence, overlapping of
motifs can be studied by studying clumps. When the distribution of clump sizes, that
is, the number of occurrences in a clump, is known for a motif, motif statistics can be
calculated based on fast and accurate compound Poisson approximations. Chapter 4
is thus devoted to clump statistics. Results on expected clump sizes have previously
been published as

Marschall and Rahmann (2010b). Speeding up Exact Motif Discovery by Bounding
the Expected Clump Size. Proceedings of WABL

Chapter 5 follows, where techniques from previous chapters are used to devise a
motif discovery algorithm. The central idea of using a branch-and-bound approach to
optimize the p-value is part of an article that has appeared as

Marschall and Rahmann (2009). Efficient Exact Motif Discovery. Proceedings of
ISMB.
The developed algorithms are applied to several sets of synthetic and biological
sequences in Chapter 6. The final Chapter 7 contains a concluding discussion and an
outlook to future work.
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2 Preliminaries

In this chapter, we gather basic definitions and needed methodology. We begin with the
classical definitions of automata in Section 2.1. In Section 2.2, we remind the reader of
some probability distributions important in this thesis, namely binomial, Poisson, and
compound Poisson distributions. Finite-memory text models are defined in Section 2.3.
Useful extensions to classical automata are probabilistic arithmetic automata (PAAs)
and deterministic arithmetic automata (DAA), which we define in Sections 2.4 and 2.5,
respectively. As detailed in Section 2.6, these concepts allow us to connect deterministic
finite automata (DFAs) accepting the instances of a motif to a finite-memory text model
in order to obtain the distribution of the number of occurrences and compute the
motif’s statistical significance. Moreover, PAAs can be used in many applications
beyond motif statistics. To get a flavor of what can be done using this technique, we
analyze pattern matching algorithms in Section 2.7.

2.1 Finite Automata

In this section, we give the classical definitions of automata.

Definition 2.1 (Deterministic finite automaton (DFA)). A deterministic finite automaton
is a tuple (Q, X%, 6, qo, F'), where Q is a finite set of states, ¥ is a finite alphabet, ¢ :
Q x ¥ — Qs a transition function, gy € Q is the start state, and F' C Q is the set of
accepting states. O

Definition 2.2 (Non-deterministic finite automaton (NFA)). A non-deterministic finite
automaton is a tuple (Q, X, A, Qp, F'), where Q, ¥ and F are defined as for the DFA
above, A : Q x 3 — 29 is the non-deterministic transition function, and Qy C Q is a set
of start states. O

Using a set of start states Q instead of only one start state is a notational convenience
rather than a conceptual change: we can always transform the automaton to have only
one start state by adding a new start state ¢p and defining its outgoing transitions by

(@0.0) > | Alg.0).
q€Qo0

Another convenience is the extension of a DFA’s transition function to strings (in-
stead of single characters):

§:0x ¥ 5 Q (2.1)

q ifs=¢,
(q, s) — {5(5((1’ S[O]),s[l.-]) otherwise. 22
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Note that §(¢q,0) = B (q,0) forall ¢ € Q and o € X. Therefore distinguishing between

§and § unnecessarily clutters notation. Hence, we omit the distinction and write ¢

to also refer to the extended function that maps pairs from Q x X* to states in Q.

Analogously, the transition function A of an NFA is extended in its second argument.
Sometimes it is useful to replace the set F' with counts for each state.

Definition 2.3 (Counting DFA). Let a DFA (Q, %, 4, qo, F') and values 1, € Ny for each
g € Qbe given. Then, the tuple (Q, %, 8, o, (14)4c0) is called counting DFA. O

Example 2.4 (Aho-Corasick automaton as counting DFA). For a given finite set of
strings & C ¥*, an Aho-Corasick automaton (Aho and Corasick, 1975) can find all
occurrences of strings from S in a given text. As S may contain strings that are suffixes
of other strings in S, it is possible that the occurrences of two different strings end
at the same position. This is reflected in the Aho-Corasick automaton by an output
set attached to each state. The automaton is constructed such that, when entering a
state, we know that the strings in its output set end at the present position in the read
text. An Aho-Corasick automaton can now be seen as a counting DFA over the same
state space. We define the count 7, as the size of the output set of the state q. Then,
the number of occurrence can be obtained by letting the counting DFA read a text and
adding up the counts 7, of all visited states. A

Definition 2.5 (Language of a state). The language of an NFA state q € Q is given by

LNFA(Q) = {S ex” ‘ A(q,s) NF 7'é @} .

Analogously, the language of a DFA state ¢ € Q is given by

Lpra(q) == {s € ¥*|d(q,s) € F}.
The language of a set of states Q' C Q is defined as Lypa(Q') := U cor Lnra(q') and
Lpra(Q') :== Uyeo Lpra(q'), respectively. 0

Definition 2.6 (Language of a finite automaton). The language accepted by an NFA
(Q,%,A, Qp, F) is defined as Lnga(Qo). The language accepted by a DFA (Q, %, 6, qo, F')
is defined as Lpra(qo)- %

Let us briefly review the classical textbook construction of a DFA accepting the same
language as a given NFA.

Lemma 2.7 (Subset construction; Rabin and Scott, 1959). Let M = (Q, %, A, Qq, F') be
an NFA. Then,

(29, S, 6, Qo, {Q €22|QNF# @})
with 6 : (Q',0) = Uy eg Ad's 0), is a DFA that accepts the same language as M.
Proof. Omitted. See Rabin and Scott (1959) or Kozen (1999). O

Remark 2.8 (Languages of states in subset DFA). Let (Q, %, A, Qp, ') be an NFA.
Applying the above subset construction yields a DFA whose states are elements of 22
and thus sets of NFA states. As can be verified inductively, the subset construction
ensures that Lpra(q) = Lnra(q) forall g € 29, A
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When it is clear from the context whether Lyga or Lpga is meant or the distinction is
unnecessary according to Remark 2.8, we omit the subscript.

Definition 2.9 (State accessibility). Let an NFA M = (Q, %, A, Qo, F') be given. For-
mally, a state ¢ € Q is called accessible if there exists a string s € ¥* and a start state
qo € Qo such that A(qo, s) = q. Likewise, accessibility is defined for DFAs. O

The DFA that results from applying the subset construction to an NFA can have inac-
cessible states. These states can be removed from the DFA’s state space without chang-
ing the accepted language. To ease notation, we write SUBSET-CONSTRUCTION (M)
to denote the DFA resulting from the subset construction and subsequent removal
of inaccessible states. In practice, we can use an algorithm that only generates the
accessible states by performing a breadth-first search on the state space (see Navarro
and Raffinot, 2002).

Two DFA states can be equivalent, meaning that their language is the same. Formally,
two states ¢ and ¢’ of a DFA (Q, X, 0, qo, F) are equivalent if

5(g,8) € F <= 6(¢d,s)eF

for all s € ¥*. This notion of equivalence can be used to characterize minimal DFAs,
where a DFA is called minimal if there does not exist a DFA with fewer states accepting
the same language.

Lemma 2.10. A DFA is minimal if and only if its states are pairwise non-equivalent.

Proof. See Chapters 13 and 15 in the textbook by Kozen (1999). O

In Chapter 3, we see how minimal DFAs can be constructed for different types of
motifs.

2.2 Binomial, Poisson, and Compound Poisson Distributions

The binomial distribution gives the probabilities for the number of successes in a fixed
number of trials assuming that all trials are independent and have equal success
probabilities. If, for example, a coin is flipped a fixed number of times the number of
observed heads follows a binomial distribution. Formally, it is given by

n _
Bup:k— <k> (1 —p)E,

where n gives the number of trials and p the success probability.

When the number of trials grows to infinity but, at the same time, the expected num-
ber of events A is kept fixed, we obtain a Poisson distribution. For example, the number
of received phone calls in a given time interval is Poisson distributed (assuming that all
callers choose the time of calling independently and uniformly). We can, in principle,
receive a call at any point in time and thus the observed event has a continuum of
opportunities to occur. Formally,

Pa(k) = lim B, /n(k) (2.3)

n—oo

21



2 Preliminaries
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Figure 2.1: Comparison of different distributions with an expectation of five. As the
number of trials is increased, the Binomial distribution approaches the
Poisson distribution.

for all k£ € INy. The resulting Poisson distribution P can be written explicitly as

A A
Pr:ik—e - ﬁ .
When the number of trials is not infinite but sufficiently large, the Poisson distribution
accurately approximates the binomial distribution. This behavior is illustrated in
Figure 2.1. For A = 5 and n = 500, both distributions are almost indiscernible. A
Poisson distribution can be used, for instance, to model the number of lifetime wins in
a lottery assuming that one plays each week for a given (long) timespan.

In many real processes, events are not independent. Let us consider the number
of persons arriving at a carpark. Here, the events occur in so called clumps as each
arriving car might contain multiple persons. While the number of cars that arrive in a
fixed time interval may be Poisson distributed (at least if we ignore traffic lights, jams,
etc.), the number of arriving persons is not. Such a scenario can be described by a
compound Poisson distribution. Formally, a random variable C' with this distribution can
be written C' = Zfzo B;, where A is a Poisson-distributed random variable, all B; are
independent and identically distributed random variables, and all B; are independent
of A. The distribution of C is determined by the common distribution ¥ = £(B;),
which we call clump size distribution, and the expected number of clumps A = IE(A). The
compound Poisson distribution CP vy = £(C') is now given by

CPaw kY Pa(i)- U™ (k).
=0
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Figure 2.2: Comparison of Poisson distribution with an expectation of five to a com-
pound Poisson distribution with the same expectation whose clump size is
distributed uniformly between one and four.

Recall that ¥** denotes the i-fold convolution of ¥ with itself. Resuming our car-park
example, let us assume that the expected number of persons arriving in a fixed time
interval (say, an hour) is five. Now we compare two scenarios. First, all persons come
in their own car and their arrival times are hence independent; this corresponds to a
Poisson process. Second, we assume that each car contains one to four persons with
uniform probability. Therefore, each car contains an expected number of E(¥) = 2.5
persons. Since
E(CPyw) =A-E(¥),

we must set the expected number of clumps X to 2 to get a compound Poisson distribution
with an expectation of five. The resulting distributions are plotted in Figure 2.2.
Although their expectation is the same, the distributions differ considerably. An
expected clump size larger than one leads to an increased variance.

2.3 Finite-Memory Text Models

In Section 1.4, text models have been formally introduced in Definition 1.4. As ex-
amples, we discussed uniform and i.i.d. text models. To analyze genomic sequences,
however, such simple models are too coarse. Markovian text models, for instance, are
more elaborate. In a Markovian text model of order 7, the character distribution can
depend on the last » characters. That means the random variables S; are no longer
(guaranteed to be) independent. Character-emitting hidden Markov models (HMMs) are
even more sophisticated. They produce a random string by randomly walking the
HMM’s state space according to a transition function and emitting a character upon
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entering a state. The emission is done with respect to a state-specific character distri-
bution. In this section, we see that both Markovian text models and character-emitting
hidden Markov models are special cases of finite-memory text models which we intro-
duce formally. Similar text models are used by Kucherov et al. (2006), who call them
probability transducers.

Definition 2.11 (Finite-memory text model). A finite-memory text model is a tuple
(C, o, %, ), where C is a finite state space (called context space), ¢y € C a start context,
¥ analphabet, and ¢ : C x £ x C — [0,1] with }_ s o ¢(c,0,¢) = 1forallc € C. At
each time ¢ € Ny, exactly one state ¢ € C is active and the random variable giving this
active state is denoted C;. A probability measure IP is now induced by stipulating

P(Co = ¢) = [c = ] (24)
forall c € C and
]P(St =0,Cpy1 = Ct+1}50"'5t—1 =5,Cp = co,...,Cy :Ct)
= IP(St = 0, Ct+1 = Ct+1 } Ct = Ct) (25)
= p(ct, 0, ce41)
forallt € Ng,0 € %, s € ¥, and (c1,...,c41) € CHL O

Equation (2.5) illustrates that the model given by (C, ¢o, 2, ) generates a random
text by moving from context to context and emitting a character at each transition,
where ¢(c, 0, ¢) is the probability of moving from context c to context ¢ and thereby
generating the letter o.

Lemma 2.12. Equations (2.4) and (2.5) imply that

t—1

P(So--Si1=15,Co = co,...,Cr = &r) = [ | (e, slil, cinr) (2.6)
i=0

and

P(So--- St =50,C441 =c¢) = Z P(Sp---Si1=5,Cr=¢) o(c,0,c) (2.7)
ceC

forallt € Ng, s € ¥, 0 € Sand c € C.

Proof. Equation (2.6) is correct for t = 0 by Equation (2.4). For ¢t > 0, Equation (2.6)
follows inductively as

P(S()"-St_lZS,C()ZCO,...,Ct:Ct)

= ]P(St_l = S[t — 1],015 = C¢ S() c 'St_g = S[..t — 2],00 = CQ, - - -,Ct—l = Ct—l)
. ]P(So N 'St_g = S[..t — 2],00 = CQ, . - -,Ct—l = Ct—l)

—

D (p(ct_l,s[t — 1],ct) . ]P(So e Si_g =s[t—2],Co =cp,...,Ci_1 = ct_l) ,
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where (i) is correct due to Equation (2.5). Now we prove Equation (2.7).

P(Sy--- St = 50,Cip1 = ¢)
=Y P(So-- S =50,Cr11=¢,Cr =)

ceC
=Y P(Si=0,Cip1=c|So--S-1=5Cr=¢)-P(Sp-+ Si1=5,C, =)
cdeC
DN o o,0) P(Sp- - S = 5,C = &),
cdeC
where for (ii), we applied Equation (2.5). O

Remark 2.13. For all s' € ¥, the probability P(Sg - -+ S|y|—; = ') is obtained from
Equation (2.6) through marginalization over all ¢ € C. Therefore, a finite-memory text
model consistently assigns probabilities to all finite strings and, hence, the existence of
the probability measure IP is guaranteed by Kolmogorov’s existence theorem. A

In a slight abuse of nomenclature, we refer to a finite-memory text model simply
as text model. It is always clear from the context whether the tuple (C, co, X, ¢) or the
probability measure it induces is meant.

Example 2.14 (Li.d. text models). To define a finite-memory text model equivalent
to an i.i.d. model, we set C = {¢} and ¢(¢,0,¢) = p, for each o € ¥, where p, is the
occurrence probability of letter o (and € may be interpreted as an empty context). A

Next, we formally define Markovian text models and see how they can be given in
the form of finite-memory text models.

Definition 2.15 (Markovian text model). A text model PP is called Markovian of order r
if there exist constants P, for all o € ¥ and s € ¥* with |s| < r, such that

]P(St :O'/‘SO...St_l :S/) :]P(St :O-/{St""st—l = S/[tl...t— 1]) (28)
= Porsfpr..4—1] ‘
with ¢ := max{0,t — r} forallt € Ny, 0’ € ¥, and s’ € 3. O

Example 2.16 (Markovian finite-memory text models). Let constants P, forall o € 3
and s € ¥* with |s| < r be given. For convenience, we also define a function z, : ¥* —
¥* that truncates a string to length r, i.e. z,.(s) := s[max{0, |s| — r}..]. Now we define
a finite-memory text model that satisfies Equation (2.8) and, hence, is Markovian of
order r. We set C := |JI_, ¥, ¢p := ¢, and

{PU|c if = z.(co),

/
c,0,C) = .
ol ) 0 otherwise .

This definition implies that

Ci=c <= 2z(Syo---Si-1)=c (2.9)
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Figure 2.3: [llustration of a periodic text model with two states ¢y and ¢;. The transition
function is given by ¢(co, 4, ¢1) =1, p(c1,B, co) = 1, and zero otherwise.

and, thus,

]P(StZU‘SO"'St—IZS) :]P(St:U}So--'St—l:S;Ct:zr(s))

= Z IP(St =0,C441=¢ |SO oS =35,C = zr(s))
ceC

DS 6((5),0,¢) = 9(2(5), 0, 20(50)) = Pajey sy

cdeC
where (i) is implied by Equation (2.5). AN

Remark 2.17. Variable order Markov chains as introduced by Schulz et al. (2008) can also
be transformed into finite-memory text models. A

Although we do not formally introduce hidden Markov models (HMMs), we remark
that finite-memory text models have the same expressive power as character-emitting
HMMs. That means they allow us to construct the same probability distributions. For
a given HMM, we can construct an equivalent text model by using the same state space
(contexts) and setting ¢(c, o, ') := T(e,d) - pe (o), where T and p are the HMM's
transition function and emission distribution attached to state ¢, respectively. When,
on the other hand, a text model (C, o, X, ¢) is given, we construct an equivalent HMM
by using C? as state space and setting

! if CQ = Cl
T((c1,c2), C/,C, — deg (e, 0, 02) 7
(( 1,¢2), (1 2)) {O otherwise,

and
H(er,e0)(0) = p(c1,0,c2).

In a finite-memory text model as introduced in Definition 2.11, the transition func-
tion ¢ can be chosen arbitrarily. In particular, periodic or otherwise degenerate text
models are allowed. Figure 2.3 shows an example of a text model that produces the
string ABABABA. . . with probability one. Furthermore, its state distribution does not
converge to an equilibrium. It is periodic instead: we have P (Cy = ¢p) = 1 and
P (Cat41 = c1) = 1 forall t € Ny. To exclude such pathological cases, we make another
definition.
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Definition 2.18 (Well-behaved finite-memory text model). A finite-memory text model
is called well-behaved if P(So - - - S|5|—1 = s) > 0 for all s € ¥* and its state distribution
converges to an equilibrium, that is, the limit lim;_,, £(C}) exists. In the remainder of
this thesis, we assume all text models to be well-behaved. O

Remark 2.19 (Text model starting in equilibrium). For many applications, it is rea-
sonable to assume random texts to be generated by a model starting in equilibrium.
Formally, this means that

P(Sp-+Sjg-1 = 5) = tlggo P(S; - Spyisl-1 = ) (2.10)

for all s € ¥*. Given a text model (C, cp, X, ¢) and let a : C — [0, 1] be its equilibrium
state distribution. Then, it can be modified to attain this property by setting C’ :=
C U{¢y}, where ¢ is the new start state, and

Yoec ol p(d o,d) ife=chand d €C,
¢ (c,0,d) = < p(e,o,c) ife,d €C,
0 otherwise .

Using Equation (2.6), the definition of ¢/, and that a(c) := lim;_,o, P(C} = ¢) for all
¢ € C, evaluation of both sides of Condition (2.10) yields

s|—1
im Y P(Cr=c) [ wleerirslilscrvir),
t—00
Ct,..‘,ct+|s|€(z 1=0

proving that Condition (2.10) is indeed satisfied for the newly defined text model. A

2.4 Probabilistic Arithmetic Automata

In many applications, processes can be modeled as chains of operations working on
operands that are drawn probabilistically. As an example, let us consider a simple
dice game. Suppose you have a bag containing three dice, a 6-faced, a 12-faced, and a
20-faced die. Now a die is drawn from the bag, rolled, and put back. This procedure is
repeated n times. In the end one may, for example, be interested in the distribution of
the maximum number observed. Many variants can be thought of, for instance, we
might start with a value of 0 and each die might be associated with an operation, e.g.
the spots seen on the 6-faced die might be subtracted from the current value and the
spots on the 12-faced and 20-faced dice might be added. In addition to the distribution
of values after n rolls, we can ask for the distribution of the waiting time for reaching a
value above a given threshold.

We use a general formal framework, referred to as probabilistic arithmetic automata
(PAAs), to directly model such systems and answer the posed questions. In contrast
to sampling strategies, this formalism allows us to compute the sought distributions
exactly. Depending on the implementation, “exactly” can either mean “up to machine
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precision” when floating point numbers are used or “mathematically exact” when
rational arithmetic is used.

Recall that, in this thesis, we seek to develop an algorithm to discover a motif with
optimal statistical significance. PAAs are introduced as they provide a framework
to answer various questions regarding a motif’s statistical properties, including its
significance. This application of PAAs is further explored in Sections 2.6 and 4.3.

2.4.1 Definition

Markov additive processes have been studied in probability theory (see Cinlar, 1972a,
and Cinlar, 1972b). In the discrete case, they find applications in bioinformatics, for
example to model masses of protein fragments resulting from cleavage reactions as
done by Kaltenbach (2006). The formal definition of PAAs (as found below) has been
introduced by Marschall and Rahmann (2008). They can be seen as generalized discrete
Markov additive processes as they are not restricted to additions but allow arbitrary
operations. Applications of PAAs in computational biology have been explored by
Herms (2009).

Definition 2.20 (Probabilistic arithmetic automaton). A probabilistic arithmetic automa-
ton P is a tuple

P = (Q7q07T7V7 Uo,g,/.l, = (Mq)qéQ:e = (gq)qEQ) )
where

e Q is a finite set of states,

e qo € Qis called start state,

o T: Qx Q— [0,1] is a transition function with >, T(¢,¢') = 1 forall g € Q,
ie (T(q,q ))q,q’ c o 1 a stochastic matrix,

e Vs a set called value set,

e vy € Vis called start value,

e £ is a finite set called emission set,

e each p, : £ — [0, 1] is an emission distribution associated with state g,

e cach 6, :V x & — Vis an operation associated with state q.

O

We attach the following semantics: At first, the automaton is in its start state g, as for
a classical deterministic finite automaton (DFA). In a DFA, the transitions are triggered
by input symbols. In a PAA, the transitions are purely probabilistic; T'(q, ¢’) gives the
probability of going from state ¢ to state ¢’. Note that the tuple (Q, T, d,,) defines a
Markov chain on state set Q with transition matrix 7', where the initial distribution
0, is the Dirac distribution assigning probability one to state gy and zero to all other
states.

While going from state to state, a PAA performs a chain of calculations on a set of
values V. In the beginning, it starts with the value vo. Whenever a state transition is
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1/3
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Figure 2.4: [llustration of a PAA for the dice example. Each of the three dice is repre-
sented by a state (circles). In each circle the associated operation is printed.
Emission distributions are depicted as gray boxes. Each arrow stands for a
possible state transition and is labeled with the transition propability. The
start state is drawn in orange color. Its emission distribution and operation
are irrelevant and thus omitted from the figure.

made, the entered state, say state ¢, generates an emission from £ according to the
distribution j,. The current value and this emission are then subject to the opera-
tion 6,, resulting in the next value from the value set V. Notice that the Markov chain
(Q,T,d,), together with the emission set £ and the distributions p = (114)4ec0, defines
a hidden Markov model (HMM). In the context of HMMSs, however, the focus usually
rests on the sequence of emissions, whereas we are interested in the value resulting
from a chain of operations on these emissions.

By introducing PAAs, we emphasize that many systems can naturally be modeled as
chains of operations whose results are of interest. When compared to Markov chains,
PAAs do not offer an increase in expressive power. In fact, from a theoretical point
of view, every PAA might be seen as a Markov chain on the state space Q x V. Thus,
we advocate PAAs not because of their expressive power but for their merits as a
modeling technique. As we see in Sections 2.6, 2.7, and 4.3, the framework lends itself
to many applications and often allows simple and intuitive problem formulations.
Before we formalize the introduced semantics in Definition 2.22, we come back to the
dice example.

Example 2.21 (Dice). We model each of the three dice as a PAA state. All transition
probabilities equal 1/3 and the emissions have uniform distributions over the number
of faces of the respective die. If we are interested in the maximum, each state’s
operation is to take the maximum. In general, we can associate individual operations
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with each state (each die), for instance: “sum up all numbers from the 12- and 20-faced
dice and subtract the numbers seen on the 6-faced die”. The value set is Z, the start
value is naturally vy = 0. The corresponding PAA is illustrated in Figure 2.4. A

Definition 2.22 (Stochastic processes induced by a PAA). For a given PAA P =
(9,40, T, V,v0,E, 1, 0), we define its state process (QF )ien, to be a Markov chain such
that Q' = g0 and

P (in—l = qt+1 ‘ Qf =4a.-. aQ(I)D = QO) =P (Qﬁ-l = qt+1 ’ Qf = Qt) @2.11)
= T(qt, qt+1)

for all qo, . .. qi4+1 € Q. Further, we define the emission process (E}’);en, such that

]P(Etp:e‘QOP:q0)"'an:qt)E(I]Dze()w")EtIil:et—l)

(2.12)

=P (B =e|Q =q) = pyle).
i.e. the current emission depends solely on the current state. Then, we use (QF);en,
and (E})en, to define the process of values (V;7)ien, resulting from the performed
operations:

Vf=vy and VI = Ogr (VELEP) . (2.13)

If the considered PAA is clear from the context, we omit the superscript P and write
(Qr)ieno, (Er)ien,, and (Vi)ien,, respectively. 0

2.4.2 Computing State-Value Distributions

We describe two algorithms to compute the distribution values probabilistically com-
puted by a PAA. Formally, we seek to calculate the distribution £(V},) of the random
variable V,, for a given n. The idea is to compute the joint distribution £(Q,, V,,) and
then to derive the sought distribution by marginalization over all states:

PV =v)=» P(Qn=0qVa=1). (2.14)
qeQ

For the sake of a shorter notation, we define f;(q,v) := P(Q; = ¢, V; = v) for t € Ny,
g€ Q,ve.

Even when V is infinite, the range of V; is finite for all ¢ as it is a function of the states
and emissions up to time ¢ and these are finite sets. We define V; := range(V;) and
¥y, = maxo<i<n |V¢|. By Definition 2.22, the value computed by a PAA is determined
by the sequence of visited states and made emissions. Up to step n, there are at most
(1Q|-|€])™ such sequences that have non-zero probability and, hence, ¥,, < (|Q|-|£])" for
all n € INg. Therefore, all actual computations are on finite sets. In many applications,
¥, grows only polynomially (even linearly) with n. Running times of algorithms are
given in terms of 1.
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Basic Algorithm

We discuss an algorithm to compute the distribution f, = £(Q,, V;,). A basic recur-
rence relation follows from Definitions 2.20 and 2.22.

Lemma 2.23 (State-value recurrence). For a given PAA, the state-value distribution can be
computed by

)1 dfg=qoandv = v,
Jolg,v) = {0 otherwise , @15
and
fealgo) =Y Y fuld V) T(dq) - pgle) (2.16)

7€ (v ,e)eby ! (v)
for t > 0, where 6 (v) denotes the inverse image set of v under 0.

Proof. Equation (2.15) follows directly from (2.11) and (2.13). Let us verify Equa-
tion (2.16):

Ji+1(q,v) =P (Qi41 = ¢, Vig1 =)
= Z Z ZIP (Qt+1 = Q7V;f+1 = UaQt = q/7‘/t = UlaEt—i-l = 6)

qEQVEY ec

- Z Z Z]P(Qt-i-l — Vi =0, B = e| Qi =q Vi =) - fi(d, )

qEQVEY ecl

=Y Y D> PV =v|Qu=0¢En=eQ=4,V,=0)

q€EQVEY eel
-P (Qt-i—l = q:Et-i-l =€ | Qt = q/7‘/;f = U/) : ft(qlavl)

=D ) [0, e) =]

qEQVEY ec
P Q1 =a¢.E1=¢|Qi=¢, Vi =) fild V)
= Z Z P (Qu+1 = ¢, Erp1 =e|Qi=¢ Vi =) -fild,v').

qeQ (v’,e)€9;1(v) ()

We further evaluate the expression (x):

(*) =P (Qu1=a¢.EB1=¢|Qi=¢,V; =)
=P(EBp1=¢|Qi=¢,Qu1=¢Vi=1) P (Qu1=¢q|Q: =4, Vi=1"),

(i) (i4)
=pq(e) =T(dq)

where (7) is true because of (2.12) and (2.13), and (i7) follows from the fact that (Q:):en,
is a Markov chain. O]

We start with the distribution fy and calculate the subsequent distributions by apply-
ing Equation (2.16) until we obtain the desired f,,. A straightforward implementation
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Algorithm 2.1 Compute the value distribution of a PAA using a push strategy.

Input: PAA P =(Q,qo,T,V,v0, &, i, §), number of steps n
Output:  Distribution £(V},)

PA A-VALUE-DISTRIBUTION(P, n)

1 initialize fo(q,v) = [[¢ = go and v = vg] forall ¢ € Q and v € V)
2 fort=1ton

3 initialize f;(¢,v) = Oforallg € Qand v € V;

4 forgc Qandv eV, 4

5 for¢ € Qandec &

6 v =0y (v,e)

7 fe(d v = fild V) + fie1(q,v) - T(q, ) - g (e)
8 return f,

of Equation (2.16) results in a pull strategy; that means each entry in the table repre-
senting f;11 is calculated by “pulling over” the required probabilities from table f;.
This approach makes it necessary to calculate §~! in a preprocessing step. In order to
avoid this, we may implement a push strategy, meaning that we iterate over all entries
in f; rather than f;1; and “push” the encountered summands over to the appropriate
places in table f; ;. In effect, we just change the order of summation. Algorithm 2.1
shows the push strategy in detail.

In the course of the computation, we have to store two distributions, f; and fi;1,
at a time. Once f;11 is calculated, f; can be discarded. Since the table at time ¢ has a
size of | Q| x |V, the total space consumption is O(|Q| - ¥,,). Computing f; from fi_;
takes O(|Q| - |Vi| +|QJ? - [Vi—1]| - |€|) operations, as can be seen from Algorithm 2.1. We
arrive at the following lemma.

Lemma 2.24. Given a PAA (Q, qo,T,V, vo, E, 1, 0), the distribution of values L(V},) can be
computed using O(n - |Q|* - 9, - |E|) operations and O(|Q] - ¥,,) space.

Remark 2.25 (Number of operations and runtimes). In Lemma 2.24 and in the fol-
lowing, runtimes of algorithms are reported in terms of the number of operations.
This includes both arithmetic operations and the operations 6, of a PAA. Usually, but
not always, both types of operations can be performed in constant time. Using exact
rational arithmetic, for instance, leads to operations that take more than constant time.
As the operation §, can be chosen arbitrarily for every PAA state ¢, it might also take
more than constant time. A

Doubling Technique

When n is large, executing PAA-VALUE-DISTRIBUTION(P, n) is slow. In this section,
we present an alternative algorithm that can be favorable for large n. To derive this
algorithm, we consider the conditional probability

U (g1, g2, v1,v2) = P (Qto+t = 42, Vigt = v2 | Qoo = q1, Vi = 1) - (2.17)
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Note that U® does not depend on ¢, because transition as well as emission probabili-
ties do not change over “time” (a property called homogeneity). Once U™ is known,
we can simply read off the desired distribution £(Qy,, V4,):

P(Qn = ¢, Va = v) = U" (g0, v, ). (218)
The following lemma shows how U(®) can be computed.

Lemma 2.26. Let (Q, qo,T,V,vo,E, i, 0) be a PAA and (Q1)ien, and (Vi)ien, its state and
value process, respectively. Then,

U (q1, g2, v1,v2) = T(q1, g2) - Z f1g5 (€) (2.19)

ecé:
0qq (v1,8)=02

and, for all t; € Ng and t2 € Ny,

U(t1+t2)(q1> q2,v1, U2) = Z Z U(tl)(Qb q,a U1, Ul) : U(t2)(q/7 q2, Ula U2) . (220)
q'€QV'EV

Using these recurrences, the distribution of values L£(V},) can be computed using O(logn -
|Q? - 93) operations and O(|Q|? - ¥2) space.

Proof. Equation (2.19) follows from Definition 2.22 and Equation (2.20) follows from
the Chapman-Kolmogorov Equation for homogeneous Markov chains when the PAA
is seen as a Markov chain with state space Q x V. Computing U“1+%2) from U(*)
and U*2) takes O(|Q|® - ¥3) operations, as follows from Equation (2.20). On the other
hand, one step suffices to obtain U 20 from U®. Thus, we can compute all U 2°) for
0 < b < [log(n)] in [log(n)] steps, which in turn can be combined into U™ in at most
[log(n)] steps. O

The doubling technique is asymptotically faster if J,, is o(1/n/logn) and Q and &€
have constant size.

2.4.3 Waiting Times

Besides calculating the distribution of values after a fixed number of steps, we can
ask for the distribution of the number of steps needed to reach a certain value or a
certain state. Such waiting time problems play an important role in many applications,
for example in the analysis of peptide fragments resulting from cleavage reaction and
in the analysis of length distributions of 454 sequencing reads. Both examples are
discussed by Marschall et al. (2010). A classical treatment of waiting time problems is
given by Feller (1968). Applications to occurrence problems in texts are reviewed by
Reinert et al. (2000).

Definition 2.27 (Waiting time for a value). The waiting time for a set of target values
7T C Vis arandom variable defined as W7 := min{t € Ny |V; € T} if this set is not
empty, and defined as infinity otherwise. O
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While P (W7 > t) may be greater than zero for all ¢ € N, we are frequently only
interested in the distribution up to a fixed time ;4.

Lemma 2.28. Let (Q, qo,T,V,vo, &, i, 0) be a PAA and T C V. Then, the probabilities

‘C(WT) (0)7 SRR [’(WT) (tmax)

can be computed using O (tmax - |Q|? - |€] - V4, ) operations and O(|Q| - By, ) space. Alterna-
tively, this can be done using O (10g tyax - |QI* - (V4,c)*) operations and O(|Q|? - (V4,,,)?)
space.

Proof. We construct a modified PAA by defining a new value set V' := (V\ 7) U {e, 0},
assuming (without loss of generality) that e, 0 ¢ V), and new operations

Oy(v,e) ifv ¢ {eo}andb,(v,e) ¢ T,
Oy (v,e) == o ifv ¢ {e,0}and b,(v,e) € T,
o ifv e {o,0},

for all ¢ € Q. Let V/ be the modified value process. Using the modified PAA, the
probability of waiting time ¢ can be expressed as

P(Wr =1) = P(V] = o).
Runtime and space bounds follow from Lemmas 2.24 and 2.26. O

Besides waiting for a value (or a set of values), it can be interesting to consider the
waiting time for a state (or a set of states). Since a PAA’s state process does not depend
on emission and value processes, the remainder of this section solely concerns the
Markov chain (Q, T, d,,), which is part of the PAA (Q, qo, T, V,vo, &, i, 0). Waiting
times in Markov chains are a well-studied topic with particular interest in pattern
occurrences (Reinert et al., 2000) and queuing theory (Brémaud, 1999).

