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Abstract 

 

 

 

Rab GTPases are the main regulators of eukaryotic intracellular trafficking events. In 

the last decade, many Rab GTPases and their related proteins have been linked to 

cancer. In this research, attempts have been made to develop small molecules that 

interfere with Rab GTPase function by selective inhibition of the essential post-

translationally modifying enzyme, RabGGTase. These inhibitors are used as tools to 

verify RabGGTase as a potential anti-cancer target and could be used in a chemical 

biology approach to further study Rab-mediated processes. 

RabGGTase and its related enzymes FTase and GGTase I together represent the 

human prenyltransferases, involved in prenylation of the superfamily of small Ras 

GTPases. The most potent RabGGTase inhibitor known, BMS3, was originally 

designed as FTase inhibitor. Since BMS3 lacks selectivity with respect to FTase, both 

in vitro and in cells, its pro-apoptotic effect could only be attributed to RabGGTase 

inhibition indirectly. In order to study the effects of selective RabGGTase inhibition on 

cancer cell proliferation and, more generally, Rab-mediated cellular processes, the 

main challenge was the design and synthesis of potent and selective RabGGTase 

inhibitors with cellular activity. Several approaches have been used in order to obtain 

such inhibitors. Using a structure-guided design, the scaffold of BMS3 was decorated 

with additional groups to gain selectivity for RabGGTase. Going through iterative cycles 

of design, synthesis and biochemical and biological evaluation, several selective 

RabGGTase inhibitors were obtained, the most potent being inhibitor 126. Other 

strategies to obtain selective RabGGTase inhibitors were evaluated with mixed 

success. The in vitro screening based on a fluorometric RabGGTase assay led mainly 

to identification of false positives, whereas a scaffold hopping approach resulted in a 

quick generation of a few prenyl transferase inhibitors with mixed activity toward 

RabGGTase, FTase or GGTase I.  

BMS3 126 
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In order to verify the potential of selective RabGGTase inhibitors and to inspire drug 

discovery, several cancer cell lines were treated with 126. It could be shown that 126 

selectively inhibited cancer cell line proliferation without being generally cytotoxic to 

PBMC cells, thereby verifying RabGGTase as potential anti-cancer target.  

The iterative effort of design, X-ray structure determination, synthesis and biological 

evaluation successfully allowed to convert a non-selective inhibitor into a potent, 

selective, not generally cytotoxic inhibitor. Selective RabGGTase inhibitors may be 

used as valuable chemical biology tools for further research on Rab mediated 

processes.  
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Zusammenfassung 

 

 

 

Rab-GTPasen sind die Hauptregulatoren intrazellulärer Transportvorgänge in 

eukaryotischen Zellen. Im Laufe des letzten Jahrzehnts wurden zahlreiche Rab-

GTPasen und mit ihnen verwandte Proteine mit der Entstehung von Krebs in 

Verbindung gebracht. In der vorliegenden Arbeit wurden selektive Inhibitoren für die 

RabGGTase entwickelt, ein Enzym das für die korrekte Funktion von Rab-GTPasen 

unabdingbar ist. Diese Inhibitoren wurden benutzt, um die RabGGTase als 

krebsrelevantes Protein zu bestätigen und könnten als Werkzeuge für die 

Untersuchung Rab-vermittelter Prozesse im Sinne eines chemische biologischen 

Ansatzes eingesetzt werden. RabGGTase und die verwandten Enzyme FTase und 

GGTase I stellen die humanen Prenyltransferasen dar, die an der Prenylierung der 

Ras-GTPase-Superfamilie beteiligt sind. Der bisher wirksamste literaturbekannte 

RabGGTase Inhibitor BMS3 wurde ursprünglich als Inhibitor für die FTase entwickelt. 

Da BMS3 weder in vitro noch in vivo Selektivität für FTase besitzt, konnte sein 

proapoptotischer Effekt nur indirekt der Inhibition der RabGGTase zugeordnet werden. 

Um den Effekt selektiver RabGGTase-Inhibition auf die Proliferaton von Krebszellen 

und allgemein auf Rab-vermittelte zelluläre Prozesse zu untersuchen, lag der 

Hauptfokus der vorliegenden Arbeit auf dem Design und der Synthese hochaffiner, 

selektiver RabGGTase-Inhibitoren mit zellulärerAktivität. Mehrere Herangehensweisen 

zurEntwicklung derartiger Inhibitoren wurden verwendet. In einem strukturgeleitetem 

Ansatz wurde BMS3 mit zusätzlichen funktionellen Gruppen versehen, um die 

Selektivität für RabGGTasen zu erhöhen. Nach wiederholten Zyklen von Design, 

Synthese und biochemischensowie biologischen Tests wurden einige selektive 

RabGGTase Inhibitoren erhalten, von denen 126 der stärkste Inhibitor war. Andere 

Strategien zur Entwicklung selektiver Inhibitoren führten zu unterschiedlichem Erfolg. 

Ein fluorometrischer in vitro RabGGTase Aktivitätsassay führte hauptsächlich zu 

falsch-positiven Ergebnissen. Ein Ansatz nach dem Prinzip des “scaffold hopping“ 

BMS3 126 



 
 

 

xii 

 

führte zu Inhibitoren mit wechselnder Selektivität gegenüber RabGGTase, FTase oder 

GGTase I. 

Um das Potential selektiver RabGGTase Inhibitoren als Startpunkte für die 

Wirkstoffentwicklung zu bestätigen, wurden Krebszelllinien mit 126 behandelt. Es 

konnte gezeigt werden, dass 126 selektiv die Proliferation von Krebszellen hemmt, 

ohne generell toxisch für PBMC-Zellen zu sein. Diese Ergebnisse unterstreichen die 

Bedeutung der RabGGTase als vielversprechendes Zielprotein in der Bekämpfung von 

Krebs.  

Wiederholte Zyklen von Design, Kristallographie, Synthese und biologischer 

Evaluierung ermöglichten es einen unselektiven Inhibitor in einen hochaktiven, 

selektiven nicht generell toxischen Inhibitor umzuwandeln. Die hergestellten Inhibitoren 

stellen wichtige Werkzeugefür die chemisch-biologische zukünftige Erforschung von 

durch Rab vermittelte Prozesse dar.  
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Chapter 1: Introduction 

 

Around 13% of all deaths worldwide are caused by cancer[1]. In 2008, 12.7 million 

cancer cases and 7.6 million cancer deaths were registered worldwide. Related to the 

increasing life expectation, it is estimated that one out of three people in the developed 

world will develop cancer during their life[1].  

Therefore, it is not surprising that great efforts are undertaken, mainly within the 

pharmaceutical industry, to develop anti-cancer agents. Cancer, though, covers a wide 

variety of diseases with different characteristics but a common effect: unrestricted 

proliferation of tumor cells[2].  

Several strategies have been adopted to develop anti-cancer agents over the last 

century. Cisplatin, a major anti-cancer drug, covalently links to guanine DNA bases, 

obscuring DNA repair and hence causing cell death[3]. Another way to inhibit cellular 

proliferation is the inhibition of microtubule dynamics. Natural products such as 

vinblastine and paclitaxel (taxol) regulate cell division by destabilization or stabilization 

of microtubules, and represents potent anti-cancer drugs as well[4]. Since the 

aforementioned strategies involve many cellular processes these treatments are 

generally accompanied by various, often severe, side effects[2]. To bypass these 

severe side effects, target specific anti-cancer drugs are desirable. Historically, the best 

known examples are anti-estrogen and anti-androgen agents for breast and prostate 

cancer, respectively[5, 6].  

Recently other drug specific tumor targets have been uncovered and introduced into 

the clinic. Kinase inhibitors represent one such class of compounds (although most 

kinase inhibitors inhibit a range of different kinases)[7]. The most successful kinase 

targeting oncogenic drug is the Abl kinase inhibitor imatinib (Gleevec)[8] and is 

especially effective in the treatment of chronic myelogenous leukemia (CML). In CML 

the Abl gene is fused to a breakpoint cluster (BCR) gene, resulting in a highly 

expressed constitutively active chimeric BCR–Abl oncoprotein[8]. 

Transmembrane tyrosine kinase receptors represent another attractive target, since 

they are often essential for tumor growth[9]. Besides small molecule inhibitors, 

humanized antibodies against these receptors have been developed[10, 11]. The top-

selling anti-cancer drug of 2010,a monoclonal antibody of Roche named Avastin 

targets the transmembrane tyrosine kinase vascular endothelial growth factor receptor 

(VEGFR). Antibodies represent some distinct characteristic compared to small 

molecule drugs; they possess larger half-lives and target the extracellular part of the 

receptor, compared to the intracellular portion targeted by small molecules[2]. However, 
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the FDA has recently questioned the beneficial effect of Avastin in metastatic breast 

cancer. Together with the associated high costs, the use of antibodies as anti-cancer 

drugs is under debate at the moment[12]. 

Small GTPases represent another group anti-cancer drug targets[13]. The Ras GTPases 

control many signaling cascades, including the MAP-kinase pathway that controls cell 

growth, differentiation and survival. Many tumors contain mutated forms of Ras 

GTPases, which are constitutively active[14]. Therefore, inhibition of Ras GTPase 

represents an alternative attractive anti-cancer strategy. Since Ras GTPases require 

post-translational modification with a lipid to exert their functions, efforts have been 

undertaken to inhibit the responsible post-translational modification by the enzymes 

farnesyl transferase (FTase) and geranylgeranyl transferase I (GGTase I)[15]. So far, 

farnesyl transferase inhibitors (FTIs) were tested in various tumors with poor success, 

which was related to cross-prenylation of Ras GTPases by GGTase I[16]. (Will be 

described in more detail in § 1.6.) 

The observation that some FTIs were effective in tumor cell lines with no mutations in 

Ras, led to the finding that an additional small GTPase family member, Rab, could 

represent a new anti-cancer drug target. The related prenyl transferase Rab 

geranylgeranyl transferase (RabGGTase) was inhibited by some FTIs. In addition, 

chemical genetics studies with interfering RNA confirmed that the inhibition of 

RabGGTase led to p53 independent apoptosis[17]. In contrast to Ras GTPases, Rab 

GTPases are mainly responsible for vesicular trafficking, and an obvious link with 

proliferation is lacking. The role of Rab GTPases in receptor internalization and hence 

signal transduction and receptor recycling is the most cited reason for their role in 

cancer[18]. 

To clarify the role of Rab GTPases in biological processes in general and in cancer in 

particular, a chemical biology approach would be advantageous. Chemical biology 

represents a growing field of research in which bioactive small molecules are used as 

tools to investigate and manipulate biological systems[19, 20]. A selective inhibitor of 

RabGGTase would be an effective agent to manipulate Rab GTPase controlled 

biological processes and would give access to an in depth analysis of the role of Rab 

GTPases in cancer and other diseases. 

In this thesis, efforts to obtain a selective inhibitor of RabGGTase with cellular activity 

will be described. Before the design, synthesis and evaluation of these small 

RabGGTase inhibitors with promising cellular activity will be discussed, an overview of 

the current stage of research will be given. After a short introduction of the Ras 

GTPase superfamily, the general mode of action of Rab GTPases will be discussed, 



 

In
tr

o
d
u

c
ti
o
n
 

3 

 

followed by their implications in disease as well as first efforts described in the literature 

to obtain RabGGTase inhibitors.  

 

§ 1.1 Ras Superfamily of Small GTPases  

 

The Ras superfamily of small guanosine triphosphatases (small GTPases) belongs to 

the class of Guanine nucleotide-binding proteins (G Proteins)[21]. In general, G proteins 

transduce extracellular signals into intracellular changes through second-messenger 

cascades[22]. Of the small G proteins, the Ras superfamily with more than 150 human 

members is the most studied[23, 24]. Based on sequence and functional similarity, the 

Ras superfamily can be roughly divided into five major classes: Ras, Rho, Rab, Ran 

and Arf small GTPases (Figure 1.1). Due to variations in structure, post-translational 

modification and effector and regulator proteins, the Ras superfamily of Ras GTPases 

function as sophisticated modulators of a complex and diverse range of cellular 

processes.  

 

 

Figure 1.1: Ras Superfamily of GTPases, adapted from Wennerberg et. al
[25]

. 

Ras GTPases 

The Rat sarcoma (Ras) proteins are involved in signaling events. They serve as 

signaling nodes, which are activated by extracellular stimuli. Activated Ras interacts 

with a large array of downstream effectors, ultimately involved in gene expression and 

regulation of cell proliferation, differentiation and survival[25]. The best characterized 

Ras signaling pathway is activation of Ras by the epidermal growth factor receptor 

tyrosine kinase[26]. Mutations in the Ras family proto-oncogenes (NRas, HRas and 

KRas) are found in thirty percent of all human cancers, therefore, multiple approaches 

are undertaken to develop tumor therapies targeting Ras pathways[27, 28].  
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Rho GTPases 

Ras homologous (Rho) proteins are key regulators of signal transduction networks that 

regulate actin organization, cell cycle progression and gene expression[29]. Like Ras, 

the activation of these signaling events is mediated by extracellular stimuli. Rho 

GTPases have been implicated in the regulation of cell polarity, cell movement and 

cell-matrix interactions as well as in regulation of endocytosis and exocytosis[30]. This 

diversity of cellular processes is reflected by the variation of Rho-effector and -regulator 

proteins[25, 31-33] 

Rab GTPase 

Ras-like proteins in brain (Rab) proteins represent with more than 60human members 

the largest branch of the superfamily[34]. Rab GTPases regulate intracellular vesicular 

transport and trafficking of proteins in the endocytic and secretory pathways[35]. They 

are responsible for a wide range of trafficking events, involving vesicle formation, 

budding and transport, and vesicle fusion and vesicle-content-release. Therefore, they 

localize to specific intracellular compartments uniform with their function in distinct 

vesicular transport processes. For example, Rab1 is involved in the Golgi network, 

whereas Rab5 is located in the early endosomes[25, 35]. 

Ran GTPase 

Ras-like nuclear (Ran) protein is the most abundant small GTPase in the cell and is 

involved in nucleocytoplasmic transport of RNA and proteins[36]. Ran GTPase, mainly 

situated at the nucleus, interacts with importin to promote cargo release and its 

GDP/GTP cycling also regulates mitotic spindle assembly, DNA replication and nuclear 

envelope assembly[25, 37].  

Arf GTPases 

ADP-ribosylation factor (Arf) proteins are involved in regulation of vesicular transport, 

similar to Rab GTPases. Arf1 regulates formation of vesicle coats in the exocytic and 

endocytic pathways. Arf proteins can function in multiple steps. Arf6, for example, can 

regulate actin organization as well as endocytosis[25].  

 

Clearly, the superfamily of Ras GTPase regulates a diverse spectrum of biological 

processes. However, they show many similarities in sequence classification, 

mechanisms of activation and effector associations. Furthermore, after being 

synthesized in the cytosol, all Ras GTPases undergo crucial post-translation 

modifications, mostly by the addition of lipids to facilitate their membrane association. 
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The common themes will be described in the following sections mainly guided by our 

protein class of interest: Rab GTPases. 

 

§ 1.2 Rab GTPase life cycle 

 

Before going into detail about the regulatory mechanisms behind function of the Ras 

GTPase superfamily in general, and Rab GTPases in particular, a typical Rab GTPase 

life cycle will be shortly described here. 

The reversible association of Rab GTPases with intracellular membranes and other 

proteins is essential for their function. In order to establish these interactions for Rab 

GTPase, a post-translational modification involving the attachment of a geranylgeranyl 

group to Rab‟s C-terminal cysteine(s) is necessary. This geranylgeranylation takes 

place directly after the synthesis of Rab GTPase in the cytosol. This so called 

prenylation is carried out in a ternary complex of RabGGTase and Rab Escort Protein 

(REP) (Figure 1.2, stage I)[38]. This process will be discussed in more detail in § 1.3. 

After prenylation and delivery to the membrane, Rab GTPase enter its next stage 

(Figure 1.2, stage II). Membrane bound Rab GTPase can be activated by the exchange 

of GDP for GTP by guanine nucleotide exchange factor (GEF) and deactivated by the 

hydrolysis of GTP to GDP by a GTPase activating protein (GAP). Upon activation, 

Rabs can interact with numerous effector proteins to exert their function. After being 

switched off by GAP, Rab is recruited from the membrane by guanosine nucleotide 

dissociation inhibitor (GDI). GDI solubilizes Rabs and transports them back to their 

donor membrane, in order to start a 2nd stage II life cycle[39]. This process will be 

discussed in more detail in § 1.4. 
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Figure 1.2: The life cycle of Rab GTPases, I: Geranylgeranylation of Rab proteins is essential 

for membrane binding and proper function. II: Once properly decorated, Rab proteins cycle 

between a GDP-bound off and GTP-bound on state, mediated by GEFs and GAPs.  

 

In order to study the relevance of Rab mediated processes, these processes can be 

perturbed on several levels. For example, in the second stage small molecules can be 

developed to selectively disrupt protein-protein interaction between Rab and a specific 

effector, GEF, GAP or GDI. However, a more general strategy, to disturb all Rab 

mediated processes would be targeting the post-translational prenylation. This strategy 

will be pursued in this thesis, describing the efforts to develop potent, selective small 

molecule inhibitors of RabGGTase. Since RabGGTase is related to the other prenyl 

transferase FTase and GGTase I, these enzymes need to be considered as potential 

anti-targets during selective inhibitor development.  

Before going into the inhibitor design, Rab GTPase mode of actions and biological 

functions, as well as the several delicate levels of regulation will be discussed in the 

following paragraphs.  
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§ 1.2.1 General structural features of Rab GTPase 

The tight regulation of Rab GTPases is reflected by several 

structural motifs involved in interaction with the associated 

proteins. The Rab proteins share a fold that is common to all 

small GTPases of the Ras superfamily, consisting of a six-

stranded β sheet (5 parallel and 1 antiparallel) surrounded by 

five α helices (Figure 1.3). All small GTPases contain a set of 

five conserved G box sequences, motifs that are directly 

involved in guanine nucleotide binding, Mg2+ binding and GTP 

hydrolysis [40, 41]. The G1 box, also known as a P-loop or 

Walker A motif, is a purine nucleotide binding signature. The 

G2 box is located in one of the sequences that reorient as a 

function of GDP or GTP binding and provide major 

components of effector binding surface. Only the threonine 

residue in this switch region is conserved over all subfamilies. 

The G3 box is involved in binding a nucleotide-associated Mg2+ 

ion and is well conserved among superfamily members. To 

confer specificity to GTP over ATP, residues in G4 are involved 

in hydrogen bond interaction with the guanine. In addition, they 

provide stabilizing interaction with G1 box residues. The G5 

box primarily makes indirect associations with the guanine 

nucleotide and is less well conserved among the supergroup 

members[24]. In addition, all the small GTPases contain so 

called switch regions, which are crucial for the small GTPases 

to interact with their GAPs, GEFs and certain effectors. These 

two switch regions overlap to some extend with the G box 

motifs.  

Sequence analysis by Pereira-Leal et al. indicated five amino-

acid stretches that are characteristic for all Rab GTPases[42]. 

These RabF regions cluster in and around the switch regions 

and are claimed to provide criteria for identifying Rab proteins. 

In addition, the authors identified four regions that can be used 

to define the subfamilies of Rab GTPases. Since these RabSF 

domains are on two distinct surfaces of the GTPase, it has 

been suggested that these domains are at least partially 

responsible for discrimination of specific down-stream 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Common 

Ras GTPase G motifs, 

Rab Family (RabF) 

and Rab subfamily 

motifs (RabSF), and 

prenylation motif (Pr). 
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effectors. Indeed, it could be shown in the crystal structure of Rab3a and its effector 

rabphillin-3A that both the switch regions and some Rab subfamily specific motifs 

contributed to the interactions[43].  

In addition to these RabF and RabSF regions, another conserved motif necessary for 

binding to REP via their hydrophobic C-terminal binding region (CBR) is characteristic 

for all Rab GTPase. This CBR interacting motif (CIM) consists of two apolar residues 

flanking a polar amino acid near the C-terminus and is crucial for the association to 

GDI and REP and hence prenylation[44-46].  

 

§ 1.3 Stage I: Prenylation & Machinery of small GTPases 

 

Lipid posttranslational modifications are a common requirement for proper function for 

most Ras GTPases family members. These lipid modifications involve the attachment 

of fatty acids such as myristoyl (Arf) and palmitoyl (Ras, Rho) as well as the attachment 

of isoprenoids (Ras, Rho and Rab)[25]. 

The incorporation of isoprenoids, known as prenylation, is crucial for membrane 

association and proper function of small GTPases Rab, Ras and Rho. Prenylation 

involves the covalent attachment of a prenyl moiety to a C-terminal cysteine. In 

general, a prenylpyrophosphate (PPP) serves as the prenyl donor whereas a prenyl 

transferase (PTase) enzyme catalyzes the attachment. All eukaryotes possess three 

PTases: FTase, GGTase I and RabGGTase[47-49]. FTase carries out a farnesylation, 

whereas GGTase I and RabGGTase carry out a geranylgeranylation or 

digeranylgeranylation respectively. The lipid substrates, farnesylpyrophosphate (FPP) 

and geranylgeranylpyrophosphate (GGPP) are both products from the mevalonate or 

deoxyxylulose-5-phosphate isoprenoids biosynthesis pathways (Figure 1.4)[50].  

The Rab family displays a set of one or two cysteine containing C-terminal motifs (CC, 

CXC, CCX, CCXX, CCXXX, CXXX), which are (di)geranylgeranylated by RabGGTase. 

This is done in a ternary complex of Rab GTPase, RabGGTase and REP, in which 

REP recognizes unprenylated Rab GTPases and presents them to RabGGTase. Rab 

GTPases then interact with the plasma membrane with their prenyl group(s)[51]. There 

are two REP proteins found in mammals, REP1 and REP2[52].  

Ras and Rho GTPase family member possess a C-terminal CAAX box (C=Cys, 

A=aliphatic, X=any amino acid)[53], which represents a recognition sequence for FTase 

and GGTase I, thus in this case, no ternary complex is required. Therefore, FTase and 

GGTase I are also known as CAAX transferases. Roughly, geranylgeranylation occurs 

when the CAAX sequence ends in leucine or phenylalanine, whereas farnesylation 

takes place in all other cases[54]. However, it has been shown that this subdivision is 
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not that strict; GGTase I for example, can cross prenylated FTase‟ substrates if FTase 

function is inhibited[55].  

 

 

  

Figure 1.4: Isoprenoid synthesis pathway and related prenyl transferases 

 

Prenylation occurs in a step wise manner 

Kinetic studies for the CAAX transferases suggest an ordered prenylation sequence 

(Figure 1.5). First, PPP binds to the apo enzyme, followed by the CAAX substrate. In 

the active site of PTase, the cysteine coordinates to a conserved Zn2+ ion, thereby 

activating its thiol for nucleophilic attack [56-58]. During the prenylation reaction, the 

pyrophosphate barring a negative charge is released. This negative charge is stabilized 

by Mg2+ or a conserved leucine in FTase and GGTase I, respectively [59, 60]. After 

prenylation, the substrate is released either by rebinding of PPP or unprenylated 

protein. The release of prenylated substrate is shown to be the rate limiting step under 

saturated reaction conditions, whereas the chemical reaction itself seems to be rate 

limiting under subsaturated conditions [61-64].  
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Figure 1.5: Mechanistic model of FTase-mediated protein prenylation. 

 

The prenylation sequence of RabGGTase is presented by a more complicated picture 

and has been studied by a combination of classical biochemical and spectroscopic 

methods complemented by crystallization studies toward the ternary 

Rab:REP:RabGGTase structure[65-70]. Although this structure has not been solved to 

date, molecular modeling studies on binary complexes Rab7:REP and 

Rab7:RabGGTase resulted in a model structure that matched the biochemical data 

(Figure 1.7c) [46, 70]. In this model, the three important specificity domains have been 

included. The switch I and II regions of Rab GTPase interacts with the Rab binding 

platform (RBP). Furthermore, Rab interacts with a hydrophobic patch (C-terminal 

binding region, CBR) of REP, with its CBR binding motif (CIM). The CIM consists of 

two large hydrophobic residues adjacent to a polar residue. Results from molecular 

modeling suggested that Rab associates with REPs RBP into a low affinity complex[46], 

upon association of CBR with CIM the complex affinity increases by an order of 

magnitude. This complex then associates with GGPP bound RabGGTase. Since the 

cysteines only participate in weak interaction with RabGGTase, two sequential 

prenylation can be carried out in a single arrangement. The dissociation of prenylated 

Rab GTPases involves two steps, first GGPP displaces the geranylgeranylated 

product, second the geranylgeranyl moieties bind to REP and GGPP bound 

RabGGTase is released (Figure 1.6)[70-72].  
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Figure 1.6: Mechanistic model of RabGGTase-mediated protein prenylation. 

 

Structural Biology of FTase, GGTase I and RabGGTase 

FTase, GGTase I and RabGGTase all exist as αβ heterodimers(Figure 1.7). They are 

zinc metalloenzymes binding one Zn2+ ion per protein dimer. This Zn2+ ion is essential 

for the catalytic activity of the enzymes by means of activating the thiol toward 

nucleophilic attack[54].  

FTase and GGTase I share identical α units, with an almost identical structure. The β 

subunit of FTase and GGTase I share only 25% sequence identity but have very 

similar structures as well. RabGGTase presents 30% homology with the CAAX 

transferases and has four distinct structural domains. The α-subunit, opposed to FTase 

and GGTase I, is composed of three domains: a helical domain, an Ig-like domain 

formed by an eight-stranded β-sandwich and a leucine-rich repeat (LRR) domain. 

Despite the 22% sequence identity, the helical domain is structurally very similar to the 

α subunit of FTase. The role of the additional LRR and Ig like domains, both absent in 

lower eukaryotic versions of RabGGTase, remains unknown[73].  



 

S
ta

g
e

 I
: 
P

re
n
y
la

ti
o
n

 &
 M

a
c
h
in

e
ry

 o
f 

s
m

a
ll 

G
T

P
a

s
e

s
 

12 

 

 

Figure 1.7:(a) Crystal structures of FTase (1D8E), GGTase I (1N4P) and RabGGTase (1LTX). 

(b) an overlay of their β-unit active sites
[51]

, Trp102 of FTase would clash with the last isoprene 

unit of GGPP. (c) the modeled ternary Rab7:REP:RabGGTase complex
[46]

. 

 

The β subunit is arranged in a similar fashion for all PTases, the twelve helices form an 

α-α barrel. One end of this barrel is closed whereas the opposite end is open creating a 

deep, funnel-shaped cavity in the center. This cavity is mostly hydrophobic in nature 

and lined with conserved aromatic residues and comprises the lipid binding site. A 

positively charged cluster is located near the opening of the cavity to interact with the 

diphosphate moiety[54].  

Substrate specificity for GGPP or FPP seems to be determined by a single residue in 

the bottom of the hydrophobic binding site. In GGTase I and RabGGTase this residue 

is a small amino acid such as threonine or serine allowing GGPP to bind. In FTase this 

residue is replaced by a tryptophan constricting the length of the isoprenoids in favor of 

FPP[51, 54] (Figure 1.7b, Figure 1.8). Some implication for CAAX-box specificity can be 

deduced from differences in the β-subunit of FTase and GGTase I[54]. Two anchor 

points within the recognition motif (cysteine and C-terminus) makes specific 

interactions with the enzyme discriminating against peptides with wrong length or 

without cysteine. The A1 residue is solvent exposed, whereas the A2 and X residues 

are buried in the active site. Consequently A2 and X contribute largely to peptide 

selectivity. At A2 various amino acids can be accommodated. The respective FTase  

a 

b c 
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and GGTase I A2 binding sites clearly show 

an increased aromatic character of FTase 

relative to GGTase I.  

Although this has subtle effect on Ras-peptide 

binding it has a marked effect on inhibitor 

binding, by providing potential selectivity for 

either GGTase I or FTase. The X-residue 

binding site of FTase and GGTase I show 

distinct electrostatic properties. The FTase 

pocket is more polar and GGTase I is more 

hydrophobic. Both pockets will not allow 

binding of larger residues like tryptophan 

because of potential steric clashes[54].  

As previously mentioned RabGGTase has no 

specific recognition pattern and enables a 

digeranylgeranylation process. Since the 

structure of RabGGTase reveals a large 7.5 Ǻ 

hydrophobic tunnel nearby the exit groove, it 

has been suggested that monoprenylated Rab 

relocates into this tunnel[61]. Recent co-

crystallization attempts of RabGGTase in 

complex with mono- and di-prenylated Rab7 

C-termini though, showed no additional 

electron density in this tunnel[70]. For all 

peptides the geranylgeranyl moiety was 

located in the GGPP binding site and for the 

di-prenylated peptide the second 

geranylgeranyl product could not be detected. 

Since the electron densities of all peptide 

chains were poor, it was suggested that no 

highly stabilizing interactions are formed with 

either the active site or the hydrophobic tunnel 

of RabGGTase. The only strong interaction 

found was between the prenyl moiety and the 

GGPP binding site[70]. 

 

 

 

Figure 1.8: Detailed comparison of the 

active site of GGTase I (1TNB), FTase 

(1TN8) and RabGGTase (overlaid with 

cysteine, 3DST). A
1 

is solvent exposed in 

both GGTase I and FTase; A
2
 interacts 

with the blue residues whereas X interacts 

with the green residues. No such particular 

binding interaction has been found for 

RabGGTase substrates. The surface 

representation reflects the lipophilicity of 

the pocket. Green=lipophilic, 

purple=hydrophilic, white=neutral. 

GGTaseI 

FTase 

RabGGTase 
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Comparison of the binding sites of all three prenyl transferase clearly shows structural 

resemblances and differences. This can be exploited in the design of prenyl 

transferase inhibitors. Targeting the lipid binding site with GGPP analogues, will most 

probably lead to dual inhibitors of GGTase I and RabGGTase. One example of such an 

inhibitor will be discussed in § 1.7.1. CAAX peptidomimetics can generate dual 

inhibitors of FTase and GGTase I. Inhibitors containing structural features such as zinc 

binders close to aromatic hydrophobic groups are likely to inhibit both RabGGTase and 

FTase, as will come forward in this thesis. In order to obtain specific inhibitors for one 

of the PTases, rational design seems to be crucial.  

 

In this paragraph the post-translational prenylation, crucial for the association to 

membranes and hence, function of the GTPases Rab, Ras and Rho has been 

stressed. The prenylation can be carried out by three different prenyl transferases: the 

CAAX transferases FTase and GGTase I, responsible for the prenylation of Ras and 

Rho proteins and RabGGTase, responsible for prenylation of Rab proteins.  

Now that the Rab GTPases are properly prenylated, they continue in the next „life 

stage‟, to function as tightly regulated molecular switches in order to act in diverse 

biochemical and biological processes. 

 

§ 1.4 Stage II: The tightly regulated molecular switch 

 

Small GTPases show high-affinity binding for GDP and GTP, with a low tendency of 

GTP hydrolysis and GDP/GTP exchange activity. Consequently, GDP/GTP cycling is 

controlled by two main classes of regulatory proteins. GEFs promote formation of the 

active GTP-bound form, whereas GAPs accelerate the intrinsic GTPase activity to 

promote formation of the inactive GDP-bound form. Both shared and distinct GEFs and 

GAPs are utilized within GTPase family members, whereas GTPases in different 

branches exhibit structurally distinct but mechanistically similar GAPs and GEFs[74]. 

The two nucleotide-bound states have similar conformation but pronounced differences 

corresponding to the switch regions (Figure 1.3, Figure 1.9). It has been found that the 

GTP-bound conformation possesses a high affinity for regulator proteins and effectors, 

which are informed by these conformational changes[26, 75]. Effector molecules are 

those that interact with GTP-bound small GTPases, and hence, this state is regarded 

as the active form of all Ras superfamily GTPases. However, for Rab, Arf and Ran 

GTPases the cycling between the GDP-bound and GTP-bound states are also critical 

for their activities, since distinct functions are associated with each nucleotide-bound 

form[25].  
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§ 1.4.1 The Ras family serves as a molecular switch  

Ras GTPases, thus, cycle between an „on‟ GTP-bound and an „off‟ GDP-bound state, 

thereby controlling processes ranging from cell growth to vesicular transport. The 

difference in structure of GDP- and GTP- bound Ras family proteins are subtle and are 

mainly limited to the so called „switch regions‟. These regions are identified to show an 

increased flexibility both in NMR and electron paramagnetic resonance studies as well 

as in X-ray crystal structures[76, 77]. Interesting to note is the large variation in structural 

details of GDP-bound forms compared to GTP-bound forms[78, 79]. The trigger for this 

conformational change seems to be universal and has been described as a „loaded 

spring mechanism‟[80]. In the triphosphate bound form two hydrogen bonds are formed 

between the phosphate oxygen to the main chain NH groups of Thr and Gly residues in 

switch I and switch II respectively. Upon release of the -phosphate the hydrogen 

bonds are broken and the switch regions can relax in the GDP-specific conformation 

(Figure 1.9). The extent of this conformational switch is different among the GTPases; 

most Rab family members show only minor changes involving the switch regions[80].  

 

Figure 1.9: Universal Switch Mechanisms of Ras GTPases, depicted for Rab5c (pdb 1Z07, 

1Z0D). The hydrogen bonds between Thr53 and Gly79 break upon release of the -phosphate 

leading to a conformational change in the switch regions.  

 

§ 1.4.2 GEFs and GAPs 

As mentioned before, the intrinsic exchange of GDP to GTP is slow, as well as the 

hydrolysis of GTP back to GDP. To control the initiation and duration of Ras activation, 

specific regulators known as GEFs and GAPs are necessary. 
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GEFs 

GEFs accelerate the exchange from GDP to GTP in a competitive manner. GEF binds 

to the GDP-GTPase complex and upon binding, GDP is released. This series of 

reactions is reversible by rebinding of a nucleotide, predominantly GTP, due to its 

higher concentration in the cell. These reactions are fast and reversible; GEF acting as 

a catalyst to increase the rate at which the equilibrium between the two states of the 

protein is reached[81, 82]. The position of equilibrium is dictated by the relative affinities of 

the GTPases for GDP and GTP, the intracellular concentrations of the nucleotides and 

the affinities and concentration of additional proteins[80]. GEFs are normally conserved 

within a given subfamily, but, in contrast to the GTPases themselves, not structurally 

related. Some general mechanistic similarities can be extracted though. The GEFs 

interact with the switch I and switch II regions and insert residues close to or into the P 

loop and the Mg2+ binding site. This results in structural changes that are inhibitory for 

binding of the phosphates to the metal ion[80]. Since binding studies showed the -

phosphate to be the major component of tight binding of the nucleotide, structural 

disturbance of the P loop most likely contributes to the drastically decreased affinity[80]. 

 

 

Figure 1.10: Schematic activity of GEF, acting as a catalyst in the nucleotide exchange 

reaction. The exchange reaction occurs in successive reversible steps. The nucleotide (orange) 

interacts with the G protein (gray) via its base (B) and its phosphate moieties (P). The GEF 

(blue) competes with the nucleotide for binding with the G protein and thereby promotes 

nucleotide exchanges. Inspired by Bos et al.
[83]

. 

 

In the last decades, many crystal structures of Ras GTPases in complex with their 

related GEFs have been determined. The majority of these structures though, are 

determined without bound nucleotide, giving a rather static picture. For a more 

complete description of the initial reaction pathway structures of GEF-Ras-GDP are 
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needed. So far, these kind of complexes have only been realized for mutated Arf 

GTPase and a related plants enzyme of Rho GTPase, Rop GTPase[84, 85]. 

 

For Rab GTPases and related yeast proteins (YPTs), so far only nucleotide free GEF 

complexes have been determined. The five structures published to date are depicted in 

Figure 1.11[86-90]. In the first place, it is very clear from these complexes that GEFs for 

Rab GTPases are structurally unrelated. However, also in the GEF-Rab complexes 

unifying themes in activation can be retrieved. Switch I displacement occurs in all of the 

GEF-Rab complexes. The broadly conserved phenylalanine/tyrosine that interacts with 

the guanine ring in nucleotide bound state is displaced by GEF, thereby facilitating 

nucleotide migration. In addition, the GEFs disturb the Mg2+ phosphate site, either 

through direct occupation or by promoting conformational changes. More insights into 

the detailed reaction pathway, however, require structures of GEF-Rab-GDP 

complexes[91].  

All Rab related GEFs have a clearly defined mechanism for recruitment to a defined 

membrane compartment, which is crucial to promote Rab activation in a specific 

tethering or organelle identity pathway[91]. Rabex-5, for example, acts as a GEF on 

Rab5 at the early endosome, where it is crucial for controlling the dynamics of 

membrane fusion. Rabex-5 itself is recruited to endosomes by interaction with 

ubiquitinated cargo molecules and the Rab-effector protein Rabaptin-5[92-94]. These 

interactions provide a means to restrict its GEF activity to the early endocytic pathway 

where Rab5 is required. The Vsp9-domain GEF protein family, to which Rabex-5 

belongs, are thought to be specific for Rab5 subfamily proteins; specific Vsp9 domain 

proteins might associate with different parts of the early endocytic pathway and target 

different members of groups within the Rab5 subfamily to control unique trafficking 

pathways[91]. Specific GEFs, thus, contributes to the specificity of the cellular trafficking 

pathways of the small Rab GTPases.  

A remark needs to be placed by at least two of these crystal structures. Mss4, which 

exact function remains unknown, recently has been shown to only interact with 

secretory Rab proteins, and in addition shows rather low inefficient GEF activity. 

Therefore Wixler et al. proposed that Mss4 is rather a chaperone for exocytic Rab 

GTPases than a GEF[95]. SidM, also known as DrrA is not a native GEF, but is an 

element of legionella pneumophilia that hijacks the Rab 1 trafficking pathway[90, 96].  
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2OT3: Rabex-5, Rab 21, Asp Finger 

 

2FU5: Mss4, Rab 8 

 

2OCY: Sec 2, Sec 4 

 

3CUE: Trapp (Trs31, Bet3cD, Trs23, Bet5, 
Bet3cE)Ypt1 

 

3JZA: SidM/DrrA, Rab 1 

Switch 1 

Switch II 

P-loop 

Mg
2+ 

GTP 

Figure 1.11: Different Rabs and its GEFs (nucleotide GTP and Mg
2+

 are extracted from Rab5c 

after superposition) The Rabex-5 accelerates nucleotide exchange by supplying an aspartate 

finger, destabilizing Mg
2+

 and GDP binding and stabilizing the nucleotide free intermediate
[86]

. 

Mss4 induces unfolding of switch I, thereby promoting nucleotide release
[87]

. Sec2 stabilizes 

switch I of Sec4 in a conformation that conflicts with nucleotide binding
[88]

. TRAPP 1 complex 

uses the C-terminus of Bet3p Chain E (Bet3cE) by occupation of the Mg
2+

 phosphate region 

and trapping switch I of YPT1 in open conformation
[89]

 SidM/DrrA disrupts the Mg2+/phosphate 

region by interaction with the switch regions, inducing a displacement of switch I form the 

nucleotide side
[90]

. 
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GAPs 

The intrinsic rate of GTP hydrolysis is very slow for the Ras superfamily of GTPases. 

Therefore, the hydrolysis of GTP to GDP is promoted by GAPs. The first mechanistic 

insights in GAP activation were derived from Ras:RasGAP[97] and Cdc43:RhoGAP[98] 

crystal structures and showed the involvement of an essential arginine, interacting with 

the active site of the GTPase. To hydrolyze GTP into GDP, a water molecule needs to 

attack. The RasGAP stabilizes the position of Gln61 in Ras, which in turn coordinates 

this attacking water. In addition an arginine inserts in the phosphate binding site and 

stabilizes the transition state by neutralizing the negative charge of the -phosphate. 

Interestingly, mutation in Gln61 frequently occurs in human tumors and stops GAP 

induced hydrolysis[97]. A similar mechanism was found for the RhoGAP complex. The 

general mechanism is depicted in Figure 1.12a  

 

a) 
 
 
 
 
 
 
 
 

   b) 

Figure 1.12: General mechanism of GAP promoted GTP hydrolysis for (a) Ras GTPases and 

(b) Rab GTPases. Specific GAP and GTPase residues are involved in promoting catalysis by 

coordinating the water molecule for nucleophilic attack and stabilizing the transition state by 

neutralizing negative charge at the γ-phosphate. 

 

The same catalytic glutamine is also conserved in Rab and the arginine finger is 

observed in many RabGAPs. Surprisingly, upon structural determination of a 

Rab:RabGAP complex between the conserved TBC (Trec2/Cdc16/Bub2) domain of 

Gyp1p, Rab33, GDP and AlF3 a different transition state was found[99]. Since it is not 

possible to observe a real transition state, AlF3is used as a transition mimic. The 

interaction still seems to be stabilized by an arginine finger; however the Rab-glutamine 

is not interacting with the attacking water. Instead, it binds to the GAP, which in turn 

positions a Gyp1p-glutamine to interact with the pyrophosphate and attacking water 

(Figure 1.12b, Figure 1.13). These observations suggest that TBC domains act as dual 

finger GAPs, supplying an arginine and glutamine finger to enhance GTP hydrolysis [94].  
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Figure 1.13: Crystal structure of Rab33 in complex with Gyp1p. AlF3 is used as phosphate 

transition state mimic (2G77).  

 

In general, Rab GAPs attenuate Rab activity, either temporally or spatially and to 

decrease Rab activation to prevent accumulation in undesirable locations. Because of 

these requirement multiple GAPs may act on a single Rab to refine its site of action[91].  

 

§ 1.4.3 Effectors 

Effectors for GTPases by definition interact more tightly with the GTP-bound than with 

the GDP-bound form. Indeed, it has been supported by structural analysis that effector 

binding involves binding to the switch regions of GTPases[80].  

Rab GTPases interact with diverse effectors in their active state to facilitate cargo 

sorting, to establish long range tethering linkages preceding SNARE-mediated fusion 

and to couple vesicles or organelles to motor proteins in order to facilitate transport. [94] 

Except for small families of homologous Rab-binding domains (RBDs), various Rab 

effectors share little sequence identity. Several effector RBDs in complex with Rab 

GTPases have been solved and illustrate the similarity and divergence at the structural 

level (Figure 1.14).  
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Figure 1.14: Rabs and their effectors. (a) Structural related RBDs of Rabphilin
[43]

, Slac2-a
[100]

 

and Slp2-a
[101]

 with Rab3 and Rab27. (b) RILP:Rab7
[102]

 complex. (c) Rab6IP1
[103]

 and 

GCC185
[103]

 in complex with Rab6 (d) FIP3:Rab11
[104]

 complex (e), Rabenosyn-5
[105]

 in complex 

with Rab22 and Rab4 and (f) Rabaptin-5:Rab5
[106]

 complex. Adapted from Lee et al.
[94]

. 

 

In general, all known Rab-effector complexes involve interaction of one[43] 

(Rabphilin:Rab3, Figure 1.14a) or two α-helices of the effector with the GTPase binding 

site of Rab GTPase, involving switch I, switch II and interswitch regions. These two 

helices can come from homodimeric coiled coil structures (Rabaptin-5:Rab5[106], Figure 

1.14f) or from helix-turn-helix motifs from different regions of the effector molecule 

(Figure 1.14e). In the Rab6:Rab6IP1[103] complex, the helices are part of a so called 

helical bundle RUN (RPIP8, UNC-14, NESCA) domain.  

Another common feature of all Rab-effector interactions involves the hydrophobic triad, 

consisting of a phenylaniline and a tryptophan in the interswitch region and a tyrosine 

near the end of switch II. The phenylalanine residue is part of a conserved IGIDF motif 

(RabF1), which occurs in most Rab proteins but not in other GTPases. Since this motif 

undergoes major structural changes upon GTP hydrolysis, it seems to play a significant 

role in providing specific recognition pattern for the GTP bound Rab GTPases[107]. The 

 
 

 
 

 
 

 

Rabphilin  
RBD 

Slac2-a 
RBD 

Slp2-a 
RBD 

Rab3 Rab27 Rab27 

RILP 
RBD 

Rab7 Rab7 

FIP2 
RBD 

Rab11 Rab11 Rab6 Rab6 Rab6 

Rab6IP1 (RUN 
Domain) 

GCC185 
RBD 

Rab22 Rab4 

Rabenosyn-5 
C-terminal RBD 

Rabenosyn-5 
C-terminal RBD 

Rabaptin-5 
RBD 

Rab5 Rab5 

a) b) 

c) d) 

e) f) 
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specificity of an effector for a particular Rab protein is most likely defined by a 

combination of interactions with this hydrophobic triad together with additional 

interaction both inside and outside the switch region.  

 

 

Figure 1.15: Hydrophobic triad interacting with effector. Switch I, Switch II and RabF1 domain, 

common contributors of effector interactions. (Depicted for Rab3/Rabphilin-3a, pdb:1ZPB
[43]

) 

 

§ 1.4.4 Chaperon proteins  

The posttranslational lipid modifications create a lipidated hydrophobic domain that is 

necessary for attachment to specific proteins as well as anchoring to the membranes. 

This last process is dynamic, and involves association and dissociation from the 

compartment membranes. For Rab and Rho protein subfamily members the 

dissociation into the cytosol is energetically unfavorable. Therefore, guanosine 

nucleotide dissociation inhibitor (GDI) proteins function as chaperones, rendering the 

geranylgeranylated proteins soluble. Although these GDIs have no sequence or 

structural relationship, they share some biological features. GDIs bind with high affinity 

to the isoprenyl moiety; they can interact with many subfamily members and they slow 

down the dissociation of the nucleotide. As a consequence GDI serves as a cytosolic 

reservoir for their corresponding GTPases[108]. In addition to GDI the subfamily of Rab 

GTPases requires another chaperone protein REP, previously discussed in § 1.3. 

During the post-translational prenylation, REP is responsible for the specific recognition 

of Rab proteins and for presenting them to RabGGTase. After geranylgeranylation, 

REP keeps the geranylgeranyl modified Rab soluble and presents it to the membrane. 

REP and RabGDI show some striking resemblance in structure but a co-crystal 

structure of REP:RabGGTase clearly indicates some important side chain interactions 
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which are not present in RabGDI. This explains the fact that RabGGTase is able to 

interact with REP but not with RabGDI.[107] 

 

In this paragraph, it has been shown that the Ras superfamily of GTPases is able to act 

on diverse biological processes via a general, highly regulated, mode of action. 

GTPases act as molecular switches going from the GDP-bound off state into the GTP-

bound on state. The „switching lever‟, is regulated by GAPs and GEFs, since both 

intrinsic hydrolysis and dissociation of respectively GTP and GDP are too slow for 

these GTPases. In the active state, the GTPases can interact with their effectors 

leading to a diverse array of signaling and trafficking events in the cell. Rab and Rho 

proteins have additional chaperone proteins, GDIs to keep them soluble within the 

cytosol, representing a 3rd level of regulation of these GTPases. In the next paragraph, 

the role of the tightly regulated Rab GTPases in vesicle trafficking will be discussed.  

 

 

§ 1.5 The role of Rab GTPases in vesicle trafficking 

 

§ 1.5.1 Rab GTPases as coordinators of vesicle t raff ic  

In all eukaryotic organisms there is the need to transfer content between distinct 

membrane-enclosed organelles in a specific and regulated manner. Such transport 

requires several stages such as vesicle budding, specific transportation, 

docking/tethering and fusion with their target compartments. Rab GTPases are the key 

regulators of all these processes on both the exo- and endocytic pathways through 

their indirect interactions with coat components, motors and SNAREs. These Rab 

proteins, containing more than 60 family members, are localized to distinct intracellular 

membranes, thereby controlling diverse crucial trafficking processes (Figure 1.16).  

 

The Exocytic and Endocytic pathway 

Trafficking follows two main pathways, the exocytic and endocytic pathways. The 

exocytic pathway represents the movement of cargo from the endoplasmic reticulum 

(ER) through the trans Golgi to the plasma membrane (PM). Newly synthesized 

proteins enter the ER during their translation via a translocon pore. In order to exit the 

ER; vesicles form at the so-called ER exit sites and move to the cis Golgi. The 

vesicular transport between the Golgi cisternae is poorly understood. It has been 

proposed that vesicles move cargo forward and resident proteins backward between 

the Golgi cisternae[109]. 
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During the last step of the 

exocytic pathway, exocytosis, 

secretory vesicles are formed at 

the trans-Golgi and fuse with the 

PM to deliver their protein and 

lipid cargo. As a direct 

consequence of this pathway, 

resident proteins as well as 

excess lipids have to be retrieved 

back to their „home 

compartments‟. Therefore, every 

forward transport step is 

complemented by a retrograde 

transport step. Major 

intersections are the IC 

(intermediate compartment) in 

between the ER and Golgi as 

well as recycling endosomes, 

which recycle proteins back to 

the PM or Golgi[109]. 

The endocytic pathway 

represents the internalization of 

cargo from the cell milieu. This 

internalization can happen via a 

variety of routes, for example 

through dynamin-dependent 

routes such as clathrin-coated 

vesicles (CCVs), caveolar 

endocytosis or raft-dependent 

internalization, where dynamin is essential for vesicle scission and dynamin-

independent uptake. The best studied endocytic pathway starts after CCVs formation. 

After vesicle uncoating, the vesicles fuse to form early endosomes. These early 

endosomes sort cargo into a variety of different pathways and have a characteristic 

tubular/vesicular morphology. The tubules splice off while carrying membrane proteins 

into the recycling pathway, whereas the vesicular portion matures into a late 

endosome. Parts of the late endosome are internalized as vesicles and fused with the 

lysosome, where internalized material and membrane proteins are degraded[109]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.16: Localization and function of selected Rab 

GTPases. Rab1 mediates ER-Golgi trafficking. Rab2 

regulates Golgi-ER trafficking. Rab4 regulates fast 

endocytic recycling. Rab5, localized at early endosomes, 

phagosomes, caveosomes and plasma membrane 

controls endocytosis and endosome fusion of clathrin-

coated vesicles (CVVs). Rab6 is involved in intra-Golgi 

trafficking. Rab7 mediates maturation of late endosomes 

and phagosomes, as well as their fusion with lysosomes. 

Rab9 mediates trafficking from late endosomes to the 

trans-Golgi network (TGN). Rab11 mediates slow 

endocytic recycling. Rab27 acts in various types of 

regulated exocytic events as well as in translocation of 

melanosomes to the cell periphery. (Adopted from 

Stenmark)
[18]

.  
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The exocytic pathway and endocytic pathway are interconnected on several stages. 

For example, newly synthesized endosomal and lysosomal proteins and lipids are 

shuttled from the trans Golgi to the early endosomes. These proteins, labeled with 

mannose-6-phosphate, are sorted by M6P receptors (M6PRs) into vesicles and 

targeted to endocytic compartments. These M6PRs then travel from early endosomes 

to late endosomes, upon which they are retrograde transported to the Golgi[109].  

Rab proteins are highly involved in both the endo- and exocytic pathway and crosstalk. 

They are involved in all steps of vesicular transport; sorting/budding, uncoating, motility 

and tethering/fusion (Figure 1.17). All these transport steps requires binding of Rab 

effectors to active Rab proteins.  

 

 

Figure 1.17: Sequential steps of vesicle trafficking, I) sorting, II) uncoating, III) Motility, IV) 

docking, V) fusion, adapted from Vazques-Martinez et al
[110]

. The independent steps are 

described in the text.  

I. Vesicle Sorting 

Cargo selection into specific coated transport vesicles is a fundamental mechanism in 

intracellular trafficking. There are three main types of coated vesicles, CCVs, and 

vesicles coated with coat protein complex I (COPI) or coat protein complex II (COPII). 

Small GTPases Arf (CCV/COPI) and Sar1(COPII) regulate coat assembly and 

disassembly[111]. The formation of such a coat is cargo-specific. This specificity is 

partially due to recognition of structural features of the cargo, but ensured further by 

membrane curvature, lipid composition and Rab GTPases[112]. 

For example, the retrograde transport of M6PRs from late endosomes to the trans 

Golgi network has been linked to late endosomal Rab9. TIP47 is a sorting adaptor that 
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recognizes the cytosolic tail of M6PRs and is also an effector of Rab9[113]. The 

interaction with GTP-boundRab9 causes the recruitment of TIP47 to the late 

endosomes and increases the affinity of TIP47 for its cargo. Thereby, Rab9 mediates 

the M6PR sorting into late endosomal recycling buds.  

