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Abstract

In this paper we study the asymptotic properties of the adaptive Lasso estimate in high

dimensional sparse linear regression models with heteroscedastic errors. It is demonstrated

that model selection properties and asymptotic normality of the selected parameters remain

valid but with a suboptimal asymptotic variance. A weighted adaptive Lasso estimate is

introduced and is investigated. In particular, it is shown that the new estimate performs

consistent model selection and that linear combinations of the estimates corresponding to the

non-vanishing components are asymptotically normally distributed with a smaller variance

than those obtained by the “classical” adaptive Lasso. The results are illustrated in a data

example and by means of a small simulation study.

AMS Subject Classification: 62J05

Keywords and Phrases: high dimensional data, heteroscedasticity, penalized regression, variable

selection

1 Introduction

In recent years the usage of penalized likelihood or penalized least squares methods has become

very popular in analyzing parametric regression models. An important advantage of some of

these methods is that they can be applied in very high dimensional settings, that is models where

the number of parameters p is larger than the sample size n. Under sparseness assumptions on
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the true data generating process the usage of these estimators can be theoretically justified, in

particular consistency and asymptotic normality can be established. Here “sparseness” means

that only a small fraction of the predictors (say k < n, where n is the sample size) in the model

influences the true data generating process. Some penalized estimators are able to correctly

identify the corresponding k non-vanishing coefficients in a linear model and give a reasonable

estimate of these, which means that they perform model selection and estimation in a single

step. For obtaining asymptotic considerations the high dimensionality is modeled by a p = pn
dimensional parameter depending on the sample size which converges to infinity with n.

In recent years substantial progress has been made in analyzing the theoretical and practical

properties of these methods. Penalized estimators include bridge estimators (Frank and Friedman

(1993)) with the special cases of Lasso (Tibshirani (1996)) and ridge regression (Hoerl and

Kennard (1970)), the SCAD (Fan and Li (2001)) or the adaptive Lasso (Zou (2006)). Knight

and Fu (2000) established asymptotic properties of bridge estimators (that is least squares

estimators with Lq penalty [0 < q <∞]) in the case where the dimension p of the model is fixed.

Fan and Li (2001) argued that a reasonable estimator should correctly identify the k important

parameters which are influential with probability converging to one and the estimators of these

should have the same asymptotic distribution as an estimator which would be used if the k

important parameters were known in advance. So the estimator should consistently select a

model and the estimators of the parameters of the true model should be asymptotically efficient.

They called this the “oracle property”. Fan and Li (2001) established this property for the

SCAD in the context of likelihood models and Zou (2006) proved it for the adaptive lasso in the

context of linear models.

The results for the SCAD were generalized to the case where the dimension of the parameter

p = pn is increasing with the sample size, such that pn = o(n) (see Fan and Peng (2004)), while

Kim et al. (2008) showed the oracle property for the SCAD also in the case pn > n. Asymptotic

results for bridge estimators with 0 < q ≤ 1 were established in Huang et al. (2008a) where oracle

properties were shown for pn = o(n) and 0 < q < 1. For the case pn > n a two-stage-approach

is suggested using marginal bridge estimators which were shown to consistently select the true

model. Although the Lasso does not satisfy the oracle property in the case of fixed p (see Zou

(2006)) it can identify the correct model and consistently estimate the important variables in

high dimensional settings (see e.g. Zhao and Yu (2006) and Wainwright (2009)). Huang et al.

(2008b) showed that the adaptive Lasso satisfies the oracle property also in high dimensional

linear models under some assumptions (we will sometimes also cite the technical report Huang

et al. (2006) foregoing the last mentioned article, because some assumptions are formulated in a

more transparent way there). For a broader overview of penalized estimators in high dimensional

models and further references we refer the reader to the recent article of Fan and Lv (2010).

