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Abstract We construct and investigate robust nonparametric tests for the two-

sample location problem. A test based on a suitable scaling of the median of the set

of differences between the two samples, which is the Hodges-Lehmann shift estima-

tor corresponding to the Wilcoxon two-sample rank test, leads to higher robustness

against outliers than the Wilcoxon test itself, while preserving its efficiency under a

broad range of distributions. The good performance of the constructed test is in-

vestigated under different distributions and outlier configurations and compared to

alternatives like the two-sample t-, the Wilcoxon and the median test, as well as

to tests based on the difference of the sample medians or the one-sample Hodges-

Lehmann estimators.
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1 Introduction

Consider the classical two-sample problem with independent observations,

X1, . . . , Xm ∼ F

Y1, . . . , Yn ∼ G,

where F and G are distribution functions corresponding to continuous distributions.

We focus on the situation where G is a shifted version of F , G(x) = F (x−∆) for all

x ∈ R and an unknown ∆ ∈ R. We denote the density of F by f as usual.

The two-sample location problem has received considerable attention in the past.

The robustness of tests of the null hypothesis of equality of F and G, which can

be expressed as H0 : ∆ = 0 in our context, against violations of the assumptions

is still under discussion. The two-sample t-test is sometimes regarded as robust

against deviations from normality, because the central limit theorem guarantees its

asymptotic validity, if the common variance of F and G exists. Reed and Stark (2004)

verify the usefulness of this approximation in case of sample sizes between 10 and 40.

For a discussion of weaknesses of the t-test see e.g. Wilcox and Keselman (2003).

The most prominent nonparametric competitors to the t-test are the Wilcoxon

two-sample rank sum test and the median test. The Wilcoxon test rejects the null

hypothesis H0 if the sum W of the ranks R1, . . . , Rn of Y1, . . . , Yn in the sample of

all observations X1, . . . , Xm, Y1, . . . , Yn is too large or too small. Critical values are

determined by permutational arguments since all possible
(

m+n

n

)

assignments of the

ordered ranks R(1) < . . . < R(n) are equiprobable under H0. As opposed to this, the

median test uses the number of values in Y1, . . . , Yn larger than the global median

of all m + n observations, which follows a hypergeometric distribution under H0.

Randomization can be applied to achieve exact significance levels.

A general approach to the construction of tests is standardization of an estimator

of ∆ and rejection of H0 if this test statistic is too far from zero. The two-sample

t-test is derived from this idea. Alternatively, we can replace the sample mean used

in the t-test by a robust estimator like the sample median, as recommended e.g. by

Bovik and Munson (1986) and Fried (2007). The resulting estimator is the difference

between the medians of the two samples,

∆̂(3)
m,n = Ỹn − X̃m = med{Y1, . . . , Yn} −med{X1, . . . , Xm}.

Following Lehmann (1963b), we construct tests of H0 using the Hodges-Lehmann

two-sample estimator ∆̂
(2)
m,n of ∆ (Hodges and Lehmann 1963). It corresponds to that
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value which we need to subtract from Y1, . . . , Yn to align the samples, meaning that

the Wilcoxon rank sum statistic of the aligned samples becomes equal to its expected

value under H0, which is n(m+ n+ 1)/2. For calculations we have the formula

∆̂(2)
m,n = med{Yj −Xi, i = 1, . . . , m, j = 1, . . . , n} .

∆̂
(2)
m,n is symmetrically distributed about the location difference ∆ whenever the un-

derlying distribution F is symmetric, or if the sample sizes m and n are equal. As

opposed to its normal theory competitor, the difference of the sample means,

∆̂(0)
m,n = Ȳn − X̄m,

∆̂
(2)
m,n cannot be expressed as a difference of a statistic based on Y1, . . . , Yn and a

statistic based on X1, . . . , Xm, and it is less affected by outliers.

In case of symmetric distributions, Lehmann (1963a) proposes estimation of ∆ by

∆̂(1)
m,n = Ŷn − X̂m .

