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Abstract

Thermo-mechanically coupled transport processes of viscoelastic fluids are im-
portant components in many applications in mechanical and chemical engineer-
ing. The aim of this thesis is the development of efficient numerical techniques
for incompressible, non-isothermal, viscoelastic fluids which take into account
the multiscale behaviour in space and time, the multiphase character and sig-
nificant geometrical changes. Based on special CFD techniques including adap-
tivity /local grid alignment in space/time and fast hierarchical FEM techniques,
the result shall be a new CFD tool which has to be evaluated w.r.t. well-known
benchmarks and experimental results. The advantages of such a method are
numerous and lead to efficient and accurate solution with respect to different
rheological models and type of nonlinearities. In addition, it gives us a great
deal of flexibility not only in dealing with well known difficulties such as High
Weissenberg Number Problem (HWNP) but also in treating any new rheolog-
ical models in the coming future. Several benchmark problems of interest to
industrial purposes are also proposed in validating the state of the art of the
numerical method.

keyword Monolithic Newton-multigrid, FEM, Non-isothermal, Viscoelastic
flow, Oldroyd-B, Giesekus, Log-conformation reformulation (LCR).
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Introduction

1.1 General overview

Fluid, in many cases, is part of our life. Our body consists of 80% of fluids, a tiny
single cell of plankton consists of fluids, the earth and the atmosphere consist of
a large area of fluids. Fluid is everywhere and becomes a very important element
in all human aspects. Thus, it is not only interesting but also very important to
explore fluid with experiments, modelling and simulations. This study focuses
on the simulation part of fluids and bases on FEM (Finite Element Method).
Water is one of the simple fluids which is classified as Newtonian fluid where its
stress depends linearly on the deformation rate. Polyme, on the other hand,
is classified as non-Newtonian fluids because its stress depends nonlinearly on
the deformation rate. The essence of any fluids is that the basic fluid motion is
always described by a sound mathematical foundation. This is well-known as the
Navier-Stokes equation which serves as the basis of many CFD (Computational
Fluid Dynamic) applications and can be given in this form,

Ou
P ot
with u,p, T, p are velocity vector, pressure, extra stress tensor and material

density. More specific in this study, the Navier-Stokes equation is coupled with
the energy equation given in this form

+p(u-Viu=-Vp+V. -T, V-u=0, 1.1

00
E—f—(u-V)@:leQ@—i—kQD:D 1.2
and/or with the stress equation given in this form
0, T 0,D
T+AZ— =2 D+A S 13
TS T ( A )

for the simulation of non-isothermal viscoelastic fluid flow. Here, k1, ka2, ©, 19,
D, A, A, are thermal diffusivity, viscous dissipation, temperature, zero-shear

1Polymer is an integrated unit of many simple molecules (monomer). More detail descriptions
can be found in [46]



CHAPTER 1. INTRODUCTION

Figure 1.1: Viscoelastic flow around a cylinder with Oldroyd-B for We = 2.1.

viscosity, deformation tensor, relaxation time and retardation time. All required
CFD (Computational fluid dynamic) techniques are implemented and realized
within FEaATFLow (Finite Element Analysis and Tools for Flow problems). An
introduction to the code can be found at http://www.featflow.de.

Physically, the flow of Newtonian fluids is categorized by the non dimensional
Reynold number, Re, which tells us whether the flow is laminar, transient, or
turbulent. In viscoelastic fluid flow, the physical phenomena is controlled by the
amount of elastic property of the fluid, which is a time-related parameter and
describes the time-scale needed by the fluid particle to come back into its zero
state (or to release its past stress memory) when the fluid motion stops. The
time parameter is well-known as the relaxation time or, in non-dimensional form,
the Weissenberg number, We. In the numerical context, both non dimensional
numbers measure the complexity /difficulty of the corresponding numerical com-
putations.

In the case of Newtonian fluid flows, numerical instability occurs at high Re
number where the solution creates boundary layers due to problems with no-
slip condition of the velocity. In contrast to this, viscoelastic fluid flow solution
creates boundary layers given by property of the stress [61], not the velocity,
see Fig. [[.J] The hyperbolic nature, which presents in the consitutive law,
is responsible for this problem. Thus, the numerical computation to obtain a
solution is already a challenging task at low Weissenberg number We < 1, pre-
cisely in the case of Oldroyd-B (later described) type of fluids where a standard
Galerkin formulation is not expected to be optimal |51, 30, 45]. Yet, the reme-
dies are available which can be reformulation of the original stress equation,
numerical stabilization or/and compatible pairs of FE discretizations.

A better formulation of the constitutive laws is presented by Hulsen, Fattal
and Kupfermann |41 as an alternative to the original formulation which is based
on the logarithm of conformation tensoii. The so-called LCR (Log-conformation
reformulation) is proposed to deal with the high stress gradient that occurs
during numerical computation. LCR equation does not approximate directly the

2The rheology of polymer depends highly on the microscopic behaviour of a single molecule.
Conformation stress tensor describes the macroscopic polymer behaviour by neglecting interactions
between single molecules [46].
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1.1. GENERAL OVERVIEW

conformation stress tensor, but approximates intermediate numerical variable
from which conformation stress tensor is explicitly obtained. In this way, it is
shown that the numerical stability is cured and the limit of We number increases

[41], see Fig.
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Figure 1.2: Conformation stress tensor 711 with Giesekus for We = 100.

This study tries to incoorporate the main issue in solving viscoelastic flow
problems by implementing a fully coupled monolithic approach with a consis-
tent stabilization technique together with hanging nodes in a high order finite
element frame work. The extreme developement of computer resources in the
last 10 years provides a wider possibility towards coupled FEM methods which
was hardly done 20 years ago. This is also driven by the fact that many CFD
solvers used an operator splitting approach together with a low order finite el-
ement implementation which is in fact very efficient but needs an extra care
when it comes into accuracy of the solution. To the contrary, the high order
finite element @2 towards fully coupled monolithic approach maintains highly
accurate solutions. This element together with discontinuous P; element for
the pressure space approximation satisfies the well-known LBB (named after
Ladyzhenskaya, Babuska and Brezzi M]) condition and is, without doubt from
years of experiences, one of the best finite element pairs in the Stokes problem
ﬂa, , @] An example of benchmark flow around cylinder shows that this ele-
ment pair can obtain an accurate direct steady solution for medium Re numbers
within few Newton steps, later in chapter 5.

The aspect of numerical stabilization plays an important role when it comes
to high inertia flow simulations or high elastic flows. In the first case, the convec-
tive terms inside the Navier-Stokes equation are dominant while in the second

3



CHAPTER 1. INTRODUCTION

case the convective terms inside the above stress equation become also dominant.
The situation is far more complicated for the second case as the total sytem of
equations increases by the additional stress equations which introduces two new
problems: i). The characteristic of the total system of equation becomes far
away from the elliptic character even if the convective term is neglected from
the momentum equation (creeping flow), which is a bad indication for most CFD
solvers and ii). An extra compatibility constraint for the velocity-stress interpo-
lation functions must be satisfied. Thus, the need of a consistent stabilization

Figure 1.3: Driven cavity flow at Re = 10000 with Q2 P; pair and robust stabi-
lization.

technique is pronounced. There are several well-known stabilization techniques
available in the CFD community, namely upwind schemes, streamline difussion,
FCT, edge-oriented stabilization. This study is in favor of the last one which is
based on succesfull experience after years working with a low order element Q1,
see [56]. To show this robust stabilization technique, Fig. [I3] presents a lid-
driven cavity flow at high Re number using higher order interpolation function,
which can be hardly obtained without stabilization.

The Solution method to the discrete nonlinear system arised from the dis-
cretization follows Newton iteration with line search method. The technique
is well accepted as the most robust iteration technique and may give quadratic
convergence. Moreover the Jacobian is computed in a ’black-box’ manner which
opens the door to many other constitutive material laws without having to de-
rive each of them analytically by Frechét-derivative at the continuous level. This
is done via divided difference approach. Inside one Newton step, the solution
of the linearized discrete system, which is also treated in a coupled way, uti-
lizes an efficient geometric multigrid solver with full prolongation and restriction
operator, which is the long time work of FEATFLOW.

4



1.2. VISCOELASTIC FLUID

So, essentialy new in this study is the implementation of the energy and
stress equation into the Navier-Stokes equation in a fully coupled monolithic
way of solving the system as well as the implementation of jump stabilization
technique for the high order finite element (Edge-oriented stabilization tech-
nique) to stabilize the nonlinear term that arise from the stress and the energy
equation. Since this is also an extension of the 2D Navier-Stokes solver that is
used in our chair, step by step validation through benchmarking is part of the
study.

This thesis is structured as follows: the first chapter introduction will be
devoted to a general overview of this study, viscoelastic fluids and thesis con-
tribution. Then, the governing equation of the corresponding problem is high-
lighted in the second chapter. In chapter 3, the finite element discretization as
well as the time discretization techniques are presented which results in a set
of descretized problems to solve. These problems are then solved iteratively by
numerical solvers which is described in chapter 4. The so-called monolithic ap-
proach is presented in a way that any given viscoelastic model can be solved in
the same way maintaining the same rate of convergence. Newton and multigrid
solver are presented in this chapter. Then, step-by-step validation of the code
with respect to different flow problems (flow around cylinder, kinetic energy in
a cavity, nonisothermal flow, viscoelastic flow) is examined in chapter 5 and
prototype applications of the code are presented in chapter 6. In chapter 7, the
study is closed by summarizing and giving an outlook for future research.

1.2 Viscoelastic Fluid

The topic of viscoelastic fluids has been very interesting to explore since more
than 100 years. It falls into the group of viscoelasticity which couples Newto-
nian viscous stress and elastic stress |63]. It is usually used to model molten
polymer process in industry [46]. There is also group of material law that cou-
ples Newtonian viscous strain rate and plastic strain rate. This is well-known as
viscoplasticity where the Newtonian viscous strain rate depends highly on the
so-called ’overstress’, otherwise, fluids of this group do not flow [65]. Extension
of this model with extra elastic strain rate falls into the group of visco-elasto-
plasticity. Other consitutive model that may be used for non-Newtonian fluid
modelling is visco-hypolasticity, mainly for modelling clay [53]. So, it is con-
vinient to realize that this thesis focuses on viscoelasticity and there are other
models that can be taken into account for other research purposes.

The viscoelastic fluids generate physically remarkable effects when they are
stirred, vibrated, or given a sudden external forces |11]. These effects are well-
known and one of them can be seen in Fig[l.4] which is called “rod climbing”.
This kind of effect appears to be significant in the industrial process, where
the rheology of the related material is of importance. Poisson, Maxwell and
Boltzmann started the idea that any fluid has not only viscosity property but
also an instantaneous elasticityﬁ. In 1929, Jeffrey wrote a constitutive law,
which considers both properties. Then in 1950, Oldroyd |54] presented the

5



CHAPTER 1. INTRODUCTION

Figure 1.4: The rod climbing effect ] Permission from Elsevier and Prof.
David V. Boger.

constitutive law in terms of retardation time for the viscous part and relaxation
time for the polymer part. In 1982, Giesekus ﬂﬁ] proposed a generalization
of Jeffrey’s model in which the stress is regularized by an additional nonlinear
term. Since then, numerical works of solving viscoelastic fluid flow face the
choice of many different constitutive laws that predict the behaviour of real
viscoelastic fluids under consideration.

A general viscoelastic model can be written as the following:

Ao +h(o,AN)o —2n,D + g(o) = 0. 14

where A and 7, are the relaxation time and the polymer viscosity ] Here & is
the upper-convective derivative, while h(o, A) and g(o) are model-dependant.
Viscoelastic models within this family include Oldroyd-B, UCM (Upper convec-
tive Maxwell), FENE (Finite extensible nonlinear elastic), PTT (Phan-Thien-
Tanner) and Giesekus. In these models A and 7, are constants. In the case
of Oldroyd-B and UCM, g(o) = 0 and h(o,A) = 1, in the case of Giesekus,
h(o,A) = 1, while in the case of FENE and PTT, g(o) = 0 and h(o,A) is a
nonlinear function.

Among viscoelastic models, Oldroyd-B is the simplest model and utilized
very often for viscoelastic benchmark problems. Its generality is well accepted
in the CFD community to test different numerical methods and formulations
eventhough this model has an infinite extensional viscosity that leads to an
unphysical stress growth in the direction of the extensional flow. Therefore,
in this study, it is sufficient to restrict focus on Oldroyd-B model in order to
discuss numerics specific for viscoelastic flows. Viscoelastic fluid flow modelling
itself is a vast area of research and is not considered in detail in this work. Only
the Giesekus model is taken into account as an alternative for comparison.

3Intantaneous elasticity describes a condition of the fluid that memories all past state of stress
[44]. The time scale of all memorized stresses is well-known as the relaxation time.

6



1.2. VISCOELASTIC FLUID

Since late 1970s, numerical work developed in parallel with development of
computer technology. Crochet and Bezy [19] did the first numerical attempt to
solve plane flow of viscoelastic fluid in a contraction, which introduced mixed
finite elements within Fulerian framework. In solving the above equation, the
convective term (u-V)o becomes more dominant as We number increases, and
Galerkin formulation starts to have problems. The standard remedy is to ap-
ply inconsistent techniques like streamline diffusion or upwind-schemes, see [14]
and [51] for implementation. Another way of solving is by using discontinues
Galerkin formulation where the extra stress tensor is discontinuously approxi-
mated, see [30]. Both ways of solving try to impose more elliptic character of
the resulting discrete system. Introduction of a change of variables came up
and it is known as Elastic Viscous Stress Splitting (EVSS), see [8§, 19]. Unfortu-
nately, the change of variable does not yield a closed expression. A remedy is to
consider D as a separate variable by an Lo projection of the velocity gradient.
The family of this techniques grows larger with new ideas and today are well-
known as DEVSS/-G (Discrete EVSS with G stemming from an Lo projection
of the transpose of the velocity gradient), see |31, 129]. Another good approach
in circumventing the compatibility condition in the case of nonlinearity is the
so-called Galerkin/least square (GLS) method, which is introduced by Hughes
et. al. [39] for Navier-Stokes equation and extended into Oldroyd-B type by
Behr [7]. GLS method provides similar benefits as the above mentioned meth-
ods in a way that the resulting set of equations has low order degree. A rather
different approach of reformulating the stress equation was presented by Hulsen
et. al. [41], which is based on logarithm of conformation tensor. This method
is able to capture the high stress gradient that many suspect as the cause of the
numerical breakdown.

Over the years, several issues surrounding viscoelastic simulations become
clear. One may summarize these issues to be the reformulation of the model,
the choice of finite element pairs and the stabilization techniques. Through
these, simulation of viscoelastic flow at high Weissenberg number is not impos-
sible, provided an appropriate model of viscoelastic fluid flow. The first issue
deals with the reformulation of the model itself. Since the so-called conforma-
tion stress tensor property turns out not being maintained during numerical
computation given in the original viscoelastic model, it became necessary to
reformulate the equation. Here, reformulation means an introduction of a new
variable that may ease the numerical stability, which is described in chapter 2.
The second issue is how to discretize the domain in space and time. While dis-
cretizing in time is not ’hard’, space discretization by finite element functions
must preserve some LBB condition as in the original Navier-Stokes problem
case. If it is not the case then one remedy is the use of stabilization technique
that may ease the choice of the stress function approximation. The whole thing
is described in chapter 3.



CHAPTER 1. INTRODUCTION

1.3 Contribution of the thesis

The monolithic treatment of any set of equations preserves highly accurate
solutions due to simultaneously considering all numerical variables at every time
step, every nonlinear step and every local step of sublinear problems. In fact, a
fully coupled set of equations means that the PDE’s contains highly nonlinear
coupplings that leads to physically reasonable solutions. Judging by its ability
of preserving accurate solutions, we can say that the monolithic treatment needs
a strong nonlinear solver that controls the direction of the global minima in a
defect-correction iterative fashion and a robust linear iterative solver.

