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Abstract

In this paper we investigate penalized least squares methods in linear regression models

with heteroscedastic error structure. It is demonstrated that the basic properties with re-

spect to model selection and parameter estimation of bridge estimators, Lasso and adaptive

Lasso do not change if the assumption of homoscedasticity is violated. However, these esti-

mators do not have oracle properties in the sense of Fan and Li (2001). In order to address

this problem we introduce weighted penalized least squares methods and demonstrate their

advantages by asymptotic theory and by means of a simulation study.

Keywords and Phrases: Lasso, adaptive Lasso, bridge estimators, heteroscedasticity, asymptotic

normality, conservative model selection, oracle property.

1 Introduction

Penalized least squares and penalized likelihood estimators have received much interest by many

authors over the last 15 years because they provide an attractive methodology to select variables

and estimate parameters in sparse linear models of the form

Yi = xTi β0 + εi , i = 1, . . . , n(1.1)

where Yi ∈ R, xi is a p-dimensional covariate, β0 = (β0,1, . . . , β0,p)
T the unknown (sparse) vector

of parameters and the εi are i.i.d. random variables. Frank and Friedman (1993) introduced the
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so called ‘bridge regression’, which shrinks the estimates of the parameters in the (1.1) towards

0 using an objective function penalized by the Lq-norm (q > 0), that is

L(β) =
n∑
i=1

(Yi − xTi β)2 + λn

p∑
j=1

|βj|q(1.2)

The celebrated Lasso (Tibshirani (1996)) corresponds to a bridge estimator with q = 1. Knight

and Fu (2000) investigated the asymptotic behavior of bridge estimators in linear regression

models. They established asymptotic normality of the estimators of the non-zero components

of the parameter vector and showed that the bridge estimators set some parameters exactly

to 0 with positive probability for 0 < q ≤ 1. This means that the estimators perform model

selection and parameter estimation in a single step. In recent years many procedures with the

latter property have been proposed in addition to bridge regression: the non-negative Garotte

(Breiman (1995)), the SCAD (Fan and Li (2001)), least angle regression (Efron et al. (2004)),

the elastic net (Zou and Hastie (2005)), the adaptive Lasso (Zou (2006)) or the Dantzig selector

(Candes and Tao (2007)), which has similar properties as Lasso (James et al. (2009)). All

aforementioned procedures have the attractive feature that model selection and parameter

estimation can be achieved by a single minimization problem with computational cost growing

polynomially with the sample size, while classical subset selection via an information criterion

like AIC (Akaike (1973)), BIC (Schwarz (1978)) or FIC (Claeskens and Hjort (2003)) has

exponentially growing computational cost. Moreover, there exist efficient algorithms to solve

these minimization problems like LARS (Efron et al. (2004)) or DASSO (James et al. (2009)).

Fan and Li (2001) argued that any reasonable estimator should be unbiased, continuous in the

data, should estimate zero parameters as exactly zero with probability converging to one (consis-

tency for model selection) and should have the same asymptotic variance as the ideal estimator

in the correct model. They called this the ‘oracle property’ of an estimator, because such an

estimator is asymptotically (point-wise) as efficient as an estimator which is assisted by a model

selection oracle. In particular they proved the oracle property for the SCAD penalty. Knight

and Fu (2000) showed that for 0 < q < 1 the bridge estimator has the oracle property using a

particular tuned parameter λn, while Zou (2006) demonstrated that the Lasso can not have it.

This author showed the oracle property for the adaptive Lasso, which determines the estimator

minimizing the objective function

L(β) =
n∑
i=1

(Yi − xTi β)2 + λn

p∑
j=1

|βj|
|β̃j|γ

(1.3)

(here β̃ = (β̃1, . . . , β̃p)
T denotes a preliminary estimate of β0). Fan and Peng (2004), Kim et al.

(2008), Huang et al. (2008a) and Huang et al. (2008b) showed generalizations of the aforemen-

tioned results in the case where the number of parameters is increasing with the sample size.
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The purpose of the present paper is to consider penalized least squares regression under some

’non standard’ conditions. To our knowledge most of the literature concentrates on models of

the form (1.1) with independent identically distributed errors and in this note we consider the

corresponding problem in the case of heteroscedastic errors. We concentrate our analysis on the

case of a fixed parameter dimension and generalize the asymptotic results of Knight and Fu (2000)

and Zou (2006) for bridge estimators and the adaptive Lasso (we do not analyze bridge estimators

for q > 1 because these do not perform model selection). In the next section we present the model,

the estimators and introduce some notation. In Section 3 we derive the asymptotic properties

of bridge estimators and the adaptive Lasso under heteroscedasticity, first if the estimators are

tuned to conservative model selection and second if they are tuned to consistent model selection.

However these estimators do not have the oracle property. Therefore, in Section 4 we introduce

weighted penalized least squares methods, derive the asymptotic properties of the corresponding

estimators and establish oracle properties for the bridge estimator with 0 < q < 1 and the

adaptive Lasso. In Section 5 we illustrate the differences between procedures which do not take

heteroscedasticity into account and the methods proposed in this paper by means of a simulation

study and a data example. Finally, some technical details are given in an appendix.