Rab5 is another Rab GTPase identified in cargo sequestration. McLauchlanet al. 

showed that Rab5-GDI recruitment is necessary to ensure ligand sequestration in the 

formation of clathrin-coated pits[114]. Upon recruitment of the coat proteins into the 

membrane, matrices are formed. These matrices however are only capable of ligand 

sequestration after additional recruitment of Rab5-GDI. Interestingly, Rab5 is also 

involved in the next step of vesicle trafficking: vesicle uncoating.  

II. Vesicle Uncoating 

The vesicle coat, necessary for sorting and budding, interferes with membrane fusion 

and therefore needs to be disassembled prior to engagement with the target 

membrane[18]. It has been shown that Rab5 and its GEF GAPVD1 (GTPase-activating 

protein and VPS9 domain-containing protein 1, containing an N-terminal GAP domain 

and a C-terminal GEF domain) can coordinate uncoating of endocytic vesicles 

consistent of clathrin coat and cargo adaptor protein complex AP2[115]. The AP2 derived 

vesicles are stabilized by phosphoinositide (PI) and enhanced by phosphorylation of an 

AP2 subunit by AP2-associated kinase 1 (AAK1). Uncoating is promoted by a direct 

displacement of AAK1 by GAPVD1 as well as a Rab5 mediated increased turnover of 

the PI. The Rab GTPase and its GEF thus displays a synergistic effect on vesicle 

uncoating.  

III. Vesicle Motility 

Vesicle delivery is mediated by actin filaments and microtubules, which facilitate local 

and long-range vesicle transport, respectively[116]. Motor proteins are capable of guiding 

directional vesicle transport along these molecular cables. Actin-mediated transport 

occurs via members of the myosin family[117]. Two families of motor proteins are 

involved in microtubule transport. In general, kinesin motors transport cargo toward the 

plus end of the microtubules located in the cell periphery, whereas dynein motors 

mediates cargo transport toward the microtubule organizing center (MTOC)[118, 119]. 

Several Rab GTPases have been identified to interact with motor proteins. Rab6, for 

example can interact with Rabkinesin-6 and leads from the Golgi toward the plus end 

of the microtubule[120]. Interestingly Rab6 can also interact with the dynactin subunit 

p150Glued, hence traveling in the opposite direction[121]. Thus, active Rab GTPases can 

both regulate plus-end and minus-end transport of Golgi compartments. Other Rabs 
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that interact with motor proteins, either direct or indirect, are Rab4, Rab5, Rab7, Rab8, 

Rab11 and Rab27a. The major involvement of Rab GTPases in vesicle motility most 

likely reflects the important role of Rab GTPases in connecting the transport vesicle to 

its designated motor[116]. 

IV. Vesicle Tethering 

Once an organelle is close to its target membrane, tethers mediate the initial 

recognition of the vesicle. These tethering factors, which interact with Rab GTPases, 

can be roughly divided into two categories; long range tethers and short range, 

multisubunit complexes[122, 123]. For example, Sec4, a yeast Rab GTPase recruits 

Sec15, a subunit of the octameric exocyst tethering complex involved in the targeting of 

post-Golgi vesicles to the plasma membrane[124]. Besides the Rab binding domain, the 

exocyst complex bears subunits that bind to Rho GTPases located on the plasma 

membrane. Therefore, binding of Rab to the exocyst leads to proximity of the vesicle to 

the Rho GTPase containing plasma membrane[125]. Other examples of Rab GTPases 

involved in tethering are Rab1, by binding to p115[126] and Rab5, by the binding 

tethering factor early endosome antigen 1 (EEA1)[127] or rabenosyn 5[128]. 

V. Vesicle Fusion 

Once the vesicle is docked to its acceptor membrane, fusion has to take place. The 

actual fusion process is mediated by SNARE (soluble NSF attachment protein receptor 

where NSF stands for N-ethyl-maleimide-sensitive fusion protein) proteins. SNAREs 

are classically divided in vesicle snares (v-SNAREs) and target snares (t-SNAREs). 

The v-SNARE is incorporated in the vesicle and interacts with the t-SNARE on the 

target membrane. They contain a SNARE motif of 60-70 amino acids arranged in 

heptad repeats, which can undergo coiled-coil formation. Upon pairing of a single v-

snare with three t-snares a stable intertwined helix is formed between the different 

membranes known as a trans-SNARE complex. The trans-SNARE complex is „zipped 

up‟ from the N-terminal ends toward the C-terminal membrane anchors, pulling the 

membranes together, opening up a fusion pore and finally vesicle fusion. NSF then 

uses ATP to unravel the coiled-coil interaction and parts the SNARE for reuse[129].Ohya 

et al. showed that Rab5 and SNARE proteins synergistically drive endosomal fusion by 

interaction with several accessory proteins. Rab5 effector rabenosyn-5 interacts with 

SNARE accessory factor vacuolar protein sorting-associated protein 45(VPS45), 

whereas linker protein prenylated Rab acceptor 1(PRA1) binds to both Rabs and 

SNAREs[130]. Thereby, Rab GTPases have been implicated to participate in driving the 

fusion process[131].  
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After membrane fusion, the associated Rab GTPase is converted to its inactive GDP 

bound form, extracted by GDI and transported to the donor membrane. It has been 

proposed that a GDI displacement factor (GDF) promotes the reinsertion of Rab 

GTPase into the donor membrane[132]. However, it has been suggested recently that 

GEF activity alone, by exchanging GDP into GTP, can be sufficient to extract Rab from 

GDI into the target membrane as well[90].  

Rab Cascades 

Different Rab-defined compartments are addressed while a vesicle transits from one 

organelle to another. Interestingly, it has been shown for some Rabs that specific 

population exists; Rab4, Rab5 and Rab11 domains, although dynamic, do not 

significantly mix over time. The same pattern is observed in the late endosomes, 

comprising distinct membrane domains for Rab7 and Rab9. It is proposed that the 

mechanism for this behavior relates to a Rab GEF and GAP cascade. Upstream Rabs 

are responsible for recruiting GEF for their downstream Rabs, whereas the 

downstream Rabs in turn recruits a GAP for their upstream Rabs. These 

countercurrent cascades ensure that appropriate downstream Rab is recruited and 

upstream Rab is inactivated in parallel[133]. Several modes of cross talk have been 

described in addition (Figure 1.18), thereby presenting a regulation mechanism at the 

meta-level of Rab trafficking in addition to the tight regulation of Rab activity already 

regulated by its GEFs and GAPs[18].  

 

 

Figure 1.18: Coordination of Rab Functions. a) Positive feedback loop: a Rab effector complex 

contains GEF for the same Rab. b) Effector coupling: the effector has binding sites for two 

Rabs, thereby coordinating microdomains in the same membrane. c) Activation coupling: a GEF 

for the downstream Rab is part of the effector complex. d) The effector of downstream Rab 

contains a GAP for its upstream Rab. (Adapted from Stenmark
[18]

)  

 

 

§ 1.5.2 Rab GTPases in disease 

The central role of Rab GTPases in membrane trafficking and thereby its overall 

physiological importance is reflected by many diseases, either associated with Rabs 

themselves, their regulators or their effectors. Infectious, neurological and 



 

In
tr

o
d
u

c
ti
o
n
 

29 

 

endocrinological diseases result from pathogen-induced or inherited dysfunction of Rab 

pathways, signifying the crucial role of membrane trafficking in immunity and 

exocytosis[18]. Some examples of diseases due to inherited dysfunction in Rab 

GTPases and related enzymes are given in Figure 1.19 

Whereas mutations in Ras and related subfamily Rho were well known for their 

oncogenic roles, the involvement of Rab GTPases in human cancer has only recently 

been acknowledged. Several Rab family members as well as effectors and regulator 

genes have been implicated in tumorigenesis[134].  

 

 

Figure 1.19: Disease due to impaired function of Rab GTPase or related enzymes. 

Choroideremia is caused by mutation in REP1. Mutation in the α-subunit of RabGGTase leads 

to hypopigmentation in the Hermansky-Pudlak syndrome. Mutation in Rab27a is involved in 

Griscelli syndrome type 2, causing partial albinism with immunodeficiency. Adapted from 

Pereira-Lealet al.
[52]

. 

Rabs and cancer 

There is a tight regulation between receptor signaling and membrane trafficking[135]. 

Therefore, the involvement of Rab GTPases in cell signaling is also reflected by the 

association of cancer with Rab dysfunction[18]. In particular, Rabs have been implicated 

in the progression of multiple cancers[134] due to the significant role of membrane traffic 

in metastatic transformation of tumor cells[136]. The best characterized example of Rab 

implicated in cancer is Rab25. Rab25 is frequently overexpressed in breast and 

ovarian cancer and is associated with decreased survival[137]. Since Rab25 is involved 

in trafficking through recycling endosomes[138], it is speculated that the effect of Rab25 
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on proliferation and apoptosis are caused by aberrant recycling of signaling 

receptors[18]. Recent studies showed that Rab25 interacts directly with the 

transmembrane proteinβ1 integrin. By directing the localization of integrin-recycling 

vesicles Rab25 contributes to tumor progression and facilitates invasive cell migration 

of the tumor cells[139]. In total at least 21 different Rab genes have been implicated in 

tumorigenesis, as well as related proteins like RabGDI RabGGTase α-subunit and 

Rabaptin-5[140].  

Rabs and neurological disease 

Rabs have also been implicated in neurological diseases. Specialized functions of 

Rabs are important for neurite growth and remodeling (e.g. Rab11, Rab13), synaptic 

functions (Rab3) and general nervous system development (Rab23)[141]. Parkinson‟s 

disease has been connected to Rab activity as well. α-Synuclein (αsyn), a protein with 

unknown function that can aggregate into insoluble fibrils, represents a main 

component of Lewy Bodies once mutated or overexpressed. Lewy Bodies are the 

typical aggregates of proteins inside nerve cells observed in Parkinson‟s disease and 

Alzheimer‟s disease[142]. Interestingly, mutated αsyn(point mutation A30P) was found to 

interact with Rab3a, Rab5 and Rab8, whereas no interaction was observed for wild-

type αsyn[143]. In addition, it was found that the phenotype of overexpressed αsyn 

disrupting ER-to-Golgi transport, could be rescued by overexpression of Rab1[144], thus 

reducing the toxic effect. Also Rab3 and Rab8 have been associated with αsyn, 

indicating that αsyn may affect several membrane trafficking pathways[145]. Other 

neurological diseases that are associated with Rab include Huntington‟s disease (Rab8 

and Rab11), carpenter syndrome (mutated Rab23), non-specific X-linked mental 

retardation (mutated GDI1) and Charcot-Marie-Tooth disease (mutated Rab7)[18, 133]. 

Rabs and infectious disease 

Pathogens can use the endocytic pathway in order to enter cells. Therefore, some 

infectious microorganisms hijack Rab-dependent pathways to ensure their own uptake. 

For example, Salmonella enterica and Salmonella typhimurium reside in Salmonella 

containing vesicles (SCV) in cells that transition from Rab5 to Rab7[146]. Rab7 is then 

positioned close to the Golgi by its effectors[147]. Acidification releases specific factors 

that block the compartment from fusing with the lysosome and anchors the SCV to the 

Golgi, an association necessary for intracellular bacterial replication[148]. Interestingly, 

the SCV accumulates a variety of Rab proteins, but not those which are responsible of 

phagosome maturation into lysosomes, thereby bypassing this process[149]. Chlamydia, 

once inside the cell, uses a similar mechanism and avoids being directed to the 
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lysosomes. It releases effector proteins that prevent recruitment of Rab5, Rab7 and 

Rab9 and recruits exocytic and Golgi-bound Rabs like Rab4, Rab11 and Rab1[150]. 

Pathogen hijacking of vesicles can also occur between the ER and IC. Legionella 

pneumophilia secretes proteins that target the GTP cycle of Rab1. DrrA act as both a 

GEF and GDF for Rab1, whereas another protein known as LepB act as a Rab1 

GAP[151]. Consequently, Legionella-containing vacuoles recruit Rab1 and behave 

functionally as ER or IC like-membranes, thereby evading destruction in lysosomes.  

 

§ 1.6 The Prenylation machinery as drug target  

 

Mutations in the superfamily of Ras GTPases leading to cancer are mostly associated 

with a constitutively active GTP-bound conformation[152]. Therefore, strategies have 

been developed in order to reduce activity of the GTPases. Since Ras GTPases 

require posttranslational isoprenylation for correct membrane association and function, 

the lipidation step has been targeted for drug discovery[153]. Several strategies 

(summarized in Figure 1.20) can be adopted to inhibit the prenylation reaction. One 

option is the depletion of substrates for the prenylation reaction, either 

farnesylpyrophosphate (FPP) or geranylgeranylpyrophosphate (GGPP). These 

substrates are both products of the mevalonate or the deoxyxylulose-5-phosphate 

isoprenoid biosynthesis pathways.[50] Small molecule intervention, using statins to 

inhibit HMG-CoA reductase or employing bisphosphonates to inhibit FPP synthase, 

result in depletion of the prenyldonor and hence in inhibition of posttranslational 

prenylation. Such a strategy, however, leads to the inhibition of all prenylation reactions 

as well as to blockage of formation of other secondary products of the mevalonate 

pathway such as terpenoids and hormones.[154] 

A more attractive strategy would be the selective inhibition of the PTases. 

Especially FTase has been an attractive target for anti-cancer drug development due to 

its ability to farnesylate oncogenic HRAS, NRAS and KRAS, which are often 

overexpressed in human cancers. Several developed FTase inhibitors (FTIs) have 

reached clinical trials (Figure 1.21). Preclinically, they showed inhibition of FTase in the 

low nM range for HRAS and KRAS and were found to be active in a large panel of 

cancer cell lines. The observed preclinical potency of these agents, however, was not 

reflected in the clinical trials[15]. Only tipifarnib (1) and lonafarnib (2) were tested in 

Phase III clinical trials, whereas BMS-214662 (3) did not succeed into Phase II due to 

dose-limiting toxicity without clear effect. Phase III trials were unsuccessful for both 

tipifarnib and lonafarnib, due to absence of clear anti-tumor activity[153, 155]. FTIs in 

general did not show the anticipated activity in solid tumor cells as single agents[16]. 
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Figure 1.20: Isoprenoid synthesis pathway and potential therapeutic interventions.  

 

 

 

 

 

 

 Tipifarnib (1) Lonafarnib (2) 

 

 

 

 

 

 

 BMS-214662 (3) L778123 (4) 

Figure 1.21: FTIs that reached clinical trials. 

 

The alternative prenylation of KRAS and NRAS by GGTase I has been cited as the 

main reason for the lack of activity of FTase inhibitors in these clinical trials[16]. 

Therefore, inhibitors that simultaneously alter FTase and GGTase I have been 

developed. FTI L778,123 (4), a dual inhibitor of FTase and GGTase I was well 
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tolerated in phase I and phase II clinical trials and was shown to inhibit Rap1A and 

HDJ2 but not KRAS. However, QT prolongation which is associated with lethal 

arrhythmias was observed in at least one of the patients and further development was 

aborted[156]. The proof-of-concept that inhibition of the RAS protein function by inhibition 

of the prenyl transferases is of clinical use still remains inconclusive.  

Interestingly, Lackner et al. showed that compounds related to BMS-214662 were also 

potent inhibitors of RabGGTase. In addition, they found the apoptotic effect in C. 

elegans related to RabGGTase and not FTase inhibition by using RNAi[17]. Therefore, 

RabGGTase could also be a potential anti-cancer target.  

 

 

§ 1.7 RabGGTase as biological target  

 

§ 1.7.1 Increasing efforts toward RabGGTase inhibitors  

The increasing association of Rab GTPase with cancer, as well as the findings that 

RabGGTase could be the actual target of some FTIs, shows a clear need for the 

development of small molecule tools to inhibit RabGGTase selectively.  

During the course of the last decade, limited efforts have been made toward the 

development of RabGGTase inhibitors. The type of inhibitors includes GGPP mimics, 

phosphonocarboxylates, peptide-based inhibitors and small molecule inhibitors. 

However, the inhibitors developed so far suffer from various drawbacks, such as lack of 

clear structure-activity-relationships (SAR) or absence of cellular activity. In this 

paragraph, the developed inhibitors and their properties will be discussed. 

Phosphonocarboxylates: Selective inhibitors of RabGGTase 

The first reported inhibitor of RabGGTase was a phosphonocarboxylate derivative of 

risedronate, a bisphosphonate drug which inhibits FPP synthase and thereby the 

function of bone-resorbing osteoplasts. The phosphonocarboxylate derivative, named 

3-PEHPC, was shown to inhibit bone resorption as well, albeit by a different 

mechanism (5, Figure 1.22). It was shown that 3-PEHPC specifically inhibited 

RabGGTase, thereby being the first selective inhibitor of RabGGTase reported.[157] 5 

inhibited Rab prenylation in J774 macrophage cells in a dose-dependent manner with a 

cellular IC50 of 560 µM. A similar IC50 of 600 µM was determined using a radioactive in 

vitro assay with RabGGTase, Rab1a, REP1 and [3H]GGPP. The specific effect of 3-

PEHPC on RabGGTase was further demonstrated employing different prenylation 

substrates, HRas, Rap1 and Rab6, which are prenylated by FTase, GGTase I and 

RabGGTase respectively. Prenylation of Rab6 was completely inhibited by 5, without 
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affecting the prenylation of HRas and Rap1. Therefore, it was suggested by the authors 

that 3-PEHPC was a selective inhibitor of RabGGTase and consequently, an inhibitor 

of bone resorption.  

 

 

 

 

 

5 3-PEHPC[157] 

IC50=24.1 µM[158]-600 µM[157] 

 

 

 

 

6 F-3-PEHPC[158] 

IC50=16.3 µM 

 

 

 

 

7 (+)-3-IPEHPC[159] 

IC50=1.3 µM 

Figure 1.22: Phosphonocarboxylate inhibitors of RabGGTase. 

 

Some inhibitors based on 3-PEHPC were developed to address the moderate activity 

of 3-PEHPC. In order to assess the role of the α-OH group in binding and bone mineral 

affinity, Marma et al. synthesized halogenated derivatives of 3-PEHPC[158]. It could be 

shown that the α-OH group was essential for bone mineral affinity, but played no major 

effect in RabGGTase affinity. This suggests that RabGGTase is not the important 

target for the cellular effect. Halogenated analogs all were active in a similar range (1-

1.5 times as potent as 3-PEHPC, 6, Figure 1.22), indicating a lack of interactions 

between the α-OH and the RabGGTase active site.  

 

The most active phosphonocarboxylate-based RabGGTase inhibitor 7 was reported by 

Baron et al. and possessed in contrast to the pyridine ring in 3-PEHPC an imidazo[1,2-

a]pyridine core, based on another bisphosphonic acid: minodronic acid[159, 160]. 

Interestingly, a mixed inhibition mode was found both regarding the substrate (GGPP) 

and the protein (Rab1). Upon further experimentation, it was found that these 

phosphonocarboxylate based inhibitors only effectively inhibited the 2nd prenylation of 

RabGGTase. Whereas Rab proteins containing a double cysteine prenylation motif 

such as Rab1a, Rab5a, Rab6a and Rab27a were all inhibited by 7, no inhibition was 

observed for single cysteine prenylation motif containing proteins like Rab13, Rab18 

and Rab23. Furthermore, it was found that the inhibitor did not compete for the 

RabGGTase-bound GGPP both in Rab free and Rab bound state. It appeared that 7 

somehow locked the GGPP in the RabGGTase binding site, therefore, it was 

suggested that the inhibition may reflect the inability of a binding transition, not allowing 

the monoprenylated Rab to move to a second binding site to undergo its 2nd 

prenylation. Considering all these observations, it was proposed that 

phosphonocarboxylates most probably bind into a putative binding site, which is 

occupied upon migration of the monoprenylated Rab preparing for the 2nd prenylation.  
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Although compound 7 seems to be a promising tool compound, there are some 

drawbacks. Obviously, the compound only inhibits the 2nd prenylation and therefore 

cannot be used to study prenylation of Rabs which undergo monoprenylation. Further, 

it was subsequently shown that 7 also inhibited geranylgeranylpyrophosphate synthase 

(GGPPS)[159, 160]. Therefore, its effect in cells cannot be contributed to RabGGTase 

inhibition alone.  

Substrate mimic: GGTI-2Z 

Recently, a non-peptidomimetic dual inhibitor of GGTase I / RabGGTase has been 

reported by Sane et al.[12]. The compound, named GGTI-2Z (8) in combination with 

Lovastatin (9), a HMG-CoA reductase inhibitor, was shown to inhibit GGTase I and 

RabGGTase without affecting farnesylation. This combination therapy of inhibitors 

targets the prenylation pathway at two distinct steps; depletion of the cellular 

prenylpyrophosphates (PPP) pools via statin treatment, as well as inhibition of the 

prenyltransferases. Cumulatively, a competitive prenyl transferase inhibitor (PTI) will be 

more effective at the lower level of PPP induced by the statin[16]. It was found that the 

combination therapy of 8 & 9 resulted in an increase in unprenylated Rap1 and Rab5, 

respectively indicating inhibition of GGTase I and RabGGTase (Figure 1.23). Since 

these enzymes show a close homology, it is not surprising that this substrate mimic 

inhibits both enzymes. It was found that the combination therapy synergistically inhibits 

proliferation and induces cell cycle arrest of STS-26T MPNST, directly associated with 

induction of autophagy. A similar inhibition of proliferation was shown in 1c1c7 murine 

hepatoma cells and MCF10.DCIS cells, models for human breast ductal carcinoma, 

whereas no toxicity in normal immortalized Schwann cells was found. It remains an 

open question though, to which extents these effects are regulated by inhibition of 

GGTase I, RabGGTase or a combination of these enzymes.  
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 8GGTI-2Z[12] 9 Lovastatin 

 

 
 

Figure 1.23: Inhibition of prenylation in STS-26T cells by GGTI-2Z/lovastatin combination 

treatment. a) Inhibition of Rap1 prenylation. b) Detection of Rab5. Unprenylated GTPases 

migrate more slowly on SDS-PAGE gels
[12]

. 

 

Pyrrolidine-based inhibitors 

Using a split-and-pool combinatorial synthesis strategy, Watanabe et al. developed a 

geranylgeranyl transferase inhibitor (GGTI) enriched library of pyrrolidine-based 

inhibitors[161]. Initially the library was screened to identify GGTase I inhibitors (Table 1.1, 

compound 10). Some potent GGTase I inhibitors displayed inhibition of proliferation of 

several cancer cell lines such as breast cancer cell line MCF-7 and leukemic cell line 

Jurkat via inhibition of cell cycle progression. It was found that some GGTase I 

inhibitors (compounds 11, 12) in addition showed moderate RabGGTase inhibition. 

Further screening of the library identified more RabGGTase inhibitors. These inhibitors 

all possessed a characteristic aliphatic R3 tail. Further, it seemed that a bromide as R2-

substituent was an important feature to obtain selectivity for RabGGTase over GGTase 

I.  
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Table 1.1: Pyrrolidine-based GGTase I and RabGGTase inhibitors. 

 

      In vitroIC50 [µM] 

Entry Compound R
1
 R

2
 R

3
 R

4
 GGTase I RabGGTase FTase 

1 10 2-Me Cl H 
 

0.5 >10 >100 

2 11 - Cl 
 

 

2.4 3.1 >100 

3 12 4-Cl Cl  

 

8.9 7.0 >100 

4 13 4-Me Br   
>50 2.1 >100 

5 14 4-Me Br   
>50 2.2 >100 

 

During competition experiments, it was shown that the inhibitors were competitive with 

regard to Rab GTPases and uncompetitive regarding the GGPP substrate. A Ki of 1.36 

± 0.38 µM was determined for 13. Inhibition of Rab geranylgeranylation in cells was 

examined by identifying the amount of unprenylated Rab5b protein in NIH3T3 cells. 

Upon treatment with 10 - 20 µM 13, Western blotting showed a clear unprenylated 

band of Rab5b protein. In addition, after ultracentrifugation, a larger amount of Rab5b 

was found in the soluble fraction upon treatment with 13. In this subcellular 

fractionation study, the supernatant represents the soluble fraction and the pellet the 

membrane fraction. Thus, treatment of cells with 13 results in more Rab5b protein in 

the cytosol. Additional experimentation by Nguyen et al. using a different prenylation 

assay showed that this result was most probably not a consequence of cellular 

RabGGTase inhibition[162]. After cellular prenylation of Rab in COS7 cells in the 

presence of a pyrrolidine compound, followed by in vitro reprenylation with the affinity 

labeled GGPP analog biotin-GPP, the amount of affinity labeled Rab-biotin-geranyl 

conjugate was analyzed. Analysis of cells treated with either 13 or 14 did not show any 

presence of biotin-geranyl conjugate, which corresponds to no inhibition of cellular 

prenylation, even up to concentrations of 50 µM. Therefore, the effect and mechanism 

of these small molecules related to RabGGTase inhibition remains unclear.  
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Peptides and peptide analogs 

A peptide based library of RabGGTase inhibitors was reported by Guo et al. [163] and 

Tan et al.,[164] loosely based on the FTase inhibitor Pepticinnamin E (15). This library 

containing 469 peptides was screened using an in vitro fluorometric Rab prenylation 

assay[69]. In this assay, a fluorescent analogue of GGPP, named NBD-FPP, is 

employed as the prenyl substrate. Upon prenylation in the presence of RabGGTase, 

Rab, REP and NBD-FPP, an increase of fluorescence is observed due to the 

relocalization of the NBD fluorophore into the hydrophobic pocket of REP. 

Consequently, inhibition of RabGGTase results in less fluorescence and this can be 

conveniently monitored. In total, 33 peptides based on Pepticinnamin E were found to 

inhibit RabGGTase at a low micromolar range. Inhibition of Rab prenylation with these 

compounds could also be shown in a cellular system using a biotin-containing analog 

of GGPP, Biotin-GPP[163]. Additionally, selectivity of the inhibitors was further studied 

using an in vitro prenylation assay with the three prenyl transferases. Some of them 

showed similar inhibitory activities for all the PTases (18, 19), but some selective 

RabGGTase inhibitors such as peptide 20 were also identified (Table 1.2). 

Cellular activity of these compounds was investigated in COS-7 cells by quantifying the 

prenylation of an overexpressed EYFP-Rab7 fusion protein in cell lysates using Biotin-

GPP as a substrate, followed by subsequent detection with streptavidin-coupled 

horseradish peroxidase in a Western blot. Indeed, compound 17 inhibited completely 

the prenylation at a concentration of 100 µM, the same effect seen with compactin, a 

known inhibitor of the mevalonate pathway used as a positive control. Selective 

inhibitor 20 showed a 70% inhibition of the compactin effect. No cytotoxicity was 

observed for all compounds up to 100 µM.[66] 

To get insight into the binding mode of these peptides, attempts to co-crystallize the 

inhibitors with RabGGTase were undertaken. The first described co-crystal structure of 

an inhibitor-RabGGTase construct was obtained for 16.[163] The inhibitor was shown to 

bind in the active center at the interface of the α and  subunits of RabGGTase (Figure 

1.24a). The peptide adopts an extended conformation with the C terminus pointing 

outwards. Except for hydrogen-bonding with some residues of the  subunit, between 

the carbamate and Arg144, the imidazole and Tyr97, and the carboxylic acid and 

Tyr241, the interactions between the peptide and enzyme are mainly hydrophobic. The 

analysis of the structure revealed additional sites near the catalytic center that could 

represent anchor points for inhibitors to increase the activity and specificity for 

RabGGTase (Figure 1.24a). 
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Table 1.2: Examples of peptide based inhibitors of RabGGTase 

 

 

 

 

 

 

 (15) 

       In vitro Cellular Reprenylation IC50[nM] 

Entry Cmpd R
1
 AA

1
 AA

2
 AA

3
 R

2
 

RabGGTase 

IC50[µM] 
RabGGTase FTase GGTase I 

1 16 
 

L-His L-(Me)Phe L-Tyr OH 22.7±1.7 nd nd nd 

2 17 
 

L-His L-(Me)Phe L-Tyr NH-OH 9.0±1.0 nd nd nd 

3 18 
 

L-His Gly 
L-

His(Trt) 
OH 8.1±1.0 14±1.3 13±1.0 6.9±2.3 

4 19 C10H21 L-His L-His L-Tyr 
 

11.0±2.1 10±0.9 35±5.8 60±5.3 

5 20 C10H21 L-His L-Phe L-Tyr 
 

4.7±0.1 2.8±0.1 >100 >100 

nd=not determined 

 

Site 1, composed of residues Asp287, Pro288, and Phe289 and located on the tip of 

helix 12 ends at the active site, could contribute to potential hydrophobic interaction. 

Site 2, represented by the Zn2+ ion could be targeted by typical zinc binding moieties 

such as hydroxamic acids. Site 3, built of Arg232 and Lys235, is positively charged to 

anchor GGPP‟s phosphate groups.  

Indeed, the presence of a hydroxamic acid moiety improved the potency 2-3 fold (17). 

However, after solving the co-crystal structure of 17 it was found that this improvement 

was not due to zinc coordination as expected (not shown). Alternatively, inhibitor 17 

flipped by 180° and, as a consequence, the hydroxamic acid group was located at the 

bottom of the GGPP binding pocket. Instead, histidyl AA
1coordinated to the zinc ion, 

indicating that it was possible to target the reactive center of the active site.  

In order to increase the affinity even more, the N-terminus was decorated with alkylaryl 

or lipid chain moieties to establish more interactions with the lipid binding site (LBS), 

which accommodates the GGPP. In addition, nitrogen-containing heterocycles or 

amines were introduced to increase the chance of coordinating to the zinc ion at the C-

terminus (20). This strategy led indeed to several low micromolar inhibitors. However, 
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the co-crystal structures of selective RabGGTase inhibitor 20 revealed that the binding 

mode differed again. The histidine coordinated to the zinc, whereas R2 deeply binds 

into the LBS, stabilized by edge to face T-stacking with Trp244 and a water-mediated 

hydrogen bond. A further hydrogen bond interaction was observed between the 

AA2tyrosine residue of 20 and Tyr97.  

  

 

Figure 1.24: RabGGTase in complex with 16. a) Surface and stick representation of 16 in the 

binding site. Green dashed lines represent hydrogen bonding. Highlighted areas (dark red) 

represents sites that can be used for further lead optimization. b) Surface and stick 

representation of 20 in the binding site. Green dashed lines represent hydrogen bonding. c) 

Active sites and exit grooves of RabGGTase (3HXE), showing the RabGGTase selective TAG 

tunnel. Adapted from Tan et al.
[164]

 

 

Most interestingly, the lipid chain of 20 extends into a tunnel adjacent to the GGPP 

binding site, referred to as the “TAG tunnel”. Since the TAG tunnel is absent in FTase 

and GGTase I, this RabGGTase unique feature probably contributes to the selectivity 

of 20 and could aid further design of selective RabGGTase inhibitors. 

In conclusion, the solid phase synthesis of a large amount of peptides led to a diverse 

set of RabGGTase inhibitors with moderate inhibition of prenylation in cells. These 

results show that the flexible peptide backbone is probably not suitable for a structure-

guided inhibitor approach or SAR analysis due to different binding modes adopted by 

the peptides. However, the structural insights obtained from the inhibitor-RabGGTase 

Arg144 

Tyr241 

1 

2 

3 

b) a) 

c) 
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co-crystal structures provide crucial information that can be used for the development 

of other potent and specific RabGGTase inhibitor. 

Dual Inhibitors: Tetrahydrobenzodiazepines (THBs) 

The most active RabGGTase inhibitor reported so far was developed as a FTI inhibitor. 

Bristol-Myers Squibb developed imidazole-containing tetrahydrobenzodiazepines 

(THB) as FTIs. BMS-214662 (3), which entered clinical trials, was shown to be a highly 

potent inducer of apoptosis and an efficacious suppressor of a variety of human 

tumors. However, the proapoptotic activity of these THB based compounds did not 

correlate with their potency against FTase[165], therefore it was suggested that these 

FTIs might have another target. Using an RNAi knockdown screen in C. elegans, 

Lackner et al. identified several genes associated with Rab GTPases as strong 

inducers of apoptosis: genes encoding for the HOPS complex in yeast which interacts 

with GTPase Rab7 and genes encoding for Rab7 and Rab5[17]. In addition, RNAi 

directed against GDI1 and GDI2 as well as RabGGTase-α and RabGGTase-β subunit 

was effective at inducing germline apoptosis. Next, the authors studied whether BMS1 

(21) had a synergistic effect with RabGGTase-α RNAi. Due to the suppression of 

RabGGTase enzyme expression, the effect of a potential RabGGTase inhibitor should 

be potentiated. Indeed, it was shown that 21 increased the level of apoptosis on this 

RabGGTase depleted system. To investigate if these FTIs indeed inhibited 

RabGGTase some of the FTIs were tested in a radioactive based in vitro screen for 

RabGGTase activity. The results of this screen are summarized in Table 1.3.  
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Table 1.3: Activity of compounds in enzyme inhibition and cellular assays. 

 
Core 1                                                             Core 2 

Entry Cmpd Core R
1
 R

2
 R

3
 

In Vitro IC50 [nM] HCT116 
EC50 [µM] 

C. elegans 
apoptosis FTase RabGGTase 

1 
BMS1 

(21) 
1 H 

 
- 7.8 21 0.4 ++ 

2 
BMS2 

(22) 
1 H 

 
- 2.4 36 3.3 + 

3 
BMS3 

(23) 
1 Me 

 
- 1.4 16 0.04 + 

4 
BMS4 

(24) 
2 Me 

 

 
1.5 540 30 - 

5 
BMS5 

(25) 
2 Me 

 

 
1.4 25 3.3 nd 

6 

BMS-
214662 

(3) 

1 H 
 

- 1.3 nd 0.03 nd 

 

In comparison to another FTI (BMS4), which shows similar inhibition of FTase but 

significantly lower inhibition of RabGGTase, the reported activity for RabGGTase 

correlated with the apoptotic effect, whereas no such relation existed for FTase. 

Therefore, it seems that the proapoptotic effect of these FTIs is related to RabGGTase. 

Together with the discovery of this highly potent RabGGTase inhibitor class, the 

experiments by Lackner et al. thus, implicated an important role for RabGGTase in 

cancer and apoptosis.[17] 

 

§ 1.8 General drug development strategies  

 

As mentioned in the last paragraph, several successful efforts have been made toward 

selective RabGGTase inhibitors. However, they all display moderate or no cellular 

activity. Further, there is a lack of structural information about the mode of inhibition of 

these compounds. In order to obtain a clear structure-activity-relationship as well as an 

effective inhibitor for chemical biology studies, more efforts to obtain selective 

RabGGTase inhibitors are necessary. There are several general approaches to obtain 

small molecule inhibitors; a brief description will be given in the next paragraph.  
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§ 1.8.1 From hit…  

In general, the development of a lead is described as a „hit to lead‟ process[166].  

The hit normally represents the primary active compound. This hit needs to be 

validated in order to verify its identity, purity and activity. Once the hit is synthesized 

and the activity has been confirmed this „validated hit‟ can be optimized[167].  

In order to identify a hit series, several approaches are possible. These methods can 

be divided into those that require very detailed target and ligand information and those 

that are generally serendipity-based[167]. High-throughput screening (HTS) is the most 

widely used technology for hit discovery and falls in the serendipity-based category. 

HTS normally involves the screening of a large chemical library, compiled of natural 

products and synthetic libraries, in a target based or phenotypic screen[168, 169]. In a 

target based in vitro HTS-screen the library is screened for a specific target. A 

threshold is normally set for a certain degree of inhibition, in order to find a sufficient 

number of initial hits. These hits can be optimized to obtain a lead series with clear 

structure-activity-relationship for its specific target, going through iterative cycles of 

synthesis, screening and design. Such a target based approach is also pursued in this 

thesis, in order to develop selective RabGGTase inhibitors. A phenotypic screen on the 

contrary is normally a cell-based assay, where chemical entities are screened for their 

phenotypic effect. In this case, the direct target of the hit is unknown. The target (s) can 

be identified by pull down experiments and can lead to potentially new targets involved 

in a certain phenotypic behavior[168]. 

The HTS approach historically relied on libraries compiled of natural products and 

synthetic compound libraries. Combinatorial chemistry represents synthesis 

technologies to generate compound libraries rather than single products, for example 

using solid-phase chemistry, automated (robotic) synthesis and high-throughput 

purification equipment. However, these chemical libraries frequently lack structural 

diversity. Consequently, information rich biological read outs often could not be 

obtained using this type of ultra-high-throughput synthesis. Therefore, pharmaceutical 

companies are focusing on improving and diversifying compound collections and 

making them globally available for HTS campaigns[167]. Besides the more serendipity 

based-approaches like HTS, more knowledge based-approaches are also pursued in 

order to obtain hits. These strategies can be based on structural information, obtained 

from X-ray crystallography or NMR as well as on information derived from endogenous 

ligands or non-natural small molecules reported in the literature and patents[167]. This 

type of information can be used for de novo ligand design[170]. Structural data of the 

target can be used to design chemical libraries. 
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Figure 1.25: Hit identification strategies involve both knowledge-based and serendipity-based 

approaches
[167]

.  

 

An understanding of the mechanism of action can aid in the development of transition-

state mimics as inhibitors, whereas „4 dimensional‟ virtual screening processes can be 

applied in order to evaluate a large library of compounds in order to prioritize chemical 

entities[167, 171]. Although these computational methods are very promising, they can 

only be regarded as prediction tools. Analysis of known endogenous ligands or small 

molecules from literature can be used to generate libraries containing a privileged 

structure[172]. Such a privileged structure represents a specific core or scaffold that 

conveys activity toward a protein family or limited set of its members independently of 

additional substituents attached to this core[167].  

A more integrated approach of serendipity and knowledge based discovery is 

presented by targeted libraries and chemogenomics. Chemogenomics involves the 

investigation of classes of compounds against families of related proteins[173]. Once a 

target protein is identified to correspond to a particular family cluster, compound 

libraries biased for this family cluster should obtain hits for the specific target protein as 

well.  
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§ 1.8.2 …to lead  

Once a hit has been identified, this hit is normally developed into a lead, going through 

iterative cycles of design, synthesis and biological evaluation. A lead is a chemical 

structure or series of structures that demonstrate activity and selectivity in a series of 

relevant screens, such as pharmacological-, biochemical- and in vivo studies. This 

forms the basis for a focused medicinal chemistry effort for lead optimization in order to 

identify a clinical candidate that presents a patentable, unique core structure[167]. 

Besides displaying a good potency for the target protein, which is inherent of a lead, 

several other conditions have to be considered. In order for a lead to successfully 

progress into clinical trials it should possess good ADME (absorption, distribution, 

metabolism, and excretion) properties. Dose-limiting solubility, poor absorption, 

cytochrome P450 interactions and metabolic instability are all hampering factors in order 

to progress a lead into the clinic and should be considered in the early stages of drug 

discovery[174]. 

The latter properties necessary for a lead to become a potential drug are not 

necessarily considered in the design of chemical biology tool compounds. Such tool 

compounds are generally applied to cells or microorganisms and therefore ADME 

properties are less relevant. In this case, optimization of target selectivity and (cellular) 

potency is the main objective of the „lead‟.  

 

§ 1.8.3 Toward select ive RabGGTase inhibitors  

Several general approaches mentioned above could be used as a starting point for the 

development of selective RabGGTase inhibitors as chemical biology leads. Following 

the knowledge based approach, it was hypothesized that BMS3 (23), the dual 

FTase/RabGGTase inhibitor, could be an excellent starting point for a structure-based 

design of selective RabGGTase inhibitors. In this thesis the efforts toward the design 

and synthesis of selective RabGGTase inhibitors, going through iterative cycles of co-

crystallization, virtual screening, docking, synthesis and biological evaluation will be 

described.  

Besides the „design for selectivity‟ of BMS3 based analogs, the „serendipity-based‟ 

HTS approach to obtain RabGGTase inhibitors has been applied to identify potential 

new RabGGTase inhibitors. Finally, a more mixed approach has been pursued. The 

identification of a privileged scaffold led to the development of a small, targeted library 

following a de novo approach.  
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Chapter 2: Aim of the project 

 

A selective RabGGTase inhibitor would be a valuable tool compound to study the effect 

of selective RabGGTase inhibition on cancer cell proliferation and, more generally, 

Rab-mediated cellular processes. The aim of the research described in this thesis was 

to develop selective RabGGTase inhibitors that potently and selectively inhibit (cellular) 

Rab geranylgeranylation. In order to obtain these inhibitors three different hit 

identification strategies were used:  

 

1) Increasing selectivity of the known dual inhibitor BMS3 

2) High-throughput screening and lead optimization 

3) de novo design 

 

In order to obtain these potent and selective inhibitors, an iterative cycle of synthesis, 

screening, crystallography and design was pursued. The three different approaches 

represent different starting points (hit discovery) in this iterative cycle and give all 

unique potential ways to obtain RabGGTase inhibitors. The process is depicted in 

Figure 2.1. The process is presented in a 3D spiral; every cycle in the right direction will 

lead to a better inhibitor. The hit, in the several scenarios is represented by BMS3 in 

the dual inhibitor approach (1), by a new inhibitor identified with the HTS approach (2) 

or a virtual designed inhibitor in the de novo design approach (3). 

 

 

Figure 2.1: A typical structure-based inhibitor design cycle, shown in a 3D perspective 

 

The developed inhibitors with low nM activity will be assessed on their capacity to 

inhibit prenylation in cells and will be tested on their ability to inhibit proliferation in 

cancer cell lines.  

HTS Approach 

 

Dual Inhibitor Approach 

 

De novo Approach 
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All aspects of the project will be described in the following chapters. To provide an overview of 

the complete project, input of the following colleagues and collaborators is also included: 

 

Dr. Robin Bon (synthesis of BMS3 and L778,123, synthesis of some THB-analogs) Dr. Zhong 

Guo (crystallization studies) Dr. Axel Choidas, Dr. Sascha Menninger, Dr. Alexander Wolf (LDC, 

assays)  
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Chapter 3: Method & tool development for 

identification of selective RabGGTase Inhibitors 

As described in the previous chapter, the aim of the project is to develop selective 

RabGGTase inhibitors following a typical iterative cycle of design, synthesis, screening 

and crystallography. Some prerequisites are necessary for such an inhibitor-

development program. In order to identify or evaluate new hits an assay system is 

needed. To analyze the selectivity, counterscreens for GGTase I and FTase need to be 

carried out. For these assays many tool compounds are needed, either as substrates 

or control compounds in the respective assays. In order to increase the selectivity of 

dual inhibitor BMS3 or to carry out de novo design, co-crystal structures should ideally 

be available. In this chapter the methods and tools that are necessary to obtain 

selective RabGGTase inhibitors and their preparation are discussed.  

 

§ 3.1 Fluorometric RabGGTase assay 

 

In order to screen a large library of compounds for RabGGTase assay using a 

fluorometric approach, R.S. Goody and co-workers developed an assay employing a 

fluorescent analog of GGPP[66]that was adapted to a continuous fluorometric assay for 

RabGGTase[69]. In this assay, 3,7,11-trimethyl-12-(7-nitrobenzo[1,2,5] oxadiazo-4-

ylamino)dodeca-2,6,10-trienyl pyrophosphate (NBD-FPP, 27) serves as the lipid 

substrate. 

 

GGPP (26): 

 

 

NBD-FPP(27): 

Figure 3.1: NBD-FPP as fluorescent analog of GGPP. 

 

The principle of the assay is based on the increase of fluorescence upon binding of 

NBD in a hydrophobic area. Upon reaction in the presence of REP, RabGGTase, Rab7 

and NBD-FPP an increase in fluorescence is detected. At the emission maximum an 

increase of 23-fold was detected, which was found to be related to relocation of NBD 

into a hydrophobic pocket of REP[69]. 
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Figure 3.2: a) schematic principle of the assay, b) fluorescence increase over time of the 

prenylation reaction, as followed by a fluorescent spectrophotometer. Adapted from Wu et al.
[69]

 

 

Upon efforts to optimize this assay in a high-throughput format to screen the complete 

CGC compound library (ca. 30.000 members) and to minimize the amounts for 

RabGGTase, Rab7 and REP needed for the assay, it was found that NBD-FPP 

bleached severely over time. High amounts of proteins were needed in order to obtain 

good statistical parameters with this bleached NBD-FPP. Therefore a new batch of 

NBD-FPP was synthesized (the synthesis is described in § 3.5.1). With the fresh batch 

of NBD-FPP the proteins could be used in much lower concentration. In addition, it was 

possible to measure at a concentration of just 50 nM RabGGTase, which was 

important for the analysis of highly active RabGGTase inhibitors. 

 

 

§ 3.2 Fluorometric FTase & GGTase I assay 

 

In order to verify if the identified RabGGTase inhibitors are indeed selective, the 

inhibitors needed to be screened for closely related prenylation enzymes FTase and 

GGTase I. Both assays were adopted from literature procedures[175-177]and mainly 

performed by collaborators at the Lead Discovery Center (LDC). The principle of the 

assays is depicted in Figure 3.3.  

 

Figure 3.3: Schematic principle of the fluorometric FTase and GGTase I assay.  

 

In general, a short CAAX peptide fused to a dansyl group was farnesylated or 

geranylgeranylated by FTase or GGTase I, respectively. Prenylation results in an 

a) b) 
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increase in fluorescence of the dansyl group, related to the hydrophobic environment 

created by the attached prenyl, over time. Inhibition of this process, thus, resulted in 

less enhancement of fluorescence. 

 

§ 3.3 X-ray crystallography 

 

The crystal structures obtained during this project have been determined by Dr. Zhong 

Guo. In this paragraph, the design of the crystal structures constructs of RabGGTase 

and FTase is shortly discussed. A detailed description of the procedures can be found 

in his PhD thesis[178].  

RabGGTase 

In order to obtain insight in the molecular basis of activity and selectivity, co-crystal 

structures of the inhibitors were desirable. Therefore, a crystalline RabGGTase 

construct was needed. As mentioned in § 1.3, RabGGTase bares two additional 

structural domains, lg and LRR, compared to FTase and GGTase I. Since both FTase 

and GGTase I gave crystalline constructs, it was suggested that a RabGGTase mutant 

lacking these domains should be more amenable to crystallization[70]. The 

RabGGTaseΔIgΔLRR mutant indeed crystallized and its apo structure could be 

determined at 1.8 Å resolution. This same construct was used in order to obtain co-

crystal structures of inhibitor/RabGGTase complexes by soaking.  

 

FTase 

Rat FTase, expressed in E. coli., gives readily crystalline constructs. However, in its 

native form the active site is occupied with the last amino acids of the β unit C-terminal, 

which interact mainly through hydrogen bonds and hydrophobic interactions. Therefore, 

a truncated mutant of FTase has been engineered in order to obtain good resolution 

crystals with an open active site. The removal of the last 10 amino acids of the C-

terminus of the β unit successfully gave construct FTase_α_β_C∆10, which yielded 

decent crystals that diffracts to a high resolution shell. The apo structure could be 

determined at 2.8 Å resolution. This same construct was used in order to obtain co-

crystal structures of inhibitor/FTase complexes by soaking.  
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§ 3.4 Molecular Modeling 

 

Molecular modeling represents a powerful method in order to optimize inhibitors, 

predict binding modes and for design of de novo inhibitors. Several software packages 

are available to virtually screen a large set of potential inhibitors. In this thesis, GOLD 

has been used in order to identify promising selective RabGGTase inhibitor-

candidates. Before docking, the library and the enzymes have to be prepared for 

screening; these processes will be described in the following sections. The total 

workflow is summarized in Figure 3.4 

 

§ 3.4.1 Preparat ion of a virtual l ibrary  

The virtual library was assembled by the combination of a core scaffold with a large 

number of substituents. The core scaffold and substituents were prepared in 

ChemDraw (see Supporting Information for the input file). The library was subsequently 

prepared in Pipeline Pilot; the structures were assembled and stereoisomers and 

tautomers were enumerated. To convert each 2D drawing obtained from Pipeline Pilot 

into a 3D structure -required for virtual screening- the database was subsequently 

minimized in MOE (version 2009.10)[179] using database minimize, with MMFF94x 

forcefield and an RMS gradient of 0.1. The database was used as such for the 

following docking procedures. 

 

§ 3.4.2 Preparat ion of the crystal structures  

The crystal structures of RabGGTase and FTase were prepared for docking by 

removal of co-crystallized ligands (e.g. inhibitor or prenyl pyrophosphate), followed by 

the addition of hydrogens using the Protonate3D function in MOE.  

 

§ 3.4.3 Virtual Screening 

Ligands were docked into the proteins using GOLD (version 4.1.1)[180, 181]. Since the 

imidazole is known to bind to the zinc atom, a binding constraint was set by defining an 

imidazole substructure with defined distance to the zinc atom (min 1.5 Å, max 3.5 Å, 

spring constant = 5). The binding site was defined by a sphere of radius 15 Å around a 

residue in the binding site (Tyr361 in FTase and Phe289 in RabGGTase). The 

ChemScore scoring function was used in combination with most accurate automatic 

genetic algorithm settings (autoscale = 1). Ten solutions were generated for all 

inhibitors.  
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§ 3.4.4 Analysis of the results  

The scores for RabGGTase and FTase were compared for each compound, assuming 

that a compound with a high score for RabGGTase and a low score for FTase would 

be most selective. The compounds that satisfied these conditions and showed a 

preserved binding mode in RabGGTase were further evaluated for their synthetic 

feasibility and synthesized.  

 

 

 Assemble Virtual Library Docking in Both Enzymes Analyze Scores 

 

 

 

 

 

 

 

 

 

Figure 3.4: Molecular Modeling workflow. 1) The virtual library was created by assembly of a 

core structure with various substituents. The compounds in the library were minimized to obtain 

their local-minimum 3D-conformations, which were used as input for the virtual screening. The 

enzymes were prepared for docking. 2) All members in the virtual libraries are docked in both 

RabGGTase and FTase (10 times) every solution is scored. 3) The best solutions in 

RabGGTase and FTase of every member were compared. Compounds which scored high for 

RabGGTase and low for FTase were expected to represent selective RabGGTase inhibitors 

and prioritized for synthesis. 
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§ 3.5 Synthesis of tool compounds 

 

§ 3.5.1 Synthesis of f luorescent prenyl pyrophosphate (PPP) analogs 

Synthesis of NBD-FPP 

Since the NBD-FPP batch had severely bleached over time, a new batch was 

synthesized. The synthesis of NBD-FPP has been reported in the literature several 

times and is a lengthy procedure with two crucial but low-yielding transformations[66, 182, 

183]. The synthesis is outlined in Scheme 3.1.  

 

Scheme 3.1: Synthesis of NBD-FPP. 

 

First, farnesol (28) was protected with THP in quantitative yield. Then an allylic 

oxidation was carried out employing H2Se2O3/t-BuOOH/salicylic acid to give 29 in 25% 

yield. The low yield was due to substantial side product, mostly related to the 

overoxidation of the alcohol to the aldehyde. Therefore, it was important to carefully 

monitor the reaction. Using Mitsunobu conditions, the alcohol was allowed to react with 

phthalimide to give 30 in 62% yield, which was reduced with hydrazine to the allylic 

amine 31 in 85%. This approach is similar to the Gabriel synthesis[184]. The amine was 

subsequently treated with NBD-Cl to give 32. Then, the protective group was removed 

and the alcohol was subsequently subjected to a chlorination reaction with 

dimethylsulfide and NCS in DCM giving 33 with 100% conversion. Without purification 

due to the relative instability of 33, the chloride was converted into the pyrophosphate 

 

 

 

 28 29 30 

 

 

 

 33 32  31 

 

 

 

  34 27 

Reagents and Conditions (a) DHP, PPTS, DCM, 99% (b) 70% t-BuOOH, H2Se2O3, salicylic acid, DCM, 

25% (c) phthalimide, PPh3, DIAD, THF, 62% (d) hydrazine, EtOH, 85% (e) NBD-Cl, NaHCO3, MeCN, 52% 

(f) PPTS, EtOH, ∆, 99% (g) NCS, Me2S, DCM, -40°C, 99% (h) TTBAP, MeCN (i) dowex cation exchange 

(NH4
+
), 20% (2 steps) 
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34, using tris tetrabutylammonium pyrophosphate (TTBAP). The tetrabutylammonium 

counterion was exchanged for ammonium by ion-exchange chromatography. 