For completeness, we briefly state the construction here.

Definition 2.29 (Waiting time for a state). The waiting time for a set of target states
U C Qis arandom variable defined as Wy, := min{t € Ny | Q; € U} if this set is not
empty and defined as infinity otherwise. O

Lemma 2.30. Let (Q,qo,T,V,v0,&, 11, 0) bea PAA, o : Q — [0, 1] be a probability distri-
bution on Q, and U C Q be a set of target states. Consider the Markov chain (Q,T, «), let
(Q})ten, be its state process, and let W}, := min{t € No | Q} € U} be the waiting time for
states U. Then,

LOWL)O), - LOWE) ()

can be computed using O (tmay - |Q|?) operations and O(|Q|) space, or using O(1og tyay - |Q|?)
operations and O(|Q|?) space using a doubling technique. If o = 8,, then Wy, = W,

Proof. As in the proof of Lemma 2.28, we introduce an aggregation state e to replace I/
and an absorbing state o to “flush” e. Then P(W}, = t) = P(Q} = o). O
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2.5 Deterministic Arithmetic Automata

When a = §,,, the above lemma yields the waiting time for the first event of reaching
one of the states in ¢/. We further consider the waiting time of a return event

W9 :=min{t € N | Q1+ € U}.

If the Markov chain is aperiodic and irreducible, it has a unique stationary state
distribution against which the PAA state distribution converges exponentially fast. We
can then use Lemma 2.30 to compute

Jlim P(Wy =t'| Q: € U) (2.21)

for each t' € N by choosing « in Lemma 2.30 as the stationary distribution restricted
told.

2.5 Deterministic Arithmetic Automata

In this section, we discuss the construction of PAAs modeling the deterministic pro-
cessing of random sequences. That means we consider a mechanism that processes
sequences character by character and thereby deterministically computes a value for a
given string. A pattern matching algorithm that computes the number of matches in a
given sequence might serve as an example. We ask for the distribution of resulting
values when such a deterministic computation is applied to random strings. To this
end, we define deterministic arithmetic automata (DAAs) and combine them with a text
model to obtain a PAA. In Section 2.6, we see how this technique can be employed to
compute a significance score for a given motif.

2.5.1 Definition

As for an ordinary deterministic finite automaton (DFA), the state transitions of a DAA
are triggered by characters, but, additionally, a DAA performs a computation while
moving from state to state. Thus, the relation of DAAs to DFAs is similar to the relation
of PAAs to Markov Chains. In both cases, the state space Q is augmented by a value
space V.

Definition 2.31 (Deterministic arithmetic automaton, DAA). A deterministic arithmetic
automaton is a tuple

D = (Q7 q0, 27 57 V? Vo, 57 (WQ)(IEQ7 (Hq)qEQ)a

where Q is a finite set of states, ¢y € Q is the start state, X is a finite alphabet, J :
Q x ¥ — @ is a transition function, V is a set of values, vy € V is called the start
value, € is a finite set of emissions, 1, € £ is the emission associated with state ¢, and
04 :V x £ — Vis abinary operation associated with state q. O

Informally, a DAA starts in state gy with value vy and reads a sequence of symbols
from ¥. Being in state ¢ with value v, upon reading o € ¥, the DAA performs a state
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transition to ¢’ := 0(q, o) and updates the value to v := 6, (v, n,) using the operation
and emission of the new state ¢'.

DAAs can be seen as DFAs over the state space Q x V. Therefore, one could argue,
it is not necessary not define them explicitly. However, for many applications the
distinction between states and values is quite natural and modeling it explicitly leads
to more intuitive models. Furthermore, they are a deterministic counterpart to PAAs
and allow us to construct PAAs elegantly. In Section 2.7, for instance, we exemplify
their utility for the analysis of pattern matching algorithms.

Definition 2.32 (Joint transition function of states and values). The joint transition
function of states and values of a given DAA (Q, qo, ,8,V, v0, &, (11g)ge: (0g)qe0) is
defined by

§:(QxV)x T = (QxV), 5((q, v),a) = (6(q,a), 95((170-)(1),?’]5((170-))).

As done for DFAs in Equation (2.1) on Page 19, we extend the definitions of § and
¢ inductively from ¥ to ¥* in their second argument. Therefore, they are seen as
functions § : @ x ¥* — Qand ¢ : (Q x V) x X* — (Q x V), respectively. O

Definition 2.33 (Value computed by a DAA). Let a DAA D be given such that
D = (Q, 90, 2,6, V,v0,&, (1g)qc0, (Gq)qeg) and let § be its joint transition function.
When 6((qo,v0), s) = (g,v) for a given s € £* and some ¢ € Q, we say that D com-
putes value v for input s and define

valuep(s) :=v.

O

Example 2.34 (DAA constructed from a DFA). Let a DFA (Q, X, 4, qo, F') be given. To
obtain a DAA that counts how many times the DFA visits an accepting state when
reading s € ¥*, let £ := {0,1} and define n, := [¢ € F]. Further define V := N
and vp := 0, and let the operation in each state be the usual addition: §,(v,e) :=v +e
for all q. Then, valuep(s) is the desired count. JAN

2.5.2 Constructing PAAs from DAAs and Text Models

The distribution of values resulting when a DAA processes random texts can be
computed by constructing a PAA from a DAA and a text model. This construction is
formalized in the next lemma.

Lemma 2.35 (DAA + Text model — PAA). Let a finite-memory text model (C, co, X, @)
and a DAA D = (QP,qf,%,6,V,v0,&, (0g) geor, (08 ) e op) be given and define

e astate space Q := QP x C,
e astart state qo := (¢, co),
e transition probabilities

T((qD,c), (q’D,c')) = Z o(c,0,d), (2.22)

ces: §(qP,0)=¢'P
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2.5 Deterministic Arithmetic Automata

e (Dirac) emission distributions o . (e) := [e = nyp] for all (¢P,c) € Q,
e operations 0, (v, e) = GqDD (v,e) forall (¢P,c) € Q.

Then, P = (Q,q0, T, V,v0,E, 1t = (Kq)qe0, 0 = (04)qc0) is a PAA with

L(V;) = L(valuep(Sy ... Si—1))
forall t € Ny, where (St)ien, is a random text distributed according to the text model
(C7 €o, E, 90)

Proof. P is a PAA by Definition 2.20 on Page 28. As in Section 2.4.2, we define

filg,v) =P(Qr=¢q. Vi =v).

Then, the distribution £(V};) is obtained by marginalization over all PAA states for each

value v, i.e.
LV)w) =D flaw)= Y D fi((a” e)0).

qeQ qPeQPl ceC

The probability that the text model generates a text s € X and after that is in state ¢
such that the DAA D computes the value v for s and after reading s is in state ¢” is
given by

Z HS((Q()D’ UO)? 3) = (qD7U)]] ’ IP(SO S =8,0 = C) )

sext

where we have used Definition 2.33 to obtain the Iverson bracket. Therefore, we can
prove that £(V;) = L(valuep(Sy ... S;—1)) by showing that

ft((qD,C),'U) = Z HS((Q(?ﬂJO)v 5) = (qDav)]] : IP(SO o 'Stfl = S,Ct = C) (223)

seX?t

forall ¢ € QP,ceC,v eV, and t € Ny.
For t = 0, Equation (2.23) is correct by definitions of PAAs, DAAs and text models.
For ¢ > 0 we prove it inductively. Assume (2.23) to be correct for all ¢’ with 0 < ¢ < ¢.

fi((@7,e),v) (2.24)
——"
=
=> Y fiald V) T(dq) - pgle) (2.25)
7€Q (v,e)ed; " (v)
=> > [BhW e =0 firald, V) T(d,q) - [ngo = €] (2.26)

g'eQ (v',e)eVxE

=3 Y Y [ =v] [np =] firld,v)

¢PegDl eC (v',e)eVXE

’ Z Hé(q/Dv U) = qD]] ) 90(6/707 C)

oceY

(2.27)
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=2 2 2 > 2 [pweg=d e =
sext—1 oe¥ ¢Pe@DP deC (v,e)eVxE
[6(¢".0) = "] - [6((a5” v0). 5)
(S() StQ—SCt 120) (p(
=Y > > [eptey=0] [np=e] - [5((@v0).s) = (¢, 0]
soeXt ¢Pcl (v',e)eVxE
. [[(5 q'D,a :qD]] -P(Sp---Si—1 =s0,Ct =¢)
(2.29)

= Z Hg((qu>U0)a 80) = (qD7U)]] ’ IP(SO e Sp1 = S0, Cr= C) (230)

soeX?t

In the above derivation, step (2.24)—(2.25) follows from (2.16). Step (2.25)—(2.26)
follows from the definitions of 6, and p,. Step (2.26)—(2.27) uses the definitions
of T'and Q in Lemma 2.35. Step (2.27)—(2.28) uses the induction assumption. Step
(2.28)—(2.29) uses Lemma 2.12 on Page 24. The final step (2.29)—(2.30) follows by
combining the four Iverson brackets summed over ¢’ and (v/, ¢) into a single Iverson
bracket. O

Remark 2.36. In the above construction, states having zero probability of being reached
from go may be omitted from Q and 7. A

Lemma 2.37 (PAA from DAA; Construction time and space).

1. For a PAA constructed according to Lemma 2.35, the value distribution L(V,), or the
joint state-value distribution, can be computed with O(n-|QP|-|X|-|C|?-9,,) operations
using O(|QP| - |C| - ¥,,) space. The same statement holds for computing the waiting
time distribution up to time n.

2. Ifforall c € C and o € ¥, there exists at most one ¢’ € C such that o(c,0,c") > 0, then
the number of required operations is bounded by O(n - |QP| - |2| - |C| - ¥,,), saving a
factor of O(|CJ).

3. Using the doubling technique, the distributions can be computed using O(logn - |QP|? -
IC|? - 92) operations and O(|QP|? - |C|? - ¥2) space.

Proof.

1. From Lemma 2.24, we obtain bounds for time and space complexity of O(n-|Q|?-
Iy, - |€]) and O(|Q| - ¥,,), respectively. By construction, |Q| < |QP| - |C|. Recall
that Lemma 2.24 is based on Algorithm 2.1. The loops in lines 2 and 4 together
account for a factor of O(n-|Q|-¥y,) in the time complexity. A factor of O(|Q|-|£])
is caused by the inner loop in line 5. However, since the constructed PAA has
deterministic (i.e. Dirac distributed) emissions, we do not need to iterate over all
e € £ and save a factor of |£|. Furthermore, we only need to iterate over all states
reachable in one step. For each ¢ € Q, there exist at most || - |C| such states by
construction of the PAA. Therefore, the inner loop in line 5 can be modified to
use O(|X] - |C|) operations, yielding the claimed runtime bound.
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2. If for all ¢ € C and o € %, there exists at most one ¢’ € C such that p(c,0,¢') > 0,
then at most |X| different states are reachable from each state ¢ € Q. The claimed
runtime follows by the same arguments as above.

3. Alternative time and space complexities for the doubling algorithm follow di-
rectly from Lemma 2.26.

O]

2.6 Pattern Matching Statistics

In this section, we ask for the distribution of the number of occurrences of a given
pattern in a random text. Recall that the statistical significance of a motif is, by
definition, the tail probability of this distribution: Assume we observe k motif instances
in a given sequence. The significance is now defined as the probability of seeing k or
more instances in a random text of the same length.

Different motif models have been discussed in Chapter 1. For all of these models,
a motif can be seen as a finite set of all strings that are valid motif instances. Thus,
a motif may be expressed in the form of a DFA that accepts the respective string set.
The question of an efficient construction of such DFAs for different kinds of motifs is
addressed in detail in Chapter 3. Here, we assume a DFA to be given and show how
the distribution of the number of occurrences can be calculated.

The topic of statistics of words on random texts has previously been studied ex-
tensively. An overview is provided in the book by Lothaire (2005). Its Chapter 6
(“Statistics on Words with Applications to Biological Sequences”) is based on the
overview article by Reinert et al. (2000). In many approaches, a generating function
is derived for the sought quantity. Then, typically using symbolic Taylor expansion,
the concrete values can be computed. This procedure is, for instance, described by
Régnier (2000), who gives formulas for mean, variance and higher statistical moments
of the exact occurrence count distribution. This approach has the advantage of ad-
ditionally allowing asymptotic analysis. Her framework is general enough to admit
Markovian text models as well as finite sets of patterns to be treated. Closely related
is the approach of Nicodeme et al. (2002), who present an algorithm to compute the
distribution of the number of times a DFA visits an accepting state when reading
a random text. This is equivalent to computing the distribution of the number of
occurrences when no two strings in the language accepted by the DFA can end at the
same position, that is, no string is a proper suffix of another string in the language.
The field is reviewed by Lladser et al. (2008). They describe the relation between
finite automata and Markov chains in terms of what they call Markov chain embedding.
Related approaches to compute the exact p-values based on automata are developed
by Boeva et al. (2007) and Nuel (2008). Another dynamic programming approach has
been given by Zhang et al. (2007). It is used to compute exact p-values for position
weight matrices describing transcription factor binding sites (TFBS). The basic idea of
using automata to compute pattern statistics has been briefly described and used for
enumeration-based motif discovery by Tompa (1999).
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The approach developed here provides a unifying framework for the efficient compu-
tation of pattern matching statistics. In contrast to existing approaches, it is applicable
to arbitrary finite-memory text models. That means even character-emitting HMMs
can be used as background models.

Constructing DAAs from DFAs

To use a DFA for pattern matching, that is, to find all instances of a pattern in a
(long) text, an automaton that accepts not only all strings matching the pattern, but all
strings that have a suffix matching the pattern is needed. This is discussed in detail in
Chapter 3. Here, we assume such an automaton to be given.

When a DFA reads a text, it is in an accepting state whenever (at least) one instance
of the pattern ends. To count the number of times a DFA (Q, X, 6, qo, F') is in an
accepting state, we generalize it to a counting DFA (Q, X, 6, qo, (14)4c0) as introduced
in Definition 2.3 by setting 7, := [¢ € F] forall ¢ € Q.

As discussed in Example 2.4, in an arbitrary finite set of strings, some strings can
be proper suffixes of others. As a consequence, more than one match can end at a
position in the text. For DFAs based on such pattern sets, we need to count more than
one match when entering the respective accepting state. We achieve this by defining
emissions (7),)4c0, Where 1, € Ny gives the number of matches to be counted upon
entering state g.

Based on this counting DFA, we now construct a DAA that sums up the emissions
generated in each state and turn this DAA into a PAA using Lemma 2.35. For practical
computations, it is often sufficient to truncate the summed emissions at a constant M €
N. The proof of the following theorem contains the details of the DAA construction.

Theorem 2.38. Let a counting DFA (Q, %, 6, qo, (1q)qc0) and a text model (C, co, X, ) be
given, and let (S¢)icn, be a random text distributed according to that model. Then, the
(truncated) distribution of accumulated counts

n—1
L <mm {M 2 ) Ms(ao,50--52) }) (2.31)

=0

can be computed using O(n - |Q| - |Z| - |C|? - M) operations and O(|Q| - |C| - M) space. If for
all c € Cand o € %, there exists at most one ¢ € C such that p(c,o,c’) > 0, then the number
of required operations is bounded by O(n - |Q| - |£| - |C| - M). Alternatively, (2.31) can be
computed with O(logn - | Q|3 - |C|® - M?) operations and O(|Q|* - |C|? - M) space.

Proof. Given the counting DFA (Q, X, 6, qo, (14)qc0), We use it to construct the DAA
D =1(Q,90,%,6,V,00,&, (ng)qc0, (0g)gca), where V :={0,..., M}, vo :=0, € := {ng :
q € Q}, and all operations are truncated additions:

04(v,€) :=min{M,v + e}
for all ¢ € Q. Clearly, we have

n—1
valuep(s) = min {M, Z Ua(qo,s[..i])}

1=0
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for all s € ¥*.

We now apply Lemma 2.35 to the DAA and the text model in order to construct
a PAA. The runtime and space bounds for the basic algorithm follow directly from
Lemma 2.37. To obtain the bounds for the alternative doubling algorithm, namely
O(logn-|Q|*-|C|?- M?) operations and O(|Q|?-|C|?- M) space, we exploit that the opera-
tions 6, are (almost) additions in this case. Thus, U®") (q1, g2, v1,v2) = UM (q1, g2, v3, v4)
ifvy <wvg < M,v3 <wvy < M and vo — vy = vy — v3. Thus, we can fix v1 = 0 and
thereby save a factor of |V| = M + 1 in time and space. The special cases for vy = M
or vy = M can be accommodated for in the same bounds. O

Remark 2.39 (DFA minimization). Before turning the DFA into a PAA, one may wish to
minimize it. Using an algorithm by Hopcroft (1971), a classical DFA can be minimized
in O(|Q|log |Q|) time for an alphabet of constant size, where Q is the set of states. It
does so by iteratively refining a partition of the state set. In the beginning, all states are
partitioned into two distinct sets: one containing the accepting states, and the other
containing the non-accepting states. This partition is iteratively refined whenever a
reason for non-equivalence of two states in the same set is found. Upon termination,
the states are partitioned into sets of equivalent states. Refer to Knuutila (2001) for
an in-depth explanation of Hopcroft’s algorithm. He also gives a variant that runs
in O(|X] - |Q|log |Q|) time when the alphabet size is not considered to be a constant.
Hopcroft’s algorithm can be adapted to minimize counting DFAs by using the partition
induced by the different emissions as an initial partition, that means, states with the
same emission are grouped together. For specific pattern classes, minimal DFAs can
be constructed directly, that is, without the intermediate step of a non-minimal DFA.
Algorithms for this are presented in Chapter 3. A

Example 2.40 (Significance of a motif). Suppose we have observed the IUPAC pattern
ANAG ten times in an stretch of DNA of length 100. Now we want to compute the
significance of this event, that is, the probability that ten or more matches of ANAG
are found in a random text of length 100. As a background model, we use a first
order Markovian model estimated from the human genome as shown in Figure 2.5a.
Note that the shown text model does not start in equilibrium. If necessary, this can be
changed by adding a new start state according to Remark 2.19. The next step is the
construction of a DFA that recognizes the motif. More precisely, we build a DFA that
accepts all strings with a suffix matching the motif. This DFA is depicted in Figure 2.5b.
Then, the DFA is translated into a DAA and subsequently into a PAA as formally
described in the proof of Theorem 2.38. The resulting PAA is shown in Figure 2.5¢c. As
the text model has four and the DFA has seven states, the PAA could have up to 28
(=4 -7) states. The figure illustrates that in this case, only twelve states of those are
reachable (unreachable states are not shown). Using Algorithm 2.1, we compute its
state-value distribution £(Q,, V;,) for n = 100, marginalize to obtain £(V},), and read
off the desired p-value which amounts to 4.3 - 10°. A

Example 2.41 (Mapping short reads to the genome). Current DNA sequencing tech-
nologies produce reads at the scale of gigabases per day. Mapping reads efficiently
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A:0.33

(@)

Figure 2.5: Construction of a PAA for pattern matching statistics over the alphabet
¥ = {A,C,G, T}. Start states are drawn in orange. (a) Markovian text model
of order one estimated from the human genome. (b) Minimal DFA accept-
ing all strings whose suffix matches ANAG. (c) PAA resulting from applying
Theorem 2.38. For clarity, edges with zero probability and those to states
(qo, -) have been omitted. All operations are additions (not drawn). Emis-
sion distributions are omitted for states that emit a zero with probability
one. Characters near edges (in parentheses) are not part of the PAA and are
given only to aid comparison to the DFA.
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Figure 2.6: Both figures show boxplots of the probabilities that randomly sampled
k-mers are contained at least once in a random genome (where k is varied
on the z-axis). Red crosses mark mean probabilities. The experiments are
further explained in Example 2.41. Left: only exact matches are counted.
Right: up to one mismatch is allowed, i.e. all occurrences with Hamming
distance of at most one are counted as matches.

and accurately to a reference genome is therefore an important yet difficult task. The
question of whether a k-mer (for a given value of k) is likely to match the human
genome just by chance is important for many seed-and-extend approaches to read
mapping. For a given k-mer, this probability can be computed using PAAs. Here,
the value space V is small as we only have to distinguish the two values “no match”
and “one or more matches”. On the other hand, the number of steps n is large as
the human genome comprises more than three billion nucleotides. Therefore, the
doubling algorithm introduced in Section 2.4.2 is advantageous. We use a second order
Markovian background model and sample 100 k-mers for each k between 10 and
28. For these k-mers, the probability that a random text of the same length as the
human genome contains at least one match (either exactly or with up to Hamming
distance one) is computed with respect to the same text model. The results are shown
in Figure 2.6. This figure illustrates that the probabilities indeed depend on the k-mer.
For k = 17, for instance, the probability of finding one or more exact matches (left
boxplot) is particularly diverse and ranges from 0.031 (for AAGCGCATCGTGAAAGA) to
0.999 (for AAAATCATAAATAAAAA). Furthermore, the plots show that there is a rather
sharp transition from high to low probabilities: when considering exact matches (left
boxplot), choosing k = 15 leads to a high probability for random matches, while for
k = 21, random matches are unlikely. A

Remark 2.42 (Waiting time for pattern occurrences). The waiting time for the first
occurrence of a pattern equals the waiting time for a state that emits a match. Therefore,
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its distribution can directly be computed by applying Lemma 2.30 for
U= {(qD,c) € Q‘an >0}.

The (asymptotic) waiting time for a subsequent occurrence as defined by Equa-
tion (2.21) can be computed by choosing « in Lemma 2.30 to be the equilibrium
state distribution restricted to I/. A

2.7 Excursus: Analysis of Pattern Matching Algorithms

The basic pattern matching problem is to find all exact occurrences of a pattern p € ¥*
in a (long) text s € ¥* with few character accesses. Many algorithms have been
invented to solve this problem. As a further example for the use of DAAs and PAAs,
we compute the distribution of the number of character accesses needed by an arbitrary
window-based algorithm to search for a fixed pattern in a random text.

Let X" be a random variable giving the number of character accesses made by
algorithm A to search for the pattern p in the random text Sy - - - S,—1. Despite all re-
search on pattern matching algorithms, a procedure to exactly compute the distribution
E(X;? ") has, to our knowledge, not been given before. However, some related ques-
tions have been answered in the literature. Baeza-Yates et al. (1990) and Baeza-Yates
and Régnier (1992), for example, analyze the expected value of X for Horspool’s
algorithm. Mahmoud et al. (1997) further show that for Horspool’s algorithm, X Ap
is asymptotically normally distributed for i.i.d. texts, and Smythe (2001) extends this
result to Markovian text models. Tsai (2006) devises a method to compute mean and
variance of these distributions.

In contrast to these results that are special to Horspool’s algorithm and tied to special
types of text models, PAAs can be used to analyze arbitrary window-based pattern
matching algorithms with respect to arbitrary finite-memory text models. After a brief
survey of pattern matching algorithms in Section 2.7.1, we give a generic method to
construct a DAA that counts the number of character accesses incurred by a given
algorithm in Section 2.7.2. In Section 2.7.3, we apply the techniques developed in
Sections 2.4 and 2.5 to combine this DAA with a text model and compute the sought
distribution of the number of character accesses. In Section 2.7.4, methods to compare
two algorithms are introduced. We conclude this digression with Section 2.7.5, where
we study three pattern matching algorithms in the non-asymptotic regime (short
patterns, medium-length texts).

2.7.1 Pattern Matching Algorithms

Let n be the text length and ¢ be the pattern length. The well-known Knuth-Morris-
Pratt algorithm (Knuth et al., 1977) reads each text character exactly once from left to
right. After preprocessing the pattern in ©(¢) time, it hence needs exactly n character
accesses for any text of length n. In contrast, the algorithms by Boyer and Moore (1977),
Horspool (1980), Sunday (1990), Crochemore et al. (1994, Backward DAWG Matching,
BDM), and Allauzen et al. (2001, Backward Oracle Matching, BOM) move a length-¢
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search window across the text and first compare its last character to the last character
of the pattern. This often allows moving the search window by more than one position.
At best, a shift of ¢ positions can be made if the last window character does not occur in
the pattern at all. This leads to n/¢ character accesses in the best case, but #n character
accesses in the worst case. As done in the Boyer-Moore algorithm, the worst case can
often be improved to ©(¢ + n), but this makes the code more complicated and seldom
provides a speed-up in practice.

For practical pattern matching applications, the most important algorithms are
Horspool'’s algorithm, BDM, and BOM, depending on alphabet size, text length and
pattern length. An experimental map is provided by Navarro and Raffinot (2002, Sec-
tion 2.5). BDM is often implemented as Backward Nondeterministic DAWG Matching
(BNDM), via a non-deterministic automaton that is simulated in a bit-parallel fashion.
To measure costs incurred by an algorithm, we count the number of character accesses.
We do not treat BDM and BNDM separately as they are indistinguishable in terms of
text character accesses. In the following, we summarize the three algorithms. More
details can be found in the book by Navarro and Raffinot (2002, Chapter 2).

All three algorithms have the following properties: They maintain a search win-
dow w of length ¢ = [p| that is initially placed at position 0 in the text s so that its
rightmost character is at position ¢t = ¢ — 1. The right window position ¢ increases in
the course of the algorithm; we always have w = s[(t — £+ 1) ...t]. The algorithms
look at the characters in each window from right to left, and thus compare the reversed
window with the reversed pattern. For Horspool’s algorithm, variants with different
comparison orders are possible, but the rightmost character is always compared first.

The number of character accesses done by an algorithm are determined by the
following two functions that are different for the three algorithms. For a pattern p € 3,
each window w € f determines

1. its cost £4P(w), e.g., the number of text character accesses required to analyze
this window, and

2. its shift, written shift A’p(w), which is the number of characters the window is
advanced after it has been examined.

If the algorithm referred to is clear from the context, we omit the superscript A. In the
following, we review Horspool’s algorithm, B(N)DM, and BOM and give their cost
function and their shift function.

Horspool’s Algorithm

First, the rightmost characters of window and pattern are compared. That means
o = w[l — 1] = s[t] is compared with p[¢ — 1]. If they match, the remaining ¢ — 1
characters are compared until either the first mismatch is found or an entire match has
been verified. This comparison can happen right-to-left, left-to-right, or in an arbitrary
order that may depend on p. In our analysis, we focus on the right-to-left case, but the
modifications for the other cases are straightforward. Therefore, the cost of window w
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Algorithm 2.2 Horspool’s algorithm to compute the number of occurrences of p in s.

Input: Pattern p € X7, text s € ¥
Output: Number of occurrences (occ) and number of incurred
character accesses (cost)

HORSPOOL-SEARCH(s, p)

1 precompute shift-by-lastchar? (o) for all o € ¥
2 (occ,cost) = (0,0)
3 t=4-1
4 whilet < |
5 1=20
6 while : < /¢
7 cost = cost + 1
8 if s[t —i] #p[(f — 1) — 1]
9 break
10 i=1+1
11 ifi=1"{
12 occ = occ+ 1
13 t = t + shift-by-lastchar P (s[t])

14 return (occ, cost)

is

€0 () = 14 if p=w,
min {i € {1,...,¢(} |p[£ — i #w[l —1i]} otherwise.

In any case, the rightmost window character o is used to determine how far the win-
dow can be shifted for the next iteration. Thus, we define a function shift-by-lastchar?
that maps characters to the corresponding shift. It ensures that no match can be missed.
It does so by moving the window such that o becomes aligned to the rightmost o in p
(not considering the last position). If o does not occur in p (or only at the last position),
it is safe to shift by ¢ positions. Formally, we define

right?(o) := max [{i € {0,...,0 =2} |pli] = o} U{-1}] ,
shift-by-lastchar? (o) := (¢ — 1) — right? (o),
shift?(w) := shift-by-lastchar? (w[¢ — 1]) .

For concreteness, we state Horspool’s algorithm and how we count text character
accesses as pseudocode in Algorithm 2.2. Note that after a shift, even when we know
that 0 now matches its corresponding pattern character, the corresponding position is
compared again and counts as a text access. Otherwise the additional bookkeeping
would make the algorithm more complicated; this is not worth the effort in practice.
We do not count the character access s[t] in Line 13 as we can memorize st] as soon as
it has been read in Line 8.
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The main advantage of this algorithm is its simplicity. Horspool’s algorithm does
not require any advanced data structure and can be implemented in a few lines of
code.

Backward (Nondeterministic) DAWG Matching, B(N)DM

The main idea of the BDM algorithm is to use a suffix automaton, which is a directed
acyclic word graph (DAWG), to determine the shift. A DAWG is a deterministic finite
automaton that accepts all suffixes of the reversed pattern (including the empty suffix)
and enters a special state gp; if (and only if) a string has been read that is not a substring

of the reversed pattern P

We process each window from right to left. As long as the state gg; has not been
reached, we have read a substring of the reversed pattern. If we are in an accepting
state, we have even found a suffix of the reversed pattern (i.e., a prefix of p). Whenever
this happens before we have read ¢ characters, the last such event marks the next
potential window start that may contain a match with p, and hence determines the
shift. When we are in an accepting state after reading ¢ characters, we have found a
match, but this does not influence the shift.

So, £P(w) is the number of characters read when entering g, or £ if p = w. Let I (w)
be a subset of {0,...,¢ — 1} such that ¢ € I”(w) if and only if the suffix automaton of
<

P is in an accepting state after reading i characters of w. Then,
shift?(w) = min {¢ —i|i € IP(w)}.

The set I”(w) is never empty as the suffix automaton accepts the empty string and,
thus, 0 € I?(w) for all windows w.

The advantage of BDM are long shifts, but its main disadvantage is the necessary
construction of the suffix automaton, which is possible in O(¢) time via the suffix tree
of the reversed pattern, but too expensive in practice to compete with other algorithms
unless the search text is extremely long.

Constructing a nondeterministic finite automaton (NFA) instead of the deterministic
suffix automaton is much simpler. However, processing a text character then does
not take constant, but O(¢) time. However, the NFA can be efficiently simulated with
bit-parallel operations such that processing a text character takes O(¢/W) time, where
W is the machine word size. For many patterns in practice, this is as good as O(1).
The resulting algorithm is called BNDM. In terms of text character accesses, BDM and
BNDM are equivalent as they have the same shift and cost functions.

Backward Oracle Matching, BOM

BOM is similar to BDM, but the suffix automaton of the reversed pattern is replaced by
a simpler deterministic automaton, the factor oracle (rarely also called suffix oracle). It
accepts all factors of the reversed pattern but may also accept more strings. Tolerating
that the automaton accepts additional strings allows a simpler construction.
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The cost and shift functions are defined as for BDM, but based on the oracle. We
refer to Navarro and Raffinot (2002) for the construction details and further properties
of the oracle. By construction, BOM never gives a longer shift than B(IN)DM for any
window w. The main advantage of BOM over BDM is reduced space usage and
preprocessing time as the factor oracle only has ¢ + 1 states and can be constructed
faster than a suffix automaton.

2.7.2 Constructing DAAs

For a given algorithm A with known shift and cost functions and a pattern p € ¢, we
construct a DAA that, upon reading a text s € ¥*, computes the total cost, defined as
the sum of costs over all examined windows. Which windows are examined depends
on the shift values of previously examined windows. Extending notation, we write
€42 (s) for the total cost incurred on s € ¥*.

Definition 2.43 (Cost-computing DAA). Let a window-based pattern matching algo-
rithm A and a pattern p € ¥¢ be given and the algorithm’s shift and cost functions
shift 4P - B¢ — {1,... £} and €47 : ¥ — N be known. We define CostDAA(A, p) =

(Qa q0, Ea 67 Va Vo, g? (UQ)QEQa (eq)qEQ) by
e O:=X%tx {0,....,¢},

* q0:= (p, 1),
e 5 ((w2),0) = (w[l..]o, x - %2 ?fa: > 0,
(w[l.]o, shift #P(w) —1) ifz =0,
e V=N,
e vy :=0,
o &:={1,...,1},
0 if x > 0,
[ J =
w.2) EAP(w)  ifz =0,

e 0,:(v,e) »v+eforallge Q.
O

Informally, the state ¢ = (w,x) means that the last ¢ read characters spell w and
that = more characters need to be read to get to the end of the current window. For the
start state (p, ¢), the component p is arbitrary, as we need to read ¢ characters to reach
the end of the first window. The value accumulates the cost of examined windows.
Therefore, the operation is a simple addition in each state, and the emission of state
(w, x) specifies the cost to add. Consequently, the emission is zero if the state does
not correspond to an examined window (z > 0), and the emission equals the window
cost {P(w) if = 0. The transition function § specifies how to move from one state
to the next when reading the next text character o € ¥: In any case, the window
content is updated by forgetting the first character and appending the read o. If the
end of the current window has not been reached (z > 0), the counter z is decremented.
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Otherwise, the window’s shift value is used to compute the number of characters till
the next window aligns.

Theorem 2.44. Let a window-based pattern matching algorithm A and a pattern p € %.* be
given and D := CostDAA(A, p) be constructed according to Definition 2.43. Then,

valuep(s) = E4P(s)
forall s € ¥*.

Proof. The total cost €4 (s) can be written as the sum of costs of all processed windows:

EMP(s) =D M (sli—+1...1]),

1€ls

where I is the set of indices giving the processed windows, i.e. Iy C {{—1,...,|s|—1}
such that

iel, == i=0—1 or 3Jjecl,:i=j+shift™(s[j—L+1...7]).

We have to prove that the DAA computes this value for s € X*.

Let (w;, x;) be the DAA state active after reading s[..i]. Observe that the transition
function § ensures that the w;-component of (w;, z;) reflects the rightmost length-¢
window of s[..i], which can immediately be verified inductively. Thus, the emission on
reading the last character sli] of s[..i] with i > ¢ — 1 is, by definition of 7, ), either
¢AP(s[i — £+ 1...14]) or zero, depending on the second component of (w;, z;). As the
operation is an addition for all states, we get

valuep(s) = Z ENP(s[i — L+ 1...1))

i€l

for
I:={ie{0,....|s| -1} |z; = 0}.