2 Preliminaries

We consider the following (heteroscedastic) linear regression model

(2.1) Y = Xβ0 + Σ(β0)ε,

where Y = (Y1, . . . , Yn)T is an n−dimensional vector of observed random variables, X is a

n × p-matrix of covariates, β0 is a p-dimensional vector of unknown parameters, Σ(β0) =

diag(σ(x1, β0), . . . , σ(xn, β0)) is a positive definite matrix, xT1 , . . . , x
T
n denote the rows of the

matrix X and ε = (ε1, . . . , εn) is a vector of independent random variables with E [εi] = 0

and Var (εi) = 1 for i = 1, . . . , n. We assume that the model is sparse in the sense that that

β0 = (β0(1)T , β0(2)T )T , where β0(1) ∈ Rk and β0(2) = 0 ∈ Rp−k, but it is not known which

components of the vector β0 vanish. Without loss of generality it is assumed that the k nonzero

components are given by the vector β0(1)T . The matrix of covariates is partitioned according to

β0, that is X = (X(1), X(2)), where X(1) ∈ Rn×k and X(2) ∈ Rn×(p−k). The rows of X(j) are

denoted by x1(j)
T , . . . , xn(j)T for j = 1, 2. We assume that the matrix X is not random but note

that for random covariates all results presented in this paper hold conditionally on X.

3



In the following we will investigate the estimators of the form

β̂lse = argminβ

[ n∑
i=1

(Yi − xTi β)2 + λnP (β, β̃)
]

β̂wlse = argminβ

[ n∑
i=1

(
Yi − xTi β
σ(xi, β)

)2

+ λnP (β, β̃)
]

(2.2)

where β and β̃ denote preliminary estimates of the parameter β0 and P (β, β̃) is a penalty function.

We are particularly interested in the cases

P (β, β̃) = P (β) = ‖β‖qq (0 < q ≤ 1)

P (β, β̃) =

p∑
j=1

|βj||β̃j|−γ (γ > 0)

corresponding to bridge regression (with the special case of Lasso for q = 1) and the the adaptive

Lasso , respectively. The subscripts ‘lse’ and ‘wlse’ correspond to ‘ordinary’ and ‘weighted’

least squares regression, respectively. Note that for bridge regression with q < 1 the functions

minimized above are not convex in β and there may exist multiple minimizing values. In that

case the argmin is understood as an arbitrary minimizing value and all results stated here are

valid for any such value.

Throughout this paper an estimator β̂ of the parameter β0 in model (2.1) is called consistent for

model selection, if

(2.3) lim
n→∞

P (β̂j = 0) = 1 for all j > k

and β̂ performs conservative model selection, if

(2.4) lim
n→∞

P (β̂j = 0) = c for all j > k

for some constant 0 < c < 1 (see e.g. Leeb and Pötscher (2005)). If an estimator performs

consistent or conservative model selection, respectively, depends on the choice of the tuning

parameter λn. A ‘larger’ value of λn usually yields consistent model selection while a ‘smaller’

value yields conservative model selection. In the following sections we will present results for

both cases of tuning separately.

Remark 2.1 In practice the parameter λn has to be chosen by a data driven procedure. If the

main purpose of the data analysis is the estimation of the parameters, λn should be chosen to per-

form conservative model selection. This can be achieved by using cross-validation or generalized

4



cross-validation (Craven and Wahba (1979)) which is asymptotically equivalent to AIC (see e.g.

Shao (1997) or Wang et al. (2007)). If the main purpose of the data analysis is the identification

of the relevant covariates, the regularizing parameter λn should be chosen to perform consistent

model selection, which can be achieved minimizing a BIC-like criterion (compare Wang et al.

(2007)).

3 Penalized least squares estimation

In this section we study the asymptotic behavior of the un-weighted estimators β̂lse in the linear

regression model with heteroscedastic errors (2.1). In particular we extend the results obtained

by Knight and Fu (2000) and Zou (2006) to the case of heteroscedasticity. Throughout this paper

we will use the notation sgn(x) for the sign of x ∈ R with the convention sgn(0) = 0. For a vector

v ∈ Rp and a function f : R→ R we write f(v) = (f(v1), . . . , f(vp))
T and all inequalities between

vectors are understood componentwise. By 1p we denote a p-dimensional vector with all elements

equal to 1. Our basic assumptions for the asymptotic analysis in this section are the following.

(i) The design matrix satisfies
1

n
XTX → C > 0,

where the limit

C =

(
C11 CT

21

C21 C22

)
is partitioned according to X (that is C11 ∈ Rk×k, C22 ∈ R(p−k)×(p−k)).

(ii)
1

n
XTΣ(β0)

2X → B > 0,

where the matrix B is partitioned in the same way as the matrix C.

(iii)
1

n
max
1≤i≤n

xTi σ(xi, β0)
2xi → 0.

The first two assumptions are posed in order to obtain positive definite limiting covariance ma-

trices of the estimators. The third is needed for the Lindeberg condition to hold.

3.1 Conservative model selection

Leeb and Pötscher (2008) showed that an estimator which performs consistent model selection

must have an unbounded (scaled) risk function, while the optimal estimator in the true model has
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a bounded risk. Pötscher and Leeb (2009) showed that the asymptotic distribution of the Lasso

and the SCAD can not be consistently estimated uniformly over the parameter space. The prob-

lems arising from this phenomenon are more pronounced for estimators tuned to consistent model

selection. Therefore the (global) asymptotic behaviour of a penalized least squares estimator is

different from that of an estimator in the true model although it satisfies an ‘oracle property’ in

the sense of Fan and Li (2001). Estimators which do perform conservative (but not consistent)

model selection in the sense of (2.4) do not suffer from the drawback of an unbounded risk and

estimators of the corresponding asymptotic distribution function are better than those for the

asymptotic distribution of estimators tuned to consistent model selection. For these reasons we

first study the behavior of the Lasso, the bridge regression and the adaptive Lasso estimator

tuned to conservative model selection. The following result will be proved in the Appendix.