Purification using a short C18 column gave 2 in 20% yield over 2 steps.  

General route toward the synthesis of PPP analogs 

NBD-FPP is just one of many substrates that has been used as stand-in for GGPP to 

analyze prenylation reactions. Another analog that is used to analyze 

geranylgeranylation reactions is for example biotin-GPP. Shorter analogs are 

interesting as well, for example to study the effect of farnesylation[73]. Therefore, it 

would be desirable to have a more straightforward procedure to obtain these inhibitors. 

Dr. Debapatrim Das has investigated a new approach to synthesize these PPP 

analogs. Instead of incorporating the desired tag in the middle of the PPP synthesis, a 

photolabile protective group was incorporated, which could be removed at the final 

stages of the synthesis. The free amine can then be treated with various N-

hydroxysuccinimide esters (NHS esters) to introduce fluorescent or affinity-probe tags. 

The general synthesis route is summarized in Scheme 3.2. 

 

 

 

 

 35 36 37 

 

 

 40   

 

 

 

 41  42 

 

Reagents and Conditions (a) DHP, PPTS, DCM (b) 70% t-BuOOH, H2SeO3, salicylic acid, DCM (c) 

phthalimide, PPh3, DIAD, THF (d) hydrazine, EtOH,(e) NVocCl, DIPEA, DCM (f) PPTS, EtOH, ∆ (g) NCS, 

Me2S, DCM, -40°C (h) TTBAP, MeCN (i) dowex cation exchange (NH4
+
), (i)hv 350 nM, (k) TAG-NHS, 

Et3N, DCM/DMF 

Scheme 3.2: general synthesis route to PPP analogs, 10 step sequence. 

 

Intermediate 38 was obtained via a similar route as described for NBD-FPP of 

protection, allylic oxidation and introduction of the allylic amine. The free amine was 

then protected with nitroveratryloxycarbonyl (NVoc), a photolabile group. The 

38 39 
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subsequent four steps, comprising THP-deprotection, chlorination, introduction of 

pyrophosphate and ion exchange, were carried similar to the NBD-FPP synthesis. The 

obtained pyrophosphate prenyl analogues were deprotected by UV irradiation to obtain 

a free amine which was allowed to react with various NHS-esters such as biotin-NHS 

or rhodamine-NHS esters.  

Although this synthetic route offers a more divergent approach toward PPP analogs, 

there are still some drawbacks. The allylic oxidation suffers from incomplete conversion 

and is low yielding (typically around 20%). In addition, a substantial amount of 

overoxidized aldehyde is formed as a byproduct. Furthermore, the total reaction 

sequence involved 10 steps.  

It was envisioned that the overoxidation of the alcohol into the aldehyde could also be 

used to our advantage. This aldehyde would allow the introduction of the amine by 

reductive amination. First, an attempt was made to introduce the NBD group directly. 

Therefore, NBD-Cl was converted to NBD-NH2 which was subsequently allowed to 

react with 43. Unfortunately, the reductive amination was unsuccessful, which was 

probably related to the electrodeficient character of the aniline-like NBD. This approach 

thus, was unsuccessful to incorporate a fluorescent group in the beginning of the 

synthesis. 

 

 28 43 44 

Reagents and Conditions (a) 70% t-BuOOH, H2SeO3, salicylic acid, DCM, 22% (b) NBD-NH2, 

NaBH(OAc)3, TFA, THF, failed 

Scheme 3.3: Attempts to introduce the fluorophore via the aldehyde. 

 

However, the aldehyde functionality could still be of interest in the general PPP analog 

route (Scheme 3.4). It was envisioned that the aldehyde could react with allylamine, 

which would introduce the amine functionality as well as the protective group at once. 

This could be followed by direct conversion of the THP-protected alcohol into a 

bromide using triphenylphosphine dibromide. This bromide can then be converted into 

the pyrophosphate in one pot[185]. This synthetic route would reduce the sequence with 

four steps. A critical step would be the deprotection of the allylamine in the presence of 

a pyrophosphate.  
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 42 45 

 

 

 

48 

Scheme 3.4: Retrosynthesis of PPP analogs, 7 step synthesis. 

 

In order to verify the potential of this route, first attempts to follow this synthetic route 

have been carried out on the shortest, dimethylallyl analog. The synthesis is outlined in 

Scheme 3.5 

 

 

 

 

 49 50  

 51 

 52 

 

 

 

  54 53 

Reagents and Conditions (a) DHP, PPTS, DCM, 99% (b) 100% t-BuOOH, SeO2, tetrazole, DCM, (c) 

MnO2, Na2CO3(77%, 2 steps), (d) allylamine, NaBH(OAc)3, AcOH, THF, 60%, (e) PPh3Br2, TBAPP, DCM, 

MeCN 

Scheme 3.5: Synthesis of PPP analogs via the aldehyde functionality. 

 

After introduction of the THP group, 50 was subjected to the allylic oxidation conditions. 

In order to promote the conversion into the aldehyde, a slightly modified procedure was 

used. Using 100% tBuOOH, SeO2, and tetrazole as a co-catalyst, the conversion could 

be improved to 80%, however still in favor of the alcohol. After work-up, the mixture 

was treated directly with MnO2 to convert the alcohol into the aldehyde quantitatively 

providing 77% of 52. Reductive amination employing allylamine in the presence of 1 

equiv. of acetic acid and sodium triacetoxyborohydride as the reducing agent gave 53 

in 60% yield. This was subsequently converted into the pyrophosphate 54, performing 

47 46 
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the deprotection and introduction of the pyrophosphate moiety in one pot. At first, it was 

envisioned to carry out the deprotection with the tetrabutylammonium counterions, 

since this enhances the solubility of the pyrophosphates. This however, gave major 

complications in the characterization of the compounds by NMR. Next, after ion 

exchange, the ammonium form of 54 was subjected to deprotection methods, however 

no conversion could be observed due to insolubility problems. Therefore, the 

deprotection of the allylamine in tetrabutylammonium counterion state requires further 

investigation. 

 

§ 3.5.2 Synthesis of phosphonocarboxylate RabGGTase inhibitors  

In order to get an insight in the difference between monogeranylgeranylation and 

digeranylgeranylation, it would be interesting to be able to compare the effect of the 

phosphonocarboxylate inhibitors that only inhibit the 1st prenylation with RabGGTase 

inhibitors that inhibit both prenylation steps. Therefore 3-PEHPC (5) and (+)-3-IPEHPC 

(7) were synthesized.  

Independent synthesis steps of 3-PEHPC were described in patent[186, 187] and public 

literature[188] but appeared to be low yielding or unreliable. First nicotinaldehyde 55 was 

allowed to react with N,N-dimethylglycine ethyl ester 56 using in situ generated sodium 

ethoxide as a base. Acidic work up resulted in the hydrolysis of the dimethylamine, 

giving 57 in reasonable yield[186]. Attempts to obtain 58, employing dimethylphosphite in 

analogy to patent literature were unsuccessful [187] (Scheme 3.6). Therefore, other 

methods to obtain the phosphonocarboxylate were investigated. Soroka et al. 

described the transformation of aldehydes and ketones into their corresponding α-

hydroxyalkylphosphonates analogs using trialkylphosphites under anhydrous acidic 

conditions[189]. Although there was no precedence for our particular system; the 

conditions worked smoothly giving access to 59 in good yield. Deprotection of the 

esters resulted in known RabGGTase inhibitor 3-PEHPC 5 (Scheme 3.7). 

 

 

55 56 57 58 

Reagents and Conditions (a) NaH, EtOH, Et2O (b) 1N HCl, 65% (2 steps) (c) (MeO)2P(O)H 

Scheme 3.6: Synthetic attempts toward phosphonocarboxylate inhibitor 3-PEHPC. 
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 57 59 5 

Reagents and Conditions (a) P(OEt)3, HCl, DCM, 75% (b) HCl, EtOH, 80% 

Scheme 3.7: New efficient route in order to obtain phosphonocarboxylate inhibitor 3-PEHPC. 

 

During the course of the project, a low µM based phosphonocarboxylate inhibitor 3-

IPEHPC was reported in the literature [159, 160]. This inhibitor was synthesized analogous 

to the approach used to obtain 3-PEHPC (Scheme 3.8). Using Vilsmeier-Haack 

conditions, imidazo[1,2-a]pyridine was converted into its corresponding aldehyde[190]. 

With the aldehyde in hand, the same procedures were followed as described for 3-

PEHPC, leading to racemic 3-IPEHPC 7 in a good overall yield.  

 

 

 

 

 60 61 62 7 

Reagents and Conditions (a) POCl3, DMF, 30% (b) i. P(OEt)3, HCl, DCM, ii. HCl, EtOH, 99% (c) P(OEt)3, 

HCl, DCM (d) HCl, EtOH, 67% (2 steps) 

Scheme 3.8: Synthesis of 3-IPEHPC. 

 

Interestingly the authors of 3-IPEHPC reported similar problems in reproducing the 

patent literature and therefore chose another strategy. Their synthesis route is outlined 

in Scheme 3.9. Instead of condensing aldehyde 61 with N,N-dimethylglycine ethyl 

ester, ethylazidoacetate was used to obtain intermediate 63 in moderate yield. 

Subsequent reduction of the azide into the amine and hydrolysis then led to 62. Under 

prolonged heating with a large excess of diethylphosphite 65 was obtained, which was 

hydrolyzed immediately.  

Comparing the literature procedures with the newly developed synthesis, the general 

synthesis outlined here (Scheme 3.8) smoothly converts aromatic aldehydes in three 

steps into phosphonocarboxylates analogs. This opens up a valid and quick alternative 

to synthesizing phosphonocarboxylate libraries, potentially leading to more potent 

inhibitors of the 2nd geranylgeranylation step. 
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 60 61 63 64 

 

 

 

 

 

  

 7 65 62 

Reagents and conditions: (a) Vilsmeier reagent, from 2-140 °C, 31%; (b) N3CH2CO2Et, EtONa/EtOH, from 

-30 °C to rt, 4 h, 55%; (c) H2, 10%Pd/C, MeOH, 2.5 h, rt, 100%; (d) AcOH/H2O (7/1, v/v), 1.5 h, 0 °C, 

59%; (e) (EtO)2P(O)H, 70 °C, 21 h; (f ) 6 N HCl, 6 h, reflux, 60% over 2 steps 

Scheme 3.9: Procedure toward 3-IPEHPC as reported in the literature
[160]

. 
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Chapter 4: Synthesis & Design of selective tetrahydro-

benzodiazepine based RabGGTase inhibitors  

 

§ 4.1 BMS3, a dual inhibitor  

 

The best RabGGTase inhibitor known so far, BMS3 (23), was designed as an FTase 

inhibitor. In order to increase selectivity toward RabGGTase, structure-based design 

was applied. Herefore, BMS3 needed to be synthesized and co-crystallized with a 

crystallizable RabGGTase construct as developed by Guo et al.[163] 

BMS3 was synthesized by Dr. Robin Bon according to literature procedures[191, 192] and 

soaked into both RabGGTase and FTase, which resulted in the binary 

RabGGTase:BMS3, the ternary RabGGTase:BMS3:GGPP and the ternary 

FTase:BMS3:FPP co-crystal structures 

The binding modes and conformations of BMS3 in these structures are highly similar. 

In both enzymes the imidazole coordinates to the catalytic zinc ion, whilst the phenyl 

ring of the tetrahydrobenzodiazepine (THB) core π-stacks with the Tyr361 or the 

Phe289 residue of FTase and RabGGTase, respectively. The phenylmethyl moiety 

extends toward the lipid binding sites in both enzymes and is involved in extensive T-

stacking with hydrophobic residues of the enzymes (Figure 4.1). These common 

interaction patterns result in the twisted form of the central THB-phenylmethyl unit 

observed in both enzymes. The anisylsulfonyl group adopts a pseudo-axial position 

and is involved in internal π-stacking interactions. In RabGGTase an additional 

hydrogen bond interaction is formed between the sulfonyl moiety and Tyr44, whereas 

this group is mostly solvent exposed in FTase. In RabGGTase:BMS3:GGPP, the nitrile 

group of BMS3 is close to the TAG-tunnel, whereas this group is close to the protein 

surface in Ftase:BMS3:FPP merely showing dipolar interactions to hydrophobic 

residues. The shared binding 

interactions are reflected in the 

reported in vitro and cellular data 

of BMS3 in the literature, giving 

an IC50 of 1.4 nM and Ki of 7 nM 

for FTase and a IC50 of 16 nM 

and Ki of 50 nM for 

RabGGTase[17, 162]. This proves 

BMS3 a potent inhibitor for both 

FTase and RabGGTase.  

BMS3
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Figure 4.1: Co-crystal structures of BMS3: a, b) Surface representation of active site of 

BMS3:RabGGTase:GGPP complex (PDB access code 3PZ2). The imidazole coordinates to the 

zinc ion, whereas the sulfonamide forms hydrogen bonds with Tyr44. The 3-benzyl moiety 

interacts with Trp52 and Phe289 by edge-face stacking, whereas the tetrahydrobenzodiazepine 

(THB) moiety stacks face-face with Phe289. The conformation is further stabilized by internal π-

stacking of the THB with the anisylsulfonyl group. The nitrile points toward the TAG tunnel. The 

orientation of BMS3 in the binary complex BMS3:RabGGTase is depicted in brown lines (PDB 

access code 3PZ1). The black dashed lines indicate interactions between ligand and enzyme. 

c, d) Surface representation of the active site of BMS3:FTase:FPP complex (PDB access code 

3PZ4); the imidazole coordinates to the zinc ion. The 3-benzyl moiety interacts with Trp102 and 

Trp106 by edge-face stacking. The THB interacts with Tyr361 and is further involved in internal 

π-stacking with the anisylsulfonyl group, which is mainly solvent exposed. The black dashed 

lines indicate interactions between ligand and enzyme. e) Schematic representation of the 

common binding modes of BMS3. 

a) 

c) 

e) 

 

 

 

b) 

d) 
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In order to reach selectivity toward RabGGTase, possible modifications of BMS3 were 

considered guided by the co-crystal structures. It was decided to keep the 

anisylsulfonyl group and imidazole constant. The imidazole was kept since it 

represents the crucial zinc binding moiety. The anisylsulfonyl moiety was already 

shown to be highly variable in FTase without leading to significant changes in 

activity[192], whereas this group is involved in hydrogen bonding within RabGGTase. 

Therefore no significant selectivity gain for RabGGTase by varying this group was 

expected and it was decided to keep the anisylsulfonyl group constant to ensure the 

positive internal π-stacking. 

Since the TAG tunnel is a unique feature of RabGGTase, introduction of larger 

moieties at position B instead of the nitrile were expected to accommodate in the 

RabGGTase TAG tunnel while they would clash with the FTase surface.  

 

 

 

 

Figure 4.2: Overlay of BMS3 in FTase and RabGGTase. Residues of FTase are highlighted in 

red, residues of RabGGTase in green. a) The 3-benzyl group of THB T-stacks with Trp102 in 

FTase, whereas Ser48 in RabGGTase opens up a large space for modifications. b) The nitrile 

group in FTase is close to the surface, within RabGGTase it points to the TAG tunnel (indicated 

in purple dotted line). Possible interactions with the nearby Tyr30 could be explored by 

incorporation of hydrogen bond acceptors. c) The anisylsulfonyl group interacts with Tyr44 in 

RabGGTase, no clear interactions are observed in FTase. 

a) 

b) 

c) 
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Furthermore, it was envisioned that the introduction of hydrogen bond acceptors could 

lead to interactions with the nearby Tyr30.  

The phenylmethyl of BMS3 approaches the lipid binding sites (LBSs) of both enzymes. 

In FTase, the bulky Trp102, which ensures the selectivity for FPP over GGPP, is close 

to the phenylmethyl moiety and is involved in π-stacking interactions. In RabGGTase, 

this tryptophan is replaced by a small serine and therefore leaves room for a larger 

binding cavity. It was expected that the introduction of larger groups 

at position A (Figure 4.1e) would result in selectivity for RabGGTase 

over FTase due to the expected steric clash with Trp102. The 

described differences of the binding site of FTase and RabGGTase 

are depicted in Figure 4.2. 

 

To obtain selective inhibitors a synthetic route had to be designed to, preferably, 

manipulate these groups in the last steps of the synthesis. To identify successful 

moieties to attach at these positions, a virtual screening had to be carried out. In this 

chapter, the synthesis of several generations of RabGGTase inhibitors will be 

described, following the typical iterative cycle of a structure-based project of design, 

synthesis and biological evaluation.  

 

§ 4.2 Virtual Screening 

 

To select a reasonable set of THB based inhibitors a virtual screening was carried out. 

A large set of virtual molecules was assembled and energy minimized. The co-crystal 

structures of FTase and RabGGTase were prepared for virtual screening by adding 

hydrogens and deleting the original ligand, BMS3, from its binding site. Then the set of 

virtual molecules was screened against both FTase and RabGGTase using GOLD. For 

the screening, a constraint was set between the imidazole and zinc ion in the binding 

site to assure realistic screening results. The scores for the individual virtual molecules 

were calculated by subtracting the screening scores for FTase from the screening 

scores for RabGGTase. The higher the total score, the more likely this molecule would 

be a selective inhibitor for RabGGTase. The top molecules of the screens were 

evaluated by their binding pose and their synthetic accessibility. Some of the top result 

binders from the first virtual screening are depicted in Figure 4.3. To indicate that the 

figures are related to docked structures instead of crystal structures, the surface of the 

protein is colored beige instead of grey.  

Constraint
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 66 67 

 

Figure 4.3: Selection of top results of first virtual screening. a) Docking solution of 66 in 

RabGGTase, the surface of the protein is depicted in beige. b) Docking solution of 67 in 

RabGGTase. c) 2D representation of the 2 ligands: the design principles are indicated with 

black arrows.  

 

It was expected that the introduction of a para-chloro-substituted aromatic ring would 

result in a clash with the surface of FTase, whereas it would fit in RabGGTase. The 

meta-chloro substituent was designed to approach the RabGGTase TAG tunnel. The 

introduction of hydrophilic groups, approaching the lipid binding site, was predicted to 

result in both selectivity as well as an increase in solubility. 

 

§ 4.3 Retrosynthetic analysis 

 

In order to obtain the inhibitors that approach the TAG tunnel and lipid binding site, a 

versatile route toward the derivatization at R1and R2 of the general THB scaffold 68 

needed to be developed to modify the THBs ideally in the last steps. 

Retrosynthetically, it was envisioned that THB 69 would be an excellent starting point 

for modification. 69 could be obtained from building block 70, which could be 

constructed from 5-bromoisatoic anhydride 71 and the methylester of D-tyrosine 72. 

Further modification by sulfonylation and reductive amination would lead to the target 

structure 69, in analogy to the synthetic route of Bristol-Myers Squibb [191, 192]. 
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 71 

 

 68  69  70 

  

 72 

Scheme 4.1: Retrosynthetic analysis toward THB 69. 

 

§ 4.4 Synthesis of General Building Blocks 

 

Condensation of D-tyrosine-methyl-ester 72 with 5-bromoisatoic anhydride 71 under 

reflux conditions in pyridine led to 1,4-benzodiazepine-2,5-dione, which was reduced to 

its corresponding tetrahydrobenzodiazepine (THB)  70 using borane in THF in an 

overall yield of 62%. Subsequent copper catalyzed cyanation led to the formation of  

70b. Due to easy deprotonation of the phenolic hydroxyl group in combination with 

easy protonation of the basic nitrogens, special care needed to be taken during work-

up. Most problems could be circumvented by using weak aqueous base like sodium 

bicarbonate.  

The last two steps toward the general building block involved selective N-sulfonylation 

followed by reductive amination and needed some optimization. This will be described 

in the next paragraphs (§ 4.4.1 and § 4.4.2). The synthesis of the general building 

blocks is summarized in Scheme 4.2. Building block 74b, containing the nitrile, can 

serve as precursor for the first generation of THB analogs targeting the LBS. Building 

block 74a, containing the bromide, serves as precursor for the later generation of 

analogs, targeting the TAG tunnel and LBS. The synthesis of THB-based RabGGTase 

inhibitors was conducted together with Dr. Robin Bon.  
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Scheme 4.2: Synthesis of general building blocks 74a & b. 

 

§ 4.4.1 Optimizat ion of specif ic N-sulfonylat ion 

In order to introduce the anisylsulfonyl moiety at the amine in the presence of the 

phenolic hydroxyl group selectively, different conditions were screened on THB  70b 

(Table 4.1). 

 
Table 4.1: Condition screening for sulfonylation. 

 

 

 

 

 

  70b 75 R
1
=SO2R; R

2
=H (73b) 

 R
1
=SO2R; R

2
=SO2R  (77b) 

entry Base Solvent yield 73b yield 77b 

a Pyridine (5 equiv) 

DMAP (0.1 equiv) 

THF 33 % 12 % 

b DIPEA (3 equiv) THF 55 % 26 % 

 

 

 

 

 

 71  70 73a, b 

  ( 70a)  

  ( 70b)  

 

 

 

 

 

 

 

 74a, b 

Reagents and Conditions (a) D-Tyr-OMe*HCl (72), DMAP, pyridine, 3 days, reflux (b) BH3 in THF, 16h, 

reflux, 62% (2 steps) (c) CuCN, DMF, 0.5h, µw 210°C, 67% (d) 4-methoxybenzenesulfonylchloride75, 

pyridine, 16h, rt, 61%-71% (d) N-methylimidazole 5-carboxaldehyde 76, TFA, TFAA, Et3SiH, DCM, 16h, rt 

80-83% 
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c Pyridine Pyridine 71 % 1 % 

It was expected that activation of the amine for nucleophilic attack by addition of base 

could subsequently activate the phenol leading to a competition between N- and O-

sulfonylation.  

The results show that in the presence of a weak base such as pyridine the desired 

product could be obtained chemoselectively in 71% yield (entry c). The use of stronger 

bases like DIPEA in THF resulted in both mono-N-sulfonylated product and unwanted 

di-sulfonylated byproduct in lower yields. Therefore, further scale-up reactions were 

carried out in pyridine as a solvent and base. 

 

§ 4.4.2 Optimizat ion of reductive aminat ion  

The last step involved the reductive amination of N-methylimidazole-5-carboxaldehyde 

and 73 to obtain final building block 74. However due to the inactivated secondary 

amine only low conversions were reached using standard reductive amination 

conditions. Besides some product, mainly starting material was recovered, which is 

related to the reversible character of imine formation. (Table 4.2, entry a, b) 

The addition of a water scavenger like TFAA, by analogy to patent literature[193] led to 

complete conversion of 73 into 74 in high yield (entry c). The proposed mechanism is 

depicted in Figure 4.4. 

 

Table 4.2: Optimized conditions for the reductive amination. 

 

 

 

 

 

 

 73b 76 74b 

entry reducing agent additives Solvent Yield 

a NaBH(OAc)3 AcOH THF 32% 

b Et3SiH TFA DCM 35% 

c Et3SiH TFA, TFAA Toluene 85% 
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 78 76 79 80 

Figure 4.4: Using a water scavenger such as TFAA, the equilibrium is shifted toward product 

74b. 

 

§ 4.4.3 Determination of the enant ioselect iv ity  

In order to determine the enantioselectivity of the respective route, the same synthetic 

steps as described in Scheme 4.2 were carried out starting from L-tyrosine methyl 

ester in order to obtain the S-enantiomer of 74a. The two pure enantiomers as well as 

the mixture were separated by chiral HPLC, which showed that the building block was 

obtained in high enantiomeric ( >98.5%) purity.  

 

 

Figure 4.5: chiral HPLC trace of THB-building block 74a. 
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§ 4.5 Synthesis & Screening of 1st generation RabGGTase 

inhibitors 

 

Having building block 74b in hand, the effect of extending the THBs toward the lipid 

binding site could be examined. The moieties introduced were inspired by the virtual 

screening results, as well as by the wide scope of possible chemical transformations on 

the phenolic hydroxyl group. Transformations envisioned were aminoacylation (81) and 

alkylation (82) as well as triflation (83) followed by Suzuki-Miyaura coupling (84) or 

Buchwald-Hartwig amination (85) and are depicted in Scheme 4.3 

Scheme 4.3: Synthetic modifications leading to the first generations of inhibitors. 

 

Alkylation was achieved in high yields by addition of alkyl, allyl or benzyl bromide with 

sodium hydride as a base. Aminoacylation was performed by addition of either 

isocyanates or carbamoyl chloride in the presence of base, leading to the 

corresponding products in excellent yield. Building block 83 was 

obtained in high yields using triflating reagent 86, whereas standard 

triflate conditions using triflic anhydride gave disappointed yields. 

These triflates could be manipulated by transition-metal catalyzed 

reactions, successfully illustrated by the introduction of 3-pyridine-

 

 

 

 

 

 

 

 82 74b 81 

 

 

 

 

 

 

 

 84 83 85 

(a) alkylation (b) aminoacylation (c)triflation (d)Suzuki coupling (e)Buchwald-Hartwig 

86 
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boronicacid under standard Suzuki coupling conditions. These modifications resulted in 

the 1st generation of inhibitors based on BMS3 and emphasize the phenolic hydroxyl 

group as a versatile handle for modification. 

The collection was screened using fluorometric FTase[175, 176] and RabGGTase 

assays.[69, 182] (§ 3.1&§ 3.2). These fluorometric assays are continuous and less 

laborious alternatives to their corresponding radioactivity-based assays. For BMS3, we 

determined an IC50 of 724 nM for RabGGTase and an IC50 of 6 nM for FTase (Table 

4.3)  

The pronounced difference in IC50 values for these enzymes compared to previously 

reported values from radiometric assays[194] is related to the use of artificial fluorescent 

substrates in these assays. Therefore, the improvement factor was introduced to 

indicate the improvement in selectivity for RabGGTase, compared to the dual inhibitor 

BMS3 (vide supra): 

 

 

 

Consequently, an increase in selectivity for RabGGTase compared to dual inhibitor 

BMS3 will lead to a factor larger than 1, whereas a decrease in selectivity for 

RabGGTase will lead to a factor between 0 and 1. BMS3 will always have an 

improvement factor of 1 by definition. 

In addition IC50 values for GGTase I were measured to evaluate the selectivity of our 

THB-based inhibitors with respect to all three prenyl transferases.  

It can be concluded from the table that decorating the 3-phenol results in a general 

increase for RabGGTase inhibition and a general decrease in FTase inhibition, 

validating the lipid binding site as a pocket to increase selectivity. However, the 

extended compounds showed only a minor (1-16 fold) decrease in FTase inhibition, 

opposed to the large decrease which was expected due to the predicted clash with 

Trp102. Therefore, it is likely that the inhibitors and/or FTase adopt their binding 

conformation to the newly introduced moieties. In order to obtain completely selective 

inhibitors, it seemed that modification at both sides of the scaffold is necessary.  
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Table 4.3: Synthesis & Screening of 1st generation inhibitors. 

 74b 87-94 

Reagents and Conditions: (a) alkylbromide, NaH, DMF (b) isocyanate, Et3N, DCM (c) TfN(Ph)Tf (86), Et3N, 

DCM (d) arylboronic acid, Pd(PPh3)4, K2CO3, DCE/H2O, 80 °C  

entry cmpd R Yield 
§
 

            In vitro IC50 [nM]  

IF RabGGTase FTase GGTase I 

1 BMS3 H - 724±321 6±3 >99,500 1.0 

2 74b OH - 1,011±465 5.2±0.2 >99,500 0.6 

3 87  92% 
a
 162±10 10±7 >99,500 7.4 

4 88 
 

94% 
a
 39±10 15±8 >99,500 46.4 

5 89 
 

85% 
a
 441

#
 99.3±59 >99,500 27.2 

6 90  94% 
a
 2,072

#
 1,012±688 >99,500 58.9 

7 91 
 

98% 
b
 243±20 9.2±4.2 >99,500 4.6 

8 92 

 

96%
 b
 72±2 <5

$
 >99,500 <8.4 

9 93 

 

72%
 b
 38±7 <5

$
 2,020±384 <15.9 

10 83  94%
 c
 >9,500 10.5±3.9 >99,500 nc 

11 94 
 

94%*
 d
 353±158 4.3±2.2 3,643

#
 1.5 

§
method used, *from triflate 83, Ger = geranyl, 

$
lower detection limit, 

#
single point measurement, 

nc = not calculated, IF = Improvement Factor. 
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§ 4.6 Synthesis & Screening of 2nd generation RabGGTase 

inhibitors 

 

Although the selectivity moderately increased for the 1st generation of RabGGTase 

inhibitors, the hypothesis that extending in both directions would give selectivity toward 

RabGGTase still needed to be tested. Herefore, a similar synthetic strategy was 

adopted.  

To extend the THB scaffold towards both the TAG tunnel and the LBS, general building 

block 74a (Scheme 4.2), containing the bromide was used. The bromide was subjected 

to Suzuki conditions in order to introduce several moieties meant to approach the TAG 

tunnel. Coupling of building block 74a with arylboronic acids in the presence of 

Pd(PPh3)4 and Na2CO3 as a base gave THBs 97, 99 and 104 in good yields. 

Subsequent modifications at the 3-phenol group were carried out to obtain the target 

compounds (Table 4.4). THBs 103, 105 and 106 were obtained in good yields, using 

the methodology described for the 1st generation of inhibitors. Triflate 100 was further 

exploited using Buchwald-Hartwig and Sonogashira conditions. The Buchwald-Hartwig 

coupling, using Pd2(dba)3 as the catalyst, Johnphos 95 as ligand and NaOtBu as a 

base gave THB 101 in good yield. THB 102 was synthesized in moderate yield using 

typical Sonogashira conditions. This 2nd generation of THBs particularly resembled the 

suggestions from in silico screening. For example, 102 was among the best scoring 

compounds from the virtual screening. 

 

  

JohnPhos 95 
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Table 4.4: Synthesis & Screening of the 2
nd

 Generation of THB-based inhibitors. 

 74a 96-106 

A: arylboronic acid, Pd(PPh3)4, Na2CO3, dioxane/H2O, 80°C. B: (a) isocyanate, Et3N, DCM; (b) 

alkylbromide, NaH, DMF; (c) TfN(Ph)Tf (86), Et3N, DCM; (d) alkyne, Pd(PPh3)4, CuI, Et3N, TBAI, DMF, 70 

°C(e) amine, NaOtBu, Pd2(dba)3, JohnPhos (95), THF; (f) arylboronic acid, Pd(PPh3)4, K2CO3, DCE/H2O, 

80 °C;  

entry cmpd R
1
 R

2
 Yield

 §
 

            In vitro IC50 [nM]  

IF RabGGTase FTase GGTase I 

1 BMS3 CN H - 724±321 6±3 >99,500 1 

2 96 Br 
 

99%
b
 >9,500 406

#
 >99,500 6.8 

3 97 
 

 77%
A
 >9,500 194±78 >99,500 <2 

4 98 
 

 72%
c1

 >9,500 >9,700 >99,500 nc 

5 99 
 

 89%
A
 >9,500 120.5±84.9 >99,500 nc 

6 100 
 

 82%
c1

 >9,500 >9,700 >99,500 nc 

7 101 
 

 

56%
d2

 >9,500 >9,700 >99,500 nc 

8 102 
  

82%
e2

 >9,500 979±262 >99,500 nc 

9 103 
  

57%
f2
 >9,500 >9,700 >99,500 nc 

10 104 
 

 70%
A
 1,302±478 42±10 >99,500 3.9 

11 105 
 

 
nd 

b1
 6,515±1,839 >9,700 >99,500 nc 

12 106 
  

90%
a1

 2,264±844 123±24 >99,500 6.6 

§
Method used 

1
From corresponding arylTHB, 

2
From corresponding triflate, 

#
single point 

measurement, nc = not calculated IF = Improvement Factor. 
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Unfortunately, as clear from the IC50 data shown in Table 4.4, the incorporation of 

these aryl groups did not result in an increase in selectivity; the 2nd generation of THBs 

showed almost no inhibitory activity for RabGGTase. Only the meta-chloroaryl-

substituted THB (104) retained potency, although it is three fold less potent compared 

to BMS3.  

Thus modification at R1 alone, extending toward the TAG tunnel, did not result in any 

selectivity gain. THB 105, which bears additional groups to approach the TAG tunnel 

(metachloro aryl) and LBS (butyl), was found to be a weak selective RabGGTase 

inhibitor. To get a better structural insight into the activity- and selectivity data of the 

THB library, co-crystallization and docking studies were carried out.  

 

§ 4.7 Crystallization and Overlay studies of 1st and 2nd 

generation of inhibitors  

 

Although the extended THB library did not result in full selectivity for RabGGTase as 

compared to FTase, some of the compounds showed a high increase in selectivity 

(over 50 fold). To get a better insight into the effect of the extensions on binding on an 

atomic level, co-crystallization studies were carried out by Dr. Zhong Guo. Inhibitors 92 

and 93 could be successfully soaked into both FTase and RabGGTase, (Figure 4.6 & 

Figure 4.7). The co-crystal structures revealed that the binding mode of the THB moiety 

is highly conserved in both enzymes. The π-stacking of ring A with the aromatic 

enzyme residues and imidazole-zinc binding locks the seven-membered ring 

connected to the imidazole moiety in an L-shaped fashion. The orientation of the 

phenolic portion (ring C), either connected to a phenylcarbamate or 

diethylaminecarbamate, appears to be more flexible; 92 shows a conformational 

change in this area, while 93 adopts the same conformation as BMS3. 

In the complex 92:FTase:FPP (Figure 4.6a, b) this conformational change, which also 

leads to loss of some hydrophobic interactions, is the main difference between 92 and 

parent compound BMS3. This difference however does not result in a decrease in 

potency of inhibition. In the complex 92:RabGGTase (Figure 4.6c, d) an extra hydrogen 

bond between the sulfonyl group of the ligand and Tyr44 is formed. In addition, there 

seems to be an extra hydrophobic interaction between the introduced benzylcarbamate 

and the lipid binding site of the enzyme.  
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Figure 4.6: Co-crystal structures of 92: a) Surface representation of active site of 92:FTase:FPP 

complex. Similar to BMS3, the imidazole coordinates to the zinc ion. The THB interacts with 

Tyr361 and is further involved in internal π-stacking with the anisylsulfonyl group. The 3-benzyl 

moiety extends to the back, disrupting the interactions with Trp102 and Trp106. The black 

dashed lines indicate interactions between ligand and enzyme. b) schematic representation of 

92:FTase interactions. c)Surface representation of the active site of 92:RabGGTase complex. 

Similar to BMS3, the imidazole coordinates to the zinc ion, whereas the sulfonamide forms 

hydrogen bonds with Tyr44. The 3-benzyl moiety interacts with Trp52 and Phe289 by edge-face 

hydrophobic stacking, whereas the THB moiety stacks face-face with Phe289. The 

conformation is further stabilized by internal π-stacking of the THB with the anisylsulfonyl group. 

The additional benzylcarbamate contributes with an edge-face hydrophobic stacking with 

Phe147. The black dashed lines indicate interactions between ligand and enzyme. d) Schematic 

representation of 92:RabGGTase interactions. 

 

The co-crystal structure of 93:FTase (Figure 4.7a, b)revealed that the Trp102 residue, 

originally contributing with an edge-face T-stacking interaction, is flipped by 180°. This 

opens up extra space in the hydrophobic area, allowing the extended THBs to bind. 

However, an extra hydrogen bond interaction is formed between Trp106 and the 

diethylcarbamate group. In total these changes sum up to an approximately similar 

a) 

c) 

b) 

d) 
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IC50for FTase. In the complex 93:RabGGTase (Figure 4.7c, d) extra interactions are 

realized by a cation-π-interaction between Arg144 and the 3-benzyl moiety (ring C) 

 

  

  

Figure 4.7: Co-crystal structures of 93: a) Surface representation of active site of 93:FTase 

complex. The imidazole coordinates to the zinc ion. The THB interacts with Tyr361 and is 

further involved in internal π-stacking with the anisylsulfonyl group. The additional 

diethylcarbamate functionality is adopted via a reorientation of Trp102 by 180° and forms 

hydrogen bonds with Trp106. The black dashed lines indicate interactions between ligand and 

enzyme. b) schematic representation of 93:FTase interactions. c) Surface representation of the 

active site of 93:RabGGTase complex. Similar to BMS3, the imidazole coordinates to the zinc 

ion, whereas the sulfonamide forms hydrogen bonds with Tyr44. The 3-benzyl moiety interacts 

with Trp52 and Phe289 by edge-face hydrophobic stacking, whereas the THB moiety stacks 

face-face with Phe289. The conformation is further stabilized by internal π-stacking of the THB 

with the anisylsulfonyl group. The additional diethylcarbamate contributes with cation-π-stacking 

with Arg144. The black dashed lines indicate interactions between ligand and enzyme. d) 

Schematic representation of 93:RabGGTase interactions. 

 

The crystal structure analysis shows that both the inhibitors and the FTase binding site 

adopt different conformations due to the extensions of the THBs, resulting in selectivity 

profiles similar to that of BMS3. This accentuates the need for extensions in other or 

additional directions to obtain selective inhibitors.  

a) b) 

c) d) 
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However, as could be deduced from the second generation of inhibitors, the TAG 

tunnel only allows specific modifications. Attachment of a bulky aryl group, like para-

chloro-aryl, led to complete loss of RabGGTase activity. This was contradictive to the 

virtual screening results, which indicated 102 as a potentially selective RabGGTase 

inhibitor. 

Retrospectively, the rigid shape of THB found for all co-crystallized inhibitors could 

account for this observation. Overlay studies of 3,4-dichlorophenyl-substituted THB 99 

showed a potential clash with the binding site assuming this rigid binding pose (Figure 

4.8). Therefore, it was concluded that it was necessary to incorporate smaller 

heteroaromatic rings without para-substituents. 

  

Figure 4.8: Individual docking results of 99; an overlay with structure of 

BMS3:RabGGTase:GGPP. Assuming a rigid THB-core binding pose, the para-chlorophenyl 

cannot adjust toward the TAG tunnel, and clashes with the binding pocket. 

 

§ 4.8 Design and Synthesis of 3 rd generation of inhibitors  

 

§ 4.8.1 Virtual screening based on conformational constraints  

Incorporation of substituted aromatic rings most probably resulted in a clash with the 

RabGGTase surface, which disrupts the important π-stacking with the THB moiety (ring 

A) and imidazole-zinc binding. In order to identify 

additional promising candidates a virtual high-

throughput screening (VHTS) with extra conformational 

constraints was carried out. Herefore, the conformation 

of the THB was fixed between Phe289 and the zinc 

ion, in order to mimic the π-stacking and 

imidazole zinc interaction, which seems essential for 

activity. Solutions should be obtained that exactly fit in 

the RabGGTase binding site. The counter screen for 

a) b) 

Constraints
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FTase was carried out like the first time, with just one constraint; the imidazole-zinc 

binding.  

 

 

 

Figure 4.9: Virtual Screening solutions in RabGGTase employing two constraints. 

 

In Figure 4.9 some typical solutions of the docked compound set are displayed. 

Heteroaromatic groups such as pyridine or furanaldehyde both extend toward the TAG 

tunnel without distorting the general binding pose. Other suggestions were flexible 

groups like N-acetylpiperazine, which could adjust toward the TAG tunnel. The latter 

group would have the additional advantage of increasing the solubility of the 

compounds.   

 

§ 4.8.2 Synthesis& Screening of 3rd generation of inhibitors  

Encouraged by our new hypothesis a five-membered furanaldehyde was attached to 

the building block using Suzuki coupling conditions. Then the phenolic hydroxyl group 

was decorated and the compounds were subjected to in vitro screening of RabGGTase 

and FTase. 
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Table 4.5: Synthesis of 3
rd

 generation of inhibitors 

 74a 107-109 

A: aryl boronic acid, Pd(PPh3)4, Na2CO3, dioxane/H2O, 80°C B: (a) isocyanate, Et3N, DCM  

entry cmpd R
1
 R

2
 Yield

 §
 

            In vitro IC50 [nM]  

IF RabGGTase FTase GGTase I 

1 BMS3 CN H - 724±321 6±3 >99,500 1.0 

2 107 
 

 68%
A
 8,843

#
 13.6±8.6 >99,500 0.2 

3 108 

 
 68%

A
 206±13 7±3 >99,500 4.1 

4 109 

 
 

82%
a1

 141±26 >9,700 >99,500 nc 

§
Method used 

1
From corresponding arylTHB, 

#
single point measurement, nc = not calculated IF 

= Improvement Factor. 

 

As can been derived from Table 4.5 the introduction of a smaller five-membered ring 

successfully led to an active RabGGTase inhibitor. The counter screen on our FTase 

assay showed that the introduction of both groups indeed resulted in complete loss of 

FTase activity. So, compound 109, besides providing „a proof of concept‟, is the first 

selective low nM inhibitor of RabGGTase. Efforts to crystallize 108 and 109 by Dr. 

Zhong Guo resulted in co-crystal structures of 108 in both FTase and RabGGTase, as 

well as a co-crystal structure of 109 in complex with RabGGTase (Figure 4.10) 

 

The co-crystal structure of 108:FTase:FPP, revealed that the addition of the furanal at 

R1 results in a compressed binding mode. The furanal moiety barely fits in the small 

hydrophobic space and, as expected, orients toward the exit groove of the active site, 

which seems to result in a conformational change at the other end of the ligand. In 

order to keep the favorable conformation for π-stacking and zinc binding, the phenolic 

portion of the molecule turns by 180°, a similar phenomenon as seen for ligand 92. 

This causes the loss of favorable hydrophobic interactions with the binding site Trp 

residues (Figure 4.10a & b).  
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In complex 108:RabGGTase, the furanal moiety orients toward the TAG tunnel. 

Further, the structure closely resembles the BMS3:RabGGTase complex, showing the 

same binding mode and conformation (Figure 4.10c & d).  

 

 
 

 

 

Figure 4.10: Co-crystal structures of 108 and 109: a) Surface representation of active site of 

108:FTase:FPP complex. The imidazole coordinates to the zinc ion. The THB interacts with 

Tyr361 and is further involved in internal π-stacking with the anisylsulfonyl group. The additional 

furanal barely fits in the FTase pockets and induces a conformational change of the 3-benzyl 

moiety, disrupting the favorable hydrophobic interactions with Trp106. The black dashed lines 

indicate interactions between ligand and enzyme. b) Schematic representation of 108:FTase 

interactions. c) Surface representation of the active site of 108:RabGGTase complex. Similar to 

BMS3, the imidazole coordinates to the zinc ion, whereas the sulfonamide forms hydrogen 

bonds with Tyr44. The 3-benzyl moiety interacts with Trp52 and Phe289 by edge-face 

hydrophobic stacking, whereas the THB moiety stacks face-face with Phe289. The 

conformation is further stabilized by internal π-stacking of the THB with the anisylsulfonyl group. 

The additional furanal occupies the entrance of the TAG tunnel but the expected hydrogen bond 

interaction between the aldehyde and Tyr30 cannot be observed. The black dashed lines 

indicate interactions between ligand and enzyme. d) Schematic representation of 

108:RabGGTase interactions.  

 

 

a) b) 

c) d) 
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The crystal structures of the compounds targeting either the LBS or the TAG tunnel 

complement the in vitro data. Obviously, extension of the THB in only one direction is 

not sufficient for selectivity. The predicted clashes with the binding site of FTase were 

circumvented via reorientation of Trp102 in the enzyme or via adoptive behavior of the 

ligand. Interestingly, in FTase the introduction of the furanal moiety induces a 

conformational change of the 3-benzyl moiety, which approaches the surface area of 

FTase composed of residuesAla151, Arg202 and Trp102.  

The conformational change of the 3-benzyl moiety (C ring) resulting in a new binding 

pose could even increase the chance to get selective RabGGTase inhibitors by 

combining substituents that approach both the TAG tunnel and the LBS and provides a 

rational explanation for the selectivity profile observed for the first selective 

RabGGTase inhibitor, 109. 

Figure 4.10a&b shows the first crystal structure of a THB-based selective RabGGTase 

inhibitor. In this structure, the features of ligands 92 & 108 are combined. 

 

 

 

Figure 4.11: a) Surface representation of the active site of 109:RabGGTase complex. Similar to 

BMS3, 92 & 108 the imidazole coordinates to the zinc ion, whereas the sulfonamide forms 

hydrogen bonds with Tyr44. The 3-benzyl moiety interacts with Trp52 and Phe289 by edge-face 

hydrophobic stacking, whereas the THB moiety stacks face-face with Phe289. The 

conformation is further stabilized by internal π-stacking of the THB with the anisylsulfonyl group. 

The additional furanal occupies the entrance of the TAG tunnel but the expected hydrogen bond 

interaction between the aldehyde and Tyr30 cannot be observed. The additional 

benzylcarbamate contributes with an edge-face hydrophobic stacking with Phe147. The black 

dashed lines indicate interactions between ligand and enzyme. b) Schematic representation of 

109:RabGGTase interactions. 

 

 

The RabGGTase: 109 co-crystal structure shows that 109 binds in a mode similar to 

BMS3, with the imidazole coordinating to the catalytic zinc ion and the THB core of 

109, although slightly twisted compared to BMS3, π-stacking with Phe289. In 

a) b) 
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agreement with the predictions from docking studies, the benzyl carbamate occupies 

the lipid binding site of RabGGTase, while the furanal substituent approaches the TAG 

tunnel. The arrangement of the benzylcarbamate in the LBS results in an extra edge-

face π-stacking to Phe147, as well as a conformational change of the 3-benzyl 

substituent, now π-stacking with Trp244 instead of Phe289 and Trp52. Surprisingly, the 

aldehyde moiety is not involved in a hydrogen bonding interaction with Tyr30, but is 

pointing into the TAG tunnel. The observed interactions together add up to a selective 

RabGGTase inhibitor (IF>8000) with an IC50value of 141 nM for RabGGTase and an 

IC50value of over 10 µM for FTase. 
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Chapter 5: Intermezzo – RabGGTase Counterscreens 

During the course of the project, our collaborators at the Lead Discovery Center (LDC) 

developed alternative assay systems. Several different systems were compared; 

fluorescence based in vitro screening with the original system using NBD-FPP, affinity 

bead assays using biotin-GPP as well as radioactive [3H]-GGPP based and cellular 

screening assays. The in vitro assays are summarized in Figure 5.1.  

The NBD-FPP- and biotin-GPP- based assays are both substrate analogs of GGPP, 

whereas the radioactive [3H]-GGPP assay resembles the native prenylation system the 

most. All assays require the ternary complex of Rab, REP and RabGGTase. The 

presence of an effective inhibitor of RabGGTase will, in all cases, lead to a decrease in 

signal compared to the non-inhibitor condition. 

a) 

 

b) 

 

c) 

 

Figure 5.1: RabGGTase in vitro assays using (a) NBD-FPP, (b) Biotin-GPP, (c) 
3
H-GGPP. 



 

 

90 

 

To study the cellular prenylation, a two-step procedure has been developed and 

optimized to a 96 well plate, medium throughput format. The general principle of the 

assay is depicted in Figure 5.2. HeLa cell lines were cultured and treated with an 

inhibitor. After the treatment with inhibitors, the cells were lysed and subsequently 

prenylated in vitro with biotin-GPP. With Western blotting all Rab-biotin-GPP 

conjugates were detected. Inhibition led to increased labeling of endogenous Rab 

proteins, whereas no inhibition resulted in an absence of signal.  

a)

 

b)

 

Figure 5.2: RabGGTase cellular prenylation assay (a) and the detection system (b)
[195]

 

 

To validate these assays some of the developed THB-based RabGGTase inhibitors 

were analyzed. The results of the various inhibitors in the different assays are plotted in 

Figure 5.3. 
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 BMS3 90 97 109 107 

Figure 5.3: Overview of inhibitory activity and binding modes of selected compounds. 

 

Unexpectedly, the data between the different screening assays showed no general 

correlation. Some of the inhibitors with promising inhibition in the NBD-FPP assays 

showed low µM inhibition in the radioactivity based GGPP assay (109). Other inhibitors 

which seemed to have low potential in the NBD-FPP assay were highly active in the 

radioactivity based GGPP assay (107). Comparing the different biochemical in vitro 

assays with the initial cellular screen, the radioactive GGPP assay showed the highest 

correlation.  

Unfortunately, in the cellular reprenylation assay as well as in the radioactive assay, 

selective inhibitor 109 appeared to be 100 fold less active compared to BMS3, 

although it can still be regarded as a moderately active inhibitor with an IC50 of 1 µMin 

vitro. The result for inhibitor 107 was more promising; it seemed that the THB with the 

additional pyridine-group toward the TAG tunnel was just as active in the radioactive 

and cellular prenylation assay as BMS3 opposed to the moderate activity observed in 

the NBD-FPP assay.  

 

Since the results between NBD-FPP and GGPP showed such extensive discrepancies, 

and the GGPP assay correlated better with the cellular studies, it was decided to base 

the further development of RabGGTase inhibitors on the radioactive assay. Therefore, 

most of the compounds were rescreened and the IC50 values and new improvement 

factors are summarized in Table 5.1 

  



 

 

92 

 

Table 5.1: in vitro results of the THB based library on the radioactive assay 

 

Entry Cmpd R
1
 R

2
 

                           In vitro IC50 [nM]  

IF
RA

 RabGGTase
FL

 RabGGTase
RA

 FTase GGTase I 

1 BMS3 CN H 724±321 6.4±4.8 6±3 >99,500 1.00 

2 74b CN  1,011±465 <4
$
 5.2±0.2 >99,500 1.39 

3 87 CN  162±10 156±49 10±7 >99,500 0.1 

4 88 CN 
 

39±10 63±24 15±8 >99,500 0.3 

5 89 CN 
 

441
#
 181±14 99.3±59 >99,500 0.59 

6 90 CN  2,072
#
 23.5±4.5 1,012±688 >99,500 45.93 

7 91 CN 
 

243±20 15.5±1.5 9.2±4.2 >99,500 0.63 

8 92 CN 

 

72±2 6±4 <5
$
 >99,500 0.89 

9 93 CN 

 
38±7 123±22 <5

$
 2,020±384 0.04 

10 83 CN  >9,500 1496±100 10.5±3.9 >99,500 0.01 

11 94 CN 
 

353±158 11±2 4.3±2.2 3,632±15 0.42 

12 97 
 

 >9,500 706±246 194±78 >99,500 0.29 

13 100 
 

 >9,500 >9,500 >10000 >99,500 nc 

14 101 
  

>9,500 >9,500 >10000 >99,500 nc 

15 102 
 

 

>9,500 2,827±977 979±262 >99,500 0.4 

16 103 
  

>9,500 8,491±1,510 >10000 >99,500 nc 

17 104 
  1,302±478 68.7±19.6 42±10 >99,500 0.7 

18 106 
  

2,264±844 263.3±49.5 123±24 >99,500 0.5 

19 107 
  8843

#
 <4

$
 13.6±8.6 >99,500 3.6 

20 108 
 

 206±13 12.8±8.8 7±3 >99,500 0.6 

21 109 
  

141±26 1547±101 >9,700 >99,500 nc 

FL=fluorescent based assay, RA=radioactive based assay, 
$
lower detection limit, 

#
single point 

measurement, nc=not calculated, IF=improvement factor. 
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Two trends were found in the comparison of both assays. In general, some of the aryl-

modifications (2nd generation) turned out to be moderately active RabGGTase inhibitors 

in the radioactive assay, while they showed no inhibition in the NBD-FPP assay (e.g. 

97, 104, 107). In contrast, a decrease in inhibitory activity was observed for most of the 

compounds of the first generation, compared to the original NBD-FPP assay.  

These results hint in the direction of an effect of the GGPP substrate on binding of the 

compound, either non-competitive or cooperative. The modifications in the first 

generation involved an extension toward the lipid binding pocket, which could result in 

competitive binding. Since the enzyme has a very high affinity for GGPP, this 

competition could lead to the observed decrease in inhibition. To prove this theory, 

some competition studies were carried out by Dr. Yaowen Wu (with NBD-FPP). 

However, only compound 90 was found to be competitive, while 97, 107 and 109 were 

all found to be non-competitive, which disproved the hypothesis.  

