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GENERALIZED DUALITY FOR k-FORMS

FRANK KLINKER

ABSTRACT. We give the definition of a duality that is applicable to arbitrary
k-forms. The operator that defines the duality depends on a fixed form (2.
Our definition extends in a very natural way the Hodge duality of n-forms in
2n dimensional spaces and the generalized duality of two-forms. We discuss
the properties of the duality in the case where € is invariant with respect to a
subalgebra of s0(V'). Furthermore, we give examples for the invariant case as
well as for the case of discrete symmetry.

1. INTRODUCTION: SELF DUALITY AND Q-DUALITY

Given a Riemannian or semi-Riemannian space (V,g) of dimension D, the metric
¢ induces isomorphisms * : A¥V — AP~FV/. This so called Hodge operator has the
property *? = 1 where the sign £ depends on the dimension and the signature of
the metric by 2|, = (=)™ P~* 1 If the dimension of V' is even, D = 2n, we
have a particular automorphism * : A"V — A"V. For e = 1, i.e. D =0 mod 4,
we call the n-form F self dual and anti-self dual if it is an eigenform of * to the
eigenvalue 1 and —1, respectively, i.e.

(1) x F=+F.

Duality relations are in particular interesting for two-forms. Consider a vector
bundle F over the Riemannian base (M, g). The curvature tensor of a connection
on F is a two-form on M with values in the endomorphism bundle of E. So for
dim M = 4 we may consider connections with (anti-)self dual curvature tensor. In
the case of E = T'M (anti-)self duality is connected to complex structures on M,
see [3].

In dimension four we may use the volume form vol = %1 to rewrite (1) as
(2) % (*vol A F') = £F'.

This motivates the introduction of Q2-duality of two-forms in arbitrary dimension,
see for example [1, 2, 4, 7] and [9]. It is defined as follows. Let §2 be a four-form on
V and consider the symmetric operator g : A2V — A%V with

(3) xq F = +x(xQAF).
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Let us suppose that o admits real eigenvalues, then a two-form F is called (9, 5)-
dual if it obeys

(4) « (xQ A F) = BF ,

see [1]. In local coordinates with Q = €, and F' = Fj; the left hand side of (4) is
given by *(*Q N F)ij = %Qijlekl.

FEzxample 1.1. Consider the three-form ¢ in seven dimensions that is given by 6;;, =
1 for (igk) = (123), (435), (471), (516), (572), (624), (673). We associate to this the
four-form 6 := 0 in seven and the four-form © := 6 + 6 A eg in eight dimensions.
The latter is self-dual, i.e. © = %3@.! The forms above are strongly related to
the discussion of go and spin(7). In particular, the duality relations yield the
decompositions of the adjoint representations of so(7) and so(8) into irreducible
representations of go and spin(7), respectively:

e x5 : A2R7 — A2R7 has eigenvalues 1 and —2 and the eigenspace decom-
position corresponds to the decomposition of A?R7 with respect to gs. In
particular E(1,*5) = 14 is the adjoint representation and E(—2,%5) = 7 is
the vector representation of gs.

o xg : A2R® — AZR® has eigenvalues 1 and —3. The eigenspace decomposi-
tion corresponds to the decomposition of A2R® with respect to spin(7). In
particular E(1,*©) = 21 is the adjoint representation and E(—3,%g) =7
is the vector representation of spin(7).

Example 1.2. Consider the globally defined parallel four-form Q := wy A wy + wa A
ws + w3 A ws on the quaternionic-Kéhler manifold (M, w1, wa, ws).

Then the operator *q on A2TM ® C has eigenvalues 1, —% and corre-
sponding to the eigenspaces F(1,*q) = S?Y ® 0z, E(—%,*Q) = A%Y ® S?Z and
E(—224l xq) = oy ®52Z. Here TM ® C =Y ® Z is the (local) decomposition of
the complexified tangent bundle into a rank-2m and a rank-2 bundle with respect
to the Sp(m)Sp(1)-structure, and g = oy ® oz the corresponding decomposition
of the complexified Riemannian metric on M. The 1-eigenspace is connected to
half-flatness introduced by the authors in [1, 2].

_ 2m+1
3

Remark 1.3. Equation (4) can be generalized further in an straight forward way.
Let 2 be a 2k-Form and F be a k-Form. Then xq(F) := *(xQ A F) is also a k
form and the question whether or not xq has real eigenvalues is reasonable. Such
operators is discussed in [5] and examples are given in [10] for k¥ = 4,6 in dimension
ten.

2. DUALITY OF k-FORMS

All examples in the previous section have in common that the /-form € yields a
duality relation on the space AV only. It would be preferable to give for one fixed
Q a duality relation on each A*V. As we will see in Lemma, 2.5 this is possible at
least up to some mild restrictions.

IThe invariant four-orms are explicitly given by 0i5.1 = 1 for (ijkl) = (1245), (1276), (1346),
(1357), (2356), (2437), (4567) and ©;;4; = 1 for (ijkl) = (1245), (1276), (1346), (1357), (2356),
(2437), (4567), (1238), (4358), (4718), (5168), (5728), (6248), (6738).
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Definition 2.1. Let Q € A’V be an ¢-form on V = RP. The duality operator bq
is defined by
(5) bo: AV 5 AV, Fem(QeF).

Here 7, : A'V @ A*V — A*V denotes the projection in the decomposition of
AV ® A*V with respect to so(V), see (49).> We call the duality operator by OF
ORDER N if it admits N distinct eigenvalues.

Ezample 2.2. In [10] the authors discuss two operators on three- and two-forms in
dimension D = 10. These two are covered by the special case ¢ = 2k in Definition
2.1.

Example 2.3. A very basic example is the following. Let 2 be a complex structure

on V = RR?" interpreted as two-form, i.e. Qijﬂjk = —§;5. Then by on A'V
has eigenvalues +i with eigenspaces A%Z.)V = AMV and A%fi)V = A%V, The
eigenvalues of bg on A*V for k < n are then given by %i for ¢ = 0,...,k with

eigenspaces A’Ek,zq ,)V = AFAMOV) @ AY(A%TV) = AF99V. For k > n we
% 1
refer the reader to Remark 2.12. For instance, the Hodge dual to A’(l;fk,zq _)V =
n—k ¢

An—k—aqy/ ig A’z‘jfk—zq _)V = A" Gk+ay
Tntk ¢

Remark 2.4. The preceding example can be generalized. For Q € A%V the action
of bg on A"V is just a the action of +Q2 € s0(V)) on A*V.