It remains to be shown that Iy = I.. By §, we have z;; = z; — 1 if ;41 > 0 and
xiv1 = shift YP(w;) — 1if 2541 = 0. As qo = (p, £), it follows that £ — 1 € I’. Using
w; = sli — L+ 1...i] fori > ¢ — 1, we conclude that whenever x; = 0, it follows that
zj = 0 for j = i+ shift *P(s[i — £+ 1...i]) and that z;; > 0 fori < j' < j. Hence
we obtain that i € I/ implies that i + shift 4P(s[i — £+ 1...4]) € I’ and i + k ¢ I’ for
0 < k < shift AP (s[i — £+ 1...i]), which completes the proof. O

DAA Minimization

The size of the constructed DAA’s state space depends exponentially on the pattern
length, making the application for long patterns infeasible. However, depending on
the particular circumstances (i.e., algorithm and pattern analyzed), the constructed
DAA can often be substantially reduced by applying a modified version of Hopcroft’s
algorithm for DFA minimization (Hopcroft, 1971) which is explained in Remark 2.39.
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The algorithm can straightforwardly be adapted to minimize DAAs by choosing the
initial state set partition appropriately. In our case, all DAA states are associated with
the same operation. The only differences in the behavior of states thus stem from
different emissions. Therefore, Hopcroft’s algorithm can be initialized by the partition
induced by the emissions and then continued as usual. As exemplified in Section 2.7.5,
this leads to a considerable reduction of the number of states.

2.7.3 Computing Cost Distributions

Having constructed a DAA that computes the cost, in our case the number of char-
acter accesses caused by an algorithm, we can make use of the theory developed in
Section 2.5 and directly arrive at the following theorem.

Theorem 2.45. Let a finite-memory text model (C, co, 2, ), a window-based pattern matching
algorithm A, a pattern p € Xf, and the functions shift A and ¢4P be given. Furthermore,
let QP be the state set (possibly after minimization) of the corresponding cost-computing
DAA as given in Definition 2.43. Then, the cost distribution L(XP) can be computed using
O(n?-£-1QP|- || - |C|?) operations and O(|QP|-|C|-n - £) space. Since |QP| is bounded by
O(L - |[%), the computation uses O(n? - £% - |S|+1 - |C|?) operations and O(¢2 - |S|° - |C| - n)
space. If for all ¢ € C and o € %, there exists at most one ¢’ € C such that p(c,0,c) > 0,a
factor of |C| can be dropped from the runtime bounds.

Proof. The claim follows by observing that ¥,, € O(nf) and combining Theorem 2.44,
Lemma 2.35, and Lemma 2.37. O

Applying DAA minimization before the PAA construction results in considerable
speed-ups in practice. Alternatively, algorithm-dependent construction schemes may
be used to construct small automata. Tsai (2006), for instance, gives algorithms to
compute the asymptotic mean and variance of the number of comparisons used
by Horspool’s algorithm; for that, he constructs a Markov chain with O(¢?) states.
His construction can immediately be adapted to construct a DAA with O(¢?) states.
However, it cannot be easily transferred to other algorithms and we are not aware of
any similar results for BOM or B(N)DM. It remains an open question whether there
exists an algorithm to construct the minimal automaton directly in general, i.e. using
only O(|QP. |) time.

2.7.4 Comparing Algorithms

Computing the cost distribution for two algorithms allows us to compare their per-
formance characteristics. One natural question, however, cannot be answered by
comparing these two (one-dimensional) distributions: What is the probability that
algorithm A needs more text accesses than algorithm B to scan the same random text?
The answer will depend on the correlation of algorithm performances: Do the same
instances lead to long runtimes for both algorithms or are there instances that are easy
for one algorithm but difficult for the other? This section answers these questions by
constructing a PAA to compute the distribution of cost differences of two algorithms.
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That means we calculate the probability that algorithm A; needs v text accesses more
than algorithm A, for all v € Z.

We start by giving a general construction of a DAA that computes the difference of
the sum of emission of two given DAAs.

Definition 2.46 (Difference DAA) Let D' = (Ql 45, 2,01,V 05, EY, (0d) ge0r5 (04) ge01)
and D*=(Q2,¢3,%,6% V2,03, 82 (n g)qegz ,(02),c02) be DAAs given over the same al-
phabet ¥ with V! = V2 — N, v =v§ =0, & 52 C N, and all operations are additions
of the previous value and the current emission. The difference DAA is defined as

D#fDAA(D17 D2) = (Q7 qo, 27 5) V? o, g) (Uq)qEQa (QQ)QEQ)

e Q:= Q x Q2 andqo (a8, a2),

o £: =81 x&? andn( @) = (77;1,7722),

o 5:((¢,q%),0) = (64(q", 0),6%(¢% o)),

e 0y: (v, (el e?) »v+el —e

O

Lemma 2.47. Let D! and D? be DAAs meeting the criteria given in Definition 2.46 and
D := DiffDAA(D', D?). Then,

valuep(s) = valuepi (s) — valuep2(s)
forall s € ¥*.
Proof. Follows directly from Definition 2.46. O

Lemma 2.47 can now be applied to the DA As constructed according to Definition 2.43
for the analysis of two algorithms. Since the construction in Definition 2.46 builds the
product of both state spaces, it is advisable to minimize both DA As before generating
the product. Furthermore, in an implementation, only reachable states of the product
automaton need to be constructed. Before being used to build a PAA (by applying
Lemma 2.35), the difference DAA should again be minimized.

At most ¢(n — ¢ + 1) character accesses can result from scanning a text of length n
for a pattern of length /. Thus, the difference of costs for two algorithms lies in the
range {—¢(n —{¢+1),...,¢(n — ¢+ 1)} and, hence, ¥,, € O(n - ¢).

2.7.5 Case Studies

Above, we described three practically relevant algorithms, namely Horspool’s algo-
rithm, backward oracle matching (BOM), and backward (non)-deterministic DAWG
matching (B(N)DM). Now, we compare the distributions of running time costs of
these algorithms for several patterns. Figure 2.7 shows these distributions for the
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Figure 2.7: Exact distributions of character access counts for patterns ATATAT (top) and
ACGTAC (bottom) for text length 100 (left) and text length 500 (right). An
ii.d. text model with uniform character distribution is used.

patterns ATATAT and ACGTAC for text lengths 100 and 500 under a uniform i.i.d. model
on the DNA alphabet {A,C,G,T}. For text length 500, the distributions for Horspool’s
algorithm and B(IN)DM resemble the shape of normal distributions. In fact, for Hor-
spool’s algorithm, Smythe (2001) has proved that the distribution is asymptotically
normal. For smaller text lengths (e.g. 100, as shown in left column of Figure 2.7), the
distributions are less smooth than for longer texts. It is remarkable that for BOM we
find zero probabilities with a fixed period. In all examples shown in Figure 2.7, this
period equals seven.

The probability that one pattern matching algorithm is faster than another depends
on the pattern. Using the technique introduced in Section 2.7.4, we can quantify the
strength of this effect. Figure 2.8 shows distributions of cost differences for different
patterns and algorithms. That means the probability that the first algorithm is faster
is represented by the area under the curve left of zero. For the pattern CGAAAA, for
example, there is a 55.6% probability that Horspool’s algorithm needs fewer character
accesses than B(N)DM in uniform i.i.d. texts of length 100, while for ACGTAC, the
probability is only 0.18%.

Worth noting and perhaps surprising is the fact that there is a non-zero probability
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Figure 2.8: Exact distributions of differences in character access counts for different
patterns using a uniform character distribution as text model and random
texts of lengths 100.

of BOM being faster than B(N)DM although shift BENPMP (1)) > shift BOM» (1) for all
window contents w. The explanation is that a shorter (say, first) shift for BOM leads to a
different window content than for B(N)DM for the second window, which may have a
larger shift value. This effect depends on the pattern: for the pattern CAAAAA, there is a
48.2% probability that BOM performs better than B(N)DM, while it is 6.2% for ACGTAC,
again on texts of length 100. These results show that the algorithms’ performance is
indeed non-negligibly influenced by the pattern.

To assess the effect of DAA minimization before constructing PAAs, we constructed
minimized DAAs for all 21 840 patterns of lengths two to seven over ¥ = {A,C, G, T}.
The minimum, average, and maximum state counts are shown in Table 2.9. For
length six, Figure 2.10 contains a detailed histogram of worst-case state counts of
minimal automata. It may be conjectured that the minimal state counts grow only
polynomially with ¢ for all of these algorithms, as has been previously proved for
Horspool’s algorithm by Tsai (2006).
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Table 2.9: Comparison of DAA sizes for all patterns of length ¢ over ¥ = {A,C,G, T}.

¢ States unminimized

States minimized (min./avg./max.)

1S/ (+1) Horspool BOM B(N)DM
2 48 4/48/5 4/40/4 4/48/5
3 256 7/83/9 7/83/9 7/96/10
4 1280 11/143/15 11/156/18 11/17.0/19
5 6144 16 /236/25 16/265/30 16/279 /31
6 28672 22 /370/39 22/41.8/47 22 /428 /48
7 131072 29 /552 /58 29/624/70 29/626/70
1400 T T T T T T T T T T T T T T T T T T T T T T T T T T T
Horspool s
1200 | BOM 4
B(N)DM
1000 4
>~
g 800 4
=]
g 600 i
(=9
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200 ‘ ‘ —
0 ! 1 1 | wl wl 1 1 [ | I- [ | II 1
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Number of states

Figure 2.10: Histogram on number of states of minimal DAAs over all 4096 patterns
of length six over ¥ = {A,C,G, T}.

Runtimes

Computing the distributions shown in Figure 2.7 took 0.3 to 0.6 seconds for each
distribution. Distributions of differences as in Figure 2.8 were computed in 14 to 36
seconds.
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The statistical properties of a motif are reflected by a DFA accepting all of its instances.
This connection is made explicit in Sections 2.6 and 4.3. In all introduced algorithms,
the runtime depends at least linearly on the number of DFA states, in some cases
the dependence is even cubic. Therefore, it is advisable to minimize DFAs before
processing them further. In this chapter, we raise the question whether there are
more direct ways to obtain the minimal DFA for a given motif than constructing a
non-minimal DFA and subsequently minimizing it. Ultimately, the goal is to find
algorithms whose runtime depends linearly on the number of states of the minimal
DFA, which would be optimal. Although automata theory has been subject to extensive
research for decades, not much attention has been given to this particular topic.

In Section 3.1, we introduce a general approach to the direct construction of minimal
DFAs. Although the concept is quite simple and seemingly restrictive, we show that it
is strong enough to cover many motifs found in computational biology. In Sections 3.2
and 3.3, we give construction schemes for (sets of) generalized strings and consensus
strings with a Hamming neighborhood, respectively.

3.1 Simple NFAs

Our goal is to identify a class of NFAs for which the classical subset construction,
written SUBSET-CONSTRUCTION(-) as introduced on Page 21, yields a minimal DFA.
To this end, we define simple NFAs.

Definition 3.1 (Simple non-deterministic finite automaton). Let M = (Q, X, A, Qo, F)
be an NFA. M is called simple if all states are accessible and the languages L(q) of all
states ¢ € Q are non-empty and pairwise disjoint. O

A given automaton can easily be modified such that all states have a non-empty
language and are accessible: if there is a state ¢ with an empty language, thatis, L(q) =
(), we can safely remove ¢ from Q without changing the accepted language. Likewise,
all inaccessible states can be removed without changing the accepted language.

Theorem 3.2 (Minimality of DFA constructed from simple NFA). Let a simple NFA
M, = (Q,%, A, Qqy, F) be given. Then, the DFA

M; = (94,%,6, qo, Fy) = SUBSET-CONSTRUCTION(M,, )
is minimal.

Proof. Recall that Q; C 22 and ¢p = Qo by definition of SUBSET-CONSTRUCTION. Fur-
ther recall that Lyra(q) = Lpra(q) for all ¢ € Q, (see Remark 2.8) and that the subscript
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3 Direct Construction of Minimal DFAs

is therefore omitted. Let @', Q" € Q; be two distinct DFA states. By Lemma 2.10, we
have to show that Q' and Q" are not equivalent, or more formally

LQ)=J Ldh# |J L") =L(Q"). (3.1)

qle Q/ q/le Q//

Without loss of generality, assume that Q"\ Q" # () and let ¢ € @'\ Q”. By Definition 3.1,
L(g)NL(q") = D for all ¢" € Q" and thus L(q) N L(Q") = 0. But, by choice of ¢, L(q) C
L(Q') and, by Definition 3.1, L(q) # 0. Hence, it follows that L(Q'") # L(Q"). O

An Alternative Proof

We give an alternative proof of Theorem 3.2 by means of the theory developed by
van Glabbeek and Ploeger (2008). They consider five different variants of the classical
subset construction. Each variant is characterized by an operation f : 22 — 22, where
Q is the state space of an NFA. When a new DFA state is produced in the course of the
subset construction, it is subjected to the operation f before being added to the final
automaton. In one variant, they define f to be the closure operation

closec : @'+ {q € Q| L(¢q) € L(Q)}

and show that the subset construction endowed with this operation directly produces
minimal DFAs. Theorem 3.2 now follows from the definition of simple NFAs: as all
sets L(q) for g € Q are pairwise disjoint, closec (Q') = Q' for each @' C Q and, thus,
the classical subset construction yields a minimal DFA.

Note that the language inclusion problem required to be solved for the closer-
operation is in general hard to compute. According to van Glabbeek and Ploeger
(2008), it is PSPACE-complete.

Self-Transitions of Start States

In most practical settings like pattern search or pattern statistics, we are given a certain
type of pattern and need to construct an automaton that accepts all strings with a suffix
matching this pattern, rather than an automaton that accepts only the strings that
match the pattern (see Section 2.6). For instance, if the pattern is the single string ABA
and we want to compute the distribution of the number of occurrences in a random
text, we need to build an automaton accepting all strings whose last three letters are
ABA. For NFAs, we can easily obtain such an automaton once we have constructed an
NFA accepting all strings that match the pattern. All we need to do is to modify the
transition function A by adding self-transitions to all start states

{Q} U A(Q7 U) If q e QO s

i (3.2)
A(q,0) otherwise.

Ao : (q,O') — {

Throughout this thesis, the subscript “0” refers to this modification of a transition
function. Furthermore, we use the notation L«(q) to refer to the language of the state ¢
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with respect to the modified NFA (Q, %, A, Qp, F'). Lemma 3.4 characterizes those
simple NFAs that remain simple under this modification. Before we can state it, we
need to define one-way start states.

Definition 3.3 (One-way start states). For an NFA (Q, X, A, Qp, F'), a start state ¢gp € Qo
is called one-way start state if there do not exist o € ¥ and ¢ € Q \ {q} such that
q € A(q,0), i.e. if it cannot be reached from any state other than itself. O

Lemma 3.4. Let M = (Q, %, A, Qq, F) be a simple NFA. The modified automaton M :=
(Q,%, A, Qo, F) is simple if and only if, in M, all start states qo € Qg are one-way start
states.

To prove this, we need an auxiliary lemma.

Lemma 3.5. Let M = (Q, %, A, Qq, F') be a simple NFA such that all its start states gy € Qo
are one-way start states. If Ls(q) \ L(q) # 0 fora q € Q, then ¢ € Qq and, for all
s € L(q) \ L(q), there exists a k € N such that s[k..] € L(q).

Proof. If ¢ € Q\ Qy, then no start state can be reached from ¢ as all start states are
one-way start states. Thus, A(¢',0) = A(¢, o) for all states ¢’ reachable from ¢ and all
o € X. Hence, L(q) = L(q), which implies that Ls(q) \ L(g) = 0. Therefore, ¢ € Qy.
It remains to be shown that there exists a k € N such that s[k..| € L(q). If ¢ € F, this
is true as for k := |s| we get s[k..] = ¢ € L(q). If ¢ ¢ F, then there exists a sequence of
states q1, ..., q)s| € @such that ¢ € Ai(q,s[0]), ¢i € Ax(gi1,s[i —1]) for 1 <i < [s],
and g5 € F. Now, setting k := min{i € {0,...,|s| — 1} |qis1 # ¢} implies that
s[k..] € L(q) as all states gx1, - - - || cannot be start states and thus their transition
function remains unchanged under Equation (3.2). O

Proof of Lemma 3.4. “="": Suppose M is simple and there exist o € 3, ¢ € Qop, and
q € Q with gy # ¢ such that ¢y € A(q,0). Thus, os € L(q) for all s € L(qo). Because of
the added self-transition, we also have os € L(qo) and, thus, L(go) and L«s(q) are
not disjoint, contradicting the assumption that M is simple.

“<=": Now, we assume that all start states are one-way start states. The properties
that all states are accessible and have non-empty languages cannot get lost by adding
the additional self-transitions. Therefore, we only need to verify that L (g) and L(q")
are disjoint for all distinct ¢,¢' € Q. For the sake of contradiction, we assume there
exist distinct ¢, ¢’ € Q violating this condition. We choose s € L¢s(q) N Ls(¢") such that
s € Lis(q) \ L(g); if that is not possible, it becomes possible after swapping ¢ and ¢/,
because L(q") C L(q") for all ¢" € Q and L(q) N L(q') = (). We have to distinguish
two cases.

Case 1 (s € L(¢')): By Lemma 3.5, ¢ is a start state and there exists a k € N such
that s[k..] € L(q). Since all L(¢") for ¢" € Q are disjoint, it follows that s[k..] ¢ L(q")
forall ¢" € Q\ {q}. As s € L(¢'), we thus conclude that ¢ € A(¢, s[..k — 1]), which
contradicts the assumption that ¢ is a one-way start state.

Case 2 (s ¢ L(q')): By Lemma 3.5, q,q’ are start states and there exist k, k¥’ € N
such that s[k..] € L(q) and s[k’..] € L(¢). If k = ¥/, then s[k..] € L(q) N L(¢') # 0,
contradicting the simpleness of M. We assume, without loss of generality, that £ < £’.
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A,B,C
<. Do A ( ) A,B G B G A,C @
0o 1 2 3 4

Figure 3.1: Example of a simple NFA (with self-transition added to the start state) con-
structed from the generalized string {A}{A, B}{B}{A, C} over the alphabet
Y = {A,B, C}. The start state is drawn in orange and the accepting state is
represented by two concentric circles.

Since s[k’..] € L(¢') and s[k'..] ¢ L(¢") for all ¢" € Q\ {¢'}, we conclude that ¢’ €
A(g, s[k ...k —1]), contradicting the assumption that ¢’ is a one-way start state. [

3.2 Application to Generalized Strings

In this section, we show that generalized strings and sets of generalized strings admit
the construction of simple NFAs. Obviously, a single string is a special case of a set
of strings. To aid understandability, we nonetheless start with the easier case of one
single string.

3.2.1 Single Generalized Strings

For a generalized string g, an NFA accepting all strings that match g can easily be

constructed by connecting the state set Q = {0, ..., |g|} with the transition function
+1} ifg<|gland o € ,
A (q.0) {g+1} ifg <lgland o € gg
0 otherwise.

Setting Qp = {0} and F' = {|g|} completes the construction of the NFA (Q, X, A, Qp, F).
For brevity, we write NFA(g) to denote the automaton created from a generalized
string g using the above construction.

Lemma 3.6. Let g be a generalized string. Then My := NFA(g) is a simple NFA.

Proof. Clearly, all states i € Q are accessible and have non-empty languages. M,
admits only transitions from a state i to its successor state ¢ + 1; only the last state in
this chain is an accepting state. Thus, for each state i € Q, the lengths of all accepted
strings s € L(i) equal |g| — i. Hence, for two different states i and j, accepted strings
have different lengths. Thus, all L(i) must be pairwise disjoint (for i € Q). O

As discussed in Section 3.1, we often need to add a self-transition to the start state.
This modification is defined formally in Equation (3.2). We write NFA(g) to refer
to the resulting automaton. See Figure 3.1 for an example. Combining Theorem 3.2,
Lemma 3.6, and Lemma 3.4, we arrive at the following corollary:
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Corollary 3.7. Let g be a generalized string and M, := NFA(g) the corresponding NFA.
Then, SUBSET-CONSTRUCTION(M,)) is a minimal DFA.

3.2.2 Sets of Generalized Strings

In this section, we generalize the above results to finite sets of generalized strings of
equal length. Speaking formally, we assume a length ¢ and G C G’ to be given and
seek to construct a simple NFA that accepts all strings that have a suffix matching a
g € G. As above, we first construct an automaton that accepts all strings matching a
g € G and, in a second step, add self-transitions to the start states Q.

Remark 3.8 (NFAs with |F'| > 1 are not simple). One way of building an NFA that
accepts a set G C G’ is to construct a trie (whose edges are labeled with generalized
characters from G) containing all g € G and using every node as an NFA state. The
transition function is directly given by the tries” edge labels. For |G| > 1, however, the
resulting NFA is not simple, because it has more than one accepting state: the languages
of all accepting states contain the empty string and, hence, cannot be disjoint. A

The automaton we build is organized level-wise with /+1 levels. Transitions are only
possible between states in adjacent levels and only in one direction (wWhich we choose to
call downwards). The bottom level contains just one state which is the single accepting
state. All states in the top level are start states. As before for a single generalized string,
two states ¢’ and ¢” in different levels are obviously “language-disjoint”, meaning that
L(¢") N L(¢") = 0. But here, we possibly need more than one state in a level, which
entails the problem of ensuring language-disjointness for states in the same level. We
achieve this by using a state space induced by a special parent-child relation between
states in adjacent levels. Before we formally construct state space and automaton, the
reader may have a look at the example in Figure 3.2.

Let us begin with the formal specification of a suitable state space Q. We choose Q
to be a special subset of Q := 2% x {0, ..., ¢} with the following semantics in mind: to
be in state ¢ = (H, k) means that the last k characters read match the first k positions
of a g € H. For the definition of Q, we need the function PARENT: Q x ¥ — QU { L}
given by

({heH|oehk-1]},k-1) ifk>0,

PARENT : ((H,k),0) — {L (3.3)

otherwise.

We say that PARENT(g, o) is a parent of ¢ under the character o. The special symbol L
is used to indicate that a state is in the top level and therefore does not have any
parents. The PARENT mapping induces a hierarchy of ¢ 4 1 levels of states:

Q:={(G,0)}, (34)
9, ::{(H, i) ed ( H+#0,3q€ Q1,0 € X : PARENT(q,0) = (H, @")}, (3.5)

for 0 <4 < ¢. Finally, we write the state space as

Q:=QyU...UQ,. (3.6)
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Level 0

Level 1

Level 2

Level 3

A,B,C A,B,C A,B,C A,B,C

% %

{0,2}

{0,1,2}

Figure 3.2: Example of a simple NFA constructed from the three generalized strings

0:{B,C}{A,C}{A,B}, 1:{A}{B}{A,B,C}, and 2:{C}{B, C}{A, C} over the alpha-
bet ¥ = {A,B, C}. Each state is annotated with the set of generalized strings
that are “active” in this state (each generalized string is represented by its
index 0, 1, or 2). The start states are drawn in orange and the accepting
state is represented by two concentric circles.

The PARENT mapping also induces a transition function A:

A ((H k),0) — {

{q € Qr+1|PARENT(q,0) = (H,k)} ifk <Y,

3.7
0 otherwise. (37)

To complete the construction, we set

F:=9,={(G,0)}

and obtain NFA(G) := (Q,%, A, Qq, F'). The next lemma states that an NFA con-
structed in this way accepts exactly the language given by G.
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Lemma 3.9. Let a length ¢ € N and a set of generalized strings G C G’ be given and set
(Q,%,A, Qy, F) = NFA(G). Then,

dge Qy:Alg,s) NF#0) < 3dgeG:s<y,
forall s € ¥*.

Proof. We start with the forward direction “=". If s € £* is accepted by NFA(G),

then there exists a sequence of states qo, ..., g such that g0 € Qo, g, € F, and
g € A(gi-1,s[i —1]) for 0 < ¢ < |s|. It follows from Equation (3.7) that ¢,—; =
PARENT(g;, s[i — 1]). Hence, Equation (3.3) implies that Hy C ... C Hj,, where

(H;, ki) := ¢;. Furthermore, by Equation (3.5), Hy is non-empty. Inductively apply-
ing (3.3) now yields that s <1 h for all h € Hy, which proves the forward direction.
Let us prove the backward direction “<=". Let g € G, such that s <t g. Consider
the sequence of states g, . .., ¢/ with (H, k) := ¢; given by ¢, := (G,¢) and ¢;_, :=
PARENT(q}, s[i — 1]) for 0 < i < |s|. From s < g and Equation (3.3) it follows that
g € H] for 0 < i < |s|. Thus, each H] is non-empty and by Equations (3.4) and (3.5)
we get ¢, € Q, for 0 < i < |s|, implying that g, is a start state. From Equation (3.7) we
conclude that A(g(, s) = q"s‘ which proves the claim as q|’s| eQy=F. O

In analogy to Lemma 3.6, we verify that NFA(G) is indeed a simple NFA.
Lemma 3.10. Let ¢ € N and G C G*. Then, M := NFA(G) is a simple NFA.

Proof. The level-wise construction directly implies that all states are accessible and have
non-empty languages. States with empty L(q) cannot be generated by Equation (3.5).

It remains to be shown that for all distinct ¢, ¢’ € Q the sets L(q) and L(q') are
disjoint. By construction, this is clearly true if g and ¢’ are in different levels. Hence, it
suffices to show that

L(g)NL(¢") =0 forall ¢,q € Q; with q # ¢ (3.8)

for all ¢ with 0 < i < £. We prove this by induction on ¢, starting with ¢ = /. For
i = ¢, Condition (3.8) is fulfilled as |Q;| = 1. Assume that (3.8) holds for i > 0. For
the sake of contradiction, we further assume there exist distinct ¢, ¢’ € Q;_1, such that
L(q) N L(¢") # 0. Let s € L(q) N L(¢'); it follows that A(q, s) € F. There must exist a
state r € Q; such that A(r, s[1..]) € F'. As, by the induction hypothesis, Condition (3.8)
holds for i, we conclude that the state r is unique. By Equation (3.7), transitions from
g and ¢’ can only lead to states in Q; implying that r € A(g, s[0]) and r € A(¢/, s[0]).
Applying (3.7) again, we get ¢ = PARENT(r, s[0]) = ¢’ and, thus, ¢ = ¢'. O

In Section 3.2.1, we added an initial self-transition to the constructed NFA and
obtained an automaton that finds all occurrences of the generalized string in a given
text. Now we repeat this step by transforming NFA (G) using Equation (3.2). Again,
we refer to the resulting modified automaton by NFA +(G). Algorithm 3.1 shows how
the construction can be implemented. For |G| = 1 we obtain the same automaton as
constructed in Section 3.2.1. Formally, we get the following theorem.
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Algorithm 3.1 Construction of a simple NFA as formalized in Equations (3.4) and (3.5).
Input:  Alphabet ¥, length ¢, and set of generalized strings G C G&

Output: Simple NFA accepting all strings {st |s,t € ¥*,3g € G : t < g}
BUILD-SIMPLE-NFA (X, 4, G)

1 A = empty transition map

2 Q= {(G>€)}

3 fork = ¢ —1downto 0

4 Q=10

5 for (H',k+1) € Qpq1,0 €X
6 H = {heH |o < hlk]}
7 if H#0

8 Qr = O U{(H,k)}
9 A.add-transition(((H, k), o) — (H', k + 1))
10 forge Qp, o€ X

11 A.add-transition((q, o) — q)
12 Q=9yU...UQy

13 F=09

14 return (Q,%,A, Qo F)

Theorem 3.11. Let a length £ € N and a set of generalized strings G C G' be given. Then, a
minimal automaton accepting the set {st|s,t € ¥*,3g € G : t < g} can be constructed in
O2/G1. ¢S] - |G| + m) time, where m is the size of the minimal DFA.

Proof. Consider NFA (G). It accepts the language {st|s,t € ¥*,3g € G : t < g} by
Lemma 3.9 and Equation (3.2). Lemma 3.10 and Lemma 3.4 show that it is indeed a
simple NFA. By Theorem 3.2, the resulting DFA is minimal. The runtime follows by
analyzing Algorithm 3.1. The loop in Line 3 builds / levels. Each level contains at most
2/l states and thus the inner loop in Line 5 is executed O(2!¢! - |%|) times for each level,
where execution of Line 6 takes O(|G|) time and the other steps can be performed in
constant time. All in all, Algorithm 3.1 takes O(2/¢1 - ¢ |%| - |G]) time. The subsequent
subset construction can be implemented to run in O(m) time leading to the claimed
overall runtime. O

Remark 3.12 (Size of minimal DFA). Theorem 3.11 does not give a bound for the
minimal DFA'’s size m. Let us choose an arbitrary set YW C . On the one hand, the
size of the minimal DFA accepting this set is bounded by O(%¥) as this is a bound for the
number of states of an Aho-Corasick automaton (Aho and Corasick, 1975) accepting W.
On the other hand, the minimal DFA accepting an arbitrary set W C % has a size of
Q(x#1/2) in the worst-case. This can be shown by a counting argument as follows.
There are at most |Q| - 219! . |Q||9I®| different DFA’s with |Q| states since we can
choose | Q| different states as start states, can choose the set of accepting states F in 2/<!
different ways, and define at most |Q|/</'1*| different transition functions. Therefore,
there are at most |Q|? - 29I . | Q|I9I1* automata with | Q| states or less. Comparing this
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number to the number of possible different word sets W C X¢ yields the claimed lower
bound:

Q2 - 2191 . |g|leH®l > o(I=1%)
— 2-1log |Q| + |Q| - log 2+ |Q| - |Z| - log |Q] > |B| - log 2
= 3|Q* > |2

— 9| eQ(\zV%) .

This shows that the worst-case size of the minimal DFA accepting a subset of %
grows exponentially in £. However, there are less than 2¢#*I subsets of ¥ that can be
expressed as a set of generalized strings G C G with |G| < k. Whether or not there
exists a bound for the size of the minimal DFA accepting G that is not exponential in ¢,
remains an open question. A

3.3 Application to Consensus Strings with a Hamming
Neighborhood

Another type of motif commonly used in computational biology is a consensus string
along with a distance threshold. Here, we assume that a (generalized) string s and a
distance threshold d,;,x are given and want to compute the minimal DFA that accepts
all strings with a Hamming distance to s of at most d;;.x, where the Hamming distance
between a string s and a generalized string ¢ of the same length is defined as

d(s, q) == Hz €{0,...,|s| — 1} | sli] ¢g[z‘}}’.

We construct a simple NFA accepting a generalized string and its Hamming neigh-
borhood. The construction is similar to the one given in the textbook by Navarro and
Raffinot (2002). Interestingly, the resulting NFA turns out to be simple.

The basic idea for the construction is to use a two-dimensional grid as a state space,
where we advance into one dimension whenever a valid character has been read and
into the other dimension for each mismatch. Figure 3.3 illustrates an NFA built in this
way. Formally the state space is defined by

Q= {(e,k) € {0, .., dyax} x {0,....]4l} \g\—k—ezO} (3.9)

with the following semantics: state (e, k) accepts all strings of length |g| — k that match
the respective suffix of g with exactly e errors. The condition |g| — k — e > 0 states that
the number of errors e cannot be larger than |g| — &, which is the number of characters
left. We define the transition function to obey these semantics:

(e,k+1) if o € glk],

3.10
(e —1,k+1) otherwise, (3.10)

A:(e,k)xa»—){z
z

63



3 Direct Construction of Minimal DFAs

Level 0

Level 1

Level 2

Level 3

Figure 3.3: Example of a simple NFA over the alphabet ¥ = {A,B,C,D} accepting the
consensus ADC and all strings within a Hamming distance of two or less.
Characters with bars stand for the complement with respect to ¥, e.g. A
stands for B, C, or D. The start states are drawn in orange and the accepting
state is represented by two concentric circles.

where the function z : Z x % — 29 returns the empty set whenever we “fall off the
grid”. More precisely,

z: (e, k) — {{(e,k‘)} if (e, k) € Q, (3.11)

0 otherwise .

As before, the topmost level constitutes the start states, i.e. Qy := {(e, k) € Q|k =0},
and the bottommost level contains only the single accepting state, i.e. F' := {(0, |g|)}.
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We write NFA(g, dpay) = (Q,%, A, Qp, F') to denote the NFA constructed in this
way. Again, we use the notation NFA (g, dx) = (Q, 2, Aw, Qo, F) to refer to the
automaton with self-transitions added to the start states. Note that for d;;;;, = 0, the
resulting automaton is isomorphic to the one constructed from a single generalized
string in Section 3.2.1.

In order to prove that the construction is correct and produces simple NFAs, we use
the following Lemma on the states” languages.

Lemma 3.13. Let g € G5, diax € Ng and M = NFA(g, dmax) = (Q, X, A, Qo, F'). Then,
the language of state (e, k) is characterized by

L((e,k)) = {s € ylal=k ‘ d(s,glk..]) = e}
forall (e, k) € Q.

Proof. We start with the direction “C”. By construction of A and F', we have L ((e, k)) -
$l9I=F Let s € L((e, k)), then A((e, k), s) = (0, |g|). That means that, in the course of
|s| state transitions, the first component of the state changes from e to zero. As we see
from Equation (3.10), the only change possible in the first component is a decrease by
one, which happens if and only if the read character is a mismatch. Thus, it follows
that d(s, g[k..]) = e.

Now we prove the direction “2”. Let s € $19~* and d(s, g[k..]) = e. That means
there are exactly e indices ay, . . ., a.—1 such that s[a;] ¢ g[k+a;] for 0 < i < e. Provided
that all states exist and thus the z function never returns (), we apply the first case
of (3.10) exactly |s| — e times and the second case exactly e times, ending in state
(0, |g]) as claimed. The only thing left to verify is that z indeed never returns (). Note
that, by (3.10), the term |g| — & — e cannot increase. Since it reaches zero after |s|
steps, it cannot have been smaller than zero at any time. Hence, by Equation (3.9), all
intermediate states exist and, thus, the first case of Equation (3.11) is applied for all
state transitions. O

Using this lemma, the construction’s correctness is easily verified:

Lemma 3.14. Let g € G5, diax € No and M = NFA(g, dmax) = (Q, X, A, Qo, F'). Then,
M accepts exactly the strings {s € 2191 | d(s, g) < dyax}.