Lemma 3.1 Let the basic assumptions (i)-(iii) be satisfied. If λn/
√
n→ λ0 ≥ 0, then the Lasso

estimator β̂lse satisfies

(3.1)
√
n(β̂lse − β0)

D−→ argmin(V ),

where the function V is given by

(3.2) V (u) = −2uTW + uTCu+ λ0

k∑
j=1

ujsgn(β0,j) + λ0

p∑
j=k+1

|uj|

and W ∼ N (0, B).

Remark 3.2 Let u = (u(1)T , u(2)T )T with u(1) ∈ Rk and u(2) ∈ Rp−k and introduce a similar

decomposition for the random variable W = (W (1)T ,W (2)T )T defined in Lemma 3.1. Then

by the Karush-Kuhn-Tucker (KKT) conditions the function V defined in (3.2) is minimized at

û = (û(1)T , 0)T if and only if

û(1) = C−111 (W (1)− λ0sgn(β0(1))/2) ∼ N (−C−111 λ0sgn(β0(1))/2, C−111 B11C
−1
11 )

and

−λ0/21p−k < C21û(1)−W (2) < λ0/21p−k.

This yields that there is a positive probability that the Lasso estimates zero components of the

parameter vector as exactly zero if λ0 6= 0, but this probability is usually strictly less than 1.

Consequently, under heteroscedasticity the Lasso performs conservative model selection in the

same way as in the homoscedastic case. The asymptotic covariance matrix of the Lasso estimator

of the non-zero parameters is given by C−111 B11C
−1
11 which is the same as for the ordinary least

squares (OLS) estimator in heteroscedastic linear models. This covariance is not the best one

achievable, because under heteroscedasticity the OLS estimator is dominated by a generalized

LS estimator. Additionally the estimator is biased if λ0 6= 0.
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Lemma 3.3 Let the basic assumptions (i)-(iii) be satisfied and assume that q ∈ (0, 1).

(1) If λn/n
q/2 → λ0 ≥ 0, then the bridge estimator β̂lse satisfies (3.1) where the function V is

given by

V (u) = −2uTW + uTCu+ λ0

p∑
j=k+1

|uj|q

and W = (W (1)T ,W (2)T )T ∼ N (0, B).

(2) Assume additionally that there exists a sequence 0 < an → ∞, such that the preliminary

estimate β̃ is a continuous function of all data points and satisfies

an(β̃ − β0)
D−→ Z,

where Z denotes a random vector with components having no pointmass in 0. If

λna
γ
n/
√
n→ λ0 ≥ 0(3.3)

then the adaptive Lasso estimator β̂lse satisfies (3.1) where the function V is given by

V (u) = −2uTW + uTCu+ λ0

p∑
j=k+1

|Zj|−γ|uj|

and W ∼ N (0, B).

Remark 3.4

(1) With the same notation as in Remark 3.2 we obtain from the KKT conditions that the

function V in part (1) of Lemma 3.3 is minimized at (û(1)T , 0)T if and only if

û(1) = C−111 W (1) ∼ N (0, C−111 B11C
−1
11 )

and for each small δ > 0

−qλ0δq−1/21p−k < C21û(1)−W (2) < λ0δ
q−1/21p−k.

Thus the bridge estimator also performs conservative model selection, whenever λ0 > 0.

Again the asymptotic covariance matrix is given by C−111 B11C
−1
11 and is suboptimal, but in

contrast to the Lasso estimator the estimator is unbiased.
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(2) The canonical choice of β̃ in the second part of Lemma 3.3 is the OLS estimator if p < n.

In this case we have an =
√
n (the best rate which is achievable) and Z ∼ N (0, C−1BC−1).

In addition we have Z = W , because both random vectors are obtained as limits of the

same quantity. Consequently, if γ = 1 the condition (3.3) becomes λn → λ0.

The function V defined in the second part of Lemma 3.3 is minimized at (û(1)T , 0)T if and

only if

û(1) = C−111 W1 ∼ N (0, C−111 B11C
−1
11 )

and

−λ0/2|Z(2)|−γ < C21û(1)−W (2) < λ0/2|Z(2)|−γ.

If λ0 is not too small and γ not too large this event has positive probability strictly less than

one. So the adaptive Lasso performs conservative model selection but again the asymptotic

covariance matrix is not the optimal one. Similar to bridge estimators with 0 < q < 1 the

adaptive Lasso estimator is asymptotically unbiased.

In finite samples there may be more parameters than observations, that is p ≥ n. In this

case the OLS estimator is no longer available but the estimator β̂lse in the second part of

Lemma 3.3 can still be calculated. For this purpose one could use a penalized least squares

estimator like a bridge estimator with q ≤ 1 tuned to perform conservative model selection

as preliminary estimate β̃. For the final calculation of β̂lse we use the convention that βj is

set to 0 and is removed from the penalty function of the adaptive Lasso if β̃j = 0.

3.2 Consistent model selection

In this section we use a different tuning parameter λn in order to obtain consistency in model

selection of the considered estimators. Again our first result concerns the Lasso estimator. This

result is a generalization of Lemma 3 of Zou (2006). The proof follows along the same lines as in

the homoscedastic case and is therefore omitted.

Lemma 3.5 Let the basic assumptions (i)-(iii) be satisfied and additionally λn/n→ 0, λn/
√
n→

∞. Then the Lasso estimator β̂lse satisfies

n

λn
(β̂lse − β0)

P−→ argmin(V ),

where the function V is given by

V (u) = uTCu+
k∑
j=1

ujsgn(β0,j) +

p∑
j=k+1

|uj|.