Lemma 2.5. Let Q € A'V. Then bq # 0 only if £ is even and ¢ < 2k.

Proof. Consider the so(V')-decomposition as given in (49). Then we have

min{k,(} i—1 min{k,¢}
6) APV Cc AV @ APV = @ @[[k tl—i—ji—jlo® @ ARHE2iy
=0 j=0 i=0

if and only if 2¢ = ¢ for some i € {O,...,min{k,[}}. This is £ even and % <
min{k, ¢} or £ < 2k. O

Remark 2.6. Because of the restriction given in Lemma 2.5 it would be preferable,
that ¢ is not too big. Therefore, the case ¢ = 4 is of particular interest. The main
examples which have been cited so far are connected to this value.

FEzample 2.7. The examples from section 1, the Hodge duality and the 2-dualities,
are operators of the form bg,. They are of order two (Hodge-duality and Example
1.1) or order three (Example 1.2) with ¢ = 2k.

Lemma 2.8. In local coordinates be may write @ = (Q, 4, ). Then b and b3,
are given by

dm1.d
(7) (D) by, g = Qb [il...im(simrll‘..ikﬁl
and

(8) (A *5b1'"b’"[d’"“'”ldkQljl“‘j’"‘il..Aim]le"'dm]b

Lot T Vg gm [ime1 e 1o-bn

respectively. In particular bq is trace free.
2To simplify the formulas we feel free to consider the projection up to a constant factor. This

leads to the fact, that for example by = 2% for a four-form Q acting on A2V, compare Example
1.1 and Lemma 2.8.
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Proof. Consider = (9;, .4,,.) and F = (F;, ;). Then the definition of bo(F) as
projection on AFV in (6) yields

(bQ(F))nZk = Qj1 Jm i1 dm Fjlmjm Gl -0k

ai. ak dyi...dm dm+1 .dj J1---Jm
- 5 g 5]1 JmGm1. kQ at...

amdy...dy

[dm+1 dk d
[2m+1 Q v m]il-"im]Fdlmdk

The square of by obeys

B (F))i.in = O35 0, (00(F)) i

_5a1 ak(gbl bmbmai. kah Jm
1k ]”mam+1

C1...Cm,
- F bmt1.--bk

1...achl...cmb1...bm :

_ 60,1 amam+1 .ag dl...dmdm+1...dk bl...bmbm_'_l...bk.
17nlm+1 ik Cl---Cmbm+1-<<bk j1~--jnza7n+1~--ak

m Cl...Cm
QI amQ1 by b Fy

_§b1 bmdmtr-. de]1 Jm ; ]Qd1~~d7n

1ol 1o i bioob Fdi..dy

If we use (7) we see, that the trace of bq is given by

tr(bQ):Qil'”im[i1 L gimte it i

tm Tm41- lk] tm

=0.
]

Remark 2.9. Let Q be an (-Form with £ = 2m. From (7) we see that the linear
operator bq is skew symmetric if m is odd and that it is symmetric if m is even. In
particular, b is diagonalizable with purely imaginary eigenvalues if m is odd and
real eigenvalues if m is even.

If bg is of order N with different eigenvalues 31, ..., By, then bg solves its minimal
polynomial AN — (B + -+ By)AVN L+ 4 (=)VBy - By = 0.

Because b3, is symmetric, it is contained in S?(A*V'). So the right hand side of (8)
is an element in AV ® AV that is embedded in S?(A¥V) via some é-tensor. If bg
is of order two with eigenvalues 51 # —f2 then bg has to be symmetric, too. This
is enough to state the following result on duality operators of order two.

Proposition 2.10. Let Q be an £-form on V. The operator bq is of order two with
two eigenvalues 31 # —B2 only if A°V C S?2(AFV). In particular £ =0 mod 4.

Moreover, the projections on the two respective eigenspaces are given by

B 1
= B2 — B (1 Bo ba)
9) 8 ]

"0 B =B, ( B )
Remark 2.11. The restriction to ¢ in Proposition 2.10 is a consequence of the sym-
metry of bg or, equivalently, of (50). This is not a contradiction to example 2.7
where the Hodge duality operator is of degree 2 but £ = dim V' may be equal to 2
mod 4, because in this case we have §; = —§; = 1.

We emphasize on the following compatibility of the duality operator with the Hodge
operator.
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Remark 2.12. e Consider V to be of dimension D and let € A?*™V such
that bq is defined on A*V as well as on AP~FV. Then we have
(10) (9.") * b = (=1)*P=B (F)bg

where the action is on A*V.
In particular, if F € A*V is an eigenform of b to the eigenvalue 3, then
k

*F € AP7FV is an eigenform of bg to the eigenvalue 5/ = (D’L‘k)ﬂ, ie.
k  ~ An—k _: )
A(B) ~ A(ﬁ,) via *.
e If we consider V of dimension 4m and Q € A%V then for all F € A?™V
we have

(11) * bo(F) = byo(F) = bo(xF).

In the case that € is either self-dual or anti self-dual, i.e. *Q = +Q we have

xbo(F) = +bo(F). Therefore, for F € A%g; we have *xF = £F or 8 = 0,

ie. (A*mV)F C A%’)L. We will recall this fact in Proposition 3.5.

3. INVARIANT DUALITY OPERATORS

3.1. General properties of invariant duality operators. Let bq : A*V — AFV
be a duality operator of order N associated to Q € A*V. Consider Q to be invariant
with respect to a subalgebra h C so(V'). Then bg is invariant under b as well. If
AV =W, @ ... ® W, is the decomposition into irreducible representation spaces
with respect to h, then
bQ ’Wa = ﬁa]l

for some number 3, due to Schur’s Lemma, i.e. W, C A](C,@a)' In particular, bq is
diagonalizable with (not necessarily distinct) eigenvalues i, ..., 3,.. Because bq is
trace free, we have in this special situation

(12) > Badim(W,) = 0.
a=1

Definition 3.1. Let Q € A’V be invariant under a subalgebra h C so0(V). Then
bg : AFV — AFV is called PERFECT if it is of order r where r is the number of
irreducible submodules of AV .

If Q € A*V is invariant with respect to a subalgebra b C s0(V), then this is the same
as to say that it spans a singlet within the decomposition of the so(V')-representation
AV into irreducible h-representations.