Here, X̂m and Ŷn are the Hodges-Lehmann one-sample location estimators (Hodges

and Lehmann 1963) for the center of the distribution of the X and the Y sample,

respectively, obtained from the signed rank test for hypothesis about the median of

a single sample. X̂m and Ŷn can be calculated as the median of {(Xi + Xj)/2, 1 ≤
i < j ≤ m} and {(Yi + Yj)/2, 1 ≤ i < j ≤ n}, respectively.

If F is symmetric, ∆̂
(1)
m,n and ∆̂

(2)
m,n have the same asymptotic relative efficiency as

compared to ∆̂
(0)
m,n, which equals the Pitman efficiency of the two-sample Wilcoxon

test relative to the two-sample t-test, namely 12σ2[
∫

f 2(x)dx]2, where σ2 is the vari-

ance of F , see Lehmann (1963a). This asymptotic efficiency becomes 3/π ≈ 0.955 at

the normal distribution, it never drops down below 86.4% and it can become arbi-

trarily high. Hoyland (1965) conjectures that ∆̂
(2)
m,n is to be recommended in case of

heavy tailed distributions. Moreover, he shows for the case of shifted asymmetric dis-

tributions F = G(· −∆) that the asymptotic efficiency of ∆̂
(2)
m,n is always larger than

that of ∆̂
(1)
m,n, and it can even become arbitrarily large. The asymptotic efficiency of

∆̂
(1)
m,n relative to ∆̂

(0)
m,n is σ2[

∫

f(x)f(−x)dx]2/[
∫

F 2(−x)f(x)dx− 0.25].

Section 2 constructs tests for H0 : ∆ = 0 based on the robust estimators ∆̂
(j)
m,n,

j = 1, 2, 3, as alternatives to the two-sample t-test, Wilcoxon test and median test.

Section 3 compares small sample versions of the tests, which are based on permu-

tational arguments, in a simulation study. Section 4 studies large sample versions

of the tests, which are based on the asymptotic distributions of the test statistics.

Section 5 concludes.
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2 Tests for the two-sample location problem

We want to test H0 : ∆ = 0 against the alternative H1 : ∆ 6= 0. The classical

procedure for this testing problem under the assumption that F and G are shifted

normal distributions is the two-sample t-test. It is obtained standardizing ∆̂
(0)
m,n by

the pooled sample variance Ŝ2 = 1
m+ n− 2

[

∑m

i=1(Xi − X̄m)
2 +

∑n

j=1(Yj − Ȳn)
2
]

.

Among its drawbacks are its reliance on the normality assumption in small samples

and the possibly large loss of power caused already by a few outliers even in rather

large samples, see e.g. Fried (2007). Therefore it seems worthwhile to investigate

alternatives. Generalizing the idea underlying the two-sample t-test, it is intuitive to

reject H0 if a robust estimator of ∆ like ∆̂
(j)
m,n, j ∈ {1, 2, 3}, is far away from zero,

scaling it by an estimate of the variability.

2.1 Tests based on the Hodges-Lehmann estimators

For scaling the Hodges-Lehmann two-sample estimator (HLE2) ∆̂
(2)
m,n (or the differ-

ence between the one-sample estimators HLE, ∆̂
(1)
m,n) we look for an adequate robust

estimator of the variability in the data. Whereas ∆̂
(2)
m,n measures the variability be-

tween the two samples, a related measure of the variability within the two samples is

the median of the absolute set of differences in the samples,

S(1)
m,n = med{|Xi −Xj| : 1 ≤ i < j ≤ m, |Yi − Yj| : 1 ≤ i < j ≤ n} .

Another measure of the variability within the samples is the median of the absolute

set of differences within the joint median-corrected sample,

S(2)
m,n = med{|Zi − Zj | : 1 ≤ i < j ≤ m+ n},

where (Z1, . . . , Zm+n)
′ = (X1 − X̃m, . . . , Xm − X̃m, Y1 − Ỹn, . . . , Yn − Ỹn)

′, and X̃m =

med{X1, . . . , Xm} and Ỹn = med{Y1, . . . , Yn} are the respective sample medians.