Much of the aforementioned literature concentrates on the case of linear models with indepen-
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dent identical distributed errors. To our best knowledge there has been no attempt to investigate

bridge estimators and the adaptive Lasso in high dimensional linear models with heteroscedastic

errors. In the case of fixed p such results were established in Wagener and Dette (2011), who

analyzed both bridge estimators with 0 < q ≤ 1 and the adaptive Lasso in the case of het-

eroscedasticity. Generally speaking the model selection properties of the analyzed estimators still

persist under heteroscedasticity. The bridge estimators with 0 < q < 1 and the adaptive Lasso

estimators of the k important parameters are asymptotically normally distributed, but with a

suboptimal variance. As a consequence, these authors introduced weighted versions of the bridge

and adaptive Lasso estimators, which were shown to have the optimal asymptotic variance.

The present article is devoted to an investigation of problems of this type in the case where the

number of parameters in the model varies with the sample size. It turns out that the analysis

differs substantially from the case of fixed p and we concentrate our investigations on the adap-

tive Lasso estimator, which satisfies the oracle property in homoscedastic linear models without

requiring a two-step-approach and has the advantage of being a solution of a convex minimization

problem in contrast to bridge estimators. We will analyze both the “ordinary” adaptive Lasso

under heteroscedasticity and a weighted version taking scale information into account. Model

selection consistency and asymptotic normality will be established for both estimators and the

weighted adaptive Lasso will be shown to satisfy the oracle property. The remaining part of

this paper is organized as follows. In the next section we will introduce some basic notations

and define weighted Lasso estimators. In Section 3 we will prove that the weighted adaptive

Lasso satisfies the oracle property. The weighted adaptive Lasso requires a preliminary estimator

for the determination of the “optimal” weights. Therefore the fourth section is devoted to an

investigation of the asymptotic behaviour of the “classical” (i.e. unweighted) adaptive Lasso. In

particular, we show that under general heteroscedasticity the adaptive unweighted Lasso is still

sign consistent and estimates the non-vanishing parameters with an optimal rate, such that it

can be used in the weighted procedure as initial estimator. In the last section we will present

some simulation results and an application of both estimators to a real dataset.

2 Preliminaries

We consider the linear regression model

(2.1) Y = Xβ0 + Σ(β0)ε,

where Y = (Y1, . . . , Yn)T is an n−dimensional vector of observed random variables, X is a matrix

of covariates, β0 is a vector of unknown parameters and Σ(β0) = diag(σ(x1, β0), . . . , σ(xn, β0))

is a diagonal matrix with positive entries. We denote by xT1 , . . . , x
T
n the rows of the matrix

X and assume that ε = (ε1, . . . , εn) is a vector of independent identically distributed random
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variables with E [ε1] = 0 and Var (ε1) = 1. We further assume that the model is sparse, that is

β0 = (β0(1)T , β0(2)T )T , where β0(1) ∈ Rkn and β0(2) = 0 ∈ Rpn−kn , but we do not know which

components of β0 are 0 (naming the nonzero components β0(1)T and assuming them to be the

first kn components of β0 is only for notational convenience). The dimension pn of the vector

β0 is permitted to grow with the sample size n. Note that Huang et al. (2008a) and Huang

et al. (2008b) considered this model with Σ = In (the n dimensional identity matrix), that is

under homoscedasticity. Throughout this paper we will use the following notation. We partion

the matrix X = (X(1), X(2)), where X(1) ∈ Rn×kn and X(2) ∈ Rn×(pn−kn). The columns of

X are denoted by x(1), . . . , x(pn) and the kn-dimensional rows of X(1) by x1(1)T , . . . , xn(1)T .

We assume X to be non-random but with random X all results presented in this paper hold

conditionally on the covariates. Let xij denote the (i, j)-th entry of the matrix X and let β0,j
denote the j-th coordinate of the vector β0. Define the kn × kn matrices

C
(n)
11 =

1

n
X(1)TX(1) and D

(n)
11 (β) =

1

n
X(1)TΣ(β)−2X(1)

and let λmax(M) and λmin(M) denote the maximal and the minimal eigenvalue of the matrix M ,

respectively. In the following discussion we will investigate the estimators

β̂lse = argminβ

[
n∑
i=1

(Yi − xTi β)2 + λn

pn∑
j=1

|βj||β̃j|−1
]

β̂wlse = argminβ

[
n∑
i=1

(
Yi − xTi β
σ(xi, β)