As noticed before the case ¢ = 4 is of particular interest. On the one hand due
to the Q-duality of two-forms as in (4), on the other hand due to the restriction
cf. Lemma 2.5. An b-invariant four-form may be constructed via an h-invariant
metric as the A*V-part of S2h C S?(A%V). This is in particular possible in the
cases where § is a holonomy-algebra, see [2]. The four-forms from the examples in
section 1, that deal with spin(7), go, and sp(n) @ sp(1), are of this type. How they
occur as a singlet and that they are unique up to a multiple can be seen as follows.

For instance, the four-form @ € A*R, or it Hodge-dual § € AR, considered in
Example 1.1 is the singlet in the go-decomposition A*R® ~ ASR” = 27©7®1. The
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same is true for the four-form © € A*R® also from Example 1.1. It represents the
singlet in the spin(7)-decomposition A*R® = 35 @ 27 @ 7 @ 1. Moreover the four-
form from example 1.2 represents the singlet in the sp(n) & sp(1)-decomposition
of A*V for V = C*. Let us recall the splitting V = E ® H with H = C?
and H = C?", then it can be located in the following way. The splitting yields
ANV = A2(H®FE) = (1® S?E) ® (S?H @ A2H) @ (S?E ® 1). Then the singlet
in A*V coincides with singlet in 1® 1 C (1 ® S?E) ® (1 ® S?E) C A%V ® A%V
coming from the trace in S?E ® S?E. In particular, these three examples yield
perfect duality operators on the space of two forms.

A list and the explicit construction of invariant four-forms in dimension D < 8
for subgroups of so(D) is given in [8]. In particular, the authors give a four-form
depending on three real parameters, that yield the decomposition of A2RR® for
h =u(4) =su(4) @ u(l), and spin(7), as well as su(4). The decomposition for u(4)
is not perfect, whereas the remaining two are.

The authors in [10] discuss the Q-duality in dimension D = 10 in the generalized
sense cf. Remark 1.3. They construct a six-form and its associated Hodge-dual
four-form invariant under su(4) ® u(1) C s0(8) ®u(1l) C s50(10). The corresponding
eigenspace decompositions of ASR'® and AZRR!'C are not perfect in the sense of
Definition 3.1.

3.2. The spin(7)- and go-duality. The first two examples of this section, i.e. Pro-
positions 3.2 and 3.5 make use of the spin(7)-invariant four-form to give the eigen-
space decomposition of A’R® and A*R®. In particular, the duality-operator is
perfect in both cases and therefore, the eigenspace decomposition coincides with
the decomposition into irreducible representations. This extends the result from
Example 1.1 to all forms on R8. Of course, these spin(7)-decompositions in terms
of the invariant tensor © are not new, but very common in the literature, see
e.g. [13, 17, 11] or [6].> Nevertheless, they yield nice examples how the known
results fit in our duality framework.

Proposition 3.2. Consider the spin(7)-invariant four-form © on V = R8. Then
bo : A3V — A3V with (be)imn* = @Um[ijéﬂ s a perfect duality operator of order
two that obeys

8. 10
(bQ)2 = gld — ?bQ

The eigenvalues are —4 and % corresponding to the eight-dimensional and 48-
dimensional spin(7)-invariant subspaces of A3V .4

3For his description the author in [11] uses the concept of vector cross products, of which a
nice discussion and classification is given in [12].

48 is the spin representation and the 48 is the spin—% representation of so(7). The latter is
given by vector-spinors which obey v#1,, = 0.
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Proof. The traces of the eight-tensor © = © ® © have components in the skew-
symmetric parts of S2(A*R®)) only. They are explicitely given by

@ijko(__)lmno — 655;;;” _ 9@[” [lm 6]';1]] ,
Oijmn O™ =126} — 40 |
Oikim O™ = 4267,

0,1 0"* =336

(13)

This gives
b (F)iyiis = 5?;;’;{5?; ©7172, i 01y b, Fay gy,
= 5 (075200 O %411 O 0y Fit
+ 2(5;113;?21 5{’; IR LI SR

(Odydajrjs O 11is Figldydy — 205, ™ O, 1y 1162 igJm Frdy”*)
(120722 — 40Ny, ;) e
- %(65;‘11153?: - 9@[d1d2 bibz 5:31] 6?igizz)gi3]mFd1dzjl
= 4F; 15, — 2(00(F))iyizis — 4(%5;?’;5511‘33 GigimFaya,”

+ %5?11 5§izgi3]mFdld2jl)

+6(301 200, 6 + 50410, 002) 00 2% g Py,
= 4Fi1i2i3 - %(b@(F))zlzgzg - %F’iligig‘,

+2(200% 1 6m + L6 01" ) gim Faya,”!

+ 4(%6md1j1[i1 5;122 + %6;112 @mdl1'11'2)gis]mFdld2j1
= 8 Fiis — 3(b0(F))iyigis + 304y asfinin F " i) — 501 114, iyl
= %F¢1i2i3 - %(b@(F))iligig .

The eigenvalues of bg are the zeros of 32 + ?ﬁ — % that are % and —4. The

eigenspaces are given by A?E)V = 48 and Ai()’74)V =8 dueto (—4).84+ %.48 =0. O
3

Wl ol

Lemma 3.3. Let © and V as before and consider the duality map be : A*V — A*V
given by be(F)ijri = ©™" [i; Fyyjmn - This operator obeys®

(14)  b3(F)ijur = $0™" 11,0 1 Frunop + 2 Fyjie — 306 (F)ijut ,

(15)  bE(F)iju = 3Fijk 4 2be (F)ijr — %bé(F)zjkz + 20170 Fpnrs

(16) b (F)ijr = 4bo (F)ijr — 306 (F)ijrr — 20&(Fijrt + $0ik10”" Fpran
(17)  0&(F)ijit = — b (F)ijir — 2008 (F) it — b (F)iji + 16be(F)jki -
Remark 3.4. Equation (17) yields, that bg is a null of the polynomial

(18) B +Zp*+208°+ 2B —168=B(B+4)(B+3)(B+2)(B—2).

so that the possible eigenvalues are § =0, —2, -3, —4, and %

SWe postpone the calculations to Appendix B.
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Proposition 3.5. Let © and V as before. The duality operator bg : A*V — A*V
with (b )iyiyigi, 1727394 = Oliyis Ulj?éf;g:‘]] is a perfect duality operator of order four.
The eigenspaces of be and the irreducible representations of A*V with respect to
spin(7) correspond in the following way:

4 v 4 _ 4 _ 4 _
(19) ANpyV=35, A_,yV=1, A_,V=T1, A(%)V_27.
The minimal polynomial is consequently given by

(20) BB+2)(B+4)(B—2) =B+ 1685 +45° — 183

We know that A*V decomposes into four irreducible representations of dimension
1, 7, 27 and 35 with respect to spin(7). Therefore, one of the values from Remark
3.4 is not an eigenvalue. In principle, we do not need this information to sort one of
the values out. Nevertheless, the following proof of Proposition 3.5 will implicitly
make use of it.