Proof. By definition, the automaton M accepts the strings L(Qy). By construction of Qg
and Lemma 3.13, we obtain

min{dmgx,\g|} min{drnaX7|g|}
L(Q)= |J L(0o)= |J {sex|dsg) =e}.
e=0 e=0

O]

Lemma 3.15. Let g € G5, dyax € No. Then, NFA(g, dax) = (9, %, A, Qo, F) is a simple
NFA.
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3 Direct Construction of Minimal DFAs

Proof. By construction, all states are accessible and have non-empty languages. The dis-
jointness of L(g) and L(q’) for distinct ¢, ¢ € Q follows immediately from Lemma 3.13.
O

In analogy to Sections 3.2.1 and 3.2.2, we can now add self-transitions to the start
states to obtain NFA (g, du.x) and arrive at the following theorem.

Theorem 3.16. Let a generalized string g € G* and an error threshold dy.x be given. Then, a
minimal automaton accepting the set {st|s € ¥*,t € X9 d(t, g) < dyax} can be constructed
in O(|g| - dmax + m) time, where m is the size of the minimal DFA.

Proof. NFA(g, dyax) is simple by Lemma 3.15. Furthermore, it fulfills the conditions of
Lemma 3.4. Thus, NFA (g, dyuax) is also simple and, by Lemma 3.14 and Equation (3.2),
accepts the language {st|s € ¥*,t € %19/ d(t,g) < dyax}. The subset construction
directly yields the minimal DFA by Theorem 3.2. The claimed runtime follows directly.

U

66



4 Clump Statistics

The main difficulty in computing a motif’s occurrence count distribution lies in the
need to take self-overlaps into account. The stronger a motif’s tendency to overlap
itself is, the larger is the variance of this distribution. As discussed in Section 2.6, it
can exactly be computed based on the DFA accepting the motif as the DFA implicitly
encodes the structure of self-overlaps. Here, we approximate it by a compound Poisson
distribution (see Section 2.2). For this, we need the notion of clumps of words.

Definition 4.1 (Clump). Given a sequence s € X* and a pattern p, a clump is a maximal
set of overlapping occurrences of p in s. The number of occurrences it contains is called
size of a clump. O

Example 4.2. Letp := ACA and s := GACACATTACAAA. Then, s contains three occurrences
of p in two clumps (underlined). The first clump has size two while the second has
size one. A

Using Definition 4.1, we can uniquely decompose the set of all occurrences of a
pattern in a text into clumps. Furthermore, we can approximate the distribution of
the number of clumps in a random text by a Poisson distribution. Comparing this
approximation to the exact distribution of the number of clumps, Stefanov et al. (2007)
conclude that it is accurate for rare words, justifying this approach. We now obtain a
compound Poisson approximation by computing the expected number of clumps and the
distribution of clump sizes.

The resulting approximation has two advantages compared to the exact distribution.
First, the time to calculate it does not depend on the text length, leading to a speed-up
in practice. And second, it allows us to establish bounds on the p-value that can be
exploited in branch-and-bound motif discovery algorithms as we see in Chapter 5.

For their utility and accuracy, compound Poisson approximations have been dis-
cussed by multiple other authors, including Schbath (1995), Waterman (1995), and
Roquain and Schbath (2007). As new contributions, we derive an exact yet simple
formula for the expected clump size and an algorithm to compute the exact clump size
distribution. Both results hold for arbitrary finite-memory text models.

In Section 4.1, we give several examples of overlapping patterns and demonstrate
the effects of clumping on motif statistics. A formula for the expected clump size is
derived in Section 4.2 and an algorithm to compute the complete distribution of clump
sizes is developed in Section 4.3. The chapter is concluded with an evaluation of the
accuracy of compound Poisson approximations in Section 4.4.
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4 Clump Statistics

Text: +GACTATTCAATAT

Motif instances: TATNNAAT
ATTNNATA
TATNNAAT: : ::: ;
ATTNNATA:
TATNNAAT

TTATATAATCAG--

Figure 4.1: Example of a text containing a clump (of size five) of the motif TATNNAAT
when considered jointly with its reverse complement.

4.1 Effects of Overlaps

As a first example, consider a random text of length 10000 over ¥ = {4, C, G, T} with
respect to the uniform text model. The expected number of occurrences for the two
patterns AAAAAAAAAA and AAAAAAAAAC computes to

1 10
(4) (10000 — 10 + 1) ~ 0.0095

in both cases. The probabilities of observing 10 or more occurrences, however, differ
greatly and amount to 2.982 - 10® and 1.546 - 107, respectively. The different behavior
is reflected in the expected clump sizes that equal 4/3 and 1, respectively. When
computing the compound Poisson approximations of these p-values, we obtain 2.986 -
108 and 1.685 - 10%, respectively. This example shows that the effect of clumping
can have a substantial influence on pattern statistics. Furthermore, it illustrates that
clumping can be taken into account by using a compound Poisson approximation.

Keeping track of possible overlaps gets more complicated when, on the one hand,
generalized strings and, on the other hand, both strands of DNA are considered. Recall
that DNA is a double-stranded molecule and each nucleotide forms a bond with its
complement on the opposite strand: C pairs with G and A pairs with T. Suppose now
we are interested in the IUPAC motif TATNNAAT and want to count matches on both
strands. In effect, that means we count all instances of TATNNAAT and ATTNNATA on the
forward strand, where the second motif is the reverse complement of the first. Together,
they can (self-)overlap in multiple ways, which is illustrated in Figure 4.1. Therefore,
the expected clump size of the joint motif is larger than that of the forward motif alone.
With respect to the uniform text model, the expected clump sizes amount to 1.041 and
1.001, respectively. The complete clump size distribution for both cases is shown in the
left part of Figure 4.2.

We call a motif that equals its reverse complement palindromic. For example,
ATANNTAT is palindromic, which strongly affects its statistical properties. Whenever a
match on the forward strand is found, another match is found at the same position on
the backward strand. This means that the probability of observing an odd clump size
is zero. The right part of Figure 4.2 visualizes this behavior.

The clump size distribution of a motif influences not only the probability of observ-
ing many motif instances, but also the probability of observing no instances at all.
This fact might be counter-intuitive on first sight. It can be explained by means of the
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4.1 Effects of Overlaps

5 5
10 T T T T T T T T 10 T T T T T T T T
Pattern: forward only —+— Pattern: forward only —+—
10° TATNNAAT forward plus r.c. 3 100 ATANNTAT forward plus r.c. ]
5 . 5 L
= 10 s 10
B 0 1 E ,w0f
= 10 s 10
5 2
9 &
10" ] 1015 F ]
10720 . 10*20 L J
10725 10—25 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Clump size Clump size

Figure 4.2: Clump size distributions of the motifs TATNNAAT (left) and ATANNTAT (right)
with respect to the uniform text model. Both figures show the distribution
for the motif alone (labeled “forward only”) and for the motif considered
jointly with its reverse complement (labeled “forward plus r.c.”). The
second distribution in the right figure contains zero probabilities. As there
is no zero at the (logarithmically scaled) y-axis, they are indicated by lines
ending at the bottom of the plot.

two motifs TATNNAAT and ATANNTAT discussed above. We consider them jointly with
their reverse complement, corresponding to the orange curves in Figure 4.2. For both
(joint) motifs the expected number of occurrences with respect to the uniform text
model (and to any other i.i.d. text model) is the same as both are composed of the same
characters. In contrast, the expected clump sizes are different and amount to 1.041 and
2.131, respectively. The expected number of clumps is now given by

expected number of occurrences

4.1
expected clump size @D

expected number of clumps =

Obviously, these quantities differ for the two motifs. Knowing that the number of
clumps is accurately approximated by a Poisson distribution, we conclude that the
probabilities of observing zero occurrences (and therefore zero clumps) must also
differ. In these two cases, the (exact) probabilities of finding no motif occurrences in a
random text of length 1000 are 0.627 and 0.787, respectively. Indeed, the probability of
observing no matches is higher for the motif with larger expected clump size. When
using the compound Poisson approximation instead of the exact probabilities, we get
0.628 and 0.787, respectively. Again, the compound Poisson approximation accurately
reflects the effects of clumping.

The discussed probabilities of finding no match are important in the context of motif
discovery as formalized in Problem 2 on Page 10. Suppose we have examined a set S
of 50 genomic regions (promotor regions, for instance) of length 1000 and determined
that each of the two motifs is contained in 35 of these regions. The p-values for these
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4 Clump Statistics

events are now given as the tail probabilities of binomial distributions:

50
({TATNNAAT, ATTNNATA}}, S) = > Bio,(1-0.608)(k) = 2.6 - 107°,

poalie,,,g
k=35
50
pualue,,,; ({ATANNTAT, ATANNTAT}}, S) = > Bso1—omsmy (k) & 2.2- 10713,

k=35

In this case, the fact that the expected clump sizes differ leads to a large difference
in p-values. The effect is particularly strong because one motif is palindromic while
the other is not, but, in principle, it is present for any two motifs with different
expected clump size. If this seems counter-intuitive, note that for a palindromic motif,
knowing that it does not occur on one strand implies that is does not occur on the
other strand either. For a non-palindromic motif, there is still a chance that it occurs on
the complementary strand.

4.2 Expected Clump Size

In this section, we derive a formula for the expected clump size. We assume a motif of
length /£ to be given and that the (non-empty) set W C X* is the set of all words that
match the motif, that is, the set of all possible motif instances. For the considerations
in this chapter, it is irrelevant whether WV is given through a generalized string, a set of
generalized strings, a consensus string and its Hamming neighborhood, a PWM with
a threshold, or arbitrary choice. The only assumptions we make is that all w € W have
the same length /.

The set of words W C X¢ can be chosen such that a clump, once begun, cannot end.
A trivial example for thatis W = !, but we can also construct sets W - »! with
this property. For instance, let ¥ = {A,B} and VW = {AAA, AAB, ABA, BAB, BBA, BBB} and
observe that for all w € W there do not exist 01, 09 € ¥ such that w[lJw[2]o; ¢ W and
w[2]o1o2 ¢ W. This notion of degeneracy is formalized in the following definition.

Definition 4.3 (Degenerate word sets). A set W C X! is called degenerate if occyy (s) > 1
forall s € ¥262, O

If WW is degenerate in this sense, then every window of length 2/ — 2 of any string
contains at least one occurrence of W. These occurrences in two consecutive windows
must overlap by choice of the length 2/ — 2. Hence, a clump cannot end. If, conversely,
W is not degenerate, then there exists a string f € %2~2 that does not contain a word
from W. Therefore, appending f to any w € W ends a clump.

Remark 4.4 (Degenerate generalized strings). When WV is the set of all words that
match a generalized string p € G, it is degenerate if and only if p[k] = X for all
k€ {0,...,|p| —1}: if there is a k with p[k] # ¥, then a string f consisting exclusively
of characters from X \ p[k| cannot contain an instance of WV and, hence, W is not
degenerate. A
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4.2 Expected Clump Size

Definition 4.5 (Clump process). Let (S;):en, be a random text distributed according
to a finite-memory text model and W C X! be a set of words that is neither empty
nor degenerate. The clump process (Z!V);cn, is a sequence of random variables 7}V,
where each ZZW gives the size of the i-th clump of words W in the text (S;)en,. If no
i-th clump exists, we set Z}V := 0; this happens with zero probability for infinite texts

because we assume all text models to be well-behaved according to Definition 2.18. ¢

Definition 4.6 (Expected clump size). Let a non-empty word set W C ¢ be given. If
W is not degenerate, the limit

Yy = lim E (2)Y) (4.2)
11— 00
is called the expected clump size of W, otherwise we define 1y := oc. O

Note that, by Definition 2.18, the distribution of text model states £(C}) converges
to an equilibrium when ¢ goes to infinity. Therefore, the distributions of clump sizes
L£(Z)V) and, thus, the expected clump sizes E(Z)") converge as well. Therefore, 1y
as given in Definition 4.6 is well-defined. In the following, we omit the superscript W
as the set WV is fixed throughout this chapter (although it can be chosen arbitrarily).

Recall that we write Sf = S;i -+ Siyo—1 torefer to the length-¢ substring of the random
text (St)ten, starting at position i. To analyze clumps with respect to finite-memory
text models, it is not sufficient to look at strings Sf only, but we simultaneously need
to keep track of the text model state. To shorten notation, we define

X, = (S, C),

so that X; = (w,c) means that word w € X! starts at position ¢ in S, and before
generating its first letter, we are in context ¢, i.e.,, Sf = wand C; = c¢. We say that
word w occurs in context c at position t. Furthermore, we define

X = {(w,c) EWXC : tl_i,TOIP(Xt: (w,c)) >0}.

Restricting attention to X’ is sufficient as pairs (w, ¢) with zero occurrence probability
do not contribute to the expected clump size . To derive a formula for 1, we need
several definitions.

Definition 4.7 (Overlap probability function). The overlap probability function x : X x
X — [0, 1] is defined by
-1
k((wr,c1), (w2, ¢2)) 1= P(Xpyi = (wa,¢2), Sfys- -, Sty €W | Xe = (w1, 1)).
i=1

O

By definition of finite-memory text models, the involved conditional probabilities do
not depend on t. Intuitively, m((wl, 1), (wa, 02)) is the probability that, having seen w;
in context ¢, there follows another word from W in the same clump and that the next
such word is wsy in context cs.
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4 Clump Statistics

Example 4.8 (Overlap probability function). Let ¥ = {A,B} and consider an i.i.d. text
model, that means a finite-memory text model with only one context cy. Let the
character probabilities be given by py = 0.1, pg = 0.9. Let further VW := {AAA, AAB, ABA}.
We obtain the values x((AAA, o), (AAA, co)) = 0.1, k((AAA, co), (AAB, o)) = 0.9, and
r((AAA, o), (ABA, ¢o)) = 0. The last probability is zero as ABA cannot right-overlap AAA
without first creating an occurrence of AAB. A

It is useful to view k as a matrix.

Definition 4.9 (Overlap matrix). Given a bijective mapping ¢ : X — {0,...,|X| -1},

the matrix K = (k,(u.0)u(uw.e)) € R with k0 ey = 6((w,c), (W', ¢)) is
called overlap matrix. As all results in this thesis hold independent of the choice of ¢,
we omit ¢ and use pairs (w, ¢) € X as indices directly. O

Whether or not W is degenerate in the sense of Definition 4.3 is directly reflected in
the overlap matrix K.

Lemma 4.10 (Overlap matrix for degenerate word sets). Let W C ¢ and a finite-
memory text model be given. As always, assume the text model to be well-behaved according to
Definition 2.18. Further, let K be the corresponding overlap matrix given by Definition 4.9.
If W is non-degenerate, then sprad(K) < 1, where sprad(K) is the spectral radius of K as
introduced in Definition A.5 on Page 144.

Proof. Let |w,c) € RI*l be a vector such that the component with index (w, ¢) is one
and all others are zero. The set of all |w, ¢) for (w, ¢) € X is an orthonormal basis of RI*1.
By definition of K, the matrix element (w, ¢1|K"|wa, c2) for (w1, ¢1), (w2, c2) € X and
n € N is the probability that, starting from an occurrence of w; in context ¢, a clump
contains at least n more occurrences of words from »V and the n-th of these occurrences
is wo in context cy. If VW is non-degenerate, then lim,,_, (w1, ¢1 | K" |w2, c2) = 0 for all
(w1,c1), (we,c2) € X. This is the case because there exists a string f € »20-2 that
ends the clump and a well-behaved text model guarantees that the probability that
f occurs is non-zero for every position. Since the set of all |w, ¢) for (w,c) € X is a
basis, it follows that lim,, o, K™|z) = |0) for all |z) € RI*. Now we choose |z) to be
an eigenvector with eigenvalue )\, i.e. K|z) = A|z). As

lim K"|x) = lim A\"|z) = |0),

we conclude that |A| < 1. O

Definition 4.11 (Word and clump start distributions). The word distribution vector,
denoted |p) = (p(mc)) e RI¥,is given by

Plw,c) = tligloIP (Xt = (w,¢) ‘ St e W) )

It is the equilibrium probability to see word w in context ¢, given that a word from W
is seen. The clump start distribution vector |p*"*) = (pifj” ) € RI*l is given by

7C)

Pty = Jim P (X, = (w,) | Sf € W, Sy, Sy € W), (4.3)
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4.2 Expected Clump Size

It is the equilibrium probability to see word w in context ¢, given that a word from W
is seen and starts a clump of such words. O

Using the definitions made above, we are now ready to state the main theorem of
this section. It gives a simple formula for the expected clump size.

Theorem 4.12 (Expected clump size). Let a non-empty pattern set W C X and a finite-
memory text model be given. The expected clump size of VW with respect to the text model is
finite if and only if VV is non-degenerate. In this case, it is given by

1

w — <pstart‘(1_K)—1‘1> — T <p‘K’1>’

where |p*"), |p) and K are defined according to Definitions 4.11 and 4.9, respectively.

Needed definitions and facts from matrix theory are given in Appendix A.3. To
prove the theorem, we need additional definitions and an auxiliary lemma.

Definition 4.13 (Clump end vector). The clump end vector, denoted | f) = (f(u,)) € R™,
is given by
f(w70) = P(Sf-l—l’ R Sf+ffl §é 4% ’ X = (w7c>)7

which is the conditional probability that, when seeing word w in context ¢, no further
word from W follows in the same clump. Here f(,, ) does not depend on ¢ due to
conditioning on C; = c. O

We express f in terms of the overlap matrix:

f(w,c) =1- Z k(w,c),(w’,c/) or |f> = (1 - K)H) (4.4)
(w’,c)ex

Definition 4.14 (Backward overlap function and matrix). The backward overlap function
% 1 X x X = [0,1] is defined by

<E((11117C1),(w2702)) =
/-1
lim Y P(Xi—i = (w2,¢2),8f i1, St ¢ W| Xy = (w1,c1)).

t—o00 4
=1

¢

Intuitively, ?((wl, c1), (w2, ¢2)) is the equilibrium probability that, observing w;
in context c;, there exists a preceding word from )V in the same clump and that
the immediately preceding such word is wy in context c;. Note the symmetry to
Definition 4.7; however, the conditional probability may depend on ¢, so we take the

equilibrium limit. The backward overlap matrix ¥ is defined accordingly.

Lemma 4.15. For all (wy,c1), (w2, c2) € &,
<_
k

p(wl,cl)k(wl,cl),(wg,cz) = P(wa,c2) * (wa,c2),(w1,c1)"
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4 Clump Statistics

This is a “detailed balance” between p, K and K: The equilibrium probability of
seeing a word-context pair (w1, ¢) followed by (w2, ¢2) in the same clump equals the
equilibrium probability of (w2, ¢2) preceded by (w1, ¢1).

Proof. The claim obviously holds if p(,, ;) = 0 0r p(y, ¢,) = 0. Otherwise,

p(w1,C1)<E((w17 Cl)v(w2a C2>)

-1
= tlglélo P (Xi—i = (w2, c2), St x-S EW, Xy = (w1,c1))
i=1
-1
= lim P(X; = (w2,02), St110- - Styi1 € W, Xegi = (w1, ¢1))
=1
=%
-1
= lim P (Xiyi = (w1, c1), % | Xy = (w2, ¢2))P(Xy = (wo, ¢2))
=1

e p(wg’cz)l-{((’wg, 62), (wl, Cl)) .
O

Proof of Theorem 4.12. The forward direction is true by Definition 4.6: If the expected
clump size is finite, then WV is not degenerate.

Now, let W be non-degenerate. Every clump can be uniquely decomposed into a
sequence of overlapping occurrences of words from W: A clump of size z starts with a
word-context pair x; = (wy,¢1) € X, and makes z — 1 transitions to following word-
context pairs z; = (wj, ¢;). The transition probabilities are given by the corresponding
entries of K. The clump ends with a word-context pair z, = (w;, ¢;). In equilibrium,
we get

lim IP Z Z start kx1,x2 . kxz_1,xz f:):z — <psmrt|KZ_1‘f> ’

i—00

and therefore

[e.e] o

S Z]iglo E(ZZ) — Z 5. <pstart’Kz—1|f> _ <pstart‘(z ZKZ_I) ’f>
= z=1

=" (- K) )
2 - k)T, (45)

where (i) holds due to Lemma A.7 as the spectral radius of K is smaller than one by
Lemma 4.10 and (ii) follows from Equation (4.4). We now rewrite |[p*"'):

= (1m0 5 .51 £

~ im P (X:=(w,c), St 1,...,Sf_4+1¢]/\})
o P(STEW, S, 8L, ¢ W)
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4.2 Expected Clump Size

P (S{_1,.... S §W| Xt = (w,0)) P(Xy=(w,c))

= lim
t—00 Z(whm) P (Sffl’ Tt Sf—ﬁ-&-l ¢ w ‘ Xt: (wl’ Cl)) P Xt: (wl’ Cl))
<_
(]‘ - Z(w’,c’) k (wrc)v(w/vcl)) ' p(wac)
= = (4.6)

ey (1= Zamen) ¥
(g) p(w,c) - Z(w’,c’) p(w’,c’)k(w’,c’),(w,c)

(7~U1751),(’w2,02)> *P(ws,c1)

: 4.7)
Z(w1,01) (p(w1,c1) - E('LUQ,Cz) p(w2762)k(w2,02)7(w1,01))

where (iii) follows from Lemma 4.15. Thus

start|: (p|(1 - K) _ (p|(1 - K)
(plX1-K)[1) 11— (p|K[1)

(p

The proof is completed by combining the above expression with (4.5) and noting that
(p|1) = 1, since p is a probability distribution. O

Weighted Patterns

When a motif is considered jointly with its reverse complement, the set JV may need
to be extended to a multiset: When a motif is palindromic, it equals its reverse com-
plement and must therefore be counted twice. See Section 4.1 for an example. We
represent such a multiset by augmenting W with a weight function v : W — N, where
v(w) gives the multiplicity of the word w € W.

Definition 4.16 (Weight vector and expected clump weight). We define the weight vector
lv) € RI* by V(w,e) = v(w) for (w,c) € X. For a given weight vector |v), the random
variable Y; denotes the weight of the i-th clump, i.e. the sum of the weights of the
words forming the clump. The expected clump weight is defined as ¢" := lim;_,», E(Y;).

O

Theorem 4.17 (Expected clump weight). Given a non-degenerate word set VW C %X and a
weight vector |v), the expected clump weight is

v _ __ (v
¥" = {plv) ¥ =1 A

The idea of the following proof is to combine a scaling and a homogeneity argument:
The (asymptotic) expected number of occurrences of W per text character, say 1 =
(p|1) - p, changes to (p|v) - © when weights are assigned, as p is the equilibrium
distribution restricted to W. In equilibrium, all clumps have the same stochastic
properties, and the distribution of words from WV in clumps is p as well, because by
definition words only occur in clumps.

Proof. Let N; be the random variable giving the number of clumps that start before
position t. Asymptotically, the expected number of pattern occurrences and the number
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of clumps is proportional to the text length. Therefore,

Ny t—1
.1 .1
0< Jim 5P (Z Y) = Jim 5 (Z 2 Is =wﬂ'”<w>)

i=0 t'=0wew
1 t—1
— i L _ .
~ i S Y e (st =) vt
t'=0 weWw

t—1
i } 7% (s o)

1 (&
= (plv) Jim - (z% ZZ») < 0.
1=

It follows that E(N)) E(N))
voo; t) BRT t
v tlggo t (plvyy tlggo t
and hence 9" = (p|v)1. The claim now follows from Theorem 4.12. O

To sum up, we have found a general formula for the expected clump size with respect
to arbitrary finite-memory text models that holds for sets of patterns in the unweighted
as well as in the weighted case. The formula is short and involves no laborious
operations like matrix inversions, which is in contrast to constructions resulting from
generating functions like that of Bassino et al. (2008). Besides its theoretical value, this
will prove useful when we derive bounds on the p-values of motifs in Chapter 5.

4.3 Distribution of Clump Sizes

To construct a compound Poisson approximation to the exact distribution of occurrence
counts, we need the whole clump size distribution, not only its expectation. In this
section, we see how clump size distributions (see Figure 4.2) can be computed using
PAAs. They are defined formally in the following.

Definition 4.18 (Clump size distribution). Let a non-empty, non-degenerate word
set WW C ¢ be given. By Definition 2.18, the distribution of text model states £(C;)
converges to an equilibrium when ¢ goes to infinity. Therefore, the distributions of
clump sizes £(Z}V) converge as well. The limit

Ty == lim £ (2)Y) (4.8)
1— 00
is called the asymptotic clump size distribution of W. O

4.3.1 Size Distribution of the First Clump

Before we compute the distribution of the size of an asymptotic clump, thatis, ¥ =
lim; o, £(Z;), we consider the easier case of computing the size distribution of the
first clump £(Z)).
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Position: 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ---

N
Values: o &

States:

First match position 41

Clump end detected

Figure 4.3: Values and states attained by a DAA processing the shown text which
contains a clump (shaded gray) of three occurrences of the pattern ANAG.
The DAA is based on the DFA shown in Figure 2.5(b). In particular, g¢ is
the DFA’s only accepting state. Note that, as soon as a value (-, ®) has been
reached, the clump has ended.

Definition 4.19 (Clump size DAA). Let W C X be a non-empty set of words. Consider
the minimal DFA (QPf, 53 §PFA ¢DFA| ) accepting all words X*)V and define

ClumpSizeDAA(W) := (QP4, g0, %,6,V,v0,E, (1g)qe0, (04)qe0)

by
QPbAA — QPFA » (1., 1},

a6 = (a6, 0),

e ): ((q,j),a) r—>{

V =Ng x {0, e},
Vo = (07 O)/
& ={0,1},
M) = g € F,

(5DPA(Q7 U)a 1) for q < F17
(6PFA(q,0), min{¢,j + 1}) otherwise,

(k+e,0) ifj<land f =o,
0(q.5) : ((k, f),e) = q (e,0) if j = and k = 0,
(k,e) otherwise.

O

This DAA is defined such that it is in state (g, j) when the underlying DFA is in state
g and the last match position has been seen j steps ago. Here, the current position
is excluded, that means j is never zero. Furthermore, j cannot be larger than ¢ and
J = { means that the last match has been seen at least ¢ steps ago. The operations are
defined such that the first component of the current value reflects the size of the first
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4 Clump Statistics

Table 4.4: Case distinction showing that operations 6, ;) given in Definition 4.19 be-
have correctly.

Conditions Explanation
j<t k=0 Impossible as j < ¢ implies that a state ¢ € F" has
been visited, but then k& would also have been incre-
mented.

I
o

i<t k>0 f As k > 0, a clump has started and, as f = o, it has
not ended yet, thus we add the current emission to

the counter k.

i<l k>0 f=e First clump has ended as f = o, do not change k.

j=¢ k=0 f=o First clump has not yet begun, set k to current emis-
sion e. If e > 0, this is the start of the first clump.

j=f k=0 f=oe Impossible, k = 0 and f = e are mutually exclusive.

j=¢ k>0 f=o End of first clump is detected, set f = e and do not
change k.

j=L¢ k>0 f=e First clump has already ended as f = e, do not
change k.

clump and the second component indicates whether the first clump has already ended.
Once it ends, the second component is changed from o to e and the first component
remains constant. This behavior is illustrated in Figure 4.3. The case distinction in
Table 4.4 shows that the operations 0(4,5) are correct, that is, that they indeed lead to
the described semantics. In summary, we arrive at the following lemma.

Lemma 4.20. Let W C %¢ be a non-empty set of words and D := ClumpSizeDAA(W)
according to Definition 4.19. Then, the first component of valuep(s) is the size of the first
clump of W in s for any s € ¥*.

Now we can use Lemma 2.35 to combine this DAA and a text model into a PAA
which in turn allows us to compute the size distribution of the first clump by means of
Algorithm 2.1.

Note that the value set V is infinite. As discussed in Section 2.4.2, this does not
pose a problem as the range of each V; is finite. Furthermore, for many applica-
tions it is sufficient to truncate the clump size distribution and use the value set
V':={0,..., M} x {o, e} along with adapted operations 6. Algorithm 2.1 iteratively
computes the joint distribution £(Q, V) for growing t. The operations 6, are defined
such that once a value (-, o) is attained, it cannot change any more. That means the
intermediate clump size distribution given by

ke > P(Qr=q,Vi = (ko))

qeQ
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4.3 Distribution of Clump Sizes

might be returned as the result once the total error given by

M
) P(Qi=q,Vi=(k,0))

qeQ k=0

drops below an accuracy threshold. The number of necessary steps until it reaches
zero, however, is bounded by O(MM - ¢), because a clump containing M matches can
have a length of at most O(M - /). In total, we need O(M? - (2 - |QPF| . || - |C|?)
operations to compute the exact clump size distribution as follows from Lemma 2.37.
Again, a factor of |C| can be saved if for all ¢ € C and ¢ € %, there exists at most one
¢ € Csuch that ¢(c,0,) > 0.

Remark 4.21 (Weighted case). In Section 4.2 we generalized our results on the expected
clump size to weighted pattern sets, that is, to sets W equipped with a weight function
v : W — N. We now do the same for the clump size distribution. As in Section 2.6,
we can now construct a counting DFA (instead of a plain DFA) that respects these
multiplicities. That means each DFA state ¢ is associated with an emission 7, € Ny to
be counted when entering g. The DAA we construct can then directly be endowed
with the same emissions 7,. Its other components remain unchanged (compared to
Definition 4.19). A

4.3.2 Size Distribution of Asymptotic Clumps

In order to obtain the size distribution ¥ of asymptotic clumps (see Definition 4.18),
it is helpful to take a closer look at the start of clumps. More precisely, we call the
position of a match’s last character match position. In the unweighted case, where all
occurrences of words from W that constitute a clump contribute a value of one to the
clump size, the number of match positions equals the clump size. Now, we consider
the first match position in a clump. It exists in every clump as, by definition, a clump
consists of at least one occurrence of a word from W.

Example 4.22 (Match positions in a clump). The clump shown in Figure 4.3 has a size
of three and therefore contains three match positions. They are located at indices 8, 10,
and 12, where the DAA is in states (g6, 4), (¢6,2), and (gs, 2), respectively. Thus, the
underlying DFA is in its only accepting state ¢s. Moreover, the second component of
these states indicate the distance to the last match position, where a value of 4 = ¢ is to
be interpreted as “4 or more”. Therefore, the DAA is in state (g¢,4) at the first match
position of every clump. A

As we shall see, the characteristics of a clump are determined by the DAA state at
its first match position. Therefore, we formally characterize the DAA states that are
active at first match positions of clumps.

Lemma 4.23 (DAA states at first match positions). Let a non-empty set of words W C %*
be given and let D = (QPA4, ¢DAA 36,V v9, €, (1g)qec0, (04)qe0) be a DAA constructed
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according to Definition 4.19 and (QPA, %3, 6PFA ¢DFA | F) be the underlying DFA. Recall that
QPAA — QDFA 11, ¢} and define

QCS — {(qDFA,j) e QDAA ‘ qDFA c F, j — E} )

DFA
N

Then, D is in a state (q ) € QS ifand only if it is at a first match position of a clump

(CS stands for clump start).

Note that this lemma applies not only to the first match position of the first clump,
but to the first match positions of all clumps.

Proof. The claim follows directly as, by definition of the DFA, ¢P' € F if and only
if the automaton is at a match position and, by definition of the DAA’s transition
function, j = ¢ if and only if the previous match position has been seen at least ¢
position ago or no match position at all has been seen so far. O

Now consider the PAA constructed from the DAA and a text model (C, ¢p, %, )
using Lemma 2.35. Its state space is given by

Q=0P xc.

Hence, all PAA states (¢P44,c) € Q with ¢?44 € Q correspond to first match
positions of clumps. The key to computing V is the observation that the size distribu-
tion £(Z;) of clump i solely depends on the PAA state at its first match position. More
precisely, given a ¢ € Q, the distribution £(Z;|Q1, = q) is the same for all i, where T}
is the first match position of clump i and Q; the PAA state after step ¢ as usual. This
follows directly from Definition 2.22.

The idea now is to compute the state distribution at clump start positions, denoted
v : Q@ — [0, 1]. It is formally given by

v (qDAA,c) > tl_igloIP (Qt = (qDAA,c) ) Q: € {(q’,c’) €9 } q € QC5}> . (4.9)

Assuming that the state distribution £(Q;) converges to an equilibrium (see Re-
mark 4.25 below), the limit exists and ~ is well defined.

start> start

Remark 4.24 (Connection between ~ and } P )- In spirit, v is similar to ‘ P > as
given in Definition 4.11 on Page 72. On the one hand, the component of | pSt‘”t> that
is indexed by (w,c¢) gives the probability that w is the first word in a clump and
before generating w, the text model is in state c. On the other hand, v(¢P44, ¢) is the
probability that the DAA is in state ¢”4 and the text model is in state c after generating
the first match position in a clump. A

To compute v, we need the PAA’s equilibrium distribution lim;_,~, £(Q;). This, in
turn, can be computed by solving an eigenvalue problem or by iteratively computing
L(Q;) for growing values of ¢ until convergence to desired precision. In practice, the
distribution converges rapidly and the computation is fast.
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4.4 Quality of Compound Poisson Approximation

Once v is known, ¥ can be obtained by slightly modifying the PAA: We replace the
start state by a new state ¢(, and redefine the transition function

/ . /

(g if ¢ =qp,

T:(q,q) (), 0
T(q,q') otherwise.

Now the PAA simulates an asymptotic clump and ¥ can be computed using Algo-
rithm 2.1 as explained in the previous section.