8



Remark 3.6 The function V defined in Lemma 3.5 is minimized in (û(1), 0) if and only if

û(1) = −C−111 sgn(β0(1))/2

and

−1p−k < 2C21û(1) < 1p−k.

The second condition is equivalent to

(3.4) |C21C
−1
11 sgn(β0(1))| < 1p−k,

which is the so called strong irrepresentable condition (compare e.g. Zhao and Yu (2006)). So

Lemma 3.5 directly yields that in the case of heteroscedasticity the Lasso estimator is consistent

for model selection if the strong irrepresentable condition (3.4) is satisfied. Moreover, the Lasso

estimator is still consistent for parameter estimation but not with the optimal rate
√
n. This

means that the results from the homoscedastic case can be extended in a straightforward manner.

The following lemma presents the asymptotic properties of bridge estimators for 0 < q < 1 and

the adaptive Lasso. The proof follows by similar arguments as given in Knight and Fu (2000)

and Zou (2006) and is omitted for the sake of brevity.

Lemma 3.7 Let the basic assumptions (i)-(iii) be satisfied.

(1) If λn/
√
n → 0 and λn/n

q/2 → ∞, then the bridge estimator β̂lse satisfies (3.1), where the

function V is given by

(3.5) V (u) = V (u(1), u(2)) =

−2u(1)TW (1) + u(1)TC11u(1) if u(2) = 0,

∞ otherwise,

and W (1) ∼ N (0, B11).

(2) If β̃ is a preliminary estimator of β0 such that there exists a sequence 0 < an → ∞ with

an(β̃ − β0) = Op(1), and λn/
√
n → 0, λn/

√
naγn → ∞, then the adaptive Lasso estimator

β̂lse satisfies (3.1), where the function V is given by (3.5).

Remark 3.8 Lemma 3.7 shows that bridge and adaptive Lasso estimators are able to perform

consistent model selection and estimation of the non-zero parameters with the optimal rate si-

multaneously. The asymptotic distribution is again normal with covariance matrix C−111 B11C
−1
11 .

Both estimators are unbiased due to the assumption λn/
√
n→ 0.
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4 Weighted penalized least squares estimators

We have seen in the last section that the asymptotic variance of the estimator β̂lse is suboptimal,

because with the additional knowledge of the non-vanishing components and variances σ2(xTi , β0)

the best linear unbiased estimator in model (2.1) would be

β̂gls = argminβ(1)

[ n∑
i=1

(Yi − xi(1)Tβ(1)

σ(xi, β0)

)2]
.

This estimator has asymptotic variance D−111 with D11 = limn→∞X(1)TΣ(β0)
−2X(1)/n (provided

that the limit exists). In order to construct an oracle estimator we use a preliminary estimator

β to estimate σ(xTi , β0) and apply a penalized least squares regression to identify the non zero

components of β0. The resulting procedure is defined in (2.2). The goal of this section is to

establish its model selection properties and the asymptotic normality of the estimator of the

non-zero components with covariance matrix given by D−111 .

In order to derive these results we make the following basic assumptions.

(i)’ The design matrix X satisfies

1

n
XTΣ(β0)

−2X → D > 0

where the matrix

D =

(
D11 DT

21

D21 D22

)
is partitioned according to X(1) and X(2) (that is D11 ∈ Rk×k, D22 ∈ R(p−k)×(p−k)).

(ii)’
1

n
max
1≤i≤n

xTi xi → 0.

(iii)’ The variance function σ(·, β) is bounded away from zero for all β in a neighborhood of β0.

Additionally σ(x, β) is two times differentiable with respect to β in a neighborhood of β0
for all x and all second partial derivatives are bounded.

(iv)’ There exists a sequence 0 < bn →∞ such that bn/n
1/4 →∞ and such that the preliminary

estimator of β0 satisfies bn(β − β0) = Op(1).

Assumptions (i)’ and (ii)’ are analogs of (i)-(iii) of Section 3 and are posed in order to obtain

non-degenerate normal limit distributions of the estimators. (iii)’ imposes sufficient smoothness

of the function σ such that σ(x, β0) can be well approximated by σ(x, β). (iv)’ asserts that β is

consistent for β0 with a reasonable rate. If p < n one could use the OLS estimator for β and in

this case we have bn =
√
n. If p ≥ n (which may happen in finite samples) one could use the

estimator β̂lse tuned to conservative model selection as shown in Lemma 3.1 and 3.3.
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4.1 Conservative model selection

Again we first state our results for the estimator β̂wlse in the case where the tuning parameter λn
is chosen such that β̂wlse performs conservative model selection. We begin with a result for the

scaled Lasso estimator which is proved in the Appendix.

Theorem 4.1 Let the basic assumptions (i)’-(iv)’ be satisfied and additionally λn/
√
n→ λ0 ≥ 0.

Then the weighted Lasso estimator β̂wlse converges weakly, i.e.

(4.1)
√
n(β̂wlse − β0)

D−→ argmin(V ),

where the function V is given by

V (u) = −2uTW + uTDu+ λ0

k∑
j=1

ujsgn(β0,j) + λ0

p∑
j=k+1

|uj|

and W ∼ N (0, D).

Remark 4.2 By similar argument as in Remark 3.2 one obtains from Theorem 4.1 that the

scaled Lasso estimator β̂wlse performs conservative model selection whenever λ0 6= 0. The es-

timators of the non zero components are asymptotically normal distributed with expectation

−D−111 λ0sgn(β0(1))/2 and covariance matrix D−111 . So this estimator has the optimal asymptotic

variance but is biased.

We now state corresponding results for scaled bridge estimators with 0 < q < 1 and the scaled

adaptive Lasso estimator.