The other option would be that the natural GGPP substrate and the 

tetrahydrobenzodiazepine moiety have a cooperative mode. This could explain the 

general increase in inhibitory activity in the radioactivity based assay compared to the 

fluorescent based assay for the 2nd generation; in the radioactive assay format, this 

would lead to an extra hydrophobic interaction between the 3-benzyl of the compound 

and GGPP, which is absent in the NBD-FPP based assay. This can also explain the 

great variety in the 1st generation. Some of the compounds could obtain a slightly 

different binding mode, interrupting positive interactions with the GGPP substrate, 

which results in a decrease of inhibitory activity (e.g. 87, 89, 93,) while other 

substituents will still allow this positive T-stacking interaction (e.g. 91, 92, 94,). This 

hypothesis is graphically depicted in Figure 5.4. 

 

Figure 5.4: Schematic representation of different binding modes relative to GGPP, cooperative 

and non-competitive. R
1
substituent is not influencing the conformation, allowing π-interaction, 

while R
2
 substituent disturbs the conformation, breaking the π-interaction. 



 

 

94 

 

It could be imagined that such a negative effect can be similar to the effect of 92 in 

FTase (Figure 4.6a, b) 

If this hypothesis would be true, then inhibitors with substituents having a non-

competitive or cooperative binding mode toward the natural GGPP ligand should 

remain active in the RabGGTase radioactive based assay. To identify such 

substituents an extra virtual screening was carried out for the next generation.  
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Chapter 6: Toward highly potent selective RabGGTase 

inhibitors 

 

§ 6.1 Computer-aided design of cooperative RabGGTase 

inhibitors 

 

Due to the discrepancies of the assays, an extra virtual screening with GGPP present 

in the binding site was carried out. The 

constraints between the imidazole and 

zinc as well as the benzodiazepine core 

and Phe289 similar to the previous 

virtual screening, were kept. By including 

the GGPP substrate in the virtual 

screening, the new solutions should be 

compatible and/or interacting with the 

GGPP substrate. Some of the highest 

scoring compounds are depicted in Figure 6.1 

 

The suggested groups for R1 mainly encompass small heteroaromatic rings like furan 

or furan-nitrile and pyridines. The more flexible groups such as N-acetyl-piperazine, 

which were among the top hits in the virtual screening without GGPP, were not found in 

the top solutions. For R2 mainly additional aromatic groups are suggested, which could 

be involved in favorable π-stacking with the GGPP in the binding site. Especially 3-

pyridine and aniline were present in the top100 solutions several times. Although the 

aniline group is known to be unfavorable concerning metabolism in later stages of drug 

development, it was decided to incorporate this group as a „proof of principle‟ for GGPP 

compatible RabGGTase inhibitors. As an alternative, more stable phenylethers could 

be incorporated, although they score slightly less in the virtual screening.  
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Figure 6.1: Docking solutions with GGPP in the binding site  
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§ 6.2 Synthesis and Screening of 4th generation of inhibitors 

 

Since the radioactive assay also shows a sharp inhibition profile for the modification 

extending toward the TAG tunnel, it was decided to first introduce some extra 

(hetero)cyclic aromatic group, small five membered rings and some flexible amide 

bond linked groups to find the most suitable groups to extend toward this site and to 

verify the virtual screening. These different groups could be efficiently introduced using 

transition metal-based cross coupling procedures. The Suzuki-coupling with some 

heteroaromatic rings resulted in low to moderate yields (e.g. 111), most probably 

related to the instability of the boronic acid counterpart. Aminocarbonylation using 

Herrmann‟s palladacycle 110, air stable Fu‟s salt ([(t-Bu)3PH]BF4) and molybdenum 

hexacarbonyl under microwave irradiation afforded 115 and 116 in low, unoptimized 

yields. Optimization of the procedure would most likely involve adjustment of the 

reaction time and temperature. Buchwald-Hartwig couplings of 74a and N-

acetylpiperazine or aniline gave THBs 117 and 118. Irrespective of some of the low, 

unoptimized yields, a sufficient amount of material could be synthesized for initial 

screening against RabGGTase and FTase. The results are summarized in Table 6.1 

  

Herrmann‟s 
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Table 6.1: Synthesis and Screening of the 4
th
 generation of THBs: approaching the TAG tunnel 

 

From Table 4.1 it can be derived that there is one additional group that stands out due 

to its activity and selectivity: the 2-methoxy-pyridine group. Interestingly, this group 

occurred several times in the top 10 of the virtual screening. 

 

Another hint from the virtual screening was to introduce a 2-cyanofuran moiety. 

Herefore, attempts were undertaken to transfer the furanal moiety of 108 into a nitrile. 

In principle, the aldehyde can be condensed with hydroxylamine to give the 

 74a 111-118 

(a) arylboronic acid, Pd(PPh3)4, K2CO3, DCE/H2O (b) amine, Mo(CO)6, Fu's salt, Hermann's palladacycle 

(110), DBU, THF; (c). amine, NaOtBu, Pd2(dba)3, JohnPhos (95), THF 

entry cmpd R
1
 Yield

$
 

            In vitro IC50 [nM]  
IF RabGGTase FTase GGTase I 

1 BMS3 CN - 6.4±4.8 6±3 >99,500 1.0 

2 111 

 

40%
a
 5.5±1.5 18.6±0.6 >99,500 3.6 

3 112 

 

52%
a
 22.5±7.5 34.4±21.2 >99,500 1.6 

4 113 

 

82%
a
 185±8 172±117 >99,500 1.0 

5 114 

 

61%
a
 55±10 81.7±70.3 >99,500 1.6 

6 115 

 

16%
b
 19±2 7±1.6 >99,500 0.4 

7 116 

 

13%
b
 70.5±11.5 20.7±4.6 >99,500 0.3 

8 117 

 

30%
c
 27±6 112±91 >99,500 4.4 

9 118 

 

33%
c
 246.5±52.5 454±207 >99,500 2.0 

§
Method used 

1
From corresponding arylTHB, 

2
From corresponding triflate, IF=Improvement 

Factor 
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corresponding oxime, which can be dehydrated to the nitrile[196]. The reaction and 

corresponding conditions are summarized in Table 6.2. For the first attempt, entry a, 

the aim was to convert the furanaldehyde to the nitrile 120 in one step. This resulted in 

a mixture of four compounds, which consisted of 119, 120 and very unusually, their 

counterparts lacking the imidazole. Thus, under these conditions, the imidazoyl methyl 

group was cleaved. Therefore, the reaction was carried out in a two-step sequence. 

First, the aldehyde was converted to the oxime employing hydroxylamine in 

DCM/MeOH. Second the oxime was subjected to dehydration conditions. Reflux in 

acetic anhydride resulted in the nitrile, but these harsh conditions resulted in 

degradation and addition of an acetate group to the phenol. Eventually the nitrile was 

successfully obtained by addition of 6 equivalents of TFAA at room temperature, giving 

the nitrile in good yield.  

 
Table 6.2: Conditions toward 2-cyanofuran substituted THB. 

 108 119 120 R=H 

  121 R=OAc 

entry SM  Reagent Solvent Temperature Product Yield 

a 108 Et3N, NH2OH.HCl NMP 100°C mixture Nd 

b 108 Et3N, NH2OH.HCl DCM/MeOH rt 119 80% 

c 119 Ac2O Ac2O reflux 121 26% 

d 119 TFAA DCM rt 120 83% 

 

Due to the limited quantity of 2-methoxypyridine boronic acid available, as well as its 

instability, another route toward THB 111 was envisioned to improve the yields 

(Scheme 6.1). Conversion of the THB 74a into its boronic ester 122 would lead to a 

general coupling partner, which subsequently could be reacted under Suzuki coupling 

conditions to obtain 2-choropyridine substituted THB. This 2-chloropyridine, then, could 

be converted into 2-methoxypyridine. Furthermore, 123 opens up extra possibilities to 

introduce longer substituents, e.g. by condensation with ethanol or butanol.  
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 123 111 

 74a 

 122 

 

Reagents and Conditions: (a) bis(pinacolato)diboron, Pd(dppf)Cl2, KOAc, DMSO, (b) 4-bromo-2-

chloropyridine, K2CO3, DME/H2O, (52%, 2 steps), (c) NaOMe, MeOH, DMSO (71%) 

Scheme 6.1: Alternative synthesis route to compound 111 

 

Unfortunately the overall yield for the conversion of 74a to 111 was not improved. This 

route though, opens up more possibilities to diversification, either via coupling reaction 

of boronate 122 or via nucleophilic aromatic substitution of the 2-chloropyridine.  

With the THBs decorated with the most promising R1 candidates in hand (the 2-

cyanofuran and the 2-methoxy-pyridine) the next step was to introduce GGPP 

compatible groups at the R2 position. The virtual screening suggested some promising 

substituents. Top solutions included, among others, benzylamine, aniline and 3-

pyridine. The binding poses of these groups suggested stabilizing interactions between 

the aromatic residues and GGPP substrates, while retaining the binding mode of the 

THB core. For comparison, the benzylcarbamate substituent was synthesized as well. 

The R2 groups were installed using similar transformations of the phenolic hydroxyl 

group, described in § 4.5 and § 4.6. Alkylation with benzyl bromide in the presence of 

sodium hydride resulted in benzyl substituted 127 & 132 in good yields, aminoacylation 

with benzylisocyanate resulted in compounds 126 & 131. Triflation (128 & 133), 

followed by Suzuki coupling with 3-pyridineboronic acid gave 129 & 134. Buchwald-

Hartwig modification of the triflate with aniline in the presence of sodium tert-butoxide 

unfortunately resulted, besides traces of the product, mainly in hydrolysis of the 

substrates. Changing the base to cesium carbonate resulted in a mixture of hydrolyzed 

compound and product, providing a sufficient amount of material for screening (130 & 

135). Although the low nM activity of BMS3 was not reached by the newly introduced 

substituents, the inhibitory activity could be reduced from low µM to low nM activity 

(109 versus 129 & 134) which shows the potential of the GGPP-compatible design 

principle. Unfortunately, 129 & 134 both showed potential inhibitory activity on FTase 

as well. This finding suggests that the introduction of this moiety leads to a similar 
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behavior in FTase as observed with compound 93. The introduction of an aniline or a 

parachloro-aryl rendered the THBs practically inactive.  

 

Table 6.3: Synthesis and screening of 5
th
 generation of THB library: GGPP compatible. 

   

(a) isocyanate, Et3N, DCM; (b) NaH, BrR
2
, DMF; (c) 86, Et3N, DCM; (d) arylboronic acid, Pd(PPh3)4, 

K2CO3, DCE/H2O, 80 °C; (e) amine, NaOtBu, Pd2(dba)3, JohnPhos(95) THF. 

entry cmpd R
1
 R

2
 Yield

$
 

            In vitro IC50 [nM]   
IF RabGGTase FTase GGTase I 

1 BMS3 CN H - 6.4±4.8 6±3 >99,500 1.0 

2 108 

 

OH - 12.8±8.8 11.4±10 >99,500 0.95 

3 109 
 

- 1,547±101 >9,700 >99,500 nc 

4 124  86%
c
 4,292±1,327 >9,700 >99,500 nc 

5 125 

 

84%
f
 2,240±1,235 >9,700 >99,500 nc 

6 120 

 

OH - <14
$
 26.9±20 >99,500 2.0 

7 126 
 

71%
a
 260±18 >9,700 >99,500 nc 

8 127  69%
b
 577±282 >9,700 >99,500 nc 

9 128  99%
c
 nd nd nd nd 

10 129 
 

68%
d
 37±21 109.9±41.1 >99,500 3.2 

11 130 
 

43%
e
 1,056±41 1,212±261 >99,500 1.2 

12 111 

 
 

OH - 5.5±1.5 18.6±0.6 >99,500 3.6 

13 131 
 

86%
a
 55±11 321±291 >99,500 6.2 

14 132 
 81%

b
 5,245±1,129 2,556±545 >99,500 0.5 

15 133 
 90%

c
 nd nd nd nc 

16 134 
 

84%
d
 121.3±3.3 79±13.3 >99,500 0.7 

17 135 
 

75%
e
 5,719±1,765 2,432±2,182 >99,500 0.5 

§
Method used 

1
From corresponding arylTHB, 

2
From corresponding triflate, 

$
lower detection limit, 

#
single 

point measurement, nc=not calculated, nd=not determined, IF=Improvement Factor. 
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In order to find an explanation for the observed dual activity of compound 129, the 

structure was docked in the FTase surface of 93:FTase:FPP and compared to the 

solution obtained for docking in BMS3:FTase:FPP. Indeed the docking score observed 

in 93:FTase:FPP was significantly higher than the original score in BMS3:FTase:FPP 

(Figure 6.2). This supports the hypothesis that the flexibility of Trp102 leads to more 

tolerance toward enlarged THBs. 

 

 

  

Figure 6.2: a) Surface representation of the active site of 93:FTase with 129 docked in the 

active site. The docking solution shows that R
2
 would fit in the enlarged pocket caused by 

Trp102 rotation. An overlay of the original Trp102 position exemplifies the clash. b) Schematic 

interaction of docked 129 with the active site of 93:FTase, allowing binding. c) Schematic 

interaction of docked 129 overlaid with the active site of BMS3:FTase, showing the predicted 

clash. 

 

Altogether, it can be stated that FTase in general shows a more adaptive behavior 

toward the extended THBs than expected on basis of the original BMS3 crystal 

structures. The crystal structures obtained from FTase, which showed adaptive 

behavior of Trp102 upon binding of extended THBs gives a reasonable explanation for 

these observations (see Figure 4.7). Since this tryptophan is known to be responsible 

b) 

a) 

c) 



 

T
o
w

a
rd

 h
ig

h
ly

 p
o
te

n
t 
s
e

le
c
ti
v
e
 R

a
b
G

G
T

a
s
e
 i
n

h
ib

it
o

rs
 

105 

 

for the substrate selectivity[197] and GGPP is known to be an inhibitor of FTase[54] it 

could be speculated that GGPP induces a similar shift of this tryptophan. This shift, 

would allow GGPP to bind, but renders the enzyme inactive toward its substrates. 

One option to get a narrower selection of potential selective RabGGTase inhibitors 

would be to carry out a virtual screening for FTase with defined flexible residues in the 

binding site, opposed to the static docking used in this optimization process.  

The radioactive GGPP assay showed potential for increase of potency toward 

RabGGTase by designing GGPP compatible R-groups (Table 6.3). However, a delicate 

balance between potency and selectivity was observed. It seems that RabGGTase in 

general does not tolerate many extensions, contrary to the assumption made from the 

virtual screening. It was found that the THB core should retain its fixed position, 

therefore only allowing the introduction of groups that exactly accommodate into the 

TAG tunnel, such as furan-nitrile. The search for GGPP compatible inhibitors was not 

as successful as expected, many predicted extensions were found to render the 

inhibitors inactive against RabGGTase. Although the introduction of 3-pyridine (129 & 

134) led to a significant gain in RabGGTase activity opposed to the competitive 

inhibitors they were unselective regarding FTase.  

Fortunately, some combination of THB-extensions led successfully to the development 

of potent and selective RabGGTase inhibitors. The combination of a furanaldehyde 

with a benzylcarbamate led to a 1.5 µM selective inhibitor of RabGGTase (109). The 

transformation of this furanaldehyde into the 2-cyanofuran led to even higher potency 

and gave access to two potent and selective RabGGTase inhibitors 126 (260 nM) and 

127 (577 nM).  

 

In order to uncover more selectivity prerequisites for RabGGTase, FTase and GGTase 

I, it would be interesting to explore other scaffolds than the described THBs. However, 

before we turn to potential new scaffolds as RabGGTase inhibitors, the potential of the 

new THBs in cancer cell lines will be discussed. With a focus on the selective 

RabGGTase inhibitors: compounds 109 & 126. 

 

  



 

 

106 

 

 

  



 

C
e

llu
la

r 
s
tu

d
ie

s
 o

f 
th

e
 R

a
b
G

G
T

a
s
e

 i
n
h

ib
it
o

rs
 

107 

 

Chapter 7: Cellular studies of the RabGGTase 

inhibitors 

 

In order to evaluate if RabGGTase is a relevant anti-cancer target via small molecule 

intervention, the inhibitors were tested in several cancer cell lines by the LDC. 

Therefore, the THB-based inhibitors were first tested in the reprenylation assay to 

observe their activity in a cellular system (assay described in Chapter 5). In Table 7.1 

and in the supplementary data, the data of the reprenylation and cell based assay are 

summarized. It can be derived from the table that the in vitro activity roughly correlates 

with the cellular reprenylation activity of the RabGGTase inhibitors. The discrepancies 

are most likely related to external factors like cell permeability and solubility. However, 

most of the active inhibitors in vitro show good cellular potency as well.  

The compounds listed in Table 7.1 have been selected for their different types of 

inhibitory activity. 83 is a selective FTase inhibitor, 109 and 126 are selective 

RabGGTase inhibitors, whereas 101 is inactive. The other compounds listed are all 

dual inhibitors, with different potencies for RabGGTase and FTase. First, it is important 

to note that all tested inhibitors are inactive up to 10 µM in the PBMC assay, providing 

first indications that this compound class is not generally cytotoxic. Second, it could be 

shown that the selective RabGGTase inhibitors both resulted in inhibition of cancer cell 

proliferation. Compound 126 (entry 8), a selective inhibitor of RabGGTase with a 

similar RabGGTase potency as BMS3, inhibited all cancer cell lines as potent as dual 

inhibitor BMS3. Interestingly, the selective FTase inhibitor (83, entry 4) with a similar 

FTase potency as BMS3 only retained its activity on the A2780 cell line. These results 

indicate that inhibition of RabGGTase alone is sufficient to inhibit cancer cell 

proliferation. 

Comparison of inhibitor 126 with 129 shows that the GGPP compatible design is not as 

crucial for inhibition of cellular prenylation as has been observed in the in vitro assays. 

One explanation could be that the GGPP concentration in the cells is different from the 

GGPP concentration in the radiometric assay, and hence, has less impact on the 

inhibition. The concentration of GGPP in NIH/3T3 cells has been determined at 0.145 

pmol/106 cells,[198] which would correspond to approximately 65 nM GGPP, 30 fold less 

compared to the amount of GGPP used in the in vitro assay. 

Upon close inspection of the data, some other trends could be observed. Dual inhibitor 

93, which showed potent FTase and moderate RabGGTase activity, effectively 

inhibited proliferation of the HCT116 and A2780 cells, but showed a clear drop in 

activity for the HeLa cells.  



 

 

108 

 

Table 7.1: Cellular results of the THB based library

 

entry cmpd R
1
 R

2
 

     In vitro IC50 [nM]  Cellular IC50 [nM]                Cellular viability IC50 [nM]   

FTase RabGGTase 
RabGGTase 
Reprenylation HCT116 HeLa A2780 PBMC IF

RP
 

1 BMS3 CN - 4.9±0 6.4±4.8 74±34 63±8 101±2 43±0 >10000 1 

2 92 CN 
 

13.2±14.1 6±4 81±32 231±0 151±0 130±0 >10000 2.5 

3 93 CN 

 

5.2±0.3 122.7±21.7 343±29 75±10 745±303 43±9 3836±0 0.2 

4 83 CN  10.5±3.9 1495.5±99.5 >10000 1049±0 1960±0 92±0 >10000 0.02 

5 101 
  

>9,700 >10000 >10000 4974±0 9308±0 3261±0 >10000 nd 

6 109 

 

 
>9,700 1547±101 311±193 443±173 797±330 589±199 >10000 485 

7 120 
 

OH 26.9±20 <14 11±5 2±1 21±4 18±1 >10000 37 

8 126 
  

>9,700 260±18 49±32 35±1 101±11 115±3 >10000 3082 

9 129 
  

109.9±41.1 37±21 54 71±10 130±11 222±1 >10000 42 
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This data was complemented by the activity profile of dual inhibitor 92, showing potent 

RabGGTase and moderate FTase inhibitory activity. In this case, the inhibition of 

proliferation of HeLa cells was retained whereas the activity for HCT116 and A2780 

slightly dropped. These data combined suggest that HCT116 and A2780 cells are more 

sensitive to FTase inhibition than HeLa cells.  

Furthermore, it can be seen that inactive THB 101 (entry 5) shows no inhibition of 

cancer cell line proliferation, as expected. Inhibitor 120, which shows a remarkable 

cellular reprenylation inhibitory activity for RabGGTase and a moderate in vitro activity 

for FTase, shows a significant effect on cancer cell line proliferation, giving IC50 values 

in the range of 2-21 nM. This shows the potential of low nM inhibitors of RabGGTase to 

inhibit cancer cell proliferation. The shown inhibition of cancer cell proliferation (both 

Ras-transformed and non-Ras-transformed) by the highly selective RabGGTase 

inhibitors 126 and 109 is in accordance with the finding that RabGGTase siRNA, but 

not FTase siRNA, induces increased apoptosis in C. elegans and in A549 cells[17].  

 

Altogether, diversification of the THB scaffold by an iterative cycle of synthesis, 

screening and design, guided by crystal structure determination led to the conversion 

of a dual FTase/RabGGTase inhibitor into potent, selective, not generally cytotoxic 

inhibitors. Selective inhibitor 126 (49 nM, cellular IC50), inhibits cancer cell proliferation 

as potent as dual inhibitor BMS3 and shows the potential of selective RabGGTase 

inhibitors as a plausible anti-cancer strategy; it emphasizes that RabGGTase should be 

considered as an anti-cancer target.  

 

Additional studies to confirm the therapeutic relevance of RabGGTase will give extra 

insight in the effect of RabGGTase and hence, Rab GTPase disturbance. It could be 

interesting to determine if the inhibitors actually induce apoptosis, compared to the 

measured toxicity in the proliferation assays. Furthermore, it would be interesting to 

test the selective inhibitors in a wide panel of different cancer cell lines in order to 

establish the generality of RabGGTase inhibitors as anti-cancer therapy.  

In addition, side effects should also be taken into account, since Rab GTPases and 

related effector and modulator proteins have been associated with neurological 

diseases as well as infectious diseases. For example, overexpression of Rab1 was 

shown to reduce the toxic effect of αsyn, an inducer of Alzheimer‟s disease. In such a 

context RabGGTase inhibition is probably undesirable.  

Besides the therapeutic relevance, the selective RabGGTase inhibitors will be valuable 

tool compounds as well. The exact role of Rab GTPase in vesicular trafficking could be 

studied more closely using a chemical biology approach. Since there are so many 
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players in the vesicular trafficking pathways in both the endocytic and exocytic pathway 

it would be interesting to study to which extent Rab GTPase function is essential for 

correct trafficking. To which extent would processes like vesicle budding, vesicle 

uncoating, vesicle motility, vesicle tethering and vesicle fusion be impaired by inhibition 

of RabGGTase? Which downstream processes will be affected? Is there a link with 

signaling pathways leading to cancer cell proliferation? Such studies would enlarge the 

understanding of the complicated trafficking pathway in general, and the role of Rab 

GTPases in particular. 
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Chapter 8: High Throughput Fluorescent Screening: 

Leads or Misleads? 

 

§ 8.1 Initial hits of the NBD-FPP RabGGTase assay 

 

High throughput screening (HTS) is a powerful tool to identify potential inhibitors with 

new chemical entities. Therefore we set out to screen the in house CGC library to 

identify potential new inhibitors.  

In Chapter 5 the different RabGGTase assay formats have been described and it 

became clear that the activity profile of the inhibitors differed between the fluorescent 

and radioactive based assay. In order to enable the optimization of the cellular activity, 

the substances were evaluated using the radioactive based assay.  

However, to identify new chemical entities as potential inhibitors of RabGGTase by 

HTS, the NBD-FPP fluorometric assay seemed to represent a continuous and less 

laborious alternative for the radioactive assay. 

As shortly mentioned in Chapter 3, it was found that the NBD-FPP, the fluorescent 

analog of GGPP had bleached severely over time. Therefore, a new batch was 

synthesized which was used for the HTS of the CGC library of circa 30 000 

substances. With the new batch NBD-FPP the substrates, protein and enzyme could 

be used in lower concentrations. Since Rab and REP are both very precious enzymes, 

this adjustment was necessary to allow the screening of the full library.  

 

In total three different compound classes were identified as low µM inhibitors of 

RabGGTase: psoromic acid (136, a natural product), furfurylamine 137 and 

benzoxazolone 138. (Table 8.1).  

 

Psoromic acid analogs have been synthesized by Dr. Celine Deraeve. Most analogs 

made, however, were inactive. Especially the aldehyde moiety of psoromic acid was 

essential for activity. Psoromic acid seems to inhibit RabGGTase by an unusual auto-

inhibition mechanism and the exact mode of inhibition is currently under investigation.  
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Table 8.1: RabGGTase inhibitors identified by fluorescent HTS.  

 136 137 138 

  IC50 = 2.1±0.3 µM IC50 = 32.7±3.0 µM IC50 = 7.8±1.1 µM 

 

 

§ 8.2 Furfurylamine based library 

 

In order to check the integrity of the hits and to obtain a synthetic route to derivatives, a 

small library of compounds based on 137 was synthesized. The synthesis of the 

derivatives is outlined in Table 8.2. Starting from furfurylamine three different R1 groups 

were introduced. Reaction of furfurylamine with an excess of 6-caprolactone gave 139 

in quantitative yield, whereas the octane moiety (141) was installed using octanoyl 

chloride and Et3N as a base. Employing standard peptide coupling conditions, geranic 

acid and furfurylamine gave 144 in good yield. The next step involved the oxidation of 

the furan moiety into scaffold B. Therefore, a solution of bromine in methanol was 

slowly added to a cooled mixture of substituted furfurylamine in diethylether. This 

method successfully furnished substrates 137 and 142. Both products were found to be 

extremely acid labile, in order to obtain the substances sufficiently pure, it was 

necessary to employ Et3N during chromatography and to use neutralized chloroform for 

NMR measurements. Unfortunately, it was impossible to convert 144 into scaffold B. 

Using the described reaction conditions a complicated mixture of substrates was 

obtained. All attempts to selectively oxidize the furan, for example with chloramine B, 

were unsuccessful. Therefore, no further derivatives were made for this compound 

class.  

Substances 137 and 142 were subsequently hydrogenated into scaffold C. The first 

attempts to obtain this scaffold by treating the substrate with 10% Pd/C in methanol 

under hydrogen atmosphere were unsuccessful, which was most probably due to 

inactivation of the catalyst. It was found that prestirring the mixture with activated coal, 

followed by filtration and addition of the catalyst, was necessary in order to get full 

conversion. By this procedure, 140 and 143 could be obtained in moderate yields after 

removal of the catalyst by filtration. 
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Table 8.2: Synthesis of a library of furfurylamines 

 A B C 
Reagents and Conditions: (a1) 6-caprolactone, (a2) R

1
Cl, Et3N, DCM, (a3) R

1
OH, EDC, DMAP, NaHCO3, 

DCM, (b) Br2, MeOH, Et2O, (c) Pd/C, H2 (g), MeOH 

entry compound scaffold R1 method yield IC50 [µM] 

1 139 A  a1 98% >100 

2 137 B  b 77% 15±2 

3 140 C  c 74% >100 

4 141 A  a2 83% >100 

5 142 B  b 58% >100 

6 143 C  c 75% >100 

7 144 A 
 

a3 91% 19±1 

8 145 B 
 

b - nd 

 

The set of compounds was tested in the fluorescent RabGGTase assay1. As can be 

derived from Table 8.2, besides 137, only one additional low µM inhibitor was found: 

144 inhibited RabGGTase at an IC50 of 19 µM. Unfortunately, no hints toward more 

active furfurylamine inhibitors could be extracted from this series. It seems that the 

terminal alcohol together with the reactive 2,5-dimethoxy-dihydrofuran scaffold is 

necessary in order to obtain some activity but the mechanism behind this activity 

remains unclear. Since 144 is loosely based on the GGPP substrate, it could be 

speculated that this compound inhibits competitively with respect to the substrate. 

Attempts to co-crystallize these inhibitors with RabGGTase in order to obtain insights in 

the binding mode of these compounds were unsuccessful.  

The disappointing activity results, together with the unsuccessful crystallization 

attempts and acid lability of this compound class, let to the decision to not further 

investigate the furfurylamine derivatives as potential RabGGTase inhibitors.  

  

                                                

 

1
At this point of the project, the radioactive assay had not been established yet 



 

E
v
a

lu
a
ti
o

n
 o

f 
b

e
n

z
o
x
a

z
o
lo

n
e

 b
a

s
e

d
 R

a
b
G

G
T

a
s
e

 i
n

h
ib

it
o

rs
 

116 

 

 

§ 8.3 Evaluation of benzoxazolone based RabGGTase inhibitors  

 

Next, we wanted to evaluate the potential of the benzoxazolone based scaffold as 

RabGGTase inhibitor. In order to check the integrity of the assay results the initial hit 

was resynthesized (Table 8.3) 

 

Table 8.3: Synthesis of the oxazole inhibitor  

 146 147 148 138 

Reagents and Conditions: (a) NaH, methylbromoacetate, THF, 95% (b) SO3HCl (c) benzylamine, pyridine, 

DCM (98%, 2 steps), (d) HCl (c), dioxane Δ, (e) 4-ethylaniline, EDC, DCM (75%, 2 steps) 

 

Unsubstituted benzoxazolone 146 was treated with methylbromoacetate followed by 

the introduction of the sulfonylchloride with chlorosulfonic acid to furnish intermediate 

147 according to a procedure in patent literature[199]. The sulfonamide functionality was 

obtained upon reaction with benzylamine in the presence of pyridine as a base. 

Hydrolysis of the ester then gave 148. The final transformation involved the introduction 

of 4-ethylaniline employing standard coupling conditions. All steps were very high 

yielding and let to 138 in 70% overall yield.  

The fresh batch was rescreened in the NBD-FPP assay and was found to inhibit 

RabGGTase with an IC50 of 18 µM. Co-crystallization attempts of 138 with RabGGTase 

were unsuccessful. As a counter screen, the compound was tested at the recently 

established radioactive substrate based assay established at the LDC. In the 

radioactive assay, no inhibitory activity could be determined for this substrate. Since 

the radioactive assay correlates better with potential cellular activity, no additional 

library was made around this compound class. Most probably, the initial activity found 

for this compound class could be related to the artificial NBD-FPP assay system. 

 

§ 8.4 Evaluation of fluorescent NBD-FPP assay 

 

Whereas the NBD-FPP assay has been rather useful as an aid in the development of 

our THB-based inhibitors as well as in the reported peptide based inhibitors (peptides 

and peptide analogs § 1.7.1), in the high-throughput screen it resulted, besides the 
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identification of psoromic acid, mainly in false positives. In addition, there is no clear 

correlation between the NBD-FPP assay and cellular prenylation. These discrepancies 

are mainly related to the use of a fluorescent substrate instead of natural analog 

GGPP. In order to identify extra RabGGTase inhibitor hits, a HTS employing the newly 

established [3H]-GGPP assay has successfully been carried out at the LDC.  

In general, assay artifacts should be considered once employing a non-natural 

substrate. Although inhibitors can be successfully identified, a counterscreen is 

recommended in order to discard false positives before starting optimization rounds.  
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Chapter 9: De novo design of RabGGTase inhibitors  

 

The solved crystal-structure of BMS3 in complex with RabGGTase was a great 

opportunity to explore exit vectors around this THB structure and successfully led to 

low nanomolar selective inhibitors of RabGGTase. However, the possession of such a 

crystal structure also opens up possibilities to design structurally new inhibitors. In this 

chapter, the first attempts toward new RabGGTase inhibitor scaffolds will be discussed.  

 

§ 9.1 Back to the FTase inhibitors 

 

Besides BMS3 there are many more FTIs known. Although these inhibitors have all 

been checked for cross inhibition with closely related GGTase I, none of these 

inhibitors have been tested against RabGGTase. The co-crystal structure analyses 

indicate that both for FTase and RabGGTase, interaction with the zinc ion and π-

stacking with the nearby aromatic residues (Tyr361 and Phe289, respectively) are 

essential for binding. The FTIs listed in Scheme 9.1 all possess these common two 

structural features necessary for binding: an imidazole to coordinate to the zinc and an 

aromatic group to establish van der Waals interactions with the aromatic residues.  

 BMS3 (23) L-778,123 (4) ABT-33 (149) 

IC50 FTase = 1.7 nM 

IC50 GGTase I > 10 µM 

IC50 FTase = 2nM 

IC50 GGTase I = 98 nM 

IC50 FTase = 1.2nM 

IC50 GGTase I = 3.5 µM 

Scheme 9.1: BMS3, L-778,123 and ABT are all FTase inhibitors with an imidazole. 

 

Therefore, it was envisioned that L-778,123 and ABT-33[200, 201] could be potential 

RabGGTase inhibitors as well. L-778,123 and ABT-33 (Scheme 9.2) were synthesized 

according to literature procedures and were evaluated in the radioactive RabGGTase 

assay. It was found that ABT-33 indeed was a potent inhibitor of RabGGTase as well, 

whereas L-778,123 showed no inhibition of RabGGTase activity.  
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Synthesis of ABT-FTase inhibitor 

 150 151 152 153 

 154 155 156 157 

 153 157 149 

Reagents and Conditions: (a) K2CO3, neat (b) tBuOK, toluene (95%, 2 steps) (c) Tf2O, pyridine, DCM, 15% 

(d) 1-naphtylboronic acid, K3PO4, Pd(PPh3)4, dioxane, Δ, 53%, (e) 1-chloroethylchloroformate, DCE, 

MeOH, Δ, 53%, (f) NaOAc, NaBH3(CN), MeOH, 81%, (g) i. paraformaldehyde, NaBH3(CN), MeOH, ii. 

LiOH, THF, 56%, (h) HATU, DIPEA, DMF, 32%. 

Scheme 9.2: Synthesis of FTase inhibitor ABT-33 (149). 

 

The co-crystal structure of ABT-33 in complex with RabGGTase could be solved. The 

imidazole was indeed binding to the zinc, whereas the benzyl ring was π-stacking with 

Phe289. Furthermore, the naphthalene moiety was T-stacking with Trp244. The 

additional nitrile showed a hydrogen bond interaction with Arg144. In contrast to BMS3, 

ABT-33 adapts a different orientation in FTase and RabGGTase. For FTase, besides 

the common imidazole-zinc and π-stacking features, an additional hydrogen bond 

interaction is formed between the nitrile and Tyr93. Further interaction is assured by T-

stacking of the naphthalene moiety with Trp102. 

Interestingly, an overlay of the crystal structures of BMS3 with ABT-33 showed the 

hypothesized common binding features: the aromatic group and imidazole. Therefore, 

it seems that FTase and RabGGTase have a privileged scaffold in common (Figure 

9.1).  
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Figure 9.1: a) Co-crystal structure of ABT-33 (149) in RabGGTase, b) Co-crystal structure of 

ABT (149) in FTase, c) Overlay of BMS3, ABT-33 and 93 shows a similar binding mode in 

RabGGTase, leading to a privileged scaffold. 

 

In order to investigate which interactions are necessary for RabGGTase and/or FTase 

activity, some of the intermediates of the synthesis were screened as well. In addition, 

157 was coupled to benzylamine (Scheme 9.3) in order to evaluate the importance of 

the naphthalene part of the inhibitor for RabGGTase inhibition. 

 

 

 

 

 

 

 157 158 

Reagents and Conditions: (a) benzylamine, HATU, DIPEA, DMF. 

Scheme 9.3: Synthesis of analog 158. 
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Table 9.1: Biological evaluation of ABT, building blocks and analogs 

Entry Substance RabGGTase FTase GGTase I 

1 156 >10 000 9,395±6,205 >30 000 

2 157 >10 000 nd >30 000  

3 ABT-33(149) 10.5±0.5 <5
§
 >30 000 

4 158 9,272±729 2,605±176 >30 000 

§
lower detection limit, nd=not determined 

 

From Table 9.1 it is clear that the privileged core scaffold alone, represented by 

building blocks 156 & 157, is not sufficient to provide RabGGTase inhibition. The 

introduction of an additional benzyl (158) gives a weakly active dual 

FTase/RabGGTase inhibitor. However, extra interactions, like realized with the 

naphthalene moiety in ABT-33, seem necessary to obtain potent inhibitors. 

 

§ 9.2 General strategy to identify prenyl transferase inhibitors 

 

The common privileged scaffold of FTase and RabGGTase inhibitors presented a 

potential access to dual and/or selective inhibitors. Although the privileged scaffold 

itself was not sufficient to obtain activity, it was envisioned that the introduction of a 

proper extra group could lead to new inhibitors. The generation of a library around this 

scaffold thus, would present an opportunity to find new FTase and RabGGTase 

inhibitors, either dual or selective (e.g. 159a-c). The generation of an intermediate such 

as 160, would give access to several heterocyclic core structures with „inhibitor 

potential‟. It was envisioned that  160 was available by a Mitsunobu reaction between 

161 and 5-hydroxymethyl-1-methyl-1H-imidazole (162), or by alkylation of 161 with 5-

(chloromethyl)-1-methyl-1H-imidazole (163). 
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Scheme 9.4: Retrosynthesis of quickly accessible predicted inhibitors. Im=imidazoylmethyl 

 

Isatoic anhydrides, such as 161, are valuable building blocks in heterocyclic chemistry, 

due to their reactivity toward both electrophiles and nucleophiles[202, 203]. Since 161 is 

not commercially available, a synthetic route was established to obtain the isatoic 

anhydride. The synthesis is outlined in Scheme 9.5. First, 4-aminobenzonitrile 164 was 

selectively brominated with NBS in DMF and subsequently protected with Boc 

anhydride to give intermediate 165. The halogen-lithium exchange with n-BuLi resulted 

in a rearrangement of the Boc substituent into intermediate 166 in analogy with the 

literature[204]. The Boc and tBu were deprotected in one step by addition of 20 equiv. of 

TFA in DCM. First attempts to obtain 161 by treatment of 166 with triphosgene failed 

and only gave recovered starting material, probably due to unsuitable workup 

conditions.  

 

 164 165 166 161 

Reagents and Conditions: (a) NBS, DMF, 99%, (b) Boc2O, DMAP, THF, Δ, (c) n-BuLi in hexane, THF, -

78°C, 82%, (d) TFA, DCM, 99%, (e) triphosgene, THF, Δ, failed.  

Scheme 9.5: Synthesis of 5-cyano-isatoic anhydride. 

 

Parallel to the development of a synthetic route towards 161, the introduction of the 

imidazole on commercially available 5-bromo isatoic anhydride was investigated. First, 

5-hydroxymethyl-1-methyl-1H-imidazole (162) was synthesized using a modified 

 

 

 

 159a X=OH  (162) 

 X=Cl  (163) 

 

 

 

 159b   160 161 

 

 

 

 159c 
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Rapoport‟s procedure (Scheme 9.6)[205]. 162 was then converted to 5-(chloromethyl)-1-

methyl-1H-imidazole (163) by treatment with thionyl chloride in DMF. Then, several 

reactions conditions were screened to obtain compound 169 (Table 9.2). 

 

 167 168 162 163 

Reagents & Conditions: (a) KNCS, MeNH2*HCl, AcOH, MeCN/H2O Δ, (b) H2O2, AcOH/H2O, 75% (2 steps) 

(c) SOCl2, DMF, 99%.  

Scheme 9.6: Synthesis of hydroxymethyl- and chloromethyl -1-methyl-1H-imidazole. 

 

Table 9.2: Conditions toward privileged building block 169. 

 

 

 

 

 71 169 170 

entry reactant reagents solvent temperature 169 170 

a 162 DIAD, PPh3 THF 0°C → rt complex mixture 

b 163 K2CO3 DMF 0°C → rt 25 40 

c 163 NaH DMF 0°C → rt 30 50 

d 163 Et3N, KI DMF 60°C 5 60 

 

Employing typical Mitsunobu conditions, in analogy to patent literature[206] resulted in a 

complex mixture of products (entry a). Analysis of the product mixture showed mainly 

anthranilic acid products like 170 and addition products with DIAD. In order to prevent 

addition of DIAD, reversed addition of reagents was investigated but was unsuccessful 

as well. Therefore, different alkylation conditions with reactant 163 were examined. 

Prestirring isatoic anhydride 71 with base (either K2CO3 or NaH, entries b and c) for 1 

h, followed by slow addition of 163 showed the most promising results, but nonetheless 

resulted in low yields of 169. In all cases a mixture of 169, 170 and unreacted starting 

material were observed, which were difficult to separate using column chromatography, 

partially due to their low solubility in organic solvents. Therefore, other strategies will 

have to be considered.  
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§ 9.3 First example of successful  scaffold hopping 

 

Due to the difficulties in the synthesis of privileged building blocks  160 and 169 and 

time constraints in the project, it was decided to investigate another approach to obtain 

molecules with  159a as core scaffold. The retrosynthesis is depicted in Scheme 9.7 

Scheme 9.7: Retrosynthesis II of  159a 

 

The synthesis starts again with 5-bromo isatoic anhydride 71, which is allowed to react 

with aqueous ammonia to give 2-amino-5-bromobenzamide (172) as a precipitate 

(Scheme 9.8)[207]. This precipitate is then subjected to reductive amination conditions 

suited for electro-deficient arylamines[208] with N-methylimidazole-5-carboxaldehyde 

(76) to obtain substrate 171a. The bromide was then converted to a nitrile under 

Rosenmund-von Braun conditions in 22% to obtain 171b. The low yield was mainly 

caused due to degradation and loss of product into the water layer promoted by NMP. 

171a and 171b were subjected to condensation with substituted aldehydes in order to 

obtain a small library of dihydroquinazolinones (173). 

 

 

 

 

  

 71 R1=Br  (171a) R1=Br (173a) 

 R1=CN (171b) R1=CN (173b) 

Reagents and Conditions: (a) NH4OH (b) N-methylimidazole 5-carboxaldehyde 76, TFA, NaBH(OAc)3, 

THF (73%, 2 steps), (c) CuCN, NMP, Δ, 22% (d) R
2
CHO, HCl(c), EtOH (69-72%). 

Scheme 9.8: Synthesis of potential RabGGTase inhibitors 

 

A small set of compounds was synthesized following the route outlined in Scheme 9.8 

and screened for RabGGTase and FTase activity. The results are summarized in Table 

9.3. 

  

 

 

 

  159a 171 172 71 
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Table 9.3: Biological evaluation of a small set of dihydroquinazolinones.  

Entry Substance R1 R2 

In vitro IC50 [nM] 

RabGGTase FTase GGTase I 

1 171a Br - >10000 9703 >99 500 

2 174 Br 
 

>10000 683
#
 4399±2784 

5 175 CN 
 

731±143 52.4±11.4 >99 500 

 

Although only a few substances have been synthesized, Table 9.3 clearly shows the 

potential of the privileged scaffold for prenyl transferase inhibitors. Interestingly, 

compound 174 appears to be a weak dual inhibitor of FTase and GGTase I, whereas 

the simple building block 171a displays weak inhibition against FTase. Substance 175 

shows even nanomolar inhibitory activity against both FTase and RabGGTase.  

 

§ 9.4 Scaffold Hopping Future Prospective 

 

The small set of inhibitors presented in Table 9.3 shows the potential of scaffolds 

containing the 5-anilinomethyl-imidazole core structure. Rather unexpected, a low µM 

GGTase I inhibitor was identified among this set of inhibitors. Since a GGTase I 

inhibitor would also profit from the imidazole zinc binding, this inhibitor class is 

apparently also available via this privileged core scaffold. Therefore, it would be 

worthwhile to investigate more into the general route toward different scaffolds via 

isatoic anhydride. Since the introduction of the cyanide function was problematic, one 

could imagine introducing other groups, such as furan nitrile by Suzuki coupling 

reactions, which is known to give RabGGTase and FTase inhibitory activity as well. An 

alternative construction of the general building block is presented in Scheme 9.9. 

 

 

  159 

 

 176 177 169 

Scheme 9.9: Different synthetic strategies toward building block 169. 

 

Intermediate 177 can be obtained by a reductive amination with methyl 2-amino-5-

bromobenzoate (176) and N-methylimidazole-5-carboxaldehyde (76), in analogy with 

the reaction in Scheme 9.8. After saponification of the ester, the free acid could be 

treated with triphosgene to obtain 169, which would give access to many different 
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heterocyclic and open scaffolds, privileged to inhibit any of the prenyltransferases. 

Subsequent transition-metal catalyzed coupling to the aryl bromide would give access 

to many more potential selective prenyl transferase inhibitors. In order to prevent many 

purification steps, the synthesis can also be carried out on solid phase. The imidazole 

could be coupled to a trityl-resin and cleaved after generation of the final products. 

Altogether, this process could lead to a fast generation of various prenyl transferase 

inhibitors.  
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Chapter 10: Concluding Remarks 

Several approaches to obtain selective inhibitors of RabGGTase have been described 

in this thesis; structure based design, in vitro screening and de novo design. These 

approaches, besides their starting points, all follow the same design cycle. The 

development of active compounds has often been described as an iterative cycle of 

design, synthesis, screening, structure-activity-relationship (with or without structural 

information of the target) followed by the next step of design. Following these steps 

carefully, many successes can be reached within the optimization and tuning of activity 

and selectivity. Interestingly, depending on the starting point or approach, different 

insights could be obtained.  

 

 

Structure-based drug design is a powerful tool to identify new possibilities to tune 

potency and selectivity. By using the co-crystal structures of BMS3, the dual inhibitor, 

in both FTase and RabGGTase, it was possible to identify many exit vectors to 

increase selectivity for RabGGTase. Substituents that were meant to increase 

selectivity were identified by virtual screening. However, as clear from Chapter 4 even 

virtual screening needs careful optimization. The first set of compounds generated and 

synthesized did not show the expected activity and often were not active at all against 

RabGGTase. In contrast, FTase was more „adaptive‟ than expected toward changes of 

the ligands. Additional crystallization of some of these dual inhibitors gave interesting 

insights. It seemed that RabGGTase requires an exact π-binding with the THB core 

and the tyrosine in order to establish activity, therefore rigid modifications were not 

allowed. Interestingly, FTase showed an adjustment in its active site in order to allow 

the larger ligands to bind. Its bulky Trp102 flipped around by 90 degrees, opening up a 

larger pocket. Since this tryptophan is known to be responsible for the substrate 

selectivity[197] and GGPP is known to be an inhibitor of FTase[54] it could be speculated 

 

 

Dual Inhibitor Approach 

 

De novo Approach 



 

 

130 

 

that GGPP induces a similar shift of this tryptophan. This shift, then, would allow GGPP 

to bind, but renders the enzyme inactive toward its substrates.  

The observations from the co-crystal structures have been taken into account in the 

next cycle of design. An extra binding constraint was set in order to fix the core of the 

ligand in the RabGGTase binding site. It was clear that varying one position of the 

ligand was not sufficient in order to obtain selectivity so it was necessary to additionally 

identify groups which targeted the TAG tunnel. By introducing heteroaromatic five or 

six-membered rings, some groups could be identified that successfully targeted the 

TAG tunnel. The principle was shown by the introduction of a furan moiety. 

Crystallization studies showed that this group was oriented to the TAG tunnel as 

designed. In FTase though, the furan pointed away from the surface into the exit 

groove therefore this group was not sufficient to assure complete selectivity. The 

combination of the furan with a benzylcarbamate showed the potential of combining 

those two exit vectors in order to obtain a selective inhibitor which was also 

successfully co-crystallized with RabGGTase (Figure 10.1).  

 

 

Figure 10.1: From dual inhibitor BMS3 to a selective RabGGTase inhibitor.  

 

The parallel development of other RabGGTase assays rendered new challenges. 

Different assay systems were shown to give different trends, which seemed to be a 

consequence of the prenyldonor (GGPP or NBD-FPP). Therefore, the design needed 

to be reconsidered once more. It was hypothesized that different binding modes within 

one compound class could result in different types of binding respective to the 

prenylpyrophosphate; competitive, non-competitive or even cooperative. Since GGPP 

binds with a very high affinity to RabGGTase, it was speculated that non-competitive or 

cooperative compounds would be superior in activity to competitive compounds. This 

meant that selectivity should be obtained from the lipid binding site, without reaching 

the GGPP pocket. In order to obtain promising candidates, an additional virtual 

screening was carried out with GGPP in the binding site. It could be shown that the 

introduction of aromatic groups such as pyridine, indeed resulted in highly active in 

BMS3 126 
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vitro RabGGTase inhibitors. However, no selectivity against FTase was gained. In 

order to verify the binding mode hypothesis, it will be interesting to have the binding 

mode of these compounds determined, both by competition experiments with GGPP 

and NBD-FPP and to have some of these compounds co-crystallized with RabGGTase 

in complex with GGPP.  

Attempts to discover new RabGGTase inhibitors using our fluorometric NBD-FPP 

assay resulted mainly in false positives, which clearly showed the need for evaluation 

of hit compounds in a counter assay. Else, such an inhibitor development process 

could end up in a negative spiral leading to an inactive compound class, based on an 

artificial assay system.  

The initial results of the de novo design shows the potential for a structure based 

development program to quickly obtain prenyl transferase inhibitors and more efforts 

on the synthesis of such inhibitors together with crystallization studies could certainly 

lead to new interesting FTase-, GGTase I- or RabGGTase inhibitors. Furthermore, the 

identification of the „PTase privileged scaffold‟ also uncovered ABT-33 as a 

RabGGTase inhibitor. 

These results also indicate that RabGGTase-THB co-crystal structures might be a 

valuable starting point for more extensive structure-based design of selective 

RabGGTase inhibitors, for example using computational methods such as 

growing/linking approaches or de novo design. It would especially be interesting to 

grow the inhibitors within the TAG tunnel, in order to find new anchor points for 

selective RabGGTase inhibitor design. Furthermore, several other interaction partners 

that were not approachable by the THB scaffold could be explored using such an 

approach. In addition, it would be interesting to use the RabGGTase crystal construct 

for fragment based screening. Such an approach potentially lead to new molecular 

interaction partners and would give a deeper understanding of potential binders.  

 

Finally, the low nM THB inhibitors were tested in cells; they were screened for cellular 

reprenylation and for inhibition of proliferation of several cancer cell lines. Interestingly, 

the IC50 values for prenylation of RabGGTase correlated generally with the proliferation 

data for the cancer cell lines. It could also be shown that the selective RabGGTase 

inhibitor 126 successfully inhibited proliferation of cancer cells as potently as dual 

inhibitor BMS3. Combined, these results indicate that RabGGTase should be regarded 

as a relevant target for anti-cancer therapy. However, before additional conclusions 

about the therapeutic role of RabGGTase can be drawn, more studies will be 

necessary to study the effect of RabGGTase inhibition in vivo. It would be interesting to 
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know if these inhibitors really show an apoptotic effect, in addition to the viability 

studies conducted in the cancer cell lines.  

Besides their therapeutic relevance, the selective RabGGTase inhibitors described 

here represent valuable tools to study the effect of Rab GTPase in vesicular trafficking 

and in cancer from a chemical biology perspective.  
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Experimental Section 

 

§ 10.1 Virtual screening procedure for RabGGTase and FTase 

 

§ 10.1.1 General procedure for virtual screening  

The virtual library was prepared by decoration of the 

tetrahydrobenzodiazepine (THB) core with 62 different R1 and 

62 different R2 groups (62 x 62, see supplementary data). The 

library was prepared in Pipeline Pilot, the structures were 

assembled and stereoisomers and tautomers were 

enumerated. This database was minimized in MOE (version 

2009.10)[179] using database minimize, with MMFF94x 

forcefield and an RMS gradient of 0.1. The crystal structures of 

RabGGTase and FTase were prepared for docking by removal 

of the BMS3 inhibitor and the prenylpyrophosphates, followed by the addition of 

hydrogens using the Protonate3D function in MOE. Ligands were docked into the 

proteins using GOLD (version 4.1.1)[180, 181]. Since the imidazole is known to bind to the 

zinc atom, we set a binding constraint by defining an imidazole substructure with 

defined distance to the zinc atom (min 1.5 Å, max 3.5 Å, spring constant = 5). Further, 

the binding site was defined by a sphere of radius 15 Å around the 

phenylalanine/tyrosine residue. The ChemScore scoring function was used in 

combination with most accurate automatic genetic algorithm settings (autoscale = 1). 

