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CONTROL OF THE ISOPERIMETRIC DEFICIT BY THE
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MATTHIAS RÖGER AND REINER SCHÄTZLE

Abstract. In the class of smoothly embedded surfaces of sphere type we prove
that the isoperimetric deficit can be controlled by the Willmore deficit.

Let us consider the classM of smoothly embedded surfaces Σ ⊂ R3 of sphere type
with enclosed inner region ΩΣ ⊂ R3, and let us denote by ar(Σ) and vol(ΩΣ) the two-
dimensional Hausdorff measure of Σ and the three-dimensional Lebesgue measure of
ΩΣ, respectively. For Σ ∈M we define the isoperimetric ratio

I(Σ) :=
ar(Σ)

vol(ΩΣ)
2
3

, (1)

and the Willmore energy

W(Σ) :=
1

4

∫
Σ

|H|2 dH2, (2)

where H denotes the mean curvature of the surface Σ. Both functionals are invari-
ant under dilations and translations; round spheres are in both cases the unique
minimizers, in particular

I(Σ) ≥ I(S2) = (6
√
π)

2
3 ,

W(Σ) ≥ W(S2) = 4π

for all Σ ∈ M. We consider for any such Σ and both functionals the corresponding
deficits, that is the difference from the optimal value. Our main result is the following
control of the isoperimetric deficit by the Willmore deficit.

Theorem 1. For all c0 > 0 there exists a universal constant C > 0 such that

I(Σ)− I(S2) ≤ C
(
W(Σ)−W(S2)

)
(3)

for all Σ ∈M with I(Σ)− I(S2) ≤ c0.

Umbilical surfaces Σ ∈ M are by a classical Theorem of Codazzi round spheres.
Theorem 1 can be also been seen as a quantitative version of this statement: An
equivalent formulation of (3) is that

I(Σ)− I(S2) ≤ C
1

4

∫
Σ

(κ1 − κ2)2 dH2,
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where κ1, κ2 denote the prinicipal curvatures of Σ. This equivalence follows directly
from (4) below.
We include some comments on the optimality of (3). By an explicit example we show
below that the linear growth in the right-hand of (3) with respect to the Willmore
deficit is optimal. Next we observe that (3) cannot hold for arbitrary Σ ∈ M: In
recent work by Schygulla [5] it is shown that for arbitrarily prescribed isoperimetric
ratio (6

√
π)

2
3 ≤ σ <∞ the minimial Willmore energy in the classMσ := {Σ ∈M :

I(Σ) = σ} is attained and is strictly below 8π. Finally, the isoperimetric deficit is
not estimated from below by the Willmore deficit, since the Willmore functional can
be made arbitrarily large by variations of the sphere that are small in C1 but large
in C2, whereas the isoperimetric ratio does not change substantially.

Estimates from below for the isoperimetric deficit have however been proved pre-
viously in terms of more direct concepts of distance from balls. Bernstein [1] and
Bonnesen [2] already considered in two space dimensions the asymmetry index

A(Ω) := inf
{

Ω∆B(x0, r) : x0 ∈ Rn, r > 0, vol(B(x0, r)) = vol(Ω)
}

and proved a lower bound for the isoperimetric deficit in terms of this quantity.
Figalli, Maggi, and Pratelli [4] generalized and sharpened their results and proved
the existence of a constant C = C(n) such that

A(Ω) ≤ C
(
I(∂Ω)− I(Sn−1)

) 1
2

for every measureable set Ω ⊂ Rn with 0 < vol(Ω) <∞. As the left-hand side is not
sensitive with respect to variations that are small in C0 but large in C1 whereas the
right-hand side is, an opposite inequality of this type cannot be true. In this sense
the optimality of the ball with respect to the isoperimetric ratio is in between the
corresponding optimality properties with respect to the asymmetry index and with
respect to the Willmore energy.

Before we start with the proof of Theorem 1 we fix some notations and collect some
results that we will use below. Let Σ ⊂ R3 denote a smoothly embedded hypersurface
in R3 of sphere type. We denote by A the second fundamental form of Σ and by Å
the trace-free part of the second fundamental form,

Å(x) = A(x)− trA(x)

2
Id = A(x)− 1

2
H(x) Id for x ∈ Σ.

If we denote by κ1(x) and κ2(x) the principal curvatures of A(x) we obtain

2|Å|2 = κ2
1 + κ2

2 − 2κ1κ2 = H2 − 4K,

whereK denotes the Gauss curvature of Σ. The Gauss–Bonnet Theorem then implies
that

W(Σ)−W(S2) =
1

4

∫
Σ

H2 dH2 − 4π =
1

2

∫
Σ

|Å|2 dH2. (4)

Proof of Theorem 1. In a first step we show the existence of a universal constant
C > 0 such that for all Σ with W(Σ) ≤ 6π and ar(Σ) = 4π(

vol(B)− vol(ΩΣ)
)
≤ C

(
W(Σ)−W(S2)

)
, (5)
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where B ⊂ R3 denotes the unit ball. To prove this inequality we first apply a theorem
by de Lellis and Müller [3]: possibly after a suitable translation of Σ, there exists a
conformal parametrization ψ : S2 → Σ such that

‖ψ − Id ‖W 2,2(S2) ≤ C‖Å‖L2(Σ). (6)

We denote by g the conformal factor of the induced area element, that is ψ]
(
H2bΣ