Proof. First we show that —4, 0 and —2 occur as eigenvalues and that the spaces
of the right hand sides of (19) are subsets of the respective eigenspaces.

In particular, at least on part of the zero-eigenspace is given by 35 = (A*V)~ C
A‘(lO)V due to the self-duality of ©® and Remark 2.12.

From (13) we immediately get bo(0) = —40, such that 1 = RO C A‘(L74)V.
The next element we insert into be is Fijk = 04, ;0™ jiy for oo € A?V:
bo (F)ijri = ©"" i
= 3O (R0, 4 04T O ) oa© bed
= 30"k O omn + 2O (1,0 ki Com
= 1005 940 O™ b 0O mn® * + 108 Gaar gy O™ Y O 0%
= 1605400 (12087 — 4007 *) cteo + 2085 guar goa (66728
— 90" 0 a?,,
= — 20,i0% 1) — 205 Gaa Gory 0% (400 8Y + 20,7V 517
+20.4™ 8% + 0,47 5
= = 20,[,0%1y) — 5%%5#( — @o[iO%kt) + m©®™ k)

= — 20,09

5abcd

kl]mnaoa@obcd

therefore® 7 = {0v,,;0™ x5 @ € A%fﬁ)V} CAL,V.

There is a space of dimension 27 left, which can not be decomposed further without
getting more singlets in A*V. Therefore it is irreducible, and has to be a subspace
of one of the eigenspaces. The trace formula 0-35+4 (—4) -1+ (=2)- 7+ 3-27=0
is only solved by 8 = 2. Such that equality in (19) follows.

6We recall the decomposition of A?V as given in Example 1.1 and that we have to double the
eigenvalues given there, when we consider bg. In particular, o, ;0™ ;jp;; =0 for o € A?Q)V.
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The above calculations and (14)-(16) yield the following decomposition of © = O®6
(21) O™ = —4200 ;57 1 205, "0 4 30 e P

In contrast to its traces, the full eight-tensor O has contributions not only from the
skew-symmetric parts ASV, AV and A°V but also from [6,2]¢ and [4,4]o. O

Remark 3.6. We complete the discussion of the invariant spin(7)-four-form by
adding the missing result for the closely related invariant go-four-form, 6, see Ex-
ample 1.1.

The minimal polynomial of b, : APR7T — A®R7 is B3 + L??,Bz + 48 — 1—36 and the

eigenspaces are A?%)]R7 =1, A?fQ)JR7 =17, and A‘Z’%)]R7 =27.

3.3. Lifting to higher dimensions. There are two straightforward ways to lift
an (-form ©Q on R™ to RP for D > n. First we consider the trivial lift given
by an ¢-form that lives only on the n-space perpendicular to a specified (D — n)-
plane. We denote this first lift by the same Symbol 2. Secondly, we consider
the *p-dual to this first lift, i.e. the (D — £)-form Q = xpQ. If Q is g-invariant,
theses lifts are invariant with respect to g @ so(D — n). We will discuss these
two constructions for the spin(7)-invariant four-form in dimension eight from the
preceding section and its lifts to dimension ten. The maximal invariant subalgebra
is spin(7) @ s0(2) = spin(7) @ u(1).

We specify the eg A eqo-plane and we consider © to live on span{e; };<s = R®. With
respect to the decomposition R'® = R® @ IR? the k-forms split as

(22) AkR10 — Akle o Ak_l]R,g ® RQ o Ak—2R8 ® A2R2 .

The trivial lift of © now yields for & > 3 a duality operator which is given by
bo = beg ® 1 on each summand. The eigenspace decomposition for k = 3,4 can
immediately be read from the preceding sections. Moreover, in the case k = 5 we
can furthermore use the symmetry *10(ASR®) = A3R®®A?RR? such that the missing
decomposition follows from bg on A3IR® alone, and the eigenvalues and eigenspaces
correspond as in (10) from Remark 2.12. In particular, the duality operator is not
perfect in all cases, due to the doubling from the second summand in the right hand
side of (22).

Secondly we consider the six-form *;00. Because O lives on R® C R!? we have
%100 = 3O A e = O A e which we will denote by ©. Here ¢ denotes the volume-form
on R? C R'°. Although this six-form is directly connected to the one before, we get
a different behaviour of the eigenspaces. In fact, it turns out, that the restriction of
bg to AkIRlo/ ker(bg ) is perfect for k = 3,4. For k = 5 the operator is not perfect,
but the two basic spin(7)-representations of dimension seven and eight correspond
to the same non-vanishing eigenvalue.

We will state the results for £ = 5,4,3 and again postpone the calculations for
the case £ = 5 to the appendix. That hopefully will convince the reader that the
calculations for the remaning cases can be peformed similarly.

For the case k = 5 we need the following lemma.
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Lemma 3.7. We consider the maps
d@ : ASRS — A3R87 d(—)(F)lmn = 9ijk[lFijkmna
CZ@ : AS]RS — ASRS, Ci@(F)jklmn = @i[jleimn] :

These maps are isomorphisms and connected to bg and to the Hodge operator via

(23)

- 6 3 -
(24) de odg = —gid—i— ib@(F)’ and * dg* = —20dg .

A consequence of this is CZ@ odg = —* dg o J@, x,

Proof. The identities in (24) are verified in the appendix. Due to Schur’s Lemma
de and dg are proportional to the identity when restricted to the eigenspaces of bg
and moreover they are non-vanishing due to (24). O

If we use lemma 3.7 and the calculations from the appendix we get the next result.

Proposition 3.8. Let © be the lift of © to ten dimension given by O=0Ac If
we consider the decomposition of AR given by (22), then bg : AR — AR
is given by
Gd@ & *

(25) b@ = %b@ R *

%d@ X *
If we denote the +i-eigenspaces of o on R? by R, the eigenvalues and eigenspaces
of bg and their dimensions are given by

0 ApR* @Ry @ A R @ R 35+ 35 =170
+32 A;*_4)IR8 ® Ry 2x1

+18 {(:ng'd@(F),F A e) |Fe A§_4)RS} B A, REOR: | 2x (8+7)

+8i A‘(lz)]Rs ®RL 2 x 27
3

+3 {(F10ide(F).F ne) |F e A%, RS} 2 x 48

The first summand in the third row and the space in the last row are subspaces of
A?_g)lR8 ® 1&‘?_4)]1{8 ® € and A?%)Rg ® A?%)Rg ® €, respectively.