Theorem 4.3 Let the basic assumptions (i)’-(iv)’ be satisfied and assume that q ∈ (0, 1).

(1) If λn/n
q/2 → λ0 ≥ 0, then the scaled bridge estimator β̂wlse satisfies (4.1) where the function

V is given by

V (u) = −2uTW + uTDu+ λ0

p∑
j=k+1

|uj|q

and W ∼ N (0, D).

(2) Let β̃ denote an estimator of β0 that is a continuous function of all data points such that

an(β̃ − β0)
D−→ Z.

11



for some positive sequence an → ∞ . If the distribution of the random vector Z has no

point mass in 0 and λna
γ
n/
√
n → λ0 ≥ 0, then the scaled adaptive Lasso estimator β̂wlse

satisfies (4.1), where the function V is given by

V (u) = −2uTW + uTDu+ λ0

p∑
j=k+1

|Zj|−γ|uj|

and W ∼ N (0, D).

Theorem 4.3 shows that the scaled bridge estimator and scaled adaptive Lasso estimator both

can be tuned to perform conservative model selection. In both cases the estimators of the non-

zero parameters are unbiased and asymptotically normal distributed with optimal asymptotic

variance D−111 . The proof of Theorem 4.3 follows along the same lines as the one of Theorem 4.1

and is therefore omitted.

4.2 Consistent model selection

Finally, we provide results for weighted Lasso, bridge and adaptive Lasso estimators when tuned

to perform consistent model selection. In particular, we demonstrate that in this case one obtains

the optimal asymptotic covariance matrix D−111 for the estimators of the non-zero parameters.

Therefore the weighted bridge estimators and the weighted adaptive Lasso satisfy an oracle

property in the sense of Fan and Li (2001). The proofs of the results are omitted, because they

follow like that one of Theorem 4.1.

Theorem 4.4 Let the basic assumptions (i)’-(iv)’ be satisfied.

(1) If λn/n→ 0, λn/
√
n→∞, then the weighted Lasso estimator β̂wlse satisfies

n

λn
(β̂wlse − β0)

P−→ argmin(V ),

where the function V is given by

V (u) = uTDu+ λ0

k∑
j=1

ujsgn(β0,j) + λ0

p∑
j=k+1

|uj|.

(2) If q ∈ (0, 1), λn/
√
n → 0 and λn/n

q/2 → ∞, then the weighted bridge estimator β̂wlse
satisfies (4.1) where the function V is given by

(4.2) V (u) = V (u(1), u(2)) =

−2u(1)TW (1) + u(1)TD11u(1) if u(2) = 0,

∞ otherwise,

and W (1) ∼ N (0, D11).
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(3) Let β̃ be an estimator of β0 such that there exists a sequence 0 < an →∞ so that an(β̃−β0) =

Op(1). If λn/
√
n→ 0 and λn/

√
naγn →∞, then the weighted adaptive Lasso estimator β̂wlse

satisfies (4.1) where the function V is given by (4.2) and W (1) ∼ N (0, D11).

Remark 4.5 As in Remark 3.4 one obtains that the weighted Lasso estimator is consistent for

model selection if and only if

|D21D
−1
11 sgn(β0(1))| < 1p−k,

which corresponds to the strong irrepresentable condition (3.4) for the “classical” Lasso estimator.

In particular, the weighted Lasso does not have the optimal rate for parameter estimation.

Remark 4.6 The last theorem shows that weighted bridge estimators and the weighted adaptive

Lasso estimator both can be tuned to perform consistent model selection and estimation of the non

zero parameters with the optimal rate simultaneously. Moreover, the corresponding standardized

estimator of the non-vanishing components is asymptotically unbiased and normal distributed

with optimal covariance matrix D−111 .

5 Examples

In this section we compare the “classical” penalized estimates (which do not take scale information

into account) with the procedures proposed in this paper by means of a small simulation study

and a data example.

5.1 Simulation study

For the sake of brevity we concentrated on the Lasso and adaptive Lasso. These estimators can

be calculated by convex optimization and we used the package “penalized” available for R on

http://www.R-project.org (R Development Core Team (2008)) to perform all computations.

In all examples the data were generated using a linear model (2.1). The errors ε were iid standard

normal and the matrix Σ was a diagonal matrix with entries σ(xi, β0) on the diagonal where σ

was given by one of the following functions:

(a) σ(xi, β0) =
1

2

√
xTi β0,

(b) σ(xi, β0) =
1

4
|xTi β0|,

(c) σ(xi, β0) =
1

20
exp |xTi β0|,

(d) σ(xi, β0) =
1

50
exp (xTi β0)

2.
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Table 1: Mean number of correctly zero and correctly non-zero estimated parameters in model

(2.1) with β = (3, 1.5, 2, 0, 0, 0, 0, 0)

σ

(a) (b) (c) (d)

Lasso = 0 1.67 3.33 1.58 2.64

6= 0 3 3 2.99 3

adaptive Lasso = 0 4.51 4.32 2.95 4.48

6= 0 3 3 2.95 3

weighted Lasso = 0 0.97 1.53 0.67 0.43

6= 0 3 3 3 3

weighted adaptive Lasso = 0 3.97 4.09 3.29 3.91

6= 0 3 3 3 3

The different factors were chosen in order to generate data with comparable variance in each of

the four models. The tuning parameter λn was chosen by fivefold generalized cross validation

performed on a training data set. For the preliminary estimator β̃ we used the OLS estimator

and for β the un-weighted Lasso estimator. All reported results are based on 100 simulation runs.