The distribution of T
(k,l)
m,n = ∆̂

(k)
m,n/S

(l)
m,n, k, l ∈ {1, 2}, is unknown in finite samples,

but distribution-free tests can be constructed by deriving critical values for the test

statistics using the permutation principle: we split the total N = m+n observations

repeatedly into two groups of m and n observations, and calculate the absolute value

of the test statistic for each of the permuted samples in two-sided testing. We reject

the null hypothesis if |T (k,l)
m,n | is among the largest 100α percent of these values.

If both m and n are small, we consider all possible splits. Under H0, since all

observations are exchangeable then, the rank of the observed value |T (k,l)
m,n | among all
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random splits has a discrete uniform distribution. An exact p-value is thus obtained

as p = A/B, where A is the number of splits leading to absolute test statistics at

least as large as |T (k,l)
m,n |, and B =

(

N

m

)

is the total number of splits. Randomization

can be applied to achieve exact significance levels, similarly as for the Wilcoxon

test. However, discreteness of the test statistic poses less severe problems than for

the latter, since different splits will almost surely lead to different values of the test

statistic. The test based on comparing p to the significance level α without further

randomization will be only a little conservative except if m and n are very small.

If not both m and n are small we suggest not to consider all possible splits,

and generate a large number b of random splits instead, including additionally the

observed ’true’ split. Already in case of m = n = 10 there are
(

20
10

)

= 184756 possible

splits, so that evaluation of all of these would lead to large computation times because

of the computational needs for the median. Under H0, the rank of |T (k,l)
m,n | within the

total b+ 1 splits considered follows again a discrete uniform distribution, so that we

can obtain an exact p-value as p̂ = (a+1)/(b+1), where a is the number of randomly

selected splits leading to absolute test statistics at least as large as the observed one

(e.g. Edgington, 1995, p. 41f). p̂ can be seen as a slightly positively biased estimate

for the p-value p arising from all possible splits. In our implementation, we restrict

the total number of splits to at most 10000 if α = 0.05, so that the standard error of

p̂ is about 0.0022 if p ≈ 0.05 and b = 10000.

If m and n are large, we can construct asymptotical tests based on ∆̂
(2)
m,n, see

Lehmann (1963c). If m,n → ∞ with m/N → λ ∈ (0, 1), N = m+ n, then we have

under H0
√

12λ(1− λ)

∫

f 2(x)dx
√
N∆̂(2)

m,n

a,H0∼ N(0, 1) . (1)

This leads us to an asymptotically N(0, 1) distributed test statistic under the null

hypothesis F = G if we plug in a consistent estimator of the value of the density h

of X − Y at 0, h(0) =
∫

f 2(x)dx. It is obvious from the above asymptotics that the

resulting test has the same relative asymptotic efficiency of 12σ2[
∫

f 2(x)dx]2 relatively

to the two-sample t-test as the Wilcoxon test, see also Lehmann (1963c).

For estimation of h(0) we apply a kernel density estimator to the set of all pairwise

differences within the two samples, using X2−X1, . . . , Xm−X1, . . . , Xm−Xm−1, Y2−
Y1, . . . , Yn − Yn−1 (i.e. m(m − 1)/2 + n(n − 1)/2 differences altogether). We could

also use the set of all pairwise differences within the full sample consisting of m+ n

observations instead, possibly correcting by the median within each sample, but this

did not lead to generally better results in our simulations. Note that the differences,
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which our kernel density estimator is based on, overlap and are thus not independent.

This does not impose problems with consistency because the resulting estimator can

be written as a U-statistic, which are consistent under general conditions.

2.2 Tests based on the difference of medians

Another possibility is to construct tests from the difference between the medians of the

samples. If X1, . . . , Xm, Y1, . . . , Yn are independent and the density f is continuous

and strictly positive at the median F−1(0.5), then we have asymptotically

√
n(med{Y1, . . . , Yn} −G−1(0.5))

a∼ N

(

0,
1

4f 2(F−1(0.5))

)

and

√
m(med{X1, . . . , Xm} − F−1(0.5))

a∼ N

(

0,
1

4f 2(F−1(0.5))
,

)

see Serfling (1980, p. 77). Since med{X1, . . . , Xm} and med{Y1, . . . , Yn} are indepen-

dent, an asymptotically standard normal random variable under the null hypothesis

F = G then is
√

mn

m+ n
2f

(

F−1(0.5)
)

∆̂(3)
m,n

H0,a∼ N(0, 1) .