Similar to Lemma 3.7 we get the following.

Lemma 3.9. Conisider the maps

co :AN'R® = A’R®, co(F)ij = Opmu ™),

to :N°R® = A'R®,  Go(F)ijki = OmpijnF™y -

Their kernels are ker(cg) = A?O)IRS @A‘(l%)le GBA?%)IR8 and ker(éo) = A%Q)Rg and
the restrictions to A‘(lfz)]R8 and A%ffi)]R8 obey

(26)

(27) co o Co| reRe = —24id and e o co| A RS = —24id.
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Proof. The statements follow from calculations similar to those for the case k =5
and from Schur’s Lemma together with the decompositions in Example 1.1 and
Proposition 3.5. (]

From Lemma 3.9 we get a result similar to the previous Proposition.

Proposition 3.10. Let © be the lift of © as before and consider the decomposition
of A*R'" given by (22). Then bg : A*RY — A*R is given by

6Co ® *
(28) o=|  ows
§C(~) R *

the eigenvalues and eigenspaces of by as well as their dimensions are given by

0 | AR A_H)R® & Ay R @ AR @e | 35+ 1427421 =84
+9i A} yR* @ R 2x8
+34 A%y R® @ Ry 2 x 48
3
+6v2i | {(F500(F), FAe) [Fen R} 2x 7

The space in the last row is a subspace of A?72)IR8 &) A%fﬁ)lR8 ® € to and can also
be written as {(F, :F#ﬁc@(F) A e) |F e A‘(*_Q)]Rg} due to (27).
To complete the discussion we add the result for k = 3.

Proposition 3.11. With © as before and with (22) the operator bg : AR —
A3R? 45 given by

6eo ® *
(29) b@ = —3bg ® *
eo ® x

Its eigenvalues, eigenspaces and their dimensions are

0 A3, RS 48
2)
18 A o RP® R 2% 7
+6i AfyR® @ R 2x21
+6y/Ti {(;ﬁé@(F),FAe) |FeR8} 2% 8

Here we used the following Lemma similar to Lemmas 3.7 and 3.9.
Lemma 3.12. The maps
€o A3I[{8 — Rs s e@(F)l = @ijleijk

30 ,
(30) éo :R* = A’R®, éo(F)ju = OjuF"
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obey

1 — e = —244 o = —24id.
(3 ) ee‘A?%)RS 07 €e © €p A‘?_4)]R8 Zd? €e © €p id

4. AN EXAMPLE WITH DISCRETE SYMMETRY

On V = R?® we consider the four form”
(32) Q = e1234 + €2345 + 3456 + €4567 + €5678 + €781 + 7812 + €8123 -

This four-form is invariant under the action of Zg on A*V which is given by
0al€iy. i) = €iyta..ix+a- We will denote the generator by o := 1. The

bq is defined on A%V, A3V and A*V. A careful calculation yields the following
results.
[k = 2]. The minimal polynomial of b : A2V — A2V is given by

p(t) = t(t* = 1)(#* = 4)(* = 2)(* — (1 +V2)")(* — (1 - V2)?)
and the eigenvalues of o on A%V have multiplicities 3 for £1 and +i, and 4 for
t5E 55

The eigenspaces Vj for § =0, £1, £2, ++/2, and £1 4 /2 as well as their behavior
under o € Zg are explicitly given as follows.

(33)
Vi1 = span{vi = (ez6 — €12) & (e3s + ea7), v = (eg7 — €23) £ (€58 — €14)
v} = (78 — e34) F (e16 + €25) , v = —(e1s + €a5) F (e27 + 636)}

with v 75 v3 % vl % 01 %5 —vl such that o* + 1 is the minimal equation
on V:l:l-

(34) Vio =span{vy = e13 — €17 + €35 + e57 F (€24 — €23 + €46 + €63) }
with o(vy) = Fug such that 0 =1 =0 on Vio.

Vigz= SPEMI{Uli = —e13 + €17 + €35 + es7 F V2(e2s + ea),

VF = —egq — eas — a6 + €68 = V2(e17 + ess)}

with o(v5) = Fv2vT +0vf and o(v) = —vf, ie. 02++v/20+1 = 0 is the minimal
equation on V.

(35)

Moreover, for €,n € {£1} we have
(36)
Veinva = span{v? = €14 — €a7 + €36 + €58 + (€ + NV2) (23 — €15 + €€y5 + egr),

€

Wl = €ea5 — €e16 — €33 + a7 + (6 + NV2)(e12 + €ez4 + 56 + €ers) }

with v7 = ew? 75 v such that 02 — €l = 0 is the minimal equation on Veinva:

"We use the short notation eijkl =€ Nej Neg Ney.
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Last but not least,
(37) Vo = span{w1 = €24 + €28 — €46 1 €68, W2 = €13 + €17 — €35 + €57,
€15, €26, €37, 648}

. g o [eg g [eg g
with €15 —> €26 — €37 —» €48 — —€15 and w; —r —wy — —wi. lLe.
0*+1 =0and 02 +1 = 0 are the minimal equations on F = span{eis, €26, €37, €48}
and W = span{w;,ws}, respectively.

[k = 3]. On A3V the duality operator 3bg has minimal polynomial
(38) p(t) = t(t? — 4)(t? — 2)(t* — 14¢> + 16)

such that the eigenvalues are given by 0, £2, ++/2, and i‘/TTQ + @. Moreover, the
eigenvalues of ¢ have multiplicities 7 each.

The respective eigenspaces and the action of o are given as follows.