)2

+ λn

pn∑
j=1

|βj||β̃j|−1
]

(2.2)

for the parameter β0 in model (2.1), where β̃ and β are preliminary estimators for β0. Here βj
denotes the j-th component of the pn-vector β (j = 1, . . . , pn). Note that β̂lse is the (unweighted)

adaptive Lasso estimator proposed by Zou (2006) and β̂wlse is a weighted version of it, which

addresses the heteroscedastic structure in the data. The parameter λn is a tuning parameter

which has to be prespecified by the data analyst. It can also be determined by using a data

dependent method like cross-validation (Craven and Wahba (1979)).

Following Zhao and Yu (2006) an estimator β̂ for β0 is called sign consistent, if

lim
n→∞

P (β̂ =s β0) = 1,

where β̂ =s β0 means that each component of β̂ has the same sign as the corresponding component

of β0. Because the sign of 0 is defined as 0, a sign consistent estimator for β0 estimates all zero

components of β0 as exactly 0 with probability converging to 1 and thus performs consistent model

selection. In the following we will use the notation sgn(x) for the sign of x ∈ R and ‖ · ‖2 denotes

the l2-norm in Rkn . For a vector v ∈ Rpn and a function f : R→ R we use the shorthand notation

f(v) = (f(v1), . . . , f(vpn))T and inequalities between vectors are understood componentwise.

Similarly, a multiplication of column vectors of the same length is also understood componentwise.

4



3 Weighted adaptive Lasso

In this section we investigate the asymptotic properties of the weighted adaptive Lasso estimator

β̂wlse. Throughout this section we assume that the following conditions hold:

(i) The covariates are scaled such that

1

n

n∑
i=1

x2ij = 1 for j = 1, . . . , pn.

(ii) There exists a constant b > 0 such that the preliminary estimator β̃ satisfies

lim
n→∞

P (b
kn

min
j=1
|β̃j| < bn) = 0,

where

(3.1) bn = min{|β0,j| | j ≤ kn},

is the minimum of the absolute values of the non-vanishing components of the parameter

β0.

(iii) There exists a sequence rn →∞ such that the preliminary estimator β̃ satisfies

lim
n→∞

P

(
pn

max
j=kn+1

|β̃j| ≥
1

rn

)
= 0.

(iv) There exist positive constants K and K̃ and a constant d with 1 ≤ d ≤ 2 such that the

errors in model (2.1) satisfy

P (|ε1| > x) ≤ K exp(−K̃xd).

(v) The sequences λn, kn, pn, bn and rn satisfy

(a)
kn(log n)I{d=1}
√
nbn

→ 0,

(b)
λn√
nknbn

→ k ∈ R,

(c)
(log(pn − kn))1/d(log n)I{d=1}√n

λnrn
→ 0,
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(d)
kn
√
n

λnrn
→ 0.

(vi) There exist constants λ1, λ2 such that the inequalities

0 < λmin(C
(n)
11 ) ≤ λmax(C

(n)
11 ) ≤ λ1 <∞

and

0 < λ2 ≤ λmin(D
(n)
11 (β0)) ≤ λmax(D

(n)
11 (β0)) <∞

hold.

(vii) There exists constants σ and σ such that the variance function satisfies

0 < σ ≤ σ(x, β) ≤ σ <∞

for all x in the range of xi and for all β in a neighborhood of β0.

(viii) The mapping β 7→ σ(x, β) is two times differentiable in a neighborhood of β0 and the first

and second partial derivatives with respect to the first kn coordinates of β are bounded

uniformly with respect to x.

(ix) The preliminary estimator β is sign consistent for β0 and its first kn coordinates β(1) satisfy

‖β(1)− β0(1)‖2 = Op

(√
kn
n

)
.