We considered the same scenario as investigated by Zou (2006). More precisely the design matrix

was generated having independent normally distributed rows and the covariance between the i-th

and j-th entry in each row was 0.5|i−j|. The sample size was given by n = 60

At first we considered the parameter β = (3, 1.5, 2, 0, 0, 0, 0, 0). The average variance in the

examples (a), (b) and (d) was given by about 55 and by about 60 in example (c) in this setup

(note that Zou (2006) considered variances of similar size). The model selection performance

of the estimators is presented in Table 1, where we show the mean of the correctly zero and

correctly non-zero estimated parameters. In the ideal case these should be 5 and 3, respectively.

It can be seen from Table 1 that the adaptive Lasso always performs better model selection than

the Lasso, in accordance with the asymptotic theory. The weighted Lasso performs very poor

model selection in all models and the un-weighted Lasso does a better job. The model selection

performance of the weighted and un-weighted adaptive Lasso are comparable. In Table 2 we

present the mean squared error of the estimates for the non-vanishing components β1, β2, β3. In

terms of this error the weighted versions of the estimators nearly always do a (in some cases

substantially) better job than their un-weighted counterparts. This is in good accordance with

the theory while the poor model selection performance of the weighted Lasso is a surprising fact.

As a second example we considered the vector β = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85) in

model (2.1) (the sample size is again n = 60). In this case the average variance in the examples

(a), (b) and (d) was given by about 38 and by about 45 in example (c). The corresponding

14



Table 2: Mean squared error of the estimators of the non-zero coefficients in model (2.1) with

β = (3, 1.5, 2, 0, 0, 0, 0, 0)

σ

(a) (b) (c) (d)

Lasso β1 0.0308 0.0682 0.3480 0.0692

β2 0.0306 0.0374 0.2461 0.0784

β3 0.0322 0.0484 0.3483 0.1141

adaptive Lasso β1 0.0293 0.0593 0.3514 0.0668

β2 0.0330 0.0393 0.3241 0.1027

β3 0.0285 0.0416 0.3871 0.1126

weighted Lasso β1 0.0215 0.0424 0.1431 0.2004

β2 0.0171 0.0133 0.0458 0.0174

β3 0.0191 0.0202 0.1086 0.0780

weighted adaptive Lasso β1 0.0193 0.0152 0.0944 0.1953

β2 0.0168 0.0069 0.0293 0.0134

β3 0.0165 0.0080 0.0864 0.0763

results for the correctly non-zero estimated parameters are presented in Table 3 (in the ideal

case this should be 8) while Table 4 contains the average of the mean squared errors of the eight

components of β. We see that in this example (which was also taken from Zou (2006)) model

selection is not a very challenging task. In fact with variance functions (a) and (b) all estimators

perform perfect model selection. In model (c) only the weighted Lasso is perfect with respect to

the criterion of model selection, which is in good agreement with its conservative behaviour in

the first example. The weighted adaptive Lasso is nearly perfect in this model. In the last model

both versions of Lasso perfectly select the model while the adaptive versions make a few mistakes.

In terms of estimation error adaptive and non-adaptive Lasso perform comparable. Again the

weighted versions yield substantially better estimation errors in all scenarios under consideration.

In some circumstances it might be difficult to specify a form of the variance function. In such

cases we propose to estimate the function σ from the data (xTi β̄, Yi)i=1,...,n nonparametrically and

use the weighted penalized least squares methodology on the basis of weights σ̂(xTi β̄) in (2.2).

In order to investigate the performance of the corresponding semi-parametric estimate in such

a situation we calculated β̂wlse in the two scenarios considered in the previous paragraph using

a local polynomial estimate (compare e.g. Wand and Jones (1995)) of σ instead of the true

function. The bandwidth for this estimator was chosen by the direct plug-in method of Ruppert

et al. (1995) and a Gaussian kernel was used. The results are reported in Tables 5 and 6.

Comparing Tables 1 and 5 we see that both weighted Lasso and weighted adaptive Lasso do a

15



Table 3: Mean number of correctly non-zero estimated parameters in model (2.1) with β =

(0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85)

σ

(a) (b) (c) (d)

Lasso 6= 0 8 8 7.68 8

adaptive Lasso 6= 0 8 8 6.88 7.95

weigthed Lasso 6= 0 8 8 8 8

weighted adaptive Lasso 6= 0 8 8 7.97 7.99

Table 4: Mean squared estimation error of the estimators of the non-zero coefficients in model

(2.1) with β = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85)

σ

(a) (b) (c) (d)

Lasso 0.0235 0.0293 0.2108 0.0717

adaptive Lasso 0.0246 0.0352 0.3078 0.0757

weighted Lasso 0.0115 0.0044 0.0410 0.0240

weighted adaptive Lasso 0.0125 0.0044 0.0427 0.0246

Table 5: Mean number of correctly non-zero estimated parameters in model (2.1) with estimated

variance function

σ

(a) (b) (c) (d)

β = (3, 1.5, 2, 0, 0, 0, 0, 0)

weighted Lasso = 0 1.79 3.43 2.08 2.50

6= 0 3 3 2.99 3

weighted adaptive Lasso = 0 4.37 4.57 3.08 4.29

6= 0 3 3 2.99 3

β = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85)

weighted Lasso 6= 0 8 8 7.96 7.99

weighted adaptive Lasso 6= 0 7.99 8 7.77 7.83
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Table 6: Mean squared estimation error of the estimators of the non-zero coefficients in model

(2.1) with estimated variance function

σ

(a) (b) (c) (d)