+
Vig = span{w1 = €237 — €125 — €156 + €367 T (€138 — €134 + €457 — €578),
+
Wy = €348 — €236 — €267 + €478 & (€124 — €168 — €245 + €568),
+
w3 = e145 + €158 — €347 — €378 & (167 — €127 + €235 — €356),
+
(39) wy = €126 — €148 + €256 — €458 £ (278 — €238 + €346 — €467),
+
uy = ea57 — €123 — €136 + €567 = (€158 — €145 + €347 — €378),
+
Uy = €368 — €234 — €247 + €678 T (€126 — €148 — €256 + €458),
+ _ + _
Uz = €147 + €178 — €345 — €358 T (€156 — €125 + €237 — €367),
+
Uy = €128 — €146 1+ €258 — €456 T (6267 — €236 + €348 — 6478)} .
. . . . (e o g o
This basis is well adapted in the way that wf = wi %5 wi % wf % wf

and ui T ui -5 uf S uf % —uf,ie 0 =1 =0and 6* + 1 = 0 are the

respective minimal equations on W* = span{w:} and U* = span{u}.
For the zero eigenvalue we have

Vo= Span{ﬂh = €236 — €267 T €348 — €478 , T2 = €145 — €158 + €347 — €378,
T3 = €256 — €126 — €148 T €458 , T4 = €156 — €125 — €237 + €367,
Y1 = €123 — €136 1+ €257 — €567, Y2 = €234 — €247 + €368 — €678 ;
Y3 = €147 — €178 + €345 — €358 , Y4 = €258 — €128 — €146 1 €456 ,
Ul = €278 — €238 — €346 T €467 , U2 = €138 — €134 — €457 T €578,
Uz = €124 + €168 — €245 — €568 , U4 = €127 — €167 T €235 — €356 ,
0 VU1 = €127 — €123 — €134 — €136 — €138 + €147 + €167 + €178
(40) + €235 — €257 + €345 + €356 1+ €358 — €457 — €567 — €578,
Vg = €128 — €124 1+ €146 — €168 — €234 + €238 — €245 — €247
+ €258 + €278 + €346 — €368 1+ €456 + €467 — €568 — €678,
wy = ejo7 — €123 + €134 — €136 + €138 — €147 + €167 — €178
+ €235 — €257 — €345 + €356 — €358 + €457 — €567 + €578
Wy = €124 — €128 — €146 1 €168 — €234 T €238 + €245 — €247

— €258 + €278 + €346 — €368 — €456 T €467 1 €568 — 6678} .
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The above basis obeys x Ty o Iy x5 v x4 - —x1, Y1 s Yo AN Y3 A
im AN —y1 and wuq Ty s I ug I uy - —uy as well as v, —2> v —3 —uy
and w; -2 wy — w;. Therefore, the minimal equations are ¢* + 1 = 0 on
X = span{z;}, Y = span{y;} and U = span{u;} as well as 0* —1=0on V& W
for V = span{v;, vy} and W = span{wy,ws} — more precisely 0>+ 1 = 0 on V and
ocF1=0on W* = span{w; + ws}.

Furthermore,

+
Vi = span{vl = €168 — €124 — €245 + €568 + V2(e135 — e157),

+

vy = €197 + €167 — €235 — €356 £ V2(€246 — €a68),

(41)

+
U3 = €238 + €278 — €346 — €467 L V2(essr — e1sr )

( )
( )
( )
U = e134 + e13s — east — esrs £ V2(eags — €s)} -

This basis is chosen in such a way that v %5 v % of T vf % —of.

Therefore, the minimal equation is ¢* + 1 = 0 on both spaces.

Last but not least for 8 € {i@ + @} we have

(42)
Vg = Span{vlﬁ = (e126 + €148 + €256 + €a58) + 2(6238 + eg78 + €346 + €a67)
_ 32 2 _
+ 1 (€137 + e3s57) + B(ezszl + eg78) + 7(6247 + €368),
Ug = (e125 + €156 + €237 + €367) + 1(6134 + e138 + €457 + e573)
_ 32 2 2 _
+ 1 (e24s + eaps) + 5(6178 + ea45) + 7(6147 + e358),
Ug = (e236 + €267 + €348 + €arg) + 1(6124 + e168 + €245 + €563)
_ 32 2 2 _
+ 1 (e13s + e1s7) + 5(6128 + e456) + 23 (€146 + €258),
B
Uf = (e145 + €158 + €347 + €378) + 1(6127 + e167 + €235 + €356)
_ 32 2 2 _
+ 1 (e246 + e268) + 3(6123 + es67) + 7(6136 + 6257)} .

This choice of basis obeys vf BN vg BN vg BN vf = —vf, such that o —1 =0

is the minimal equation for o on V3.

[k = 4]. On A*V the minimal polynomial of 6bq is given by
(43) p(t) = t(t? — 4)(¢* — 16)(t* — 8)

and the eigenvalues 0, +2, +4, and +2v/2 have multiplicities 26, 16, 4 and 2,
respectively. Moreover, the multiplicities of the eigenvalues of ¢ are 10 for +i, 9 for

+1, and 8 for i% + ﬁ We will list here the low dimensional eigenspaces and we

will show, how €2 is related to the eigenvalues +24/2.
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The eigenspaces to the eigenvalues 4 are given by
(44)

. + _
Vig = bpan{vl = e1257 + €1356 + €2478 + €3468 = (€1347 — €1246 + €2568 — €3578),

€1367 — €1468 + €2357 — €2458),

+
Vy = €2368 1+ €2467 — €1358 — €1457 F

+
Wy = €1357 — €1458 — €2367 + €2468 F (€1368 + €1467 + €2358 + €2457),

~—~ o~ o~

+
Wy = €1256 — €1357 + €2468 — €3478 =+ (e1247 + €1346 — €2578 — 63568)}
with v % vF -5 Fof and wi -5 —wi % —wT such that the minimal
equation of o is 02 +1 =0o0n V4, and 0* — 1 =0 on V_y.

The eigenspaces to the eigenvalues +2v/2 are given by

+
Vioyz = span{ul = e9345 — €1238 — €1678 T €a567 = V2(€2367 — €1458),
(15) '
uy = €1234 + €1278 + €3456 + 5678 = V2(e1256 — 63478)}

with uf %+ uf —Z uf such that o has eigenvalues +1 on Viayz

Remark 4.1. The two-dimensional +1-eigenspace of o within V, 5®V_, sz is given
by span{Q, w} where

1
Q=S +uy +ug +uz),

1 _ _
w:i= i(uf—ul +ud —uy).

These forms fulfill b () = ?w and bg(w) = ?Q In particular, € itself is not an
eigenform with respect to bg, in contrast to the discussion following Definition 3.1.

(46)

We conclude this example by adding some comments on the eigenspaces of by to
the remaining eigenvalues 0 and +2 which we as usual denote by V) and V1. This
explains the so far unusual asymmetry in the behavior of o on V4.

The map o acting V has eigenvalues j:% + ﬁ with multiplicity 4, +¢ with multi-
plicity 3, as well as +1 with multiplicity 2. Restricted to Vi, the eight eigenvalues
of o come with multiplicity 2, each.