To construct tests from ∆̂
(3)
m,n, we estimate f(F−1(0.5)) applying a kernel density

estimator to the combined median-corrected sample X1 − X̃m, . . . , Xm − X̃m, Y1 −
Ỹn, . . . , Yn − Ỹn.

In case of small sample sizes, we again apply the idea of permutation tests and

derive critical values from all splits of the joint sample, or from a random selection of

them if there are too many. Natural choices for standardization of ∆̂
(3)
m,n are S

(3)
m,n =

2med(|X1 − X̃m|, . . . , |Xm − X̃m|, |Y1 − Ỹn|, . . . , |Yn − Ỹn|), or the sum of the median

absolute deviations about the respective median (MADs) in the two samples. Fried

(2007) also designs tests for shift detection based on differences of sample medians

scaled by robust estimators of variability like the MAD, but under the assumption of

observing normal distributions contaminated by outliers. As opposed to this, we aim

at tests which are both robust and nonparametric and work under mild assumptions.

The permutation tests based on ∆̂
(i)
m,n, i = 1, 2, 3, constructed here are distribution

free under the null hypothesis, or at least approximately so if not all possible splits or

the asymptotical versions are used. In the next section we will investigate the power

of these tests under different scenarios.
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3 Performance of the tests in small samples

First we investigate the small sample versions of the tests, which use critical values

derived from the permutation principle. We consider sample sizes m,n ∈ {5, 10}
and generate 1000 pairs of samples for each of different data situations to study the

performance of the tests under different conditions. The power of the tests is approx-

imated by calculating the frequency of cases for which the null hypothesis is rejected

among the 1000 repetitions for each combination of error distribution and location

difference. The resulting power curves are smoothed a little by a weighted moving

average with weights (0.25,0.5,0.25). To compare the results for different distribu-

tions, we choose the sizes of the location differences as multiples of the difference

between the 84.13% and the 50% percentile of the distribution, which is 1 in case

of the standard normal. We report the results for ∆̂
(1)
m,n and ∆̂

(2)
m,n scaled by S

(2)
m,n as

this gave slightly larger powers than scaling by S
(1)
m,n. For ∆̂

(2)
m,n we use S

(3)
m,n, since

the test with standardization by the sum of the MADs of the two samples resulted

in more rejections under H0 than indicated by the nominal significance level in case

of unequal sample sizes, i.e. it was found to be oversized (anti-conservative) in this

situation.

Figure 1 depicts the simulation results for m = n = 10. We use randomized

versions of the Wilcoxon and the median test, which keep the chosen significance

level α = .05 exactly in case of clean samples from the same distributions. The

randomization tests based on the estimates of the location difference ∆̂
(k)
m,n, k =

0, 1, 2, 3, are almost exact. In case of shifted normal distributions, the two-sample

t-test of course offers the largest power, closely followed by the Wilcoxon test and

the tests based on ∆̂
(1)
m,n and ∆̂

(2)
m,n. The test based on ∆̂

(3)
m,n is worse but offers larger

power than the median test here.

The t-test loses its superiority in case of the heavy-tailed t3-distribution and per-

forms not much better than the median test then. The tests based on ∆̂
(1)
m,n and ∆̂

(2)
m,n

show the largest power and outperform the Wilcoxon test and the one based on ∆̂
(3)
m,n.