The main contribution of the thesis is demonstrations of the monolithic FEM
approach in solving fluid flow model of incompressible Navier-Stokes equation,
isothermal or non-isothermal, with non-Newtonian material models, hereby fo-
cusing on viscoelastic material model given in LCR. The non-Newtonian mate-
rial models depend mostly on the nonlinear viscosity functions, which can be
temperature, shear rate, or even pressure dependent viscosity

ou

pa+p(u~V)u:—Vp+V-T

V-u=0

1.5

with T = 2n(¥)D and + is the shear rate. The monolithic approach can easily, as
shown later on Chapter 4, deal with the non-Newtonian fluids given in nonlinear
viscosity functions. Yet, the non-Newtonian fluids given in viscoelastic material
models behave more different in nature. The so-called relaxation time, which is
a material parameter of the viscoelastic fluid, controls the elastic stress-strain
relation while fluid is in motion and 'not’ in motion. Thus, the total stress of
the viscoelastic fluid in motion consists not only of the viscous stress but also
of the elastic stress. While viscous stress depends linearly or nonlinearly on the
shear rate, elastic stress is simply unknown that depends on the historical path
of stress. Hence, the viscoelastic fluid models rely on the elastic stress equation
that describes the evolving elastic stress in motion. Consequently, there are
additional extra unknowns to be coupled with the incompressible Navier-Stokes
equation

ou

pa—i—p(u-V)u:—Vp—i—nsAu—i—V-o

V-u=0 16

A<(?;.+(u-V)o'—Vu-o'—o'~VuT> +2p(B—-1)D+0=0
with T = 2n,D+0o. The monolithic treatment of the above equations introduces
a new challange in the choice of the FEM approximation for the new unknowns,
which leads to other numerical treatment such as stabilization technique. In
the end, this thesis demonstrates that the monolithic treatment can be applied
to other reformulation of the stress equation or to other interesting physical

8



1.3. CONTRIBUTION OF THE THESIS

problems such as including temperature effect by additional energy equation
(later in chapter 6),

0
pafltl—kp(wV)u: —Vp—i—nSAu—&—nXpV-ew—i—p(l—v@)j
V-u=0
9 1 1.7
B eV (0 y) 2B = (Y )
00

=+ (VO)u = ky V20 + ko exp(ep) : D
Furthermore in this thesis, the high order finite element pair Q2 P; is applied.
The use of high order FE approximation is also meant to increase accuracy of
the numerical solutions which is shown later in Chapter 5 of benchmarking flow
problems.






Governing equation

2.1 General Newtonian flow

Any material that flows in continuum with linearly dependent stress on the
velocity gradient can be considered as Newtonian flow. One of the main char-
acteristics of this flow is incompressibility. It describes an unconcentrated flow
condition on any part of the fluid domain. In other words, what comes in must
come out. The other flow characteristic follows Newton’s second law that de-
scribes the balance of force of a tiny material. The two characteristics, when
combined, are well-known as the incompressible Navier-Stokes equation, which
describes a Newtonian fluid motion. The reader may find derivation of the
equation in the literature [47]. Here, it can be written as

ou

pa+p(u~V)u:—Vp+V~T

V-u=0

21

with the constitutive law of a Newtonian fluid T = 2nD. In this material model,
the source of nonlinearity comes mostly from the viscosity, . It can be a very
small constant value, which leads to high Re = p“lc number problems. By
u. and [, we refer to the characteristic velocity and 7fength. Another source of
nonlinearity can be as well a nonlinear viscosity function that depends of some
physical value such as shear rate, 4, which is the magnitude of the deformation
gradient, D or pressure, or both pressure and shear rate.

The temperature effect of the flow (non-isothermal) is written in term of the
Boussinesq approximation. Its coupling with the above Navier-Stokes equations
looks like as follows

d
paf?—&-p(u-V)u:—Vp—i—V-T—i—p(l—v@)j

V-u=0 2.2
%Jr(ro)@:lez@JerD:D

with j denoting the gravity vector and v being the thermal expansion. This set
of PDE’s describes the temperature motion as a transport problem in continuum

11



CHAPTER 2. GOVERNING EQUATION

only. In order to take into account the viscoelastic effects of the flow, one needs
additional stress equations that govern the 'polymer’ contribution or the elastic
part of the fluid. This will be discussed in the following section.

2.2 Viscoelastic material model

The essence of viscoelastic fluids depends on the ratio between time scales of
the fluid (relaxation time A) and the flow (retardation time A,), which is later
known as the Deborah number. These time scales measure the relative instante-
neaous elasticity. The first time scale (memory of fluid) denotes the time needed
by the stretched material to come back into its relaxed state (by recoiling) irre-
spective of its initial state, while the second denotes the time scale of the flow
without which the fluid behaves like an elastic solid. Another important nondi-
mensional number, the so-called Weissenberg number We = Aql‘—:‘, describes the
flow behaviour and in some sense also the numerical difficulties. This number
is the product of relaxation time of the fluid and the shear rate of the flow. In
the following, one may see that the main variable given in viscoelastic models
can be described in terms of elastic stress, conformation stress, or even LCR.

2.2.1 Viscoelastic model with conformation stress tensor

The stress equation describing the viscoelastic motion was first proposed by
Jeffrey in 1929. Then in 1950, Oldroyd [54] came up with separation of the
above mentioned time scales in the model. Giesekus, in 1982, introduced a
nonlinear term into the model. Following Oldroyd, it can be written as follows

3, T 5,D
T+A%" — 2y (D + 4,2 2.
A 77°< * 5t) 3

where T, D = %(Vu + Vu?l),no, A, A, are the extra stress tensor, symmetric

velocity gradient, total viscosity, relaxation time, and retardation time respec-
tively. The term % denotes the upper/lower convected material time derivative

by setting a =1/ — 1,

6, T DT 1-—a
e = 4+~ (Vu-T+T-vVul
5 Dt+ 5 (Vu-T+ T -Vu' )+

which has the nice property of

1
;a(—T Vu-vul.T), 24

E = —2aD. 2.5
ot

The total viscosity is the well-known zero-shear viscosity, which is the sum of
solvent viscosity (ns) and polymer viscosity (n,). The extra stress tensor T
consists of two parts namely the viscous stress component, 2ng %D, and the
elastic stress component, o,

A,
T=25D+o. 2.6

12



2.2. VISCOELASTIC MATERIAL MODEL

By replacing T in equation (Z.3]) with the right hand side of equation (Z8]) and
setting a = 1, we recover the well-known Oldroyd-B model with elastic stress
tensor as the main numerical variable (details can be found in Appendix [A7])

0

A(£+(U~V)aVu~0'0'~VuT)+2no(ﬂ1)D+0’O, 2.7
where 5 = % is the amount of solvent contribution. Next, the conformation
stress tensor which has the positive definite property [40] is introduced

o= %D(T—I). 2.8

By replacing o in equation [27) with 7, we rewrite the Oldroyd-B model in
terms of the conformation stress tensor 7 (details can be found in Appendix

[A.T)

convection

—— 1
(u~V)T—Vu~T—T~VuT—|—X(T—I):O. 2.9

o,
ot

stretching
It is worth to note that this tensor also has an integral form which guarantees
the positive definiteness of the conformation tensor and which illustrates the
exponential behaviour,

t
1 —(t—
T(t) = — exp —t=s) F(s,t)F(s,t)"ds 2.10
oo A A
where F'(s,t) is the relative deformation gradient |57, 48].

Giesekus model is also considered as an alternative, which reads

convection

— 1
%—&—(u-V)T—Vu-T—T~VuT—|—X(T—I+a(T—I)2)=0- 2.11

stretching

The problem in this family of constitutive model is that the normal con-
formation stress component may go to infinity which limits the possibility of
higher We number computation. Hence, having the conformation tensor as the
main numerical variable may not be good in such a case. For example, Fig.
1) shows a steep gradient of 717 (between 0-20000) in the viscoelastic flow
around cylinder for We = 100 with Giesekus model. The viscoelastic model
given in LCR is able to capture this effect because the range value of the result-
ing numerical results is not as dramatic as if we choose equation (2I1J), which
is between 0-10. So, the situation is far more different if we use LCR, which
will be described in the following subsection.

2.2.2 Viscoelastic model with LCR

The positive definite property of the conformation tensor, in equation (2.9)),
may get lost during numerical computation. Therefore, Fattal and Kupfer-
mann [28] reformulated equation (Z9) by introducing a new logarithmic vari-
able that preserves this property 'by design’. We will shortly revisit how this

13



CHAPTER 2. GOVERNING EQUATION
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Figure 2.1: Viscoelastic flow around a cylinder for Giesekus model; Cutline of
conformation stress tensor 711 (left) and 17 (right) for We = 100.

reformulation is realized: The conformation tensor is replaced by a new variable
¥ = R log(T)RT through eigenvalue computation that rotates the 7 into its
main principle axis (diagonalization process)

RTTR = diag(\1, \2) 2.12

with R being an orthogonal matrix. The goal is to decompose the velocity
gradient into a symmetric matrix B that commutes with 7, a pure rotation
matrix £ and an additional ’dummy part’ matrix N7 ! (details can be found
in Appendix [A)

Vu=B+Q+Nr " 2.13

Here, N and € are pure rotational matrices (see [28]). The challenging task is
to express those matrices in terms of the velocity gradient. Here, the idea is
to take the rotation matrix R and apply it to all components of the velocity
gradient. Consequently, we obtain

RTVuR = R"TBR+ RTQR + RTNt'R. 2.14

By doing so, we have the possibility to define B to be commutable with 7 and
then to define the rest of the matrices (£2,IN) in terms of the velocity gradient
as shown in [28]. At the end, the matrix B is not purely extensional, but it is
in the same plane as 7.

14



2.3. BOUNDARY AND INITIAL CONDITIONS

By inserting the decomposition ([ZI3]) into (29, the constitutive law trans-
forms into ([2.I5) (details can be found in Appendix [A.T))
or 1
— 4+ (u-V)rT—-(Qr—-7Q)-2Br=—1I—-171). 2.15
ot A
Finally, by replacing the conformation tensor with the new variable ¥ =
log(T), the Oldroyd-B model evolves to
0 1
a—lf+(u-V)¢—(Qw—¢Q)—2B:K (=¥ —1). 2.16
Consequently, the new set of equations to be solved can be finally rewritten as
follows:

pg—? +p(u-V)u=-Vp+nsAu+ %V ¥
V-u=0 2.17
oY 1
L (V) - (@9 - ) - 2B = ¢ f()
where
- _ -
) = (e I) Oldroyd-B )18

(e‘w -I)— ae"p(e_"/’ —1)? Giesekus

The source of nonlinearity of equation (ZI7)) depends highly on the relaxation
time scale of the fluid, A.

2.3 Boundary and initial conditions

Most of the real flow problems are not physically bounded/closed (i.e. air flow
around an airplane). In contrast, the set of PDE’s in (2] or [ZT7) must
be applied to a “closed” domain by some kind of boundary conditions without
which the numerical system can not be solved. We denote I';,, and I'y,,; as
the boundary for inflow and outflow, while Q C R? denotes the computational
domain. For several geometries examples of boundary conditions can be seen in
Fig.

The usual boundary condition at the inflow is a prescribed velocity profile,
u(y), in two dimensions. At the outflow, the velocity is set to Do nothing”
condition. This natural outflow condition is obtained by integration by parts
of the weak form of equation 2] which yields in nd,u — pn = 0 (see [37]).
The inflow boundary profile for the stress variables (or ¢ from LCR) must
be calculated based on the inflow velocity boundary profile while the outflow
stress boundary is set to natural ("Do nothing’) boundary conditions [37]. This
is necessary because the viscoelastic fluid has a memory. The outflow stress
boundary is set to natural boundary conditions. The pressure has no boundary
condition since it is an L?-function. The outflow velocity profile can be set
either to Dirichlet (fully developed outflow) or natural boundary condition. We

15
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Figure 2.2: Boundary conditions on several configurations.

assume the flow to be fully developed at the inflow, and no-slip condition is
applied on solid boundaries for the velocity. The no-slip condition requires that
the velocity should vanish on rigid boundary walls, u = 0 on I'ygip. For a

2
given velocity profile, u, = 1.5(1 — %), the above assumptions generate a stress
profile at the inflow [25], which can be written in terms of the conformation
stress tensor (details can be found in Appendix [A2])

du dug \ 2
Tyy = 1, Txy:Adyw7 Tm:1+2(AdyI) . 2.19

The above equations are obtained by the fact that on the inflow the nonlinear
terms of equation (29]), y-velocity component and the x-velocity gradient vanish,

(u-V)T =0,uy =0,0,u; =0. 2.20

Next, we transform the conformation stress inflow profile into a boundary con-
dition for the new variable ¥ in LCR by using their eigenvalues,

1
Ao = 3 trr £ /trr2 — 4det T 2.21
—_—

square term

c s log \q 0 c —s
P = 2.22

—-s c 0 log Ao s ¢

with the property c? +s? = 1. In practice, it is helpfull to always check that the
square term in equation (221]) exists. Initial conditions are zero vectors in most
cases, u(z,y,t) = 0. But in some cases, initial solutions can be some developed

16
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Figure 2.3: Interpolations from coarse to fine grid.

ok

solutions from lower level solutions u(z,y)" = I}"u(x,y)*" or from solutions
of lower parameter values (Re or We). If the first case is used then the initial
solution will be interpolated first into one level higher. The interpolation can
be visualised in one dimension by Fig. In the nonsteady calculation, initial
solutions can be some developed solutions from previous time step, u(z,y,t") =

u(z,y, t" ).
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The discrete time and space system

In solving the full system of equation (ZI7) we will discretize it first in time
with a fully implicit second order time integrator such as Crank-Nicolson or
fractional step ¥-scheme and in space with FEM. A monolithic way of solving
the discrete system allows a proportional numerical treatment between a direct
steady and the corresponding nonstationary approach, here by adding a scaled
mass matrix with the time step size for the latter approach. In this way, a
bigger time step size can be applied and the time step size dependency of mesh
size can be avoided.

In the case of space discretization, quadrilateral elements are used for the
triangulation of the domain. The mapping between reference and real elements
is then formulated on this element. Regular and local refinement are also in-
coorporated within these elements, too. The important point in this chapter is
the choice of the finite element space function which should satisfy the LBB con-
dition. If this condition can not be satisfied, then an appropriate stabilization
technique is a must. In the case of the edge-oriented stabilization technique,
the standard FEM stencil needs to be extended for the implementation.

3.1 The fully implicit time discretization

We apply implicit 2nd order time stepping method to preserve the high accu-
racy and robustness in nonstationary flow simulations, for instance the Crank-
Nicolson or Fractional-Step-0 scheme. This implicit scheme allows adaptive time
stepping due to accuracy reasons only [68] and does not depend on CFL-like
restrictions. This method is very suitable for physically time dependent prob-
lems such as MIT benchmark 2001[17], von Karman vortex shedding in a flow
around cylinder|73]. By setting the density to be uniform with value of p = 1,
then the set of equations (2I7) is discretized in time as follows: Given u”, "
and At = t, 11 — t,, we seek solutions for the next time step u, p, ¥

u_un

At

+
0 u-Vu—(nsAu—&—n—/{)V-ew)} +Vp 3.1
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CHAPTER 3. THE DISCRETE TIME AND SPACE SYSTEM

+(1-6) [u"~Vu” ~ (gsAu” + %v.eﬂ’")} ~0
Vou=0 3.2

where u”™ ~ u(t,). As one can see, the pressure space is discretized fully im-
plicitly. The LCR equation in the Oldroyd-B model is discretized in the same
way so that

w _ ¢7L

At
0 [u Ve — (Qu)ap — .Q(u)) — 2B(u) — % (¥ - 1)}

+ 3.3

+(1-9) {u" V" — (Qu").p" — " .Qu")) — 2B(u") — % (eﬂ’bn - I)} =0.

The divergence of the exponential operator in equation ([3.I]) is approximated by
the divergence of the conformation tensor via eigenvalue decomposition, which
is explained in the previous section as part of LCR. So, the equations above
involve solving a typical nonlinear saddle point problem. Given u”,1" and
At =t, 11 — tn, we seek solutions for the next time step u, p, 1

u+ At 0 [Au(u)u + Cexpp] + AtBp = u" — At(1 — 0) [Au(u™)u" + Cexptp™]
BTu=0 3.4
P+ At 0 [A¢(u)¢ + Fv(u)] — " — At(1 - 0) [Aw(u")i,b" + Fy(u)

with operators

A (W)th = N(u)tp + G (weh + Hony 19 35
Au(u)u = N(u)u+nsL(u)u 3.6
N(u)ju=u-Vu 3.7

N(u)yp =u-Vy 3.8

L(u)u=-Au 39

Coxpth = —%v ¥ 3.10

Gro (W) = —(82(w)-4 — 1.2(u) 3.11
Hepp1th = —%(e—iﬁ ~1) 3.12

Fy(u) = —2B(u) 3.13

By introducing a mass matrix operator, M, and other nonlinear operators
Suu = [M + At 0 Ay (u)]u and Syp¥ = [M + At 0 Ay, (u)]tp, we can rewrite the
set of equations above as follows: Given u™,¥" and At = t,41 — t,, we seek
solutions for the next time step u, p, ¥

Suu + At 0Cexpp + AtBp =ths u 3.14
BTu=0 3.15
Sy¥ + At 0Fy(u) =rhs ¢ 3.16
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with
rths u=u" — At(1 — 0) [Au(u™)u" + Cexpp"] 3.17
rhs i = " — At(1 - 6) {Ad,(un)ip" + Fo(u™)] . 3.18

By choosing 6 = %, we obtain the fully implicit Crank-Nicolson method with
second order accuracy.