5. OUTLOOK

The duality operator we defined here in flat space can be defined in the same way
on a Riemannian or semi-Riemannian manifold. In particular, all that has been
discussed for g-invariant duality operators can be transfered to manifolds with a
g-structure. In this case the g-invariant differential form Q € Qf(M) is parallel with
respect to a connection associated to the given g-structure.

One application of our duality relations may be the following. Let the manifold
under consideration be spin, and take a connection on the spinor bundle S on M.
This connection and its curvature are locally described by elements in the exterior
algebra of M, the so called k-form potentials and fluxes, see for example [14, 15].
The duality relation presented here then is a candidate to generalize the duality for
metric connections on the base manifold M.
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APPENDIX A. USEFUL DECOMPOSITIONS

We are interested in the decomposition of certain tensor products of irreducible
representations of so(n). We recall the decomposition of the tensor product of
anti-symmetric powers of V' = IR" into irreducible gl(n)-modules. Let k,¢ < &
then

min{k,(}
(47) ANVeANV = @ [k+(—ii].

i=0

Here [k +¢—1i,1i] denotes the irreducible representation space of weight e; + ep1o—;.
With respect to so(n) these spaces are reducible for ¢ # 0. The irreducible com-
ponents are obtained by contraction with the metric. If we denote the trace free
parts by [-,-Jo we get

(48) [k +¢—i,i] = @Ik +£—i—j.i—jlo
j=0

which yields the final so(n)-decomposition

min{k,¢} 4
(49) ANMVoMV = @ Plk+L—i-ji—jlo-
i=0 =0

Due to Hodge duality the preceding formula can be used for, say, £ > 5, too, we
only have to insert A"~ “V ~ A’ instead. For a more systematic treatment of such
decompositions we refer the reader to the nice article [16].

By ., we denote the projection A¥V @ AV — A™V = [m,0].

We are in particular interested in the second symmetric power of A¥V. With the
above notation for k = ¢ we have the following so(n)-decomposition

(5] k—2j
S’ (M) = D ( DIk+2j—ik—2j —iﬂo)
=0  i=0

(50)

v |

(5] k—2j-1 (%]
- ( D [[k+2jfi,k72jfi]]o>®@/\4jv.
=0 i=0 =0

In particular AV C S?(A¥V) only if =0 mod 4.

APPENDIX B. SOME CALCULATIONS

In this appendix we add the calculations for equations (14) to (17) that we left out
in Lemma 3.3 as well as the calculations for Lemma 3.7 and Proposition 3.8.

B.1. Calculations for Lemma 3.3. We recall the content of Lemma 3.3: The
duality map be : A*R® — A*RR® given by be (F)ijkr = O™ (;; Fiijmn - Obeys

(14) b3 (F)ijrt = 10" 1;0% 1y Frnnop + 2 Fijt — $bo(F)iju
(15)  b&(F)iju = %Fijkl + %bG(F)ijkl - 13*0b2@(F)ijkz + %@[ijkpersnl]Fpnrs
(16) b (F)iji = 4bo(F)iji — 50&(F)ijki — 505 (F)ijk + §O9im1 O™ Fyran
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(A7) 0 (F)ijie = — Fbe (F)ijur — 2008 (F)ijur — B (F)ijkt + 16be (F)ijk
To get (14) we calculate
b8 (F)ijie = 0" 1500 (F)kijmn
=em" [ijé,‘iﬁ’ﬁin@o” abFedop
= FO™ 0k 05 O b Fedop + §O™" (156406, O ab Fredop
- %@mn[ijdl:lc] 5§rilneopachdop
= §0"";;0 k) Frnop + %(125[3? - 4@Op[ij)Fkl]op

+ 2000 (6078, — 904 760 ) g Fir" o

= £O™" 1 O%  Frnop + 2Fij10 — 3be (F)ij

EYENETS
iR (1 op 2 Pq
+ 40,73/ (55%5ifj/ + §6géi'j’)gk’qﬂ’nop

i/ ‘/kll/ 1 1 1 2 q 2 1
= 6573 (§ - 500 PO+ 1 20,060, + 5 - £0,0,,9°68
2 2 D
+ 3’ g(_:)ni/qoéj/)gk/qﬂ/nop
1 9 2
= gGmn[ijgopkl]anop + gFijkl - §b@(F)ijkl
2 o 8 mn
+ 500" Frjop — 5Omnlij Fiy)

= £0™" ;0% 1y Frunop + 2 Fijrt — Sbo (F)iji -

To get (15) we need the image of the first summand in (14) under be.

bed
O™ i3 0ktjmn O abO"" ca Fpgrs
1 b sed ] 1 d sab
= 5®mn[ij§gl} 5;1n@pqab6Téchpqrs + ggmn[ijazl] 6gzn@pqaberschpqrs
2 omn ac ¢bd s
- 59 [2j kl]émn(—)pqab@ chpqrs
— 1(12675 — 4071, ) OP9 Fgrs — 2683 KV iy ©7PIO7 ) it F,
- 3 lig — %] Kl L pgrs 3%kl mni’j’ "Gkt L pgrs

= 40,03 )" — 50711507 1) Fpgrs
- %52;]/:;6,1/ (652%/ — 9Ops [pqéﬁ]’])ersn”gk/tqum

= 4bo (F)ijr — 30 15,07 ) Fpgrs — 30" 11 Frijrs

NS -/ -/k/l/
424589 Kl @i’j’pqézersnl'gk’tqurs 4450 Gni'pq(sé’@rsnl’gk’tqurs

30i5%kl 30i5%l
45’5k t rsn 8 ¢i'j k'l tp c4 A\Tsn
+ 3050 w00 gk Fpgrs + 30,51 Oni P50 1 gkt Fpgrs

= 5300 (F)iji — 30,0 ki Fpgrs + 30P711;0 k) Fogrs
+ 300" O™ Fynrs + %52;-];:116/[/9@1‘%' O gy FP 1y

= %bG(F)ijkl - %@Ts[ij@qul]qurs + %G[ijkp@mnl]Fpnrs
+ %52;]1;1]6,[/ (65;f’tk’ - 9@[pi/[rs‘51tc]f]>gl’tij’rs

= 8bo (F)ijr — 20" 1,0 Fygrs + 3011707 Fprs
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16 5 'Kl ors ot 32 55KV ctr cs
+ ?6ljkl 5i/k/5pgl/tij/rs + ?62]](:[ 6i/k’6pgl/tij/TS