β = (3, 1.5, 2, 0, 0, 0, 0, 0)

weighted Lasso β1 0.0218 0.0857 0.3206 0.1476

β2 0.0329 0.0423 0.1719 0.0824

β3 0.0346 0.0542 0.2674 0.1102

weighted adaptive Lasso β1 0.0227 0.0530 0.2839 0.1302

β2 0.0382 0.0419 0.1950 0.1067

β3 0.0329 0.0356 0.2607 0.1018

β = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85)

weighted Lasso 0.0237 0.0166 0.0955 0.0775

weighted adaptive Lasso 0.0295 0.0166 0.1296 0.1093

better job in identifying the zero components of the parameter vector when an estimated variance

function is used. Especially the weighted Lasso is much better in this case. Both estimators are

less conservative in model selection and do more often exclude important parameters from the

model. In terms of estimation error (compare Table 6 with Tables 2 and 4) the weighted Lasso

and weighted adaptive Lasso with estimated variance function perform in some cases better and

in some cases worse than their non weighted counterparts, thus not identifying a clear winner.

However, in most cases the differences are not substantial. Obviously the weighted penalized

least squares procedures with a correctly specified variance function yield smaller mean squared

errors than the procedures where this function is estimated nonparametrically.

5.2 Data example

In this section we investigate the different properties of the estimators β̂lse and β̂wlse in a real

data example. We use the diabetes data also considered in Efron et al. (2004) and analyzed with

the unweighted Lasso. The data consist of a response variable Y which is a quantitative measure

of diabetes progression one year after baseline and of ten covariates (age, sex, body mass index,

average blood pressure and six blood serum measurements). It includes n = 442 observations.

First we calculated the unweighted Lasso estimate β̂lse using a cross-validated (conservative)

tuning parameter λn. This solution excluded three covariates from the model (age and the blood

serum measurements LDL and TCH). In a next step we calculated the resulting residuals

ε = Y −Xβ̂lse

17
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Figure 1: Left: Lasso residuals, Center: Squared residuals together with local poly-

nomial estimate, Right: rescaled residuals

Table 7: The Lasso estimators β̂lse and β̂wlse for the tuning parameter λn selected by cross-

validation

Intercept Age Sex BMI BP TC LDL HDL TCH LTG GLU

β̂lse 152.1 0.0 -186.5 520.9 291.3 -90.3 0.0 -220.2 0.0 506.6 49.2

β̂wlse 183.8 -110.3 -271.3 673.3 408.3 84.1 -547.6 0.0 449.4 213.7 138.5

which are plotted in the left panel of Figure 1. This picture suggests a heteroscedastic nature

of the residuals. In fact the hypothesis of homoscedastic residuals was rejected by the test of

Dette and Munk (1998) which had a p-value of 0.006. Next we computed a local linear fit of

the squared residuals in order to estimate the conditional variance σ(xTi β) of the residuals.

The middle panel of Figure 1 presents the squared residuals plotted against its absolute values

|xTi β̂lse| together with the local linear smoother, say σ̂2. In the right panel of Figure 1 we present

the rescaled residuals ε̃i = (Yi − xTi β̂lse)/σ̂(|xTi β̂lse|). These look “more homoscedastic” than

the unscaled residuals and the test of Dette and Munk (1998) has a p-value of 0.514, thus not

rejecting the hypothesis of homoscedasticity. The weighted Lasso estimator β̂wlse was calculated

by (2.2) on the basis of the “nonparametric” weights σ̂(xTi β̂lse) and the results are depicted in

Table 7. In contrast to β̂lse, the weighted Lasso only excludes one variable from the model,

namely the blood serum HDL if λn is chosen by cross-validation.
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6 Conclusions

We have shown that the attractive properties of bridge estimators and the adaptive Lasso estima-

tor regarding model selection and parameter estimation in linear models with iid errors persist if

the errors are heteroscedastic. Nevertheless the asymptotic variance is suboptimal if one does not

use a weighted penalized least squares criterion in contrast to the homoscedastic case. Therefore

we proposed weighted penalized least squares estimators, where the parameters in the variance

function are obtained from preliminary estimators. The resulting estimators have the same model

selection properties as the classical estimators but additionally yield optimal asymptotic variances

of the estimators corresponding to the non vanishing components. The asymptotic results are

supported by a finite sample study. In the examples under consideration the weighted versions of

the estimates usually yield a substantially smaller mean squared error. Moreover in most cases

the new estimators - in particular the weighted adaptive Lasso - have model selection properties

comparable with the estimators, which do not take scale information into account. All results

are formulated for the case of a finite dimensional explanatory variable. The case where the

dimension of the explanatory p = pn increases with n requires a completely different asymptotic

analysis and is devoted to future research.
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7 Appendix: Proofs

Proof of Lemma 3.1: The proof follows mainly along the same lines as the one of Theorem 2 in

Knight and Fu (2000) and we only mention the main differences here. The quantity
√
n(β̂lse−β0)

minimizes the function Vn defined by

Vn(u) =
n∑
i=1

[(
σ(xi, β0)εi −

1√
n
uTxi

)2
− σ(xi, β0)

2ε2i

]
+ λn

(∥∥∥β0 +
1√
n
u
∥∥∥
1
− ‖β0‖1

)
.