Ten solutions were generated for all inhibitors. The scores for RabGGTase and FTase 

were compared for each inhibitor, assuming that an inhibitor with a high score for 

RabGGTase and a low score for FTase would be most selective. The compounds that 

satisfied these conditions and showed a preserved binding mode in RabGGTase were 

further evaluated for their synthetic feasibility and synthesized.  
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§ 10.1.2 Specif ic binding constraints in RabGGTase VHS:  

1st virtual screening: imidazole-zinc constraint, no GGPP 

constraint substructure protein 9654 imidazole.mol2 4 3.5 1.5 5.0 

 

2nd virtual screening: imidazole-zinc constraint &THB-tyrosine constraint, no GGPP 

constraint distance protein 9259 ligand 4 4.5800 4.3800 5.0000 on 

constraint distance protein 9914 ligand 34 2.1800 1.9800 5.0000 on 

 

3rd virtual screening: imidazole-zinc constraint & THB-tyrosine constraint, with GGPP 

constraint distance protein 9259 ligand 4 4.5800 4.3800 5.0000 on 

constraint distance protein 9914 ligand 34 2.1800 1.9800 5.0000 on 
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§ 10.2 Assay procedures 

 

§ 10.2.1 Solut ion based f luorometric biochemical RabGGTase assay 

procedure for IC 50  determinat ion of THBs.  

All IC50 values were measured using black 96-well plates under the following 

conditions: 37 °C, buffer: 50 mM Hepes, pH 7.4, 50 mM NaCl, 2 mM MgCl2, 2 mM DTE 

(added freshly), 20 µM GDP (added freshly), 0.01% Triton X-100. Final concentrations: 

2 µM Rab, 2 µM REP, 50 nM RabGGTase, 2 µM NBD-FPP 1. 50 µM THB (from a 10 

mM solution in DMSO). For the 100% activity control, instead of THB solution, 0.5% of 

DMSO was added. A 0% activity control for the correction for bleaching of fluorescence 

was measured. The 0% activity control wells contained 100 nM RabGGTase and 1.5 

µM NBD-FPP. In every screening session the IC50 of BMS3 was measured as a 

reference. After mixing of the fluorescent substrate, the enzyme and the THB solutions 

(or DMSO), the reaction mixtures were incubated for 5 minutes at 37 °C. Then, the 

protein substrates (Rab7 and REP1) were added and fluorescence intensity was 

recorded for 30 minutes at intervals of 14 seconds (λex = 479 nm, λem = 520 nm). Data 

were evaluated using Microsoft Excel. The fluorescence intensity on individual time 

points was normalised with respect to the 0% activity control and reaction rates were 

determined from the linear parts of the progress curve. Concentration dependent 

inhibition of RabGGTase was measured using different concentrations of inhibitors 

resulting from two-fold dilution series. Reaction progress at every concentration of 

inhibitor was measured in triplicates. IC50 values were calculated using 4-parameter log 

fits using XL Fit curve fitting software for Excel using the following equation: 

 

where y is the remaining enzyme activity (in %) and x is the corresponding 

concentration. The fitted IC50 parameter is the relative IC50, and is defined as the 

concentration giving a response half way between the fitted top (B) and bottom (A) of 

the curve. (measured at the MPI and at the LDC) 

 

§ 10.2.2 Solut ion-based f luorometric FTase assay.  

Inhibition of FTase was measured according to procedures described by Pompliano et 

al.[175, 176], mainly measured at the LDC. 
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§ 10.2.3 Solut ion-based f luorometric GGTase I assay.  

Inhibition of GGTase I was measured according to the procedure described by 

Goossens et al. [177],measured at the LDC. 

 

§ 10.2.4 Cell culture 

HCT 116 (DSMZ) cells were maintained in McCoy's 5a medium with 1.5 mM glutamine 

+ 10% FCS, A2780 (ECACC) and HeLa (DSMZ) cells in RPMI1640 medium with 1.5 

mM glutamine + 10% FCS. PBMC cells were freshly isolated from buffy coats (DRK 

Hagen, Germany) and seeded in RPMI medium with 1.5 mM glutamine + 10 % FCS. 

 

§ 10.2.5 Reprenylat ion assay  

Cells: HeLa; Medium: RPMI1640, 10% FCS, 1% glutamine; Plates: 96 well, sterile 

Protocol: The HeLa cells were trypsinized and counted. Then 1.2 x 104 cells per well 

were seeded in 100 µL medium and incubated at 37°C/5%CO2 for 24 h. The 

compounds were added to the cells (2 wells for each concentration), followed by the 

addition of BMS3 at a final concentration of 1 µM as positive control. After incubation 

for 6 h at 37°C/5%CO2, the medium was removed and the cells were washed with cold 

PBS (2x). Then the prenylation buffer (20 µL/well) was added [50 mM HEPES (NaOH 

pH 7.2), 50 mM, 2 mM MgCl2, 0.5% NP-40, 0.7 mM DTT, 50 µM GDP, Roche Protease 

Inhibitor Cocktail, 0.4 µM RabGGTase 0.4 µM REP1, 2 µM biotin-GPP] and shaken 

(320 rpm) at room temperature for 1h, after which the lysates were frozen overnight. 

The lysates were thawed, and 10 µL of each lysate were placed in a 96 well plate and 

mixed with 10 µL gel loading buffer [5 µL E-page loading-buffer (EPBUF01; Invitrogen), 

2 µL NU-page sample reducing agent (NP0009; Invitrogen), 3 µL H2O)]. The plate was 

sealed and heated at 75°C for 10 minutes and spun at 3800 rpm for 10 min. An E-Page 

gel (EP09606; Invitrogen) was prepared and placed in the Mother E-Base gel running 

device (EBM03EU; Invitrogen). The gel was loaded with 10 µl of the prepared samples 

and protein standards were added at designated positions. The gel was run in EP-

mode for 15 min. Then the gel was washed in A.dest and gel pieces were removed 

from the pockets. The gel was transferred to PVDF-membrane stacks (IB401001; 

Invitrogen) and a gel-sandwich was prepared according to manufactures instructions. 

The blot was runned on the IBlot gel transfer device (IB1001EU; Invitrogen) for 7 min 

and allowed to dry for 1h. The membrane was then incubated in MeOH for 2 min and 

washed with A.dest and blocked with Odyssey Blocking-Buffer (927-40000;LI-COR) for 

1h. This was incubated with monoclonal anti α-tubulin (T5168; Sigma) 1:3000 in 

Odyssey Blocking Buffer at 4°C overnight. The membrane was washed 3x with PBS-T 

for 5 min and incubated with goat αmouse IR800 (926-32210) 1:10,000 and 
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streptavidin IR680 (926-32231; LI-COR9) 1:2000 in Odyssey Blocking Buffer for 1h. 

The membrane was washed 3x with PBS-T for 5 min, once with PBS and analyzed 

employing Odyssey Infrared Imaging System. The signals obtained from the positive 

controls were set as 100 % RabGGTase inhibition and rel. IC50´s were calculated 

accordingly employing algorithm 205 by XLfit software (ID Business Solutions Ltd). [We 

choose 1 µM BMS 3 as 100 % determinant because we observed a saturated 

reprenylation signal at this concentration]. Measured at the LDC. 

 

§ 10.2.6 Alamar Blue Assay 

Cells were trypsinized and seeded in 100 µl/well with the appropriate cell culture 

medium in µclear 96well-Plates (Greiner) at the following densities: HCT116 cells at 

2x103 cells/well, A2780 cells at 3x103 cells/well, HeLa cells at 2x103 cells/well and 

PBMC at 2x105 cells/well. After incubation at 37°C/5%CO2 for 24 h compounds or 

DMSO as negative control diluted in 100 µl of the appropriate medium were added. 

Plates were further incubated at 37°C/5%CO2 in boxes with wet paper to get a humid 

environment and avoid loss of cell culture medium for 72 h. Then 100 µl of medium 

was removed from each well and 10 µl of Alamar Blue reagent (Invitrogen) was added 

followed by further incubation at 37°C/5%CO2 for 3h. Subsequently fluorescence was 

measured at an excitation wavelength of 530 nm and an emission wavelength of 595 

nm in each well employing a Victor plate reader (Perkin Elmer). The fluorescence 

signals of DMSO treated cells were set as 100% viability and IC50´s of compound 

treated cells were calculated accordingly employing algorithm 205 by XLfit software (ID 

Business Solutions Ltd). Measured at the LDC 
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§ 10.3 Synthetic procedures 

§ 10.3.1 General Information  

All reactions were carried out under an inert atmosphere of argon. Standard syringe 

techniques were applied for transfer of air sensitive reagents and dry solvents. 

Microwave-assisted reactions were performed in a Discover (CEM Corporation) single-

mode microwave instrument producing controlled irradiation at 2450 MHz, using 

standard sealed microwave glass vials. Reaction temperatures were monitored with an 

IR sensor on the outside wall of the reaction vials. Reaction times refer to hold times at 

the indicated temperatures, not to total irradiation times. 1H and 13C nuclear magnetic 

resonance (NMR) spectra were recorded on a Varian Mercury 400 or a Bruker DRX 

500, with chemical shifts ( ) reported in ppm relative to the solvent residual signals of 

CDCl3 ( H = 7.26 ppm, C = 77.16 ppm), MeOD ( H = 3.31 ppm, C = 49.0 ppm) DMSO-

d6 ( H = 2.50 ppm, C = 39.5 ppm) or acetone-d6 ( H = 2.05 ppm, C = 29.8 ppm) and 

coupling constants reported in Hz. Peak assignment was also done with the aid of 

gCOSY, gHSQC and gHMBC measurements. High resolution mass spectra (HR-MS, 

70 eV) were measured on a Thermo Orbitrap coupled to Thermo Accela HPLC 

machine using electron spray ionization technique (ESI). Analytical HPLC-MS data 

were recorded on an Agilent HPLC (1100 series) coupled to a Finnigan LCQ ESI 

spectrometer, using a CC 125/4 Nucleodur C4 Gravity 3 µM column. The standard 

gradient began at 10% acetonitrile and was raised to 90% over 15 min. After 3 min at 

90% acetonitrile, the column was washed for 5 min with 100% acetonitrile. The column 

was then equilibrated for 3 min with 10% acetonitrile. TFA (0.1% v/v) was added to the 

HPLC solvents. Chromatographic purification refers to flash chromatography using the 

indicated solvent (mixture) and Merck silica gel 60. For biochemical and biological 

testing, compounds were optionally purified by preparative HPLC-MS using an Agilent 

HPLC (1100 series) and a VP 125/21 NUCLEODUR C4 Gravity, 5 µm column until 

they were >98% pure. Compounds on TLC were visualized by UV detection or KMnO4 

staining. DCM was dried and distilled from CaH2 prior to use. Other commercially 

available reagents and dry solvents were used as purchased. FTase inhibitors BMS3 

(23), BMS-214662 (3)[17, 191, 192] and ABT (149)[200, 201, 209] and fluorescent analog NBD-

FPP (27)[66, 182, 183] as well as starting material 147[199] and 163 were synthesized 

according to literature procedure. Compounds 23, 87, 88, 90, 94, 96-103 and 115-118 

were synthesized by Dr. Robin Bon; the synthesis is included here for completion.   
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§ 10.3.2 Synthesis of Tool compounds  

 

(2E)-2-methyl-4-(oxan-2-yloxy)but-2-enal (52) 

To a solution of dimethylallyl alcohol (5 g, 58 mmol) in DCM 

was added DHP (7.3 g, 87 mmol) and PPTS (1.5 g, 5.8 mmol) 

and the mixture was stirred overnight at room temperature 

and poured onto Et2O. The organic phase was washed with brine, dried over MgSO4 

and concentrated in vacuo to obtain THP protected dimethylallyl alcohol 50.  

70% tBuOOH (12 mL, 88 mmol) was diluted with 3 volumes DCM, saturated with 

MgSO4 and filtered. The filtrate was dried once more over MgSO4 and filtered again. To 

the filtrate, 50 (3 g, 18 mmol) was added, followed by the addition of SeO2 (195 mg, 1.8 

mmol) and tetrazole (4 mL of 0.45 M solution in MeCN, 1.8 mmol). The mixture was 

stirred overnight at room temperature and coevaporated three times with toluene. The 

residue was taken up in Et2O, the organic phase washed with NaHCO3 and dried over 

MgSO4 to give a 2 : 1 mixture of alcohol and aldehyde. Flash chromatography yielded 

178 (1.6 g, 49%) and 52 (1 g, 28%). 

A fraction of unpurified mixture (20 mg, 0.11 mmol) in DCM was added to a stirred 

solution of Na2CO3 (80 mg, 0.75 mmol) and MnO2 (93 mg, 1 mmol) and stirred 

overnight. Et2O was added, the mixture filtered through a plug of silica gel to give 

52(77% over all steps).1H NMR(400 MHz, CDCl3) δ = 9.45 (s, 1H, H-11), 6.62-6.58 (m, 

1H, H-9), 4.69-4.66 (m, 1H, H-4), 4.60 – 4.53 (m, 1H, H-8), 4.39 – 4.30 (m, 1H, H-8), 

3.91 – 3.83 (m, 1H, H-2), 3.61 – 3.49 (m, 1H, H-2), 1.89 – 1.47 (m, 6H, H-1, 5, 6), 1.76 

(s, 3H, H-12). 
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[(2E)-2-methyl-4-(oxan-2-yloxy)but-2-en-1-yl](prop-2-en-1-yl)amine (53) 

To a solution of aldehyde 52 (500 mg, 2.7 mmol) in 

DCM (10 mL) was added allylamine (0.24 mL, 3.3 

mmol), NaBH(OAc)3 (1.15 g, 5.4 mmol) and AcOH 

(0.28 mL, 4.9 mmol). The reaction mixture was stirred overnight and quenched by the 

addition of NaHCO3. The aqueous phase was extracted with Et2O (4 times) and the 

combined organic layers were dried over Na2SO4 and concentrated in vacuo. The 

crude was purified by flash chromatography (10% MeOH in DCM) to give 179 as a 

yellow oil (360 mg, 60%). 1H NMR (400 MHz, CDCl3) δ = 5.92 (ddt, J=16.5, 10.3, 6.1, 

1H, H-8), 5.60 – 5.53 (m, 1H, H-2), 5.21 (dd, J=16.6, 1.6, 1H, H-9), 5.13 (dd, J=10.2, 

1.6, 1H, H-9), 4.63 – 4.59 (m, 1H, H-11), 4.27 (dd, J=12.2, 6.3, 1H, H-1), 4.05 (dd, 

J=12.3, 7.1, 1H, H-1), 3.99 – 3:77 (m, 1H, H-15), 3.62 – 3.38 (m, 1H, H-15), 3.26 (d, 

J=6.1, 2H, H-7), 3.23 (s, 2H, H-5), 3.19 – 3.08 (m, 1H, H-6), 1.73 (s, 3H, H-4), 1.96 – 

1.35 (m, 6H, H-12, 13, 14). 

 

 

 

Ethyl (2Z)-2-hydroxy-3-(pyridin-3-yl)prop-2-enoate (57) 

Following a procedure reported in the literature[186], 0.5 mL 

EtOH was added to a solution of NaH (2.24 g, 0.09 mol) in 

50 mL Et2O. The reaction mixture was cooled down to 0 °C, 

and under vigorously stirring N,N-dimethylglycine ethyl ester 

56 (19.8 mL, 0.14 mol) and nicotinaldehyde 55 (4.4 mL, 0.05 mol) were added. The 

released hydrogen-gas was captured in a balloon filled with argon to keep the reaction 

inert. The reaction was allowed to warm up to room temperature and was stirred 

overnight. The mixture was diluted with EtOAc and washed with water. The organic 

layer was extracted with 1 N HCl and discarded. The aqueous layer was neutralized by 

addition of saturated NaHCO3 solution and extracted three times with ethyl acetate. 

The combined organic layers were concentrated to give 57, which was precipitated by 

addition of EtOAc (7.6 g, 74%). 1H NMR (400 MHz, DMSO) δ = 9.89 (s, 1H, H-10), 8.84 

(d, J=2.1, 1H, H-4), 8.41 (dd, J=4.8, 1.7, 1H, H-2), 8.22 (ddd, J=8.0, 2.2, 1.7, 1H, H-6), 

7.38 (dd, J=8.0, 4.8, 1H, H-1), 6.43 (s, 1H, H-7), 4.28 (q, J=7.1, 2H, H-13), 1.30 (t, 

J=7.1, 3H, H-14). 13C NMR (101 MHz, DMSO) δ = 164.13 (C-9), 150.10 (C-2), 147.79 

(C-4), 143.12 (C-8), 135.70 (C-6), 130.76 (C-5), 123.48 (C-1), 106.76 (C-7), 61.53 (C-

13), 14.08 (C-14). 
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Ethyl 2-(diethoxyphosphoryl)-2-hydroxy-3-(pyridin-3-yl)propanoate (59) 

A procedure from the literature[189] was modified as follows: 

to a solution of 57 (1 g, 5.18 mmol) and triethylphosphite 

(1.3 mL, 7.76 mmol) in DCM at -10 °C was added 4M HCl in 

dioxane (1.9 mL, 7.75 mmol) The reaction mixture was 

stirred 1 h and then kept in the refrigerator overnight. The 

solvent and volatile by-products were evaporated in vacuo in a warm water bath (below 

40 °C) to give the crude product. Flash chromatography with EtOAc/acetone (4: 1) 

gave the product as a yellow oil (1.2 g, 70%). 1H NMR(400 MHz, MeOD) δ = 8.47 (dd, 

J=2.3, 0.9, 1H, H-4), 8.45 (dd, J=4.9, 1.7, 1H, H-2), 7.79 (ddd, J=7.9, 2.3, 1.7, 1H, H-6), 

7.41 (ddd, J=7.9, 4.9, 0.8, 1H, H-1), 5.02 (ddd, J=8.0, 8.0, 4.5, 1H, H-15), 4.23 (q, 

J=7.1, 2H, H-13), 4.16 – 4.03 (m, 2H, H-19), 3.91 (dq, J=14.2, 7.1, 2H, H-20), 3.31 

(ddd, J=14.5, 4.4, 2.1, 1H, H-7), 3.18 (dd, J=14.5, 7.9, 1H, H-7), 1.28 (td, J=7.1, 1.1, 

3H, H-22), 1.26 (t, J=7.2, 3H, H-14), 1.19 (td, J=7.1, 1.1, 3H, H-21)13C NMR (101 MHz, 

MeOD) δ = 169.17 (d, J=2.9, C-9), 150.07 (C-4), 147.70 (C-2), 138.36 (C-6), 132.42 

(C-5), 124.00 (C-1), 75.71 (d, J=5.8, C-8),64.67 (d, J=6.2, C-19), 64.39 (d, J=6.2, C-

20), 61.81 (C-13), 35.92 (d, J=7.0, C-7), 15.15 (d, J=6.9, C-21, C-22), 13.27 (C-14). 

LC-MS (C18, ESI_MS): 331.96 [M+H]+, 662.49 [2M+H]+; Rt=5.63 min. 

 

 

2-hydroxy-2-phosphono-3-(pyridin-3-yl)propanoic acid (3-PEHPC, 5) 

A procedure from the literature[158] was modified as follows: 59 

(0.56 g, 1.7 mmol) was dissolved in 12 N HCl (5 mL) and the 

solution was heated at reflux for 5 hours. The solution was 

concentrated on a rotary evaporator to yield a viscous oil. This 

was dissolved in 0.2 ml water. EtOH was added to precipitate 5. The solid was 

transferred to an eppendorf tube, and washed several times with EtOH via 

centrifugation to yield the desired product 5 as a white solid (0.2 g, 50%).1H NMR (400 

MHz, D2O) δ = 8.77 (d, J=1.8, 1H, H-4), 8.75 – 8.71 (m, 1H, H-2), 8.61-8.56 (m, 1H, H-

6), 8.07 (ddd, J=8.1, 5.9, 0.9, 1H, H-1), 4.94 (ddd, J=9.3, 6.5, 4.4, 1H, H-13), 3.52 (dd, 

J=14.6, 4.4, 1H, H-7), 3.39 (dd, J=14.6, 6.5, 1H, H-7). LC-MS (C18, ESI_MS): 247.96 

[M+H]+, 494.82 [2M+H]+; Rt=1.38 min. 
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Imidazo[1,2-a]pyridine-3-carbaldehyde (61) 

A procedure from the literature[190] was modified as follows: to a stirred 

solution of imidazo[1,2-a]pyridine 60 (3 g, 25 mmol) and dry DMF (2.4 

mL, 32 mmol) in DCE (8 mL) was added POCl3 (2.9 mL, 31 mmol) at 0 

°C. The cooling bath was removed and the solution was stirred for 1h at 

room temperature. The reaction was allowed to warm up to room temperature and then 

put to reflux for 3 hours. The reaction mixture was poured on ice (50ml), neutralized by 

addition of 2N sodium hydroxide solution, and extracted with dichloromethane 

(3x40ml). The combined organic phases were dried over sodium sulfate and 

concentrated in vacuo to obtain 61 as a yellow solid which was used as a crude in the 

next step.1H NMR (400 MHz, DMSO) δ = 9.91 (s, 1H, H-10), 9.37 (ddd, J=6.8, 1.2, 1.2 

1H, H-3), 8.51 (s, 1H, H-8), 7.85 (ddd, J=9.0, 1.1, 1.1 1H, H-6), 7.67 (ddd, J=9.0, 6.9, 

1.3, 1H, H-1), 7.29 (ddd, J=6.9, 6.9, 1.2, 1H, H-2). 

 

 
Ethyl (2Z)-2-hydroxy-3-{imidazo[1,2-a]pyridin-3-yl}prop-2-enoate (62) 

In analogy to the synthesis of 57, 0.5 mL absolute EtOH 

was added to a solution of washed NaH (310 mg, 7.8 

mmol) in 8 mL Et2O. The reaction mixture was cooled 

down to 0 °C, and under vigorously stirring N,N-

Dimethylglycine ethyl ester 56 (1.53 g, 11.7 mmol) and 61 (570 mg, 3.9 mmol) were 

added. The released hydrogen-gas was captured in a balloon filled with argon to keep 

the reaction inert. The reaction was allowed to warm up to room temperature and was 

stirred overnight. The reaction mixture was heated at 30 °C for 1 h, cooled down to 0°C 

and was quenched with water (4 mL). The mixture was diluted with 5 mL EtOAc. The 

organic phase was collected in a beaker which was made acidic with 1N HCl (5 mL) 

and stirred for 10 min. The mixture was checked for pH = 1 and was made alkaline by 

the addition of solid NaHCO3. By this the expected product precipitated out and was 

collected by filtration to give 62 as a white solid (851 mg, 94%) 1H NMR (400 MHz, 

DMSO) δ = 9.69 (s, 1H, H-13), 8.69 (ad, J=7.0, 1H, H-3), 8.09 (s, 1H, H-10), 7.61 (ad, 

J=9.0, 1H, H-6), 7.31 (ddd, J=8.9, 6.9, 1.1, 1H, H-1), 7.00 (ddd, J=6.8, 6.8,1.2, 1H, H-

2), 6.90 (s, 1H, H-8), 4.29 (q, J=7.1, 2H, H-16), 1.33 (t, J=7.1, 3H, H-17).13C NMR (101 

MHz, DMSO) δ = 163.96 (C-12), 139.62 (C-5), 136.09 (C-8), 125.05 (C-3), 124.92 (C-

1), 120.14 (C-7), 117.17 (C-2), 112.73 (C-6), 97.03 (C-10), 61.17 (C-16), 14.18 (C-17). 
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Ethyl 2-(diethoxyphosphoryl)-2-hydroxy-3-{imidazo[1,2-a]pyridin-3-yl}propanoate 

(65) 

In analogy to the synthesis of 59, to a solution of 62 (370 

mg, 1.59 mmol) and triethylphosphite (0.41 mL, 2.4 

mmol) in DCM (2 mL) and DMF (0.5 mL) at -10 °C was 

added 4M HCl in dioxane (0.6 mL, 2.4 mmol) The 

reaction mixture was stirred 1 h and then kept in the 

refrigerator overnight. The solvents were evaporated in 

vacuo to give an oily residue, which was purified by flash chromatography 

(EtOAc/Acetone 4:1) to give 65 as a yellow oil (437 mg, 74%) Rf: 0.18 (EtOAc/Acetone 

4:1) 1H NMR (400 MHz, CDCl3) δ = 8.14 (ddd, J=6.9, 1.1, 1.1, 1H, H-3), 7.60 (ddd, 

J=9.1, 1.1, 1.1, 1H, H-6), 7.53 (s, 1H, H-8), 7.17 (ddd, J=9.1, 6.7, 1.2, 1H, H-1), 6.85 

(ddd, J=6.8, 6.8 1.2, 1H, H-2), 5.08 (ddd, J=8.6, 6.8, 5.3, 1H, H-25), 4.20 (q, J=7.1, 2H, 

H-15), 4.14 – 3.99 (m, 2H, H-21), 3.93 – 3.78 (m, 2H, H-22), 3.57 – 3.45 (m, 2H, H-10), 

1.27 (td, J=7.1, 1.2, 3H, H-23), 1.23 (t, J=7.1, 3H, H-16), 1.16 (td, J=7.1, 1.1, 3H, H-

24). LC-MS (C18, ESI_MS): 371.07 [M+H]+, 740.49 [2M+H]+; Rt=4.57 min. 

 

 

2-hydroxy-3-{imidazo[1,2-a]pyridin-3-yl}-2-phosphonopropanoic acid (7) 

Analogous with the synthesis of 5, 65 (200 mg, 0.54 mmol) was 

dissolved in 12 N HCl (2.3 mL) and the solution was heated at 

reflux for 5 hours. The solution was concentrated on a rotary 

evaporator to yield a viscous oil. This was dissolved in 0.1 ml 

water. EtOH was added to precipitate 7. The solid was transferred to an eppendorf 

tube, and washed several times with EtOH via centrifugation to yield the desired 

product 7 as a white solid (93 mg, 60%). LC-MS (C18, ESI_MS): 286.93 [M+H]+, 

572.82 [2M+H]+; Rt=1.39 min. 
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§ 10.3.3 Synthesis of General Bui lding  Blocks 74a&b 

 

(3R)-7-bromo-3-[(4-hydroxyphenyl)methyl]-2,3,4,5-tetrahydro-1H-1,4-

benzodiazepine-2,5-dione (180) 

A stirred solution of 5-bromoisatoic anhydride 71 (5.57 g, 

23 mmol), D-tyrosine methyl ester hydrochloride 72 (5.33 

g, 23 mmol) and DMAP (60 mg, 0.5 mmol) in anhydrous 

pyridine (50 mL) was heated under reflux for 4 days. The 

reaction mixture was allowed to cool to room 

temperature and the solvents were evaporated. The residue was dissolved in EtOAc, 

washed with 10% HCl, brine, dried over Na2SO4 and concentrated in vacuo, giving 

crude 180 (7.7 g) as a dark brown solid. This crude material could immediately be used 

in the next step. For analysis, 180 was purified by flash column chromatography 

(cyclohexane:EtOAc 3:1  EtOAc), affording pure 180 as a light brown solid (5.7 g, 

68%) Rf 0.12 (EtOAc c-hexane [1:1]) Mp126.1 °C, 1H NMR (400 MHz, MeOD) δ = 7.89 

(d, J=2.4, 1H, H-6), 7.64 (dd, J=8.6, 2.4, 1H, H-2), 7.05 (d, J=8.5, 2H, H-18, H-22), 7.02 

(d, J=8.7, 1H, H-3), 6.66 (d, J=8.5, 2H, H-15, H-17), 3.97 (dd, J=8.8, 6.0, 1H, H-9), 3.14 

(dd, J=14.3, 6.0, 1H, H-12), 2.84 (dd, J=14.4, 8.9, 1H, H-12).13C NMR (101 MHz, 

MeOD)δ = 173.06 (C-8), 169.40 (C-11), 157.31 (C-16), 137.33 (C-4), 136.88 (C-2), 

134.18 (C-6), 131.24 (C-18, C-22), 128.97 (C-13), 128.82 (C-5), 124.22 (C-3), 118.34 

(C-1), 116.32 (C-15, C-17), 55.85 (C-9), 34.04 (C-12).LC-MS (C18, ESI_MS): 361.01 

[M+H]+, 722.59 [2M+H]+; Rt=8.40 min. HRMS (ESI): calculated for C16H13BrN2O3 

[M+H]+: 361.0182, found: 361.0184. 
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4-{[(3R)-7-bromo-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenol ( 

70a) 

A solution of borane in THF (1M, 25 mL, 25 mmol) was 

slowly added to a stirred solution of crude 180 (1.78 g) in 

dry THF (45 mL). The reaction mixture was heated under 

reflux for 18h. After cooling to 0 °C, MeOH (9 mL) was 

added carefully, the solvents were evaporated and the 

residue was dissolved in MeOH (20 mL). To this solution, 7N HCl (5 mL) was added 

and the mixture was heated to dryness on a steam bath. The resulting solid was 

suspended in NaHCO3 (sat, 100 mL) and the suspension was brought to pH 9 with 5N 

NaOH. The product was extracted with EtOAc (3×100 mL) and the combined organic 

layers were washed with brine, dried over Na2SO4 and concentrated in vacuo. 

Purification by flash column chromatography (EtOAc/acetone, 3:1) afforded  70a as a 

light brown solid (672 mg, 67%) Rf 0.89 (EtOAc/acetone, 1:1) ; Mp 175.7 °C, 1H NMR 

(400 MHz, MeOD) δ = 7.21 (d, J=2.2, 1H, H-6), 7.14 (dd, J=8.4, 2.2, 1H, H-2), 7.04 (d, 

J=8.6, 2H, H-14, H-18), 6.73 (d, J=8.6, 1H, H-3), 6.72 (d, J=8.4, 2H, H-15, H-17), 3.83 

(d, J=14.4, 1H, H-11), 3.71 (d, J=14.4, 1H, H-11), 3.25 (dd, J=13.3, 2.4, 1H, H-8), 2.99 

(dddd, J=9.0, 7.7, 6.6, 2.4, 1H, H-9), 2.63 (dd, J=13.3, 6.7, 1H, H-8), 2.59 – 2.50 (m, 

2H, H-12).13C NMR (101 MHz, MeOD)δ = 155.97 (C-16), 150.03 (C-4), 133.19 (C-13), 

132.03 (C-6), 130.22 (C-2), 130.12 (C-14, C-18), 129.14 (C-5), 120.29 (C-3), 115.24 

(C-15, C-17), 111.86 (C-1), 62.50 (C-9), 52.74 (C-8), 51.66 (C-11), 38.95 (C-12). LC-

MS (C18, ESI_MS): 333.03 [M+H]+, Rt=5.92min HRMS (ESI): calculated for C16H18N2Br 

333.0597 [M+H]+, found: 333.05997. +47.5 (c=1, MeOH/CHCl3).  

 

 

(3R)-3-[(4-hydroxyphenyl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepine-7-

carbonitrile ( 70b) 

Three dry microwave tubes were charged with THB  

70a (400 mg, 1.2 mmol per tube) and CuCN (323 mg, 

3.6 mmol per tube). The vessels were flushed with 

argon and sealed. Dry DMF (4 mL per tube) was added 

through the septum and the reaction mixtures were 

irradiated in the microwave at 200 ºC for 30 minutes. After cooling, the content of the 3 

tubes was poured into 200 mL of a mixture of NH4Cl (sat) and NH4OH (25%) (pH = 

8.6). EtOAc (200 mL) was added and the mixture was stirred for 1 h. The layers were 

separated, the aqueous layer was extracted with EtOAc (2×200 mL) and the combined 

organic layers were washed with a mixture of NH4Cl (sat.) and NH4OH (25%) (pH = 
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8.6) (2×100 mL), brine, dried over Na2SO4 and concentrated in vacuo. Purification by 

flash column chromatography (cyclohexane:EtOAc:Et3N 74:25:1  EtOAc:Et3N 99:1) 

afforded  70b as a light brown solid (672 mg, 67%) Rf 0.56 (EtOAc/DCM [1:10]); Mp 

179.9 °C,1H NMR (400 MHz, MeOD) δ = 7.36 (d, J=2.0, 1H, H-6), 7.32 (dd, J=8.3, 2.0, 

1H, H-2), 7.05 (d, J=8.6, 2H, H-14, H-18), 6.80 (d, J=8.3, 1H, H-3), 6.74 (d, J=8.6, 2H, 

H-15, H-17), 3.99 (d, J=15.1, 1H, H-11), 3.84 (d, J=15.0, 1H, H-11), 3.41 (dd, J=13.9, 

2.8, 1H, H-8), 3.16 – 3.08 (m, 1H, H-9), 2.81 (dd, J=13.9, 7.3, 1H, H-8), 2.70 (dd, 

J=13.6, 6.3, 1H, H-12), 2.63 (dd, J=13.6, 8.1, 1H, H-12).13C NMR (101 MHz, MeOD) δ 

= 156.02 (C-16), 155.10 (C-4), 133.85 (C-2), 131.70 (C-6), 130.15 (C-14, C-18), 128.91 

(C-13), 128.43 (C-5), 119.70 (C-20), 118.04 (C-3), 115.28 (C-15, C-17), 100.37 (C-1), 

61.66 (C-9), 50.36 (C-8), 50.04 (C-11), 38.50 (C-12). LC-MS (C18, ESI_MS): 280.02 

[M+H]+, Rt=4.49 min HRMS (ESI): calculated for C17H18N3O [M+H]+ 280.1444, found 

280.1445.  +47.5 (c=1, MeOH/CHCl3).  

 

 

4-{[(3R)-7-bromo-4-[(4-methoxybenzene)sulfonyl]-2,3,4,5-tetrahydro-1H-1,4-

benzodiazepin-3-yl]methyl}phenol (73a) 

4-Methoxybenzenesulfonyl chloride (710 mg, 3.44 

mmol) was added to a solution of THB  70a (915 mg, 

2.75 mmol) in anhydrous pyridine (12 mL) at 0 °C. The 

reaction mixture was allowed to warm to room 

temperature and stirred overnight. The solvent was 

evaporated, the residue was taken in a mixture of 

EtOAc and NH4Cl (sat.) and stirred for 10 minutes. The 

layers were separated and the aqueous layer was extracted with EtOAc twice more. 

The combined organic layers were washed with brine, dried over Na2SO4 and 

concentrated in vacuo. Purification by flash column chromatography (DCM:EtOAc 95:5 

 80:20) afforded 73a as a white solid (987 mg, 71%). Rf 0.56 (EtOAc/DCM [1:10]); 

Mp 179.9 °C, 1H NMR (400 MHz, MeOD) δ = 7.37 (d, J=9.0, 2H, H-25, H-29), 7.04 (d, 

J=8.4, 2H, H-14, H-18), 6.96 (d, J=2.1, 1H, H-6), 6.87 (dd, J=8.5, 2.2, 1H, H-2), 6.71 (d, 

J=8.5, 2H, H-15, H-17), 6.68 (d, J=9.0, 2H, H-26, H-28), 6.07 (d, J=8.5, 1H, H-3), 4.62 

(d, J=17.2, 1H, H-11), 4.38 (d, J=17.2, 1H, H-11), 4.18 (ddd, J=13.9, 9.3, 4.7, 1H, H-9), 

3.75 (s, 3H, H-31), 3.40 – 3.26 (m, 1H, H-8), 2.94 – 2.76 (m, 3H, H-8, H-12).13C NMR 

(101 MHz, MeOD)δ = 161.40 (C-27), 154.62 (C-16), 146.47 (C-4), 130.49 (C-6), 

130.29 (C-24), 128.84 (C-14, C-18), 128.71 (C-2), 127.95 (C-25, C-29), 127.26 (C-13), 

122.45 (C-5), 116.67 (C-3), 113.73 (C-15, C-17), 111.69 (C-26, C-28), 107.59 (C-1), 

60.75 (C-9), 53.45 (C-31), 46.03 (C-8), 44.29 (C-11), 37.05 (C-12). LC-MS (C18, 
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ESI_MS):502.97 [M+H]+ Rt=10.17min HRMS (ESI): calculated for C23H23BrN2O4 [M+H]+ 

503.0635, found 503.0630 +18.5 (c=1, MeOH/CHCl3).  

 

 
(3R)-3-[(4-hydroxyphenyl)methyl]-4-[(4-methoxybenzene)sulfonyl]-2,3,4,5-

tetrahydro-1H-1,4-benzodiazepine-7-carbonitrile (73b) 

4-Methoxybenzenesulfonyl chloride 75 (234 mg, 1.13 

mmol) was added to a solution of THB 70b (301 mg, 

1.1 mmol) in anhydrous pyridine (4 mL) at 0 °C. The 

reaction mixture was allowed to warm to room 

temperature and stirred overnight. Then, the solvent 

was evaporated. The residue was taken in a mixture of 

EtOAc and NH4Cl (sat.) and stirred for 10 minutes. The 

layers were separated and the aqueous layer was 

extracted with EtOAc twice more. The combined organic layers were washed with 

brine, dried over Na2SO4 and concentrated in vacuo. Purification by flash column 

chromatography (DCM:EtOAc 95:5  80:20) afforded (73b) as a white solid (294 mg, 

61%) Rf 0.653 (DCM/MeOH, 10:1); Mp 123.8°C,1H NMR (500 MHz, MeOD) δ = 7.38 

(d, J=8.8, 2H, H-24, H-28), 7.13 (d, J=1.5, 1H, H-6), 7.09 (d, J=8.3, 2H, H-15, H-19), 

7.03 (dd, J=8.4, 1.4, 1H, H-2), 6.74 (d, J=8.3, 2H, H-16, H-18), 6.69 (d, J=8.9, 2H, H-

25, H-27), 6.10 (d, J=8.4, 1H, H-3), 4.69 (d, J=17.5, 1H, H-11), 4.44 (d, J=17.5, 1H, H-

11), 4.35 – 4.27 (m, 1H, H-9), 3.76 (s, 3H, H-30), 3.53 (dd, J=15.0, 11.2, 1H, H-8), 3.02 

(dd, J=15.0, 4.9, 1H, H-8), 2.92 (dd, J=13.5, 4.0, 1H, H-12), 2.79 (dd, J=13.4, 9.0, 1H, 

H-12).13C NMR (126 MHz, MeOD) δ = 164.05 (C-26), 157.32 (C-17), 153.48 (C-4), 

135.20 (C-6), 132.85 (C-23), 132.74 (C-2), 131.45 (C-15, C-19), 130.38 (C-24, C-28), 

129.42 (C-14, C-18), 121.91 (C-5), 121.05 (C-31), 117.12 (C-3), 116.36 (C-16, C-18), 

114.34 (C-25, C-27), 99.37 (C-1), 63.68 (C-9), 56.05 (C-30), 47.48 (C-8), 46.94 (C-11), 

40.52 (C-12) LC-MS (C18, ESI_MS): 450.0 [M+H]+Rt=9.23 min. HRMS (ESI): 

calculated for C24H24N3O4S [M+H]+ 450.1482, found 450.1477.  +133.4 (c=1, 

MeOH). 
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4-{[(3R)-7-bromo-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-5-

yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenol (74a) 

THB 73a (2.1 g, 4.2 mmol) and N-methylimidazole 

carboxaldehyde 76 (574 mg, 5.2 mmol) were mixed in 

dry toluene (30 mL). To this stirred slurry, TFA (2.17 

mL, 29.2 mmol) and TFAA (1.86 mL, 13.4 mmol) were 

added sequentially, while maintaining the temperature 

below 30 °C. The biphasic mixture was stirred 

vigorously for 2h at rt. Triethylsilane (1 mL, 6.3 mmol) 

was added and the reaction mixture was stirred 

overnight at rt. The reaction mixture was quenched with NaHCO3 (sat.) and extracted 

with 3 times with EtOAc. The combined organic layers were washed with brine, dried 

over Na2SO4 and concentrated in vacuo. Purification by flash column chromatography 

(DCM:MeOH 98:2  90:10) afforded 74a as a white solid (2.0 g, 80%). Rf 

0.67(DCM/MeOH [10:1]) Mp 286.4 °C; 1H NMR (500 MHz, DMSO) δ = 7.53 (s, 1H, H-

20), 7.33 (d, J=8.8, 2H, H-31, H-35), 7.22 (d, J=1.7, 1H, H-6), 7.11 (d, J=8.3, 1H, H-2), 

6.86 (d, J=8.2, 2H, H-23, H-27), 6.80 (d, J=8.9, 2H, H-32, H-34), 6.61 (d, J=8.2, 2H, H-

24, H-26), 6.55 (s, 1H, H-18), 6.42 (bs, 1H, H-3), 4.58 (d, J=17.0, 1H, H-16), 4.41 (d, 

J=17.1, 1H, H-16), 4.33 – 4.09 (m, 1H, H-9), 4.04 (d, J=16.0, 1H, H-11), 3.77 (s, 3H, H-

37), 3.76 (d, J=16.0, 1H, H-11), 3.49 (s, 3H, H-22), 3.47 – 3.41 (m, 1H, H-8), 2.82 (dd, 

J=14.9, 3.4, 1H, H-8), 2.66 (dd, J=13.8, 6.2, 1H, H-14), 2.44 – 2.05 (m, 1H, H-14). 13C 

NMR (101 MHz, DMSO) δ = 162.58 (C-33), 156.40 (C-25), 149.09 (C-4), 139.20 (C-

20), 132.49 (C-6), 132.39 (C-17), 132.23 (C-30), 130.71 (C-2), 130.64 (C-23, C-27), 

130.49 (C-15), 129.51 (C-31, C-35), 128.29 (C-5), 128.10 (C-18), 118.17 (C-3), 115.71 

(C-24, C-26), 114.17 (C-32, C-34), 110.88 (C-1), 58.75 (C-9), 56.21 (C-37), 53.82 (C-

8), 46.58 (C-11), 46.20 (C-16), 37.11 (C-14), 31.55 (C-22). LC-MS (C18, ESI_MS): 

597.07 [M+H]+ Rt=7.92min; HRMS (ESI): calculated for C28H30BrN4O4S [M+H]+: 

597.1166, found: 597.1162, +18.5 (c=1, MeOH/CHCl3). 
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(3R)-3-[(4-hydroxyphenyl)methyl]-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-

1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepine-7-carbonitrile 

(74b) 

In analogy to the procedure described for 73a, THB 73b 

(389 mg, 0.87 mmol) and N-methylimidazole 

carboxaldehyde 76 (119 mg, 1.08 mmol) were mixed in 

dry toluene (8 mL). To this stirred slurry, TFA (450 µL, 

6.1 mmol) and TFAA (384 µL, 2.8 mmol) were added 

sequentially, while maintaining the temperature below 

30 °C. The biphasic mixture was stirred vigorously for 

2h at rt. Triethylsilane (207 µL, 1.3 mmol) was added 

and the reaction mixture was stirred overnight at rt. The 

reaction mixture was quenched with NaHCO3 (sat.) and extracted with three times 

EtOAc. The combined organic layers were washed with brine, dried over Na2SO4 and 

concentrated in vacuo. Purification by flash column chromatography (DCM:MeOH 98:2 

 90:10) afforded 74b as a white solid (391 mg, 83%) Rf 0.53 (DCM/MeOH [10:1]); Mp 

159.6 °C, 1H NMR (500 MHz, MeOD) δ = 7.57 (s, 1H, H-26), 7.41 (d, J=8.9, 2H, H-30, 

H-34), 7.36 (d, J=2.1, 1H, H-6), 7.27 (dd, J=8.6, 2.1, 1H, H-2), 7.00 (d, J=8.4, 2H, H-15, 

H-19), 6.82 (d, J=8.9, 2H, H-31, H-33), 6.71 (d, J=8.4, 2H, H-16, H-18), 6.58 (s, 1H, H-

24), 6.44 (d, J=8.5, 1H, H-3), 4.69 (d, J=17.5, 1H, H-22), 4.59 (d, J=17.6, 1H, H-22), 

4.32 – 4.25 (m, 1H, H-9), 4.18 (d, J=16.6, 1H, H-11), 3.82 (s, 3H, H-37), 3.82 (d, 

J=16.6, 1H, H-11), 3.73 (dd, J=15.6, 10.9, 1H, H-8), 3.55 (s, 3H, H-36), 3.07 (dd, 

J=15.5, 4.4, 1H, H-8), 2.84 (dd, J=13.6, 4.8, 1H, H-12), 2.68 (dd, J=13.6, 8.3, 1H, H-

12). 13C NMR (126 MHz, CDCl3 + 10% MeOD) δ = 162.78 (C-32), 155.90 (C-17), 

152.05 (C-4), 138.95 (C-26), 137.54 (C-23), 133.83 (C-6), 132.43 (C-2), 131.74 (C-29), 

129.95 (C-15, C-19), 129.16 (C-30, C-34), 128.06 (C-24), 127.28 (C-14), 126.53 (C-5), 

119.35 (C-38), 115.74 (C-16, C-18), 114.83 (C-3), 113.81 (C-31, C-33), 107.47 (C-1), 

58.65 (C-9), 55.68 (C-37), 52.61 (C-8), 46.79 (C-22), 45.35 (C-11), 38.02 (C-12), 31.63 

(C-36). LC-MS (C18, ESI_MS): 544.14 [M+H]+ Rt=6.91 min; HRMS (ESI): calculated 

for C29H30N5O4S [M+H]+: 544.2013, found: 544.1999.  +161.7 (c=1, CHCl3). 
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§ 10.3.4 Synthesis of 1s tGeneration THBs 

 

General Remark about 13C NMR of THBs 

For many of the THBs, the highlighted quaternary carbons cannot be identified in 

regular 13C NMR measurements even in concentrated samples with many scans. 

Therefore, these carbons have either been assigned using 2D techniques like HSQC, 

or in case of no clear long range correlations the structures are assigned by analogy.

 

General Procedure I for O-methylation of THBs: 

All reactions were carried out at a concentration of 50 mM of THB, 55 mM of alkyl 

halide and 75 mM of NaH in dry DMF. To a solution of 1 equiv. of THB in DMF, 1.5 

equiv. of NaH and 1.1 equiv. of alkyl halide were added at 0 °C. The reaction mixture 

was allowed to warm up to room temperature and stirred overnight. The reaction 

mixture was quenched by the addition of brine and extracted three times with DCM. 

The combined organic layers were washed with brine, dried over Na2SO4 and 

concentrated in vacuo. The crude product was purified by column chromatography 

(DCM:MeOH 97:3). 

 

 

(3R)-3-[(4-butoxyphenyl)methyl]-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-

imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepine-7-carbonitrile(87) 

According to General Procedure I, reaction 

between THB 74b (40 mg, 74 µmol) and n-butyl 

bromide (9 µL, 81 µmol) afforded 87 as a white 

solid (40 mg, 92%). 1H NMR (400 MHz, CDCl3) δ 

7.44 (s, 1H), 7.37 (d, J = 8.8 Hz, 2H), 7.27 (s, 

1H), 7.24 (d, J = 8.6 Hz, 1H), 6.99 (d, J = 8.5 Hz, 

2H), 6.80 (d, J = 8.5 Hz, 2H), 6.71 (d, J = 8.9 Hz, 

2H), 6.67 (s, 1H), 6.37 (d, J = 8.5 Hz, 1H), 4.57 
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(d, J = 17.6 Hz, 1H), 4.39 (d, J = 17.6 Hz, 1H), 4.27 – 4.12 (m, J = 7.4 Hz, 1H), 3.95 (d, 

J = 16.3 Hz, 1H), 3.94 (t, J = 6.6 Hz, 2H), 3.79 (s, 3H), 3.71 (d, J = 16.3 Hz, 1H), 3.60 – 

3.48 (m, 1H), 3.49 (s, 3H), 3.05 (dd, J = 15.4, 4.3 Hz, 1H), 2.83 (dd, J = 13.8, 4.6 Hz, 

1H), 2.65 (dd, J = 13.7, 8.1 Hz, 1H), 1.82 – 1.69 (m, 2H), 1.58 – 1.41 (m, 2H), 0.98 (t, J 

= 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 162.68 (C), 158.31 (C), 152.03 (C), 

139.28 (CH), 133.92 (CH), 132.40 (CH), 131.85 (C), 130.33 (2×CH), 129.28 (2×CH), 

128.64 (CH), 128.17 (C), 119.41 (C), 115.23 (CH), 114.82 (2×CH), 113.67 (2×CH), 

101.88 (C,), 67.85 (CH2), 58.21 (CH), 55.76 (CH3), 53.34 (CH2), 46.94 (CH2), 46.38 

(CH2), 38.26 (CH2), 31.57 (CH3), 31.47 (CH2), 19.37 (CH2), 13.99 (CH3); LC-MS (C4, 

ESI_MS) 600.2 [M+H]+; Rt = 7.93 min; HRMS (ESI):calculated for C33H38N5O4S [M+H]+ 

600.2632, found 600.2639. 

 

 

(3R)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-5-yl)methyl]-3-({4-

[(3-methylbut-2-en-1-yl)oxy]phenyl}methyl)-2,3,4,5-tetrahydro-1H-1,4-

benzodiazepine-7-carbonitrile(88) 

According to General Procedure I, reaction 

between THB 74b (50 mg, 92 µmol) and 1-

bromo-3-methylbut-2-ene (12 µL, 101 µmol) 

afforded 88 as a white solid (53 mg, 94%). 1H 

NMR (400 MHz, CDCl3) δ 7.40 (s, 1H), 7.33 (d, J 

= 8.7 Hz, 2H), 7.23 (s, 1H), 7.19 (d, J = 8.6 Hz, 

1H), 6.95 (d, J = 8.5 Hz, 2H), 6.78 (d, J = 8.4 Hz, 

2H), 6.67 (d, J = 8.7 Hz, 2H), 6.63 (s, 1H), 6.33 

(d, J = 8.5 Hz, 1H), 5.45 (t, J = 6.7 Hz, 1H), 4.53 

(d, J = 17.7 Hz, 1H), 4.45 (d, J = 6.7 Hz, 2H), 4.36 (d, J = 17.5 Hz, 1H), 4.20 – 4.09 (m, 

J = 10.5, 7.8 Hz, 1H), 3.94 (d, J = 16.3 Hz, 1H), 3.75 (s, 3H), 3.67 (d, J = 16.3 Hz, 1H), 

3.50 (dd, J = 15.3, 10.9 Hz, 1H), 3.45 (s, 3H), 3.01 (dd, J = 15.4, 4.4 Hz, 1H), 2.79 (dd, 

J = 13.7, 4.6 Hz, 1H), 2.61 (dd, J = 13.6, 7.9 Hz, 1H), 1.76 (s, 3H), 1.71 (s, 3H); 13C 

NMR (101 MHz, CDCl3) δ 162.68 (C), 158.01 (C), 152.02 (C), 138.35 (C), 133.92 (CH), 

132.39 (CH), 131.81 (C), 130.32 (2×CH), 129.26 (2×CH), 128.50 (CH), 128.32 (C), 

126.48 (C), 124.61 (C), 119.68 (CH), 119.41 (C), 115.23 (CH), 114.97 (2×CH), 113.66 

(2×CH), 109.89 (CH), 101.85 (C), 64.92 (CH2), 58.22 (CH), 55.75 (CH3), 53.34 (CH2), 

46.92 (CH2), 46.36 (CH2), 38.26 (CH2), 31.57 (CH3), 25.94 (CH3), 18.33 (CH3); LC-MS 

(C4, ESI_MS) 612.2 [M+H]+; Rt = 7.88 min; HRMS (ESI):calculated for C34H38N5O4S 

[M+H]+ 612.2639, found 612.2633. 
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(3R)-3-{[4-(benzyloxy)phenyl]methyl}-4-[(4-methoxybenzene)sulfonyl]-1-[(1-

methyl-1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepine-7-

carbonitrile (89) 

According to General Procedure I, reaction 

between THB 74b (50 mg, 92 µmol) and benzyl 

bromide (12 µL, 101 µmol) afforded 89 as a 

white solid (50 mg, 85%). Rf 0.36 (DCM/MeOH 

[10:1]); 1H NMR (400 MHz, MeOD) δ = 7.51 (s, 

1H, H-41), 7.43 – 7.40 (m, 2H, H-5, H-7), 7.37 

(d, J=9.0, 2H, H-30, H-34), 7.39 – 7.32 (m, 3H, 

H-4, 6, 8), 7.30 (d, J=2.0, 1H, H-15), 7.22 (dd, 

J=8.6, 2.0, 1H, H-11), 7.06 (d, J=8.7, 2H, H-22, 

H-26), 6.88 (d, J=8.7, 2H, H-23, H-25), 6.77 (d, 

J=9.0, 2H, H-31, H-33), 6.55 (s, 1H, H-39), 6.39 

(d, J=8.6, 1H, H-12), 5.03 (s, 2H, H-9), 4.63 (d, J=17.6, 1H, H-19), 4.54 (d, J=17.6, 1H, 

H-19), 4.31 – 4.20 (m, 1H, H-17), 4.14 (d, J=16.5, 1H, H-37), 3.77 (d, J=16.5, 2H, H-

37), 3.77 (s, 3H, H-36), 3.69 (dd, J=15.5, 11.0, 1H, H-16), 3.49 (s, 3H, H-45), 3.04 (dd, 

J=15.5, 4.5, 1H, H-16), 2.82 (dd, J=13.7, 4.5, 1H, H-20), 2.66 (dd, J=13.7, 8.1, 1H, H-

20). 13C NMR (101 MHz, MeOD) δ = 163.01 (C-32), 157.91 (C-24), 146.69 (C-

13)139.00 (C-41), 137.60 (C-3), 133.82 (C-15), 132.05 (C-11), 131.82 (C-29), 130.25 

(C-22, C-26), 129.51 (C-21), 129.13 (C-5, C-7), 128.30 (C-4, C-8), 127.67 (C-6), 

127.43 (C-30, C-34), 126.56 (C-39), 119.37 (C-43), 115.03 (C-12), 114.90 (C-31, C-

33), 113.56 (C-23, C-25), 100.47 (C-10), 69.80 (C-9), 59.12 (C-17), 55.03 (C-36), 53.10 

(C-16), 46.52 (C-19), 45.78 (C-37), 37.92 (C-20), 30.62 (C-45). LC-MS (C18, ESI_MS): 

634.05 [M+H]+, Rt=8.01 min. HRMS(ESI): calculated for C36H36N5O4S [M+H]+ 

634.2483, found 634.2470. 