Conditions (i)-(iv) are the same as in Huang et al. (2006). The properties (ii) and (iii) together

were called zero consistency with rate rn and mean that the preliminary estimator β̃ can dis-

tinguish between zero and non-zero components of the parameter vector well. Condition (iv)

excludes heavy tailed errors. It can be relaxed if we modify condition (v) appropiately (see Re-

mark 3.1 for details). In order to better understand condition (v) assume bn to be fixed and

d > 1. Then condition (v)(a) permits kn ∼
√
nan for a sequence an converging to 0. With

such a sequence kn we can choose λn ∼ n3/4√an by condition (v)(b) and this choice requires

rn ∼ n1/4a
1/2−δ
n for an arbitrary small δ > 0. Note that this is not a strong assumption, because

under some conditions on the covariates we can obtain rn ∼ n1/2−δ (compare Huang et al. (2006)).

With these choices pn can grow with every polynomial order and even of order exp(nd/2a1−δ+εn ),

where ε > 0. The first part of condition (vi) is standard in high-dimensional regression models

(see for example Fan and Peng (2004), where it is posed on the Fisher information matrix instead

of C
(n)
11 ). The second part of condition (vi) is needed to address heteroscedasticity and reduces

to a standard condition on C
(n)
11 in the case of homoscedasticity. Condition (vi) can be relaxed in
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that way that the rates of growth of λmax(C
(n)
11 ) and of decay of λmin(D

(n)
11 (β0)) are not too fast

provided that condition (v) is modified appropriately. Conditions (vii) and (viii) are standard in

heteroscedastic regression. Condition (ix) is a critical one and it is for example satisfied for the

estimator β̂lse as shown in Theorems 4.1 and 4.2 in the following section.

Theorem 3.1 If assumptions (i)-(ix) are satisfied then the weighted adaptive lasso estimator

β̂wlse is sign consistent for β0.

Proof: Throughout this paper let ‖M‖op = max{‖Mx‖2 | ‖x‖2 = 1} and ‖M‖2 =
√

tr(MTM)

denote the operator and the Frobenius norm of the matrix M , respectively. Further, for a random

variable X let

(3.2) ‖X‖ψd
= inf{C > 0 | E [ψd(|X|/C)] ≤ 1}

denote its Orlicz norm with respect to the function ψd(x) = exp(xd) − 1 (1 ≤ d ≤ 2). In the

following we make frequent use of the inequalities

(3.3) ‖AB‖op ≤ ‖A‖op‖B‖op

for arbitrary matrices A,B and

(3.4) ‖Av‖2 ≤ ‖A‖op‖v‖2

for a vector v. Define ŵj = |β̃j|−1, then the Karush-Kuhn-Tucker (KKT) conditions directly yield

that the vector β = (β(1)T , 0Tpn−kn) minimizes

n∑
i=1

(
Yi − xTi β
σ(xi, β)

)2

+ λn

pn∑
j=1

|βj||β̃j|−1 = (Y −Xβ)TΣ(β)−2(Y −Xβ) + λn

pn∑
j=1

|βj|ŵj

if and only if the conditions

(3.5) x(j)TΣ(β)−2(Y −Xβ) =
λn
2
ŵjsgn(βj) if βj 6= 0,

(3.6) |x(j)TΣ(β)−2(Y −Xβ)| < λn
2
ŵj if βj = 0,

are satisfied. We define

(3.7) β̂(1) = β0(1) +
1

n

(
D

(n)
11 (β)

)−1
X(1)TΣ(β)−2Σ(β0)ε−

1

n

(
D

(n)
11 (β)

)−1 λn
2
ŝ(1),

where ŝ(1) = (ŵ1, . . . , ŵkn)T sgn(β0(1)). If β̂(1) =s β0(1) one easily obtains that the vector

β̂ = (β̂(1)T , 0Tpn−kn)T satisfies (3.5). Using β̂(1) =s β0(1) if sgn(β0,j)(β0,j − β̂j) < |β0,j| for
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j = 1, . . . , kn and the representation (3.7) it follows by similar arguments as in Huang et al.

(2008b) that

(3.8) β̂ =s β0 if

sgn(β0,j)(β0,j − β̂j) < |β0,j|, for all j ≤ kn

|ηj(β) + ζj(β)| < λn
2
ŵj, for all j > kn

,

where the quantities ηj are defined by

ηj(β) = x(j)TΣ(β)−2
(
In −

1

n
X(1)

(
D

(n)
11 (β)

)−1
X(1)TΣ(β)−2

)
Σ(β0)ε

and

ζj(β) =
λn
2n
x(j)TΣ(β)−2X(1)

(
D

(n)
11 (β)

)−1
ŝ(1).