By assumptions (i)-(iii), the Lindeberg CLT and the lemma of Slutsky we obtain

n∑
i=1

[(
σ(xi, β0)εi −

1√
n
uTxi

)2
− σ(xi, β0)

2ε2i

]
D−→ −2uTW + uTCu

for every u ∈ Rp, where W ∼ N (0, B). Now the assertion of the Lemma follows exactly as the

one of Theorem 2 in Knight and Fu (2000). 2
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Proof of Lemma 3.3: The proof of the first part follows the same way as the one of Theorem

3 in Knight and Fu (2000) and is therefore omitted. For a proof of the second part we define

u =
√
n(β−β0) and obtain (by adding constant terms) that

√
n(β̂lse−β0) minimizes the function

Vn which is defined by

Vn(u) =
n∑
i=1

[(
σ(xi, β0)εi −

1√
n
uTxi

)2
− σ(xi, β0)

2ε2i

]
+
λn√
n

p∑
j=1

ŵj
√
n
(∣∣∣β0,j +

uj√
n

∣∣∣− |β0,j|).
Here we use the notation ŵj = |β̃|−γ. If 1 ≤ j ≤ k we obtain

√
n(|β0,j + uj/

√
n| − |β0,j|)→ ujsgn(β0,j)

and the assumptions of the lemma yield ŵj
P−→ |β0,j|−γ and λn/

√
n→ 0.

If k + 1 ≤ j ≤ p we have

√
n(|β0,j + uj/

√
n| − |β0,j|) = |uj| and λn/

√
nŵj = λna

γ
n/
√
n|anβ̃|−γ

D−→ λ0|Zj|−γ.

Now by the continuous mapping theorem and the proof of Lemma 3.1 it follows that

Vn(u)
D−→ V (u)

for each u ∈ Rp. Vn is convex and V strictly convex which can be proved by calculating the

second derivatives. Therefore V has a unique minimizing value and Theorem 3.2 of Geyer (1996)

yields the assertion. 2

Proof of Theorem 4.1: As in the proof of Lemma 3.1 we obtain that the quantity
√
n(β̂wlse−β0)

minimizes

Vn(u) =
n∑
i=1

[(
σ(xi, β0)εi −

1√
n
uTxi

)2 1

σ(xi, β)2
− σ(xi, β0)

2

σ(xi, β)2
ε2i

]
+ λn

(∥∥∥β0 +
1√
n
u
∥∥∥
1
− ‖β0‖1

)
.

The second term in the equation above converges to λ0
∑k

j=1 ujsgn(β0,j) + λ0
∑p

j=k+1 |uj| by the

arguments given in the proof of Theorem 2 in Knight and Fu (2000)). So we only have to show

weak convergence of the first term which is given by

(7.1) Ṽ (1)
n (u) + Ṽ (2)

n (u) = − 2√
n

n∑
i=1

σ(xi, β0)

σ(xi, β)2
εix

T
i u+

1

n

n∑
i=1

1

σ(xi, β)2
uTxix

T
i u,

where Ṽ
(j)
n (u) is defined in an obvious manner. Using assumption (iii)’ a Taylor expansion yields

1

σ(xi, β)2
=

1

σ(xi, β0)2
− 2

(∂σ/∂β)(xi, β0)

σ(xi, β0)3
(β − β0) + (β − β0)TM(xi, ξ)(β − β0),
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where ‖ξ − β0‖ ≤ ‖β − β0‖ and

M(xi, ξ) =
3 [(∂σ/∂β)(xi, ξ)]

T (∂σ/∂β)(xi, ξ)− σ(xi, ξ)(∂
2σ/∂2β)(xi, ξ)

σ(xi, ξ)4
.

Using this Taylor expansion in (7.1) we obtain

Ṽ (1)
n (u) = − 2√

n

n∑
i=1

εix
T
i u

σ(xi, β0)
+

4√
n

n∑
i=1

εix
T
i u

σ(xi, β0)2
(∂σ/∂β)(xi, β0)(β − β0)

− 2√
n

(β − β0)T
n∑
i=1

σ(xi, β0)εix
T
i uM(xi, ξ)(β − β0)

= Ṽ
(1)
n,1 (u) + Ṽ

(1)
n,2 (u) + Ṽ

(1)
n,3 (u).

The random variable Ṽ
(1)
n,1 (u) converges in distribution to −2uTW with W ∼ N (0, D) by assump-

tions (i)’-(iii)’ and the Lindeberg CLT. Ṽ
(1)
n,2 (u) converges to 0 in probability which is shown by

an application of the Lindberg CLT, the Cramér-Wold device and the lemma of Slutsky using

assumptions (i)’-(iv)’.

By assumption (iii)’ and (iv)’ and the definition of ξ the maximal absolute value of the eigenvalues

of the matrix M(xi, ξ) is bounded by a constant c > 0 independent of xi and ξ for n sufficiently

large with probability 1− ε (where ε > 0 is arbitrary small). Therefore we obtain

|(β − β0)TM(xi, ξ)(β − β0)| ≤ c(β − β0)T (β − β0)

for n sufficiently large with probability 1 − ε. Now assumption (iii)’ and the Cauchy-Schwarz

inequality yield

∣∣∣Ṽ (1)
n,3 (u)

∣∣∣ ≤ C
√
n

b2n
b2n(β − β0)T (β − β0)

1

n

(
n∑
i=1

ε2i

)1/2 (
uTXTΣ(β0)

−2Xu
)1/2

for some constant C > 0 and for n sufficiently large with probability 1− ε. By assumptions (i)’

and (iv)’ and the law of large numbers the right hand side of the last inequality converges to 0

in probability. Therefore we obtain

Ṽ (1)
n (u)

D−→ −2uTW.

By similar arguments one shows

Ṽ (2)
n (u)

P−→ uTDu

which finally yields Vn(u)
D−→ V (u) for each u ∈ Rp. Because Vn and V are convex functions and

V has a unique minimizing value with probability one, Theorem 3.2 of Geyer (1996) yields the

assertion of the theorem. 2
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