 

  



 

E
x
p

e
ri
m

e
n
ta

l 
S

e
c
ti
o
n
 

155 

 

(3R)-3-[(4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}phenyl)methyl]-4-[(4-

methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-5-yl)methyl]-2,3,4,5-

tetrahydro-1H-1,4- benzodiazepine-7-carbonitrile (90) 

According to General Procedure I, 

reaction between THB 74b (50 mg, 92 

µmol) and geranyl bromide (21 µL, 101 

µmol) afforded 90 as a white solid (59 

mg, 94%). 1H NMR (400 MHz, CDCl3) δ 

7.39 (s, 1H), 7.30 (d, J = 8.8 Hz, 2H), 

7.20 (s, 1H), 7.16 (d, J = 8.6 Hz, 1H), 

6.92 (d, J = 8.4 Hz, 2H), 6.74 (d, J = 8.3 

Hz, 2H), 6.64 (d, J = 8.8 Hz, 2H), 6.60 

(s, 1H), 6.30 (d, J = 8.5 Hz, 1H), 5.41 (t, 

J = 6.2 Hz, 1H), 5.02 (t, J = 6.0 Hz, 1H), 4.49 (d, J = 17.7 Hz, 1H), 4.44 (d, J = 6.3 Hz, 

2H), 4.32 (d, J = 17.5 Hz, 1H), 4.16 – 4.06 (m, 1H), 3.91 (d, J = 16.2 Hz, 1H), 3.71 (s, 

3H), 3.68 – 3.60 (m, 1H), 3.52 – 3.44 (m, J = 15.4 Hz, 1H), 3.42 (s, 3H), 2.98 (dd, J = 

15.3, 4.0 Hz, 1H), 2.76 (dd, J = 14.0, 4.4 Hz, 1H), 2.58 (dd, J = 13.7, 7.9 Hz, 1H), 2.14 

– 1.92 (m, J = 15.5 Hz, 4H), 1.66 (s, 3H), 1.61 (s, 3H), 1.53 (s, 3H); 13C NMR (101 

MHz, CDCl3) δ 162.70 (C), 158.06 (C), 152.04 (C), 141.41 (C), 139.58 (C), 133.94 

(CH), 132.42 (CH), 131.94 (C), 131.83 (C), 130.33 (2×CH), 129.28 (2×CH), 128.30 (C), 

126.56 (C), 123.90 (CH), 119.50 (CH), 119.27 (C), 115.23 (CH), 115.03 (2×CH), 

113.69 (2×CH), 113.32 (CH), 109.89 (CH), 101.87 (C), 65.04 (CH2), 58.22 (CH), 55.77 

(CH3), 53.36 (CH2), 46.93 (CH2), 46.35 (CH2), 39.68 (CH2), 38.25 (CH2), 31.63 (CH3), 

26.45 (CH2), 25.81 (CH3), 17.83 (CH3), 16.81 (CH3); LC-MS (C4, ESI_MS) 680.2 [M-

+H]+; Rt = 8.82 min; HRMS (ESI):calculated for C39H46N5O4S [M+H]+ 680.3265, found 

680.3261. 

 

 

General Procedure II for O-aminoacylation of THBs: 

All reactions were carried out at a concentration of 100 mM of THB and 110 mM of 

isocyanate in dichloromethane. To a solution of 1 equiv. of THB and 1.1 equiv. of Et3N 

at 0 °C was added 1.1 equiv. of isocyanate. The reaction mixture was stirred overnight, 

diluted with dichloromethane, washed with NaHCO3 (sat), dried over Na2SO4 and 

concentrated in vacuo. The crude product was purified by column chromatography 

(DCM:MeOH 98:3). 
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4-{[(3R)-7-cyano-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-5-

yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenyl-N- 

hexylcarbamate (91) 

According to General Procedure II, reaction 

between THB 74b (50 mg, 92 µmol) and 

hexylisocyanate (15 µL, 110 µmol) afforded 91 

as a white solid (43 mg, 72%) Rf: 0.49 

(DCM/MeOH, 10:1) Mp 98.3 °C, 1H NMR (400 

MHz, MeOD) δ = 7.60 – 7.53 (m, 1H, H-34), 

7.38 (d, J=9.0, 2H, H-23, H-27), 7.31 (d, J=1.9, 

1H, H-6), 7.23 (dd, J=8.6, 2.0, 1H, H-2), 7.15 

(d, J=8.4, 2H, H-15, H-19), 7.00 (d, J=8.5, 2H, 

H-16, H-18), 6.79 (d, J=9.0, 2H, H-24, H-26), 

6.58 (s, 1H, H-32), 6.40 (d, J=8.6, 1H, H-3), 

4.70 (d, J=17.6, 1H, H-11), 4.57 (d, J=17.7, 

1H, H-11), 4.35 – 4.22 (m, 1H, H-9), 4.15 (d, 

J=16.5, 1H, H-30), 3.79 (s, 3H, H-29), 3.78 (d, J=16.5, 1H, H-30), 3.73 (dd, J=15.4, 

10.1, 2H, H-8), 3.50 (s, 3H, H-38), 3.16 (t, J=7.1, 2H, H-43), 3.04 (dd, J=15.5, 4.3, 1H, 

H-8), 2.89 (dd, J=13.6, 5.0, 1H, H-12), 2.73 (dd, J=13.5, 8.0, 1H, H-12), 1.60 – 1.49 (m, 

2H, H-44), 1.41 – 1.26 (m, 6H, H-45), 0.92 (t, J=6.9, 3H, H-48).13C NMR (101 MHz, 

MeOD) δ = 164.23 (C-25), 157.20 (C-40), 153.43 (C-4), 151.51 (C-17), 139.84 (C-34*), 

135.43 (C-14), 135.01 (C-6), 133.24 (C-2), 132.85 (C-22), 131.23 (C-15, C-19), 130.35 

(C-23, C-27), 128.71 (C-31''), 127.14 (C-32*), 125.42 (C-5''), 122.90 (C-16, C-18), 

120.58 (C-36), 116.08 (C-3), 114.78 (C-24, C-26), 101.56 (C-1), 60.35 (C-9), 56.23 (C-

29), 54.07 (C-8), 47.72 (C-11), 46.80 (C-30), 42.04 (C-43), 39.38 (C-12), 32.66 (C-46), 

30.75 (C-38), 27.56 (C-45), 23.65 (C-47), 14.39 (C-48). (*assigned with HSQC, 

''assigned with HMBC). LC-MS (C18, ESI_MS) 672.29 [M+H]+ Rt=8.80 min HRMS 

(ESI) calculated for C36H42N6O5S [M+H]+: 671.3010, found:671.3005.  +48.7(c=1, 

MeOH).  
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4-{[(3R)-7-cyano-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-5-

yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenyl-N-

benzylcarbamate (92) 

According to General Procedure II, 

reaction between THB 74b (50 mg, 92 

µmol) and benzylisocyanate (12 µL, 110 

µmol) afforded 92 as a white solid (60 mg, 

96%) Rf 0.5 (DCM/MeOH, 10:1) Mp 116.8 

°C, 1H NMR (500 MHz, MeOD) δ = 7.60 (s, 

1H, H-34), 7.38 (d, J=8.8, 2H, H-23, H-27), 

7.36 – 7.31 (m, 4H, H-6, H-45, H-47, H-

49), 7.30 – 7.21 (m, 3H, H-2, H-46, H-48), 

7.16 (d, J=8.2, 2H, H-15, H-19), 7.03 (d, 

J=8.3, 2H, H-16, H-18), 6.80 (d, J=8.8, 2H, 

H-24, H-26), 6.60 (s, 1H, H-32), 6.42 (d, J=8.4, 1H, H-3), 4.71 (d, J=17.7, 1H, H-11), 

4.58 (d, J=17.7, 1H, H-11), 4.36 (s, 2H, H-43), 4.31 – 4.24 (m, 1H, H-9), 4.17 (d, 

J=16.4, 1H, H-30), 3.83 – 3.75 (m, 1H, H-30), 3.78 (s, 3H, H-29), 3.73 (dd, J=15.6, 

11.1, 1H, H-8), 3.51 (s, 3H, H-38), 3.04 (dd, J=15.5, 4.1, 1H, H-8), 2.90 (dd, J=13.6, 

5.1, 1H, H-12), 2.74 (dd, J=13.7, 8.0, 1H, H-12). 13C NMR (126 MHz, MeOD) δ = 

164.28 (C-25), 157.50 (C-40), 153.45 (C-4), 151.51 (C-17), 140.37 (C-44), 139.97 (C-

34), 135.61 (C-14), 135.04 (C-6), 133.26 (C-2), 132.88 (C-22), 131.26 (C-15, C-19), 

130.38 (C-23, C-27), 129.58 (C-45, C-49),129.06(C-31), 128.41 (C-46, C-48), 128.29 

(C-47), 127.51 (C-32), 125.89 (C-5), 122.93 (C-16, C-18), 120.53 (C-36), 116.11 (C-3), 

114.80 (C-26, C-28), 101.70 (C-1), 60.39 (C-9), 56.22 (C-29), 54.08 (C-8), 47.72 (C-

11), 46.75 (C-30), 45.72 (C-43), 39.36 (C-12), 31.91 (C-38). LC-MS (C18, ESI_MS): 

677.23 [M+H]+ Rt=8.14 min. HRMS (ESI) calculated for C34H38N6O5S [M+H]+: 677.2541, 

found: 677.2536.  +36.9 (c=1, MeOH).  
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4-{[(3R)-7-cyano-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-5-

yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenyl-N,N-

diethylcarbamate (93) 

According to General Procedure II, reaction 

between THB 74b (50 mg, 92 µmol) and 

diethylcarbamoyl chloride (15 µL, 110 µmol) 

afforded 90 as a white solid (43 mg, 72%).Rf 

0.56 (DCM/MeOH, 10:1) Mp 113.7 °C, 1H NMR 

(500 MHz, MeOD) δ = 7.69 (s, 1H, H-34), 7.39 

(d, J=8.9, 2H, H-27), 7.32 (d, J=2.0, 1H, H-6), 

7.23 (dd, J=8.6, 2.0, 1H, H-2), 7.18 (d, J=8.3, 

2H, H-19), 7.01 (d, J=8.4, 2H, H-18), 6.81 (d, 

J=8.9, 2H, H-26), 6.64 (s, 1H, H-32), 6.41 (d, 

J=8.8, 1H, H-3), 4.71 (d, J=17.6, 1H, H-11), 

4.58 (d, J=17.7, 1H, H-11), 4.40 – 4.25 (m, 1H, H-9), 4.19 (d, J=16.5, 1H, H-30), 3.79 

(s, 3H, H-29), 3.88 – 3.68 (m, 2H, H-8, H-30), 3.54 (s, 3H, H-38), 3.39 (d, J=7.2, 2H, H-

43), 3.38 (d, J=7.2, 2H, H-45), 3.06 (dd, J=15.4, 4.3, 1H, H-8), 2.90 (dd, J=13.3, 4.3, 

1H, H-12), 2.76 (dd, J=13.3, 8.3, 1H, H-12), 1.27 (t, J=7.2, 3H, H-46), 1.19 (t, J=7.2, 

3H, H-44).13C NMR (126 MHz, MeOD) δ = 164.27 (C-25), 156.17 (C-40), 151.64 (C-4), 

149.92 (C-17), 139.97 (C-34), 135.68 (C-6), 135.04 (C-14), 133.25 (C-2), 132.91 (C-

22), 131.32 (C-15, C-19), 130.37 (C-23, C-27), 129.11 (C-31), 126.99 (C-32), 125.39 

(C-5), 122.99 (C-16, C-18), 120.53 (C-36), 116.10 (C-3), 114.80 (C-24, C-26), 99.09 

(C-1), 60.35 (C-9), 56.23 (C-29), 54.12 (C-8), 47.74 (C-11), 46.81 (C-30), 43.44 (C-45), 

43.20 (C-43), 39.37 (C-12), 32.05 (C-38), 14.49 (C-46), 13.60 (C-44). LC-MS (C18, 

ESI_MS) 643.28 [M+H]+ Rt=8.15 min HRMS (ESI): calculated for C34H39N6O5S [M+H]+: 

643.2697, found: 643.2692.  + 63.5 (c=1, MeOH).  

 

 

General Procedure III for O-triflation of THBs 

All reactions were carried out at a concentration of 0.1 M of THB, 0.15 M of N-

phenylbis(trifluoromethanesulfonimide) (86) and 0.3 M of Et3N in dry DCM. To a 

solution of 1 equiv. of THB and 3 equiv. of Et3N in DCM, 1.5 equiv. of 86 was added at 

0 °C. The reaction mixture was allowed to warm up to room temperature and stirred 

overnight. The reaction mixture was quenched by the addition of NaHCO3 (sat.) and 

extracted with DCM (3×). The combined organic layers were washed with brine, dried 

over Na2SO4 and concentrated in vacuo. The crude product was purified by column 

chromatography (DCM:MeOH 98:2  95:5). 
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4-{[(3R)-7-cyano-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-5-

yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenyl-

trifluoromethanesulfonate (83) 

According to General Procedure III, reaction between 

THB 74b (287 mg, 0.53 mmol) and 86 (283 mg, 0.79 

mmol) afforded 83 as a white solid (336 mg, 94%).1H 

NMR (500 MHz, CDCl3) δ 7.53 (s, 1H), 7.36 (d, J = 

8.9 Hz, 2H), 7.31 – 7.26 (m, J = 10.6 Hz, 2H), 7.19 (d, 

J = 8.7 Hz, 2H), 7.15 (d, J = 8.7 Hz, 2H), 6.76 – 6.69 

(m, J = 8.8 Hz, 3H), 6.46 (d, J = 8.4 Hz, 1H), 4.59 (d, 

J = 17.4 Hz, 1H), 4.45 (d, J = 17.4 Hz, 1H), 4.24 – 

4.13 (m, 1H), 4.03 (d, J = 15.9 Hz, 1H), 3.85 – 3.73 

(m, J = 15.4 Hz, 1H), 3.79 (s, 3H), 3.51 (s, 3H), 3.56 – 

3.46 (m, 1H), 3.02 (dd, J = 15.3, 4.3 Hz, 1H), 2.89 (dd, J = 13.8, 5.5 Hz, 1H), 2.62 (dd, 

J = 13.7, 7.7 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 162.98 (C), 152.11 (C), 148.51 

(C), 139.19 (CH), 137.49 (C), 134.51 (C), 134.01 (CH), 132.66 (CH), 131.52 (C), 

131.15 (2×CH), 129.31 (2×CH), 128.37 (CH), 126.59 (C), 121.83 (2×CH), 119.26 (C), 

115.44 (CH), 113.87 (2×CH), 109.70 (C), 102.46 (C), 58.14 (CH), 55.83 (CH3), 53.43 

(CH2), 46.70 (CH2), 46.11 (CH2), 38.09 (CH2), 31.77 (CH3); LC-MS (C4, ESI_MS) 676.1 

[M+H]+; Rt = 7.99 min; HRMS (ESI):calculated for C30H29F3N5O6S2 [M+H]+ 676.1506, 

found 676.1501. 

 

General Procedure IVa for Suzuki couplings of THBs and arylboronic acids: 

All reactions were carried out at a concentration of 50 mM of THB, and 55 mM of 

arylboronic acid in dioxane/water (4/1). To a solution of 1 equiv. of THB and 1.1 equiv. 

of arylboronic acid (unless stated otherwise) in dioxane/water (4/1), 0.2 equiv. of 

Pd(PPh3)4 and 3 equiv. of Na2CO3 (solid) were added. The reaction mixture was 

purged with argon, heated to 80 °C and stirred overnight. After cooling to rt, the 

reaction mixture was diluted with DCM, washed three times with water and brine, dried 

over Na2SO4 and concentrated in vacuo. The crude product was purified by column 

chromatography (DCM:MeOH 98:2  92:8). 
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General Procedure IVb for Suzuki couplings of THBs and arylboronic acids: 

All reactions were carried out at a concentration of 50 mM of THB and 55 mM of 

arylboronic acid in DME/water (2/1). To a solution of 1 equiv. THB and 1.1 equiv. of 

arylboronic acid 0.01 equiv. of Pd(PPh3)4 and 2 equiv. of K2CO3 (solid) were added. 

The reaction mixture was purged with argon and heated to 80 °C for 1 hour. The 

reaction was checked by TLC and in case of incompletion, 1 equiv. of arylboronic acid 

and 0.01 equiv. of Pd(PPh3)4 were added extra and stirred at 80 °C for 1 extra hour. 

Upon completion, the reaction mixture was diluted with DCM, washed three times with 

water and brine, dried over Na2SO4 and concentrated in vacuo. The crude product was 

purified by column chromatography (DCM:MeOH 98:2). 

 

 

4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-5-yl)methyl]-3-{[4-

(pyridin-3-yl)phenyl]methyl}-2,3,4,5-tetrahydro-1H-1,4-benzodiazepine-7-

carbonitrile (94) 

According to General Procedure IVa, reaction 

between THB 83 (50 mg, 74 µmol) and 3-

pyridineboronic acid (27 mg, 222 µmol) afforded 94 

as a white solid (42 mg, 94%). 1H NMR (400 MHz, 

CDCl3) δ 8.85 (d, J = 1.9 Hz, 1H), 8.60 (dd, J = 4.8, 

1.4 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.51 (d, J = 8.2 

Hz, 2H), 7.44 (s, 1H), 7.42 – 7.34 (m, J = 8.3, 6.2 Hz, 

4H), 7.30 (s, 1H), 7.20 (d, J = 8.0 Hz, 2H), 6.74 – 

6.66 (m, 3H), 6.44 (d, J = 8.2 Hz, 1H), 4.61 (d, J = 

17.4 Hz, 1H), 4.46 (d, J = 17.4 Hz, 1H), 4.33 – 4.21 (m, 1H), 4.02 (d, J = 16.2 Hz, 1H), 

3.77 (d, J = 16.2 Hz, 1H), 3.75 (s, 3H), 3.57 (dd, J = 15.3, 10.4 Hz, 1H), 3.51 (s, 3H), 

3.10 (dd, J = 15.5, 4.5 Hz, 1H), 2.94 (dd, J = 13.9, 5.1 Hz, 1H), 2.71 (dd, J = 13.4, 8.0 

Hz, 1H); LC-MS (C4, ESI_MS) 605.1 [M+H]+; Rt = 5.67 min; HRMS (ESI):calculated for 

C34H33N6O3S [M+H]+ 605.2329, found 605.2326. 
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§ 10.3.5 Synthesis of 2n d  Generation THBs 

 

7-bromo-3-[(4-butoxyphenyl)methyl]-4-[(4-methoxybenzene)sulfonyl]-1-[(1-

methyl-1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepine (96) 

According to General Procedure I, reaction between THB 

74a (100 mg, 167 µmol) and n-butyl bromide (20 µL, 184 

µmol) afforded 96 as a white solid (109 mg, 99%). 1H 

NMR (500 MHz, CDCl3) δ 7.43 (s, 1H), 7.35 (d, J = 8.9 

Hz, 2H), 7.23 (s, 1H), 7.16 (d, J = 8.6 Hz, 1H), 6.88 (d, J 

= 8.4 Hz, 2H), 6.78 (s, 1H), 6.74 (d, J = 8.5 Hz, 2H), 6.69 

(d, J = 8.9 Hz, 2H), 6.47 (d, J = 8.3 Hz, 1H), 4.53 (d, J = 

16.7 Hz, 1H), 4.36 (d, J = 16.7 Hz, 1H), 4.13 – 4.01 (m, 

1H), 3.97 – 3.87 (m, 3H), 3.79 (s, J = 7.4 Hz, 3H), 3.84 – 

3.73 (m, 1H), 3.53 (s, 3H), 3.32 (dd, J = 14.8, 7.8 Hz, 1H), 

2.88 (dd, J = 14.8, 3.8 Hz, 1H), 2.78 (dd, J = 13.9, 5.9 Hz, 1H), 2.44 (dd, J = 13.3, 6.8 

Hz, 1H), 1.81 – 1.69 (m, 2H), 1.54 – 1.41 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H); 13C NMR 

(101 MHz, CDCl3) δ 162.54 (C), 158.12 (C), 148.93 (C), 139.20 (CH), 132.72 (CH), 

131.99 (C), 131.08 (CH), 130.22 (2×CH), 129.42 (2×CH), 128.89 (C), 127.59 (C), 

123.05 (C), 117.86 (CH), 114.67 (2×CH), 113.66 (2×CH), 112.96 (C), 109.89 (CH), 

67.80 (CH2), 57.93 (CH), 55.67 (CH3), 53.63 (CH2), 46.84 (CH2), 46.16 (CH2), 37.19 

(CH2), 31.58 (CH3), 31.57 (CH2), 19.39 (CH2), 13.99 (CH3); LC-MS (C4, ESI_MS) 652.9 

and 654.9 [M+H]+; Rt = 7.71 min, HRMS (ESI): calculated for C32H38BrN4O4S [M+H]+ 

653.1792, found 653.1790. 
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4-{[7-(4-chlorophenyl)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-

5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenol (97) 

According to General Procedure IVa, reaction 

between THB 74a (290 mg, 0.49 mmol) and 4-

chlorophenylboronic acid (83 mg, 0.53 mmol) 

afforded 97 as a white solid (234 mg, 77%). 1H 

NMR (500 MHz, MeOD) δ = 7.70 (s, 1H, H-36), 

7.49 (d, J=8.5, 2H, H-39, H-43), 7.37 (d, J=8.6, 

4H, H-24, 28, 40,42), 7.30 (d, J=1.8, 1H, H-6), 

7.27 (dd, J=8.4, 1.9, 1H, H-2), 7.14 (s, 1H, H-

34), 6.94 (d, J=8.4, 2H, H-14, H-18), 6.75 (d, J=8.9, 2H, H-25, H-27), 6.69 (d, J=8.4, 

2H, H-15, H-17), 6.56 (d, J=8.2, 1H, H-3), 4.61 (s, 2H, H-32), 4.28 (d, J=16.6, 1H, H-

11), 4.25 – 4.19 (m, 1H, H-9), 3.98 (d, J=16.9, 1H, H-11), 3.79 (s, 3H, H-38), 3.77 (s, 

3H, H-30), 3.55 (dd, J=15.1, 9.3, 1H, H-8), 3.05 (dd, J=15.2, 4.2, 1H, H-8), 2.80 (dd, 

J=13.8, 5.5, 1H, H-12), 2.64 (dd, J=13.6, 7.7, 1H, H-12). 13C NMR (126 MHz, MeOD) δ 

= 163.73 (C-26), 156.85 (C-16), 148.77 (C-4), 139.64 (C-19), 137.43 (C-36), 133.58 

(C-41), 133.02 (C-1), 132.87 (C-33), 132.60 (C-23), 130.99 (C-14, C-18), 130.08 (C-24, 

C-28), 129.64 (C-40, C-42), 129.29 (C-6), 128.76 (C-13), 128.42 (C-39, C-43), 127.28 

(C-2), 127.05(C-5)119.71(C-34)116.80 (C-3), 116.18 (C-15, C-17), 114.50 (C-25, C-

27), 59.32 (C-9), 56.03 (C-30), 55.12 (C-8), 47.71 (C-32), 46.80 (C-11), 38.16 (C-12), 

33.83 (C-38). LC-MS (C4, ESI_MS) 629.2 [M+H]+; Rt = 8.34 min, HRMS (ESI): 

calculated for C34H34ClN4O4S [M+H]+ 629.1984, found 629.1982. 

 

 

4-{[7-(4-chlorophenyl)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-

5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenyl 

trifluoromethanesulfonate (98) 

According to General Procedure III, 

reaction between THB 97 (165 mg, 0.26 

mmol) and N- phenylbis(trifluoromethane-

sulphonimide) 86 (141 mg, 0.39 mmol) 

afforded 98 as a white solid (144 mg, 

72%). LC-MS (C4, ESI_MS) 761.1 and 

763.0 [M+H]+; Rt = 8.23 min; HRMS (ESI) 

calculated for C35H33ClF3N4O6S2 [M+H]+ 

761.1477, found 761.1477. 
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4-{[7-(3,4-dichlorophenyl)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-

imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenol 

(99) 

According to General Procedure IVa, reaction 

between THB 74a (110 mg, 0.18 mmol) and 3,4-

dichlorophenylboronic acid (39 mg, 0.20 mmol) 

afforded 99 as a white solid (109 mg, 89%). 1H 

NMR (400 MHz, CDCl3) δ 7.60 (d, J = 2.1 Hz, 

1H), 7.47 (d, J = 8.4 Hz, 2H), 7.41 – 7.31 (m, 3H), 

7.30 – 7.22 (m, 2H), 6.86 – 6.77 (m, 3H), 6.74 (d, 

J = 8.2 Hz, 2H), 6.69 (d, J = 8.8 Hz, 2H), 6.63 (d, 

J = 8.1 Hz, 1H), 4.66 (d, J = 17.0 Hz, 1H), 4.48 (d, J = 17.0 Hz, 1H), 4.07 – 3.95 (m, J = 

15.2 Hz, 2H), 3.86 (d, J = 15.7 Hz, 1H), 3.77 (s, 3H), 3.55 (s, 3H), 3.38 (dd, J = 14.1, 

8.3 Hz, 1H), 2.93 (dd, J = 14.7, 3.4 Hz, 1H), 2.78 (dd, J = 13.8, 5.3 Hz, 1H), 2.45 – 2.33 

(m, 1H), LC-MS (C4, ESI_MS) 663.0 and 665.0 [M+H]+; Rt = 7.91 min HRMS (ESI): 

calculated for C34H33Cl2N4O4S [M+H]+ 663.1594, found 663.1593. 

 

 

4-{[7-(3,4-dichlorophenyl)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-

imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenyl 

trifluoromethanesulfonate (100) 

According to General Procedure III, 

reaction between THB 99 (338 mg, 0.51 

mmol) and 86 (273 mg, 0.76 mmol) 

afforded 100 as a white solid (331 mg, 

82%). 1H NMR (400 MHz, CDCl3) δ 7.64 – 

7.43 (m, 4H), 7.43 – 7.28 (m, 4H), 7.14 (d, 

J = 8.6 Hz, 2H), 7.07 (d, J = 8.5 Hz, 2H), 

6.88 (s, 1H), 6.73 (d, J = 8.1 Hz, 1H), 6.68 

(d, J = 8.8 Hz, 2H), 4.69 (d, J = 16.6 Hz, 1H), 4.48 (d, J = 16.5 Hz, 1H), 4.14 – 4.06 (m, 

1H), 4.00 (dd, J = 29.0, 14.9 Hz, 2H), 3.76 (s, 3H), 3.59 (s, 3H), 3.37 (dd, J = 14.4, 7.5 

Hz, 1H), 2.96 – 2.82 (m, 2H), 2.45 (dd, J = 14.0, 6.7 Hz, 1H); LC-MS (C4, ESI_MS) 

795.0 and 797.0 [M+H]+; Rt = 8.46 min; HRMS (ESI) calculated for C35H32Cl2F3N4O6S2 

[M+H]+ 795.1087, found 795.1087. 
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7-(3,4-dichlorophenyl)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-

5-yl)methyl]-3-({4-[3-(morpholin-4-yl)prop-1-yn-1-yl]phenyl}methyl)-2,3,4,5-

tetrahydro-1H-1,4-benzodiazepine (101) 

A dry Schlenk tube was charged with 

THB 100 (50 mg, 63 µmol), N-

propargyl morpholine(47 mg, 377 

µmol), Pd(PPh3)4 (18 mg, 16 µmol), CuI 

(1.2 mg, 6 µmol), Et3N (26 µL, 189 

µmol) and tetrabutylammonium iodide 

(35 mg, 94 µmol). Dry DMF (3 mL) was 

added and the reaction mixture was 

purged with argon and stirred at 70 °C 

overnight. After cooling, the reaction 

mixture was poured into water and extracted three times with EtOAc. The combined 

organic layers were washed with brine, dried over Na2SO4 and concentrated in vacuo. 

Purification by flash column chromatography (DCM:MeOH 98:2  90:10) afforded 101 

as a white solid (27 mg, 56%). LC-MS (C4, ESI_MS) 770.1 and 772.1 [M+H]+; Rt = 

7.81 min; HRMS (ESI): calculated for C41H42Cl2N5O4S [M+H]+ 770.2329, found 

770.2341. 

 

 

1-[4-(4-{[7-(3,4-dichlorophenyl)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-

imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-

yl]methyl}phenyl)piperazin-1-yl]ethan-1-one (102) 

A dry Schleck tube was charged with THB 

100 (100 mg, 126 µmol), ligand 95 (15 mg, 

50 µmol), Pd(OAc)2 (5.6 mg, 25 µmol) and 

Cs2CO3 (57 mg, 176 µmol). Dry THF (0.5 

mL) was added, followed by piperazine (19 

mg, 151 µmol). The reaction mixture was 

purged with argon and stirred at 60 °C 

overnight. After cooling, the solvent was 

evaporated and the product was purified by 

flash column chromatography (DCM:MeOH 

98:2  90:10), affording 102 as a white solid 

(80 mg, 82%). LC-MS (C4, ESI_MS) 773.2 and 775.2 [M+H]+; Rt = 7.57 min; HRMS 

(ESI): calculated for C40H43Cl2N6O4S [M+H]+773.2438, found 773.2443. 
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7-(3,4-dichlorophenyl)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-

5-yl)methyl]-3-{[4-(pyridin-3-yl)phenyl]methyl}-2,3,4,5-tetrahydro-1H-1,4-

benzodiazepine (103) 

According to General Procedure IVa, reaction 

between THB 100 (50 mg, 63 µmol) and 3-

pyridineboronic acid (23 mg, 189 µmol) 

afforded 103 as a white solid (41 mg, 57%). 

LC-MS (C4, ESI_MS) 724.1 and 726.0 [M+H]+; 

Rt = 7.11 min; HRMS (ESI): calculated for 

C39H36Cl2N5O3S [M+H]+ 724.1910, found 

724.1911. 

 

4-{[(3R)-7-(3-chlorophenyl)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-

imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenol 

(104) 

According to General Procedure IVb reaction 

between THB 74a (200 mg, 0.33 mmol) and 3-

chlorophenylboronic acid (63 mg, 0.40 mmol) 

afforded 104 as a white solid (210 mg, 68%), Rf 

0.27 (5% MeOH in DCM) Mp 158.7 °C,1H NMR 

(500 MHz, MeOD) δ = 7.57 (s, 1H, H-34), 7.54 (dd, 

J=2.1, 1.4, 1H, H-39), 7.47 (ddd, J=7.8, 1.4, 1.4, 

1H, H-41), 7.36 (dd, J=7.9, 7.9, 1H, H-42), 7.33 (d, 

J=8.9, 2H, H-23, H-27), 7.30 (s, 1H, H-6), 7.28 (s, 

1H, H-2), 7.26 (ddd, J=7.8, 2.2, 1.4, 1H, H-43), 6.88 (d, J=8.2, 2H, H-15, H-19), 6.71 (d, 

J=8.9, 2H, H-24, H-26), 6.70 (s, 1H, H-32), 6.66 – 6.63 (m, 1H, H-3), 6.65 (d, J=8.4, 

2H, H-16, H-18), 4.65 (d, J=16.8, 1H, H-30), 4.59 (d, J=16.9, 1H, H-30), 4.16 – 4.09 (m, 

1H, H-9), 4.06 (d, J=15.7, 1H, H-11), 3.92 (d, J=15.2, 1H, H-11), 3.74 (s, 3H, H-29), 

3.56 (s, 3H, H-37), 3.47 (dd, J=14.9, 8.1, 1H, H-8), 2.93 (dd, J=15.0, 3.8, 1H, H-8), 2.79 

(dd, J=13.8, 6.2, 1H, H-12), 2.49 – 2.34 (m, 1H, H-12). 13C NMR (126 MHz, MeOD) δ = 

164.05 (C-25), 157.11 (C-17), 150.95 (C-4), 143.81 (C-36), 139.91 (C-34), 135.72 (C-

1), 133.10 (C-22), 132.43 (C-40), 131.31 (C-42), 131.25 (C-15, C-19), 130.46 (C-23, C-

27), 130.10 (C-5), 130.06 (C-31), 129.66 (C-6), 129.60 (C-14), 128.25 (C-32), 127.64 

(C-2), 127.49 (C-43), 127.16 (C-39), 125.66 (C-41), 117.53 (C-3), 116.30 (C-16, C-18), 

114.69 (C-24, C-26), 60.01 (C-9), 56.11 (C-29), 54.90 (C-8), 47.87 (C-30), 47.27 (C-

11), 38.25 (C-12), 31.92 (C-37). LC-MS (C18, ESI_MS) 629.2 [M+H]+; Rt = 6.79 min 
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HRMS (ESI): calculated for C34H34N4O4ClS [M+H]+ 629.1983, found 

629.1914. +251.0 (c=1, MeOH/CHCl3, 1:1). 

 

 

3-[(4-butoxyphenyl)methyl]-7-(3-chlorophenyl)-4-[(4-methoxybenzene)sulfonyl]-1-

[(1-methyl-1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepine 

(105) 

According to General Procedure I reaction between 

THB 104 (25 mg, 40 µmol) and n-butyl bromide (4.8 

µL, 44 µmol) afforded 105 as a white solid (23 mg, 

85%) Rf 0.39 (3% MeOH in DCM). 1H NMR (400 

MHz, MeOD) δ = 7.55 (s, 1H, H-42), 7.52 (dd, 

J=2.1, 1.7, 1H, H-13), 7.45 (ddd, J=7.7, 1.8, 1.1, 

1H, H-15), 7.35 (dd, J=7.8, 7.8 1H, H-16), 7.34 – 

7.33 (m, 1H, H-6), 7.33 (d, J=9.1, 2H, H-27, H-31), 

7.31 – 7.28 (m, 1H, H-2), 7.25 (ddd, J=7.9, 2.1, 1.1, 

1H, H-17), 6.95 (d, J=8.6, 2H, H-34, H-38), 6.75 (d, 

J=8.8, 2H, H-35, H-37), 6.72 (s, 1H, H-40), 6.69 (d, J=9.1, 2H, H-28, H-30), 6.68 – 6.63 

(m, 1H, H-3), 4.61 (s, 2H, H-19), 4.18 – 4.10 (m, 1H, H-9), 4.06 (d, J=15.6, 1H, H-11), 

3.93 (t, J=6.5, 3H, H-45), 3.93 (d, J=15.6, 1H, H-11), 3.75 (s, 3H, H-33), 3.58 (s, 3H, H-

44), 3.47 (dd, J=15.0, 7.8, 1H, H-8), 2.95 (dd, J=14.8, 3.9, 1H, H-8), 2.82 (dd, J=13.8, 

6.2, 1H, H-22), 2.46 (dd, J=13.4, 6.8, 1H, H-22), 1.78 – 1.69 (m, 2H, H-46), 1.55 – 1.44 

(m, 2H, H-47), 0.97 (t, J=7.4, 3H, H-48). 13C NMR (101 MHz, MeOD) δ = 163.68 (C-

29), 159.02 (C-36), 150.05 (C-4), 143.37 (C-12), 139.61 (C-42), 135.50 (C-14), 132.66 

(C-26), 130.99 (C-38, C-34), 130.24 (C-23), 130.17 (C-27, C-31), 129.62 (C-40), 

129.43 (C-2), 128.15 (C-6),128.11(C-1),127.96(C-21), 127.53 (C-16), 127.35 (C-17), 

127.06 (C-13), 125.42 (C-15), 119.23 (C-5), 117.38 (C-3), 115.32 (C-35, C-37), 114.45 

(C-28, C-30), 68.49 (C-45), 59.44 (C-9), 56.02 (C-33), 54.72 (C-8), 47.75 (C-19), 47.26 

(C-11), 37.99 (C-22), 32.31 (C-46), 31.93 (C-44), 20.09 (C-47), 14.18 (C-48). LC-MS 

(C18_ESI) 685.3 [M+H]+, Rt =7.81 HRMS (ESI): calculated for C38H42ClN4O4S [M+H]+ 

685.2610, found 685.2608. +80.0 (c=1, CHCl3/MeOH, 1:1). 
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4-{[(3R)-7-(3-chlorophenyl)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-

imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenyl 

N-benzylcarbamate (106) 

According to General Procedure II, 

reaction between THB 104 (15 mg, 24 

µmol) and benzylisocyanate (4.8 mg, 

36 µmol) afforded 106 as a white solid 

(16 mg, 88%) Rf 0.32 (3% MeOH in 

DCM) Mp 79.6 °C 1H NMR (500 MHz, 

MeOD) δ = 7.56 (s, 1H, H-34), 7.55 

(dd, J=2.1, 1.7, 1H, H-49) 7.48 (ddd, 

J=7.8, 1.7, 1.1, 1H, H-51), 7.37 (dd, 

J=7.8, 7.8 1H, H-52), 7.35 (d, J=8.8, 

2H, H-23, H-27), 7.35 – 7.32 (m, 4H, 

H-44, 46, 48, 53), 7.33 (d, J=2.3, 1H, 

H-6), 7.31 (dd, J=8.1, 2.4, 1H, H-2), 7.28 – 7.25 (m, 2H, H-45, H-47), 7.06 (d, J=8.2, 

2H, H-15, H-19), 6.97 (d, J=8.4, 2H, H-16, H-18), 6.73 (d, J=8.9, 2H, H-24, H-26), 6.72 

(s, 1H, H-32), 6.68 (d, J=8.0, 1H, H-3), 4.70 (d, J=16.8, 1H, H-30), 4.62 (d, J=16.8, 1H, 

H-30), 4.36 (s, 2H, H-42), 4.20 – 4.12 (m, 1H, H-9), 4.07 (d, J=15.6, 1H, H-11), 3.94 (d, 

J=15.2, 1H, H-11), 3.72 (s, 3H, H-29), 3.55 (s, 3H, H-37), 3.50 (dd, J=15.0, 8.0, 1H, H-

8), 2.93 (dd, J=15.0, 3.7, 1H, H-8), 2.88 (dd, J=13.8, 6.4, 1H, H-12), 2.57 – 2.44 (m, 

1H, H-12). 13C NMR (126 MHz, MeOD) δ = 164.12 (C-25), 157.36 (C-39), 151.35 (C-

17), 150.98 (C-4), 143.82 (C-36), 140.27 (C-43), 140.03 (C-34), 136.07 (C-50), 135.73 

(C-14), 132.94 (C-22), 132.50 (C-31), 131.33 (C-52), 131.12 (C-15, C-19), 130.54 (C-

45, C-47), 129.99 (C-2), 129.66 (C-1), 129.58 (C-23, C-27), 128.50 (C-32), 128.42 (C-

44, 46, 48), 128.29 (C-53), 127.68 (C-6), 127.51 (C-5), 127.17 (C-49), 125.67 (C-51), 

122.75 (C-16, C-18), 117.50 (C-3), 114.77 (C-24, C-26), 59.89 (C-9), 56.13 (C-29), 

54.84 (C-8), 47.86 (C-30), 47.17 (C-11), 45.71 (C-42), 38.36 (C-12), 31.88 (C-37). LC-

MS (C18, ESI_MS): 762.40 [M+H]+ Rt=7.65min. HRMS (ESI) calculated for 

C42H42N5O5ClS [M+H]+: 763.2565, found: 763.2589. 
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§ 10.3.6 Synthesis of 3 r dGeneration THBs 

 

4-{[(3R)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-5-yl)methyl]-7-

(pyridin-4-yl)-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenol (107) 

According to General Procedure IVb reaction 

between THB 74a (150 mg, 0.25 mmol) and 4-

pyridineboronic acid (34 mg, 0.28 mmol) afforded 

107 as a white solid (210 mg, 68%) Rf 0.43 

(DCM/MeOH, 10:1) Mp 148.8 °C 1H NMR (500 

MHz, MeOD) δ = 8.52 (dd, J=4.7, 1.6, 2H, H-40, H-

42), 7.67 (dd, J=4.8, 1.4, 2H, H-43, H-39), 7.59 (s, 

1H, H-34), 7.51 (d, J=2.4, 1H, H-6), 7.48 (dd, J=8.4, 

2.4, 1H, H-2), 7.39 (d, J=8.9, 2H, H-23, H-27), 6.96 

(d, J=8.2, 2H, H-16, H-19), 6.76 (d, J=8.9, 2H, H-24, H-26), 6.69 (d, J=8.4, 2H, H-16, 

H-18), 6.68 – 6.66 (m, 1H, H-32), 6.64 (d, J=8.4, 1H, H-3), 4.73 (d, J=17.1, 1H, H-30), 

4.68 (d, J=17.2, 1H, H-30), 4.25 – 4.18 (m, 1H, H-9), 4.13 (d, J=16.0, 1H, H-11), 3.92 

(d, J=16.0, 1H, H-11), 3.78 (s, 3H, H-29), 3.64 – 3.57 (m, 1H, H-8), 3.59 (s, 3H, H-37), 

3.02 (dd, J=15.2, 4.0, 1H, H-8), 2.84 (dd, J=13.7, 5.6, 1H, H-12), 2.61 – 2.52 (m, 1H, H-

12). 13C NMR (126 MHz, MeOD) δ = 163.09 (C-25), 156.19 (C-17), 150.90 (C-4), 

149.36 (C-40, C-42), 148.87 (C-36), 138.98 (C-34), 132.09 (C-22), 130.29 (C-15, C-

19), 129.44 (C-23, C-27), 128.78 (C-1), 128.69 (C-14), 128.49 (C-6), 127.18 (C-32), 

126.70 (C-2), 121.01 (C-39, C-43), 116.22 (C-3), 115.33 (C-16, C-18), 113.68 (C-24, 

C-26), 59.20 (C-9), 55.12 (C-29), 53.66 (C-8), 47.00 (C-30), 46.13 (C-11), 37.62 (C-

12), 30.84 (C-37). LC-MS (C18_ESI): 596.1 [M+H]+ Rt=5.44 min; HRMS (ESI) 

calculated for C33H34O4N5S [M+H]+: 596.2326, found: 596.2323.  +26.8(c=1, 

CHCl3). 
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5-[(3R)-3-[(4-hydroxyphenyl)methyl]-4-[(4-methoxybenzene)sulfonyl]-1-[(1-

methyl-1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-7-

yl]furan-2-carbaldehyde (108) 

According to General Procedure IVb reaction 

between THB 74a (300 mg, 0.5 mmol) and 5-

formyl-2-furylboronic acid (2 × 84 mg, 1.2 

mmol) afforded 108 as an orange solid (210 

mg, 68%). Rf 0.64 (DCM/MeOH 10:1) Mp 152.7 

°C 1H NMR (400 MHz, MeOD) δ = 9.46 (s, 1H, 

H-44), 7.54 (s, 1H, H-28), 7.51 (d, J=2.2, 1H, 

H-6), 7.46 (dd, J=8.6, 2.2, 1H, H-2), 7.43 (d, 

J=3.8, 1H, H-40), 7.34 (d, J=8.9, 2H, H-31, H-

35), 6.92 (d, J=8.3, 2H, H-14, H-18), 6.81 (d, J=3.7, 1H, H-39), 6.71 (d, J=8.9, 2H, H-

32, H-34), 6.68 (d, J=8.3, 2H, H-15, H-17), 6.63 (s, 1H, H-26), 6.47 (d, J=8.4, 1H, H-3), 

4.62 (d, J=17.6, 1H, H-11), 4.57 (d, J=17.6, 1H, H-11), 4.21 – 4.09 (m, 1H, H-9), 4.03 

(d, J=16.3, 1H, H-24), 3.76 (d, J=16.5, 1H, H-24), 3.74 (s, 3H, H-37), 3.59 – 3.53 (m, 

1H, H-8), 3.53 (s, 3H, H-30), 2.99 (dd, J=15.3, 4.1, 1H, H-8), 2.81 (dd, J=13.7, 4.9, 1H, 

H-12), 2.57 (dd, J=13.5, 8.1, 1H, H-12). 13C NMR (101 MHz, MeOD) δ = 178.00 (C-43), 

163.65 (C-33), 161.22 (C-38), 156.73 (C-16), 152.26 (C-41), 151.19 (C-4), 139.50 (C-

28), 132.45 (C-22), 131.04 (C-14, C-18), 130.05 (C-31, C-35), 129.06 (C-25), 128.79 

(C-13), 128.12 (C-6), 127.54 (C-2), 127.38 (C-26), 126.34 (C-40), 125.86 (C-5),121.11 

(C-1), 116.46 (C-3), 116.15 (C-15, C-17), 114.42 (C-32, C-34), 107.23 (C-39), 59.59 

(C-9), 56.03 (C-37), 54.12 (C-8), 47.78 (C-24), 46.81 (C-11), 38.56 (C-12), 31.92 (C-

30). LC-MS (C18, ESI_MS) 613.1 [M+H]+; Rt = 7.30 min; HRMS (ESI): calculated for 

C33H33O6N4S [M+H]+ 613.2115, found 613.2105.  +244.3 (c=1, MeOH). 
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4-{[(3R)-7-(5-formylfuran-2-yl)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-

imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenyl 

N-benzylcarbamate (109) 

According to General Procedure 

II, reaction between THB 108 (20 

mg, 33 µmol) and 

benzylisocyanate (4.8 mg, 36 

µmol) afforded 109 as an orange 

solid (20 mg, 82%) Rf 0.23 (2% 

MeOH in DCM). Mp 121.8°C. 1H 

NMR (500 MHz, MeOD) δ = 9.48 

(s, 1H, H-44), 7.75 (s, 1H, H-24), 

7.55 (d, J=1.6, 1H, H-6), 7.51 (dd, 

J=8.3, 1.6, 1H, H-2), 7.46 (d, 

J=3.8, 1H, H-40), 7.36 (d, J=8.9, 2H, H-32, H-36), 7.34 – 7.30 (m, 4H, H-50, 51, 53, 

54), 7.28 – 7.22 (m, 1H, H-52), 7.12 (d, J=8.3, 2H, H-14, H-18), 7.02 (d, J=8.4, 2H, H-

15, H-17), 6.85 (d, J=3.8, 1H, H-39), 6.74 (d, J=8.9, 2H, H-33, H-35), 6.66 (s, 1H, H-

22), 6.52 (d, J=8.3, 1H, H-3), 4.72 – 4.61 (m, 2H, H-20), 4.36 (s, 2H, H-48), 4.24 – 4.16 

(m, 1H, H-9), 4.07 (d, J=16.1, 1H, H-11), 3.81 (d, J=16.1, 1H, H-11), 3.74 (s, 3H, H-38), 

3.60 (dd, J=15.4, 10.1, 1H, H-8), 3.54 (s, 3H, H-26), 2.99 (dd, J=15.3, 4.1, 1H, H-8), 

2.91 (dd, J=13.6, 5.4, 1H, H-12), 2.67 (dd, J=13.4, 7.6, 1H, H-12). 13C NMR (126 MHz, 

MeOD) δ = 178.15 (C-43), 163.86 (C-34), 161.33 (C-27), 157.05 (C-46), 152.44 (C-41), 

151.16 (C-16), 151.13 (C-4), 139.77 (C-49), 139.76 (C-24), 135.34 (C-13), 132.48 (C-

29), 130.92 (C-14, C-18), 130.20 (C-32, C-26), 129.35 (C-51, C-53), 192.25 (C-21), 

128.26 (C-6), 128.20 (C-50, C-54), 128.09 (C-52), 127.38 (C-22), 127.33 (C-40), 

126.44 (C-2), 122.68 (C-15, C-17), 120.93 (C-1), 116.49 (C-3), 114.55 (C-33, C-35), 

107.31 (C-39), 59.76 (C-9), 56.10 (C-38), 54.07 (C-8), 47.81 (C-20), 46.67 (C-11), 

45.59 (C-48), 38.85 (C-12), 31.94 (C-26). LC-MS (C18, ESI_MS) 746.2 [M+H]+; Rt = 

8.24 min; HRMS (ESI): calculated for C41H40O7N5S [M+H]+ 746.2643, found 746.2636. 