Remark 4.25 (Convergence of PAA). It is a classical result of Markov chain theory that
irreducibility and aperiodicity are sufficient for convergence to a unique equilibrium
distribution. Refer to Brémaud (1999) for a detailed introduction. In our case, the PAA’s
state set has, by construction, a subset absorbing all probability mass for which both
properties are fulfilled. That means the state process converges to an equilibrium in
which only the states in this subset have non-zero probabilities. This can be verified by
noting that the DAA constructed from a minimal DFA accepting the set X*WV already
has a subset with similar properties. These cannot get lost when it is combined with a
well-behaved text model (see Definition 2.18) to obtain a PAA. A

4.4 Quality of Compound Poisson Approximation

In this section, we assess the accuracy of the compound Poisson approximation in a re-
alistic setting. We use the same space of IUPAC motifs that will be used in applications
in Chapter 6. That is, the motif space M consists of all length-10 motifs with at most
six wildcards from {R,Y,W, S, K, M}, zero wildcards from {B,D,H, V}, and at most two
Ns. We randomly sample 10 000 motifs from M and calculate the exact distribution of
occurrence counts (see Section 2.6) and its compound Poisson approximation (using
clump size distributions truncated at size 30). All motifs are considered jointly with
their reverse complements. A second order Markov model estimated from the human
genome is used as background model.

One measure of similarity between the two probability distributions o, 5 : V — [0, 1]
is the total variation distance defined by

dy : (o, B) > %Z la(v) — B()].

veY

It is the maximal possible difference between the probabilities of an event V' C V with
respect to v and 3, i.e. dy (v, ) = max {|a(V') — B(V')| | V' C V}. A histogram of these
distances for the 10 000 sampled motifs is shown in Figure 4.5. The mean amounts to
0.0014.

Remark 4.26 (Stein’s method). As surveyed by Barbour and Chryssaphinou (2001),
Stein’s method can be used to obtain error bounds for the total variation distance
between original distribution and compound Poisson approximation. This method is
applied to the distribution of occurrence counts of words in random texts by Reinert
and Schbath (1998). Also refer to Lothaire (2005, Chapter 6) for a brief discussion of
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Figure 4.5: Histogram over the total variation distance between exact distribution
and compound Poisson approximation for 10 000 motifs sampled from M.
Compared are the distributions of the number of occurrences with respect
to a text of length 1000 and a second order Markovian text model estimated
from the human genome. The vertical red line gives the mean value.

such bounds and for further references (see Pages 348 and 349). Here, we do not further
go into the topic as our main concern is that p-values are approximated accurately.
The p-values encountered in motif discovery, however, are often very small. Therefore,
even a tight theoretical bound on the total variation distance of, say, 0.0001 would
not guarantee that p-values are accurately approximated. For instance, if the true
p-value is 10°° and the approximation yields 107°, we cannot be satisfied although
the absolute difference is small. A

To get a more complete view of the errors made, Figure 4.6 shows boxplots of the
relative errors of log-probabilities in the occurrence count distributions for 0 to 20 oc-
currences and random texts of length 1000 and 10 000. For clarity, the boxplots contain
only 1000 sampled motifs. We consider log-probabilities, because the probabilities
themselves range over many orders of magnitude. The probability of observing 20
matches lies in an average order of magnitude of 10 for text length 1000 and 107'° for
text length 10 000. A relative error of 0.05 here means that we miss the correct order of
magnitude (e.g., -33) by 5 %. We see that the relative errors increase towards the right
tail of the distributions. This can be explained by observing that the length of a clump
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4.4 Quality of Compound Poisson Approximation

(in terms of number of characters) is not taken into account by our approximation.
When the text “gets filled up” with occurrences, the approximation becomes inaccurate.
Note that 20 occurrences of length 10 would occupy up to 200 characters (depending
on overlap). This is one fifth of a 1000 character sequence. This explains why the
accuracy decreases much slower towards the right tail for text length 10 000 (Figure 4.6,
bottom).

It is worth noting that the occurrence count distributions are governed by an ex-
ponential decay towards the right tail. Thus, when calculating p-values (that means
when summing over a distribution from a fixed k& to infinity), errors do not accumu-
late significantly. The summands, and hence the introduced errors, rapidly become
insignificantly small.

We conclude that the introduced approximation is sufficiently accurate for practical
purposes and, in particular, for motif discovery.
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Figure 4.6: Boxplots showing the relative error of log-probabilities made by a com-
pound Poisson approximation. Top: On random texts of length 1 000. The
expected number of occurrences is 0.348 (averaged over all motifs). Bottom:
On random texts of length 10 000. The expected number of occurrences is
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5 Motif Discovery

In this chapter, we design a motif discovery algorithm to attack Problems 1 and 2
posed in Chapter 1. We assume that the following input is given: a finite set of input
sequences S C ¥, a pattern length ¢, and a finite-memory text model that we assume
to be well-behaved (see Definition 2.18) and to start in equilibrium (see Remark 2.19).
Our algorithm must then find a generalized string of length ¢ with an optimal p-value,
either with respect to the total number of occurrences (Problem 1) or with respect to
the number of sequences it occurs in (Problem 2).

The basic idea for a branch-and-bound strategy is explained in Section 5.1. Further
details for the specific case of using p-values as an objective function follow in Sec-
tion 5.2. As discussed earlier, applications to DNA sequences make it necessary to
count motif occurrences on both strands. How the algorithm can be modified to allow
this is the subject of Section 5.3.

5.1 Branch-and-Bound Algorithm

The idea of performing pattern-driven motif discovery by walking a suffix tree has
long been known (Sagot, 1998). Basically, we enumerate all candidate motifs from a
given motif space in lexicographic order and skip those parts of the search space that
cannot contain motifs of interest. This is done by examining the suffix tree nodes that
correspond to the prefixes of the current motif. If a prefix does not occur frequently
enough to be interesting, all motifs sharing this prefix can be skipped.

Here, we develop algorithms that find optimal motifs of a given length ¢, where
motifs are modeled as generalized strings. That is, the considered motif space M for
G := 2%\ {0} is a subset of G*. Usually, we think of the DNA alphabet % = {4, C, G, T},
but in principle, any finite alphabet can be used. By restricting M to a subset of G,
for example by imposing constraints on the use of wildcards, application-specific
knowledge can be incorporated and faster runtimes can be achieved. In this chapter,
we use the letter p to refer to a motif p € M and write its length as ¢ := |p|. Furthermore,
W is the set of all strings that match p; that means W := {w € % |w < p}.

In the following, we decompose the algorithm into components. This decomposition
should be understood as a suggestion for a software design leading to a flexible and
generic implementation.

Pattern lterator

The first component of the algorithm is an iterator enumerating all motifs from M in
lexicographic order. That means the pattern iterator encapsulates the specification of a
motif space M C G*. It must support the following operations:
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iterator .next returns the lexicographically next motif from M,
e iterator.has-next indicates whether another motif exists,

e iterator.leftmost-changed-pos returns the index of the leftmost character different
between the two motifs last returned by iterator.next (if iterator .next has so far
only been called once, zero is returned),

e iterator .skip-by-prefix-length(i) skips all motifs having a prefix of length ¢ in
common with the motif returned last. That means, after successfully call-
ing the functions iterator .skip-by-prefix-length(i) and iterator.next, the value of
iterator . leftmost-changed-pos will be smaller than i.

The last two operations are needed to omit parts of the motif space in a branch-and-
bound algorithm.

Index Walker

Next, we need a data structure to quickly determine the number of occurrences of a
given motif in our (preprocessed) input sequences. There exists a wealth of different
such index structures like suffix trees (see Gusfield, 1997), enhanced suffix arrays (see
Abouelhoda et al., 2004), and various compressed (self-)indexes (see Ferragina et al.,
2009). They all implement different tradeoffs between space usage, construction time,
and query time. We do not go into the technical details of index structures but use an
abstraction we call index walker. The idea is that an index walker represents a general-
ized string at any time and provides information on the number of its occurrences in
the input sequences. The represented motif can be changed by appending generalized
characters and by pruning characters from the right side. In case of a suffix-tree-based
implementation, the internal state of an index walker corresponds to a set of active
nodes. We require that an index walker supports the following operations:

e walker.initialize(S) builds an index over the set of input strings S. The repre-
sented motif corresponds to the empty string,

o walker .append(g) appends g € G to the represented generalized string,

o walker .trim-to-length(i) shortens the represented generalized string to length i by
retaining its length-i prefix,

o walker.occurrences returns the number of occurrences of the represented motif in
the underlying string set,

o walker .string-count returns the number of input strings the represented motif
occurs in.
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Objective Function

As for all optimization tasks, a score function must be given. Furthermore, in order to
come up with a branch-and-bound scheme, we must be able to compute bounds on the
score when only a motif prefix is given. Therefore, a software component representing
the objective function must support the following operations:

e objective.initialize(S) extracts necessary information from the set of input strings
S for later use (e.g. store the total length of sequences, estimate a text model,
etc.),

e objective.score(p, kyar, kseq) Teturns a score for the event that the motif p occurs
Kiotar times in ks, different sequences,

e objective.score-bound(p, £, ka1, kseq) returns an upper bound for the score that can
be attained by a motif of length ¢ with prefix p when p occurs ki, times in kg
different sequences.

In the following, we assume that objective returns scores that are to be maximized. It
might, for instance, return the negative logarithm of p-values.

Algorithm

Combining pattern iterator, index walker, and an objective function, we can for-
mulate a branch-and-bound motif discovery algorithm. The idea is that the iterator
enumerates the desired motif space and the function objective.score-bound is used to de-
termine whether a part of the search space can be skipped without missing an optimal
motif. Pseudocode implementing this idea is given as Algorithm 5.1. Its correctness
can be easily verified: Motifs can only be skipped by executing Lines 13 and 14, which
are only reached if objective.score-bound has returned a bound that is lower than the
score of the best motif discovered so far. Since all motifs not skipped are evaluated in
Line 15, the optimal motif cannot be missed.

5.2 Bounding P-Values

Our aim is to use the statistical significance as an objective function. Instead of
computing it exactly, we use a compound Poisson approximation, which we found
to be accurate in Section 4.4. Using this approximation has two advantages. On the
one hand, computing the p-value is faster in practice and, on the other hand, we are
able to give bounds on the p-value knowing only a motif prefix. That is, we are able to
implement the function objective . score-bound introduced in the previous section.

5.2.1 Monotonicity of P-Values

Before we compute bounds, let us recapitulate the ingredients necessary to obtain a
compound Poisson approximation.
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Algorithm 5.1 Find a motif with maximal score.

Input: Set of input sequences S, an objective function, an iterator defining the
motif space, a motif length 7, and a minimal score
Output: Best pattern and its score

MOTIF-DISCOVERY(S, objective, iterator, £, min-score)

1 objective.initialize(S)
2 walker .initialize(S)
3 best-score = min-score
4  best-motif = none
5 while iterator. has-next
6 p = iterator.next
7 i = iterator . leftmost-changed-pos
8 walker .trim-to-length(7)
9 forj=itol—1
10 walker .append(plj])
11 b = objective.score-bound (p[ jl, £, walker .occurrences, walker.string—count)
12 if b < best-score
13 iterator .skip-by-prefix-length(j + 1)
14 goto Line 5
15 score = objective.score (p, walker .occurrences, walker.string-count)
16 if score > best-score
17 best-score = score
18 best-motif = p

19 return best-motif, best-score

Definition 5.1 (Compound Poisson p-value for the total number of occurrences). Let
a motif p € M, a set of input sequences S, and a finite-memory text model (C, ¢, X, )
be given. Then, the compound Poisson p-value of the total number of occurrences of p in
S with respect to the text model is given by

occp(S)—1
CPx,.s,w,(1),
=0

CP-pualue (p,S) = Z CPr,s,0,()) = 1—

i=occp(S) i=

where ), s is the expected number of clumps of p in a set of random texts with the same
lengths as the strings in S and ¥, is the clump size distribution of p. Both quantities
implicitly depend on the text model (C, co, X, ¢). O

The clump size distribution ¥, can be computed using a PAA as detailed in Sec-
tion 4.3. The expected number of clumps equals the expected number of occurrences
divided by the expected clump size 1»,. Formally, it is given by

Aps = S D (lsl—e+1), (5.1)

wp seS

88



5.2 Bounding P-Values

where
G = (0% (Sf» =P (S; <p) =P(S;--- Siye1 < p) (5.2)

is the expected number of occurrences of p at any position ¢. Note that ¢, does not
depend on t as we have assumed that the text model starts in equilibrium according to
Remark 2.19. It can directly be obtained by using a PAA to compute the distribution of
the number of occurrences in a text of length ¢ as explained in Section 2.6. Furthermore,
recall that the expected clump size 1/, can immediately be calculated from the clump
size distribution ¥,,.

Remark 5.2 (Fast computation of (). Besides using a PAA to compute ¢, for a given
text-model (C, cp, X, ¢), we can formulate recurrences directly. This has the advantage
that no DFA needs to be constructed, saving time in practice. We define z(i,¢) :=
P(S} <t pl..i—1], C; = c) and get (, by marginalization over C, i.e. {, = Y ..c 2({,¢). To
compute z(i, ¢) by dynamic programming, we set up the recurrences z(0, ¢) = [c = ¢]
and 2(i + 1,¢) = Y e D pepp 2(6: ¢ )p(c,0,c). We can start in state ¢ as the text
model starts in equilibrium according to Remark 2.19. This approach is not only faster
and more direct than using a PAA, but also allows reusing results: when we have
calculated ¢, we just need to add another row to the z-table to get ¢, for a generalized
character g € G. A

Definition 5.1 is analogous to Definition 1.9 but uses a compound Poisson approxi-
mation instead of the exact distribution. Both refer to the total number of occurrences.
In analogy to Definition 1.11, we now formally introduce a compound Poisson version
of the p-value with respect to the number of sequences that contain at least one motif
occurrence. Before we define it, we make an auxiliary definition to ease notation.

Definition 5.3 (Binary distribution D). For A > 0, define

e k=0,
Di(k) == {1 oA h

O

That means D, is a Bernoulli distribution with success probability 1 — e~*. For
every clump size distribution ¥, we have ¥(0) = 0 and, hence, D, (0) = CP) ¢(0) and
Dy(1) = 3.2, CPx w(i). In other words, when X is the expected number of clumps
in a random text, then D, (0) is the probability that it contains no motif occurrences,
while D) (1) is the probability that it contains one or more motif occurrences.

Definition 5.4 (Compound Poisson p-value for the number of matching strings). Let
a motif p € M, a set of input sequences S = {so, ..., s;}, and a finite-memory text
model (C, ¢g, 3, ) be given. Then, the compound Poisson p-value of the number of
strings in S containing p with respect to the text model is given by

S|
CP—pvalueseqs (p,S) := Z (D, % - % DAM) (1),

i=occ-seqs,, (S)
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5 Motif Discovery

where * denotes the convolution (see Section 1.3) operation and

Ap,j = & )

= o (Isjl —€+1) (5.3)

is the expected number of clumps of p in a random text of length |s;| for 0 < j < k. O

As stated formally in the next lemma, both types of p-values have in common that
they depend monotonously on the quantity (,/v;, which is contained as a factor in
Equations (5.1) and (5.3). The quotient (, /v, can be interpreted as the expected number
of clumps per character, as multiplying it with the (effective) text length |s| — ¢ + 1
yields the expected number of clumps.

Lemma 5.5 (Monotonicity of compound Poisson p-values). Let a finite set of input
sequences S = {so,...,sx} C X%, a pattern p € M, and a constant X' be given such that
0 < N < (p/tbp. Then,

CP-pvalue (p,S) > Z Py (@) (5.4)

i=occp (S)
with Ng :== X -3 cs(|s| — £+ 1) and

S|
CP-pualue,,,. (p,S) > Y Dy xDy) () (5.5)

i=occ-seqs,, (S)
with o := X'+ (|sj| =1+ 1) for 0 < j < k.

This lemma says that we can obtain a lower bound for the p-value by providing
a lower bound for (,/1,. Note that a lower bound for the p-value corresponds to
an upper bound for a score defined as the p-value’s negative logarithm and, thus,
Lemma 5.5 gives us a handle to implement the function objective . score-bound needed
for Algorithm 5.1.

Informally, Inequality (5.4) is correct as the right hand side is the probability of
observing occ,, (S) or more clumps when the expected number of clumps is A, which
is smaller than the true expected clump number. As each clump contains at least one
match, the probability of observing occ, (S) or more clumps cannot be larger than the
probability of observing occ,, (S) or more matches. This argument is made formal in
the following proof.

Proof. Recall that ¥} denotes the j-fold convolution of VU, with itself. Starting from
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5.2 Bounding P-Values

Definition 5.1, we get

CP-pvalue (p, S Z (373,\1357\1,p i)
i= occp(S)

- Z ZP/\P S \I/*J )

i= occp(S) j=0

occp(S)—1 oo 00 00
- Z P)‘p S Z \Il;] (2> + Z ,PAP,S (j) Z \Ij;] (Z)
t=occp (S) j=occp(S) i=occp(S)
S NG SIR 0
]_occp S) i=occp(S)
g Z ’P)\p,s (])
j=ocep(S)
i &
> Z P)\/
j=occp(S)

Equality (i) is true because clumps have, by definition, at least size one and, hence,

(e o]

Z \Il;‘,j(i) =1 for j > occy, (S) .
i=occp(S)

Inequality (ii) holds due to A\, s > Ny and the fact that the cumulative distribution
function of a Poisson distribution is monotone in its parameter A\, completing the proof
of Equation (5.4). Equation (5.5) follows directly from the fact that the cumulative
distribution function of Dy, * ... * D), is monotone in each \;. O

In summary, given a motif prefix p/, we need to find a lower bound ) such that
X' < (/1 for all p € M sharing this prefix. We approach this problem by computing
a lower bound for ¢, in Section 5.2.2 and an upper bound for the expected clump size
p in Section 5.2.3.

Remark 5.6 (Caching p-value bounds). The function objective.score-bound is called in
the inner loop of Algorithm 5.1. Therefore, its implementation should be as fast as
possible. Once the set of input sequences S is known, the right hand sides of (5.4)
and (5.5) can be precomputed for different values of A’ and all reasonable values of
occy, (S). We could, for example, precompute results for all values X' = i/n - Ay for

i € {1,...,n} and choose n according to available memory and A, such that all
motifs with reasonable expectation are covered. The most conservative approach is to
set \yax := 1/4. A
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5 Motif Discovery

5.2.2 Lower Bound for the Expected Number of Occurrences

Given a motif prefix p/, the idea to compute a lower bound for ¢, valid for all p € M
sharing this prefix is simple. As formalized in the following lemma, we compute ¢,
and use the lowest possible continuation probability for each unknown character.

Lemma 5.7 (Lower bound for (,). Let a pattern prefix p' € G* with ¢ < ( and a finite-
memory text model (C, co, 3, ) be given. Then,

v
. min C,0, C <
(cGC cEN Z SO > - Cp

= Pmin

forall p € G* with prefix p'.
Proof. The lemma follows directly from Equation (5.2) and Lemma 2.12. O

The quantity ¢y,;; does not depend on p or p’ and is completely determined by the
text model. Therefore, it can be precomputed and used to quickly obtain lower bounds
given a motif prefix p'.

5.2.3 Upper Bound for the Expected Clump Size

The following theorem translates the results from Section 4.2 into bounds for the
expected clump size of motifs. It is valid for arbitrary non-empty sets of words
W C ¥ that are not degenerate according to Definition 4.3. In the context of our
motif discovery algorithm, the set )V is given through a motif p = go--- gs—1 € Gt by
W :={w € »¢ |w < p}. Itis used in the next theorem, but we shall see that, in the
resulting algorithm, it does not need to be constructed explicitly.

Theorem 5.8. Let a finite-memory text model (C, co, ¥, ), a non-empty set of words W C G¥,
and a bound P < 1 be given such that

By = lim > P (st € W‘Sf cw) < p. (5.6)

-1
i=1

Then, the expected clump size 1y satisfies yy < 1/(1 — By) < 1/(1 — P).

Here Byy, and thus also P, are upper bounds for the conditional probability that a
given occurrence of W is right-overlapped by another occurrence.

Proof. Applying the definitions of K and |p) (Definitions 4.9 and 4.11) and using X’ as
defined on Page 71, we obtain

p|K|1 Z Z P(w,c) wc),(w’,c’)

(w,0)eX (w',c)eX
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-1
= lim Z; P(Sf,; e W|SfeW)
=By <P <1.

As P < 1implies that )V is not degenerate according to Definition4.3and z — 1/(1—x)
is increasing, applying Theorem 4.12 yields the claimed result. O

Given only a length-¢ motif prefix p’ = go--- g1 € G, we derive a bound P to be
used in Theorem 5.8 that is valid for all possible continuations of this prefix within G*.
To be useful for motif discovery, fast calculation of the bound must be possible. We
approach the problem by computing bounds P, ..., P,_; for each possible shift i
separately such that

max lim IP(Sf+i <190 go—1 ] Sf <go-- -ge_1) <PF. (5.7)

Ggl5--sge—1€G t—00
Using Theorem 5.8, we immediately arrive at the following corollary.

Corollary 5.9. Let a motif prefix p' = go - - - go—_1 € G* and bounds Py, ..., P,_y satisfying
Inequality (5.7) be given. If P := Py + ...+ Py_y < 1, then the expected clump size 1y, is
bounded by 1, < 1/(1 — P) for all p € G* with prefix p'.

The difficulty now lies in finding good bounds P, ..., P,_;. The bounds are not
helpful in Corollary 5.9 if their sum is larger than (or equal to) one. In particular, all P;
must be smaller than one.

Recall that S{ := S;---Syy¢_1. To further unclutter notation, we write S; instead
of Sf if k is clear from the context. For instance, for h € G*, we write S; < h instead
of St|h| < h. Now we repeatedly apply Bayes’ theorem to decompose the conditional
probability in Inequality (5.7).

]P(Sf+i<190 " ge-1 ‘ Sy <igo-- - go-1)

=P (St4i <905 - - Sevite—1<ge-1| St <190, - - - St4o-1<90-1) (5.8)
-1

= H P (Stri+j <195 | 7 <90+ Gy jm1s Siyin <QGitj - Ge-1) 5
=0

where g, == gx Ngr—ifor 0 < k < ¢ —1and g, := X for k < 0 and k£ > {. This
decomposition shows that the problem reduces to computing (bounds for) probabilities
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Figure 5.1: Different overlap situations of a partially known motif are illustrated. The
first part of the motif (gray) is known, while the second part (white) is
unknown. The diagonal lines emphasize that, although unknown, the
generalized characters in the top motif are the same as the ones in the
bottom motif. Left: shift of one, the alignhed known IUPAC characters must
be compatible. Center: shift of four, no known characters align. Right: shift
of six, the known characters to the right of the previous occurrence must be
present.

for generalized characters conditional on past, present, and future. That means that
conditions are imposed on positions before, right at, and after the position for which
we compute the probability of observing a given generalized character. To obtain
bounds for these conditional probabilities, we assume that the text model allows
computing meaningful bounds Py,x(g|g’) for all g, ¢’ € G such that

P(S; <g| S5 <h, St <g,S;11 < f) < Puax(9lg’) (5.9)

for all h, f € G* with ¢ := |h|. For i.i.d. text models, where the probability of observing
a character does not depend on history or future, valid bounds are directly given by
Puax(glg’) :=P(S; < g|S; < ¢'). For arbitrary finite-memory text models, computing
such bounds requires more effort, as we discuss in Section 5.2.4.

Here, we use Py to construct bounds P; for 1 < i < / satisfying Inequality (5.7).
We start from the left hand side of this inequality, use Equation (5.8), and apply
Inequality (5.9) to each factor. Again, we set g, := X for k > £ and obtain

max hm]P(S < st g0 _)
Gyt 5--sge—1€G 1—00 t+i S 9ot ge-1 | Oy go gr—1

-1 (5.10)

< max H Prax(959i+5) -
9ol s 90— le

One way to further bound this quantity is to compute the maximum over each factor
individually:

max P, ) < max 5.11
g[/,...,gg,leg H max g]‘gl-i-j H Lo o " mux(gj‘gz—l—g ( )

For short shifts, where many known motif characters overlap (Figure 5.1, left), this
strategy works well. Expressed formally, the known characters g; and g;;; overlap
if i +j < ¢/, which implies that max,, . g, ,e¢ Puax(9jl9i+j) = Puax(9jlgi+j). For
incompatible generalized characters, i.e. g; N g;+; = 0, an overlap is impossible and
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!AiBiCiDICiDiCiD
[90]91] 92| 93] 94| 95|95 9]

90(91192|93|94| 95|96 | 97

Figure 5.2: For each set of columns labeled with the same letter (A, B, C, or
D), a bound can be obtained. For A and B, the bound is given by
Puox(g0]92) and Puax(g1|9g3), respectively. For group C, a bound is
given by Pruax(92 | 94) Prax(94 | 96) Prax(g6 | X). For group D, it is given by
Priax (931 95) Prax (95 | 97) Prax(g7 | £). Assuming that the characters g4, . .., g7
are unknown (white background), the maximum over all possible values of
g4, - - -, g7 must be used.

Puax(9519i+5) = 0. However, the strategy of using (5.11) does not work effectively
for longer shifts, as shown in Figure 5.1 (center). For each position, the unknown
characters can be chosen unfavorably, such that the bound for each column equals one.
To obtain a meaningful bound, we have to take into account that the top and bottom
motifs are the same, and therefore unknown positions cannot be chosen independently.
One way to exploit this is to cleverly partition the set of columns into groups and
obtain bounds for each group. As stated formally in the next lemma, these bounds can
then be combined to yield a constant P; satisfying Inequality (5.7).

Lemma 5.10 (Decomposition of Inequality (5.7)). Let a length ¢ € IN, a motif prefix
P =go--gr_1 Gl witht <{,anda shifti € {1,...,¢—1} be given. Furthermore, let J
be a partition of {0, ..., — 1}, ie. J C 201 such that \J ;e ; = {0,..., ¢ — 1} and the
elements of J are pairwise disjoint. Let further constants P/ be given for all J € J such that

max P, | givi) < P/, 5.12
X g Jl}] max(gj ‘9 +]) = ( )

where g; := X for j > (. Then, the constant P; := [] ;. , P; satisfies Inequality (5.7).

Proof. The claim follows directly by further bounding the right hand side of Inequal-
ity (5.10):

-1
Gyt se-396—1 j=0 Jejgg/,...,gg,l Py ey

O]

One example of how to use Lemma 5.10 to obtain a bound P for a shift of two is
given in Figure 5.2. For each column containing two known generalized characters

(columns A and B), P, can be used directly. That means we set PQ{O} = Puax(g0lg2)
and PQ{I} = Puax(91]g3). The remaining columns are partitioned into groups such that

95



5 Motif Discovery

each top character is the bottom character in the next column in that group. Now we
must find bounds for the groups defined in that way (groups C and D in Figure 5.2),
that satisfy

P > max Prac(92194) Puax(94]96) Pnax(961%) (5.13)
94,96 €9
and
P{3 57} > gnglya}é Pmax(g?)‘gfl) max(95|g7) max(g7|2) (5.14)
5

Then, we can apply Lemma 5.10 for 7 = {{0}, {1},{2,4,6},{3,5,7}} and get

P, = P2{0}P2{1}P2{2,4,6}P2{3,5,7} .

To simplify notation, we define P* : G x G+ — [0, 1] by

la]—1
P"(g,a) := Pyax(g| al0]) H Puax(ali — 1] | ali]) | Puax(allal — 1] | )

and call P*!(g, a) a telescope product. Inequalities (5.13) and (5.14) can now be written

{246}> max P (gg,g4g6) and P{357}> max P (9379597)a
94,96 €9 95,97€G

respectively. We further define

Fras(g) = max P*(g,a). (5.15)

Obviously, Inequalities (5.13) and (5.14) are satisfied if we set P{2 461 = = P (g2) and
P57 .= pte (44). When the values P (g) are precomputed for all g € G, they can
be obtalned by a single table look-up. The next lemma is the key to actually computing
Pl and suggests that P/, indeed yields bounds smaller than one.

Lemma 5.11 (Telescope bounds). P/ (g) is well-defined for all g € G. That means the
maximum max,cg+ P (g,a) exists for all g € G. Moreover, there exists an a, € G* with
agli] € agli + 1] for 0 < i < |ag| — 1 such that P*(g, a,) = max,eg+ P (g,a) = P (g).

Proof. We prove the claim by showing that for all g € G and a € G7, there exists an
a € {a" €G*|a"[i] Ca"li+1]for0<i<|a"|—1} (5.16)

such that P! (g,a) < Ptd(g, a’). As d’ is chosen from a finite set, the maximum exists
and is attained for an o’ from this set. First, note that P, (glg) = 1 forall g € G,
which implies that we can replace all runs of the same character in a generalized
string a € GT by a single occurrence of this character without changing the value
of P'(g,a). The function performing this replacement is denoted r : G* — G*, e.g.
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5.2 Bounding P-Values

(ACCCNNT) = ACNT. Using this notation, P*(g,a) = P'*(g,r(a)) for all a € G*. We
define another operation, namely u : G* — G* defined by

w:a b0]---bf|lal — 1] with b[0] := a[0]
and b[i] :==b[i — 1] Uali] for0<i<|al.
The mapping u ensures that P*(g,a) < P'(g,u(a)) because Pyuax(glg’) < Puax(g U
g"9") and Pyuax(9lg’) < Puax(glg’ U g) forall g, ¢’, ¢” € G. While the former inequality
is obvious, we verify the latter.
Prax(g | g,) = H}é’%r]P(Sr Qg[Sy =s,5 < g, Si1 = 5/)

= max (1-P(S, < (Z\9)|S; =5,8 <981 =5))

s,8'€XT

= max <1 - P(S, < (9" \9) S5 = 5,511 :)S/))

5,5 €EXT P(S, <g'|S; =557, =5
/ .. _ /
S max 1—1P(Sr<((gUg)\QHSO_SvSH—l—S)
s,8'€x”m (S < (g/ U g) | S =S, ST+1 )

= max P(S, <¢g|S-<(d'Ug),S; =s,5,,=5)

s,8'€X”

= Pux(g9]9'Ug).

Given g € G and a € G, we set ' := r(u(a)). By definition of r and v, this a’
satisfies (5.16). Furthermore, P'(g,a) < P'!(g,a’), completing the proof. O

By virtue of this lemma, we can find P (g) by examining P*!(g, a) for all a with
ali] C ali + 1] for 0 < i < |a| — 1, which we do in a preprocessing step once the text
model is known.

The next lemma summarizes different types of bounds. The three cases considered
in the lemma correspond to situations where (1) a known character is below another
known character, which is the case for three generalized characters in the left part of
Figure 5.1, (2) a known character is below an unknown character, which is the case
for all four characters in the middle part of Figure 5.1, and (3) a known character is
below a position not covered by the previous motif occurrence, which is the case for
two known generalized characters in the right part of Figure 5.1. Furthermore, the
lemma formally gives the conditions under which each bound is applicable.

Lemma 5.12. Let a length £ € N, a motif prefix p' = go--- g1 € G* with ¢' < ¢, a shift
ie{l,....£— 1}, and an index j € {0, ..., ¢ — 1} be given.

1. (Known character below known character) If 0 < j < ¢ — i, set J := {j}. Then,
P/ = Puax(g;|gj+:) satisfies Inequality (5.12).

7

2. (Known character below unknown character) If max{0,¢' —i} < j < min{¢', ¢ —1i}, set
J:={j"€{0,....,0—1} |3k € Ng: j' = j + k- i}. Then, P/ := Pl (g;) satisfies
Inequality (5.12).
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3. (Known character below position not covered by previous occurrence) If ¢ —i < j < ',
set J := {j}. Then, P/ := Pyuax(g;|%) satisfies Inequality (5.12).

Proof. In each case, we start from the left hand side of Inequality (5.12)
1.

max H Pmax(gj’ | giJrj’) = max Pmax(gj | gi+j)
Gyt 90—1€G oy 9ot s-90—1€G

—
—

)
= Pmax(gj |9i+j) = PiJv

where (i) istrueas j < ¢ and j +i < /.

ma P N Go
914'7-~~7ge)f1€g };IJ max(9j0 | it j)
(== /i) (5.17)

= max H Pmax(gj+ki ’9j+(k+1)z’)
9ol 5-90—1€G 0

Note that j + (k+1)i > £ for k = | (¢ — j — 1)/i| and recall the convention that
gm = X form > (. Weset g := g; and a := gj 11 gj4|(0—j—1)/i)i- Hence, we

get
la]—-1
5.17) = P, 0 P 7 .
(5.17) eglhax max (g | a[0]) }_[1 (@i’ — 1] | alf’))
’ Pmux(a[|a| - 1] | Z)
— Ptel < Ptel _ PJ
aegﬁlzljaffm/” (97 (l) — max(g) 1
3.
(ii)
max H Pmax(gj/ |gi+j/) = max ngx(gj |gi+j) = Pmax(gj | E) ’
9gts--90—1€9 ied Gt ot 1€G

where (ii) is true as j < ¢’ and j + ¢ > ¢ and, thus, by convention, g;;; = X.
O

Algorithm 5.2 shows how the different cases of Lemma 5.12 can be applied to obtain
a bound P; for each shift i and, in the end, an upper bound for the expected clump
size.

Theorem 5.13. Algorithm 5.2 is correct. That means, given a motif prefix p’ = go- - gpr—1 €
GY and tables Py, and P satisfying Inequality (5.9) and Equation (5.15), respectively, it
indeed computes a bound 1, such that 1, < ' for all p € G with prefix p'.
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5.2 Bounding P-Values

Algorithm 5.2 Compute an upper bound for the expected clump size of a partially

known motif.