3.2 The Finite Element Method

Now that we have a time discretized equation, we discretize the space by means
of FEM. The finite element is well-known for its flexibility in dealing with any
complex PDE’s and geometry. Hence, it becomes favorable for many industrial
purposes. It works in a weak formulation which means the strong formulation
is tested with an arbitrary function, which is called a test function, see [6], and
integrated over the domain. Now, let’s consider equation (2.I7) by introducing
3 test functions (v, ¢, x), which are not defined yet,

//(pall+p(u-V)u+Vp—775Au—%V'ed’)vdth:O
rJo \' Ot A

/T/Q(V-u)gadvcltzo 3.19
/T/Q<881f+(u'v)¢(9¢¢9)2B}\f(,/,))xd‘/dto

The above finite element integrations are simplified by integrations by part for
the second order term and pressure part,

//—nSAuvdth://nsVu Vo dVdt

TJO TJO

and //vadth:—//vadth
TJQ TJo

which requires that u be only a C! function. Now, we can write the (simplified)

weak formulation
ou Mp P
/T/Q (pﬁt +p(u-V)u XV e’ | v dvdt

+/ /(—p1+nsVu) Vo dVdt =0
T JQ

/T/Q(V-u)gadth:O

/T/Q<(?f+(u'v)¢—(ﬂ¢—¢ﬂ)—2B—}\f(¢)>Xdth:0

3.21
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CHAPTER 3. THE DISCRETE TIME AND SPACE SYSTEM

This simplification, later on, allows a larger class of solutions than the class of
solutions for the corresponding strong formulation. Up to this point, we have
not introduced yet the finite element expansion of the discrete solutions for
u”, p" ", which is fundamental in finite element,

NNy

NN, NN¢
u' = Z u; vj, Pt = ij Pjs ¢h: Z P X 3.22
Jj=1 i=1 i=1

where NN is number of unknowns for each variable. The total number of un-
knowns leads to the total degree of freedoms on each mesh level. Here, u;,pj, 1,
are the nodal values and vy, 5, x; are the so-called basis function. Throughout
this study test function and basis function are taken to be the same. Hence, the
discretized weak formulation may be written the same as equation (B2I]) but
with extra superscript ’h’ which denotes the discrete finite element solutions.

Now, the most difficult part is to choose what kind of test/basis function
that may fit well into the above problems. In particular, we are dealing with a
mixed test/basis function between velocity, pressure and stress numerical vari-
able. The mixed formulation is subject to a well-known condition, the so-called
LBB condition, see [34]. The main issues in solving the already mentioned set of
equations are not only the robustness and efficiency but also a reliable accuracy
of the numerical solution. For these reasons, we utilize the LBB-stable conform-
ing finite element pair Q- Py, Fig. It is known to be one of the ”best” Stokes
elements (see [2], [38], the contributions according to [3&] and in the proceeding
[6]), that means most accurate and robust finite element pairs for highly viscous
incompressible flow, particularly together with local grid refinement techniques
via hanging nodes.

© Coarse node
@ Refined node

O Hanging node

Figure 3.1: Degrees of freedom in locally refined element.

Local refinement technique is meant to reduce the global degrees of freedom.
The use of hanging nodes is in a proper way such that the values at hanging
nodes must satisfy the continuity constraint of the neighboring nodes. In this
way, the finite element test /basis function remains globally continuous and hence
conforming, (see [15,152,[74]). The refinement is done a priori, i.e wihthout any
error indicator.
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Figure 3.2: The Q5 P; pair.

3.3 The choice of finite element space

The choice of the FEM spaces for the (Navier-)Stokes problem is subject to the
well-known compatibility condition between the velocity and pressure spaces,
the so-called inf — sup condition given in discrete version (LBB) [34]

divugdz
sup 7&2 d

>alqlyq forall g€ Q. 3.23
uev, [ufiq ’

The choosen finite element pair above is compatible according to equation ([B.23)).
Similarly, adding the weak form of the constitutive equation for o imposes
further compatibility constraints onto the choice of the approximations spaces
for the triple velocity-pressure-stress [13],

fQ dive udzx
sup A ——

>v|uf, o forallue vy, 3.24
cew,  [oloq ’

where o and v are two mesh-independent constants, [-|, o and ||, o are the
standard H'(Q) and L?*(Q) norms and V), x Qp x W, C (H'(2))? x LE(Q) x
(L?(©Q))*. Element pairs that satisfy equation ([3.24]) are also said to be com-
patible. Fortin and Pierre [32] have shown that in the absence of the viscous
contribution, the (standard) discrete spaces have to satisfy the following condi-
tions:

1. The velocity-pressure spaces must be compatible with respect to equation

B.23).

2. If the elastic stress tensor o is approximated by a discontinuous FEM
space, the deformation tensor must be a member of the same space

1
D= _(Vu+ VuT) e W,, forall ueV,. 3.25

3. If the same tensor is approximated by a continuous FEM space, the num-
ber of local degrees of freedom must be larger than that used for the
velocity space.
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G v o
Figure 3.3: Discontinuous quadratic stress; bi-quadratic velocity; discontinuous
linear pressure element pair of Fortin and Fortin.

The first requirement is quite obvious from equation ([B:23]) and is not an issue
at this point. Yet, the last two requirements evolve from the need to satisfy
equation (3:24)) which is a real challange on mixed finite element for viscoelastic
problem. Fortin and Fortin @] have shown that the second requirement can
be fulfilled by using a discontinuous Galerkin approach, see Fig. B.3] while, in
ﬂﬂ], Marchal and Crochet have proposed a subcell discretization to enrich the
local degrees of freedom for the stress space, thus fulfill the third requirement.

G 2X2 o 3x3 G 4x4

S
7L

Figure 3.4: Bi-linear stress sub-elements; bi-quadratic velocity; bi-linear pres-
sure element pair of Marchal and Crochet.

In contrast to the requirements above, Baranger and Sandri ﬂa] have shown
that a three fields formulation of Stokes’s problem and Oldroyd model does
not need the equation [B24)) to be fulfilled, thus allows a much larger class
of discretization schemes. Further review of mixed finite element method can
be found in the work of Baaijens M, E] and Fortin et al. @} which leads to
the DEVSS (Discrete Elastic Viscous Splitting). So, this study restricts the
finite element pair to the triple Qz/P{i5¢/Q,, see Fig. BB, which according to
Baranger and Sandri ﬂﬂ] is not necessarily affected by the last 2 conditions in
the case of Oldroyd-B and Giesekus model. Yet, in order to ensure that the
element pair is stable, a jump stabilization technique is introduced in the last
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Figure 3.5: Bi-quadratic velocity/stress; discontinuous linear pressure element
pair.

sections of this chapter. So, the interpolation functions are given as:
Vi ={vi € (Ho())?%, vz € (Q2T)* YT €Th, vih=0 on 09},

Qn ={pn € L*(), pur € PI(T) VT € Tp},
W, = {o}, € (L*(Q))*,  onr € (Q2T)* VT € Ty}

by considering for each T' € 7T; the bilinear transformation ¢ : T — T onto
the unit square T'. So, Q2(T) is defined by

Q2(T) = {qovz" 1 g € span < 1,z,y,2y,2%,y%, 2%y, y?z, 2%y* >}  3.26

with nine local degrees of freedom located at the vertices, midpoints of the
edges and in the center of the quadrilateral. The space P;(T') consists of linear
functions defined by

P(T)={qov¢7' :qg€span< 1,2,y >} 3.27

with the function value and both partial derivatives, located in the center of the
quadrilateral, as its three local degrees of freedom. The velocity-pressure inf-
sup condition is satisfied (see [10]) as well as the velocity-stress inf-sup condition
in the presence of a purely viscous contribution|5]. However, the combination
of the bilinear transformation ¢ with a linear function on the reference square
Pl(T) would imply that the basis on the reference square does not contain the
full bilinear basis. So, the method can be only first order accurate on general
meshes (see [2, [10])

Ip = prly = O(h). 3.28

The standard remedy (see [2, 160, 169]) is to consider a local coordinate system
(&,m) obtained by joining the midpoints of the opposing faces of T. Then, we
set on each element T’

P (T) :=span < 1,&,m > . 3.29

In this case, the inf-sup condition is also satisfied and the second order ap-
proximation is recovered for the pressure as well as for the velocity gradient
(see|ld, 134]),

lp —puly = O(hQ) and  |Vu— Vuy|, = O(hz). 3.30
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For a smooth solution, the approximation error for the velocity in the Lo-norm
is of order O(h®) which can easily be demonstrated for prescribed polynomials
or for smooth data on appropriate domains [10].

In the following, we set up the total discrete nonlinear operator based on the
chosen finite element space. The above mentioned mixed FEM discretization
together with appropriate initial and boundary conditions results in a set of
discrete nonlinear equations which may be written as follows

Su(u) At 0Cex, AtB u rhs u
At 0Fy(u) S’l/J (u) 0 Y | = | rhsvy 331
BT 0 0 D ths p

Nonlinear operator A

with operators that are already described in the last subsection. Here, Su(u)
consists of the mass, diffusive and convective operators, while 31/’ (u) consists of
the mass, transformation, convection and rotation operators. It is visible from
equations (BI4H3I])) that the mass matrix and the time dependent right hand
side cancel out in the case of steady calculation, thus the nonlinear operator
may be written as follows:

Su(u) Ce&p B u rhs u
Fy(u)  Sy(u) 0 ¥ [=] thsy 3.32
BT 0 0 P rhs p

Nonlinear operator A

This typical saddle point problem contains highly nonlinear couplings be-
tween the Navier-Stokes and the LCR equation, which can be seen from the
operator Cexp and Fy(u). While the operator Sy(u) and Sw(u) are already
nonlinear, the full nonlinear system becomes very hard to solve in the case of
direct steady solution. In the nonsteady case, equation (B3], the nonlinear-
ity is somehow ’balanced’ by the choosen time step, i.e small time step size
would ease the two coupling operators Cexp, Fy(u) contribution as well as
the two nonlinear operators contribution, Sy(u)u = [M + At Ay (u)ju and
Sa (W) = [M + At 0 Ay, (u)]tp. Yet, in the direct steady case, there are two
quantities: Re and We numbers which make this highly nonlinear operator, A,
even more difficult to solve. Thus, the quality of the resulting discrete solutions
may lead to non-physical oscillations. So, measurement towards minimizing the
oscillation effects is by introducing a term that stabilize the discrete systems.
This will be explained in the following section.
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3.4 Artificial diffusion stabilization

The total nonlinear system of equation (3.32) mainly comes from the operator
Sw(u) that has a convective term of (u- V). Unlike operator Sy(u) that has
a linear operator L(u) inside, see equation (B.6]), operator S¢¢ does not have
one. So, why not give a small amount of artificial diffusion, in the form of a
linear operator of A, that may help the numerical stability as the following

Su(u) Cexp B u rhs u
Fow) Spw)+Lyw) 0 || v [=] msw 333
BT 0 0 D rhs p

Nonlinear operator A

In practice, this contribution should be controlled by a parameter hy which
would decrease with mesh refinement, limh — 0. In this simple way, a com-
promise would be found between accuracy and stability of the numerical com-
putation. A more robust stabilization is still needed which is described in the
following section.

3.5 EO-FEM stabilization

Bonito and Burman [12] have shown that inf-sup stability as well as stability for
convection-dominated flows can be obtained by adding a consistent stabilization
term penalizing the jump of the solution gradient over element edges E (with
hg denoting the length of the edge). This term can be written in the following
form, see also |72, [71]] for more details:

Jo= 3 max(ihe, ") [ [V [Volds 330
edge E

The same technique can be utilized in the equations for the stress tensor (or for
the logarithm of the conformation stress in the case of LCR), particularly for
relaxing the choice of the stress space in the absence of a pure viscous contri-
bution. Moreover, since the convective terms of the constitutive equations also
require appropriate stabilization techniques, the corresponding edge-oriented
jump terms for the stress have been introduced which read as follows

Jo= Yt [ [Vol: (vds 335

edge E E
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which will be added into the operator S,(/) (u),

Su(u) Cexp B u rhs u
Fg(u) Sy(u)+J, 0 Y | =| thsy 3.36
BT 0 0 D rhs p

Nonlinear operator A

For simplicity we call this jump stabilization technique (J,) as EO-FEM. Here,
the gradient of the trial and test functions are of the same polynom,

Jo= ) Vh%/EUh[VXi] : [Vx;lds 3.37

edge E

where the jump term [Vx] = VxT — Vx~ denotes the difference of the gradi-
ent values (it can be of any other type of values, see Ref. [55]) between two
adjacent elements that share the same edge E. Here, a (constant) parameter
v is provided which is independent from the physical problem, and hg, as al-
ready mentioned, is the length of the edge under consideration which guarantees
the weakly consistency of the solution by refinement, see [12]. Equation (337
expands to

Jo= > % / an(VXi = Vx; ) (VX — Vx; )ds

edge E E
Jo= Y % / onVx§ (VX] — Vx; )ds — / o Vx; (Vx§ — Vx;j)ds
edge E E E
first second

3.38
The integration of the above equation can be performed by looping over all edges
in the domain and then calling the trial/test functions from the two adjacent
elements, see Ref. [55]. In this study, the looping remains over all elements.
Thus, each internal edge will be visited twice. In this way, equation (B3] is

Edge
@-@-9-90--9
.
@-o- -e-9
Lo \{ N
o-o- Lo 4 o
o b o b

1 1
-e-o-0-0

e--o-

Figure 3.6: Extension of local degrees of freedom
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completed after the first and second visit.

In order to treat the jump term appropriately within the standard FEM
discretization, the extension of the standard FEM stencil is needed since there
are no sufficient places to put extra non-zero entries in the standard FEM stencil.
Fig. B8 visualizes the increasing local support of non-zero entries in 2D problem.
This is due to the fact that equation ([B.38) involves 2 adjacent elements that
increase the local degrees of freedom from originally 9 (one element) to 15 (2
elements). The non-stabilized support can be considered as the first stage of
nonzero entries implemented in standard FEM, thus the stabilized support needs
the second stage of nonzero entries.
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The Numerical Solver

This chapter briefly describes the solution methods for the discrete system that
has been built by the finite element discretization in the previous chapter. The
total discrete system in the case of viscolastic fluid flow is of mixed elliptic-
hyperbolic type in the direct steady approach. The task is to solve a set of
nonlinear equations given in equation (£1]),

Su(u) Cop B u rhs u
Fg(u) Sy(u) 0 v | = | rhsv 4.1
BT 0 0 p rhs p

Nonlinear operator A

which can be written as Ax = b.

4.1 Newton outer solver

The task of the nonlinear solver becomes very crucial with respect to the numer-
ical stability. There are only few standard choices in this case, namely: fixed
point iteration and Newton iteration. Both methods are well-known and widely
used in numerical computations. In the general case, the Newton iteration is
always preferable since it gives a faster convergence rate than fixed point iter-
ation. But this can be valid only if the initial solution is close enough to the
final solution. Thus, Newton iteration should be taken with care. In the case of
the well-known Stokes or Navier-Stokes problem for small Re numbers, Newton
method converges quadratically. But for high Re numbers, where the solutions
may not be smooth, Newton method shoud be damped appropriately. A care-
full damping factor is chosen by a line search method which is one of the root
finding techniques for nonlinear systems of equations [24, [59]. This guarantees
the stability of the Newton iteration. Within a direct steady, one Newton step
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can be described as follows:

Algorithm 1: One step Newton

b =R B T I VN

Input: nonlinear parameters, i.e. tolerance

set [ =0

Construct the residual vector r(x!) = Ax! — b

Construct the Jacobian J(x!) = g—;;(xl)

Solve the linear system for the correction J(x!)éx! = r(x!)

Compute the optimal damping factor w! € (—1,0]

F— wlox!

if the norm of residual vector r(x'*1) is below a certain threshold then
Il=1+1
back to step 2

end

Find a better approximation x/*! = x

4.2 The Jacobian matrix

The Newton iteration evidently needs to compute the first derivative of the
residual with respect to the current solution vector (sometimes it is called tan-
gent stiffness matrix) at every Newton step and level (The Jacobian: step 3
from the above algorithm).