The randomization test based on the t-statistic (denoted by mean diff.) provides rel-

atively large power against a small location difference ∆, but is outperformed if ∆ is

large. In case of the t1-distribution, ∆̂
(3)
m,n leads to the most powerful test, followed by

∆̂
(2)
m,n, ∆̂

(1)
m,n and the median test. The Wilcoxon test is worse than these under these

conditions. The randomization test based on ∆̂
(0)
m,n performs better than the t-test

then, which becomes rather conservative, but considerably worse than all the other

tests considered here. In case of the skewed χ2
3-distribution, the randomization tests
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based on ∆̂
(2)
m,n or ∆̂

(0)
m,n achieve the largest power.

The two-sample t-test and the randomization test based on ∆̂
(0)
m,n lose all their

power because of a single large outlier in small samples, and the Wilcoxon test is

also affected considerably, although much less than the others. As opposed to this,

the robust estimators ∆̂
(1)
m,n, ∆̂

(2)
m,n and ∆̂

(3)
m,n offer better protection against outliers in

small samples, with ∆̂
(2)
m,n offering the largest power.

We got results very similar to those before also for m = 10 and n = 5 (Figure

2) and m = n = 5 (not shown here). A main difference is that a single large outlier

can disguise even a rather large shift when using the Wilcoxon or the median test in

case of small samples, i.e. the advantages of the tests based on the robust estimators

∆̂
(j)
m,n, j = 1, 2, 3, increase.

4 Performance of the asymptotical tests

In order to compare the performance of the asymptotic versions of the tests, we

first inspect their sizes in case of different sample sizes m = n ∈ {3, 6, . . . , 75} and

different distributions. We generate 10000 data sets for each setting and derive the

empirical rejection rates under the null hypothesis. The normal, t3, t2, t1, χ
2
1 and

two contaminated normal distributions (1− ǫ)N(0, 1)+ ǫN(0, 25) with ǫ ∈ {0.05, 0.2}
are considered here. Besides the two-sample t, the Wilcoxon and the median test we

include the tests based on ∆̂
(j)
m,n, j = 1, 2, 3, scaled by a kernel density estimate, as

described in Sections 2.1 and 2.2. For kernel density estimation we use the function

’density’ of R (R Development Core Team, 2009), version 2.9.2, with the default

Gaussian kernel and bandwidth.

Figure 3 indicates that a sample size of m = n = 30 observations is sufficient for

the asymptotical critical values leading to approximately valid statistical tests at a

5% significance level if the underlying distributions are normal, contaminated normal

or t-distributions with at least two degrees of freedom. The tests based on ∆̂
(3)
m,n are

oversized up to m = n = 20, and those using ∆̂
(2)
m,n up to m = n = 12 in these

situations. The tests based on ∆̂
(1)
m,n perform similarly to those using ∆̂

(2)
m,n except for

the 20% contaminated normal, for which ∆̂
(1)
m,n scaled by the kernel density estimator

becomes liberal. The t-test and the test based on ∆̂
(3)
m,n become conservative in case

of large samples from heavy-tailed distributions like the t1 and t2.
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Figure 1: Power of the small sample tests as a function of ∆, m = n = 10. Left:

Normal (top), t3 (center), and t1 distribution (bottom). Right: Normal with 1 outlier

of size 10 (top) or 1 outlier of increasing size, ∆ = 2 (center), χ2
3 distribution (bottom).

t-test (dotted), Wilcoxon (dashed), median test (solid), HLE ∆̂
(1)
m,n (bold dotted),

HLE2 ∆̂
(2)
m,n (bold dashed), ∆̂

(3)
m,n (bold solid) and mean diff. (dash-dot).9
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Figure 2: Power of the tests in small samples as a function of ∆, m = 10, n = 5.

Left: Normal (top), t3 (center), and t1 distribution (bottom). Right: Normal with

an outlier of size 10 (top), with an outlier of increasing size and ∆ = 3 (center), χ2
1

distribution (bottom). t-test (dotted), Wilcoxon test (dashed), median test (solid),

∆̂
(1)
m,n (bold dotted), ∆̂

(2)
m,n (bold dashed) and ∆̂

(3)
m,n (bold solid).
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In case of the very heavy-tailed t1-distribution, ∆̂
(1)
m,n and ∆̂

(2)
m,n scaled by the

density estimate lead to severe violations of the significance level. This phenomenon

seems strange given that the kernel density estimator should estimate the density

at 0 consistently given that the derivatives of the density exist and are bounded, cf.