 +156.8 (c=1, CHCl3). 
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§ 10.3.7 Synthesis of 4 t h  Generation THBs 

 

4-{[(3R)-4-[(4-methoxybenzene)sulfonyl]-7-(2-methoxypyridin-4-yl)-1-[(1-methyl-

1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-

zl]methyl}phenol (111) 

According to General Procedure IVa reaction 

between THB 74a (150 mg, 0.25 mmol) and 2-

methoxypyridine-4-boronic acid (42 mg, 0.28 mmol) 

afforded 111 as an offwhite solid (40 mg, 25%) Rf 

0.72 (DCM/MeOH, 10:1) Mp 154.7 °C. 1H NMR 

(400 MHz, MeOD) δ = 8.10 (d, J=5.5, 1H, H-42), 

7.56 (s, 1H, H-34), 7.41 (d, J=2.4, 2H, H-6), 7.40 – 

7.37 (m, 1H, H-2), 7.35 (d, J=8.9, 2H, H-27), 7.18 

(dd, J=5.5, 1.7, 1H, H-43), 6.97 (d, J=1.7, 1H, H-

39), 6.91 (d, J=8.1, 2H, H-15), 6.72 (d, J=8.9, 2H, H-26), 6.68 (s, 1H, H-32), 6.66 (d, 

J=8.3, 2H, H-18), 6.61 (d, J=8.2, 1H, H-3), 4.68 (d, J=17.2, 1H, H-11), 4.62 (d, J=16.9, 

1H, H-11), 4.22 – 4.12 (m, 1H, H-9), 4.09 (d, J=16.4, 1H, H-30), 3.94 (s, 3H, H-45), 

3.90 (d, J=16.6, 1H, H-30), 3.75 (s, J=6.7, 3H, H-29), 3.56 (s, J=17.6, 3H, H-37), 3.54 – 

3.48 (m, 1H, H-8), 2.97 (d, J=14.4, 1H, H-8), 2.80 (dd, J=12.9, 4.7, 1H, H-12), 2.56 – 

2.45 (m, 1H, H-12). 13C NMR (101 MHz, MeOD) δ = 166.54 (C-40), 164.08 (C-25), 

157.19 (C-17), 152.27 (C-36), 151.76 (C-4), 148.01 (C-42), 139.98 (C-34), 133.09 (C-

22), 131.29 (C-15, C-19), 130.44 (C-23, C-27), 129.94 (C-1), 129.86 (C-31), 129.64 (C-

6), 129.53 (C-14), 128.26 (C-32), 127.67 (C-2), 117.17 (C-3), 116.33 (C-16, C-18), 

115.66 (C-43), 114.68 (C-24, C-26), 107.65 (C-39), 60.18 (C-9), 56.12 (C-29), 54.81 

(C-8), 54.12 (C-45), 47.95 (C-30), 47.17 (C-11), 38.61 (C-12), 31.87 (C-37). LC-MS 

(C18-ESI): 626.13 [M+H]+ Rt=7.67min. HRMS (ESI) calculated for C34H36O5N5S 

[M+H]+:626.2429, found: 626.2432. +84.5 (c=1.1, CHCl3).  
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3-[(3R)-3-[(4-hydroxyphenyl)methyl]-4-[(4-methoxybenzene)sulfonyl]-1-[(1-

methyl-1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-7-

yl]benzonitrile (112) 

According to General Procedure IVa reaction 

between THB 74a (150 mg, 0.25 mmol) and 3-

cyanophenylboronic acid (41 mg, 0.28 mmol) 

afforded 112 as an yellow solid (81 mg, 52%) Rf 

0.54 (DCM/MeOH, 10:1) Mp 157.6 °C 1H NMR (500 

MHz, MeOD) δ = 7.86 (dd, J=1.8, 1.8, 1H, H-39), 

7.84 (ddd, J=7.5, 1.7, 1.7, 1H, H-43), 7.59 (ddd, 

J=7.7, 1.5, 1.5, 1H, H-41), 7.55 (s, 1H, H-34), 7.54 

(dd, J=7.5, 7.5 1H, H-42), 7.34 (d, J=8.7, 2H, H-23, 

H-27), 7.34 (d, J=2.7, 1H, H-6), 7.31 (dd, J=6.5, 2.7, 1H, H-2), 6.89 (d, J=8.1, 2H, H-15, 

H-19), 6.72 (d, J=8.9, 2H, H-24, H-26), 6.68 (s, 1H, H-32), 6.66 – 6.64 (m, 1H, H-3), 

6.65 (d, J=8.3, 2H, H-16, H-18), 4.67 (d, J=17.0, 1H, H-11), 4.61 (d, J=16.9, 1H, H-11), 

4.18 – 4.10 (m, 1H, H-9), 4.07 (d, J=15.8, 1H, H-30), 3.90 (d, J=15.8, 1H, H-30), 3.74 

(s, 3H, H-29), 3.55 (s, 3H, H-37), 3.50 (dd, J=14.7, 8.4, 1H, H-8), 2.96 (dd, J=15.1, 4.2, 

1H, H-8), 2.79 (dd, J=13.9, 6.1, 1H, H-12), 2.51 – 2.39 (m, 1H, H-12).13C NMR (126 

MHz, MeOD) δ = 164.06 (C-25), 157.14 (C-17), 151.17 (C-4), 143.03 (C-36), 139.98 

(C-34), 133.08 (C-22), 131.82 (C-43), 131.27 (C-23, C-27), 131.00 (C-42), 130.96 (C-

39), 130.65 (C-41), 130.47 (C-15, C-19), 129.96 (C-6), 129.87 (C-31), 129.62 (C-14), 

129.60 (C-2), 128.35 (C-32), 127.67 (C-1), 119.93 (C-44), 117.53 (C-3), 116.33 (C-16, 

C-18), 114.71 (C-24, C-26), 113.85 (C-40), 60.06 (C-9), 56.14 (C-29), 54.93 (C-8), 

47.91 (C-11), 47.24 (C-30), 38.33 (C-12), 31.89 (C-37). LC-MS (C18-ESI): 620.18 

[M+H]+ Rt=8.05 min. HRMS (ESI) calculated for C35H34O4N5S [M+H]+: 620.2319, found: 

620.2326. +78.5 (c=1.5, CHCl3). 
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4-{[(3R)-7-(3,5-difluorophenyl)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-

imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenol 

(113) 

According to General Procedure IVa reaction 

between THB 74a (150 mg, 0.25 mmol) and 3,5-

difluorophenyl boronic acid (44 mg, 0.28 mmol) 

afforded 113 as an orange solid (112 mg, 71%) 

Rf 0.68 (DCM/MeOH, 10:1) Mp 160.6 °C, 1H 

NMR (500 MHz, MeOD) δ = 7.54 (s, 1H, H-34), 

7.33 (d, J=9.0, 2H, H-23, H-27), 7.31 (s, 1H, H-

6), 7.30 – 7.27 (m, 1H, H-2), 7.14 (dd, J=8.9, 

2.2, 2H, H-39, H-43), 6.88 (d, J=8.2, 2H, H-15, 

H-19), 6.81 (tt, J=9.0, 2.4, 1H, H-41), 6.72 (d, J=9.0, 2H, H-24, H-26), 6.65 (d, J=8.2, 

2H, H-16, H-18), 6.64 – 6.63 (m, 1H, H-3), 6.62 (s, 1H, H-32), 4.65 (d, J=17.6, 1H, H-

11), 4.59 (d, J=17.6, 1H, H-11), 4.18 – 4.10 (m, 1H, H-9), 4.06 (d, J=15.7, 1H, H-30), 

3.89 (d, J=15.7, 1H, H-30), 3.75 (s, 3H, H-29), 3.54 (s, 3H, H-37), 3.51 – 3.44 (m, 1H, 

H-8), 2.94 (d, J=13.4, 1H, H-8), 2.77 (d, J=8.2, 1H, H-12), 2.51 – 2.38 (m, 1H, H-

12).13C NMR (126 MHz, MeOD) δ = 164.94 (d, J=-246.3 (C-40)), 164.83 (d, J=-246.6 

(C-42)), 164.08 (C-25), 157.16 (C-17), 151.46 (C-4), 134.75 (C-34), 133.07 (C-22), 

131.28 (C-15, C-19), 131.11 (C-14), 130.46 (C-23, C-27), 130.00 (C-31), 129.55 (d, 

J=5.4 (C-36)), 128.84 (C-6), 128.25 (C-32), 127.59 (C-2), 118.68 (C-3), 117.36 (d, 

J=4.0 (C-1)) 116.35 (C-16, C-18), 114.73 (C-24, C-26), 109.78 (d, J=26.1, (C-39, C-

43)), 102.23 (d, J=24.3 (C-41) ) 60.04 (C-9), 56.13 (C-29), 54.10 (C-8), 47.88 (C-30), 

47.20 (C-11), 37.63 (C-12), 31.59 (C-37). LC-MS (C18_ESI): 631.18 [M+H]+ Rt = 8.84; 

HRMS (ESI) calculated for C34H33O4N4F2S [M+H]+: 631.2185, found: 631.2183.  

+49.4 (c=0.5, CHCl3). 
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4-{[(3R)-7-(furan-2-yl)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-5-

yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenol (114) 

According to General Procedure IVa reaction 

between THB 74a (150 mg, 0.25 mmol) and 2-

furylboronic acid (31 mg, 0.28 mmol) afforded 114 

as a redbrown solid (104 mg, 71%) Rf 0.48 

(DCM/MeOH, 10:1), Mp 186.5 °C 1H NMR (500 

MHz, MeOD) δ = 7.56 (s, 1H, H-34), 7.49 (d, J=1.9, 

1H, H-41), 7.41 (s, 1H, H-6), 7.38 (d, J=8.6, 1H, H-

2), 7.34 (d, J=8.9, 2H, H-23, H-27), 6.89 (d, J=8.2, 

2H, H-15, H-19), 6.73 (d, J=8.9, 2H, H-24, H-26), 

6.69 (s, 1H, H-32), 6.65 (d, J=8.3, 2H, H-16, H-18), 6.63 – 6.61 (m, 1H, H-3), 6.60 (d, 

J=3.2, 1H, H-39), 6.47 (dd, J=3.3, 1.8, 1H, H-40), 4.65 (d, J=16.7, 1H, H-11), 4.59 (d, 

J=16.8, 1H, H-11), 4.15 – 4.06 (m, 1H, H-9), 4.03 (d, J=15.6, 1H, H-30), 3.90 (d, 

J=15.6, 1H, H-30), 3.75 (s, 3H, H-29), 3.57 (s, 3H, H-37), 3.45 (dd, J=14.8, 8.2, 1H, H-

8), 2.89 (dd, J=14.9, 3.5, 1H, H-8), 2.80 (dd, J=13.8, 6.1, 1H, H-12), 2.47 – 2.39 (m, 

1H, H-12).13C NMR (126 MHz, MeOD) δ = 164.08 (C-25), 157.11 (C-17), 155.25 (C-

36), 150.48 (C-4), 142.59 (C-41), 139.96 (C-31), 139.93 (C-34), 133.10 (C-22), 131.23 

(C-23, C-27), 130.49 (C-15, C-19), 130.44 (C-3), 129.73 (C-14), 128.43 (C-32), 126.78 

(C-5), 126.65 (C-6), 124.77 (C-2), 120.77 (C-1), 116.29 (C-24, C-26), 114.71 (C-16, C-

18), 112.61 (C-40), 104.36 (C-39), 59.95 (C-9), 56.09 (C-29), 54.76 (C-8), 47.81 (C-

11), 47.23 (C-30), 38.20 (C-12), 30.66 (C-37). LC-MS (C18_ESI): 585.15 [M+H]+ Rt = 

7.96min HRMS (ESI) calculated for C32H33O5N4S [M+H]+: 585.2162, found: 585.2166. 

 -28.3 (c=1, MeOH). 

 

(3R)-N-benzyl-3-[(4-hydroxyphenyl)methyl]-4-[(4-methoxybenzene)sulfonyl]-1-[(1-

methyl-1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepine-7-

carboxamide (115) 

A dry microwave tube was charged with THB 

74a (100 mg, 167 µmol), benzylamine (55 µL, 

502 µmol), Mo(CO)6 (44 mg, 167 µmol), 

Herrmann‟s palladacycle (7 mg, 8 µmol), 

tri(tert-butyl)phosphonium tetrafluoroborate 

(Fu‟s salt, 73 mg, 251 µmol) and DBU (75 µL, 

502 µmol). Dry THF (2 mL) was added, the 

reaction mixture was purged with argon and 

irradiated in the microwave at 160 ºC for 30 minutes. After cooling, the reaction mixture 
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was taken up in DCM:MeOH (90:10), filtered through Celite, washed with NH4Cl (sat.) 

and brine, dried over Na2SO4 and concentrated in vacuo. Purification by flash column 

chromatography (DCM:MeOH 99:1  92:8) afforded 115 as a white solid (17 mg, 

16%). 1H NMR (400 MHz, DMSO) δ 8.73 (t, J = 6.0 Hz, 1H), 7.58 (s, 1H), 7.46 (d, J = 

8.7 Hz, 1H), 7.36 – 7.28 (m, 7H), 7.23 (t, J = 6.6 Hz, 1H), 7.05 (s, 1H), 6.96 (d, J = 8.3 

Hz, 2H), 6.74 (d, J = 8.9 Hz, 2H), 6.67 (d, J = 8.2 Hz, 2H), 6.31 (d, J = 7.8 Hz, 1H), 

4.59 (d, J = 17.5 Hz, 1H), 4.51 – 4.41 (m, 3H), 4.35 – 4.23 (m, J = 17.0 Hz, 2H), 3.84 – 

3.74 (m, J = 16.9, 10.9 Hz, 1H), 3.74 (s, 3H), 3.66 (s, 3H), 3.15 – 3.06 (m, 1H), 3.02 – 

2.90 (m, J = 12.2 Hz, 1H), 2.75 – 2.57 (m, 2H). LC-MS (C4, ESI_MS) 652.2 [M+H]+; Rt 

= 7.49 min. HRMS (ESI): calculated for C36H38N5O5S [M+H]+ 652.2588, found 

652.2585. 

 

 

(R)-N-hexyl-3-(4-hydroxybenzyl)-4-(4-methoxyphenylsulfonyl)-1-((1-methyl-1H-

imidazol-5-yl)methyl)-2,3,4,5-tetrahydro-1H-benzo[e][1,4]diazepine-7-

carboxamide(116).  

A dry microwave tube was charged with THB 

74a (100 mg, 167 µmol), hexylamine (36 µL, 

502 µmol), Mo(CO)6 (44 mg, 167 µmol), 

Herrmann‟s palladacycle (7 mg, 8 µmol), 

tri(tert-butyl)phosphonium tetrafluoroborate 

(Fu‟s salt, 73 mg, 251 µmol) and DBU (75 µL, 

502 µmol). Dry THF (2 mL) was added, the 

reaction mixture was purged with argon and 

irradiated in the microwave at 160 ºC for 30 minutes. After cooling, the reaction mixture 

was taken into DCM:MeOH (90:10), filtered through celite, washed with NH4Cl (sat.) 

and brine, dried over Na2SO4 and concentrated in vacuo. Purification by flash column 

chromatography (DCM:MeOH 99:1  92:8) afforded 116 as a white solid (14 mg, 

13%). 1H NMR (400 MHz, DMSO) δ 9.23 (s, 1H), 8.39 (br s, 1H), 8.11 (t, J = 5.6 Hz, 

1H), 7.52 (s, 1H), 7.41 (d, J = 8.8 Hz, 1H), 7.31 (d, J = 8.9 Hz, 2H), 6.98 – 6.88 (m, 

3H), 6.74 (d, J = 9.0 Hz, 2H), 6.66 (d, J = 8.5 Hz, 2H), 6.31 (d, J = 8.8 Hz, 1H), 4.59 (d, 

J = 17.5 Hz, 1H), 4.45 (d, J = 17.7 Hz, 1H), 4.30 – 4.15 (m, J = 16.8 Hz, 2H), 3.81 – 

3.68 (m, 5H), 3.62 (s, 4H), 3.23 – 3.17 (m, 1H), 3.13 – 3.06 (m, 1H), 2.93 (d, J = 10.9 

Hz, 1H), 2.74 – 2.55 (m, 1H), 1.49 (d, J = 7.0 Hz, 2H), 1.28 (t, J = 6.0 Hz, 6H), 0.86 (t, J 

= 6.6 Hz, 3H). LC-MS (C4, ESI_MS) 646.2 [M+H]+, 668.3 [M+Na]+; Rt = 8.07 min. 

HRMS (ESI): calculated for C35H44N5O5 [M+H]+ 646.3058, found 646.3054. 
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1-{4-[(3R)-3-[(4-hydroxyphenyl)methyl]-4-[(4-methoxybenzene)sulfonyl]-1-[(1-

methyl-1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-7- 

yl]piperazin-1-yl}ethan-1-one (117) 

A dry microwave tube was charged with THB 

74a (200 mg, 335 µmol), ligand 95 (10 mg, 33 

µmol), Pd2(dba)3 (15 mg, 17 µmol) and NaOtBu 

(64 mg, 669 µmol). Dry THF (2 mL) was added, 

followed by piperazine (51 mg, 402 µmol). The 

reaction mixture was purged with argon and 

irradiated in the microwave at 100 ºC for 8h. 

After cooling, the reaction mixture was poured 

into water and the pH was adjusted to 7-8 using NH4Cl (sat). The aqueous layer was 

extracted three times with DCM, the combined organic layers were washed with brine, 

dried over Na2SO4 and concentrated in vacuo. Purification by flash column 

chromatography (DCM:MeOH 98:2  90:10) afforded 117 as a white solid (65 mg, 

30%). 1H NMR (400 MHz, DMSO) δ 7.39 (s, 1H), 7.35 – 7.29 (m, J = 8.9 Hz, 2H), 6.88 

(d, J = 8.4 Hz, 2H), 6.79 (d, J = 9.0 Hz, 4H), 6.69 (d, J = 9.0 Hz, 1H), 6.63 (d, J = 8.4 

Hz, 2H), 6.56 – 6.47 (m, 1H), 4.51 (d, J = 16.7 Hz, 1H), 4.38 (d, J = 16.9 Hz, 1H), 4.19 

(d, J = 16.2 Hz, 1H), 4.16 – 4.09 (m, 1H), 4.03 – 3.91 (m, J = 15.0 Hz, 1H), 3.77 (s, 

3H), 3.76 (s, 3H), 3.62 – 3.56 (m, J = 9.4, 4.3 Hz, 4H), 3.37 – 3.28 (m, J = 8.5 Hz, 1H), 

3.09 – 3.02 (m, J = 4.9 Hz, 2H), 3.02 – 2.90 (m, J = 13.1, 6.6 Hz, 2H), 2.81 – 2.72 (m, 

1H), 2.66 (dd, J = 13.8, 6.2 Hz, 1H), 2.49 – 2.41 (m, J = 6.1 Hz, 1H), 2.05 (s, 3H); LC-

MS (C4, ESI_MS) 645.2 [M+H]+; Rt = 6.37 min. HRMS (ESI): calculated for 

C34H41N6O5S [M+H]+ 645.2854, found 645.2851. 

 

4-{[(3R)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-5-yl)methyl]-7-

(phenylamino)-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenol (118) 

A dry Schlenk tube was charged with THB 74a 

(200 mg, 335 µmol), ligand 95 (10 mg, 33 µmol), 

Pd2(dba)3 (15 mg, 17 µmol) and NaOtBu (64 mg, 

669 µmol). Dry THF (2 mL) was added, followed by 

aniline (37 µL, 402 µmol). The reaction mixture was 

purged with argon and stirred under reflux 

overnight. After cooling, the reaction mixture was 

poured into water and the pH was adjusted to 7–8 

using NH4Cl (sat). The aqueous layer was extracted three times with DCM, the 

combined organic layers were washed with brine, dried over Na2SO4 and concentrated 
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in vacuo. Purification by flash column chromatography (DCM:MeOH 98:2  90:10) 

afforded 118 as a white solid (170 mg, 83%). 1H NMR (400 MHz, DMSO) δ 7.42 (s, 

1H), 7.31 (d, J = 8.8 Hz, 2H), 7.16 (t, J = 7.7 Hz, 2H), 6.93 (d, J = 8.1 Hz, 2H), 6.90 – 

6.77 (m, 7H), 6.71 (t, J = 7.3 Hz, 1H), 6.63 – 6.56 (m, J = 8.3 Hz, 3H), 4.54 (d, J = 16.5 

Hz, 1H), 4.31 (d, J = 16.5 Hz, 1H), 4.18 (d, J = 15.9 Hz, 1H), 4.13 – 3.97 (m, 2H), 3.77 

(s, 3H), 3.75 (s, 3H), 3.35 – 3.26 (m, J = 13.8 Hz, 1H), 2.82 – 2.71 (m, J = 11.6 Hz, 

1H), 2.65 (dd, J = 13.6, 6.8 Hz, 1H), 2.46 – 2.37 (m, 1H); LC-MS (C4, ESI_MS) 610.1 

[M+H]+,; Rt = 7.73 min; HRMS (ESI): calculated for C34H36N5O4S [M+H]+ 610.2483, 

found 610.2479. 

 

§ 10.3.8 Synthesis of 5 t h  Generation THBs 

 

4-{[(3R)-7-{5-[(1E)-(hydroxyimino)methyl]furan-2-yl}-4-[(4-methoxybenzene)-

sulfonyl]-1-[(1-methyl-1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-

benzodiazepin-3-yl]methyl}phenol (119) 

A mixture of THB 108 (25 mg, 163 µmol), 

NH4OH.HCl (4.3 mg, 61.2 µmol) and Et3N 

(0.1 mL) in 0.5 mL DCM and 0.5 mL MeOH 

was stirred in a closed flask at 25°C for 3 h 

after which the solvent was evaporated. 

The residue was purified by flash 

chromatography (3% MeOH in DCM) to 

give 119 (25 mg, 97%) Rf 0.25 (6% MeOH 

in DCM) Mp 96.5 °C 1H NMR (400 MHz, 

MeOD) δ = 7.99 (s, 1H, H-44), 7.55 (s, 1H, H-46), 7.49 (d, J=2.2, 1H, H-6), 7.48 (s, 1H, 

H-34), 7.43 (dd, J=8.5, 2.4, 1H, H-2), 7.36 (d, J=9.0, 2H, H-23, H-27), 6.92 (d, J=8.4, 

2H, H-15, H-19), 6.74 (d, J=9.0, 2H, H-24, H-26), 6.72 (d, J=3.5, 1H, H-39), 6.69 (d, 

J=3.5, 1H, H-40), 6.66 (d, J=8.4, 2H, H-16, H-18), 6.66 (s, 1H, H-32), 6.56 (d, J=8.4, 

1H, H-3), 4.67 (d, J=16.9, 1H, H-11), 4.61 (d, J=16.9, 1H, H-11), 4.18 – 4.11 (m, 1H, H-

9), 4.04 (d, J=15.9, 1H, H-30), 3.85 (d, J=16.0, 1H, H-30), 3.75 (s, 3H, H-29), 3.55 (s, 

3H, H-37), 3.51 (dd, J=15.2, 8.6, 1H, H-8), 2.93 (dd, J=15.1, 3.7, 1H, H-8), 2.81 (dd, 

J=14.1, 6.1, 1H, H-12), 2.49 (dd, J=13.9, 7.4, 1H, H-12).13C NMR (126 MHz, MeOD) δ 

= 164.11 (C-25), 157.13 (C-17), 156.74 (C-36), 150.40 (C-4), 147.83 (C-41), 140.81 

(C-43), 137.16 (C-34), 133.06 (C-22), 131.29 (C-15, C-19), 130.46 (C-23, C-

27),130.36(C-31), 129.57 (C-14), 127.15 (C-6), 126.82(C-32), 125.37 (C-5), 125.28 (C-

2), 120.73 (C-1), 117.02 (C-3), 116.33 (C-16, C-18), 115.82 (C-39), 114.73 (C-24, C-

26), 106.31 (C-40), 60.08 (C-9), 56.14 (C-29), 54.75 (C-8), 47.88 (C-30), 47.10 (C-11), 
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32.24 (C-12), 30.68 (C-37). LC-MS (C18_ESI): 628.15 [M+H]+ Rt=6.06min. HRMS 

(ESI) calculated for C33H34O6N5S [M+H]+: 628.2224, found: 628.2220. +44.6 (c=1, 

MeOH). 

 

 

5-[(3R)-3-[(4-hydroxyphenyl)methyl]-4-[(4-methoxybenzene)sulfonyl]-1-[(1-

methyl-1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-7-

yl]furan-2-carbonitrile(120) 

A mixture of THB 108 (100 mg, 163 µmol), 

NH4OH.HCl (13.6 mg, 196 µmol) and Et3N (68 

µL, 489 µmol) in 0.5 mL DCM and 0.5 ml MeOH 

was stirred in a closed flask at 25°C for 3 h after 

which the solvent was evaporated. The residue 

was dissolved in DCM and cooled to 0°C. TFAA 

(23 µL, 163 µmol) and Et3N (136 µL, 978 µmol) 

were added and the mixture was allowed to 

come to room temperature. After stirring for 2 h 

an extra equiv. of TFAA was added. After stirring another 2 h, the reaction was 

quenched with NaHCO3 (sat) and extracted three times with DCM. The combined 

organic layers were washed with brine, dried over Na2SO4 and concentrated in vacuo. 

The crude product was purified by column chromatography (DCM: MeOH 98:2). Rf 

0.28, Mp 136 °C, 1H NMR (500 MHz, MeOD) δ = 7.56 (s, 1H, H-34), 7.46 (d, J=2.2, 1H, 

H-6), 7.41 (dd, J=8.5, 2.2, 1H, H-2), 7.36 (d, J=8.9, 2H, H-27), 7.34 (d, J=3.7, 1H, H-

40), 6.94 (d, J=8.3, 2H, H-19), 6.78 (d, J=3.7, 1H, H-39), 6.75 (d, J=8.9, 2H, H-26), 

6.67 (d, J=8.4, 2H, H-18), 6.63 (s, 1H, H-32), 6.55 (d, J=8.5, 1H, H-3), 4.68 (d, J=17.2, 

1H, H-30), 4.62 (d, J=17.3, 1H, H-30), 4.18 (s, 1H, H-9), 4.08 (d, J=16.1, 1H, H-11), 

3.84 (d, J=15.8, 1H, H-11), 3.76 (s, 3H, H-29), 3.61 – 3.54 (m, 1H, H-8), 3.55 (s, 3H, H-

37), 2.99 (dd, J=15.2, 4.1, 1H, H-8), 2.82 (dd, J=13.7, 5.6, 1H, H-12), 2.60 – 2.49 (m, 

1H, H-12). 13C NMR (126 MHz, MeOD) δ = 164.13 (C-25), 160.47 (C-36), 157.20 (C-

17), 151.61 (C-4), 139.99 (C-34), 133.06 (C-22), 131.30 (C-15, C-19), 130.43 (C-23, C-

27), 129.68 (C-31), 129.46 (C-14), 128.09 (C-32), 127.86 (C-6), 125.93 (C-2), 125.81 

(C-40), 125.14 (C-41), 121.53 (C-1), 116.89 (C-3), 116.35 (C-16, C-18), 114.72 (C-24, 

C-26), 113.07 (C-43), 105.62 (C-39), 60.19 (C-9), 56.14 (C-29), 54.58 (C-8), 47.89 (C-

30), 47.06 (C-11), 38.74 (C-12), 31.84 (C-37). LC-MS (C18_ESI): 610.2 [M+H]+ Rt = 

6.43min HRMS (ESI) calculated for C33H32O5N5S [M+H]+: 610.2119, found: 610.2113. 

 +34.2 (c=1, MeOH). 
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4-{[(3R)-7-(2-chloropyridin-4-yl)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-

imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenol 

(123) 

A dry Schlenk tube was charged with THB 74a (0.5 

g, 0.84 mmol), bis(pinacolato)diboron (0.32 g, 1.26 

mmol), PdCl2(dppf) (34 mg, 42 µmol), and 

potassium acetate (0.8 g, 8.4 mmol) in DMSO. The 

mixture was degassed and heated to 95°C 

overnight. The resulting mixture was diluted with 

ethyl acetate, and the solution was filtered and 

washed with brine. The resulting organic layer was 

dried and concentrated. The resulting boronate 122 

was used as a crude in the next step. Following General Procedure IVb, a solution of 

boronate 122 (0.2 g, 31 µmol) in DME/water was allowed to react with 4-bromo-2-

chloropyridine (66 mg, 34 µmol) to give 123 as a white solid(109 mg, 56%) Rf 0.27 (5% 

MeOH in DCM), Mp 136 °C. 1H NMR(400 MHz, MeOD) δ = 8.24 (d, J=5.4, 1H, H-42), 

7.54 (d, J=1.8, 1H, H-39), 7.50 (s, 1H, H-34), 7.46 (dd, J=5.4, 1.8, 1H, H-43), 7.37 (d, 

J=2.3, 1H, H-6), 7.33 (dd, J=8.7, 2.1, 1H, H-2), 7.32 (d, J=8.9, 2H, H-23, H-27), 6.90 (d, 

J=8.4, 2H, H-15, H-19), 6.68 (d, J=9.0, 2H, H-24, H-26), 6.67 (d, J=8.4, 2H, H-16, H-

18), 6.63 (s, 1H, H-32), 6.52 (d, J=8.8, 1H, H-3), 4.61 (s, 2H, H-11), 4.19 – 4.10 (m, 1H, 

H-9), 4.04 (d, J=16.2, 1H, H-30), 3.80 (d, J=16.2, 1H, H-30), 3.72 (s, 3H, H-29), 3.59 – 

3.52 (m, 1H, H-8), 3.51 (s, 3H, H-37), 2.98 (dd, J=15.2, 4.0, 1H, H-8), 2.78 (dd, J=13.7, 

5.3, 1H, H-12), 2.52 (dd, J=13.5, 7.3, 1H, H-12).13C NMR (101 MHz, MeOD) δ = 163.70 

(C-25), 156.85 (C-17), 152.63 (C-40), 152.17 (C-4), 151.74 (C-36), 150.38 (C-42), 

139.69 (C-34), 132.59 (C-22), 131.11 (C-15, C-19), 130.14 (C-23, C-27), 129.54 (C-6), 

129.14 (C-31), 128.94 (C-14), 127.96 (C-32), 127.64 (C-1), 121.49 (C-39), 120.48 (C-

43), 116.88 (C-3), 116.22 (C-24, C-26), 114.48 (C-16, C-18), 59.74 (C-9), 56.08 (C-29), 

54.36 (C-8), 47.88 (C-30), 46.93 (C-11), 38.50 (C-12), 31.88 (C-37).LC-MS (C18_ESI): 

630.19 [M+H]+ Rt = 6.25min HRMS (ESI) calculated for C33H33O4N5ClS [M+H]+: 

630.19363, found: 630.1932. +251 (c=1, MeOH/CHCl3, 1:1). 
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4-{[(3R)-7-(5-formylfuran-2-yl)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-

imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenyl 

trifluoromethanesulfonate (124) 

According to General Procedure III, reaction 

between THB 108 (200 mg, 0.33 mmol) and 86 

(175 mg, 0.49 mmol) afforded 124 as an orange 

solid. (210 mg, 86%) Rf 0.72 (10% MeOH in 

DCM), Mp 144.6 °C. 1H NMR (500 MHz, MeOD) 

δ = 9.52 (s, 1H, H-45), 7.61 (d, J=2.2, 1H, H-6), 

7.60 (s, 1H, H-18), 7.55 (dd, J=8.5, 2.0, 1H, H-

2), 7.52 (d, J=3.7, 1H, H-40), 7.39 (d, J=8.8, 2H, 

H-32, H-36), 7.32 (d, J=8.5, 2H, H-23, H-27), 

7.26 (d, J=8.5, 2H, H-24, H-26), 6.93 (d, J=3.7, 

1H, H-39), 6.76 (d, J=8.8, 2H, H-33, H-35), 6.70 (s, 1H, H-16), 6.62 (d, J=8.5, 1H, H-3), 

4.78 (d, J=17.1, 1H, H-11), 4.69 (d, J=17.2, 1H, H-11), 4.33 – 4.26 (m, 1H, H-9), 4.17 

(d, J=16.0, 1H, H-14), 3.93 (d, J=16.0, 1H, H-14), 3.76 (s, 3H, H-38), 3.65 (dd, J=15.5, 

9.4, 1H, H-8), 3.60 (s, 3H, H-20), 3.03 (dd, J=15.2, 3.9, 1H, H-8), 2.95 (dd, J=13.8, 6.9, 

1H, H-21), 2.69 – 2.60 (m, 1H, H-21). 13C NMR (126 MHz, MeOD) δ = 178.47 (C-43), 

164.20 (C-34), 160.22 (C-12), 152.46 (C-41), 152.08 (C-4), 149.79 (C-25), 140.08 (C-

18), 140.02 (C-22), 133.08 (C-29), 132.47 (C-23, C-27), 130.48 (C-32, C-36), 128.48 

(C-6), 128.17 (C-16), 127.28 (C-40), 126.62 (C-2), 122.32 (C-24, C-26), 121.69(C-1), 

117.11 (C-3), 114.74 (C-33, C-35), 107.55 (C-39), 59.91 (C-9), 56.12 (C-38), 54.32(C-

8), 47.72 (C-14), 47.13 (C-11), 37.45 (C-21), 31.82 (C-20). LC-MS (C18_ESI): 745.15 

[M+H]+, Rt=8.99min; HRMS (ESI) calculated for C34H32O6N4F3S2 [M+H]+: 745.16082, 

found: 745.15982. +144.2 (c=0.42, CHCl3). 
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5-[(3R)-3-{[4-(4-chlorophenyl)phenyl]methyl}-4-[(4-methoxybenzene)sulfonyl]-1-

[(1-methyl-1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-7-

yl]furan-2-carbaldehyde(125) 

According to General Procedure IVb 

reaction between THB 124 (50 mg, 0.075 

mmol) and parachlorobenzylboronic acid (12 

mg, 0.07 mmol) afforded125 as an orange 

solid (40 mg, 84%). Rf 0.29 (3% MeOH in 

DCM), Mp 114.7 °C. 1H NMR (500 MHz, 

MeOD) δ = 9.50 (s, 1H, H-51), 7.61 (d, 

J=8.6, 2H, H-43), 7.60 (d, J=2.3, 1H, H-6), 

7.56 (s, 1H, H-34), 7.54 (dd, J=8.6, 2.3, 1H, 

H-2), 7.50 (d, J=8.0, 2H, H-18), 7.50 (d, 

J=3.8, 1H, H-46), 7.43 (d, J=8.6, 2H, H-40), 7.38 (d, J=8.9, 2H, H-27), 7.22 (d, J=8.0, 

2H, H-15), 6.91 (d, J=3.8, 1H, H-45), 6.72 (d, J=8.9, 2H, H-26), 6.67 (s, 1H, H-32), 6.60 

(d, J=8.6, 1H, H-3), 4.76 (d, J=17.1, 1H, H-11), 4.68 (d, J=17.2, 1H, H-11), 4.34 – 4.25 

(m, 1H, H-9), 4.14 (d, J=16.0, 1H, H-30), 3.90 (d, J=16.0, 1H, H-30), 3.69 (s, 3H, H-29), 

3.72 – 3.61 (m, 1H, H-8), 3.57 (s, 3H, H-37), 3.06 (dd, J=15.2, 4.1, 1H, H-8), 2.95 (dd, 

J=13.6, 6.1, 1H, H-12), 2.72 – 2.61 (m, 1H, H-12).13C NMR (126 MHz, MeOD) δ = 

178.49 (C-49), 164.14 (C-25), 161.62 (C-47), 152.86 (C-36), 152.61 (C-4), 140.75 (C-

38), 140.04 (C-34), 139.35 (C-17), 138.47 (C-14), 134.30 (C-41), 133.08 (C-22), 

131.02 (C-15, C-19), 130.43 (C-23, C-27), 129.94 (C-40, C-42), 129.71(C-31), 129.66 

(C-6), 129.35 (C-39, C-43), 128.49 (C-46), 128.19 (C-32), 127.94 (C-16, C-18), 126.59 

(C-2), 121.67(C-1), 117.05 (C-3), 114.73 (C-24, C-26), 107.52 (C-45), 60.02 (C-9), 

56.08 (C-29), 54.81 (C-8), 47.90 (C-30), 47.13 (C-11), 38.99 (C-12), 31.86 (C-37). LC-

MS (C18_ESI): 707.16 [M+H]+ Rt=7.46min; HRMS (ESI) calculated for C39H36O5N4ClS 

[M+H]+: 707.20895, found: 707.20863. +72.3 (c=0.6, CHCl3/MeOH 1:1). 
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4-{[(3R)-7-(5-cyanofuran-2-yl)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-

imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenyl 

N-benzylcarbamate (126) 

According to General Procedure 

II, reaction between THB 120 (22 

mg, 36 µmol) and benzyl-

isocyanate (5.4 mg, 40 µmol) 

afforded 126 as an orange solid 

(19 mg, 71%) Rf 0.24 (3% MeOH 

in DCM), Mp 155 °C. 1H NMR 

(500 MHz, MeOD)δ = 7.57 (s, 1H, 

H-34), 7.47 (d, J=2.3, 1H, H-6), 

7.42 (dd, J=8.6, 2.3, 1H, H-2), 

7.36 (d, J=8.8, 2H, H-23, H-27), 

7.34 (d, J=3.7, 1H, H-40) 7.35 – 7.31 (m, 4H, H-50, 51, 53, 54), 7.31 – 7.26 (m, 1H, H-

52), 7.12 (d, J=8.2, 2H, H-15, H-19), 7.00 (d, J=8.4, 2H, H-16, H-18), 6.78 (d, J=3.7, 

1H, H-39), 6.76 (d, J=8.9, 2H, H-24, H-26), 6.65 (s, 1H, H-32), 6.56 (d, J=8.0, 1H, H-3), 

4.72 (d, J=17.2, 1H, H-30), 4.63 (d, J=17.2, 1H, H-30), 4.36 (s, 2H, H-48), 4.25 – 4.16 

(m, 1H, H-9), 4.09 (d, J=16.0, 1H, H-11), 3.85 (d, J=15.9, 1H, H-11), 3.74 (s, 3H, H-29), 

3.61 (dd, J=15.3, 9.4, 1H, H-8), 3.54 (s, 3H, H-37), 2.99 (dd, J=15.2, 4.0, 1H, H-8), 2.90 

(dd, J=13.7, 5.6, 1H, H-12), 2.73 – 2.55 (m, 1H, H-12).13C NMR (126 MHz, MeOD) δ = 

164.18 (C-25), 160.45 (C-36), 157.40 (C-45), 151.58 (C-4), 151.43 (C-17), 140.26 (C-

49), 140.03 (C-34), 135.89 (C-14), 132.91 (C-22), 131.17 (C-15, C-19), 130.49 (C-23, 

C-27), 129.57 (C-5), 129.45 (C-31), 128.41 (C-50, C-54), 128.29 (C-51, C-53),128.19 

(C-52), 128.04 (C-32), 127.90 (C-6), 125.96 (C-40), 125.81 (C-2), 125.16 (C-41), 

122.83 (C-16, C-18), 121.58 (C-1), 116.86 (C-3), 114.78 (C-24, C-26), 113.06 (C-43), 

105.64 (C-39), 60.11 (C-9), 56.16 (C-29), 54.44 (C-8), 47.89 (C-30), 46.91 (C-11), 

45.72 (C-48), 38.83 (C-12), 31.84 (C-37). LC-MS (C18, ESI_MS) 743.30 [M+H]+; Rt = 

8.48 min; HRMS (ESI) calculated for C41H40O6N6S [M+H]+ 744.2725, found 744.2693. 

+172.84 (c=0.84, MeOH). 
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5-[(3R)-3-{[4-(benzyloxy)phenyl]methyl}-4-[(4-methoxybenzene)sulfonyl]-1-[(1-

methyl-1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-7-

yl]furan-2-carbonitrile(127) 

According to General Procedure I, reaction 

between THB 120 (20 mg, 33 µmol) and benzyl 

bromide (6.2 mg, 36 µmol) afforded 127as a 

white solid (16 mg, 69%). Rf 0.28 (3% MeOH in 

DCM), Mp 92 °C 1H NMR (500 MHz, MeOD) δ 

= 7.52 (s, 1H, H-42), 7.46 (d, J=2.3, 1H, H-6), 

7.44 – 7.40 (m, 2H, H-47, H-51), 7.42 (dd, 

J=7.6, 2.4, 1H, H-2) 7.38 – 7.34 (m, 2H, H-48, 

H-50), 7.36 (d, J=8.9, 2H, H-25, H-29), 7.31 (d, 

J=3.7, 1H, H-14), 7.31 – 7.27 (m, 1H, H-49), 

7.02 (d, J=8.4, 2H, H-34, H-38), 6.87 (d, J=8.5, 2H, H-35, H-37), 6.75 (d, J=3.7, 1H, H-

13), 6.73 (d, J=8.9, 2H, H-26, H-28), 6.64 (s, 1H, H-40), 6.56 (d, J=7.6, 1H, H-3), 5.05 

(s, 2H, H-45), 4.62 (s, 2H, H-11), 4.22 – 4.12 (m, 1H, H-9), 4.07 (d, J=16.1, 1H, H-20), 

3.84 (d, J=15.9, 1H, H-20), 3.75 (s, 3H, H-31), 3.59 – 3.55 (m, 1H, H-8), 3.54 (s, 3H, H-

44), 3.04 – 2.95 (m, 1H, H-8), 2.84 (dd, J=13.5, 5.4, 1H, H-32), 2.63 – 2.51 (m, 1H, H-

32). 13C NMR (126 MHz, MeOD) δ = 163.92 (C-27), 160.20 (C-12), 158.84 (C-36), 

151.47 (C-4), 139.87 (C-42), 138.52 (C-46), 132.81 (C-22), 131.19 (C-34, C-38), 

130.73 (C-33), 130.26 (C-25, C-29), 129.37 (C-48, C-50), 129.02(C-21), 128.74 (C-49), 

128.46 (C-47, C-51), 128.15 (C-40), 127.74 (C-6), 125.88 (C-2), 125.75 (C-15), 125.64 

(C-14), 125.03 (C-1), 116.84 (C-3), 115.92 (C-35, C-37), 114.60 (C-26, C-28), 112.95 

(C-17), 105.53 (C-13), 70.91 (C-45), 59.79 (C-9), 56.10 (C-31), 54.49 (C-8), 47.83 (C-

11), 47.03 (C-20), 38.43 (C-32), 31.84 (C-44). LC-MS (C18_ESI): 700.2 [M+H]+, 

Rt=7.22min; HRMS (ESI) calculated for C40H38O5N5S [M+H]+: 700.25882, found: 

700.25871.  +40.6 (c=0.6, CHCl3). 
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4-{[(3R)-7-(5-cyanofuran-2-yl)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-

imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}phenyl 

trifluoromethanesulfonate (128) 

According to General Procedure III, reaction 

between THB 120 (400 mg, 0.66 mmol) and 86 

(352 mg, 0.89 mmol) afforded 128 as a white 

solid which was used as a crude in the 

subsequent steps. 1H NMR (400 MHz, MeOD) 

δ = 7.58 (s, 1H, H-42), 7.48 (d, J=2.2, 1H, H-6), 

7.43 (dd, J=8.4, 2.2, 1H, H-2), 7.36 (d, J=8.9, 

2H, H-25, H-29), 7.34 (d, J=3.7, 1H, H-14), 7.28 

(d, J=8.5, 2H, H-34, H-38), 7.22 (d, J=8.7, 2H, 

H-35, H-37), 6.79 (d, J=3.7, 1H, H-13), 6.73 (d, 

J=8.8, 2H, H-26, H-28), 6.69 (s, 1H, H-40), 6.61 (d, J=8.4, 1H, H-3), 4.74 (d, J=16.8, 

1H, H-11), 4.65 (d, J=16.7, 1H, H-11), 4.29 – 4.20 (m, 1H, H-9), 4.13 (d, J=15.8, 1H, H-

20), 3.90 (d, J=15.9, 1H, H-20), 3.75 (s, 3H, H-31), 3.66 – 3.59 (m, 1H, H-8), 3.58 (s, 

3H, H-44), 3.00 (dd, J=15.1, 4.1, 1H, H-8), 2.92 (dd, J=13.8, 6.8, 1H, H-32), 2.65 – 2.53 

(m, 1H, H-32). LC-MS (C18_ESI): 742.08 [M+H]+, Rt=7.19min. 

 

 

5-[(3R)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-5-yl)methyl]-3-

{[4-(pyridin-3-yl)phenyl]methyl}-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-7-

yl]furan-2-carbonitrile(129) 

According to General Procedure IVb reaction 

between THB 128 (50 mg, 0.075 mmol) and 

3-pyridineboronic acid (9.1 mg, 0.07 mmol) 

afforded 129 as an yellow solid (32 mg, 

68%) Rf 0.24 (3% MeOH in DCM), Mp 114 

°C. 1H NMR (500 MHz, MeOD) δ = 8.80 (dd, 

J=2.4, 0.9, 1H, H-49), 8.51 (dd, J=4.9, 1.5, 

1H, H-47), 8.09 (ddd, J=8.0, 2.3, 1.6, 1H, H-

45) 7.58 (s, 1H, H-23), 7.55 (d, J=8.1, 2H, H-

29, H-33), 7.51 (ddd, J=7.9, 4.8, 0.8, 1H, H-46), 7.50 (s, 1H, H-6), 7.45 (d, J=8.4, 1H, 

H-2), 7.38 (d, J=8.9, 2H, H-35, H-37), 7.35 (d, J=3.7, 1H, H-26), 7.27 (d, J=8.0, 2H, H-

34, H-38), 6.80 (d, J=3.7, 1H, H-25), 6.72 (d, J=8.9, 2H, H-30, H-32), 6.69 (s, 1H, H-

21), 6.63 (d, J=8.5, 1H, H-3), 4.77 (d, J=17.0, 1H, H-11), 4.68 (d, J=17.1, 1H, H-11), 

4.29 (s, 1H, H-9), 4.14 (d, J=16.0, 1H, H-13), 3.93 (d, J=16.0, 1H, H-13), 3.70 (s, 3H, 
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H-40), 3.69 – 3.61 (m, 1H, H-8), 3.59 (s, 3H, H-41), 3.06 (dd, J=15.2, 4.0, 1H, H-8), 

2.96 (dd, J=13.6, 6.4, 1H, H-12), 2.69 – 2.59 (m, 1H, H-12).13C NMR (126 MHz, MeOD) 

δ = 164.14 (C-31), 160.41 (C-15), 151.95 (C-4), 148.62 (C-47), 148.26 (C-49), 140.06 

(C-23), 139.40 (C-16), 138.32 (C-44), 136.77 (C-36), 136.37 (C-45), 133.11 (C-19), 

131.30 (C-34, C-38), 130.44 (C-35, C-37), 129.74 (C-20), 128.25 (C-21), 128.14 (C-29, 

C-33), 127.93 (C-6), 126.01 (C-27), 125.80 (C-2), 125.46 (C-26), 125.23 (C-46), 117.14 

(C-3), 114.73 (C-30, C-32), 113.04 (C-42), 105.76 (C-25), 59.94 (C-9), 56.08 (C-40), 

54.94 (C-8), 47.82 (C-13), 47.21 (C-11), 38.76 (C-12), 31.87 (C-41).LC-MS (C18_ESI): 

670.98 [M+H]+, Rt=5.29min; HRMS (ESI) calculated for C38H35O4N6S [M+H]+: 

671.24350, found: 671.24217. + 66.1 (c=0.5, MeOH/CHCl3,1:1). 

 

 

5-[(3R)-4-[(4-methoxybenzene)sulfonyl]-1-[(1-methyl-1H-imidazol-5-yl)methyl]-3-

{[4-(phenylamino)phenyl]methyl}-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-7-

yl]furan-2-carbonitrile (130) 

A dry Schlenk tube was charged with THB 

128 (50 mg, 67 µmol), ligand 95 (6 mg, 20 

µmol), Pd(OAc)2 (1.5 mg, 6.7 µmol) and 

Cs2CO3 (44 mg, 135 µmol). Dry toluene (0.5 

mL) was added, followed by aniline (8 mg, 86 

µmol). The reaction mixture was purged with 

argon and stirred at reflux overnight. After 

cooling, the solvent was evaporated and the 

product was purified by flash column 

chromatography (2% MeOH in DCM) 

affording 130 as a white solid (20 mg, 43%). 1H NMR (500 MHz, MeOD) δ = 7.56 (s, 

1H, H-35), 7.49 (d, J=2.5, 1H, H-6), 7.44 (dd, J=8.4, 2.3, 1H, H-2), 7.38 (d, J=8.9, 2H, 

H-17, H-21), 7.35 (d, J=3.7, 1H, H-46), 7.21 (dd, J=8.6, 7.4, 2H, H-41, H-43), 7.06 

(ddd, J=8.5, 1.3, 1.3, 2H, H-40, H-44) 6.98 (s, 4H, H-28, 29, 31, 32), 6.83 (ddd, J=7.5, 

1.3, 1.3, 1H, H-42), 6.80 (d, J=3.7, 1H, H-45), 6.76 (d, J=8.9, 2H, H-18, H-20), 6.66 (s, 

1H, H-33), 6.59 (d, J=8.5, 1H, H-3), 4.73 (d, J=17.1, 1H, H-11), 4.64 (d, J=17.1, 1H, H-

11), 4.25 – 4.17 (m, 1H, H-9), 4.11 (d, J=16.1, 1H, H-13), 3.88 (d, J=16.1, 1H, H-13), 

3.74 (s, 3H, H-24), 3.66 – 3.58 (m, 1H, H-8), 3.57 (s, 3H, H-37), 3.03 (dd, J=15.3, 4.0, 

1H, H-8), 2.85 (dd, J=13.7, 5.7, 1H, H-26), 2.61 – 2.51 (m, 1H, H-26).13C NMR (126 

MHz, MeOD) δ = 164.14 (C-19), 160.56 (C-25), 151.63 (C-4), 145.30 (C-39), 143.89 

(C-30), 139.82 (C-35), 133.09 (C-15), 131.01 (C-28, C-32), 130.47 (C-17, C-21), 

130.21 (C-27), 130.12 (C-41, C-43), 129.62 (C-14), 128.23 (C-33), 127.89 (C-6), 
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125.95 (C-2), 125.81 (C-46), 125.18 (C-47), 121.07 (C-42), 118.50 (C-29, C-31), 

118.24 (C-40, C-44), 116.72 (C-3), 114.70 (C-18, C-20), 113.05 (C-49), 105.65 (C-45), 

60.18 (C-9), 56.13 (C-24), 54.38 (C-8), 47.52 (C-11), 46.76 (C-13), 38.39 (C-26), 31.82 

(C-37). LC-MS (C18_ESI): 685.18 [M+H]+, Rt=7.05min; HRMS (ESI) calculated for 

C39H37O4N6S [M+H]+: 685.25915, found: 685.25908. 

 

4-{[(3R)-4-[(4-methoxybenzene)sulfonyl]-7-(2-methoxypyridin-4-yl)-1-[(1-methyl-

1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-

yl]methyl}phenyl N-benzylcarbamate(131) 

According to General Procedure 

II, reaction between THB 111 (20 

mg, 32 µmol) and 

benzylisocyanate (4.7 mg, 35 

µmol) afforded 131 as a off white 

solid (21 mg, 86%) Rf 0.25 (3% 

MeOH in DCM) Mp 97.4 °C 1H 

NMR (500 MHz, MeOD) δ = 8.11 

(d, J=5.5, 1H, H-41), 7.57 (s, 1H, 

H-35), 7.45 (d, J=2.3, 1H, H-6), 

7.42 (dd, J=8.4, 2.3, 1H, H-2), 7.36 (d, J=9.0, 2H, H-19, H-23), 7.36 – 7.35 (m, 2H, H-

52, H-54), 7.35 – 7.33 (m, 2H, H-51, H-55), 7.29 – 7.24 (m, 1H, H-53), 7.21 (dd, J=5.5, 

1.5, 1H, H-42), 7.12 (d, J=8.6, 2H, H-26, H-30), 7.00 (d, J=8.8, 2H, H-27, H-29), 7.00 

(d, J=1.5, 1H, H-38), 6.75 (d, J=8.9, 2H, H-20, H-22), 6.69 (s, 1H, H-33), 6.65 (d, J=8.4, 

1H, H-3), 4.75 (d, J=17.0, 1H, H-11), 4.66 (d, J=17.0, 1H, H-11), 4.37 (s, 2H, H-49), 

4.24 – 4.18 (m, 1H, H-9), 4.12 (d, J=15.8, 1H, H-14), 3.95 (s, 3H, H-44), 3.94 (d, 

J=15.8, 1H, H-14), 3.74 (s, 3H, H-32), 3.63 – 3.57 (m, 1H, H-8), 3.57 (s, 3H, H-37), 

2.98 (dd, J=15.1, 4.2, 1H, H-8), 2.91 (dd, J=13.8, 6.1, 1H, H-24), 2.64 – 2.56 (m, 1H, H-

24). 13C NMR (126 MHz, MeOD) δ = 166.57 (C-39), 164.17 (C-21), 157.41 (C-46), 

152.35 (C-12), 151.86 (C-4), 151.42 (C-28), 148.02 (C-41), 140.28 (C-50), 140.03 (C-

35), 136.00 (C-25), 132.95 (C-16), 131.16 (C-26, C-30), 130.52 (C-19, C-23), 130.00 

(C-1), 129.88(C-15), 129.71 (C-6), 129.58 (C-52, C-54), 128.42 (C-51, C-55), 128.35 

(C-33), 128.29 (C-53), 127.73 (C-2), 122.81 (C-27, C-29), 117.12 (C-3), 115.69 (C-42), 

114.75 (C-20, C-22), 107.67 (C-38), 60.10 (C-9), 56.13 (C-32), 54.61 (C-8), 54.19 (C-

44), 47.95 (C-11), 47.05 (C-14), 45.72 (C-49), 38.31 (C-24), 31.82 (C-37).LC-MS 

(C18_ESI): 759.16 [M+H]+, Rt=6.87min; HRMS (ESI) calculated for C42H43O6N6S 

[M+H]+: 759.29593, found: 759.29696. +96.6 (c=0.6, MeOH/CHCl3,1:1). 
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(3R)-3-{[4-(benzyloxy)phenyl]methyl}-4-[(4-methoxybenzene)sulfonyl]-7-(2-

methoxypyridin-4-yl)-1-[(1-methyl-1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-

1,4-benzodiazepine (132) 

According to General Procedure I, reaction 

between THB 111 (20 mg, 32 µmol) and benzyl 

bromide (6.2 mg, 36 µmol) afforded 132 as a white 

solid (18 mg, 81%). Rf 0.26 (3% MeOH in DCM). 