4.2.1 Analytic Jacobian

The traditional way to achieve this is by handcoding of an analytical expressions
by means of taking the Frechet derivative of the nonlinear operator A. We start
from a residual vector r(x!') = Ax —b = 0 and expand it for all numerical

components (uh U2, p, ¢117 ’(/}125 ¢22)7
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up — uy 1
ri(u1) = 1At Lo + 5/(u181u1 + ug0ouy) v; — / p O01v;
Q Q Q

1 1 1
—|—§/QnSVu1-Vvi—§/QnKpV-e¢ Ui—g/ﬂful vy

Uy — U 1
Ti(u2) = / QA 2 v; + = / (u181u2 + U282u1) v; — / p 82111-
Q t 2 Jo Q

1 L w._l/uz_
+2/Q775V1t2 Vv, 2/QAV6 v; 3 Qf v;

ri(p) =/ (O1u1 + Dauz) @;
Q

4.2
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ri(Y11) = /Q 1/’1%;/)?1 Xi + /Q(U181¢11 + u202911) Xi
- /Q(w11¢11 + wi2the1 — Yr1wi2 — Z/J12(«012) Xi

1 P11 ., .
—2/9311X¢—/QK(1/111—1)X1'—/Qf Xi
ri(12) = /Q % Xi + /Q(u1511/J12 + u202912) Xi

- / (wi1¥12 + wi2thar — Yr1wiz — Prawaz) Xi
Q

—2/9312 Xi—/Q%(lﬁM) Xi_/wa12 Xi

ri(1h22) = /Q % Xi + /Q(u1511/)22 + u202122) Xi
- / (w21?12 + Wa2th2s — Yo1Wi2 — P2owa2) Xi
Q

1
-2 Bszi—/X(Z/ng—l)Xi—/fw” Xi
Q Q Q

The Jacobian matrix structure is,

ori(u1) Ori(u1) or;i(u1) ori(u1) Ori(ui1) Ori(u1)

Ouyj Ouaj Y115 0Y12; Ouazj Opj

or; (u2) or; (u2) Or; (u2) or; (u2) or; (u2) or; (u2)
Qu1j Jua; Y115 0Y12; Ouazj Op;

) ori(P11)  Ori(¥11)  Ori(11)  Ori(ir)  Ori(Yi1)  Ori(Pa1)
J— r; _ Ouy Quaj 011 0125 Ouzz; Ip;

aXj Ori(¢12)  Ori(¥iz)  Ori(¥aiz)  Ori(¥iz)  Ori(¥iz)  Ori(¥iz)
Ouyj Ouz; Y115 0125 Ouazj Op;

Ori(ha2)  Ori(tee)  Ori(thee)  Ori(thee)  Ori(ee)  Ori(iez)
Qu1j Jua; 0115 0Y12; Ouazj Op;

ori(p) ori(p) ori(p) ori(p) Iri(p) ori(p)
Ouy; Ouz; 011 012, Ouaz; Op;

In order to compute the Jacobian matrix components, we recall

NNy, NN NN
h h __ h __
uy = E : U1y V5, Uy = E Uzj Vi, P = E pj ©j
j=1 j=1 i=1
NNy, NNy, NNy,
ho_ ho_ h _ § : s
P = E 115 X5, Yo = E Y125 Xj, Yoo = Paoj X
=1 =1 =1

with NN is the total node number in each variable. Thus,

h h h h h oul
ou oVuj ou Oui  Ouy  Ouf — 0, ete.

Ouyj A Ouyj I 871’3 B 011 B 0125 B Oag;

4.5

4.6

4.7

4.8

4.9

4.10
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CHAPTER 4. THE NUMERICAL SOLVER

If we have enough attention to finish computing all components by hand, this
technique might results in highly accurate and optimized simulations, but un-
fortunately, even if the analytical expressions are available, it still needs a lot
of efforts to discretize the full Frechet derivative. For example in the case of
Newtonian flow, the first two components are given by

or; (u 1 1
( 1) = / 3 Ui + = / (vjalul +U181Uj + u282’uj) V;
Q

8u1j Q At 2
1
+f/ nsVv; - Vu; 4.11
2 Ja
87'¢(u1) - 1
Duz; = 5/9(1)]321“) v,

As far as one can see, this is not a straightforward differentiation technique.
Thus, one wants to avoid this technique for code flexibility reason in dealing
with many different nonlinear equations.

4.2.2 Inexact Jacobian

Another well-known and widely used approach is to approximate the Jacobian,
J(x™), with divided difference method. The advantage of this method is that
it serves in a black box manner so that it allows any nonlinear equations to
be handled automatically without having to derive the corresponding analytical
expressions, if existing at all. The method is described as follows,
[87‘(){")} i (X" 4+ €;0;) — ri(x" — €;0;)

ij

~ 412
3x 2€j

where §; is the basis unit vectors that determine the direction of the derivative
and €; is a suitable step size. Other advantage of this method is that the
structure of the Jacobian matrix is known a priori, which is typically the same
as the nonlinear operator in equation (1]). The function evaluation can then be
done in the same way. The only minor thing is the dependency of its accuracy
on the chosen step size, i.e the step size must be small enough to decrease
error of equation ({I2) and at the same time should be large enough to avoid a
truncation error. In the theory, the optimal step should be €3 ~ 106 for double
machine precision. Yet in practice the step size is choosen to be €z ~ 1078,

The algorithm above shows how to prepare the Jacobian matrix. In general,
one prepares the basis/test functions for all elements and integration rules for all
degrees of freedoms. Then, the computation in every element can be separated
into degrees of freedoms that lay in the domains Q (2d quadrature rule) and on
the boundary I" (1d quadrature rule).

Once a linear system is solved (later in the next section) within one Newton
step (step 4 in Algorithm 1), then the next task is to find a damping parameter
w that should be able to ensure the convergence of the Newton. As already
mentioned, this study implements a line search technique which is based on the
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4.3. INNER MULTIGRID SOLVER

Algorithm 2: Jacobian approximation

forall the Elements do
Compute transformation from the reference element
Compute basis functions in the cubature points
forall the Cubature points do

Compute the integrands

Do the difference

Add them to the local matrix
Update the global matrix
end

N =

N 0 koW

backtracking idea, see [24, 159]. Here, a full step (w = —1) is checked whether
r(w) = r(X" + wéX) is minimized or not. If the starting solution is close then
this is mostly satisfying. If it is not, then at least we can save this information
and use it for searching a new damping factor w by backtracking along the
Newton direction 6X until r(w) = r(X" 4+ wdX) is minimized. To achieve this
goal, a quadratic interpolation is used to obtain the corresponding w since we
have 3 informations already: r(w = —1) from the full step test, r(0) from step
2 of algorithm 1, and r'(0) from step 3 algorithm 1. This can be visualised by
Fig. 1l as 1D problem. Then, the new damping factor reads

R(w) = AwZ+ Bw+C R

L B/2A D

Figure 4.1: The quadratic interpolation.

—1'(0)
= 4.13
22— r(0) - (0))
By replacing r(w = —1) with the last computed information r(w;), the next

damping parameter can be iteratively computed in the same way until r(w,)
meets the criterion.

4.3 Inner multigrid solver

Consider that one has the Jacobian matrix at hand. Now, the ’big’ task, which

means the most time consuming part of the processing, is to solve the linear
subproblems (step 4 in Algorithm 1). Given a sparse matrix J, which contains
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CHAPTER 4. THE NUMERICAL SOLVER

mostly zeros element, one needs to solve for §X,
J(x)dx = r(x). 4.14

If high computer memory is provided, then a direct solver for sparse systems
might be in favor. This can be Gauss elimination, LU decomposition, or cyclic
reduction technique. The already available routine is UMFPACK (Unsymmetric
MultiFrontal Package) which can solve a sparse matrix problem with reduced fill-
in element, see [23]. But if computer memory is limited, then iterative methods
would be the best choice. This can be ILU decomposition, alternating direction
implicit (ADI) splitting method, conjugate gradient method, biconjugate gradi-
ents (a modified conjugate gradient method) and variants (BICG, BICGSTAB,
GMRES) or multigrid methods. Each method has its own limitations, i.e. con-
jugate gradient method needs a positive definite matrix. Among these methods,
multigrid offers a rather different approach and substantial benefits such as it
is potentially most effficient in terms of computational cost, see [75].

It seems that nowadays 'Multigrid’ has been a keyword for highly efficient
iterative solvers in handling the linear subproblem described in the algorithm
above (step 3). It can be true if multigrid is ’optimally’ implemented. Multigrid
components consist of smoother, restriction, prolongation and a direct coarse
grid solver (UMFPACK). The way multigrid solves a discrete system is facili-
tated by the construction of lower levels of discrete systems, which is known as
standard geometric multigrid. Inside the multigrid solver, few smoothing steps
are needed before and after both restriction and prolongation step. The applied
smoother is of Vanka-type,

ult! u' Resu
1+1 _ l l —1

P =| o | tw Z [J]‘T Res¢ , 4.15
I+1 ! Te

pit P Res,

which shows an effective coupled way of solving with local pressure schur com-
plement approach. The second term of the right hand side of equation (I3
acts locally in each element 7" on all levels. Here, the ’summation’ over each ele-
ment represents an assembling technique and the inverse of the local systems on
each element T (in 2D case of size 48 x 48) is computed by a direct solver (LA-
PACK). After few number of smoothing steps, an approximation of the solution
is obtained u”. The unknown error of this approximation (e” = u — u") has
been smoothed. So, the restriction sets in to approximate error on the coarser
level €2, which will then be smoothed again. This action continues until we
obtain the smoothed error on the coarsest grid, e®. A 'V-cycle’ will visit the
coarsest grid once and a 'F-cycle’ may do it a few times more. At the coarsest
grid, the linear system of the residual equation J(x™)e = r(x™) is solved by
a direct sparse solver (UMFPACK). In order to be efficient, the coarsest grid
should be coarse enough so that requirement of UMFPACK memory is as low as
possible. Then, we apply prolongation which is followed by post-smoothing to
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4.4. SOLVER BEHAVIOR

Figure 4.2: Prolongation in Q2 with biquadratic interpolation.

give a better error approximation back to the finest level. These steps continue
until a "V or F-cycle’ of multigrid iterations is finished. In the case of conforming
finite element, the lower level space is a subspace of the finer level one. Thus,
natural injection can be applied for the restriction operator. The prolongation
operator, on the other hand, needs to be constructed by biquadratic interpola-
tion, see Fig. In general, one multigrid cycle is described by the algorithm

Algorithm 3: One cycle multigrid

Input: linear tolerance
1 set min/mazx of level L
2 Call MG(L)/smooth e”
3 Restrict A, r

if (L-1) = min then

Solve Ae=r
5 Prolong e
else
| Call MG(L-1)/smooth e"~*
7 end

Bl where the recursive call MG is under taken if the coarse multigrid level is not
yet reached.

4.4 Solver behavior

It is well-known that Newton and multigrid solvers are sensitive with respect to
the choice of parameter settings, i.e in the case of multigrid: number of smooth-
ing steps, prolongation damping, stopping criterion, etc. and in the case of New-
ton: line search and Jacobian parameter settings. These can be different from
one to another problem. Yet, in the monolithic treatment of the non-Newtonian
fluids given in the nonlinear viscosity functions, the proposed Newton-multigrid
approach behaves very well as described in the following subsection.
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4.4.1 Nonlinear viscosity in flow around cylinder configu-
ration

We consider steady fluid flow problems of the generalised Newtonian flow that
satisfy

Vju=-Vp+V.T

{ (u-Vju p 416

V-u=0

with the constitutive law T = 2n(%,p)D and ¥ is the magnitude of the defor-
mation tensor. The nonlinear viscosity function follows the generalized Cross
model with additional pressure dependant and bounds the viscosity given by

D3, D) = i + — Lz~ Tmin exp(acp).
(1+ \/te(D2)r

The computational domain can be seen in Fig. 3] with the corresponding
mesh information for 5 refinement levels. Inflow is set to a parabolic profile of
uy(y) = 0.3 x4.0/0.1681 y (0.41 — y) and lower bound viscosity is always set to
Nmin = 10~3. Functional value of drag forces, Fyrag, are computed around the
cylinder surface s |73,

4.17

Farag = /(—pI +T) nds, 4.18
S

for different mesh levels. The parameters of r, a. and 7,4, are set in such a way
that steady state solutions can still be obtained. Undesired parameter settings
that lead to nonstationary solutions behaviour are avoided. In the following, the
monolithic approach shows stable Newton-multigrid convergence rates in terms
of number of nonlinear (NN) and linear multigrid sweep (LL) iterations. Here,
the linear multigrid gains 2 digits linear tolerance with 4 smoothing steps. The
outer Newton satisfies an error of 1078 and the divided differences Jacobian step
length is set to the double machine precision. =~ Mesh converged solutions are
obtained for 5 refinement levels and the Newton-multigrid solver behaves very
well with respect to the chosen parameter settings.

In the following, Newton-multigrid solver are tested on viscoelastic problems.
In order to ease multigrid parameter settings, especially on hard problems such

Lev. NEL NVT NMP

L1 520 572 1092
L2 2080 2184 4264
- L3 8320 8528 16848
L4 33280 33696 66976

L5 133120 133952 267072

Figure 4.3: Flow around a cylinder coarse mesh. NEL, NVT and NMP are
number of element, vertices and mid points.
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4.4. SOLVER BEHAVIOR

Table 4.1: Cross-like model: Newton-Multigrid behaviour in term NL/LL
[deg]. Initial solutions are zero vector for L1, while initial solutions for other
levels use the solution of one level below.

r=1a.=0

Lev. Nlmax = 1072 Nmax = 1071 Nlmax = 1
LI 9/1 [L.2565c-2]  11/2 [2.072¢2]  30/2 [0.20942]
L2 3/1[1.2626e-2]  4/2 [2.9832e2]  26/3 [0.20890]
L3 3/2[1.2647e-2]  4/2 [2.9874e-2]  24/3 [0.20876]
[ ] [2.9885¢-2) 0.20875)
[ ] [ ] [ ]

L4 3/2 [1.2652e-2 4/3 [2.9885e- 16/3 [0.20875
L5 2/2 [1.2654e-2 3/2 [2.9888e-2 14/3 [0.20876
r=1La.=1
L1 11/1[1.2574e-02] 12/2 [3.0215e-02] 15/3 [2.6196e-01]
L2 3/1 [1.2635e-02]  4/3 [3.0327e-02]  31/4 [2.5983e-01]
L3 3/2 [1.2656e-02]  4/3 [3.0370e-02]  31/7 [2.5934e-01]
L4 3/2 [1.2662e-02]  4/3 [3.0382e-02]  13/5 [2.5927e-01]
L5 2/2 [1.2663e-02]  3/3 [3.0385e-02]  17/3 [2.5928e-01]

as high Re or We numbers, a stabilization technique (it is described in previous
chapter) is used. At the same time, it can also ease the already described mixed
formulation problem. This is a well-known issue due to the native hyperbolic
type of the given viscoelastic formulation. Therefore, a stabilization technique
is unavoidable. We present in the following some numerical experiments with
artificial diffusion, which can help the linear solver task, given in the flow around
cylinder viscoelastic benchmark problem, see Fig. .4l

4.4.2 Flow around a cylinder with artificial diffusion

Here, it is shown that a simple artificial diffusion may help multigrid to converge
properly. This additional stabilization term acts in the form of yhAT to the

Figure 4.4: Top: The coarse mesh. Bottom: A sequence of 5 level refinements.
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original problem, which is solved by direct steady calculation,

1
(u-V)r—Vu-7—71-vVu' +

Vp — 2nsAu —

A

V-u=0

g .r=0

4.19

(r—-I)+~vhAT =0

The parameter vh is elementwise localised, which has a tendency to decrease

Table 4.2: Oldroyd-B, Conformation tensor: Newton-Multigrid behaviour
in term NL/LL [Drag]

v=1.0 v=0.5
Lev We=0.1 We = 0.7 We = 0.1 We = 0.7
L1 5/1[106.9872] 6/1 [87.0798] 5/1 [113.7894] 8/1 [92.7863]
L2  3/1[115.6485] 4/2 194.3514] 3/1 [120.871] 4/2 [ 100.2350]
L3  3/2[121.6353] 4/3 [100.827] 3/1 [125.197] 4/2 [106.1147)
L4 3/2[125.422) 4/4 [106.2924] 3/2 [127.6223] 4/3 [110.4968|
L5 3/2[127.6816] 4/6 [110.5438] 2/2 [128.9401] 4/4 [113.5349]
v=0.25 v;/r = 0.25/0.15
Lev. We=0.1 We = 0.7 We = 0.1 We = 0.7
L1 5/1[118.9325] 9/2 [98.6612] 11/1[121.6486] 23/1 [102.6969]
L2 3/1[124.4178] 4/2 [105.5058] 7/1 [126.1438] 12/1 [108.7349]
L3  3/1[127.3941] 4/2 [110.3037] 6/1 [128.3901] 14/1 [112.6077]
L4 2/2[128.8801] 3/3 [113.4846] 6/1 [129.4218] 14/2 [115.0053]
L5 2/2[129.6212]  3/4 [115.4835] 6/2 [129.9049]  14/2 [116.4005]
v/ = 0.25/0.1 v;/r = 0.25/0.05
Lev We=0.1 We = 0.7 We = 0.1 We = 0.7
L1  16/1[123.2419] 37/1 [105.6800] 26/1 [125.0641] 93/1 [111.2205]
L2  12/1[127.1039] 29/1 [110.8638] 23/1 [128.1489] 61/1 [113.6914]
L3 7/1[128.9207]  21/1 [114.0073] 25/1 [129.4767]  57/1 [115.6824]
L4 8/1[129.7022] 23/1 [115.8786] 10/1 [129.9895] 41/1 [116.8352]
L5 8/1[130.0492] 23/2 [116.8846] 12/1 [130.1952] 48/1 [117.3436]

by increasing refinement. This is slightly similar to the work of Sureshkumar
and Beris [66]. The only difference is that they set the artificial diffusion param-
eter as a global constant without dependency of h. In the following numerical
tests, two different We numbers are tested in the above mentioned configura-
tion. Table shows that multigrid works well with artificial diffusion. The
drag coefficient may not be the same as the one in the benchmark (see [21])
or later in chapter 5, but apparently it can be improved by reducing the coef-
ficient . This optimum coefficient (v = 0.25) gives a desired convergence rate
while at the same time gives an acceptable drag coefficient. To get even closer
numbers of drag coefficient, one may set different coefficients  for the Jacobian
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4.4. SOLVER BEHAVIOR

matrix (7y;) and the residual (v,). By decreasing v, a satisfied drag coefficient
can be reached with approximately the same multigrid rate. The price is that
the nonlinear iteration incerases moderately due to the disturbed Jacobian J.
Nevertheless, the multigrid behaves optimal with respect to mesh refinement.
In the following example we show that the proposed monolithic approach is in-