Input: A motif prefix p’ = go---gr_1 € G, precomputed tables Py, and P,ff,ﬁx
satisfying Inequality (5.9) and Equation (5.15), respectively

Output: A bound ¢/, such that 1, < ¢/ for all p € G with the prefix go - - - gor_1

BOUND-EXPECTED-CLUMP-SIZE (p', £, Pyax, Pl

1 P=0

2 fori=1tol—1

3 P, =10

4 forj=0top/| -1

5 ifj+i</t

6 if j+i<|p|

7 Pi:Pi'Pmux(9j|9j+i)
8 else

9 P; = P Pyi(g))
10 else
11 Pz = Pz . Pmax(gj ‘ E)
12 P=P+PF
13 ifP>1
14 return oo
15 else
16 return 1/(1 — P)

Proof. In the outer loop (Lines 2 to 12), a value P; is computed for all i € {1,...,¢ — 1}.
These values are added up in Line 12 and, hence, P = Zf;% P; after the outer loop has
been executed. We show that each P; computed in Lines 3 to 11 satisfies Inequality (5.7).
Then, the claim follows by Corollary 5.9. In Line 3, P, is initialized to 1.0 and, in each
iteration of the inner loop (Lines 4 to 11), it is multiplied with exactly one factor for
each j € {0,...,[p'| — 1}. Analyzing the if clauses in Lines 5 and 6, we find that Line 7
is executed if j < |p’| —1, Line 9 is executed if [p’| —i < j < £—1i, and Line 11 is executed
if ¢ —i < j. Considering that j € {0,...,[p/| — 1}, these are exactly the conditions
for the three cases of Lemma 5.12 (in that order). In each case, Lemma 5.12 yields a
set J and a bound P/ satisfying Inequality (5.12). As a set J is generated for each
i and j, we refer to it as J; ;. In order to apply Lemma 5.10 to conclude that each
P; computed in this way satisfies Inequality (5.7), we need to give a partition J; of
{0,...,¢ — 1} such that all produced sets J; ; are elements of .7;. By construction, the
sets Jio, ..., J;p—1 are pairwise disjoint for all i. Thus, we set 7/ := {Ji0,..., Jir—_1}
and J; := J/ U{Jyest }, Where Jyest := {0,...,0—1}\ UJGJ{ J. Observing that the trivial

bound P/ = 1 satisfies Inequality (5.12) completes the proof. O

Remark 5.14. The set J,,;s may contain positions j € Jy. that correspond to unknown
characters not overlapped by the previous occurrence. More precisely, it may contain
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indices j with ¢ — i < j < {. If, by definition of the motif space M, constraints on the
multiplicity of wildcard characters are known, they might be used to find an improved
bound P/". When, for example, ¥ = {A, C, G, T} is the DNA alphabet, G corresponds
to the IUPAC alphabet, the prefix ANNT is known, and at most two wildcards are
allowed per motif, the unknown characters must be either 4, C, G, or T and the bound
maxgey Pruax({o} | X) can be used for each j € Jyq with £ —i < j < /. A

Example 5.15 (Bound for expected clump size). We consider a uniform text model
over the DNA alphabet ¥ = {A,C,G,T}. Thus, each letter in the IUPAC alphabet
corresponds to a generalized character ¢ € G. Due to the uniform text model, the
bounds P,y and P,ﬁfix take the particular simple form of

lgng'| 1
Prax(g | g/) = ‘g,‘ and Prfféx(g) =gl 1

for all g, ¢’ € G. Now assume that the motif space of interest is the set of all motifs
of length eight; that means M = G* for £ = 8. We use Algorithm 5.2 to compute an
upper bound for the expected clump size of motifs with the prefix ARRA (recall that
R = {A,G}). The calculation results in the following bounds.

1 1 1
Pi = Puux(A|R) - Pygx(R|R) - Pux(R|A) - P () =Z-1-1-> ==
—— 2 4 8
::Pl{o} ::Pl{l} ::P1{2} ::P1{3’4’5’6’7}
P=P .P . ptel . ptel _1.1.1.1_i
2 — max(A | R) mﬂx(R | A) max(R) max(A) - -
A el mat) =9t 9, T 16
=:P2{0} =:P2{1} ::P2{2’4’6} ::P2{3’5’7}
Py = Po(A[A)- P (R) . PEL Ry Pl gy —1. 2.2 L
3 = max( | ) max( ) max( ) max( )_ -
::P3{0} ::P3{1’4’7} ::P;Q’s} ::P:,){3’6}
1 1 11 1
! 1 ! 1
Py :Pisfax(A)‘Prfax(R)'Prffax(R)‘Pr%ax(A) =755 T T a4

::P4{0’4} ::P4{1‘5} ::P4{2’6} ::P4{3’7}

1 1 1 1 1
Ps = P (A)- Pl (R)- P (R) - Prax(A] ) = 1323271 6l
—_——— —— —— ~——
—.pi®®h —pitel _pl2T . pi4)
1 1 1 1 1
Pﬁ:P;if;x(A)’P;;eplzx(R)'Pmax(MZ)'PmaX(A|Z) =255 7 = =7
::PéO’G} ::P6{1"7} ::PG{2} ::PG{S}
1 1 1 1 1
1
P7:Prffax(*“)'Pmax(R‘E)'Pmux<R’E)'Pmax<A’E) = 4991 = 64
::PG{O’7} ::P6{1} ::P6{2} ::PG{S}
/-1
1 1 1 1 1 1 1 5
; e T TR Y R R T R R TS
1 16
=~ = ~14
=V Eiop T g
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Therefore, the computed upper bound for the expected clump size amounts to 1.45.
Enumeration shows that, for all possible continuations, the largest exact expected
clump size is 1.3144 (for the motif ARRANNNN). A

5.2.4 Bounds for Conditional Character Probabilities

In this section, we show how bounds P,,x(g|g’) satisfying Inequality (5.9) can be
computed for a given finite-memory text model. We focus on Markovian models
and sketch how the results can be extended to arbitrary finite-memory text models
in Remark 5.19 at the end of this section. Therefore, we now assume a text model to
be given that is Markovian according to Definition 2.15 on Page 25. Bounds are then
provided by the following lemma.

Lemma 5.16 (Bounds for Markovian text models). Let (C,co, X, @) be a finite-memory
text model and assume that it is Markovian of order r. For all g,¢' € G, we define the constants

Pmux(g|g’) = ma:g P(S, <gl|Sy; =s,5 < q, Sy = 3'). (5.18)
s,8'€X”

Then,
P(S; < g| Sy <h, St <1d,Si1 < f) < Puax(glg") (5.19)

forall g, ¢’ € Gand h, f € G* witht := |h| > rand |f] > r.

The bounds Pyuux(glg’) can be precomputed for all g,¢' € G. Even for high-order
models, e.g. for r = 5, this is possible within seconds on current hardware for the DNA
alphabet (|X| = 4). Once obtained, they can be used to quickly bound conditional
probabilities for a generalized character, no matter what constraints are imposed on
history h or future f. The requirements that |h| > r and |f| > r simplify the proof
by avoiding some case distinctions but do hardly restrict the situations the lemma
can be applied in. When, for a given position ¢ > r, known constraints on history or
future are shorter than r, they can be padded with ¥s such that |h| = t and |f| > .
To prove the claim, we need two auxiliary lemmas that are (generalized) variants of
Equation (2.8) from Definition 2.15.

Lemma 5.17 (Markovian text models: dependence on the past). For a Markovian text
model of order r,

P(S;y, < f|Ss <h, Sy =5")=P(S;, < f|S; =5")=P(S; < f|S5 =5")
forall h, f € G* and all s" € X", where t := |h|.
Proof.
P (S, < f| S5 <h, 8 =5")
= Y Y P(Si =58, =s|5 <hS =5")

sexlflisqf s’'ext:s’ah

= Y Y P(Si,=s]S=45,85 =5") P(S; =55 <hS; =5")

seXxlflisqf s'eXxt:s'<h
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Y P(Sin=slSi=s) Y P(Si=o[Si ah S =)

sexlflsaf s'ext:s'<h

/

=1

= Y P(Sp,=s|8 =5")
sexlflsaf
=P(Sp,,. < f|Sp=5")

for all ' € Ny. To get (i), we have applied the definition of Markovian text models
(Definition 2.15). O

Lemma 5.18 (Markovian text models: dependence on the future). For a Markovian text
model of order r,

P (S < h| Sy =5 Siyppper QL) =P (S <h| Sy =5)
forallt € No,all h, f € G*,and all s € X7

Proof. For a shorter notation, we define the events

o A:=(S; <h),
o C = (Sz;.+|h|+r‘ < f).

Then, the claim can be written P(A|B,C) = P(A|B). By Lemma 5.17, we get
C|A,B) = P(C|B). The proof is completed by using this relation and apply-
ing Bayes’ theorem.

P(A,B,C) P(C|A,B)-P(4,B) P(C|B)-P(A,B)

P(4]B,C) = P(B,C) P(B,0) - P(B,C)
P(C,B)-P(A,B) _
b5 TS = P(A|B).

Now we are ready to prove Lemma 5.16.
Proof of Lemma 5.16. We have to show that

P(S; < g| Sy < h, S g, Siv1 < f) < max P(S, <g|S; =5, <Ig,ST+1—s)

s,8'€X”

forall g,¢' € Gand h, f € G* with ¢t := |h| > rand |f| > r. Let hy := h[.t —r — 1],
hg :=hlt —r.], f1 := fl.r — 1], and f3 := f]r..]. We start from the left hand side.

P(S;<1g|S; <h,Se<g,S;1<f)
Yo P(S,=55<g5 =55 <h S <g, S <f)

s€EX":s<hs
s'exTis'<fy
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<  max ]P(St <y ‘ So < h1, S, =5,5< g',S,;'Jrl = 3/7Si§rr+1 < f2)
seX":s<ha
s'exris'<af1

< ;g%ggrﬂ’(st Qg|Sy<ah, S, =55 <9g,S =5, < f2)

. P(S; <9,8 9,851 =5, S < f2| Sy < ha, Sp, = 5)
ssesr P(Sy<ag, ;0 =5, ,11 < f2| Sy < h1,S;_, = s)
Q max ]P(ST <]g’S7“ <]g/757t+1 :S,’Sé.r+1 <]f2’S('). :S)

ssexr P8, 9,87, =5, S5, < f2| S5 =)

P (S5 =5,5 <19, <[ S;y1 =5 85,41 < f2)

= max
ssesr P(Sy=s,5 <9g'|S;1 =551 < f2)
W - P(S5=55<95 9¢]5,, =)

5,8/ €XT P(S;=s,5<¢ | Sy =14)
= max ]P(ST g ‘ Sy =385 <4g,8.,= s').
s,8'€XT

For (i) and (ii), we have used Lemma 5.17 and Lemma 5.18, respectively. O

Remark 5.19 (Generalization to arbitrary finite-memory text models). Lemma 5.16 in-
troduces bounds P,x(g|g’) for Markovian text models of arbitrary order. For arbitrary
finite-memory text models, a similar derivation can be used to obtain

Puax(glg’) == max P(Spir 1 9|Cr=1¢,5; = 5,841 <4, S pe1 =5, Crpopgr = )
N

s,s'exk

for an arbitrary choice of £ € INy. Whether or not meaningful bounds, that is, bounds
smaller than one, are obtained using this approach depends on the choice of £ and on
the text model. A

5.2.5 Quality of Bounds for the Expected Clump Size

To assess the quality of the resulting bounds for the expected clump size, we consider
the (comparably) small motif space of all motifs of length eight over the restricted
IUPAC alphabet {A,C,G,T,N} that is amenable to exhaustive enumeration. For all
prefixes with lengths between three and six, Figure 5.3 on Page 108 shows the ratio of
bound and worst case expected clump size. Remarkably, when considering prefixes of
length three and i.i.d. text models, this ratio is below 2.0 in 106 of all 125 cases. For
Markovian text models, the bounds are worse, but when more than half of the motif is
known, in this case five motif positions, they already assume a good quality.

To sum up, Algorithm 5.2 quickly provides good bounds for the expected clump
size for partially known motifs. All components of Algorithm 5.1 are now specified,
that is, our motif discovery algorithm is complete. In Chapter 6, we apply it to several
data sets and discuss the algorithm’s runtime in practice. Before that, we describe the
modifications necessary to jointly consider occurrences on forward and reverse strand
of DNA.
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5 Motif Discovery

5.3 Reverse Complements

DNA is a double-stranded molecule (see Example 1.1). When no prior knowledge
about the strand to be searched is available, we should count motif occurrences on
both strands. As discussed in Section 4.1, this is equivalent to considering a motif
jointly with its reverse complement, which influences its statistical properties. Refer to
Figure 4.1 on Page 68 for an example of a clump of such a joint motif. As we see in this
section, small modifications are sufficient to extend our motif discovery algorithm to
search for motifs on both strands.

Remark 5.20. It is tempting to think that running motif discovery jointly on both
strands can be done by augmenting the set of input sequences with their reverse
complements. Then, however, the scoring would be wrong. Recall that a motif’s
p-value is the probability of finding k& or more occurrences in independent random texts
of the same lengths as the input sequences, where £ is the number of occurrences in the
input sequences. When the reverse complements are added, they obviously depend on

the forward sequences and, thus, the independence assumption is no longer justified.
A

Counting occurrences. To count the number of occurrences, we create an index
structure not over the sequences in S alone, but over the sequences in S and their
reverse complements. Therefore, we must pass S and all reverse complements to
walker .initialize in Line 2 of Algorithm 5.1. Then, walker .occurrences returns the number
of motif occurrences for both strands.

Computing p-values. Computing the compound Poisson p-value (see Definitions 5.1
and 5.4) of a motif p when considered jointly with its reverse complement requires us
to compute its clump size distribution ¥}, " and its expectation Cé,omt. Computing ¥ mt
has already been covered in Section 4.3: we now need to construct a counting DFA for
the joint motif (see Remark 4.21 for further explanations), build a PAA from it, and
compute ¥ using dynamic programming as usual. The expectation C]Jgomt can directly
be calculated as it is the sum of the expectations (, and (., where p, is the reverse
complement of p.

Avoiding duplicate computations. Algorithm 5.1 enumerates all motifs (that are not
skipped) and may thus examine motifs whose reverse complements have already been
tested. This is unnecessary and can be avoided by computing a motif’s score (i.e.,
executing Lines 15 to 18) only if the motif is lexicographically smaller than or equal to
its reverse complement.

Bounding p-values. As explained in Section 5.2.1, we need a lower bound for the
expectation Céomt and an upper bound for the expected clump size v, " in order to

obtain a p-value bound for the joint motif. A lower bound for C{fmt is given by the sum
of lower bounds for (, and ¢, which can be computed using Lemma 5.7.
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For a given motif, let W and W,. be the sets of instances of the forward and the re-
verse complementary motif, respectively. To produce an upper bound for the expected
clump size of the joint motif, we consider the set W := WrU Wi and endow it with a
weight function v : W — N with v : w + 1+ [w € WyN Wy ]. Therefore, the weight
function v tells which instances are palindromic and have to be counted twice. For the
IUPAC motif AGNT, for instance, YW = {AGAT, AGCT, AGGT, AGTT, AACT, ACCT, ATCT} and
v:w — 14 [w = AGCT] as AGCT is the only string in WV that matches AGNT as well as its
reverse complement ANCT. Let |v) be the weight vector derived from v according to
Definition 4.16. By Theorem 4.17, the expected clump size increases by a factor of (p|v)
when using the weight function v instead of unit weights. Applying the definitions of
|p) (see Definition 4.11) and |v) yields

_ . Y ¢ . 0 4
(p|lv) = 1+t1g£10113(st EWrNWe | S e W) < 1+tlggoIP(St € Wee | Sf € W) . (5.20)

This quantity can be bounded by using the bounds Py, for each position. The resulting
bound for (p|v) lies between 1 and 2. It is a measure for the degree of palindromicity of
the motif in question.

Left to be determined is a bound for the expected clump size of W (without weights).
To this end, we use a variant of Theorem 5.8 that takes into account that the word
set VW is given as a union of two other sets (in our case, W = WU Wy.).

Theorem 5.21. Let a finite-memory text model (C,co, 3, ¢), two non-empty sets of words
Wi, W C GE with W := W, UWy, and a bound P < 1 be given such that

t—o00 2
i=1

-1 -1
lim < max{Z]l’(Sf+i EWL|SfeWr), > P(Sf, e Wi|Sf € Wg)}
=1
=1

/-1 -1
+max{ZIP(Sf+i€WQ|SfGW1) : ZIP(SfHeWg]SfGWg)} ) < P.
i=1

Then, the expected clump size 1y satisfies ¢y, < 1/(1 — P).

Proof. We start from an intermediate result in the proof of Theorem 5.8.

(I < im0 N Z (Xirs = (W', &), Xy = (w,¢) | Sf € W)
(w,e)eX (w',c)eX i=1
-1
Stliglo Z Z Z P (Xt = ( w,c’),Xt:(w,c)}SfGW)
a,be{1,2} (w,c)eX: (w',c)eXx: =1
WEW, ”LUEW(,
/-1
. 1 1
be{1,2} =1

Again, the existence of P < 1 implies that )V is not degenerate according to Defini-
tion 4.3 and, thus, Theorem 4.12 yields the claimed result. O
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When the reverse complement was not considered, we only needed to compute a
bound for 3" P(Sf,, € W;| Sf € W), which is done in Algorithm 5.2. Now, we
need to modify the algorithm to also take the other three cases into account. This does
not involve further technical difficulties, but can be done using the same techniques as
for the forward case. We name the four cases as follows.

/-1 -1
lim ( max{ P(Sfys € Wr| SEe W), > P (S, € Wr| Sf e We) }

t—o00
=1 =1
Case FF Case FR
-1 -1
+max{ D P(Sf € Wee|SEEW)), Y P(Sf; € Wi | Sf € Wee) } > < P.
=1 i=1
Case RF Cas:erRR

We now give four functions computing upper bounds for each case. The input to each
function is a motif prefix p’ € G%, the motif length ¢, and precomputed tables Py
and P!¢_satisfying Inequality (5.9) and Equation (5.15), respectively. The first case
corresponds to Lines 1 to 12 in Algorithm 5.2.

BOUND-CASEFF (p', ¢, Pyax, P2)

1 Ppr=0

2 fori=1to/l—1

3 P =1.0

4 forj=0top/| -1

5 ifj+i</

6 ifj+i<|p|

7 P, = Pi'Pmux(p/[j”p/[j"i_i])
8 else

9 P = P;- P (0'[4])
10 else

11 P, =PF. Pmax(p/[j] ’E)
12 Prr = Prr+ B

13  return Prr

BOUND-CASEFR(p/, ¢, Pyax, P2)

1 Pr=0

2 fori=1tol—1

3 P, =1.0

4 for j = max{0,¢ — |p/| — i} tomin{|p'| — 1,/ —i — 1}

5 Py = P+ Pyax (p'[5]] COMPLEMENT(p'[ — j — i — 1]))
6 forj=(—ito|p|—1

7 P = Pi'Pmax(p/[jHE)

8 Prr = Prr + P

9 return Prr
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BOUND-CASERF (p/, €, Pyax, P2L)

1 Prr=0

2 fori=1tol—1

3 P=1.0

4 forj=0toi—1

5 P; = P; - Py (COMPLEMENT(p'[4]) | X)

6 forj=(+i—|ptop/| -1

7 P; = P; - Pyax(COMPLEMENT(p/[¢ + i — j — 1]) | p[4])
8 Prp = Prr + F;

9 return Pgr

BOUND-CASERR(p/, £, Pyax, P12L,)
1 Prr=0
2 fori=1tol—1
3 P=1.0
forj=0top/| -1
ifj <i
P; = P; - Pyuax(COMPLEMENT(p'[4]) | X)

4

5

6

7 else

8 P; = P; - Pyax(COMPLEMENT(p'[j]) | COMPLEMENT (p/[j — i]))

9 Prr = Prr + B
10 return Pgrgr

A bound for the expected clump size is now obtained by using these four functions

and combining the results with a bound for the palindrome probability, that is, a bound
for the quantity limy_,oo P(Sf € Wi | Sf € W) that appears in Equation (5.20).
BOUND-EXPECTED-CLUMP-SIZE-REVCOMP (9, £, Py, P,

1 Ppalindrome = 1.0

2 forj=/(—|p|to|p|—1

3 Ppalindrome = Lpalindrome * Pmax (COMPLEMENT(p/ [E - J - 1]) |p, [ﬂ)

4 P=0

5 P = P+ max {BOUND-CASEFF(p/, {, Pyax, Pl
BOUND-CASEFR (¢, £, Pyax, Pleh,) }

6 P = P+ max {BOUND-CASERF(p', £, Py, PL2L.),
BOUND-CASERR (¢, £, Pyax, Pich,) }

7 ifP>1

8 return oo

9 else

10 return (1 + Ppajindrome)/ (1 — P)
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Figure 5.3: The quality of bounds for the expected clump size for motifs of length
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eight over the restricted IUPAC alphabet {A,C,G, T,N} are shown. Each
plot depicts the qualities for bounds derived from prefixes with a length
of three, four, five, and six, respectively. For each plot, all prefixes of the
respective length were enumerated and the bound deviation, defined as
bound divided by worst actual expected clump size, sorted into ascending
order. The worst cases were determined by exhaustive enumeration of
all length-8 motifs. Each plot shows the situation for three different text
models, each estimated from the human genome. For prefixes for which
the computation did not yield a bound P < 1 to be used in Corollary 5.9,
the quality is plotted at value None in the figures. All values larger than 10
are plotted at value “>10".



6 Applications

This chapter is devoted to the application of the motif discovery algorithm developed
in the previous chapters.

In Section 6.1, we give a brief introduction to the architecture and usage of the MoSDi
software which implements it. Then, MoSDi is compared to existing tools using an
established publicly available benchmark suite in Section 6.2. In Sections 6.3 and 6.4,
we report on new motifs discovered in the non-coding regions of Mycobacterium
tuberculosis and human CpG islands, respectively.

6.1 MoSDi Software

MoSDi is a software package written in Java that contains many algorithms from the
fields of Motif Statistics and Discovery. Its oldest parts were written in the context of
the author’s diploma thesis (Marschall, 2007). Since then, the package has constantly
been extended and improved. Inspired by extreme programming introduced by Beck
(1999), the idea was to implement the simplest solutions without unnecessary features
while maintaining automated unit tests to improve software quality and aid code
refactoring (see Fowler et al., 1999). Indeed, the source code has often been refactored
when new features were added. As a result, the software design is generic and flexible.
In its present version 1.2, MoSDi consists of 216 classes with 28451 lines of source
code.

The introduced mathematical constructs like DAAs, PAAs, and finite-memory text
models are implemented as abstract types in MoSDi. The corresponding algorithms
are generic as well. For instance, the tasks of computing a motif’s significance (see
Section 2.6) and of analyzing pattern matching algorithms (see Section 2.7) rely on the
same generic implementation of Algorithm 2.1 to compute the value distribution of a
PAA. This avoids duplicated source code and allows adding further applications easily.
Implementing a subclass of the abstract type DAA, for example, immediately allows
calculating the distribution of values the DAA computes on random texts distributed
according to a finite-memory text model.

Moreover, dependencies between software components were reduced to a mini-
mum. The components of a pattern iterator, an index walker, and an objective function
described in Section 5.1, for instance, are encapsulated into classes, allowing them to
be exchanged easily.

MoSDi features four command-line tools that make its functionality available to the
user.

e mosdi-stat computes various pattern statistics like the occurrence count dis-
tribution, either exactly (Section 2.6) or in compound Poisson approximation
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(Section 4.3), the expected clump size (Section 4.2), and empirical clump size
distributions obtained by sampling.

e mosdi-discovery contains the main motif discovery algorithm described in
Chapter 5. Furthermore, it allows refining motifs using a local search strategy.

e mosdi-pm-analysis computes the distribution of the number of text accesses
needed by pattern matching algorithms as discussed in Section 2.7. It can also
be used to compute statistics on automata sizes as shown in Table 2.9 and
Figure 2.10.

e mosdi-utils can perform many different small tasks, for example, generate
random strings, count or excise motif instances, compute a set of IUPAC strings
equivalent to a PWM with a given score threshold, count ¢g-gram occurrences
in a text, compute the equilibrium expectation of all g-grams under a given text
model, etc.

On invocation of each of these programs, the name of a subcommand must be given.
Section A.1.1 contains a list of all 26 available subcommands. When called without
additional parameters, each subcommand outputs a list of mandatory arguments
and optional parameters. An overview of common use cases and examples of valid
command lines is given in Section A.1.2. In particular, the use of MoSDi for motif
discovery is explained. The examples given there can directly be adapted to reproduce
the experiments described in the following sections.

6.2 Algorithm Benchmark

Designing good benchmark sets for motif discovery is not trivial. While synthetic
sequences involve a somewhat arbitrary choice of background- and motif-model, real
data sets are never annotated perfectly.

Tompa et al. (2005) have performed a large study comparing 13 motif discovery
algorithms. They used confirmed binding site instances from the TRANSFAC database
(Wingender et al., 1996) and implanted them into three different types of background;
first, into their real genomic context, second, into randomly chosen promoter sequences
from the same species, and, third, into random sequences. With respect to a large
fraction of all considered performance statistics, the Weeder algorithm of Pavesi et al.
(2004) performed best.

Later, Sandve et al. (2007) analyzed the data sets of Tompa et al. (2005) to determine
whether or not common motif models are capable of separating the true binding sites
from the remainder of the sequences. They point out that for most data sets this is
not the case. PWMs, consensus strings with a Hamming neighborhood, and IUPAC
strings all perform comparably but fail to discriminate signal from noise in many of the
data sets of Tompa et al. (2005). This can have (at least) two causes. On the one hand,
it might indicate that more sophisticated models are needed to capture the motifs.
As discussed in Section 1.1, however, a higher model complexity entails the risk of
over-fitting, that is, an increased chance of obtaining false positive results. On the other
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hand, it might indicate that the sequence information alone is not sufficient to reliably
detect transcription factor binding sites. In fact, cells use a sophisticated machinery
to initiate transcription that involves more than binding of a single factor to a single
binding site. In particular, transcription factors often act cooperatively and transcription
can only be initiated when multiple factors have formed a complex. Furthermore,
whether or not a gene is transcribed can depend on the chromatin structure, on distant
enhancers, and DNA methylation. Refer to Chapters 6 and 7 of the book by Alberts
et al. (2007) for a detailed explanation of transcription initiation and the mechanisms
that influence it.

In summary, studying promoter sequences alone cannot fully explain transcriptional
regulation. If a motif discovery algorithm has nevertheless found a common motif
in a set of promoters of putatively co-regulated genes, it can help to understand the
processes involved in transcription initiation. An advantage of exact motif discovery
algorithms as developed in this thesis is that they allow drawing a conclusion when no
motif has been detected. In this case, we know that no overrepresented motif in the
hypothesized motif space exists and we must therefore search for another mechanism
of regulation that explains the observed co-regulation.

Evaluation

To evaluate the developed algorithm, we use the benchmark suites proposed by
Sandve et al. (2007). The authors generated different data sets by either implanting
transcription factor binding site (TFBS) occurrences into a background generated
from a third order Markov model or by extracting their original context from the
respective genome. For each data set, they analyzed whether or not the motif can, in
principle, be discriminated from the background using the motif models discussed
above. They propose to use the data sets with good theoretical discrimination to
benchmark algorithms and the rest to benchmark more powerful models. This makes
the performance analysis more informative, as effects originating from motif model
and algorithm are not mixed up. Consequently, we do not consider the suite of data
sets intended to benchmark motif models (called Model real) and use the benchmark
suites Algorithm Markov and Algorithm real to assess our method. For each of 50
different motifs, Algorithm real contains a data set with the motif’s original context and
Algorithm Markov contains a similar data set with the same number of sequences, the
same sequence lengths, and the same motif instances, but the background parts of the
sequences are replaced by random strings generated by a third order Markov model.
The total number of characters in each data set ranges from 2 843 to 24 667 (median:
9331) and the number of sequences per data set ranges from 5 to 18 (median: 7).

We follow Sandve et al. (2007) in choosing Weeder developed by Pavesi et al. (2004)
and MEME developed by Bailey and Elkan (1994) as reference algorithms. As men-
tioned above, Weeder outperformed its 12 competitors with respect to most evaluated
measures in the study by Tompa et al. (2005). MEME, on the other hand, is one of the
most established heuristic motif discovery algorithms. Its implementation is mature
and well maintained by its developers. Furthermore, Weeder and MEME represent
different approaches to motif discovery. While MEME models motifs as position
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weight matrices (PWMs) and optimizes them using an expectation maximization (EM)
approach, Weeder is based on mismatch models and employs an exact pattern-driven
search on a suffix tree. Another reason supporting this choice is that both imple-
mentations allow a background text model to be provided through a table of g-gram
frequencies. This furthers a fair comparison as all tools can use the same text models
and permits studying the influence of the text model order on each tool’s performance.

By using publicly available data sets, future comparison to other tools is possible. In
fact it is made easy as Sandve et al. (2007) provide a website! to which motif predictions
can be uploaded and resulting performance statistics be retrieved from. For each data
set, the positions of the instances of the predicted motif must be uploaded. That means
that only one motif can be predicted per data set. If a tool generates more than one
candidate, it must decide on one of them. In practice, a human user of motif discovery
tools would probably look at more than only the top candidate, but for a benchmark
study it is reasonable to require each tool to choose one candidate. Otherwise, a fair
comparison of tools that make a different number of predictions becomes difficult. The
nucleotide-level correlation coefficients (nCC) given in Table 6.1 are the values computed
by the aforementioned website. The nCC is defined as follows:

TP - TN — FP - FN

nCC = ,
\/(TP +FP) - (FP + TN) - (TN + FN) - (FN + TP)

where TP, TN, FP, and FN are the numbers of true/false positive /negative predicted
characters (nucleotides). The use of this measure allows an integrated assessment of
sensitivity and specificity.

The benchmark suite of Sandve et al. (2007) is also used by Fauteux et al. (2008) to
assess their algorithm called Seeder, which they report to perform good on the Model
real suite. They compare it to five other algorithms: BioProspector (Liu et al., 2001),
GibbsSampler (Lawrence et al., 1993), MEME (Bailey and Elkan, 1994), MotifSampler
(Thijs et al., 2001), and Weeder (Pavesi et al., 2004). For Algorithm Markov, BioProspector
performs best with an average nCC of approximately 0.12 (this value has been read off
the bar chart in Figure 2 of Fauteux et al., 2008). For Algorithm real, they report Weeder
and MEME to perform best, both with an average nCC of (approximately) 0.12.

Before we discuss the results of the present study, we describe how MEME, Weeder,
and MoSDi were invoked.

MEME

MEME uses an EM approach to find PWMs with high information content. Refer to
Page 11 for a brief introduction to this technique. We used MEME version 4.5.0 for
all experiments. As a first step, we reproduced the results obtained by Sandve et al.
(2007), who used MEME version 3.5.3. That is, we ran MEME with default settings:

meme.bin -dna -text <file>

'http://tare.medisin.ntnu.no/single/single.php
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where -dna tells MEME to use the DNA alphabet and -text requests the output to
be made in text format (rather than in HTML). A list of occurrences as reported by
MEME was then converted to the required format and uploaded. The plots returned
by the website (see Section A.4) show that the obtained scores agree almost perfectly.

Reviewing the possible parameters that can be passed to MEME, we found that the
default settings are indeed appropriate for the examined data sets. By default, MEME
searches for motifs with a length between 8 and 50, uses an i.i.d. background model
estimated from the input data, and assumes that each sequence contains zero or one
motif instances (the so called zoops mode). Although the data sets are created such
that every sequence contains exactly one motif instance, this is not the case in most
practical situations. Therefore, we decided not to provide this information to any of
the three tools.

By using the option -bsize, MEME can be instructed to load a Markovian text model
from a file. Besides running it without using this option, we ran it for text models of
order one, two, and three on each data set. To do this, we computed the distribution
of (¢ + 1)-grams for each individual data set (where ¢ is the text model order) and
converted it into the format understood by MEME.

As detailed below, Weeder and MoSDi were run on a compute cluster under the
Solaris operating system. Unfortunately, MEME could not be compiled on this platform
due to a missing header file (err.h). Therefore, the runtimes for MEME refer to other
hardware as those for Weeder and MoSDi. It was executed on an Intel Core 2 Quad
CPU at 2.66 GHz with 8 GB RAM running Linux.

Weeder

Weeder falls into the class of algorithms that walk a suffix tree as discussed on
Pages 16ff. It models motifs as consensus strings with a Hamming neighborhood. To
achieve feasible runtimes, it imposes constraints on the placement of mismatches: each
prefix of a motif instance may only contain a number of mismatches (to the consensus)
that is proportional to its length. This disallows mismatches to accumulate at the
beginning.

As done for MEME, we want to reproduce the results obtained by Sandve et al.
(2007) using Weeder. Unfortunately, not all information needed to do this is publicly
available. They write: “As Weeder requires the specification of organism, we supplied
for each data set the most frequent organism.” For a number of commonly-analyzed
species, Weeder supplies files containing the frequencies of 6- and 8-grams in the
regions upstream of genes. These data are used as a background model once the
user has chosen a species. Whether or not Weeder’s performance benefits from this
additional knowledge (which is not available to the other tools) is not clear a priori. It
might benefit from it, but it might also be possible that Weeder performs better when
not using these text models but ones estimated from the input data. To shed light
on this matter, Weeder was supplied with tables of the expected number of 6- and
8-grams computed from the same text models as used for MEME and MoSDi. That is,
an individual text model was estimated from the input for each data set. In this sense,
Weeder can also be run with Markovian text models of varying orders. Weeder was
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invoked as:
./weederlauncher.out input.fasta MODEL (small|medium|large|extra)

where MODEL is the common prefix of the files containing the text model. One of the
arguments small, medium, large, and extra must be selected to choose the size of the
examined motif space. Refer to Pavesi et al. (2004) and the manual accompanying
Weeder for further details on the these motif spaces. In the present evaluation, we use
all combinations of medium, large, and extra and text model orders from zero to three
(where order zero corresponds to an i.i.d. model). The optional argument T1 that is
supposed to instruct Weeder to report only one (the best) motif was tried but its use
led to Weeder reporting no motifs at all but the message “Sorry! No advice on this one”
for all data sets.

The output was parsed and the topmost reported motif used as prediction. Weeder
reports two sets of motif instances called “all” and “best”. As using “all” consistently
produced worse results, only the “best” instances were used.

Weeder was executed on a compute cluster where it could be run in parallel for
each of the 100 data sets. All machines run the Solaris operating system. They are
partly equipped with AMD Opteron CPUs and partly equipped with Intel Xeon CPUs.
Their clock rates range from 1.8 to 2.6 GHz. The runtimes reported in Table 6.1 are
averaged over all data sets and, thus, also averaged over the different CPUs the jobs
were performed on. In other words, the right column of Table 6.1 gives the average
time needed to search one of the hundred data sets on one average CPU core.