Mp 99°C 1H NMR (500 MHz, MeOD) δ = 8.11 (d, 

J=5.5, 1H, H-11), 7.55 (s, 1H, H-43), 7.45 (d, J=2.1, 

1H, H-6), 7.44 – 7.43 (m, 2H, H-48, H-52), 7.41 (dd, 

J=8.2, 2.3, 1H, H-2), 7.39 – 7.33 (m, 2H, H-49, H-

51), 7.36 (d, J=8.8, 2H, H-26, H-30), 7.32 – 7.28 

(m, 1H, H-50), 7.20 (dd, J=5.5, 1.5, 1H, H-12), 7.01 

(d, J=8.4, 2H, H-35, H-39), 6.99 (d, J=1.5, 1H, H-8), 6.86 (d, J=8.5, 2H, H-36, H-38), 

6.72 (d, J=8.9, 2H, H-27, H-29), 6.68 (s, 1H, H-41), 6.65 (d, J=8.4, 1H, H-3), 5.05 (s, 

2H, H-46), 4.69 (d, J=17.0, 1H, H-19), 4.64 (d, J=17.0, 1H, H-19), 4.19 (dd, J=16.5, 

10.0, 1H, H-17), 4.11 (d, J=15.9, 1H, H-21), 3.95 (s, 3H, H-14), 3.93 (d, J=15.9, 1H, H-

21), 3.74 (s, 3H, H-32), 3.60 – 3.52 (m, 1H, H-16), 3.56 (s, 3H, H-45), 3.04 – 2.93 (m, 

1H, H-16), 2.89 – 2.81 (m, 1H, H-33), 2.59 – 2.46 (m, 1H, H-33).13C NMR (126 MHz, 

MeOD) δ = 166.58 (C-9), 164.10 (C-28), 159.02 (C-37), 152.35 (C-7), 151.89 (C-4), 

148.03 (C-11), 140.03 (C-43), 138.85 (C-47), 133.15 (C-23), 131.32 (C-35, C-39), 

131.16 (C-34), 130.45 (C-26, C-30), 129.86 (C-1), 129.81(C-22), 129.69 (C-6), 129.50 

(C-49, C-51), 128.86 (C-50), 128.63 (C-48, C-52), 128.38 (C-41), 127.72 (C-2), 117.30 

(C-3), 116.01 (C-36, C-38), 115.70 (C-12), 114.71 (C-27, C-29), 107.69 (C-8), 71.01 

(C-46), 60.10 (C-17), 56.13 (C-32), 54.86 (C-16), 54.20 (C-14), 47.92 (C-19), 47.19 (C-

21), 38.39 (C-33), 31.84 (C-45). LC-MS (C18_ESI): 716.22 [M+H]+, Rt=7.05min; HRMS 

(ESI) calculated for C41H42O5N5S [M+H]+: 716.29012, found: 716.29110.  +67.37 

(c=0.49, MeOH : CHCl3 [1:1]). 
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4-{[(3R)-4-[(4-methoxybenzene)sulfonyl]-7-(2-methoxypyridin-4-yl)-1-[(1-methyl-

1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-

yl]methyl}phenyl trifluoromethanesulfonate(133) 

According to General Procedure III, reaction 

between THB 111 (60 mg, 959 µmol) and 86 (38 

mg, 105 µmol) afforded 133 as a white solid. (65 

mg, 90%) 1H NMR (500 MHz, MeOD) δ = 8.14 (d, 

J=5.4, 1H, H-37), 7.62 (s, 1H, H-42), 7.48 (d, J=2.5, 

1H, H-6), 7.46 (dd, J=8.4, 2.5, 1H, H-2), 7.39 (d, 

J=9.0, 2H, H-20, H-24), 7.29 (d, J=8.8, 2H, H-26, 

H-30), 7.24 (d, J=8.8, 2H, H-27, H-29), 7.23 (dd, 

J=5.5, 1.5, 1H, H-38), 7.02 (d, J=1.7, 1H, H-34), 

6.75 – 6.74 (m, 1H, H-3), 6.75 (d, J=9.0, 2H, H-21, 

H-23), 6.71 (s, 1H, H-40), 4.78 (d, J=16.8, 1H, H-11), 4.70 (d, J=16.9, 1H, H-11), 4.30 – 

4.23 (m, 1H, H-9), 4.17 (d, J=15.7, 1H, H-14), 4.02 (d, J=15.4, 1H, H-14), 3.97 (s, 3H, 

H-45), 3.77 (s, 3H, H-33), 3.63 (s, 3H, H-44), 3.59 (dd, J=14.9, 8.1, 1H, H-8), 3.00 (dd, 

J=15.1, 3.8, 1H, H-8), 2.95 (dd, J=13.8, 7.3, 1H, H-12), 2.61 – 2.52 (m, 1H, H-12). 13C 

NMR: (126 MHz, MeOD) δ = 166.57 (C-35), 164.18 (C-22), 152.28 (C-15), 152.13 (C-

4), 149.76 (C-28), 148.06 (C-37), 140.19 (C-25), 140.08 (C-42), 139.66 (C-16), 133.07 

(C-19), 132.43 (C-26, C-30), 130.51 (C-20, C-24), 130.45 (C-1), 129.89(C-16), 129.75 

(C-6), 128.46 (C-40), 127.83 (C-2), 122.28 (C-27, C-29), 118.91 (C-47), 117.47 (C-3), 

115.72 (C-38), 114.71 (C-21, C-23), 107.78 (C-34), 59.80 (C-9), 56.10 (C-33), 55.05 

(C-8), 54.20 (C-45), 47.72 (C-11), 47.26 (C-14), 37.97 (C-12), 31.84 (C-44). LC-MS 

(C18_ESI): 758.08 [M+H]+, Rt=6.93min; HRMS (ESI) calculated for C35H34O7N5F3NaS2 

[M+Na]+: 780.17440, found: 780.17436.  + 35.8 (c=0.9, CHCl3). 
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(3R)-4-[(4-methoxybenzene)sulfonyl]-7-(2-methoxypyridin-4-yl)-1-[(1-methyl-1H-

imidazol-5-yl)methyl]-3-{[4-(pyridin-3-yl)phenyl]methyl}-2,3,4,5-tetrahydro-1H-1,4-

benzodiazepine(134) 

According to General Procedure IVb reaction 

between THB 133 (23.5 mg, 31 µmol) and 3-

pyridineboronic acid (4.2 mg, 34µmol) afforded 

134 as an yellow solid (18 mg, 84%) Rf 0.23 (3% 

MeOH in DCM), Mp 100 °C 1H NMR (500 MHz, 

MeOD) δ = 8.81 (d, J=2.5, 1H, H-50), 8.51 (dd, 

J=4.9, 1.6, 1H, H-48), 8.12 (d, J=5.4, 1H, H-11), 

8.10 (ddd, J=8.0, 2.4, 1.7, 46), 7.62 (s, 1H, H-

43), 7.54 (d, J=8.1, 2H, H-36, H-38), 7.52 (dd, 

J=8.1, 5.2, 1H, H-47), 7.47 (s, 1H, H-6), 7.44 (d, 

J=8.4, 1H, H-2), 7.38 (d, J=8.9, 2H, H-26, H-30), 7.26 (d, J=7.9, 2H, H-35, H-39), 7.21 

(dd, J=5.5, 1.5, 1H, H-12), 7.00 (d, J=1.5, 1H, H-8), 6.74 (s, 1H, H-41), 6.71 (d, J=8.4, 

1H, H-3), 6.70 (d, J=8.9, 2H, H-27, H-29), 4.78 (d, J=16.9, 1H, H-19), 4.70 (d, J=16.9, 

1H, H-19), 4.34 – 4.24 (m, 1H, H-17), 4.17 (d, J=15.8, 1H, H-20), 4.01 (d, J=16.2, 1H, 

H-20), 3.95 (s, 3H, H-14), 3.69 (s, 3H, H-34), 3.66 – 3.63 (m, 1H, H-16), 3.62 (s, 3H, H-

45), 3.05 (dd, J=15.0, 3.7, 1H, H-16), 2.97 (dd, J=13.7, 6.7, 1H, H-31), 2.67 – 2.54 (m, 

1H, H-31).13C NMR (126 MHz, MeOD) δ = 166.58 (C-9), 164.14 (C-28), 152.32 (C-7), 

152.04 (C-4), 148.61 (C-48), 148.26 (C-50), 148.04 (C-11), 139.57 (C-43), 139.49 (C-

32), 138.34 (C-40), 136.73 (C-37), 136.37 (C-46, C-50), 133.17 (C-23), 131.29 (C-35, 

C-39), 130.46 (C-26, C-30), 130.38(C-1), 129.96 (C-21),129.76 (C-6), 128.11 (C-36, C-

38), 127.94 (C-41), 127.79 (C-2), 125.47 (C-47), 117.47 (C-3), 115.73 (C-12), 114.70 

(C-27, C-29), 107.76 (C-8), 59.92 (C-17), 56.05 (C-34), 55.12 (C-16), 54.20 (C-14), 

47.89 (C-19), 47.31 (C-20), 38.63 (C-31), 31.95 (C-45).LC-MS (C18_ESI): 687.05 

[M+H]+, Rt=5.54min; HRMS (ESI) calculated for C39H39O4N6S [M+H]+: 687.27480, 

found: 687.27493. 
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4-{[(3R)-4-[(4-methoxybenzene)sulfonyl]-7-(2-methoxypyridin-4-yl)-1-[(1-methyl-

1H-imidazol-5-yl)methyl]-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-3-yl]methyl}-N-

phenylaniline (135) 

A dry Schlenk tube was charged with THB 133 (20 

mg, 26 µmol), ligand 95 (2 mg, 8 µmol), Pd(OAc)2 

(1 mg, 4 µmol) and Cs2CO3 (18 mg, 52 µmol). Dry 

toluene (0.2 mL) was added, followed by aniline (8 

mg, 86 µmol). The reaction mixture was purged 

with argon and stirred at 100 °C overnight. After 

cooling, the solvent was evaporated and the 

product was purified by flash column 

chromatography (2% MeOH in DCM) affording 135 

as a white solid (14.2 mg, 75%).1H NMR (400 MHz, 

MeOD) δ = 8.11 (dd, J=5.5, 0.8, 1H, H-48), 7.57 (s, 

1H, H-36), 7.45 (d, J=2.2, 1H, H-6), 7.42 (dd, J=8.2, 2.4, 1H, H-2), 7.37 (d, J=9.0, 2H, 

H-19, H-23), 7.22 (dd, J=5.5, 1.6, 1H, H-49), 7.21 – 7.17 (m, 2H, H-41, H-43), 7.09 – 

7.04 (m, 2H, H-40, H-44), 7.00 (dd, J=1.6, 0.8, 1H, H-45), 6.97 (s, 4H, H-28, 29, 31, 

32), 6.85 – 6.80 (m, 1H, H-42), 6.74 (d, J=9.1, 2H, H-20, H-22), 6.70 (s, 1H, H-34), 

6.66 (d, J=8.1, 1H, H-3), 4.74 (d, J=17.0, 1H, H-11), 4.65 (d, J=17.0, 1H, H-11), 4.23 – 

4.17 (m, 1H, H-9), 4.13 (d, J=15.8, 1H, H-14), 3.95 (d, J=15.9, 2H, H-14), 3.94 (s, 3H, 

H-51), 3.73 (s, 3H, H-25), 3.59 (s, 3H, H-38), 3.63 – 3.53 (m, 1H, H-8), 3.02 (dd, 

J=15.3, 3.9, 1H, H-8), 2.85 (dd, J=13.7, 5.9, 1H, H-26), 2.57 – 2.47 (m, 1H, H-26). LC-

MS (C18_ESI): 701.13 [M+H]+, Rt=6.90min; HRMS (ESI) calculated for C40H41O4N6S 

[M+H]+: 701.29045, found: 701.29052. 
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§ 10.3.9 Synthesis of furfuranyl analogs  

 

General Procedure V for oxidation of furan 

All reactions were carried out at a concentration of 70 mM furfuryl and 84 mM of 

bromine in dry methanol/ether (2/1) under argon atmosphere. A solution of bromine 

(1.2 equiv) in methanol was slowly added via an addition funnel to a stirred solution of 

furfuryl (1 equiv) in methanol/ether (1/1) maintaining an internal temperature between  

-35 and -45°C. Upon completion of addition, stirring was continued for a further 2 h at 

reduced temperature. The reaction mixture was quenched with Na2S2O3 (aq) and the 

solvent was removed under reduced pressure. The residue was dissolved in DCM, 

washed with water (3×) and brine, dried over Na2SO4 and concentrated in vacuo. The 

crude product was purified by column chromatography  

 

General Procedure VI for hydrogenation 

All reactions were carried out at a concentration of 750 mM furfuryl in methanol. 

Furfuryl (1 equiv) was prestirred with activated carbon for 30 min in methanol. After 

filtration, 5% Pd/C (10 weight%) was added to the filtrate and the flask was evacuated 

and filled with H2 gas (3 cycles). The reaction was stirred overnight, the solution was 

filtered and evaporated to yield the product.  

 

 

N-(furan-2-ylmethyl)-6-hydroxyhexanamide (139) 

In a 20 mL, one neck round bottom flask, 6-

Caprolactone (5 mL, 46.34 mmol) was added 

slowly to furfuryl amine (0.5 g, 5.15 mmol) over 1 h 

at rt. The reaction was stirred overnight after which 

an attempt was made to concentrate the 6-caprolactone under reduced pressure (as 

reported in the literature) however almost no caprolactone could be removed using this 

method. Flash chromatography (EtOAc) resulted in 139 a slightly brown solid. Rf 0.25 

(EtOAc) 1H NMR (400 MHz, MeOD) δ = 7.40 (dd, J=1.9, 0.8, 1H, H-1), 6.33 (dd, J=3.2, 

1.9, 1H, H-2), 6.22 (dd, J=3.2, 0.8, 1H, H-3), 4.33 (s, 2H, H-6), 3.53 (t, J=6.6, 2H, H-

13), 2.21 (t, J=7.5, 2H, H-9), 1.69 – 1.58 (m, 2H, H-12), 1.58 – 1.48 (m, 2H, H-10), 1.41 

– 1.31 (m, 2H, H-11). 13C NMR (101 MHz, MeOD) δ = 175.92 (C-8), 153.16 (C-1), 

143.22 (C-4), 111.31 (C-2), 107.99 (C-3), 62.75 (C-13), 37.09 (C-6), 36.90 (C-9), 33.29 

(C-12), 26.75 (C-10), 26.49 (C-11). LC-MS (C18_ESI): 212.0 [M+H]+ Rt=5.77min.  
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N-[(2,5-dimethoxy-2,5-dihydrofuran-2-yl)methyl]-6-hydroxyhexanamide (137) 

According to General Procedure V, reaction 

with furfuryl 139 (0.2 g, 95 mmol) followed by 

flash chromatography (1% Et3N in EtOAc) 

afforded 137 (0.2g 77%) mixtures of isomers 1 

: 2 (minor*, major). 1H NMR (400 MHz, MeOD) δ = 6.12 (dd, J=5.9, 1.1, 1H, H-4), 6.08 

(dd, J=5.9, 1.2, 1H, H-4*), 5.90 (dd, J=5.9, 1.3, 1H, H-3), 5.88 (dd, J=5.9, 1.2, 1H, H-

3*), 5.76 (t, J=1.2, 1H, H-2), 5.50 (t, J=1.2, 1H, H-2*), 3.66 (d, J=13.7, 1H, H-6*), 3.59 

(d, J=13.7, 1H, H-6), 3.54 (t, J=6.6, 2H, H-14), 3.48 (s, 3H, H-19*), 3.46 (s, 3H, H-19), 

3.30 (d, J=13.8, 1H, H-6), 3.22 (d, J=13.7, 1H, H-6*), 3.18 (s, 3H, H-18*), 3.13 (s, 3H, 

H-18), 2.22 – 2.12 (m, 2H, H-9), 1.67 – 1.48 (m, 4H, H-10, H-12), 1.43 – 1.30 (m, 2H, 

H-11).13C NMR (101 MHz, MeOD) δ = 176.28 (C-8*), 176.13 (C-8), 133.66 (C-3), 

133.32 (C-3*), 132.88 (C-2), 132.49 (C-2*), 115.44 (C-1), 114.42 (C-1*), 110.03 (C-4), 

108.76 (C-4*), 62.75 (C-14), 62.73 (C-14*), 56.53 (C-19*), 56.23 (C-19), 50.81 (C-18*), 

50.22 (C-18), 46.22 (C-6*), 46.19 (C-6), 37.14 (C-9*), 36.87 (C-9), 33.30 (C-12), 33.28 

(C-12*), 26.83 (C-10*), 26.59 (C-10), 26.53 (C-11), 26.50 (C-11*). 

 

 

N-[(2,5-dimethoxyoxolan-2-yl)methyl]-6-hydroxyhexanamide (140) 

According to General Procedure VI, reaction 

with furfuryl 137 (40 mg, 0.15 mmol) gave 

140as a yellow oil (30 mg, 75%). mixtures of 

isomers 3 : 4 (minor*, major) 1H NMR (400 

MHz, MeOD) δ = 5.12 – 5.09 (m, 1H, H-4*), 5.05 (dd, J=5.3, 2.7, 1H, H-4), 3.54 (t, 

J=6.6, 2H, H-14), 3.48 (d, J=13.5, 1H, H-6), 3.39 (s, 3H, H-19*), 3.39 (d, J=13.3, 1H, H-

6), 3.35 (s, 3H, H-19), 3.30 (s, 3H, H-18*), 3.24 (s, 3H, H-18), 2.23 (t, J=7.5, 2H, H-9), 

2.16 – 1.96 (m, 2H, H-3), 1.93 – 1.80 (m, 2H, H-2), 1.69 – 1.59 (m, 2H, H-10), 1.55 (dt, 

J=13.9, 6.8, 2H, H-12), 1.44 – 1.33 (m, 2H, H-11).13C NMR (101 MHz, MeOD) δ = 

176.39 (C-8), 176.20 (C-8*), 110.95 (C-1*), 110.52 (C-1), 107.74 (C-4*), 107.25 (C-4), 

62.75 (C-14), 55.87 (C-19*), 55.27 (C-19), 49.77 (C-18*), 49.49 (C-18), 45.45 (C-6), 

44.15 (C-6*), 37.00 (C-9), 36.90 (C-9*), 33.32 (C-12), 32.56 (C-2*), 32.45 (C-2), 31.86 

(C-3*), 31.71 (C-3), 26.85 (C-10*), 26.82 (C-10), 26.53 (C-11).  
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N-(furan-2-ylmethyl)octanamide (141) 

Furfuryl amine (0.30 g, 3.1 mmol) was dissolved in 

DCM (5 mL) in a 10 mL one necked round bottom 

flask and the reaction mixture was cooled down to 

0°C, then octanoyl chloride (0.55 mL, 3.7 mmol) 

and Et3N (0.52 mL, 3.7 mmol) were added. The reaction was followed on TLC and after 

complete consumption of furfuryl amine the solution was poured into water (10 mL) and 

extracted with DCM (3 x 15 mL). The organic layer was washed with brine, dried over 

Na2SO4 and concentrated. Flash chromatography (EtOAc/cyclohexane 1:3) resulted in 

141 as a white solid.1H NMR (400 MHz, MeOD) δ = 7.40 (dd, J=2.1, 0.9, 1H, H-4), 6.33 

(dd, J=3.3, 1.9, 1H, H-3), 6.22 (dd, J=3.2, 0.8, 1H, H-2), 4.34 (s, 2H, H-6), 2.23 – 2.16 

(m, 2H, H-9), 1.85 – 1.38 (m, 2H, H-11), 1.38 – 1.21 (m, 8H, H-12,13,14,15), 0.90 (t, 

J=5.9, 3H, H-16).13C NMR (101 MHz, MeOD) δ = 176.06 (C-8), 153.20 (C-1), 143.21 

(C-4), 111.30 (C-3), 107.98 (C-2), 37.08 (C-6), 36.96 (C-9), 32.89 (C-14), 30.19 (C-12), 

30.10 (C-13), 26.98 (C-11), 23.64 (C-15), 14.41 (C-16). 

 

 

N-[(2,5-dimethoxy-2,5-dihydrofuran-2-yl)methyl]octanamide(142) 

According to General Procedure V, reaction 

with furfuryl 141 (50 mg, 270 µmol) followed by 

flash chromatography (1% Et3N in EtOAc) 

afforded 142 (46 mg, 72%) mixtures of isomers 

5 : 6 (minor*, major) 1H NMR (400 MHz, MeOD) 

δ = 6.11 (dd, J=5.9, 1.1, 1H, H-4), 6.07 (dd, 

J=5.9, 1.2, 1H, H-4*), 5.89 (dd, J=5.9, 1.3, 1H, H-3), 5.87 (dd, J=5.9, 1.2, 1H, H-3*), 

5.75 (t, J=1.2, 1H, H-2), 5.49 (t, J=1.2, 1H, H-2*), 3.65 (d, J=13.7, 1H, H-6*), 3.59 (d, 

J=13.7, 1H, H-6), 3.48 (s, 3H, H-18*), 3.47 (s, 3H, H-18), 3.30 (d, J=13.7, 1H, H-6), 

3.22 (d, J=13.7, 1H, H-6*), 3.18 (s, 3H, H-20*), 3.13 (s, 3H, H-20), 2.19 – 2.11 (m, 2H, 

H-9), 1.63 – 1.50 (m, 2H, H-11), 1.37 – 1.24 (m, 8H, H-12,13,14,15), 0.90 (t, J=6.9, 3H, 

H-16). 13C NMR (101 MHz, MeOD) δ = 176.40 (C-8*), 176.26 (C-8), 133.64 (C-3), 

133.25 (C-3*), 132.89 (C-2), 132.54 (C-2*), 115.45 (C-1), 114.44 (C-1*), 110.02 (C-4), 

108.77 (C-4*), 56.53 (C-18*), 56.23 (C-18), 50.81 (C-20*), 50.22 (C-20), 46.23 (C-6), 

46.20 (C-6*), 37.21 (C-9), 36.93 (C-9*), 32.90 (C-14*), 32.87 (C-14), 30.27 (C-12), 

30.21 (C-12*), 30.11 (C-13), 27.06 (C-11*), 26.80 (C-11), 23.66 (C-15), 14.41 (C-16). 
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N-[(2,5-dimethoxyoxolan-2-yl)methyl]octanamide (143) 

According to General Procedure VI, reaction 

with furfuryl 142 (80 mg, 0.28 mmol) gave 143 

as a yellow oil (60 mg, 74%). mixtures of 

isomers 5 : 6 (minor*, major) 1H NMR (400 

MHz, MeOD) δ = 5.12 – 5.08 (m, 1H, H-4*), 

5.04 (dd, J=5.3, 2.6, 1H, H-4), 3.53 (d, J=13.8, 1H, H-6*), 3.48 (d, J=13.9, 1H, H-6), 

3.39 (s, 3H, H-18), 3.38 (d, J=13.7, 1H, H-6*), 3.34 (s, 3H, H-18*), 3.32 (d, J=13.9, 1H, 

H-6), 3.30 (s, 3H, H-20), 3.24 (s, 3H, H-20*), 2.21 (t, J=7.4, 2H, H-9), 2.15 – 1.97 (m, 

2H, H-3), 1.96 – 1.81 (m, 2H, H-2), 1.66 – 1.55 (m, 2H, H-11), 1.38 – 1.24 (m, 8H, H-

12,13,14,15), 0.90 (t, J=6.9, 3H, H-16). 13C NMR (101 MHz, MeOD) δ = 176.48 (C-8), 

176.29 (C-8*), 110.95 (C-1), 110.51 (C-1*), 107.71 (C-4), 107.24 (C-4*), 55.86 (C-18), 

55.27 (C-18*), 49.76 (C-20), 49.48 (C-20*), 45.42 (C-6*), 44.14 (C-6), 37.09 (C-9*), 

36.94 (C-9), 32.89 (C-14), 32.57 (C-2), 32.45 (C-2*), 31.84 (C-3), 31.73 (C-3*), 30.23 

(C-12), 30.12 (C-13), 27.07 (C-11), 23.65 (C-15), 14.41 (C-16). 

 

(2E)-N-(furan-2-ylmethyl)-3,7-dimethylocta-2,6-dienamide (144) 

To a mixture of sodium bicarbonate (1.3 g, 15.5 

mmol) and geranyl acid (1.07 mL, 6.18 mmol) in 

dichloromethane (20 mL) was added furfurylamine 

(0.3 g, 3.1 mmol). EDC (1.2 g, 6.18 mmol) and 4-

DMAP (0.189 g, 1.54 mmol) under argon. The reaction mixture was stirred for 8h. Brine 

(25 mL) was added to the yellow reaction mixture, which resulted in the formation of a 

white precipitate. The precipitate was filtered off and the filtrate was extracted with 

dichloromethane (3 x 40 mL). The organic layer was washed with 1N HCl, water and 

brine and dried over Na2SO4. After concentration of the solvent under reduced 

pressure the residue was purified by column chromatography which provided 144 as a 

yellow oil. 1H NMR (400 MHz, MeOD) δ = 7.40 (dd, J=1.9, 0.9, 1H, H-4), 6.33 (dd, 

J=3.2, 1.9, 1H, H-3), 6.23 (dd, J=3.2, 0.8, 1H, H-2), 5.69 (q, J=1.2, 1H, H-9), 5.15 – 

5.06 (m, 1H, H-14), 4.36 (s, J=6.2, 2H, H-6), 2.21 – 2.11 (m, 4H, H-11,12), 2.11 (d, 

J=1.3, 3H, H-17), 1.68 (d, J=1.0, 3H, H-18), 1.61 (d, J=0.7, 3H, H-16).13C NMR (101 

MHz, MeOD) δ = 169.46 (C-8), 155.47 (C-10), 153.32 (C-1), 143.17 (C-4), 133.14 (C-

15), 124.41 (C-14), 118.97 (C-9), 111.30 (C-3), 107.92 (C-2), 41.79 (C-6), 36.80 (C-

11), 27.24 (C-12), 25.84 (C-16), 18.56 (C-18), 17.74 (C-17). 
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§ 10.3.10 Synthesis of benzoxazolone  

 

Methyl 2-[6-(benzylsulfamoyl)-2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl]acetate(181) 

147 (200 mg, 0.65 mmol) was added to a solution of 

benzylamine (71 µL, 0.65 mmol) and pyridine (182 

µL, 1.96 mmol) in DCM (5 mL). After stirring at 23 °C 

for 1 h, the reaction was quenched with three pieces 

of ice and diluted with water (0.5 mL). The whole was 

extracted with EtOAc (10 mL), and the organic layer 

was washed with water (2 mL) and brine (2 × 2 mL), 

and dried over anhydrous Na2SO4. Filtration and 

evaporation in vacuo gave the crude. Flash chromatography (cHex/EtOAc 1 : 1) gives 

the product as a white solid (260 mg, 97%) Rf 0.44 (cHex/EtOAc, 1:1) Mp 139.4 °C. 1H 

NMR (400 MHz, CDCl3) δ = 7.64 (dd, J=8.2, 1.6, 1H, H-6), 7.59 (d, J=1.5, 1H, H-9), 

7.22 – 7.08 (m, 5H, H-22, 23, 24, 25, 26), 6.94 (d, J=8.2, 1H, H-7), 4.57 (s, 2H, H-20), 

4.02 (s, 2H, H-11), 3.76 (s, 3H, H-15).13C NMR (101 MHz, CDCl3) δ = 167.28 (C-12), 

154.34 (C-2), 142.49 (C-21), 136.59 (C-5), 135.65 (C-8), 134.40 (C-4), 128.87 (C-23, 

C-25), 128.18 (C-22, C-26), 128.07 (C-24), 124.33 (C-7), 109.63 (C-6), 108.87 (C-9), 

53.44 (C-15), 47.38 (C-11), 43.43 (C-20). LC-MS (C18_ESI): 376.80 [M+H]+, 

Rt=8.13min; HRMS (ESI) calculated for C17H17O6N2S [M+H]+: 377.08018, found: 

377.08028. 

 

2-[6-(benzylsulfamoyl)-2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl]acetic acid (148) 

181 (0.2 g, 0.53 mmol) was refluxed in a mixture of 

dioxane and concentrated HCl (1:1, 1 mL) for 2 h. 

The reaction mixture was evaporated to dryness to 

yield the product, which was used as a crude in the 

following steps. 1H NMR (400 MHz, DMSO) δ = 8.15 

(t, J=6.3, 1H, H-13), 7.72 (d, J=1.9, 1H, H-9), 7.70 

(dd, J=8.0, 2.1, 1H, H-6), 7.50 (d, J=8.2, 1H, H-7), 

7.30 – 7.17 (m, 5H, H-21, 22, 23, 24, 25), 4.71 (s, 2H, 

H-19), 3.99 (d, J=6.3, 2H, H-11).13C NMR (101 MHz, DMSO) δ = 168.49 (C-12), 153.74 

(C-2), 141.44 (C-20), 137.50 (C-5), 134.93 (C-8), 134.43 (C-4), 128.22 (C-22, C-24), 

127.63 (C-21, C-25), 127.15 (C-23), 123.32 (C-7), 109.68 (C-6), 108.14 (C-9), 46.20 

(C-11), 43.28 (C-19). LC-MS (C18_ESI): 360.90 [M+H]+, Rt=7.39min; HRMS (ESI) 

calculated for C16H15O6N2S [M+H]+: 363.06453, found: 363.06457. 
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2-[6-(benzylsulfamoyl)-2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl]-N-(4-

ethylphenyl)acetamide (138)  

The crude carboxylic acid 148 (50 mg, 0.14 mmol) 

was dissolved in DCM (15 ml), then EDC.HCl (31 mg) 

was added and the mixture was stirred for 30 min. 

Next, 4-ethylaniline was added and the reaction 

mixture was stirred overnight under argon. The 

orange/yellow reaction mixture was quenched by 

addition of NaHCO3 (sat) and extracted with DCM 

(3x) The combined organic layers were washed with 

brine, dried over anhydrous MgSO4, filtered and 

evaporated to yield the crude, which was purified by 

flash chromatography to obtain 138 (48 mg, 75%). 1H 

NMR(400 MHz, acetone) δ = 7.77 (dd, J=8.2, 1.9, 1H, H-7), 7.72 (d, J=1.9, 1H, H-9), 

7.55 (d, J=8.4, 2H, H-27, H-31), 7.42 (d, J=8.2, 1H, H-6), 7.31 – 7.20 (m, 5H, H-21, 22, 

23, 24, 25), 7.17 (d, J=8.4, 2H, H-28, H-30), 4.85 (s, 2H, H-19), 4.14 (s, 2H, H-11), 2.59 

(q, J=7.7, 2H, H-32), 1.18 (t, J=7.6, 3H, H-33).LC-MS (C18_ESI): 465.92 [M+H]+, 

Rt=9.27min; HRMS (ESI) calculated for C24H24O5N3S [M+H]+: 466.14312, found: 

466.14254. 
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§ 10.3.11 Synthesis of de novo compounds  

 

(2R)-N-benzyl-2-{[(4-cyanophenyl)methyl](methyl)amino}-3-(1-methyl-1H-

imidazol-5-yl)propanamide (158) 

To a prestirred mixture of 157 (17 mg, 56 µmol), HATU (26 mg, 

68 µmol) and DIPEA (20 µL, 114 mmol) in dry DMF, was added 

benzylamine (9 mg, 85 µmol). The reaction mixture was stirred 

overnight and partitioned between with EtOAc and NaHCO3 

(sat) the aqueous layer was extracted 3 times with EtOAc. The 

organic layer was dried over Na2SO4, filtrated and concentrated 

to yield the crude. Purification by flash chromatography (0.5% 

NH4OH and 5% MeOH in EtOAc) gave 158 (12 mg, 54%) 1H 

NMR (400 MHz, MeOD) δ = 7.64 (d, J=8.5, 2H, H-13, H-15), 

7.62 (s, 1H, H-7), 7.45 (d, J=8.5, 2H, H-12, H-16), 7.34 – 7.20 

(m, 3H, H-25, 27, 29), 7.19 – 7.15 (m, 2H, H-26, H-28), 6.82 (s, 1H, H-5), 4.39 (d, 

J=14.7, 1H, H-23), 4.33 (d, J=14.8, 1H, H-23), 3.86 (d, J=14.4, 1H, H-18), 3.71 (d, 

J=14.4, 1H, H-18), 3.62 (s, 3H, H-10), 3.56 (dd, J=9.6, 5.3, 1H, H-2), 3.19 (dd, J=15.0, 

9.5, 1H, H-3), 3.00 (dd, J=15.0, 5.3, 1H, H-3), 2.31 (s, 3H, H-21). LC-MS (C18_ESI): 

388.2 [M+H]+ Rt=5.57min. 

 

 

tert-butyl N-(2-bromo-4-cyanophenyl)-N-[(tert-butoxy)carbonyl]carbamate (165) 

165 was synthesized according to literature 

procedure[204]. To a solution of 4-amino-3-

bromobenzonitrile (1 g, 5.1 mmol) in anhydrous THF (50 

mL) was added boc anhydride (3.3 g, 15.2 mmol) and 

DMAP (62 mg, 0.51 mmol). The solution was stirred at 

reflux overnight and concentrated to dryness. The 

precipitate was partitioned between 0.5 N HCl (100 mL) and EtOAc (100 mL). The 

aqueous layer was extracted with EtOAc (2 x 50 mL) and the combined organic phases 

were washed with brine (50mL), dried over Na2SO4, filtered and concentrated to afford 

crude 165, which was used as such in the following steps.1H NMR (400 MHz, CDCl3) δ 

= 7.92 (d, J=1.8, 1H, H-6), 7.63 (dd, J=8.2, 1.8, 1H, H-2), 7.34 (d, J=8.2, 1H, H-3), 1.40 

(s, 18H, H-13, 14, 15, 20, 21, 22).LC-MS (C18_ESI):396.5 [M+H]+ Rt=10.25min. 
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Tert-butyl 2-{[(tert-butoxy)carbonyl]amino}-5-cyanobenzoate (166) 

166 was synthesized according to literature procedure[204]. 

A solution of n-BuLi in hexane (340 µL of 1.6 M) were 

added dropwise at -78 °C under argon to a solution of 165 

(200 mg, 0.5 mmol) in THF (5 mL). The reaction was stirred 

for 15 min at -78 °C and treated with sat. NH4Cl solution. 

The reaction was warmed to room temperature, diluted with 

water and extracted twice with Et2O. The combined organic 

layers were washed with brine, dried over Na2SO4, filtered and the solvent was 

evaporated to yield 166, which was subsequently purified by flash chromatography 

(130 mg, 82%). 1H NMR (400 MHz, MeOD) δ = 8.56 (d, J=8.9, 1H, H-3), 8.25 (d, J=2.2, 

1H, H-6), 7.81 (dd, J=8.9, 2.1, 1H, H-2), 1.64 (s, 9H, H-12, 13, 14), 1.55 (s, 9H, H-19, 

20, 21).13C NMR (101 MHz, MeOD) δ = 166.79 (C-15), 153.25 (C-22), 146.72 (C-4), 

137.66 (C-2), 136.48 (C-6), 119.92 (C-3), 119.03 (C-7), 117.20 (C-5), 105.01 (C-1), 

84.76 (C-11), 82.45 (C-18), 28.43 (C-12,13,14), 28.35 (C-19,20,21).  

 

 

(1-methyl-2-sulfanyl-1H-imidazol-5-yl)methanol (168) 

A procedure was adapted from the literature[205] as follows; a mixture of 

methylamine hydrochloride (14 g, 208.2mmol), dihydroxyacetone dimer 

(15 g, 166.5 mmol as monomer), potassium thiocyanate (24.3 g, 25.0 

mmol) and acetic acid (19 mL, 333 mmol) in acetonitrile (163 mL) and 

water (3.0 mL) was stirred for 18 h at 55 °C. The mixture was cooled to 

20 °C and filtered. The filter cake was washed with acetonitrile (50 mL), water (100 mL) 

and EtOAc (50 mL). The solid was dried under vacuum to give crude 168. 1H NMR 

(400 MHz, DMSO) δ = 12.08 – 11.81 (m, 1H, H-8), 6.80 (s, 1H, H-2), 5.16 (t, J=5.2, 1H, 

H-7), 4.33 (d, J=5.1, 2H, H-6), 3.45 (s, 3H, H-9). 

 

 

(1-methyl-1H-imidazol-5-yl)methanol (162) 

A procedure was adapted from the literature[205] as follows; a solution of 

30% aqueous hydrogen peroxide (3.4 mL, 33.0 mmol) was gradually 

added over 30 min to a suspension of 168 (1.44 g, 10.0 mmol) in acetic 

acid (5.0 mL) and water (1.0 mL) while maintaining the temperature at 

35-45 °C. The homogeneous mixture was stirred for 30 min at 40 °C and then cooled to 

20 °C. The mixture was quenched by addition of 10% aqueous sodium sulfite (1 mL) at 

25 °C. The mixture was treated with activated carbon (0.1 g) for 30 min at 20 °C and 
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filtered over filter paper. The filtrate was basified to pH = 9.0 with 25% aqueous 

ammonia (10 mL) and extracted 3 times with CHCl3/iPrOH (3 :1). The organic layer 

was dried over Na2SO4 filtered and concentrated in vacuo to give 162 (4.2 g, 75%).1H 

NMR (400 MHz, DMSO) δ = 7.51 (s, 1H, H-4), 6.76 (s, 1H, H-2), 4.97 (bs, 1H, H-7), 

4.40 (s, 2H, H-6), 3.59 (s, 3H, H-8). 

 

 

5-bromo-2-{[(1-methyl-1H-imidazol-5-yl)methyl]amino}benzamide (172a) 

To 5.00 g (116 mmol) of 5-bromisatoic acid anhydride was 

added 3 ml of a 25 % aqueous ammonia solution and the 

mixture was kept at room temperature for 1 h. The 

precipitate was filtered, washed with a 5% aqueous 

ammonia solution, dried, and recrystallized from a 

water/EtOH (1:10) mixture to give 2-amino-5-bromo-

benzamide[207]. 

A small fraction of obtained 2-amino-5-bromobenzamide (300 mg, 1.4 mmol) was 

stirred with N-methylimidazole 5-carboxaldehyde 76 (169 mg, 1.5 mmol) in THF (5 mL), 

followed by the addition of TFA (207 µL, 2.8 mmol) and NaBH(OAc)3.(0.36 g, 1.7 

mmol)[208]. After completion of the reaction, indicated by TLC, the reaction mixture was 

quenched by the addition of NaHCO3 (sat). The aqueous layer was extracted with DCM 

(3x). The organic layer was dried over Na2SO4 filtered and concentrated in vacuo to 

give 172, which was purified by flash chromatography (10% MeOH in DCM) 1H NMR 

(400 MHz, MeOD) δ = 7.73 (d, J=2.3, 1H, H-6), 7.59 (s, 1H, H-16), 7.41 (dd, J=8.9, 2.4, 

1H, H-2), 6.94 (s, 1H, H-13), 6.81 (d, J=9.0, 1H, H-3), 4.40 (s, 2H, H-17), 3.70 (s, 3H, 

H-18). 

 

 

5-cyano-2-{[(1-methyl-1H-imidazol-5-yl)methyl]amino}benzamide (172b) 

CuCN (250 mg, 2.8 mmol) was added to a stirred solution 

of 172a (200 mg, 0.65 mmol) in NMP (2.0 mL) at room 

temperature. The reaction mixture was heated at 220 °C 

for 20 min using microwave irradiation, and the solvent 

was then removed by lyophilization from deionized water. 

The residue was thoroughly extracted with DCM, dried, 

and concentrated. Purification by silica gel chromatography (10% MeOH in DCM) gave 

172b as a white solid (36 mg, 22%). 1H NMR (400 MHz, DMSO) δ = 9.06 (t, J=5.5, 1H, 



 

S
y
n

th
e

ti
c
 p

ro
c
e
d

u
re

s
 

200 

 

H-7), 8.05 (d, J=1.9, 2H, H-6), 7.62 (dd, J=8.8, 1.9, 1H, H-2), 7.54 (s, 1H, H-16), 6.93 

(d, J=8.9, 1H, H-3), 6.84 (s, 1H, H-13), 4.45 (d, J=5.4, 2H, H-17), 3.57 (s, 3H, H-18). 

General Procedure VII for synthesis of tetrahydroquinazolinones 

All reactions were carried out at a concentration of 160 mM of benzamide, 180 mM of 

aldehyde 320 mM of 34% HCl in EtOH. To a solution of 1 equiv. of benzamide in EtOH, 

1.1 equiv. of aldehyde and 2 equiv. of 34% HCl were added. The reaction mixture was 

refluxed for ~5 h. After completion of the reaction, indicated by TLC, the reaction 

mixture was cooled down and evaporated. The crude product was purified by column 

chromatography (3% MeOH in DCM)  

 

 

6-bromo-2-(4-methoxyphenyl)-1-[(1-methyl-1H-imidazol-5-yl)methyl]-1,2,3,4-

tetrahydroquinazolin-4-one (174) 

According to General Procedure VII, reaction of 

172a (100 mg, 0.32 mmol) with anisaldehyde (43 µL, 

0.36 mmol) gave 174 (95 mg, 69%) 1H NMR (400 

MHz, MeOD) δ = 8.87 (d, J=1.1, 1H, H-24), 7.96 (d, 

J=2.5, 1H, H-6), 7.53 (dd, J=8.8, 2.5, 1H, H-2), 7.39 

(d, J=1.3, 1H, H-26), 7.28 (d, J=8.7, 2H, H-14,18), 

6.89 (d, J=8.8, 2H, H-15,17), 6.83 (d, J=8.9, 1H, H-3), 5.82 (s, 1H, H-8), 4.77 (d, 

J=16.9, 1H, H-21), 4.53 (d, J=17.0, 1H, H-21), 3.86 (s, 3H, H-20), 3.77 (s, 3H, H-27). 

LC-MS (C18_ESI): 427.15 [M+H]+, Rt=5.58min; HRMS (ESI) calculated for 

C20H20O2N4Br [M+H]+: 427.07642, found: 427.07524. 

 

 

1-[(1-methyl-1H-imidazol-5-yl)methyl]-4-oxo-2-(2-phenylethyl)-1,2,3,4-

tetrahydroquinazoline-6-carbonitrile(175) 

According to General Procedure VII, reaction of 

172b (20 mg, 78 µmol) with 3-

phenylpropionaldehyde (12 mg, 86 µmol) gave 175 

as a white solid (21 mg, 72%) 1H NMR (400 MHz, 

MeOD) δ = 8.11 (d, J=2.0, 1H, H-6), 7.69 (dd, 

J=8.7, 2.0, 1H, H-2), 7.65 (s, 1H, H-16), 7.29 – 

7.21 (m, 2H, H-22, H-24), 7.20 – 7.13 (m, 3H, H-19, 21, 23), 7.11 (d, J=8.8, 1H, H-3), 

6.85 (s, 1H, H-13), 4.88 (d, J=15.6, 1H, H-17), 4.62 (dd, J=8.5, 4.2, 1H, H-26), 4.42 (d, 

J=15.8, 1H, H-17), 3.61 (s, 3H, H-18), 2.74 – 2.65 (m, 1H, H-28), 2.60 – 2.51 (m, 1H, 
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H-28), 2.10 – 1.92 (m, 2H, H-27).13C NMR (101 MHz, MeOH) δ = 163.93 (C-9), 150.49 

(C-4), 141.86 (C-20), 140.87 (C-16), 138.29 (C-2), 133.84 (C-6), 130.00 (C-13), 129.63 

(C-22, C-24), 129.31 (C-19, C-21), 127.50 (C-14), 127.27 (C-23), 119.88 (C-8), 118.16 

(C-5), 115.23 (C-3), 101.52 (C-1), 68.72 (C-26), 42.52 (C-17), 36.39 (C-27), 32.07 (C-

18), 31.26 (C-28). LC-MS (C18_ESI): 372.17 [M+H]+, Rt=5.47min; HRMS (ESI) 

calculated for C22H22ON5 [M+H]+: 372.18189, found: 372.18300. 
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List of Abbreviations 

 

 

αsyn  α-Synuclein 

AAK1 AP2-associated kinase 1  

AP2 Adaptor-related protein 

complex 2 

Arf ADP-ribosylation factor  

CBR  C-terminal binding region,  

CCVs  clathrin-coated vesicles  

CIM CBR interacting motif  

COPI  coat protein complex I  

COPII coat protein complex II  

EEA1 early endosome antigen 1  

ER endoplasmatic reticulum  

FDA Food and Drug 

Administration 

FPP farnesylpyrophosphate  

FTase farnesyl transferase  

FTI farnesyl transferase inhibitor 

G Proteins Guanine nucleotide-binding 

proteins  

GAP GTPase activating protein  

GAPVD1  GTPase-activating protein 

and VPS9 domain-containing 

protein 1 

GDI guanosine nucleotide 

dissociation inhibitor 

GDP guanosine diphosphate 

GEF guanine nucleotide exchange 

factor  

GGPP geranylgeranylpyrophos-

phate  

GGPPS  geranylgeranylpyrophos-

phate synthase 

GGTase I geranylgeranyl transferase I  

GGTI geranylgeranyl transferase 

inhibitor  

GPCR G-protein coupled receptors  

GTP guanosine-5'-triphosphate 

GTPase guanosine triphosphatase 

HTS High Throughput Screening 

IC  intermediate compartment) 

IF improvement factor 

LBS lipid binding site 

LRR leucine-rich repeat  

M6PRs  M6P receptors  

MAP mitogen-activated protein  

MTOC  microtubule organizing 

center  

mTOR mammalian target of 

rapamycines 

NSF N-ethyl-maleimide-sensitive 

fusion protein 

PI  phosphoinositide  

PM plasma membrane  

PPP prenylpyrophosphate  

PRA1 prenylated Rab acceptor 1  

PTase prenyltransferase  

PTI  prenyltransferase inhibitor  

QT Q and T wave in the heart‟s 

electrical cycle 

Rab Ras-like proteins in brain  

RabF Rab specific residues  

RabGGTase Rab geranylgeranyl 

transferase  

RabSF Rab subfamily specific motifs  

Ran Ras-like nuclear  

Ras Ras sarcoma  

RBD Rab-binding domain 

RCE1 RAS converting enzyme 1  

REP  Rab Escort Protein  

Rho Ras homologous  

RNAi Ribonucleic acid interference 

RUN RPIP8, UNC-14, NESCA 

SCV  Salmonella containing 

vesicles  
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SNARE  Soluble NSF attachment 

protein receptor  

TAG Tunnel adjacent to ggpp 

binding site 

TBC  Trec2/Cdc16/Bub2 

THB tetrahydrobenzodiazepine  

TIP47 47-kDa tail interacting protein  

VEGFR Vascular endothelial growth 

factor receptor 

 

ad apparent doublet 

Ac acetyl 

AcOH acetic acid 

aq. aqueous 

Bn benzyl 

Boc tert-butoxycarbonyl 

br  broad 

Bu butyl 

ºC degrees Celcius (centigrade) 

CDI carbonyldiimidazole 

compd compound 

d days 

d (NMR) doublet 

dba dibenzylidene acetone 

DBU  1,8-diazabicyclo 

[5.4.0]undec-7-ene 

dd (NMR) doublet of doublets 

DCM dichloromethane 

DCE dichloroethene 

DHP dihydropyran 

DIAD Diisopropyl azodicarboxylate  

DIPEA diisopropylethylamine 

DMAP 4-dimethylaminopyridine  

DMF N,N-dimethylformamide 

DMSO dimethyl sulfoxide 

dt (NMR) doublet of triplets 

e.g.  exempli gratia (for example) 

equiv. equivalents 

ESI electrospray ionization 

Et ethyl 

et al. et alia(and others) 

h hours 

HOBt N-hydroxybenzotriazole 

HPLC  high performance liquid 

chromatography 

HRMS high resolution mass 

spectrometry 

i.e. id est (that is) 

IR infrared 

m (NMR) multiplet 

M molar 

MALDI matrix-assisted laser 

desorption ionization 

Me methyl 

MeCN acetonitrile 

min minutes 

mp melting point 

MS mass spectrometry 

N normal (equivalents per liter) 

NBS N-bromosuccinimide 

NBD-FPP 3,7,11-trimethyl-12-(7-

nitrobenzo[1,2,5] oxadiazo-4-

ylamino)dodeca-2,6,10-

trienyl pyrophosphate  

NCS N-chlorosuccinimide 

NHS N-Hydroxysuccinimide 

NMR nuclear magnetic resonance 

NVoc Nitroveratryloxycarbonyl 

o ortho 

p para 

PEG polyethyleneglycol 

Ph Phenyl 

ppm parts per million 

PPTS Pyridinium p-

toluenesulfonate  

q quartet 

Rf retention factor 

rt room temperature 

s singlet (NMR) 

sat. saturated 
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t (NMR) triplet 

t-Bu tert-butyl 

TEA triethylamine 

Tf trifluoromethanesulfonyl 

TFA trifluoroacetic acid 

TFAA trifluoroacetic anhydride 

THF tetrahydrofuran 

THP tetrahydropyran 

TLC thin layer chromatography 

Trt trityl (triphenylmethyl) 

Ts p-toluenesulfonyl 

TTBAP  tris tetrabutylammonium 

pyrophosphate  

 

Amino acids 

Ala  alanine (A) 

Arg  arginine (R) 

Asn  asparagine (N) 

Asp aspartate (D) 

Cys cysteine (C) 

Gly glycine (G) 

Glu glutamate (E) 

Gln glutamine (Q) 

His histidine (H) 

Ile isoleucine (I) 

Leu leucine (L) 

Lys lysine (K) 

Met methionine (M) 

Phe phenylalanine (F) 

Pro proline (P) 

Ser serine (S) 

Thr threonine (T) 

Trp tryptophane (W) 

Tyr tyrosine (Y) 

Val valine (V) 
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Supplementary Data 

 



 

Virtual Screening Input data  



 

 

Cellular data of all tested compounds and cell lines  

 RabGGTase 

(NBD-FPP) 

RabGGTase (GGPP) Cellular Reprenylation FTase HCT116 HELA A2780 A549 DU145 PBMC 

74b 1011±465 4 114.9±42.1 5.2±0.2 172 130 100 315 162 >10000 

93 38±7 122.7±21.7 343±29 <5 75±10 745±303 43±9 412 nd 3836 

89 441 180.5±13.5 nd 99.3±59 1048 372 265 655 756 >10000 

83 18629±13202 1495.5±99.5 >10000 10.5±3.9 1049 1960 92 2223 3097 >10000 

91 243±20 15.5±1.5 77.3±1.7 9.2±4.2 355 nd 233 281 201 >10000 

92 72.2±1.7 6±4 81±32 <5 231 151 130 338 142 >10000 

23 724±321 6.4±4.8 74±34 6±3 63±8 101±2 43 99 70 >10000 

90 2072 23.5±4.5 278 1,012±688 1434±484 nd 1381±280 593 nd >10000 

88 39±10 63±24 43±12 15±8 112 59 116 74 90 8028 

87 162±10 156±49 307±40 10±7 264 154 165 216 241 8686 

94 353±158.1 11±2 466±345 4.3±2.2 308 409 399 442 413 >10000 

99 >30000 >10000 nd 120.5±84.9 640 901 1002 774 828 >10000 

97 >9,500 706±246 >30 194±78 4705±2385 8062 1740±648 2593 3126 >10000 

101 >30000 >10000 >10000 >10000 4974 9308 3261 3206 10000 >10000 

102 >30000 2827±977 nd 979±262 5572 5893 4652 2776 6455 6404 

103 >30000 8490.5±1509.5 nd >10000 4292  3541 2244 12720 >10000 

109 616.2±415.7 1547±101 311±193 >10000 443±173 797±330 589±199 nd nd >10000 

126 41.6±9 379 49±32 >10000 35±1 101±11 115±3 nd nd >10000 

120 62.5±1.6 14 11±5 26.9±20 2±1 21±4 18±1 nd nd >10000 

129 nd 59 54 151 71±10 130±11 222±1 nd nd >10000 

Standard deviations available at the LDC  



 

Assignment by analogy, NMR example of compound 91 

1H NMR 
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