Table 4.3: Oldroyd-B, LCR: Newton-Multigrid behaviour in term NL/LL
[Drag]

v=1.0 v=0.5
Lev We=0.1 We = 0.7 We = 0.1 We = 0.7
L1  6/1[105.5171] 6/1 [83.2051 | 6/1 [112.1263] 7/1 [86.7057 |
L2  3/1[113.7893] 3/2 [88.0028 ] 3/1 [119.0820] 3/1[92.1309 |
L3 3/1[119.8001] 3/2 [92.6686 ] 3/1 [123.6846] 3/2[97.2610 |
L4 3/2 [123.9020] 4/3 197.4222 | 3/2 [126.5245] 3/3 [102.1937]
L5  3/2 [126.5826] 3/4 [102.2374] 3/2 [128.2260] 3/3 [106.6273]
v=0.25 v,/ = 0.25/0.15
Lev We=0.1 We = 0.7 We = 0.1 We = 0.7
L1 6/1 [117.4035] 7/2 [90.8816] 9/1 [120.3768] 13/1 [94.3513]
L2 3/1[122.9492] 3/2 [96.7072] 8/1 [124.9818] 9/1 [100.2434]
L3  3/1[126.3008] 4/2 [102.0235] 6/1 [127.5860] 8/2 [105.3236]
L4  3/2[128.1667] 3/2 [106.5813] 5/1 [128.9289] 7/2 [109.2731]
L5  3/2[129.1929] 3/3 [110.1557] 4/2 [129.6219] 7/3 [112.1590]
vj/r = 0.25/0.1 Vijr = 0.25/0.05
Lev We=0.1 We = 0.7 We = 0.1 We = 0.7
L1 13/1[122.2221] 19/1 [97.3749] 22/1 [124.4786] 36/1 [103.2290
L2 14/1[126.1832] 15/1 [103.0146] 20/1 [127.5802] 34/1 [107.3007
L3  6/1 [128.3114] 13/2 [107.6439] 18/1 [129.1174] 23/1 [110.8732
L4 7/1[129.3435] 12/2 [111.0432) 10/1 [129.7888] 23/2 [113.3784
[ ] [ ] [

L5  6/1 [129.8491] 11/3 [113.4227 10/1 [130.0873 20/2 [115.0071

dependent of the given formulation and also performs very well with the LCR,
which has an exponential term

Vp—2nSAu—7jx—pV-e¢:0
V-u=0, 4.20
(0 V) — (@ — ) 2B +yhp = 1 [())

It is shown that the linear solver behaves the same as the one with the confor-
mation stress tensor formulation. The linear convergence rate is independent of
the chosen We number and the drag results are similar. Both Newton-multigrid
solvers are stable with respect to mesh refinement, see Tab. Although the
drag coeflicient may not be the same as the one with conformation tensor due to
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different stabilization terms (yhAT and vhAw)), the solver behaviour remains
stable for both cases.

4.4.3 Viscoelastic flow in a cavity with EOFEM stabiliza-
tion

The flow around cylinder configuration is probably a difficult example. Let us
take a moderate example with the cavity configuration as seen in Fig. Here,
LCR is used for both Oldroyd-B and Giesekus models and EOFEM is applied
for the stabilization of numerics. The set up of the problem follows the one in
[58]. A direct steady simulation up to We = 1.0 is undergone to see the solver
behaviour. The simulation becomes unsteady above We = 1.0 in the cavity
configuration, which is later described in chapter 6.

Figure 4.5: Sequence of mesh refinement for cavity

Table 4.4: Oldroyd-B (Old) and Giesekus (Gie) model: Newton-Multigrid
behaviour in term NL/LL with 2-grid algorithm.

We L3 L4 L5 L3 14 L5
Old Gie
02 6/1 4/2 4/3 5/1 4/2  4/3
03 5/1 5/2 4/3 4/1  4/2  4/3
04 5/1 5/2 5/4 4/1  4/2  4/3
05 5/2 5/3 6/4 4/1  4/2  4/3
06 5/2 5/3 5/4 3/2  4/2  4/3
0.7 5/2 5/3 5/4 4/1  4/2  4/3
08 5/2 5/3 6/3 5/1  4/2 4/3
09 5/2 5/3 6/3 4/1  4/2  4/3
1.0 5/2 6/3 6/4 4/1  4/2  4/4

Table .4l shows the behaviour of Newton-multigrid in a viscoelastic simula-
tion inside a cavity with 2-grid algorithm. Here, the starting solution is We = 0.1
at L3. A constant damping factor of 0.8 and number of smoothing steps of 4
are being used. L4 solutions are computed by initial solution of L3, and L5 is
solved by following the same way. It is shown that for both viscoelastic models
the solver remains stable with maximum of 4 linear multigrid sweeps. In the
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4.4. SOLVER BEHAVIOR

following Tab[4.5] it is shown that by increasing the number of smoothing steps,

the load of linear multigrid sweeps is reduced.

Table 4.5: Oldroyd-B (Old) and Giesekus (Gie) model: Newton-Multigrid
behaviour in term NL/LL with 2-grid algorithm and varied smoothing steps.

We L3 L4 L5 L3 L4 L5
Old Gie
ss=3
0.2 6/1 5/2 4/3 4/1  3/2  4/3
0.6 5/2 5/3 6/4 4/2  4/3  4/4
1.0 5/2 5/4 9/3 4/2  4/3  4/5
ss=7
0.2 5/1  5/1 5/2 6/1 4/1  3/2
0.6 5/1 6/2 5/3 4/1  4/2  4/3
1.0 5/1 5/2 5/3 3/1  4/2  4)2
ss=17
0.2 5/1 5/1 4/1 5/1  3/1 4/1
0.6 5/1  5/1 5/2 4/1  4/1  4/2
1.0 5/1 5/1 6/2 3/1  4/1 42
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Numerical Validation

This chapter is dedicated to the validation of the code, which is a very crucial
part of the thesis. Here, several well-known benchmarks are performed step by
step towards the final target of solving viscoelastic flow problems. The validation
shows also the quality of the high order finite element space (Q2/P;) within the
monolithic coupled approach with a strong Newton solver. The benchmarks
are without doubt very interesting for the research and important as well for
the industrial purposes. The first benchmark test is the flow around cylinder,
where drag and lift values are computed. The second is cavity flow, where
kinetic energy is taken into consideration. The above benchmarks solve the
Navier-Stokes equations. Standing vortex problem is then presented to show the
potential of EO-FEM when solving Navier-Stokes equations without a diffusive
term. The next benchmark is about nonisothermal convection flow in a stretched
8:1 cavity configuration, which is well known as the MIT benchmark 2001.
The Navier-Stokes equations plus an energy equation are solved within this
benchmark. The Nusselt number is computed and compared between different
authors and methods. This benchmark is very advantageous considering many
contributors that participated in. The last benchmark is for the viscoelastic
benchmark which presents the drag and stress plot in a planar flow around a
cylinder for both Oldroyd-B and Giesekus type of fluid.

5.1 Flow around cylinder benchmark

This benchmark was started within the DFG high-priority research program
"flow simulation with high performance computers” by Schafer and Turek [73].
It describes the flow around a cylinder situation, which in 2D looks like as in Fig.
BTl Inflow is set to a parabolic profile u,(y) = 0.3x4.0/0.1681 y (0.41 —y) with
kinematic viscosity n = le — 3. The mean velocity accros the inflow is u, = 0.2,
and the characteristic length of the cylinder is [ = 0.1. This setting corresponds
to Re = 20. Functional values of drag Cerag and lift Ciig are computed around
the cylinder surface s |73],

Cdrag/lift = C/O' ‘nds 5.1
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Figure 5.1: Flow around a cylinder coarse mesh L0, cells=130.

with a constant C' = 2.0Fd/l/(pu§lc). In this benchmark, F;/; are set to 1 which
ends up with the same constant C' for both drag and lift. To calculate equation
(D), there are 2 possibilities of integration namely the usual line integration
and the volume integration [43]. The latter approach takes benefits from the
integration over the whole domain in the finite element discretization,

Cdrag/lift = 7O(<77V11, VU> - <p7 = U>) 52

with a test function v € V}, as described in chapter 3.

In this configuration, where the solution is quite smooth (Re = 20), a fully
converged solution is easier obtained for the higher order finite element space
(Q2/P1) than with the corresponding lower order finite element space (Q1/Qo)
with pressure separation techniques [67] that needs more refinements. This
means that the code does not necessarily apply EO-FEM for such a test case.
We will come into this in the next sections. Another interesting comparison in
this benchmark is nonsteady flow at (Re = 100), but which will not be covered
in this study.

Table 5.1: Drag/Lift: NL denotes the number of nonlinear iteration. LL
denotes the average number of multigrid iteration while LI and VO denote the
line and volume integration. Initial solution is zero vector. Lower/upper bound
of reference values [73] are Cgrag = 5.5700/5.5900, Chige = 0.0104/0.0110

Lev. Drag/Lift (LI) Drag/Lift (VO) NL/LL Ref.[67]

L1 5.5550/ 0.009498 55424/ 0.00945  9/2 (L) 5.5707/0.01046
L2 5.5722/ 0.010601 5.5672/ 0.01047 9/2 (L5) 5.5747/0.01055
L3 55776/ 0.010616 55761/ 0.01057  9/1  (L6) 5.5771/0.01058
L4 5.5790/ 0.010618 5.5786/ 0.01060 8/1 (L7) 5.5783/0.01060
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5.2. DRIVEN CAVITY BENCHMARK

5.2 Driven cavity benchmark

This benchmark has a very simple configuration (a square) to test new solution
methods. The standard case is fluid that is given shear flow on the top of the
square which represent problems that are frequently encountered in industrial
processes. A constant velocity u, = 1 is set to the upper wall and a no-slip
boundary condition is set to all other walls. Constant viscosities of n = 1073, 5 =
2 x 107* and 1 = 10™* are set which correspond to Re = 1000, Re = 5000 and
Re = 10000. The kinetic energy is computed on every mesh levels with

1
Eyin = §Huh||(2),9 5.3

and compared with the low order finite element space with pressure separation
technique [67] for Re = 1000 and Re = 5000. This comparison shows the

Table 5.2: Kinetic energy: Comparison with reference results for Re = 1000
and Re = 5000.

Re = 1000 Re = 5000 Re = 10000
cells kinetic Ref.[67] kinetic Ref.[67] kinetic
256 5.2454e-02 1.0860e-01 1.3790e-01
1024 4.5418e-02  4.8095e-2 6.1149e-02  6.1785e-2  8.1822e-02
4096 4.4590e-02  4.5828e-2 4.9571e-02  5.5969e-2  5.3464e-02
16384 4.4524e-02  4.4843e-2 4.7691e-02  5.0196e-2  4.8726e-02
65536 4.4519e-02  4.4592e-2 4.7465e-02  4.8020e-2  4.7845e-02
262144  4.4518e-02  4.4535e-2 4.7430e-02  4.7541e-2  4.7813e-02

potential of high order finite element space, with respect to mesh refinement,
to obtain mesh converged solutions, see also Fig. B3l From Fig. B2l there
appears a new vortex at the bottom right corner as inertia increases.

s,

Figure 5.2: Driven cavity flow. From left: Re = 1000, Re = 5000, Re = 10000
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Figure 5.3: Velocity magnitude at center line. From left: Re = 1000, Re = 5000,
Re = 10000

The results of the first two benchmarks (flow around cylinder and driven
cavity) in this study are in a good agreement with the reference values |67] and
the code is validated for solving incompressible Navier-Stokes equation. Mesh
converged solutions are obtained for both benchmark problems. In the following
section, we describe a more difficult problem and show the potential of EO-FEM
as stabilization technique.

5.3 Standing vortex

The next validation is the well-known standing vortex problem [35], which solves
an “infinite” Reynolds number inside a cavity. The problems are formulated as
follows

ou

Par T pu-Vyu=-Vp

5.4
V-u=0
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5.3. STANDING VORTEX

with an initial solution which looks like (in polar coordinate)

or, r < 0.2,
u, =0, ug=1< 2-—05m, 0.2<r<04, 5.5
0, r > 0.4,

where 7 = /(z — 0.5)2 + (y — 0.5)2 denotes the distance from the center. The
initial solution represents also the steady-state solution of the above problem.
By solving it with the time integration, the initial solution will evolve and
change in shape. It is shown in [56] with lower order finite element spaces that
without EO-FEM, the initial solution oscillates after time ¢ = 3. As further
reported in [56], the (first order) upwinding and also the streamline-diffusion
method introduce too much artificial diffusion. In this study, where EO-FEM
is implemented for high order finite element spaces, the same phenomena can
be seen but at later time ¢ = 9. The solution without EO-FEM at time ¢t = 3
starts to deviate from the initial solution, which crash at time ¢ = 7.6.
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Figure 5.4: Standing vortex. Top: without EO-FEM. Bottom: with EO-FEM

Without EO-FEM, the element pair suffers as well from instability for having
no diffusion at all. With EO-FEM, the solutions remain the same even up to
time t = 9. The enormous potential of EO-FEM is then without doubt a clear
message to any other convection-dominant flow such as in the case of viscoelastic
flow problems.
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5.4 MIT Benchmark 2001

The MIT Benchmark 2001 [16] describes a heat driven cavity flow in a 8:1 rect-
angular domain at near-critical Rayleigh number. Why near-critical? Because
the onset of thermal convection will occur at the critical number, beyond that
a non-periodical up to turbulent flow is resulting. =~ The geometry of the prob-

y
Irylated wall
gravity g

4

Hot wall Cold wall

X

0 1

Insulated wall

Figure 5.5: Geometry and coarse mesh

Table 5.3: Contributor’s and our testing meshes

Author Turek Davis Gresho Le Quéré
Mesh 128 x 704 83 x 403 105 x 481 48 x 180
Mesh Elements Nodes Edges Dof
R2a0 1408 1513 2920 21747
R2al 1936 2043 3978 29679
R2a5 17776 17891 35666 267327
R3a0 5632 5841 11472 85731
R3al 6688 6899 13586 101583
R3a4 21472 21689 43160 323379

R4 22528 22945 45472 340419
R4al 24640 25059 49698 372111
R4a3 37312 37735 75046 562215

lem is very simple (see Fig. 0.0 but leads nevertheless to complex multiscale
phenomena. The velocity vector at the upper and bottom wall is zero which
describes a non-slip condition. The left wall is heated while the right wall is
cooled by a prescribed non-dimensional temperature of —0.5 and 0.5. Gravity is
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5.4. MIT BENCHMARK 2001

applied downwards. The top and bottom of the walls are insulated, which means
that homogeneous Neumann boundary conditions for the temperature are set
and hence no heat is going outside of the wall. The initial condition is the zero
vector for all variables. Physically relevant variables which are to be computed
are the velocity and temperature at point 1, and the Nusselt number along both
sides of the wall. The time step is chosen so that there are enough data points in
one oscillation of the resulting variables to graphically postprocess all quantities
and so that smaller time steps do not significantly improve the solutions with
respect to quantitative measurements. After comparison with the results from
Davis [22], Gresho [36], Turek [62] and Le Quéré [64] we choose approximately
34 time steps in one oscillation which corresponds to AT = 0.1 as time step
size. Several meshes have been used to perform the spatial discretization (see
Tab[53]). The coarse mesh has approximately 1:5 x-to-y ratio of grid points and
decreases gradually towards the walls (see Fig. [.6]).

[emmsssmsn]
T
(FEEEEAH
)

A

Coarse Mesh 1R Mesh 2R Mesh 2R_a1 Mesh
Figure 5.6: Several hierarchies and types of meshes

This figure also describes how the local refinement is generated for some
exemplary meshes. We set the local refinement to be at both sides of the wall.
This judgment is subject to the Nusselt number which is of interest for the
engineer,

1 706

where H and W are the height and the width of the domain. The meshes
are denoted by ‘Rnai’ for i local refinement steps after n regular refinements.
However, we have to explicitly state that the level of grid refinement towards
the walls has not been chosen on the basis of an a posteriori error indicator, but
a priori only, since it was the primary aim of these studies to show that local
alignement together with hanging nodes can be directly integrated into this
monolithic approach without any loss of efficiency while gaining higher accuracy.
The combination with user-defined a posteriori error control mechanisms which
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lead to an automatic grid refinement, resp., grid coarsening is part of future
studies with this full Galerkin approach.