MoSDi

MoSDi was used to solve Problem 2 introduced on Page 10 for each data set. That
means the p-value for the number of sequences a motif occurs in was optimized. The
runtime strongly depends on the searched space of motifs. Therefore, experiments
using different motif spaces were performed in order to investigate whether the longer
runtimes for more complex motif spaces are justified by better prediction quality. The
wildcard characters contained in the IUPAC alphabet can be classified according to the
number of matched characters: an N, for instance, matches four different characters,
while a Y matches two, and a T matches only one (see the Table in Section A.2). The
four resulting character classes are

e A C,G, T, which each match one character,

e R, Y,S,W,K,M which each match two characters,
e B,D,H,V, which each match three characters, and
e N, which matches four characters.

MoSDi allows the user to input constraints on the number of allowed characters from
each of these classes. To search the space of all IUPAC motifs of length twelve with at
most twelve regular characters, two wildcards from the second group, zero wildcards
from the third groups, and at most six Ns, we call
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Table 6.1: A comparison of Algorithm 5.1 (optimizing CP-pualueg,,), Weeder, and
MEME on the benchmark suites proposed by Sandve et al. (2007) is shown.
Each of the two suites Algorithm Markov and Algorithm real contains 50 data
sets. Nucleotide-level correlation coefficient (nCC) averaged over all data
sets for each of these suites is given. Columns with headings 0.25, 0.5, and
0.75 give the number of data sets with an nCC equal to or above these values.
The rightmost column gives the runtimes per data set (averaged over all 100
data sets). Algorithm configuration is given in parentheses. For details, refer
to the main text. (*) MEME was run on different hardware (see main text).

Algorithm Model Alg. Markov (nCC) Alg. real (nCC) Runtime
order avg. 0.25 0.5 0.75 avg. 025 0.5 0.75 h:m:s
MoSDi (10,6,0,2) 0 0092 9 5 1 0079 7 4 0 0:12:09
MoSDi (10,6,0,2) 1 0107 10 5 0 0123 11 5 0 1:02:11
MoSDi (10,6,0,2) 2 0129 11 6 0 0164 15 8 1 17:38:46
MoSDi (12,2,0,6) 0 0090 9 4 0 0132 11 5 2 0:11:03
MoSDi (12,2,0,6) 1 0108 9 5 1 0184 15 8 2 0:33:09
MoSDi (12,2,0,6) 2 0162 14 9 2 0198 17 7 2 3:46:12
MoSDi (14,0,0,7) 0 0066 4 3 1 0086 9 2 0 0:00:50
MoSDi (14,0,0,7) 1 0072 6 4 1 0137 12 6 2 0:01:40
MoSDi (14,0,0,7) 2 0086 7 5 1 0134 11 5 1 0:02:22
MoSDi (14,0,0,7) 3 0089 7 5 1 0091 7 3 0 1:12:07
MoSDi (14,1,0,7) 0 0081 6 5 1 0088 9 2 0 0:10:57
MoSDi (14,1,0,7) 1 0089 7 5 1 0157 13 7 2 0:27:20
MoSDi (14,1,0,7) 2 0123 10 8 2 0187 15 7 3 1:12:47
MoSDi (14,1,0,7) 3 0115 9 6 2 0130 11 4 2 79:15:24
MEME 0 00% 7 6 1 0083 8 2 1 *0:00:12
MEME 1 0116 8 7 0 0117 9 5 3 *0:00:12
MEME 2 0119 8 8 0 0137 11 5 3 *0:00:12
MEME 3 0108 7 7 1 0109 9 4 2 *0:00:12
Weeder (medium) 0 0.018 2 1 0 0033 4 0 O 0:02:19
Weeder (medium) 1 0038 4 0 O 0053 7 1 0 0:01:52
Weeder (medium) 2 0040 5 1 0 0074 8 1 0 0:01:56
Weeder (medium) 3 0067 8 2 0 0050 6 1 0 0:01:57
Weeder (large) 0 0.018 2 1 0 0033 4 0 O 0:30:15
Weeder (large) 1 0038 4 0 O 0053 7 1 0 0:38:10
Weeder (large) 2 0040 5 1 0 0074 8 1 0 0:31:29
Weeder (large) 3 0067 8 2 0 0050 6 1 0 0:29:32
Weeder (extra) 0 0.017 2 1 0 0035 4 0 O 0:32:05
Weeder (extra) 1 0052 4 2 0 0074 10 2 0 0:35:29
Weeder (extra) 2 0051 6 3 0 0097 10 4 0 0:33:57
Weeder (extra) 3 0072 9 4 0 0092 11 4 0 0:31:53
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Figure 6.2: Scores of randomly predicted motifs are shown. For each data set, a motif
length was sampled uniformly between 10 and 20. Then, a random posi-
tion (also drawn uniformly) in each sequence was predicted to be a motif
instance.

mosdi-discovery -v -t discovery -M 12,2,0,6 -02 12 seq-count <file>

The option -02 says that a second order text model estimated from the input data
is to be used. The global options -v and -t enable verbose output and measuring
of runtimes, respectively. Refer to Section A.1.2 for more examples of using MoSDi.
There, we also discuss the steps necessary to distribute the computation over several
hosts.

The following motif spaces were used in this evaluation; they are given in terms of
the motif length and of the maximum number of IUPAC characters from each group.

e Motif length: 10; wildcard constraints: 10,6,0,2; number of motifs: 17 880 633 344
e Motif length: 12; wildcard constraints: 12,2,0,6; number of motifs: 26 934972416
e Motif length: 14; wildcard constraints: 14,0,0,7; number of motifs: 6 088 884 224
e Motif length: 14; wildcard constraints: 14,1,0,7; number of motifs: 108 500 221 952

For the first two motif spaces, the optimal motifs with respect to i.i.d. (zeroth order),
tirst order, and second order text models were extracted for all data sets. Experiments
for third order text models were started but aborted as they would have taken signifi-
cantly more CPU time than was available. For the last two motif spaces, experiments
for all text models from zeroth to third order were completed successfully. Using the
command-line given above, MoSDi estimates the text model from the input data by de-
termining the frequencies of all (¢+ 1)-grams, where ¢ is the text model order. For third
order models, we used the option -s1 to add one pseudocount to each (¢ + 1)-gram
frequency to avoid zero values.
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Figure 6.3: Comparison of nucleotide-level correlation coefficients (nCC) for different
algorithms using a second order Markovian text model. Each circle repre-
sents one of the 100 data sets in the benchmark suites Algorithm Markov and
Algorithm real. Continued in Figure 6.4.
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Figure 6.4: Continuation of Figure 6.3: Comparison of nucleotide-level correlation
coefficients (nCC) for different algorithms using a second order Markovian
text model. Each circle represents one of the 100 data sets in the benchmark
suites Algorithm Markov and Algorithm real.

Results

To evaluate each tool’s performance, we used the web service accompanying the paper
by Sandve et al. (2007) to calculate the nucleotide-level correlation coefficient (nCC).
The resulting scores for the three algorithms with different parameters and text models
as described above are shown in Table 6.1. Figure 6.2 shows scores obtained when
making random predictions for each of the 100 data sets. In the shown case, the
average nCC amounts to 0.008. The best nCC score observed for a single data set is
0.125. In Table 6.1, the number of data sets for which each algorithm achieved an nCC
above 0.25 are given. The comparison to the random predictions suggests that it is
unlikely that such an nCC is obtained by chance.

The results in Table 6.1 show that increasing the text model order improves the
prediction quality. For text model orders zero, one, and two, this is the case for all tools
in all configurations with the only exception of Weeder run with the extra parameter
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that obtained a score of 0.052 for a first-order model and of 0.051 for a second-order
model. Further increasing the model order to three did not always have a positive
effect. This could be due to the limited length of the input sequences which does not
allow a reliable estimation of a model of this high order. Recall that we had to add a
pseudocount to each observed (g + 1)-gram frequency as some 4-grams do not occur
in some of the input sequences. When the (¢ + 1)-gram frequencies are this low, then
the implanted motif itself can have a substantial impact on the model. Therefore, its
significance decreases as well as the chance to detect it.

One unexpected result is that the average nCC was better for the data sets in
Algorithm real compared to the data sets in Algorithm Markov. This is the case for 26 of
all 30 algorithm variants listed in Table 6.1. On average, the performance was by 37.7 %
better for Algorithm real. This is contrary to expectation because the real sequences
might harbor other common patterns that putatively hamper the detection of the
sought binding motif.

Independently of the order of the used text model, MEME needed 12 seconds to
process a data set (on average) and was by far the fastest tool in this evaluation. This
result is not surprising as MEME is the only tested tool that does not exhaustively scan
the considered motif space. Therefore, it is remarkable that, for all text model orders,
MEME obtained a higher score than Weeder for all configurations of Weeder.

The behavior of Weeder was somewhat surprising. When changing the parameter
controlling the size of the motif space from medium to large, the top motif reported
did not change for any of the data sets, but the runtime increased from around two
minutes per data sets to around thirty minutes per data set. When it was changed
from large to extra, Weeder made better predictions but the runtime did not increase
significantly. In Table 2 of their article, Sandve et al. (2007) report that Weeder obtains
an average nCC of 0.052 and 0.11 for Algorithm Markov and Algorithm real, respectively.
This is in contrast to the numbers shown in the plots returned by their software (see
Section A.4), where the values are 0.052 and 0.096. In either case, MEME performs
better in less runtime when using a first or second order background model. As shown
in Table 6.1, Weeder is also outperformed by MEME in the present evaluation.

The runtime of MoSDi strongly depends on the searched motif space and on the
order of the text model. The best results were obtained for motifs of length 12 with
wildcards constrained by (12,2,0,6). In this configuration, MoSDi took an average of
3:46 hours per data set and achieved an nCC of 0.162 and 0.198 for the benchmark
suites Algorithm Markov and Algorithm real, respectively. MEME achieved nCC scores
of 0.119 and 0.137, respectively, but took only 12 seconds per data set. Hence, MoSDi’s
results were better by 36.1 % and 44.5 %, but at the cost of using hours of CPU time
instead of using seconds.

The smallest motif space MoSDi was tested for is the one given by the constraints
(14,0,0,7), which means that it consists of those IUPAC motifs of length 14 that contain
at most 7 Ns and no other wildcard characters. For this motif space and a second order
background model, MoSDi takes around 2.5 minutes per data set (on average) and
performs better than Weeder using any of the tested configurations. A comparison of
the runs for the motif spaces (14,0,0,7) and (14,1,0,7) shows that allowing one wildcard
from the set {R,Y,S,W,K, M} further increases prediction quality at the cost of longer
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14,1,0,7 MEME

red: nCC > 0.75.

Algorithm real

12,2,0,6

10,6,0,2

14,1,0,7 MEME

Algorithm Markov
12,2,0,6

sets for the same TRANSFAC motif: once in random background, once in its
10,6,0,2

MEME, both using a second order text model. Each row represents two data

Table 6.5: Comparison of nCC obtained by MoSDi for different motif spaces and by
original context. Yellow: nCC > 0.25, orange: nCC > 0.5,
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runtimes. Figures 6.3 and 6.4 show scatter plots comparing the performance of different
pairs of algorithm variants. The bottom left scatter plot in Figure 6.4 shows that the
improvement of the average nCC achieved by using (14,1,0,7) instead of (14,0,0,7)
mainly stems from newly recognized motifs rather than from improvements of the
scores for already recognized motifs. Except for one outlier, all motifs found using the
smaller motif space are also found for the larger one. In addition, seven motifs are
recognized with an nCC greater than 0.25 that were not spotted before.

For the remaining scatter plots in Figures 6.3 and 6.4, the picture is less clear. For all
pairs of algorithm variants, there are data sets successfully solved by both variants but
also data sets that could only be solved by one of them. The plots suggest that each
algorithm variant might have its own strengths and weaknesses. To further illuminate
this matter, Table 6.5 shows the nCC for all data sets for MEME and for MoSDi on the
motif spaces constrained by (10,6,0,2), (12,2,0,6), and (14,1,0,7), where all algorithm
variants use a second order text model. It indeed shows that each algorithm variant
achieves an nCC equal to or larger than 0.25 for at least one data set for which the other
three algorithm variants fail to do so. That means there is no single best algorithm
variant and, in practice, one should consider the output of all of them.

To sum up, we have used the carefully crafted benchmark suite proposed by Sandve
et al. (2007) to assess the algorithms developed in this thesis in comparison to Weeder
and MEME. The use of Weeder does not seem to be advisable as it is neither as fast nor
as accurate as MEME, which is by far the fastest tool tested. Consistently over all tools,
a second order text model turned out to yield best results. For such text models, the
predictions made by MoSDi were more accurate than those made by MEME. We are
not aware of other motif discovery tools for which better results on this benchmark
set have been reported. In practice, generating data sets of (for example) co-expressed
genes which are commonly subjected to motif discovery can be costly and laborious.
Therefore, it seems reasonable to employ an analysis that uses hours of CPU time
and, in return, yields accurate predictions. Nonetheless, MEME remains an excellent
tool for the rapid search for motifs. To conclude, both methods have their merits and
should be included in the toolbox of a computational biologist.

6.3 Non-Coding Regions of M. tuberculosis

Moycobacterium tuberculosis is a species of pathogenic bacteria causing tuberculosis. Its
genome has been completely deciphered by Cole et al. (1998). To demonstrate the
utility of the proposed motif discovery algorithm in a whole genome setting, we search
for motifs in the non-coding (i.e. putatively regulatory) regions of M. tuberculosis. The
non-coding parts of the genome comprise 2 402 regions consisting of 398 419 base pairs,
which is about one tenth of the whole genome.

We use MoSDi to search these regions for motifs of length 14 with wildcards con-
strained by (14,1,0,7). As demonstrated in Section 6.2, using this motif space yields
good results on the benchmark suite of Sandve et al. (2007). We prefer it over the motif
spaces with motifs of length 10 or 12 as our input is by more than a factor of 16 larger
than the largest data from the benchmark suite. Therefore, motifs need to be more
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specific to be discernible from background noise. As we do not have prior knowledge
on the placement of motifs to be discovered, we optimize the p-value for the total
number of occurrences on both strands of DNA. That means that multiple motifs are
allowed (and counted) in each sequence and its complement.

We estimated a second order text model from the input sequences and used it as
the background model. As an additional constraint, we skipped all motifs with an
expected number of occurrences above 20 as it seems unlikely that such unspecific
motifs are of biological interest. Once the optimal motif had been discovered, all its
instances were masked from the input sequences and the algorithm was rerun. The
p-value was then optimized with respect to the masked sequences. This procedure was
repeated until no more motifs with a p-value better than 10" existed. The resulting
24 motifs are shown below. They are given in the order they were discovered in. The
p-value is given with respect to the original sequences (without masked motifs). Some
motifs have more instances in the original sequences than in the masked sequences
they were discovered in and, hence, a better p-value with respect to the original
sequences than with respect to the masked sequences. Therefore, the p-values of the
shown motifs do not increase monotonically. If a motif breaks monotonicity, that is, it
has a better p-value than the motif before it, then its p-value on the original sequences
must be better than on the masked sequences. Thus, the motif is most probably related
to another motif discovered earlier.

In the lines prefixed with “Exact”, we give the total number of occurrences, the
expected number of occurrences (E) and the p-value (p). In the lines prefixed with
“Dist. 1”7 and “Dist. 2”7, the same statistics are given for motif occurrences within a
Hamming distance of one or two of the IUPAC motif, respectively. The sequence logos
are generated from the set of occurrences within a Hamming distance of one.

Motif 1: GAGCAGACRCANAA Motif 2: AGAGGGGACGGAAA
Exact: 81, E:0.014, p:2.0-10%" Exact: 42, E:0.00093, p:3.0-10""
Dist. 1: 121, E: 061, p:7.6-10%® Dist. 1: 42, E:0.053, p: 1.5-10"%®
Dist. 2: 155, E:119, p:6.8-10"" Dist. 2: 44, E:13, p:3.6-10°°
A

=Ll = T e WA T —— 1 T T T T T T T AR
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Motif 3: GGTTTTGGGTCTGA Motif 4: NGCATCGTCGYCNN
Exact: 41, E:0.0031, p:2.6-10" Exact: 88, E:1.2, p:26-10"%
Dist. 1: 42, E:0.13, p:1.1-10% Dist. 1: 171 E: 324, p:75-10
Dist. 2: 44, E:24, p:4.3-10% Dist. 2: 5, FE:3988, p:4.6-10%
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Motif 5: CNCNNCTCCTCMNC

Exact: 87, E:15, p:25-10"8
Dist. 1: 203, E:523, p:29-10
Dist. 2: 1092, E:7584, p:1.8-10*

2 OI00TGe

1234567891011121314

Motif 7: RCCGGGGCGGTTCA

Exact: 31, E:0.034, p:55-10%
Dist. 1: 32, E:12, p: 1.5-10*
Dist. 2: 64, E:182,  p:6.2-10"

(G CTTOA

10 11 12 13 14

Motif 9: CCGCTTRCGGGGGA

Exact: 25, E:0.0096, p:2.2-107°
Dist. 1: 35, E:0.44, p:22-10%
Dist. 2: 47, E:89, p:3.1-10"

H[EHEEGE

Motif 6: GTCCGGAGACTCYN

Exact: 29, E:0.016, p:82-10%
Dist. 1: 30, E:0.76, p:19-10%
Dist. 2: 43, E:158,  p:1.7-10%

Tc
A

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Motif 8: CCGMGCTTGCGATC

Exact: 30, E:0.031, p:24-107
Dist. 1: 32, E:1.0, p:2.5-107°
Dist. 2: 51, E:156,  p:13-10™"

T T T T T T T T T

2 3 4 5 6 7 8 9 10 11 12 13 14

Motif 11: CGCCGANNGTGMAN

Exact: 48, E:13, p:2.4-107
Dist. 1: 120, E:332,  p:34.10%
Dist. 2: 580, E:400.6, p:8.5-10"7

1A
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T T T T T T T
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9 10 11 12 13 14
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Motif 10: ATCCTTTCCAAGAA

Exact: 16, E:0.00051, p:10.0-10%
Dist. 1: 16, E:0.026, p:2.6-107%
Dist.2: 16, E:0.64, p:19-10"

-
8

ATCCTTTCCAACAR

10 11 12 13 14

Motif 12: NGGCGTGTCGNNKN

Exact: 70, E:5.0, p: 69-10°*
Dist. 1: 215, E:1204, p:7.8-10"
Dist. 2: 1508, E:1314.5, p:4.6-10"

v v T v v

5 6 1011 121314
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Motif 13: AGCAGWCGNNAAAG

Exact: 32, E:0.062, p:1.0-107
Dist. : 89, E:24, p:2.0-107*"
Dist. 2: 162, E:409,  p:32-10%

Motif 15: GGGTTCRANTCCCN

Exact: 20, E:0.11, p:3.9-10
Dist. 1: 24, E:4.1, p:1.8-10™"
Dist. 22 96, E:66.8, p:5.4-10%

Motif 17: AAGGATCACGCGAK

Exact: 12, E:0.0062, p:6.1-10%
Dist. 1: 13, E:0.25, p:1.8-10"
Dist. 2: 18, E:47, p:2.4-10%

AAGGATCACTCOA:

10 11 12 13 14

Motif 19: CGGCSCGNATCGTC

Exact: 33, E:017, p:28-10%
Dist. 1: 57, E:5.0, p:2.2-10%
Dist. 22 163, E:70.1,  p:3.5-107%

CeCLeATO:[C

10 11 12 13 14
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Motif 14: CCCGCNGCRCCCGG

Exact: 25, E:0.33, p:4.7-10%
Dist. 1: 40, E:9.5, p:16-10"
Dist. 2 156, E:125.0, p:4.7-10%

(000 0l

10 11 12 13 14

Motif 16: GAGCGTAACGYCAC

Exact: 12, E:0.0051, p:6.6-107%
Dist. 1: 14, E:0.25, p:3.1-10%
Dist. 2. 27, E:52, p: 1.7-10M

ACCUTAAC <CAC

10 11 12 13 14

Motif 18: CCCCYACCTCATCG
Exact: 12, E:0.0076, p:7.2-10%
Dist. 1: 16, E:0.33, p:5.9-10%

Dist. 22 36, E:64, p:5.7-107
1 2 3 4 4;7 é 7 8 10 11 12 13 14

Motif 20: AGGANTYGAACCTN

Exact: 14, E:0.047, p:2.6-107%°
Dist. 1: 14, E:18, p: 1.1-10%
Dist. 2: 65, E:329, p:5.1-10"

(A= TSCAACCT

10 11 12 13 14



6.3 Non-Coding Regions of M. tuberculosis

Motif 21: TAGAACNYGTTNNA Motif 22: AGGAGNNNRGCAAT
Exact: 17, E:0.078, p:1.7-10% Exact: 30, E:017,  p:25-10%
Dist. 1: 25, E:33, p:1.3-10™ Dist. 1: 55, E:6.6, p: 1.5-10
Dist.2: 100, E:61.1, p: 1.6-10® Dist.2: 175, E:112.3, p:3.0-10™
TA AACAC TTC A L3 L Ag <A

9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Motif 23: GACRCAGANTCGCA Motif 24: AGGGRNGTGGTGTA
Exact: 29, E:0.030, p:9.9-107° Exact: 10, E:0.0094, p:15-10%
Dist. 1: 42, E:1.2, p:2.1-10% Dist. 1: 10, E:0.44, p:5.6- 10"
Dist. 2: 88, E:20.6, p:5.0-10% Dist. 22 16, E:94, p:3.0-10"

NHIVAVI I JI1=1 V"V

1 2 3 4 5 6 7 91011 121314 1 2 3 9 10 11 12 13 14

All 24 discovered motifs have low p-values and are hence highly significant in the
statistical sense. Even when taking into account that the motif space and thus the
number of tested hypotheses is large (108 500221 952~10'!), for example by applying
a Bonferroni correction (see Wasserman, 2003), all results remain significant. Judging
whether these findings are biologically significant is more difficult. Here, we restrict
ourselves to reporting some peculiarities of the above motifs.

One question we ask is whether considering a Hamming neighborhood improves
motifs. We can argue that, if a motif is a false positive, then the chance of also
finding an exceptional number of occurrences in a Hamming neighborhood is small.
However, when the number of occurrences does not increase by adding a Hamming
neighborhood, we cannot draw the converse conclusion as it could also mean that a
true motif is strongly conserved across all its instance. Out of all motifs shown above,
Motif 13 is the only one for which the p-value with respect to all matches within a
Hamming distance of one is better than the p-value with respect to all exact matches.
And in fact, a biological function can be attributed to this motif as we discuss below.
Although the p-value of no other motif improves by adding a Hamming neighborhood,
the number of additional occurrences is remarkable for some. For the Motifs 1, 3, 9, 13,
16,17, 18, 19, 22, and 23, the increase in the number of occurrences is more than three
times as high as the increase in the expected number of occurrences. Interestingly, four
of these motifs are among those five motifs we could find a biological explanation for.

In an earlier analysis of the non-coding regions of M. tuberculosis (Marschall and
Rahmann, 2009), the best motif found was AGACSCARAA. As pointed out by Christoph
Kaleta (personal communication), the biological meaning of this motif is twofold. On
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the one hand, its instances are part of clustered regularly-interspaced short palindromic
repeats (CRISPRs) which have been shown to be involved in bacteriophage response by
Barrangou et al. (2007). On the other hand, the motif plays a role in transcription ter-
mination. Due to the longer motifs (length 14 instead of length 10) used in the present
study, MoSDi succeeds in separating these two variants of instances of AGACSCARAA.

The entry on M. tuberculosis in the database of putative CRISPRs developed by
Grissa et al. (2007) contains the sequence

GTTTCCGTCCCCTCTCGGGGTTTTGGGTCTGACGAC.

The underlined parts correspond precisely to the reverse complement of Motif 2 and
to Motif 3, respectively. A number of instances of AGACSCARAA can be explained by this
CRISPR as TTYTGSGTCT, the reverse complement of AGACSCARAA, matches Positions 3
to 12 of Motif 3.

The second type of sequences matched by AGACSCARAA are intrinsic transcription
terminators. These are palindromic sequences that form stem loops in case of tran-
scription, forcing the DNA polymerase to stop to further transcribe the DNA (see
Alberts et al., 2007, Page 338). According to Kaleta (personal communication), the
sequences AGACGCAAAA and AGACGCAGAA, which both match AGACSCARAA, are part of
such transcription terminators. In the present study, these sequences are found in
Motifs 1, 13, and 23: in Motif 1, the consensus of Positions 5 to 14 is AGACGCAAAA;
in Motif 13, the consensus of Positions 4 to 13 is AGACGCAAAA; and in Motif 23, the
consensus of Positions 1 to 9 is GACGCAGAA.

To sum up, we have discovered 24 highly significant motifs for 5 of which we are
aware of a biological meaning. Searching for motifs of length 14 instead of for motifs
of length 10 as in an earlier study (Marschall and Rahmann, 2009) leads to a more
detailed view of motifs in M. tuberculosis. On the one hand, a larger number of different
motifs are found, and, on the other hand, the two different functions of instances of
AGACSCARAA are now reflected in distinct motifs.

Presently, the function of the remaining motifs is unknown to us. Because of their
high statistical significance, they are excellent candidates for further investigations
about their biological meaning.

6.4 CpG Islands

The dinucleotide CG is found rarely in mammalian genomes. That means cytosine is
seldom followed by guanine on the same strand of DNA. This dinucleotide is often
referred to as CpG, where the “p” represents the phosphodiester bond that holds
together two adjacent nucleotides in a DNA strand. Only as few as one percent of
all dinucleotides in the human genome are CpGs. Furthermore, the CpGs are not
distributed equidistantly over the genome, but are concentrated in regions whose
length typically does not exceed 2 000 nucleotides. These regions are called CpG islands.
Commonly, the criteria of Gardiner-Garden and Frommer (1987) and Takai and Jones
(2002) are used to formally define CpG islands in terms of their minimal length, their

CG content, and the ratio of observed and expected number of CpGs. However, finding
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Table 6.6: Statistics on data sets taken from Supplementary Data Set S1 accompanying
the paper by Illingworth et al. (2008). The four data sets consist of regions
they classify as Category 1; these are sets of regions that are exclusively
methylated in one of the examined tissues. The column CpGs gives the
percentage of dinucleotides that are CpGs. The rightmost column lists the
number of regions that are labeled as 3p of genes, 5p of genes, intra-, or
intergenic by Illingworth et al. (2008). Some regions are multiply annotated
such that numbers sum to values larger than the number of regions.

Dataset Sequences Avg.length Totallength CpGs 3p/5p/
intra / inter

Blood 42 1572.0 66023 68% 6/15/11/15
Brain 30 1325.6 39767 66% 3/ 6/10/12
Muscle 157 1224.5 192241 75% 19/54/45/ 48
Spleen 122 1519.3 185359 7.6% 9/62/30/30

an appropriate definition of CpG islands that does not contain ad hoc thresholds is a
subject of ongoing research.

As detailed in the textbook by Alberts et al. (2007, Pages 470ff.), the low number of
CpGs in the human genome can be explained by events of spontaneous deamination of
nucleotides that take place in the course of evolution. Such a deamination reaction
removes an amine group from a nucleotide. Under normal conditions, deaminated
nucleotides are repaired by special molecules that restore them into their previous state.
But when a cytosine is methylated, that is, an additional methyl group is attached
to it, deamination results in a thymine which cannot be detected and subsequently
repaired by the cell’s machinery. In differentiated cells (as opposed to stem cells),
methylated cytosines are found almost exclusively in CpG dinucleotides (see Lister
et al., 2009). Therefore, the C in a CpG is only protected from being changed intoa T
over evolutionary time spans when it is either unmethylated in germ cells or evolution
selects against its mutation. Indeed, CpG islands are most often unmethylated in most
tissues.

Most CpG islands are found in or near genes, many of them in promoter regions.
Therefore, the rare cases where CpG islands are methylated are important as methyla-
tion of promoter regions silences the corresponding gene (see Suzuki and Bird, 2008)
and is involved in the development of cancer (see Jones and Baylin, 2007). Examining
Chromosomes 6, 20 and 22 by means of bisulfite sequencing, Eckhardt et al. (2006)
show that the methylation patterns of CpG islands are tissue specific.

Here, we ask whether we can find overrepresented motifs in CpG islands that are
methylated in a tissue-specific way. To this end, we use a data set of differentially
methylated regions published by Illingworth et al. (2008). They use a method called
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CXXC affinity purification (CAP) to extract unmethylated CpG-rich regions from the
DNA in human blood. By sequencing the resulting sample of CXXC-affine DNA,
they identified a library of 17387 CpG islands. Although this protocol excludes
fully-methylated CpG islands, the authors reason that CpG islands that are only
methylated in a fraction of all copies might be included. In a subsequent step, they
construct a microarray from the library. Regions of DNA methylated in blood, brain,
muscle, and spleen, respectively, are selected using MDB affinity purification (MAP)
and subsequently hybridized to the microarray. The resulting expression profile then
allows concluding which CpG islands were metyhlated in which tissues. Table 6.6
describes the sets of CpG islands identified as being methylated in only one of the four
tissues.

We scan each of the four data sets for overrepresented motifs using MoSDi. As in
the previous section, we search the space of all motifs of length 14 with wildcards
constrained by (14,1,0,7) and iteratively rerun motif discovery once an optimal motif
has been discovered and excised from the input sequences. Again, we stop when no
further motifs with a p-value better than 10 are found. Here, the p-value for the
number of sequences a motif occurs in is used.

For the data sets blood and spleen, 14 motifs and 15 motifs were discovered, re-
spectively. For the data sets muscle and brain, only 3 motifs and 0 motifs were found,
respectively. All these motifs are listed in Tables 6.7, 6.8, and 6.9. The difference in
the number of discovered motifs is remarkable. The muscle data set is the largest one,
while the brain data set is the smallest one. Therefore, the number of found motifs
does not seem to correlate with the size of the data sets. The rightmost column in each
table shows statistics on the placement of motif-containing CpG islands with respect
to known genes. These distributions do not deviate substantially from the respective
distributions for the whole data sets as shown in Table 6.6. Therefore, it seems unlikely
that the found motifs are directly involved in the regulation of transcription.

For each motif, the tables show the number of sequences it occurs in and the cor-
responding p-value. The motifs are listed in the order they were discovered in. As
Table 6.7 shows, all motifs discovered in the blood data set also occur in the muscle
and spleen data sets, but none occurs in the brain data set. The three motifs shown in
Table 6.8 that were discovered in the muscle data set occur in all other data sets, in-
cluding brain. These motifs seem to have a low complexity; the first targets sequences
mostly composed of As, the second sequences mostly composed of Cs, and the third
sequences consisting of repeated instances of GCC. For all these three motifs, similar
ones have been discovered in the spleen data set as can be seen in Table 6.9. Across all
three tables, similar motifs are given the same color.

To detect similar motifs, we analyzed for each pair of motifs whether their instances
overlap. The most remarkable overlaps were detected for the groups of motifs colored
red, gray, and light blue. A further analysis of the placement of motifs revealed that
the motifs in these groups are part of longer motifs. To detect these longer motifs,
a local search strategy was employed. In each iteration, all possible substitutions of
IUPAC characters and additions of IUPAC characters at either end of the motif are
tested and the modified motif with the best p-value is retained. The motifs resulting
from this procedure and their relation to the shorter motifs initially discovered are
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6.4 CpG Islands

Table 6.7: Motifs discovered in CpG islands methylated only in blood are listed. For

each tissue, the number of sequences with at least one occurrence and the
corresponding p-value with respect to a second order background model is
given. The rightmost column lists the number of matching regions that are
labeled as 3p of genes, 5p of genes, intra-, or intergenic by Illingworth et al.
(2008). Some regions are multiply annotated such that numbers may sum to
values larger than the sum of regions with at least one occurrence. Groups
of motifs printed with the same background color are related: some of their
instances overlap. The same color codes are used in Tables 6.8 and 6.9.

Motif Blood Brain Muscle Spleen 3p/5p/
intra / inter

TACTAAAAMTACAA 11(1-10%) 0(1.0) 24-10%) 7@4-10%) 5/10/ 5/5
GTGCTRGGATTACA 13(9-10%°) 0(1.0) 2(4-10") 9@2-10%) 4/11/ 6/7
AGWTCGAGACNANC 13 (7-10*) 0(1.0) 2(-10%) 92-10®) 3/10/ 7/8
AAATTAGCNGGGCR 13 (3-10%) 0(1.0) 1(1-10%) 11(7-10%°) 5/14/ 8/5
ACTGCACTCCASCC 12(1-10%°) 0(1.0) 6(4-10"% 7@1-10") 4/13/ 4/7
AGTANCTGNGAYTA 11(7-103%) 0(1.0)0 3(2-10%) 9@2-10%) 3/12/ 7/6
TCRGCTCACTGCAA 10(6-10%%) 0(1.0) 3(2-10%) 8(3-10%) 3/14/ 6/3
ATTCTCCTGYCTCA 10 (4-102%) 0(1.0) 4@3-10") 6(1-10"7) 4/10/ 7/4
RCCAACATGGNGAA 10(2-10%) 0(1.0) 1(-10%) 8@3-10%) 2/10/ 7/5
CTNRGCCTCCCAAA 13 (9-102%) 0(1.0) 4(2-10") 12(9-10%%) 4/15/ 8/6
AANAAAANAWANAA 14 (2-102°) 0(1.0) 10(2-10") 17(2-10%) 6/23/11/8
TCAAGNGATYCNCC 12(7-10%%) 0(1.0) 5(1-10%) 11(5-10%*) 6/12/ 9/6
GGCGTGAGNCACYG 10(1-102°) 0(1.0) 1(3-10%) 4(-10%) 3/ 7/ 4/4
ACAGARCNANACTC 10 (4-102°) 0(1.0) 1(4-10%) 3(9-10%) 2/ 7/ 5/4

Table 6.8: Motifs discovered in CpG islands methylated only in muscle are listed. See
caption of Table 6.7 for an explanation of shown values.