Simonoff (1996, p. 42). Varying the bandwidth by changing the adjustment factor

improves the results, but different factors are needed for different sample sizes. We

report only the results for the default bandwidth since they correspond to routine and

automatic application of the tests. In case of the very right-skewed χ2
1-distribution,

∆̂
(1)
m,n and ∆̂

(3)
m,n lead to largely oversized tests.

We also inspected situations where one of the samples is twice the size of the

other one. A total sample size of m+ n = 60 observations is again sufficient for the

asymptotical critical values leading to approximately valid tests at a 5% significance

level for most of the distributions considered here. The χ2
1-distribution affords a total

of about 80 observations for the test based on ∆̂
(2)
m,n then. The two-sample t-test is

slightly oversized in this situation. The results when one of the two samples stems

from a contaminated normal were very different for contamination in the larger and

in the smaller sample: if the larger sample was contaminated, most of the tests except

the median test were conservative, particularly the two-sample t-test and the tests

based on ∆̂
(1)
m,n or ∆̂

(2)
m,n. If the smaller sample was contaminated, many of the tests

became anti-conservative, except the median test and the tests based on ∆̂
(3)
m,n.

Next we investigate the power of the asymptotical tests, generating 1000 samples

for each of several data situations and different sample sizes. Figure 4 illustrates the

results for m = n = 50 and location differences j ·0.04 · (F0.841−F0.5), j = 1, 2, . . . , 25,

where Fp denotes the 100p% percentile of the underlying distribution. In case of

normal distributions, the t-test is of course the most powerful procedure, followed by

the Wilcoxon. There is a substantial gap to the median test. The tests based on

∆̂
(1)
m,n or ∆̂

(2)
m,n offer about the same power as the Wilcoxon test, and the same applies

to ∆̂
(3)
m,n with respect to the median test.

The findings are almost the same, if there is one outlier of size 10 in one of the

samples, since all tests are robust against a single outlier in moderately large samples,

except for the two-sample t-test, which loses a lot of power and becomes the worst

test then (not shown here). To challenge the methods more, we consider situations

with a location difference ∆ = 2 and additional N(2k, k− 1)-distributed noise added
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Figure 3: Sizes of the asymptotical tests as a function of the total sample size m+ n

for different distributions, m = n. Left: normal (top), normal with 5% (center)

or 20% contamination (bottom). Right: t2 (top), t1 (center), and χ2
1-distribution

(bottom). t-test (dotted), Wilcoxon test (dashed), median test (solid), test based on

∆̂
(1)
m,n (bold dotted), ∆̂

(2)
m,n (bold dashed) and ∆̂

(3)
m,n (bold solid).
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to an increasing number k of observations in one of the samples, i.e. the size and

the number of outliers increase simultaneously. We consider outliers of random size

with increasing mean and variance, since outliers of identical size would harm the

kernel density estimators used for standardizing ∆̂
(1)
m,n and ∆̂

(2)
m,n less. The power of

the t-test resists a few small outliers, but breaks down thereafter. The tests based

on ∆̂
(1)
m,n and the Wilcoxon test perform somewhat better, but are dominated by the

median test and the tests based on ∆̂
(3)
m,n and ∆̂

(2)
m,n.

In case of the t3-distribution we get almost the same ordering of the methods

as for the normal distribution. The Wilcoxon test possesses the same power as the

tests based on ∆̂
(1)
m,n or ∆̂

(2)
m,n. The two-sample t-test is outperformed by the other

tests. As the tails of the distribution become heavier, in case of a t1-distribution,

the two-sample t-test loses almost all its power, according to the non-existence of

any moments. The most powerful test is the median test then, followed by the test

based on ∆̂
(3)
m,n and the Wilxocon test. The tests based on ∆̂

(1)
m,n or ∆̂

(2)
m,n become

anti-conservative here as noted before.