The level 2 mesh (R2, meaning ‘2 times regular refinement’ of the coarse
mesh) is used to perform the first computation until the solution reaches a
periodical result (after 1500 non-dimensional time units), then the last output
result is used as a starting point for the following computation. Note that
regular refinement doubles the number of elements in both x and y-direction.
The results of the MIT Benchmark 2001 configuration that are computed by
our new approach oscillate periodically in time (Fig. [51) and are presented in
Table[5.4l More results can be found in Appendix

0.38 T T T T T T
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0.34 |r 1
0.32 |r 1

0.3 |r 1
0.28 1
0.26 1
0.24 1
0.22 E

0.2 1
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Time

Figure 5.7: Temperature oscillations at point 1

Several comparisons have been made to see the differences among the other
references. In [36] it is mentioned that the Q2 P; element with coarse mesh (27
x 121) performs poorly in the sense that the results show too low amplitudes
for velocity and temperature at point 1 (0.00542 and 0.00442). In contrast, we
observe good results even with the level 2 mesh (16 x 88). They also calculated
Nusselt numbers that are slightly different from the reference, see Le Quéré
[64]. In fact, we produce the same results (R2, R3, R4), but only as soon as we
introduce local refinement near the wall, the Nusselt number improves strongly
even with the level 2 mesh. It is obvious that the Nusselt number calculated on
level 3 and 4 (R3 and R4) can be improved by using the level 2 mesh with local
refinement (R2al and R2a5).

We believe that without local grid refinement we might have to use level
5 or higher to produce the same Nusselt numbers as the one produced by Le
Quéré. This information shows us the expected result that local grid refinement
helps a lot for this test configuration. The time step is not an issue as long as
we put enough time steps over one period. 20 up to 40 time steps are already
sufficient to produce excellent results for this problem, and no specific gain/loss
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5.5. PLANAR FLOW AROUND CYLINDER

Table 5.4: Results of the MIT Benchmark 2001 simulations

Author Uy ©1 -Nu Period
Turek 0.0572 0.2647 4.5791 3.422
Davis 0.0563 0.2655 4.5796 3.412

Gresho 0.05665 0.26547 4.5825 3.4259
Le Quéré  0.056356  0.26548  4.57946  3.4115
R2a0 0.058139  0.26539  4.66245  3.4000
R2al 0.057674  0.26538  4.59295  3.4214
R2ab 0.057490  0.26540  4.57941  3.4214
R3a0 0.056787  0.26548  4.59318  3.4214
R3al 0.056665  0.26546  4.58155  3.4214
R3a4 0.056591  0.26549  4.57967  3.4214
R4a0 0.056451  0.26549  4.58158  3.4200
R4al 0.056394  0.26546  4.57994  3.4154
R4a3 0.056372  0.26546  4.57969  3.4214

in the quality of the Nusselt number has been observed if we increase/decrease
the number of time steps in one period. Summarizing, the differences between
our and the reference results are 0.02% for velocity u1, 0.003% for temperature
O, and only 0.004% for the Nusselt number.

5.5 Planar flow around cylinder

Planar flow around cylinder has been the benchmark to viscoelastic flow prob-
lems to test different material models and numerical methods. In this study,
Oldroyd-B and Giesekus material models are implemented and applied within
this configuration. The coarse mesh is depicted in Figl5.8 The convective term
inside the momentum equation is neglected (creeping flow) and the material pa-
rameters are set to 5 = 0.59 and 79 = 1.0 for comparison with other references.
Similar to [41, [1,118], numerical results do not show pointwise convergence in the
wake region for the Oldroyd-B model beyond Weissenberg number We = 0.7.
Only for We < 0.7 our numerical results show a mesh independent behaviour
in a pointwise sense, but similar as in [41], we can show that the numerical
stability increases significantly by using the LCR model and computations up
to We = 2.0 or more are visible. In contrast to other approaches, the same

o~

Figure 5.8: The coarse mesh for planar flow with a priori local refinement loca-
tions.
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Mesh NEL DOF

R3al 656 15823
R3a2 944 22457
R3a3 1520 35715
R3a4 2672 62221

R3ab 4976 115223
R3a6 9584 221217
s e s R3a7 18800 433195

Figure 5.9: Computational mesh R3a3 with local refinement. Right: mesh
information.

numerical results are obtained by using a direct steady approach instead of
time-dependent simulations. The full computational domain (—20 < z < 20)
has two symmetry lines which cross the center of the cylinder (origin (0,0))
while the velocity inflow has one symmetry line coincide with the x-axis. It is
therefore reasonable to consider only half of the domain for numerical simula-
tion. The local refinements are applied around and in the wake of the cylinder
to get more accurate results with less computational effort which is shown in
the coarse mesh of Fig. 5.8l By local refinement we mean to refine for the next
mesh level only those elements attached to the location that we prescribed be-
fore hand (bold lines in Fig. [(.8). One examplary grid is shown in Fig. for
mesh R3a3. Our extensive tests for this configuration show that 3 times regular
refinement plus additional local refinements is a very good compromise between
accuracy and computational efforts. In the following, we show that the stress

Table 5.5: Oldroyd-B, We = 0.6: NL denotes the number of nonlinear itera-
tion. Peak 1 and 2 denote the peak value of stress on the cylinder and in the
wake respectively. Initial solution is zero vector.

Level R3a2 R3a3 R3ad R3a5  Ref.[dl,27] Ref[26]
Drag  117.764  117.776  117.779  117.779 117.775 117.78
NL 10 10 10 10 - -

Peak 1 95.591 94.443 94.354 94.294 - -
Peak 2 15.877 16.738 17.247 17.377 - -

and the drag values for We = 0.6 lead to mesh independent results and are in a
good agreement with [41] for mesh R3a4 and R3a5. The drag value converges,
if local mesh refinement is used, which leads to a slightly higher number than in
|41, 11, 27] but slightly lower than in [26], see Tab. The stress plot depicts
qualitatively the same one from [41]. Here, the Newton method behaves very
stable with respect to different mesh levels which is shown by the number of non-
linear iterations. For all computed meshes, by using a direct steady approach,
the Newton method needs 10 iterations starting from zero before satisfying the
nonlinear stopping criterion that is set to 10~®. Hence, the approximate solu-
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tions for We = 0.6 can be obtained with the same accuracy as other references
results without having to use much computational efforts due to pseudo-time
stepping. Fig. .10 clearly shows that mesh converged solution can be obtained

' ' R3a2 ' R3a2
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Figure 5.10: Oldroyd-B, We = 0.6: Normal stress convergence with local
refinement. Right: zoom of the wake part.

for We = 0.6 with Oldroyd-B fluid. For different mesh levels, Peak 1 and Peak 2
seems to fully converge by mesh refinement. Although Peak 2 seems to converge
later than Peak 1 by refinement, it does not show any mesh dependent solution.
This is due to the fact that Peak 2 occurs in the wake region where high stress
gradient is expected near the stagnation point of the cylinder.

Table 5.6: Oldroyd-B, We = 0.7: Newton behaviour and dimensionless drag
values. Initial solution is zero vector. Reference value of drag is 117.323 [1].

Level R3a2 R3a3 R3a4 R3ab R3a6 R3a7
Drag 117.302 117.316 117.321 117.322 117.323 117.323
NL 11 11 11 11 11 11

Peak 1 108.466 107.061 107.246 107.104 107.055 107.068
Peak 2 27.539 31.167 34.993 37.809 41.189 43.086

The presented methodology also recovers the same problem as other authors
when computing for We = 0.7. Here, the first normal stress converges in a
pointwise sense only around the cylinder region to that value which is denoted
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Figure 5.11: Oldroyd-B, We = 0.7: Mesh dependent solutions from several
authors. Right: zoom of the wake part.

as Peak 1, while in the wake region it does not show mesh independent solutions
with increasing the local refinement. As already predicted from computation
of We = 0.6, the mesh converged solution is getting difficult for We = 0.7. In
this configuration, Oldroyd-B fluid model suffers in the high stretching region
which is similar to extensional ﬂo7 see Appendix[A4l Nevertheless, the drag
(contains not only stress but also pressure values) converges to a value which is
the same as in |1], see Tab.

Table 5.7: LCR, Oldroyd-B, mesh R3a4: Newton behaviour and dimen-
sionless drag values. NL denotes the number of nonlinear iterations.

We Drag NL We Drag NL We Drag NL
0.1 130.366 8 0.8 117.347 4 1.5 125.665 4
0.2 126.628 5 0.9 117.762 4 1.6 127.523 4
0.3 123.194 4 1.0 118.574 6 1.7 129.494 4
0.4 120.593 4 1.1 119.657 6 1.8 131.578 4
0.5 118.828 4 1.2 120919 5 1.9 133.754 4
0.6 117779 4 1.3 122.350 4 2.0 136.039 5
0.7 117.321 4 1.4 123.936 4 2.1 138438 5

IExtensional flow describes uniaxially stretching the fluid in both directions. Filament stretching
is one example of such a flow
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The same as before, for We = 0.7, the Newton method needs a number of
iterations which is independent of the used mesh levels. Thus, for critical We
number in the case of Oldroyd-B model, the approach remains stable, too.

Table 5.8: Conf, Oldroyd-B, mesh R3a4: Newton behaviour and dimen-
sionless drag values. NL denotes the number of nonlinear iterations. The initial
solution uses lower level for We = 0.1 while for the other We numbers, the initial
solution uses the solution of the previous We number.

We Drag NL We Drag NL We Drag NL
0.1 130.366 2 0.4 120.598 3 0.7 117.344 4
0.2 126.629 3 0.5 118.837 4 0.8 117.392 5
0.3 123.196 3 0.6 117.792 4 0.9 div. 35
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Figure 5.12: Nondimensional drag values from different authors.

The advantage of our approach gets clear from the two examples of We = 0.6
and We = 0.7. Although the results for We = 0.7 may not necessarily represent
the exact solution in the wake for Oldroyd-B (if any), the approach allows
numerically stable solutions for higher values of We, see Tab. 7 Here, the
Newton method needs only few iterations to satisfy the stopping criterion which
we set to 107® when increasing the We number continuously by 0.1. For this
table, the initial solution is zero for We = 0.1 while for the other We numbers,
the initial solution uses the solution of the previous We number. The advantage
of EO-FEM is very pronounced in this case, namely by stabilizing the nonlinear
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term inside LCR. Thus, numerical computations for higher We numbers are
made to be possible.

On the other hand, the viscoelastic model with conformation stress tensor
formulation for Oldroyd-B, equation (23I), is not able to converge at We = 0.9,
see Tab. (.8 Hence, the LCR model is very potential in this configuration.

The plotted results of Tab. [ are very comparable to what other au-
thors have presented, see Fig. Our approach recovers what other numer-
ical schemes with LCR are able to do, however, with a more efficient solution
method.

At this point, we also show the influence of the nonlinear term inside the
momentum equation onto the drag and stress values on the cylinder and in the
wake region for We = 0.6 and We = 0.7. Here, the Oldroyd-B model is coupled
with the nonlinear Navier-Stokes equation and the same inflow parameters as
the ones for the creeping flow are set. This setting gives a small amount of
inertia effect which leads to Re = 1.0. Tab[5.9 shows that by retaining the non-
linear term (u- Vu), the peak values of the stress are less than if we neglect the
term (Stokes flow), compare with Tables and The drag values, which
are converged for both We = 0.6 and We = 0.7, are bigger than if we neglect the
nonlinear term. It means that by introducing the inertia, the elasticity effect re-
duces accordingly and vice versa. Thus, the drag becomes bigger. Numerically,
by introducing the inertia, the Newton method needs more iterations to satisfy
the same stopping criterion. But apart from that, our numerical approach is
stable whether the nonlinear term in the momentum equation is neglected or
not.

Table 5.9: Oldroyd-B with Navier-Stokes: Newton behaviour and dimen-
sionless drag values for We = 0.6 and We = 0.7. Initial solution is zero vector.

Level R3a2 R3a3 R3a4 R3ab R3a6 R3a7
We = 0.6
Drag 118.526 118.539 118.543 118.544 118.544 118.544
NL 13 13 13 13 13 13
Peak 1 91.978 91.831 92.137 92.007 91.971 91.984
Peak 2 12.802 13.191 13.473 13.559 13.643 13.727
We = 0.7
Drag 118.218 118.230 118.234 118.235 118.236 118.236
NL 14 14 14 14 14 14
Peak 1 104.067 103.670 104.110 104.018 103.986 103.985
Peak 2 22.163 24.252 26.194 27.498 28.779 29.541

Next, in the same way as in [41], we validate our new approach by performing
simulations for the Giesekus model, with the specific choice of mobility factor
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a = 0.01. The model has a better pointwise mesh convergence in the wake
than in the case of the Oldroyd-B model due to the fact that Giesekus model
introduces a nonlinear term to control extensional flow in the wake region, see
Appendix [A4l It is shown in Fig. .13 that our approach leads to the same
result of cutline of the conformation stress tensor as in [41] for We = 5 with
the direct steady approach. Furthermore, we perform the same simulation for
We = 5 with the corresponding nonsteady approach, which confirm the same
results of Peak 2 and drag values.

T T T 1100 T T T T
sggg 7777777 Conformation stress - Peak 2 ———

1000 Hulsen et. al. M3 1050 i

1000 - g
950 g
800 900 | |

850 - 1

800 ! ! ! ! !
0 20 40 60 80 100

600 -

Conformation stress 11

Time
110 T T T T
Drag values
400 105 F B
Peak 1 a 100 k i
b 95 | g
200 —
90 | 1
i 85 H 4
O
0 | | | 80 1 1 1 1 1
0 1 > 3 4 5 0 20 40 60 80 100

Cutline on the cylinder and in the wake Time

Figure 5.13: Giesekus model, We = 5: Left: direct steady approach resulting
in drag= 96.9429. Right: nonsteady approach with mesh R3a5 only.

The computation for We = 20 uses the initial solution of We = 5 and we
consecutively compute higher We numbers up to We = 100 by using mesh R3a5,
see Tab. From this table, we can see again that the approach remains
stable and needs only few iterations before satisfying the nonlinear stopping
criterion which we set to 1078. The corresponding nonsteady approach for
We = 100 with the same mesh R3a5 can be seen in Fig. [5.14] which again leads
to the same results for the peak 2 and drag value as the one with the direct
steady approach.
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Table 5.10: Giesekus model, mesh R3a5: Newton behaviour and dimen-
sionless drag values. NL denotes the number of nonlinear iterations and Peak 2
denotes the second peak of the conformation tensor. The initial solution is zero
for We = 5 while for larger We numbers, the initial solution is the solution of
the previous We number.

We Drag Peak 2 NL We Drag Peak 2 NL
5.0 96.943 924.45 14 60 85.859 12010.57 4
20 89.905 4204.51 12 70 85.356 13773.61 4
30 88.304 6318.79 5 80 84.937 15502.45 4
40 87.256 8311.32 5 90 84.585 17207.87 4
50 86.476 10199.10 4 100 84.287 18897.95 4
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18500 -
o 12000
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Figure 5.14: Giesekus model with o = 0.01. Left: direct steady approach for
We = 5,20, 30, 40, 50, 60, 70, 80, 90, 100. Right: nonsteady approach for We =
100.
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Applications

This chapter is dedicated to the application of 2D flow simulations that show
interesting physical phenomena. Basically, they are separated in two sections,
namely nonisothermal and viscoelastic flow. These simulations include the flow
in a heat exchanger, the lip-vortex growth in a contraction viscoelastic flow and
viscoelastic flow in a cavity. These complex flows behaviour are of industrial
and research interest.

6.1 Nonisothermal flow

In this section, two examples of temperature dependent viscosity flows and one
example of heat dissipation flow are presented. The first two examples have
different configurations for different industrial purposes by setting k; = 0 in
equation (2.2]), while the last example (by setting k2 = 1 in the same equation)
has a configuration that may be used in the viscoelastic section of contraction
flow.

6.1.1 Temperature-dependent viscosity: heat exchanger

Nonisothermal flows can be found in any heat exchanger appliances. The main
idea of this tool is to transfer heat through channels with Newtonian fluid as me-
dia transport. Hot water comes into the channels, and heat is released through
channels wall. In order to demonstrate the flexibility and efficiency of the
corresponding numerical experiments, the flow is controlled by temperature-

\\TT® Eo—shp ‘
™ \
} ‘\vu E -slip ‘
In 4:_? ‘ Eu!
} ,,’ ‘ EO—SUD ‘
¥
; mofsuo ‘

Figure 6.1: Problem set up.
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Figure 6.2: Computational mesh with local refinement.

dependent viscosity relation. It means that a slightly lower temperature value

as Dirichlet boundary data is set at one of the channel. Thus, a localized larger

viscosity value will qualitatively ’stop’ the flow on the corresponding channel.
Prototypical test simulations are set with a given viscosity function

n=mn0 e(*+538) (b, + b, D)7 6.1

with specific parameters a1 = ay = 1.0,a3 = 179.4,b3 = 0,7, = 1.0. Here,
|ID| = \/D;; D, is the magnitude of the usual symmetric part of the gradient
velocity, D = 3(Vu + Vu®). The choosen material parameters do not yet
correspond to any certain type of fluid. The specific geometry (width = 3.5
and length = 44 in non-dimensional units) and setting are given in Fig. [B1]
which shows 4 channels installed for low Reynold number flow (Re ~ 14). The
hot fluid enters the inflow section with non-dimensional temperature © = 250
and a parabolic profile of velocity. Heat is then distributed to all channels by
the diffusivity of the heat transfer model in equation ([Z2]). We specify Dirichlet
data for the temperature (© = 190) to all channels except to the second channel
(© = 180) to control the fluid flow at this pipe through the viscosity function.