Motif Blood Brain Muscle Spleen 3p/5p/
intra / inter
AAANNANWANANNA 17 (5-10"%)  3(3-10%) 44(2-10%) 27(5-102)) 10/36/24 /28
CCNCNWCCCNNNCC 19 (1-10%) 10(1-10%) 77 (4-10%) 42 (4-10%) 22/71/40/27
GCCGCCRCCGCCNC  2(2-10%)  3(6-10%) 17(2-10%) 17(2-10%) 5/24/ 8/ 4
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Table 6.9: Motifs discovered in CpG islands methylated only in spleen are listed. See
caption of Table 6.7 for an explanation of shown values.

Motif Blood Brain Muscle Spleen 3p/5p/
intra / inter

AAGTNYTGGNATTA 12(6-10*) 0  (1.0) 3(7-10%) 17(6-10%) 6/16/ 9/ 7
AAAANANAAAAAAW 12(2-10%°) 0  (1.0) 9(4-10") 21(9-10%) 6/23/ 9/ 9
AAWTACAAAAATTA 9(1-10*) 0  (1.0)0 3(-10") 102-10* 6/10/ 8/ 4
CAKCCTGGNCAACA 8(5-10%) 0 (1.0) 43-10%) 17@8-10%) 4/14/ 9/ 7
TAGNTGGGAYTACA 7(1-10%°) 0  (1.0) 4@2-10°) 112-10%) 3/13/ 7/ 4
CAGGAGWTCNAGAC 10(7-10%) 0  (1.00 3(-10") 13(1-10%) 3/10/ 9/ 8
CCTRCCTCAGCCTC 8 (3-10%%) 0  (1.0) 4(9-10%) 14(2-10%) 4/12/ 8/ 6
AGNYTGCAGTGANC 12(2-10%°) 0  (1.0)0 5@B-10%) 16(8-10%) 4,/18/11/ 6
CCACTGYACTCNAG 10(2-10%) 0  (1.0) 6(-10™) 13(8-10%) 5/18/ 5/ 5
AACCCCRTNTCTAC 8(2-10%) 0 (1.00 13-10%) 101-10%) 3/12/ 6/ 3
AANANNAWNNANNA 20 (2-10%%) 4(1-10") 44(1-10%) 54(3-10%°) 11/50/36/ 36
GCCGCCRCCGCCGE  1(1-10%) 3(8-10%) 11(2-10%2) 15(-10%Y) 5/18/ 7/ 2
CCCSNNCCCCNNCC 12 (5-10%) 10(2-10%°) 48 (5-10"°) 61(7-10%%) 16 /66 /36 /25
GGTTCAAGNRATTC 8(7-10%) 0 (1.0) 6(2-10"7) 9(2-10%®) 4/13/ 6/ 5
CAGGCRTNAGCCAC 9(6-10%) 0  (1.0) 2@2-10™) 11(-10%) 3/12/ 6/ 4

shown in Figures 6.10, 6.11, and 6.12. All three combined motifs occur in the data sets

blood, muscle, and spleen, but none in brain.

Next, we counted the number of occurrences of these three motifs in the whole
human genome, noticing that they are extremely abundant. As Table 6.13 shows, most
of the occurrences lie in annotated repeats. Some lie in regions upstream of genes.

In summary, we have discovered three strikingly strong motifs in tissue-specifically
methylated CpG islands that are also extraordinarily common in the whole human
genome. The presence of these motifs cannot be attributed to chance. The fact that
most of their instances are annotated as repeats does not necessarily imply that they
are meaningless. In any case, all regions covered by these motifs should be annotated
as repeats. Elucidating the role of these motifs is an interesting task for future research.
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ARACCGo TCTCTACTARARATACAARAATTACezttcs
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Figure 6.10: A sequence logo for AMMCCYYRTYTCTACYARAAATWCAAAAATTAGCHKKGYR is
shown. All occurrences in any of the four data sets with a Hamming
distance of at most two to this IUPAC string are counted, totaling 22
occurrences. This long motif subsumes the motifs AACCCCRTNTCTAC (Po-
sitions 2 to 15), TACTAAAAMTACAA (Positions 13 to 26), AAWTACAAAAATTA
(Positions 19 to 32), and AAATTAGCNGGGCR (Positions 27 to 40).

TACAGGGGTAGOUAGGS

— 9 5 3 T w U —_— =

7 8 91011121314151817181920212223242526272829303132333435363‘738394‘04142

Figure 6.11: A sequence logo for YBNNRCYYYNCAAVGTDYTGGNATTACANRNRTNARHCNYND
is shown. All occurrences in any of the four data sets with a Ham-
ming distance of at most two to this IUPAC string are counted,
totaling 53 occurrences.  This long motif subsumes the motifs
CTNRGCCTCCCAAA (Positions 1 to 14), AAGTNYTGGNATTA (Positions 13
to 26), GTGCTRGGATTACA (Positions 15 to 28), CAGGCRTNAGCCAC (Posi-
tions 27 to 34), and GGCGTGAGNCACYG (Positions 29 to 42).

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Figure 6.12: A sequence logo for TMYNRRBYTSAVRNVATYHNBBYRYCTHNGCMTC is shown.
All occurrences in any of the four data sets with a Hamming distance of at
most two to this [UPAC string are counted, totaling 95 occurrences. This
long motif subsumes the motifs GGTTCAAGNRATTC (Positions 6 to 19),

TCAAGNGATYCNCC (Positions 9 to 22), ATTCTCCTGYCTCA (Positions 16
to 29), and CCTRCCTCAGCCTC (Positions 21 to 34).
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Table 6.13: The number of occurrences of the three motifs shown in Figures 6.10, 6.11,
and 6.12 in different parts of the human genome are listed. The given
numbers are the absolute occurrence counts of the IUPAC strings given
in the caption of the respective figure. Numbers in parentheses give the
average number of occurrences per one million base pairs. The column
Upstream of genes refers to regions of 1000 base pairs upstream of genes. The
column Repeats refers to the regions defined by the “RepeatMasker” track as
downloaded from the UCSC genome browser (http://genome.ucsc.edu).
It contains repeats identified by the RepeatMasker program using the RepBase
database (Jurka et al., 2005).

Motif Upstream of genes Repeats Whole Genome
AMMCCYYRTY. . . TAGCHKKGYR 460 ( 15.1) 45078 ( 32.0) 45260 ( 14.6)
YBNNRCYYYN. . . TNARHCNYND 2501 ( 82.1) 297895 (211.4) 300506 ( 96.7)
TMYNRRBYTS. . . YCTHNGCMTC 4843 (159.0) 567 485 (402.8) 567 532 (182.6)

132


http://genome.ucsc.edu

7 Conclusions

We summarize the achieved results and point to further research questions arising
from this thesis.

The main goal of the present work was to develop a practical motif discovery algo-
rithm able to find motifs with optimal p-values with respect to complex background
text models. This goal has been achieved.

On the way towards it, Chapter 2 introduces the concepts of deterministic arithmetic
automata and probabilistic arithmetic automata. We prove that they allow calculating the
distributions of values resulting from deterministic computations on random texts
with respect to arbitrary finite-memory text models. This technique is a valuable
tool in multiple contexts. In this thesis, we use it three times; first, to compute the
distribution of the number of occurrences of a pattern in a random string, second, to
compute the distribution of the running time cost incurred by window-based pattern
matching algorithms, and, third, to compute the distribution of clump sizes. All of
these applications are interesting theoretical topics in themselves and, in all three cases,
our results go beyond those known previously.

A promising topic for future work is to study the asymptotic behavior of PAAs. Estab-
lishing precise conditions under which the distribution of values computed by the PAA
is asymptotically normal would further increase the utility of the PAA framework. For
the second application of analyzing window-based pattern matching algorithms, this
could allow proving that the number of character accesses is normally distributed for
(asymptotically) long texts. Such results are already known for Horspool’s algorithm
(Mahmoud et al., 1997; Smythe, 2001; Tsai, 2006) but apparently not for B(IN)DM and
BOM.

In Section 2.7, we give a general DAA construction applicable to all window-based
pattern matching algorithms. Whether there exists an algorithm to construct the minimal
DAA directly, that is, in time linear in the number of states, is another interesting open
research question.

We address a similar question in Chapter 3. There, we give algorithms to construct
simple NFAs. We prove that these NFAs are transformed into minimal DFAs by the
classical subset construction and show how they can be built from (sets of) generalized
strings and from consensus strings with a Hamming neighborhood. These results
do not guarantee that the resulting minimal DFA is small, but avoid the need to
construct more DFA states than necessary. This efficient construction procedure is
useful in the context of the present thesis as DFAs accepting instances of a motif need
to be constructed in order to compute the motif’s p-value. In future work, ways of
constructing simple NFAs for other pattern types might be explored. For instance, we
might investigate whether simple NFAs accepting sets of generalized strings with a
Hamming neighborhood or even with a neighborhood defined by the edit distance can
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efficiently be built.

The two main contributions made in Chapter 4 are the derivation of a formula for
the expected clump size of motifs and the use of the PAA framework to compute the
whole distribution of clump sizes, both for arbitrary finite-memory text models. From the
exact distribution of clump sizes, a compound Poisson approximation to the distribution
of the number of motif occurrences can be constructed. Again, the value of these
results is twofold. On the one hand, they are interesting from a theoretical point of
view and extend the field of motif statistics. On the other hand, they are of central
importance to the motif discovery algorithm developed in Chapter 5.

The largest part of Chapter 5 is devoted to developing bounds for the p-values
of partially known motifs and putting them to work in a branch-and-bound motif
discovery algorithm. This approach becomes possible by approximating a motif’s
p-value using the compound Poisson distribution developed in Chapter 4. The most
difficult part is to obtain upper bounds for the expected clump size of partially known
motifs, which we succeed to do based on the exact formula for the expected clump size
obtained in Chapter 4. Finally, we arrive at an algorithm solving Problems 1 and 2, that
is, at an algorithm able to discover a motif with optimal p-value, either with respect
to the total number of occurrences or with respect to the number of sequences the
motif occurs in. To the best of our knowledge, this is the first practical motif discovery
algorithm that finds motifs with provably optimal p-values with respect to high-order
text models.

Moreover, we show how the algorithm can be generalized to take the double-
stranded nature of DNA into account and simultaneously search for a motif and its
reverse complement. Giving special care to this problem is important as the statistical
properties of such a joint motif are strongly affected by its overlapping structure,
meaning that the naive approach of searching the input sequences plus their reverse
complements is not accurate.

In contrast to many other published motif discovery algorithms, implementations of
the methods developed in this thesis are publicly available. They are part of the MoSDi
software package distributed under the terms of the GNU General Public License.

In Chapter 6, we use the carefully crafted benchmark suite of Sandve et al. (2007)
to compare MoSDi against Weeder (Bailey and Elkan, 1994) and MEME (Pavesi et al.,
2004). Fauteux et al. (2008) use the same benchmark suite and report on the perfor-
mance of their algorithm Seeder and additionally on the performance of BioProspector
(Liu et al., 2001), GibbsSampler (Lawrence et al., 1993), and MotifSampler (Thijs et al.,
2001). MoSDi outperforms all these algorithm in terms of the average nucleotide-level
correlation coefficient (nCC). Comparing it with MEME, which can be seen as the most
mature and established motif discovery tool, MoSDi’s nCC scores were better by 36.1 %
and 44.5 % for the benchmark suites Algorithm Markov and Algorithm real, respectively,
but at the cost of using hours of CPU time instead of using seconds. Therefore, MEME
is an excellent choice for a quick scan for motifs. Keeping in mind, however, that many
data sets to be searched for motifs are the result of tedious (and sometimes costly)
experimentation, it seems appropriate to invest the computational time needed by
MoSDi.

The implementation of MoSDi allows us to distribute the workload across multiple
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computers, which permits it to be run on compute clusters. Additionally, it seems
promising to port the algorithm to massively parallel hardware like GPUs to fully exploit
the resources found in today’s computers. On the usability side, a web frontend to the
current command-line tools would probably broaden MoSDi’s use.

Besides benchmarking MoSDi against other algorithms, we applied it to the non-
coding regions of M. tuberculosis and to four data sets of CpG-rich regions in the human
genome. Both applications were selected for their biological relevance. M. tuberculosis is
a human pathogen and CpG islands are known to be involved in gene (dys)regulation
(Suzuki and Bird, 2008) and to have an important role in the development of cancer
(Jones and Baylin, 2007).

Motif discovery revealed 24 motifs in non-coding regions of M. tuberculosis. Five
of them could be attributed to known functions. The biological relevance (if any)
of the other motifs remains unknown to us and should be made subject of further
investigations. The interpretation of the results could possibly be aided by devising
a method to compute the probability of observing a certain increase in the number of
occurrences when a Hamming neighborhood is added. Motif 22 shown on Page ??,
for instance, occurs 30 times exactly and 50 times when a Hamming distance of one
is allowed. Now it might be interesting to compute the probability that this increase
from 30 to 50 happens by chance. This problem can be approached by using the PAA
framework.

In the data sets of tissue-specifically methylated CpG-rich regions, we discovered
three strikingly strong motifs. These motifs turned out not to be specific to these
regions, but are present throughout the whole human genome, including regions
upstream of genes. Elucidating the role of these motifs is a fascinating topic for future
research. A thorough analysis of their placement and a search for similar sequence
features in genomes of related species might serve as starting points.

On the side of algorithmics, many further topics can be pursued starting from
the motif discovery algorithm developed in this work. Here, we mainly focused on
Markovian text models. Using arbitrary finite-memory text models is possible, as long
as bounds for certain conditional probabilities as given by Inequality (5.9) can be
provided. One possible way of obtaining such bounds for arbitrary finite-memory text
models is sketched in Remark 5.19 on Page 103. The quality of these bounds and the
runtime of motif discovery when they are used should be studied in the future.

One interesting modification of the algorithm would be to score a motif by counting
the number of clumps instead of the number of its occurrences. As the Poisson distri-
bution accurately approximates the distribution of the number of clumps, this would
simplify the calculation of p-values. To implement a feasible motif discovery algorithm,
however, the problem of devising an index structure able to efficiently determine the
number of clumps of a given IUPAC motif in the input sequences would have to be
solved first.

Furthermore, the algorithm can be extended to perform multi-objective optimization
and return a Pareto set instead of a single optimal solution. A Pareto set with respect
to multiple objective functions is a set of solutions such that no solution in the set
dominates another solution in the set, where one solution is said to dominate another if
its scores are superior with respect to all considered objective functions. Algorithm 5.1
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7 Conclusions

can straightforwardly be extended to find the optimal Pareto set for multiple objectives.
Then, a motif prefix is skipped if bounds on the scores for all objective functions imply
that an already-known solution dominates all continuations of this prefix. A wealth
of combinations of objectives can be thought of. For example, the number of total oc-
currences and the number of matching sequences might be optimized simultaneously.
Another option is to simultaneously optimize p-values with respect to multiple text
models. Then, for instance, we might discover motifs that are overrepresented with
respect to text models estimated from coding sequences, intergenic regions, and CpG
islands.

In this thesis, motif discovery is performed on sequences alone without taking any
further information into account. There are multiple resources of additional informa-
tion that could be or have already been shown to be helpful for discovering biologically
relevant motifs. These include evolutionary conservation, DNA methylation, and his-
tone modifications. All three can be modeled as position-specific numerical annotations of
the primary sequences. In the case of methylation, for instance, we might associate 1
with all methylated nucleotides and 0 with all unmethylated nucleotides. In the case of
evolutionary conservation, we might use a (discretized) position-specific score giving
the degree of conservation for each nucleotide. We could then consider the sum of
these annotations at positions covered by motif occurrences and compute a p-value
for this annotation sum. Especially in combination with multi-objective optimization,
this approach should (further) be explored.

Implementations of multi-objective motif discovery and objective functions using
sums of sequence annotations have already been integrated into MoSDi, but require
further evaluation, formal proofs of correctness, and studies about the effects of
clumping on annotation sum scores. Preliminary results suggest this approach to be a
promising area of future research.

The present thesis shows that exact and statistically sound motif discovery is indeed
feasible. This result is encouraging and should be understood as a starting point
to extend the developed techniques beyond primary sequence data. Hopefully, the
methods researched in this work can make a small contribution to the ongoing quest
of understanding living cells.
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A Appendix

A.1 MoSDi Software

The MoSDi software is available at
http://mosdi.googlecode.com/

under the terms of the GNU General Public License (GPL). At the time of writing, the
current version is MoSDi 1.2.

In Section A.1.1, we give an overview on the functionality implemented in MoSDj,
while common use cases are discussed in Section A.1.2.

A.1.1 Subcommands
MoSDi contains four command-line tools:
e mosdi-stat,
e mosdi-discovery,
e mosdi-pm-analysis, and
e mosdi-utils.

Each command must be followed by one of the available subcommands listed below.
To get further information on precise usage, each subcommand can be called without
parameters.

Subcommands of mosdi-stat

count-dist Calculates the distribution of a IUPAC pattern’s occurrence
count, either exactly (see Section 2.6) , using a Poisson, or
a compound Poisson approximation (see Section 4.3). A
Markovian background model is estimated from the input
sequences or from a table of g-gram frequencies. This sub-
command can consider reverse complements and add a
Hamming neighborhood to IUPAC motifs.

empiric-clump-stat  Estimates the distribution of clump sizes and the expected
clump size by simulation. Random texts are sampled from
a text model supplied in the form of a table of ¢g-gram fre-
quencies.
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comp-poisson-eval

min-max-table

exp-clump-size
annotation-sum-dist

clump-size-bounds

Compares a compound Poisson approximation against the
exact distribution of occurrence counts for given motifs. This
subcommand was used to generate Figures 4.5 and 4.6.
Calculates a table with the minimum and maximum prob-
abilities (over arbitrary conditions imposed on history or
future) for each IUPAC character. The maximum values dis-
played correspond to Ppax(g|X) defined in Equation (5.18)
on Page 101.

Calculates a motit’s expected clump size.

Assuming that a real-valued annotation is given for each
character in the input sequences, this subcommand com-
putes the (exact or approximate) distribution of the sum
of such annotation at positions corresponding to motif in-
stances.

Enumerates motifs and calculates bounds for the expected
clump sizes for all their prefixes. This subcommand was
used to generate Figure 5.3.

Subcommands of mosdi-discovery

discovery

local-search

calc-scores

p-value-bounds

Runs motif discovery on (constrained) IUPAC patterns. This
subcommand implements Algorithm 5.1. It can be config-
ured to optimize with respect to the total number of occur-
rences or with respect to the number of input sequences con-
taining at least one motif instance. Furthermore, constraints
on the use of wildcard characters or on the motif’s expecta-
tion can be given. To allow parallel execution (possibly on
different hosts), a range of motifs to be searched may also
be set. Subcommand iupac-ranges of mosdi-utils can be
used to split a motif space into equally-sized portions.
Tries to improve a given motif using an (iterated) neighbor-
hood search. In each iteration, all motifs in a neighborhood
are evaluated and the one with best p-value is retained.
Stops when no further improvement can be achieved.
Calculates scores for given motifs. Useful for re-evaluation
on other sequences or using other text models. Addi-
tionally, given the true answers, calculates true/false posi-
tives/negatives and further statistics.

Enumerates motifs and calculates p-value bounds for all
motif prefixes. This subcommand can be used to evaluate
the quality of p-value bounds.
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Subcommands of mosdi-pm-analysis

cost—-distribution

automata-sizes

Computes the cost distribution for a given algorithm and a
given pattern using the techniques introduced in Section 2.7.
A Markovian text model can be supplied as a table of ¢g-gram
frequencies.

Prints the number of states of unminimized DAA, mini-
mized DAA, and PAA for a given algorithm and for all
patterns of a given length. When run in verbose mode, the
DAAs are also given in textual representation (command
line: mosdi-pm-analysis -v2 automata-sizes).

Subcommands of mosdi-utils

iupac-gen

iupac-ranges
iupac-abelian-gen
annotate

count-matches
generate-pfm

pim-to-pwm

pwm-to-iupac

random-text
random-copy

cut-out-motif

count-qggrams

Enumerates IUPAC strings that meet given constraints on
the multiplicity of wildcards.

Splits a motif space into ranges.

Enumerates abelian patterns of IUPAC characters.

Creates an annotation track in EMBL format that contains
all matches of a given IUPAC pattern.

Reports the number of matches of a given IUPAC pattern.
Given a IUPAC pattern and sequences, creates a position
frequency matrix (PFM) for all matches of the pattern in the
sequences.

Given a position frequency matrix (PFM) and a character
distribution, outputs a position weight matrix (PWM) con-
taining log-odds scores.

Given a position weight matrix (PWM) and a threshold ¢,
generates a set of IUPAC strings such that they match a
string if and only if the PWM score for this string is larger
than ¢.

Generates a random text according to a given text model.
Generates random sequences similar (in length, number,
and composition) to template sequences given in FASTA
format.

Removes a given motif from given sequences. Optionally,
the motifs can be masked by a user-specified character in-
stead of being excised.

Counts g-grams in a given set of sequences.
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gqgram-expectations Computes expectation of all g-grams of given length with
respect to a given text model.

A.1.2 Use Cases

In this section, we give examples of common use cases. MoSDi is designed as a
collection of command-line tools rather than one monolithic application. Some (but
not all) tasks require it to call several subcommands. In the following, we give examples
of such MoSDi invocations.

Distribution of Occurrence Counts

The distribution of the number of occurrences of a IUPAC motif, say p = AYAYT, in a
random text of a given length can be computed using the subcommand count-dist of
mosdi-stat. That means it computes the probability P (occp (So-++Sm-1) = k:) for all
values of k from zero to a user-specified maximum <max>.

mosdi-stat count-dist -n <length> -m <max> exact AYAYT

where <length> is the length of the random text.

The parameter exact says that the exact distribution should be computed. This can
be slow when the text length is large. Adding the option -C lets the program estimate
runtimes for the basic and the doubling algorithm given in Section 2.4.2 and uses the
favorable one. By default, the distribution is computed with respect to a uniform i.i.d.
text model. To use a different text model, a table of g-gram frequencies can be supplied.
Using a third order Markovian text model estimated from the human genome can be
done as follows.

mosdi-utils count-qgrams hgl8.fa 4 > hgl8.4grams
mosdi-stat count-dist -q hgl8.4grams -n <length> -m <max> exact AYAYT

To compute the compound Poisson approximation that is discussed in Section 4.3, the
parameter exact is replaced by comp-poisson.
Compute Motif Significance

The p-value for the number of occurrences is obtained as the tail probability of the
distribution of occurrence counts discussed above. When the option -p is given to
the count-dist subcommand, the number of motif instances % in the supplied text is
determined and the tail probability P (occ, (So - - - Sm—1) > k) is computed.

mosdi-stat count-dist -p input.fasta -r -H 1 comp-poisson AYAYT

Here, we have also added the options -r and -H 1 to consider AYAYT jointly with its
reverse complement and to also count matches within Hamming distance 1.
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Run Motif Discovery

We now run Algorithm 5.1 to discover motifs. Assume we want to scan our input
sequences for motifs of length eight and optimize the p-value with respect to the total
occurrence count.

mosdi-discovery -v discovery 8 occ-count input.fasta

The verbosity switch -v is useful to get progress information. By default, the program
mosdi-discovery allows patterns composed of {4,C,G, T} and at most <length>/2
instances of the wildcard N. To allow other wildcards (at the expense of running time),
the switch -M is used.

mosdi-discovery -v discovery -E 5.0 -M 8,2,0,3 8 occ-count input.fasta

Here we allow eight characters from {4, C, G, T}, two from {W, S,R, Y, K, M}, zero from
{B,D, H,V}, and three Ns. Furthermore, we have added -E 5.0 to restrict the search to
patterns with expectation smaller than or equal to five. In most practical settings, we
are not interested in patterns with high expectation and restricting the search space in
this way can significantly reduce running time. Another option to speed up the search
is to provide an initial p-value threshold.

mosdi-discovery -v discovery -I 1e-30 8 occ-count input.fasta

Then, parts of the search space that cannot contain motifs with a p-value better than
10° are skipped. If no motif with a better p-value exists, none are returned. If one
exists, the output is the same as without option -I. To extract all motifs with a p-value
better than a threshold, the option -T can be used.

mosdi-discovery -v discovery -T 1le-50 8 occ-count input.fasta

This option should be used thoughtfully as the output can be large for high thresholds.
In order to optimize the p-value with respect to the number of sequences a motif
occurs in, the argument occ-count is replaced by seq-count.

mosdi-discovery -v discovery 8 seq-count input.fasta

By default, an i.i.d. text model estimated from the input sequences is used as a back-
ground model. To use a higher-order model, the parameter -0 is used to specify the
desired order. If the background should not be estimated from the input sequence it
can also given in the form of a table of g-gram frequencies using the option -q.

For large motif spaces, long input texts and high-order text models, exact motif
discovery can be slow. In this case, we might want to parallelize the search. To
distribute the work load, mosdi-discovery can be instructed to search only parts of
the search space using the options -1 and -u:

mosdi-discovery -v discovery -1 C -u CCGG 8 occ-count input.fasta

Now, it only scans motifs lexicographically between C and CCGG. To split a motif
space into equally-sized chunks, we use the iupac-ranges subcommand.
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mosdi-utils iupac-ranges -M 8,2,0,3 100 8

This results in a list of hundred ranges that contain all motifs of length eight with the
specified maximal number of wildcards.

After an optimal motif has been discovered, we might want to search for other
motifs. One procedure to do this is to excise or mask all instances of the optimal motif
from the input sequence and repeat the search on the resulting sequences.

mosdi-utils cut-out-motif input.fasta AYAYT > new-input.fasta
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A.2 TUPAC Codes for DNA

A.2 IUPAC Codes for DNA

Code Set Explanation (Watson-Crick)
Complement

{A} Adenine
{C} Cytosine
{G} Guanine
{T} Thymine
{A,G} puRine
{C,T} pYrimidine
{C,G} Strong bond
{A,T} Weak bond
{G, T} Keto
{A,c} aMino
{C,G,T} notA
{A,G,T} notC
{A,C,T} notG
{A,C,G} notT
{A,C,G, T} aNy

Z <D=z nNn<oIAAHQOQ>
ZooogIDd<Ss X nNaom<>=00A
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A.3 Matrix Theory

In this section, we gather some definitions and facts on matrices. A good reference
on the topic is the quite exhaustive book by Bernstein (2009). We adopt the same
nomenclature as used there.

Definition A.1 (Matrix norm). A function ||| : R™*™ — R{ is called norm if it satisfies
the following conditions:

1. ||Al| > O forall A € R™*™,
2. ||[A|| =0if and only of A =0,
3. [[@A|| < |af||All for all « € Rand A € R"*™,
4. ||[A+ B|| < ||A|| +||B| forall A, B € R™"*™.
v
Definition A.2 (Submultiplicative norm). A norm || - || : R"™*" — R is called submul-
tiplicative, if || AB|| < || A||||B]| for all A, B € R"*". O

Definition A.3. Let A, € R"*"™ for i € Ny. If the series > || Ai|| converges, > 7 A;
is said to be absolutely convergent. O

Lemma A.4. If > ° A; is absolutely convergent, i.e. the series y .- || Ai|| converges, then
Y2y Ai converges.

Proof. Bernstein (2009), Proposition 10.2.9. O

Definition A.5 (Spectrum, spectral radius). Let A € R"*". The set of all eigenvalues
of A is called spectrum of A, written spec(A). That means, spec(A) is the setof all A € R
for which a non-zero vector |x) € R™ with A|z) = A|z) exists. The spectral radius of A,
written sprad(A), is defined as

sprad(A) := max {|\| : X € spec(A)} .
O

Lemma A.6. Let A € R™*" be given such that sprad(A) < 1. Then, there exists a submulti-
plicative norm || - || such that | A|| < 1. Furthermore, the series >_re , A* converges absolutely
and

iAk =(1-A4)71.
k=0

Proof. Bernstein (2009), Proposition 9.4.13. O

Lemma A.7. Let A € R™*" be given such that sprad(A) < 1. Then, > 7o | kA*~! converges
absolutely and

> kAR =(1-4)77.
k=1
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Proof. Let || -|| be a submultiplicative norm with || A|| < 1. Such a norm exists according
to Lemma A.6. We first verify that the series converges absolutely:

oo

i i (i) & ogk k—1
S IRA) = ST RAR < ST R =Y (R YT < oo,
k=1 k=1 k=1 k=L <1 for large k

where (i) holds as || - || is submultiplicative. By applying Lemma A.6, we obtain

o0 2 oo
1-A)2= (Z A’“) => kA
k=0 k=1
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A.4 Verification of MEME Results of Sandve et al. (2007)

As discussed in Section 6.2, we re-ran MEME with default parameters to reproduce
the results of Sandve et al. (2007). The following two plots were generated by their
website and show the results they obtained for MEME (black line) and Weeder (red
line) in comparison to the uploaded predictions (green line).

algorithm_markov.txt benchmark suite

—— MEME: avg = 0.097
—— Weeder: avg = 0.052
—— MEME-4-5-0-Reproduce: avg = 0.095
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MO01007 —
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algorithm_real.txt benchmark suite
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A.5 Contributions to Co-Authored Articles

As required by §8(2) of the Promotionsordnug der Universitit Dortmund fiir den Fachbereich
Informatik vom 26.11.2003, a declaration of the author’s contributions to co-authored
articles that are part of this thesis follows.

I am the main author of the following articles co-authored with Sven Rahmann. As
my advisor, Sven Rahmann participated in and advised me at all stages of research,
from discussing the initial ideas to writing up the articles.

e Marschall and Rahmann (2008). Probabilistic Arithmetic Automata and their Appli-
cation to Pattern Matching Statistics.

e Marschall and Rahmann (2009). Efficient Exact Motif Discovery.

e Marschall and Rahmann (2010a). Exact Analysis of Horspool’s and Sunday’s Pattern
Matching Algorithms with Probabilistic Arithmetic Automata. An extended version
has been submitted. A preprint is available from arXiv (Marschall and Rahmann,
2010c).

e Marschall and Rahmann (2010b). Speeding up Exact Motif Discovery by Bounding
the Expected Clump Size.

The following article is a unifying survey on the framework of Probabilistic Arithmetic
Automata and its applications.

Marschall, Herms, Kaltenbach, and Rahmann (submitted). Probabilistic Arith-
metic Automata and their Applications. A preprint is available from arXiv
(Marschall et al., 2010).

Sections 2, 3, 4, 5, 6, and 7 of this article have mainly been written by me, while
Sections 8, 9, and 10 contain contributions mainly made by my co-authors. All authors
have participated in preparing the manuscript.
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S x99 m ™
X

Row vector, page 7

Column vector, page 7

Convolution of two probability distributions, page 6

Iverson bracket, [A] = 1 if the statement A is true and [A]] = 0 otherwise,
page 6

True if s € ¥* matches the generalized string g € G*, page 10
Power set of the set K, page 6

Prefix of s € ¥*,i.e. s[..i] = s[0...14], page 6

Reverse of s € ©*, ‘s = s[|s| —1]...s[0], page 6

Substring of s, i.e. s[i...j] = s[i] ... s[j], page 6

Suffix of s € ¥*, i.e. s[i..] = s[i...|s| — 1], page 6

Zero matrix, page 7

Identity matrix, page 7

Vector composed of zeros, page 7

Vector composed of ones, page 7

Binomial distribution, where n is the number of trials and p the success
probability of a single trial, page 21

Set of contexts, part of a finite-memory text model (C, co, X, ), page 24

Compound Poisson distribution with expected clump number A and
clump size distribution ¥, page 22

Random variable with values in C giving the text model state after ¢ steps,
page 24

Random variable with values in £ giving the emission of a PAA in step ¢,
page 30

Emission set, part of a PAA, page 28

Set of accepting states of a DFA, F' C Q, page 19

Generalized alphabet, G = 2 \ {0}, page 10

Overlap matrix for the set of words W, page 72

Distribution (law) of the random variable X, page 6

Length of a pattern, page 6
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RnXm

150

Motif space, M C Gt page 85

Total length of input strings, N := > __s|s|, page 6
Set of natural numbers (excluding zero), page 6
Set of natural numbers (including zero), page 6
Poisson distribution with expectation A, page 22
Probability measure over a random text, page 7

Random variable with values in Q giving the state of a PAA after ¢ steps,
page 30

Set of states of an automaton, for example of a DFA, NFA, DAA, or PAA,
page 19

Set of real numbers, page 6

Set of strictly positive real numbers, page 6

Set of positive real numbers including zero, page 6

Set of n x m matrices over R, page 7

Random variable giving the ¢-th character in a random text, page 7
Substring of a random text, Sf =S¢+ Sire—1,page?

Finite set of input strings, S C ¥*, page 6

Transition function of a PAA, T': Q x Q — [0, 1], page 28

Random variable with values in V giving the value computed by a PAA
after ¢ steps, page 30

Value set, part of a PAA, page 28
Non-empty set of words W C ¢ constituting a motif, page 70

Random variable giving the number of character accesses made by algo-
rithm A to search for the pattern p in the random text Sy - - - S,,—1, page 44

Joint random variable of word and context, X; := (SY, C}),i.e. X; = (w, c)
means that word w € Y starts at position ¢ in S, and before generating
its first letter, we are in context ¢, page 71

All pairs (w, ¢) € W x C with positive (asymptotic) probability, page 71

Random variable giving the size of the i-th clump of words from W in
the random text (S;):en,, the superscript W may be omitted, page 71

Transition function of a DFA and/or DAA, § : Q x ¥* — Q, page 19

Non-deterministic transition function of an NFA, A : Q x ©* — 29,
page 19

Modified transition function of an NFA where self-transitions have been
added to all start states, page 56

Empty string, page 6



Hq

Emission distribution associated with state ¢ € Q of a PAA, 14 : £ — [0, 1],
page 28

Transition function, ¢ : C x ¥ x C — [0, 1], part of a finite-memory text
model (C, cp, X, ), page 24

Expected clump size of pattern p, page 71

Clump size distribution for a pattern p, page 76

Finite alphabet, page 6

Set of all strings of finite length over alphabet X, page 6

Operation associated with state ¢ € Q of a PAA, §,: V x £ — V, page 28

Maximal number of different PAA values, ¥,, = maxo<i<, | range(V})|,
page 30

Cost caused by algorithm A when searching window w for pattern p,
page 45

Expectation of the number of occurrences of the pattern p in a random
text of length [p|, i.e. {, := P(S§ < p), page 89
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