)
=

gH2bS2 and set Hψ(x) = HΣ(ψ(x)) for x ∈ S2. From ar(Σ) = 4π we obtain that

∫
S2

g(x) dH2(x) =

∫
Σ

1 dH2 =

∫
S2

1 dH2. (7)

For the volume of Σ we deduce from the Divergence Theorem that

3vol(ΩΣ) =

∫
ΩΣ

div x dx =

∫
Σ

x · ν(x) dH2(x), (8)

where ν denotes the outer normal of ΩΣ. By rewriting the last integral in terms of
the parametrization ψ we obtain

3
(
vol(B)− vol(ΩΣ)

)
=

∫
S2

(
1− ψ(x) · ν(x)g(x)

)
dH2(x)

=

∫
S2

(
1− ψ(x) · ν(x)

)
g(x) dH2(x), (9)

where we have used (7). We further compute that

1− ψ · ν =
1

2
|ψ − ν|2 − 1

2
(|ψ|2 − 1)

=
1

2
|ψ − ν|2 − 1

2
|ψ +

1

2
Hψ|2 +

1

2
ψ ·Hψ +

1

8
H2
ψ +

1

2
.

Using that

∫
S2

1

2
ψ ·Hψg dH2 =

∫
Σ

1

2
x ·HΣ(x) dH2(x)

= −
∫

Σ

1

2
divtanx dH2(x) = −ar(Σ) = −

∫
S2

(1

2
+

1

2
g
)
dH2
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we therefore deduce from (9) that

3
(
vol(B)− vol(ΩΣ)

)
=

∫
S2

(1

2
|ψ − ν|2g − 1

2
|ψ +

1

2
Hψ|2g +

1

2
ψ ·Hψg +

1

8
H2
ψg +

1

2
g
)
dH2

=

∫
S2

(1

2
|ψ − ν|2g − 1

2
|ψ +

1

2
Hψ|2g +

1

8
H2
ψg −

1

2

)
dH2

≤
∫
S2

1

2
|ψ − ν|2g dH2 +

1

2

(
W(Σ)−W(S2)

)
≤
∫
S2

(
|ψ(x)− x|2 + |x− ν(x)|2

)
g(x) dH2(x) +

1

2

(
W(Σ)−W(S2)

)
≤C‖Å‖2

L2(Σ) +
1

2

(
W(Σ)−W(S2)

)
(10)

by (6). With (4) inequality (5) follows.
We now choose δ := min{ 2

3C
, 2} with C > 0 from (5). We then have for all

Σ ∈ M with ar(Σ) = 4π and W(Σ) < (4 + δ)π that vol(ΩΣ) > 2π
3

holds. Since
vol(ΩΣ) ≤ vol(B) = 4π

3
and since a−2/3 − b−2/3 ≤ 2

3
a−5/3(b− a) for all 0 < a < b we

deduce that

I(Σ)− I(S2) =
4π

vol(ΩΣ)
2
3

− 4π

vol(B)
2
3

≤ 8π

3

(2π

3

)− 5
3
(
vol(B)− vol(ΩΣ)

)
≤ C1

(
W(Σ)−W(S2)

)
(11)

for all Σ with W(Σ) < (4 + δ)π and ar(Σ) = 4π by inequality (5). Since both sides
of (11) are invariant under dilations this proves

I(Σ)− I(S2) ≤ C1

(
W(Σ)−W(S2)

)
(12)

for all Σ ∈ M with W(Σ) < (4 + δ)π. On the other hand, for all Σ ∈ M with
W(Σ) ≥ (4 + δ)π and I(Σ)− I(S2) ≤ c0 we have

I(Σ)− I(S2) ≤ c0

δπ

(
W(Σ)−W(S2)

)
.

Setting C = max{C1,
c0
δπ
} this proves together with (12) that (3) holds for all Σ ∈M

with I(Σ)− I(S2) ≤ c0. �

Remark 1. The optimality of (3) with respect to the (linear) growth rate in the
right-hand side can be easily seen by evaluating a specific perturbation of the unit
sphere. Consider for example the ellipsoids

E(r) =
{x cosϕ

x sinϕ
rf(x)

 : ϕ ∈ [0, 2π), x ∈ [0, 1]
}
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for f(x) =
√

1− x2. We then have E(1) = S2. A direct computation shows that
with q(x) :=

√
1 + r2(f ′(x))2 for r > 1∫

E(r)

H2 dH2 = 4π

∫ 1

0

xq(x)r2
(f ′′(x)

q(x)3
+
f ′(x)

xq(x)

)2

dx

= 4π
(7r2 + 2

3r2
+

r2

√
r2 − 1

(π
2
− arctan

1√
r2 − 1

))
.

For the corresponding volume of the region Ω(r) enclosed by E(r) we obtain that

vol(Ω(r)) =
4π

3
r

and for the area and isoperimetric ratio

ar(E(r)) = 4π

∫ 1

0

xq(x) dx = 2π
(

1 +
r2

√
r2 − 1

arcsin
(√r2 − 1

r

))
I(E(r)) = (6

√
π)

2
3

1

2

(
r−

2
3 +

r
4
3

√
r2 − 1

arcsin
(√r2 − 1

r

))
.

Using that π
2
− arctan 1√

r2−1
= arcsin

(√
r2−1
r

)
a few direct computations yield that

lim
r↘1

W(E(r))

I(E(r))
= 6

(16π

3

) 2
3
.
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