Table 6.1: Mesh informations

Mesh Cells Nodes Edges Dof

R1a0 752 1095 1846 13335
Rlal 2264 2849 5112 37467
R1la2 5264 5847 11110 82455
R2a0 3008 3693 6700 49227

R2al 6008 6691 12698 94215
R3a0 12032 13401 25432 188691
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6.1. NONISOTHERMAL FLOW

Table 6.2: NL/MG for different levels, with Tol denoting the linear stopping
criterion

Tol/Level R1a0 R2a0 R3a0 Rlal Rla2 R2al

101 10/1 9/1 10/1 9/1 9/1 8/1
102 7/1 7/2 7/2 7/1 7/1 7/2
1073 6/1 6/2 6/3 6/1 6/1 6/2
1078 5/5 5/6 5/8 5/4 5/4 5/5
UMFPACK 5/- 5/- 4/- 5/- 5/- 5/-

On this geometry, we compute for mesh Rla0, R2a0, R3a0, Rlal, Rla2 and
R2al (see Fig. [6.2). The local refinement is set for channel 1, 3, and 4.

All initial solutions start from zero. Table shows how the proposed
method converges with respect to a given number of digits for the linear multi-
grid solver. Here, NL denotes the number of Newton iteration, while MG
presents the averaged number of multigrid iterations per nonlinear step. We
can see from Table that the local refinement does not disturb the multigrid
convergence. The memory requirement of the used computer is still capable to
run a direct linear solver (UMFPACK) for this problem at least up to 3 refine-
ments. In this case, the multigrid performance is getting closer to UMFPACK
(with respect to the number of nonlinear iterations) by decreasing the linear
tolerance. It is clear that for a linear tolerance of TOL = 108 the multigrid
needs more or less the same number of nonlinear iterations as UMFPACK

As it is already expected, this Dirichlet temperature difference will neverthe-
less increase the local viscosity and hence ’stop’ the flow at the corresponding
channel. Fig. shows the resulting flow behaviour which almost stops at
the second channel caused by a locally growing viscosity. In the left figure, the
same Dirichlet temperature (6 = 190) is prescribed to all channels (the viscos-

= 0.0215

—0.0143

0.0072

0.0
= 0.0268

=~ 0.0179
t0.0089
0.0

Figure 6.3: The Euclidean norm of velocity. Top: The flow is not blocked.
Bottom: The flow at the second channel is blocked
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ity value is set to 0.001 at all channels) while in the right figure, the Dirichlet
temperature at the second channel is set to © = 180. Hence, viscosity at this
channel grows to 0.0144 (~ 14 times bigger than before), and finally the flow is
'stopped’ at this channel.

6.1.2 Temperature dependent viscosity: micro-reactor

In the following, the simulation is extended with respect to a more complex
geometry, which has more channels. This configuration is prototypically used
in chemical micro-reactor processes. Fig. (top) shows typical flow profiles
of flow simulation with constant viscosity (a; = as = b3 = 0), while in the
same figure (bottom) shows the corresponding flow simulation with nonlinear
viscosity. Here, the flow of all middle channels is blocked, again by prescribing
different wall temperature values as boundary condition. Thus, the flow goes
only through the top and the bottom channels. Fig. shows clearly the
different flow profiles with respect to the different viscosity parameters. This
leads to the idea of a ‘non-mechanical valve’ which can be controlled by setting
the outside temperature only. As a prototypical application, one may think of
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Figure 6.4: Streamlines for flow with constant viscosity (top) and nonlinear
viscosity (bottom)
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Figure 6.5: Cutline A and B of the velocity magnitude

hot pattex material (for glue purposes), which can flow when the temperature
increases and which will become an elastic solid when the temperature decreases.

6.1.3 Heat dissipation

In this subsection, the effect of adding a viscous dissipation term into the equa-
tion of energy is analyzed. The additional dissipation term, which is just the
symmetric part of the velocity gradient, is activated by setting k3 = 1 in equa-
tion (Z2)). This additional term can be physically viewed as viscous heat gener-
ation along with the fluid flow. The heat, which is generated from this friction,
may dramatically change the temperature and velocity profile of the flow. Thus,
it can be interesting for polymer flow modelling.

The heat transfer model is tested with constant viscosity (n = 1) for the
well-known 4 to 1 contraction geometry. A non-slip boundary condition at the
upper wall is set, while a Dirichlet condition is prescribed at the inflow (see Fig.

00
[68). By neglecting the time derivative, 5 = 0, one directly calculates the

stationary result with the proposed Newton-multigrid solver.

Although zero temperature is prescribed at the inflow, heat is produced
along the channel as the friction becomes higher. Generally, it gives additional
heat locally as the material begins to flow. Fig. shows the qualitative effect
of the dissipation term. One can see from the cutline diagram (y = 1) that
near the inflow (—20 < z < 0), heat is produced slowly. Yet after entering

x
4
E Eo—stip
u=1u. mo-stip Eut
@ _ Olﬂ . t
o= Symmetryline I 1
-20 0 20

Figure 6.6: Geometry of the 4 to 1 contraction configuration
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Figure 6.7: The cutlines of 171, 6,

and

30 35 40

Ug

the contraction (0 < x < 20), there is a big gradient of temperature up to the
end of the channel. The components of velocity and of the stress tensor also
show that the computation may face numerical difficulties around the entrance.
The characteristic of such a geometry appears clearly from the entrance point
where the sharp corner point may cause numerical problems in viscoelastic flow
since then the stress tensor will raise to a huge value (see Fig. [68). So, local
refinement around the entrance corner and also at the end of the channel are
very important to get a better capture of the temperature field.

Figure 6.8: 3D representation of stress tensor component for the 2R_al mesh

Tab. shows how the Newton-Multigrid and Newton-UMFPACK solver

converge for this kind of problem. It is clear that the proposed method seems
to be robust with respect to the use of local refinement. As a test configuration,
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Table 6.3: NL/MG for different levels, with Tol denoting the linear stopping
criterion

Tol/Level R1a0 R2a0 R3a0 Rlal Rla2 R2al

1071 11/1 12/2 12/2 13/1 12/1 11/1
1072 9/2 10/3 10/4 9/2 9/2 9/2
1073 9/4 9/5 9/6 9/2 9/3 9/3
10-8 9/13 9/17 9/19 9/7 9/7 9/9
UMFPACK 9/- 9/- 9/- 9/- 9/- 9/-

a low inertia flow is set, Re ~ 2.5. This is typically controlled by the velocity
profile, characteristic length of the width of channel, and the given viscosity
value. The meshes as well as the isoline of axial stress tensor are shown in
Fig. [6.9] which stresses the role of adaptive refinement. Here, mesh 1R_al is
comparable with mesh 2R, and mesh 1R_a2 or mesh 2r_al are comparable with
mesh 3R. This situation is also ilustrated in Fig. where the axial stress
profiles are compared along the entrance line (z = 0).

Figure 6.9: Isolines for the stress tensor on several different meshes. Note the
different scale between mesh R1a0, R2a0, and R3a0

These prototypical studies have to be seen as preparing simulations for more
complex flow configurations for which the extra stress tensor T will be extended
to a model that adds elastic property in the case of viscoelastic fluid flow. This
gives a better physical meaning of additional heat along the flow due to viscouss
dissipation and makes an interesting subject for the numerical tests.
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Axial stress

Figure 6.10: Axial stress profile along the entrance line x =0

6.2 Viscoelastic-related flow

6.2.1 Lip vortex growth

The 4:1 Contraction problem is one of the most well-known benchmarks for
viscoelastic flow. The difficulties of this configuration are due to the sudden
contraction from width 4 units to 1 unit, hence causing an extensional flow at
the downstream channel and a recirculation zone at the corner. The aim of
this section is to describe the growth mechanism of the lip vortex as shown in
some experiments by Boger and Walter, see [11], where its enhancement at least
depends on the type of contraction, the flow rate and the properties of the fluid.
Similar to the planar flow around cylinder configuration, we prescribe Dirichlet
data for velocity at the inflow which is parabolic and we set the outflow velocity
to natural conditions [37] and no-slip condition at the solid walls. The stress
inflow boundary is computed in the same way as before. The outflow and solid
wall stress boundaries are set to natural boundary conditions. Here, we apply

AY

TI,X T T T T T[T}

Figure 6.11: Coarse mesh and local refinement location.

Figure 6.12: Computational mesh for the contraction problem.

a priori local refinement around the corner to produce a smooth streamline for
capturing the lip vortex as can be seen from Fig. [6.11] showing the coarse mesh.
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6.2. VISCOELASTIC-RELATED FLOW

A coupled finite element approach with a Newton solver was presented for vis-
coelastic flow in [51], where they used a streamline-upwind method and found a
weak salient corner in size. The lip vortex appears above We = 2.0 but disap-
pears as the We number increases. Furthermore, in |49, [50], streamline-upwind
does not discover the lip vortex in the finite element context. In contrast to
those, finite volume with a staggered grid approach has found the increasing lip
vortex in size as We number increases, see [76]. Hence, lip vortex enhancement
depends on the numerical techniques, the stabilization method and the mesh
size.

In this study, as already mentioned, we use the fully coupled approach with
consistent edge-oriented stabilization based on LCR for Oldroyd-B type of fluid.
The mesh is shown in Fig. where the distribution of elements is concen-
trated around the entrance corner utilizing hanging nodes.

Lip vortex growth mechanism

0.018 ‘ ‘
We=11, x=-0.125 ——

0.016 | We=9.0, x=-0.125 —— |
We=7.0, x=-0.125 ——

0.014 We=5.0, x=-0.125 —=— |
' We=3.0, x=-0.0625 —=—
We=2.3, x=-0.0625 —o—

0.012 i

0.01 4

0.008

Streamline

0.006
0.004

0.002

-0.002

cutline just close to the entrance wall

Figure 6.13: Cutlines of streamfunction at z = —0.0625 and = = —0.125.

The lip vortex starts to appear at We = 2.3 that, however, is hardly visible
in our case. Fig. [(.I3]shows cutlines for the streamfunction close to the entrance
wall where we can see the passage of the lip vortex as the cutline crosses the
zero line for We = 2.3. Here, we take a line as close as possible to the wall in
order to detect the first time appearance of the lip vortex as the We number
increases. The width from the y-axis to this line can be taken as the smallest
width of the cell close to the lip entrance, which in our case, corresponds to the
width of the smallest element after refinement, h = 0.0625. As the lip vortex
begins to grow, one may shift this line one cell width to the left in order to cross
the lower curvature of the streamfunction. Fig. illustrates the appearance,
the growth and the collision of the lip vortex and the salient corner vortex as
the We number grows from We = 1.0 to We = 11.0 that is accompanied by
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Figure 6.14: The growth of lip vortex. First row: We = 1.0,3.0,5.0, second
row: We =7.0,9.0,11.0.

a decreasing corner vortex. The appearance of the lip vortex, which is above
We = 2.0, is in a good agreement qualitatively with previous studies. Here, one
can clearly see the streamline separation between the lip and the salient corner
vortex before both vortices join together at We = 9.0 and then form one big
vortex at We = 11.0.

6.2.2 Viscoelastic in a cavity

We consider the numerical simulation of both direct steady and nonstationary
flow in a lid-driven cavity for the Oldroyd-B model. The initial condition for
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Time Time

Figure 6.15: Kinetic energy until ¢ = 30 for different We numbers with and
without EO-FEM.

70



6.2. VISCOELASTIC-RELATED FLOW
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Figure 6.16: Kinetic energy until ¢ = 30 for different We numbers with and
without EO-FEM.

the stress tensor is unity and a regularized velocity boundary condition is im-
plemented such that u(x,t) = (8(1 + tanh 8(t — 0.5))x2(1 — z)2,0)T on the top
boundary while zero velocity on the rest of boundary is prescribed. For direct
steady simulations, the velocity profile evolves to u(x,t) = (162%(1 — x)2,0)T
on the boundary. The total viscosity (zero-shear viscosity) is set to ny = 1.
The simulation is performed with the mesh size h = 1/64 and with coarse mesh
size h = 1/4. The time step is chosen to be At = 0.1 in the sense that no
further improvement in kinetic energy with respect to smaller time steps could
be observed. The number of cells for the corresponding computation level n is
Ln = 2427 We calculate the kinetic energy by %||uh||(2))ﬂdx and analyze the
impact of jump stabilization for different We numbers.

For We = 1, the kinetic energy seems to reach a steady state as shown in Fig.
and it remains steady at least up to time ¢ = 30. For We number bigger
than 1, there is a tendency that the solutions start to be nonstationary at longer
time computation, ¢ > 30. At the same time, the cutline of LCR component
starts to oscillate for bigger We number, which later on may break the numerical
computation. Yet, as the We number increases, the LCR variable does not show
spuriousity at time ¢t = 30 if EO-FEM is applied, see Fig. At even bigger

We=1.0 We=3.0
7 ‘ 9 ‘
We=1.0 —— s | We=3.0 ——
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Figure 6.17: Cutline of 1,; at x = 0.5, t = 30, for different We numbers with
and without EO-FEM.

We number on the same time, ¢ = 30, oscillations become clear and visible

for LCR variable without EO-FEM. On the contrary, EO-FEM stabilizes the
oscillations at least up to time, t = 30, which may avoid numerical breakdown
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Figure 6.18: Kinetic energy until ¢ = 30 for different We numbers with and
without EO-FEM.

at longer time ¢ > 30, see Fig. [6.1§

Furthermore, it is interesting to see the streamline visualization of the flow

inside of the domain as shown in Fig. The same phenomena as in high
inertia flow, we observe also a change of the streamline patterns as the We
number increases. At lower We numbers, the bottom corner vortex looks equally
the same. Yet, as the We number increases, the lower left vortex decreases while
the right one evolves in size. Thus, it shifts the whole flow field to the left.

Figure 6.19: Shape changing of corner vortex in a cavity flow. From left to right
We =1,3,4.

6.2.3 Non-isothermal viscoelastic flow in 4:1 contraction

ou
P ot

+p(u-Vi)u= pr+nsAu+%V~e¢+p(1—fy®)j
V-u=0

o) 1 6.2
% V) (@ p0) B = L ()
%—?—F(V@)u: k1 V2O + kg exp(y) : D

The following example is simulation of the full system of equation (62),

which is a coupling of equation ([2I7) and energy equation, in 4 to 1 contraction
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6.2. VISCOELASTIC-RELATED FLOW

configuration. The computational domain and inflow settings are the same as in
the previous subsection The viscous dissipation of the temperature field
is integrated by replacing koD : D with k2 exp(ep) : D to have a more physical
meaning. After dropping all time derivative term, %, a steady state solution is
sought for We = 2.0. According to previous subsection B.2.1] We = 2 is where
a lip-vortex about to appear at the entrance. Here, the inflow velocity is set
to parabolic profile in x-direction and let the outflow velocity to be Neumann
boundary condition. No-slip condition is applied as usual at solid walls. The
inflow stress profile is pre-computed from the given velocity profile, and let the
rest stress boundary to be Neumann. The inflow temperature is set to be zero,
so there is no heat coming into the domain. But as the flow begins, heat is
generated along the flow field due to the viscous dissipation term inside the
energy equation, exp() : D. And the generated heat will change the viscosity
of the fluid as well through the relation:

0= e(2+58) (b + b, D)7 6.3

where a1, a9, a3 and by, ba, b are specific material parameters. The increasing
3180
[ 2380
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Figure 6.20: Temperature field over the domain

temperature can be seen in the above Fig. [6.20] where it increases along the solid
wall. In the contraction zone heat is further generated and reaches its highest
value at the downstream solid wall. The viscosity field changes also and is seen
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Figure 6.21: Temperature and shear dependent viscosity field over the domain

in Fig. 62Tl where it decreases its value at the downstream. This is partly due to
the increasing temperature. For this simulation we set the material parameters
asa; = as = ag = 1.0,b7 = by = 1.0, b3 = 10 with thermal diffusivity k; = 0.001
and kg =1.0.

6.2.4 Future extension

The flexibility of monolithic approach is quite visible from the given examples
of non-isothermal and vicoelastic-related applications and experiments. The
monolithic approach can be extended as well into other interesting application
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such as multiphase viscoelastic fluid flows. In the following, we propose one
extension of an application in the area of biodynamics, especially in the medi-
cal image-based simulation which mainly deals with flowing blood particles in
arteries, see [42]. The set of equations to solve are separated in two regions,
namely the solid (¢s; < 0) and fluid (¢s >= 0) region. Inside the solid, where
the particle behaves elastic, an Oldroyd derivative of the Cauchy-Green defor-
mation tensor is being used. Having no deformation as numerical variable, an
ALE approach can be avoided. Thus the whole system can be solved in a full
Eulerian monolithic approach.