In case of right-skewed (shifted) χ2
3-distributions, the Wilcoxon test and the test

based on ∆̂
(2)
m,n are more powerful than the t-test. The tests based on ∆̂

(1)
m,n are quite

anti-conservative and not to be recommended in case of asymmetric distributions.

The tests based on ∆̂
(3)
m,n are more powerful than the median test but become anti-

conservative as the skewness increases, i.e. for (shifted) χ2
1-distributions. The median

test is somewhat more powerful than the t-test then. The Wilcoxon test is the most

powerful level α-test considered here in case of small values of ∆, whereas the test

using ∆̂
(2)
m,n is more powerful if ∆ is large.

We confirmed these results for sample sizes m = n = 30 (not shown here). The

main difference was that the tests using ∆̂
(1)
m,n or ∆̂

(2)
m,n were less anti-conservative

for these smaller sample sizes in those scenarios for which these tests had problems

before, see Figure 3. We checked these results also in case of unequal sample sizes

m = 2n = 50 (not shown here). The results were very similar to those reported above

for equal sample sizes, except for the test using ∆̂
(3)
m,n, which had severe problems with

asymmetric distributions in case of unequal sample sizes.
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Figure 4: Power of the asymptotic tests in case of increasingly shifted normal (top

left), t3 (top right), t1 (center right), χ
2
1 (bottom right), χ2

3 (bottom left), and normal

distributions with an increasing number and size of outliers, ∆ = 2 (center left),

m = n = 50. t-test (dotted), Wilcoxon test (dashed), median test (solid), test based

on ∆̂
(1)
m,n (bold dotted), ∆̂

(2)
m,n (bold dashed) and ∆̂

(3)
m,n (bold solid).
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5 Conclusions

Nonparametric tests for a location difference between two samples based on the prop-

erly scaled Hodges-Lehmann two-sample shift estimator, the median difference, can

be constructed using the permutation principle in small samples, or the asymptoti-

cal distribution otherwise. The resulting tests are distribution free in small samples

and at least approximately so in large samples. They perform very similarly to the

Wilcoxon test, from which this estimator can be derived, under a broad variety of

distributions, but they offer higher robustness against outliers. This is an advantage

particularly in routine application, where we cannot check all data points carefully.

Furthermore, we found a somewhat better performance as compared to the Wilcoxon

test in case of asymmetric distributions. These advantages of the test based on the

median difference as compared to the Wilcoxon test correspond to the stronger effects

of extreme observations on the test statistic of the latter: a single outlier changes the

sum of the ranks substantially in small samples, while the median difference is little

affected. This explains the higher vulnerability of the Wilcoxon test against outliers,

and also its smaller power in case of heavy tailed and skewed distributions, since

these cause extreme observations.

The main disadvantage we observed was a violation of the significance level of

the asymptotical test in case of the very heavy-tailed t1-distribution, which does not

possess any moments. The reason might be an inadequate choice of the bandwidth by

the applied kernel density estimator. This problem could be overcome by a manual

choice of the bandwidth, what is not possible in automatic application. A closer

investigation of the effects of the dependencies between the pairs of observations on

the resulting kernel density estimation seems worthwhile, particularly with respect

to the suitable choice of the bandwidth.

We also constructed test statistics from the difference of the two sample medians.

The resulting tests obtain even larger robustness against outliers in normal samples

and perform similar to the median test otherwise. The main drawback of these

tests, as compared to those above, are the reduced power in case of normal and

moderately heavy-tailed distributions and problems in case of large skewness, or in

case of skewness in combination with different sample sizes.

Initially, we also considered the 20%-trimmed two-sample t-test since these tests

are often recommended in the literature (e.g. Keselman et al. 2002; Reed and Stark

2004), but did not find relevant advantages with respect to the criteria and data

situations considered here. Moreover, we found these tests to be oversized even in
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case of moderate to large sample sizes, and not to improve the ordinary two-sample

t-test substantially in case of a moderate number of medium-sized outliers, the heavy-

tailed t1-distribution and the skewed χ2
1-distribution, under which the ordinary t-test

has little power.
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