24 115K rs st 24 25i' 'K rs st
-3 §5ijkl Oirkr 5pgl’tij’Ts — 3 §6ijkl Opir" 01 qutF* jrrs

3 3
48 15Kl trss 48 255KV trss
— ? . géljkl (—)i'k/ 5pgl’tij"r’s —_ ? . gaijk:l @pi/ 5k’gl/tij/7'S

= 3bo(F)ijk — 201,01 Fogrs + 3011170 Fynrs
+ B Fjn — S0e(Fijr + 2be (F)ijm
= FFijn + Fbe(Fijr — 307 (5,0 ky Fpgrs + 5001”0 1 Fypnrs -

So we get for the third power of bg

b& (F)ijrt = be (b3 (F))ijk

= 2be(F)iju — 508 (F)iju
+ %(?ﬂjkz + Bbo (F)ijiu — 307 [;;0P7 11 Fpgrs
+ %G[ijkp(_)rsnl]Fpnrs)

= 2be(F)iju — 50&(F)iju
+ 8 Fyj + Lbo(F)iju — %(b%(F)ijkl — 2Fm + %bQ(F)ijkl)
+ 300" O ) Fynrs

= 4 Fm + 2be(F)ijr — 203 (F)iji + 200570  Fynrs -

To evaluate b, i.e. (16), we need the image of Ojr? O™ " ) Fynrs under be,

eom" [ijdgﬁ%nGach@prdeoprs
= 1O 0 SO OF ™ 4 Foprs — 2O™ 1500 05 O ac " OP" 4 Fopys
= 10" 11Okm O Foprs
— 30755 (L070L, + 20505, )62 0unc O aFoprs
= 20" 11Okm O Foprs + 5O0umn(i; Ok ™ 0O | Foprs
= %5::;];:1]6,1/ (652%/ — 90y [tua;/]])@prsngtk’gul’Foprs
+ 18tk (1253‘;, — 40, j/t") Oy g1t Foprs
= = 20007 Foprs — 00" (%@z"j'k'l@p””anrs
+ Onirkrr OP" " Fyrprg — @i’j’k/oeprsl’Foprs)
= — Ok O Foprs — 5010 Frprs
+ 52;;@,1]6/[, (65%‘?1@' - 9@[ifj'“”’”52]/])ﬂ/ms
= — Ok O Foprs + 304107 Fprsn — 6Fyj51 + 96 (F)ijkt -
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This is

be (F)ijri = be (& (F))ij
300 (Fijrt + 308 (F)ijt — 50 (F)ijr
%(* Ok’ O Foprs + 50O " Fypon, — 6Fj1 + 9b(~)(F)ijkl)
= — 3Fjm+ 2o (F)iju + 266 (F)iju — 208 (F)iju
b (F)ijet — 3 Fiji — 2be(F)iju + 13*05(29(}7)27'160
+ é@ijkl@pr‘mersn
= 4bo (F)ijin — S08(F)ijin — 2208 (F)ijrt + $0ij1mO"™ " Fypon -

+

/N

The last step is easy. For b% we need the image of 0,5, 0P " F),s,. This is is a
multiple of ©;;;; for which we have bg(0)ijri = Omn(i;O™ "ty = —4Oijx. This
yields
b& (F)ijit = be (b (F))ijr
= 408 (F)ijir — 306 (F)ijrt — 206 (F)ijrt — 59110 Fopgr
= — Db (F)irt — 2008 (F)ijir — F & (F)ijnt + 16be (F)ijn -

B.2. Calculations for Lemma 3.7 and Proposition 3.8. The proof of Lemma

3.7 is a straightforward calculation. The maps
23) de : A°R® = A’R®,  do(F)imn = OijkiF ™  mn
do : A°R® — A°RE,  do(F)jkimn = CHETRY A—

are isomorphisms and connected to bg and to the Hodge operator via

(24) de ode = —gid—l— gb@(F) . and  * dg* = —20dg .

A consequence of this is do odg = —* dg o J@, *.
We make use of (13) and get

dede (F)imn = Ourpde (F)*,,
_ 5abc @ijka@s[iijSbc]

— Ylmn

= 6t (&01% 0,41 F e + 507 04 F5
- I%GijkagsbijFakc)

= — ZFnn — 2605 (= 60m k051 — 4051 ) F*F
- 1%61(1722 (26z555a - 46)ajsl)6(];C - @jkbcésa)stk

= - 2:(-Tll'?lmn - %Emn - gejk[lijkn] + %ij[lijkn}
+ 15~T81'71l'nm + 15*2(%)jlc[lmPU‘kn]
- gﬂmn + %b@(F)lmn .
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Furthermore we have

1 no 1 n abco
*dG(*F)ijklm = - geijklmnopd@(*F) P = _geijklmnopeabc (*F) P
1
b t berst
= %eijklmnopea coprs G)abcn-l:;”st = 406%l§lrrin6abcn rst

2055}}5{7‘25;@@1)0” rst — _20@n[13anlm]

—20de (F)ijkim

The proof of Proposition 3.8 is divided into three cases bg (F ) where we consider
F=F F=F*AV,and F = F3 Ae with F¥ € A*R® and V € R?, separately.
First, we consider F' = F and get
b (F)imnop = Oijkftmn " op)
= 1500katb F7* aebfmns ) = 30jk1€mnF 7" op)
= 366 (F)iimn€op) = 15(de(F) A €)imnop
= %(d@ ® %) (F)tmnop
Second, we insert F' = F A ¢ which yields
be(F A €)tmnop = Oijifimn (F A €)7F o
= 15O ijka€pe) (F A €) 7 gedpice)
= 30(07" e + 30a7 €" e — Oavc’ ") Flijn€ae) Ofimmsy
= 30kp€mn F 7 €0y + 540, j11m F 7€M pe i — 900mn € Fopicing
= — 3Oumn " Fopicin = 6do(F)imnop
= 6(do @ *)(F A €)imnop

Last but not least, for F=FAV we get
b (F AV )imnop = Oijiiimn (F A V)7 o)
= 150 katve) (F A V)F g sbcde
= 15(07% sepe + 30 € e — Oave’ ") Flijua Ve O
= 3 (407" serc FijnjaVe + 18005 €  Fe(i; Vi) O
= 90,j1mF 1o€" ) Vie = 906 (F) tmno (V)
— 2(be @ *)(F AV )imnop

The result on the eigenspaces and eigenvalues may be checked by applying bg and
using Lemma 24.
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