0 /
pa—;‘ Y p(u-V)u=—Vp+2yV - D+ H(sign(¢;))GV - B
V-u=0
995 _
%—]:’ + H(sign(¢s)) [u- VB = Vu-B —B-Vu’] + (1 — H(sign(¢s)))B =0
6.4
with a heavy-side function
) [ 1 for ¢s<0 (solid region)
H(sign(¢s)) = { 0 for ¢s >=0 (fluid region). 6.5

Here, G is the modulus of transverse elasticity, B is the left Cauchy-Green
deformation tensor. The solid stress can be based on: neo-Hookean material,
The Mooney-Rivlin model or the Saint Venant-Kirchhoff model. The deviatoric
stress is defined as [ =[] — 1 (tr[]) I for 2D. The third equation of equation
(27 is the level set equation, which is a pure hyperbolic transport problem.
This interface tracking method is easily used by just using the sign of ¢ to iden-
tify the different domain (fluid-solid). On the other hand, the oldroyd derivative
of the left Cauchy-Green deformation tensor may cause a numerical instability.
Thus, a numerical stabilization technique is needed for both cases, which in this
study by using a jump stabilization technique, EO-FEM.

6.2.5 Reversibility shape

To give a quick short that the monolithic approach may deal with the above set
of equations, we test a reversibility shape. A solid circle is set in the middle of
a square domain [-1,1] with radius r = 0.75 while given a shear at the top and
bottom with different direction. Thus, the solid will be stretched. The density
is equal for solid and fluid (p = 1), and there is no body force acting. The
viscosity of the fluid is set to p = 1.0 with constant G = 4.0. External forces
are applied by setting Dirichlet boundary for x-velocity to be 1(at the top) and
—1(at the bottom). These external forces are applied up to time ¢ = 0.7 and
then released. They are applied between time 3.7 < t < 4.4 and then released.
At time ¢ = 7.4 the forces are applied in the other direction i.e, —1(at the top)
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Figure 6.22: Area plot over time.

and 1(at the bottom) and then released at time ¢ = 8.1 up to the end, see
Figl5.23] and Fig.

The initial solution is found by considering everywhere fluid region and solv-
ing a direct steady set of the following equations:

plu-Viu=-Vp+2nV-D

V-u=0 6.6
R |
B=1

with B is propotional to identity so that the deviatoric stress is zero at rest,
and r is the radius of the initial solid.

The plot of the solid area over the time when the external forces are applied
is shown in Fig. We can see that by increasing refinement the area plot is
getting closer to the exact value.

Figure 6.23: Circularity at time ¢ = 0,0.7.
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Figure 6.24: Circularity at time ¢ = 9.1, 15.
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Summary and Outlook

This work has been about developement, analysis and implementation of nu-
merical methods for solving both nonisothermal and viscoelastic fluid flows of
Oldroyd-B and Giesekus type. The aim of this work is to gain more insight in
the issue of solving numerically viscoelastic flow simulations.

The work begins by introducing the physical set of equations, which couple
the generalised Navier-Stokes and the stress equation. The reformulation of the
stress equation is presented and given in the LCR approach. This approach is
able to capture high stress gradients that occur behind a stagnation point in the
domain. Some boundary conditions are applied to the new set of LCR equations.
The work proceeds by discretization in space, which is based on the LBB-stable
FE pair of Q2 P; to maintain highly accurate solution. This is focused on a mixed
FEM formulation of the velocity-pressure-stress that also deals with the LBB
condition. In order to stabilize the choosen equal order interpolation between
velocity and stress, two stabilization techniques are investigated. The first is
by adding an artificial stress diffusion into the stress equation and the second
deals with a jump stabilization over the element edge which is more elegant.
The total resulting discrete system is treated by a monolithic technique. The
design of this technique allows many other constitutive material laws to be
easily integrated for later purposes. This is included inside an iterative Newton-
multigrid approach. In one hand, the Newton is responsible to give a quadratic
convergence when the initial solution is close. On the other hand, the multigrid
is responsible to solve the linearized algebraic system in an effective way. This
approach is validated through a number of well-known benchmark problems.
This includes the driven cavity, the flow around cylinder, MIT benchmark 2001,
as well as the viscoelastic benchmark of flow around cylinder. Inside a driven
cavity benchmark, the kinetic energy is calculated for high Re number. Here,
the high order Q2 P; pair is able to obtain results at Re = 10000. The flow
around cylinder benchmark calculates drag and lift at Re = 20 and is meant
to validate state of the art of the Newtonian flow within a few Newton steps.
The MIT benchmark 2001 shows how the monolithic approach maintain the
accuracy of time-dependent simulations. Here, hanging nodes are applied and
show that they may increse accuracy of some functional values (in this case is the
Nusselt number) if treated with care. The viscoelastic benchmark shows that
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the method is applicable as well to solve an additional coupled stress equation,
and very important, it gives a high accurate results in comparison to many other
approaches. After successful validations, few applications are presented in the
area of generalised Newtonian flow as well as for viscoelastic flow.

The work shows that the presented numerical technique is applicable to any
designed constitutive models given in any family of equation (L)) as well as
its LCR formulation if needed. When the flow models are hyperbolic PDE by
nature (as in the viscoelastic case), there are some issues that appear in solving
the aforementioned flow models within FEM. These are the reformulation of the
original viscoelastic model that must be able to capture the high stress gradient,
the choice of FEM functions that must follow the so-called LBB condition, the
stabilization techniques if required and the robust outer/inner solvers. Unfortu-
nately, most flow models are nonlinear in reality. And this is why this method is
so meaningful. A strong solver alone may not be enough to solve the given flow
models, and the stabilization technique must be able to cure unknown problems
due to the mixed FEM or even due to the high nonlinearity appeared within the
given model. The inner solver should be robust, which means clever enough, to
find the direction of the global minima which is later controlled by a damping
parameter from the outer solver. These components are then treated in a fully
coupled way of solving in order to maintain accuracy of the solution at each
time step or furthermore, in a direct steady simulation by just canceling the
scaled mass matrix.

Finally, it is shown that a monolithic finite element framework with high
order FEM (M-FEM) is very robust with respect to convergence and accuracy
in dealing with the above mentioned constitutive models. Strong nonlinear
and linear solvers are part of this robustness, which in this case are Newton
(divided difference Jacobian) and multigrid (local MPSC smoother). A priori
local refinement which leads to hanging nodes may increase accuracy in some
cases if it is treated with care. The method seems to be a very promising way for
highly nonlinear flow model or precisely in the case of solving viscoelastic flow for
high We numbers with log-conformation representation (LCR). The advantages
of using this method are its positivy preserving, no CFL-like restriction due to
monolithic treatment, higher order with local adaptivity.

Future work could be on any directions, i.e. the implementation of LCR
in other viscoelastic models that take the temperature effect into account, see
[20], or in order to simulate more realistic flow problems, free surface technique
with level set method or 3D extension of the current numerical method or a
posteriori error control mechanisms for automatic grid refinement/coarsening.
Other directions could be also paralelization of the method by introducing GPU
computing, which means a new idea of dealing with local MPSC within multigrid
approach or an in-depth study on the stabilization technique for high order
element (EO-FEM) together with the choice of the interpolation functions.
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Appendix

A.1 Derivation of LCR in details

Following Oldroyd, the general viscoelastic model is given by

0, T 9,D
T+A 5t —27’]0<D+AT 5t>

where

5aT_DT+1—a
5t Dt 2

(-T-Vu-vu’ . T)

DT 0T
Dt~ Ot

1
(Vu-T+T-vu?l) + ;“

and +(u-V)T

By setting a = 1, the second term of the right hand side dissapears,

BT o

—_— . _— . _— T.
5= o +(u-V)T-T-Vu—Vu' -T.

And in the same way,

D 9D T
W—E+(U-V)D—D~Vu—Vu -D

Inserting these into equation [A 1] gives

T+A(aa—rf+(u~V)T—T~Vu—VuT~T)=

D
210 <D+A,[88—t+(u-V)D—D-Vu—VuT~D])

Since the stress tensor consists of viscous and elastic part,

A,
T= 2770TD + o,

Al

A2

A3

A4

A5

A6

AT
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we can insert this into the left hand side of equation (A.6)

(2D + o)

Ay A,
2np—D+ o +A| +(u-V)(2n—D + o)

A ot A
A, T A,
oD .
2’(]0 D+AT[E+(UV)D—DVU—VU D]

We rearrange the last equation,

A, D
+2n9——A 8——l—(u-V)D—D~Vu—VuT~D
A ot
—l—A(%j—i—(u-V)a'—Vu-a—o"VuT): A9

210D + 2no A (%]tj +(u-V)D-D -Vu-Vu’ - D)

Now, we can see that the second term of the left and right hand side cancel out,

A
2n0fD +o+
Jo T
+A a—i—(u-V)a’—Vuwf—o‘-Vu = A.10
2’[70D

By introducing g = %, we end up with Oldroyd-B model which is given in

elastic stress equation,

A(aa(z-+(u~V)0'Vu~0'o"VuT)+2no(ﬁ1)D+0'O. All

A.1.1 Olroyd-B in conformation tensor formulation

Before we describe LCR, we need to reformulate equation (ATT]) into its con-
formation stress tensor formulation. First, we introduce the conformation stress
tensor,

az%p(r—l). A.12

By inserting this into equation (A1), we have

\ (a(k(T—I»

=

+(u~V)(X A A

+210 (6 — 1) D + %”(r ~I)=0.A13

p My My T
5 (T—I)—Vu-((T—I)—((T—I)~Vu>
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A.1. DERIVATION OF LCR IN DETAILS

Since the time derivative of unity and the convective part of it are zero, we can
rewrite the last equation to be,

B OT ey ) — B (Yur - V1) - (e vuT - 1.V
A<A8t+A(u V)T A(Vur Vu-I) A(T Vu IVu))

120 (B —1)D + ”—/{’(T—I) —0A.14

Here, one remembers that Vu-I+4I-Vu” = 2D. Hence,

ot

+2n,D + 2ng (5—1)D+%”(T—I):O A.15

np<a7-+(u-V)‘r—Vu-‘r—T-VuT>

Since 1, = 10 — 1o, the middle terms of the left hand side cancel out. Thus, the
Oldroyd-B can be rewritten in terms of conformation stress tensor reformulation,

convection

— 1
(u~V)T—Vu~T—ToVuT+X(T—I):0. A.16

o,
ot

stretching

A.1.2 Olroyd-B in LCR formulation

Ler introduces a new variable 1 = R log(T)RT through eigenvalue computa-
tions, which is placed on every cubature points inside the FE code. The refor-
mulation starts with rotating the conformation tensor 7 into its main principle
axis (diagonalization process)

RTTR = diag(\, \2) A17

with R being an orthogonal matrix, and apply the same rotation to the velocity
gradient,

Vu=B+Q+Nr! A.18

R"VuR = R"BR+ R"QR+ R"Nt'R. A.19

The goal is to design a symmetric matrix B, which commutes with the confor-

mation tensor. Having this in mind, we can easily set RTBR = diag(RT VuR).

Thus, RTVuR = ( e ) RTBR = ( mi 0 ) while the ma-

mo1  Ma2 0 mo
trices Q,N are set to be pure rotational, RTQR = _Ow U(')) >, RTNR =

-n 0

termine the component of matrices €2, N to be, n = % and w =
2 T M

0 . . . . . .
< n > By inserting all matrices into equation (AJ9), we can easily de-

Aamia
A1mal
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Now, by inserting equation (A.I]) into the stretching part of equation (A1)
gives

—Vu-T—7-Vu' = A.20

—B+Q+Nr . r—7. B+ Q+ N+ HT A.21

Now, remember that B - 7 = 7 - B (commutable) and Q, N are pure rotational
matrices N = —N7'| we obtain the stretching part to be

~Vu-t—7-Vul' = 2B.-7— (21 - 7Q) A.22

and equation (A.6) evolves into
or 1
—I—-7). A.23
o A

Finally, by replacing the conformation tensor with the new variable v =
log(T), the Oldroyd-B model evolves again into

o
ot

+ V)T — (Qr —7.Q) - 2B.7 =

(¥ —1). A24

==

T (WV)p— (Qap —p.Q) — 2B =

A.2 Derivation of conformation tensor inflow condi-
tions

The viscoelastic fluid has a memory during motion, which means its stress com-
ponents are not zero at the inflow, when we consider a periodic flow motion.
The stress inflow condition is derived from the fully developed velocity inflow
uz(y) by solving the consitutive material law in equation (A.J6). The fully de-

veloped inflow velocity means that at te inflow u, = 0, % = 0. From continuity

condition, it also implies that Uy = 0. We start with recalling equation (A.16]),

or 1

and by dropping time derivative and the convection, which vanishes on the
inflow, we obtain

—+u-V)r-Vu-1—7-Vu

1
_Vu.T_T.vHT+K(T_I)=0 A.26
A27
We insert fully developed inflow assumptions,
Ouy
_ ( 0 Dy > ( Tex Txy ) _ ( Tex Txy ) < 83 ) A.28
0 0 Tyx Tyy Tyz  Tyy c’)yL
l Tex Txy 10 _
+A [( Tyz  Tyy 0 1 B A29

A.30
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A.3. EIGENVALUES IMPLEMENTATIONS

Since conformation stress tensor is symmetric matrix, we have 3 linear scalar
systems,

1
X(l — Tyy) = A3l
Ouy 1
— (00— A.32
Tyy Ay A(O Tay) 3
Ouy 1
These equations yield
ou g\

at the inflow.

A.3 Eigenvalues implementations

LCR needs eigenvalues computation for the transformation from the numerical
variable, 1, into the conformation stress tensor, 7. The exponential relation
between the two variables are laid on the eigenvalues,

c s A 0 c —s
o505 )T

AA — %Xy esAy + esha
¥ = ( —csA — ¢csha Py — $2 A\ A.36

where ¢ 4+ s2 = 1. This looks very easy. Yet, inside the numerical code, we
must be carefull of division by zero that might appear from approximation of v
in each time step. To avoid this, the rotation matrix components can be derived
from equation (A30]) by setting some if-condition.

If Ay = =)\ then

1 1 — 1 1 — 1
62:7+7M752f Jr,w’csz,,@' A.37

2 4 )\1 4 )\1 2 >\1

\}

If Ay = A; then this is a rare situation which can only happen in the case
of Ao = A1 = 0 in the first iteration when ¢ = 0 and the conformation stress
tensor is equal to unity, 7 = L

If Ay! = Ay then this is the most cases when numerical iterations start,

62 _ ¢11)\1 - ¢22)\2 2 ¢11A2 - 1[)22)\1 o 77Z112

, 8¢ = , C§ = A.38
A2 — )2 A2 — A2 Ao — A1
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A.4 Details of stretching in the wake region

In Chapter 5 we learn that Oldroyd-B fluid suffers from uniaxial extensional
flow in the symmetry line behind the cylinder (stagnation point). Here, we
will revisit the Oldroyd-B with conformation stress tensor formulation to take
a closer look what could possibly happen in the wake region,

convection

— 1
(ro)T—VuoT—T~VuT+X(T—I):O. A.39

o,
ot

stretching

In the symmetry line, we are interested in the axial conformation stress tensor,
T11,
87'11 67’11 67’11 8U3; 8ux 1

By S L T Te
o Ty Ty T ae T g, Txr(mo

Now, we can cancel the time derivative for steady solution and u, = 0 along
the symmetry line,

0 Oug 1
“w%”%ﬁﬁx(m‘”zo or
87‘11 - 2 8um 1
e mor ™ A Al

Since we are interested in the maximum value of 711, the first derivative should
vanish,

2 Ouy 1 ( 1)
= — — — T
Uy OX i Uz A T ©
1
Max. 71 = ———5— A.42
1—-2A%=

This suggests that in the case of Oldroyd-B model, Aaai;’ # %, otherwise confor-
mation stress tensor value is not physically reasonable. In the case of Giesekus,
there is an additional second order conformation stress tensor that bounds the
maximum stretching behaviour to be somehow finite. Having in mind that
T12 = 0 in the symmetry line and mobility factor is a < 1, the same derivations
as above for Giesekus gives

o,
—oz7'121—(1—204—2A8ux)7'11+(1—a)=0 or

_(1—2@—2A%):ﬁ:\/(1—2&—2A%)2+4a(1—a) A4z
N —2a '

T11
which suggests no division by zero nor any imaginary number when « # 0.
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Velocity x

A.5. MORE MIT BENCHMARK 2001 RESULTS

A.5 More MIT Benchmark 2001 results

MIT Benchmark 2001 results in periodical oscillations of temperature, velocity
at point 1 and the Nusselt number.
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Figure A.1: Velocity x oscillations at point 1
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Velocity y

Nusselt number

APPENDIX A. APPENDIX
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Figure A.2: Velocity y oscillations at point 1
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Figure A.3: Nusselt number oscillations
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