Thus we obtain by the representation (3.7) and by (3.8)

P (β̂ 6=s β0) ≤ P (A1) + P (A2) + P (A3) + P (A4),(3.9)

where the events A1, . . . , A4 are given by

A1 =

{
1

n
|χj(β)| ≥ |β0,j|

2
for some j ≤ kn

}
, A2 =

{
λn
n
|φj(β)| ≥ |β0,j| for some j ≤ kn

}
A3 =

{
|ηj(β)| ≥ λn

4
ŵj for some j > kn

}
, A4 =

{
|ζj(β)| ≥ λn

4
ŵj for some j > kn

}
and we use the notation

χj(β) = eTj

(
D

(n)
11 (β)

)−1
X(1)TΣ(β)−2Σ(β0)ε,

φj(β) = eTj

(
D

(n)
11 (β)

)−1
ŝ(1),

(here ej denotes the j-th unit vector in Rkn). In the following we show

(3.10) P (Aj)→ 0 for j = 1, . . . , 4

which implies the assertion of the theorem. By the definition of bn in (3.1) we obtain

P (A1) ≤ P

(
1

n

kn
max
j=1
|χj(β)| ≥ bn

2

)
≤ P

(
1

n

kn
max
j=1
|χj(β0)| ≥

bn
4

)
+P

(
1

n

kn
max
j=1
|χj(β0)− χj(β)| ≥ bn

4

)
.

The definition of the operator norm and (3.3) yield∥∥∥∥ 1√
n

Σ(β0)
−1X(1)

(
D

(n)
11 (β0)

)−1
ej

∥∥∥∥
2

≤
∥∥∥∥ 1√

n
Σ(β0)

−1X(1)

∥∥∥∥
op

∥∥∥∥(D(n)
11 (β0)

)−1∥∥∥∥
op

= ‖D(n)
11 (β0)‖1/2op

∥∥∥∥(D(n)
11 (β0)

)−1∥∥∥∥
op

≤ ‖C(n)
11 ‖1/2op ‖Σ(β0)

−2‖1/2op

∥∥∥∥(D(n)
11 (β0)

)−1∥∥∥∥
op

≤ λ−12

√
λ1σ

−1,
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where the last inequality follows from assumption (vi) and (vii). Thus condition (iv) and Lemma

1 of Huang et al. (2006) (which is a slight generalization of Lemma 1 of Huang et al. (2008b))

yield ∥∥∥∥ 1√
n
χj(β0)

∥∥∥∥
ψd

≤ c(log n)I{d=1}

for some constant c independent of n and j. Now an application of the results in Section 2.2 of

van der Vaart and Wellner (1996) gives

P

(
1

n

kn
max
j=1
|χj(β0)| ≥

bn
4

)
≤

(
exp

( √
n
d
bdn

4dCd(log n)I{d=1} log(1 + kn)

)
− 1

)−1
for some constant C > 0 and we obtain by assumption (v)(a)

P

(
1

n

kn
max
j=1
|χj(β0)| ≥

bn
4

)
→ 0.

Using the definition of χj(β) it follows from the Cauchy Schwarz inequality for each j ≤ kn

|χj(β0)− χj(β)| =
∣∣∣∣eTj [(D(n)

11 (β0)
)−1

X(1)T
(
Σ(β0)

−2 − Σ(β)−2
)(3.11)

+

((
D

(n)
11 (β0)

)−1
−
(
D

(n)
11 (β)

)−1)
X(1)TΣ(β)−2

]
Σ(β0)ε

∣∣∣∣
≤
∥∥∥∥(Σ(β0)

−2 − Σ(β)−2
)
X(1)

(
D

(n)
11 (β0)

)−1
ej

∥∥∥∥
2

‖Σ(β0)ε‖2

+

∥∥∥∥Σ(β)−2X(1)

((
D

(n)
11 (β0)

)−1
−
(
D

(n)
11 (β)

)−1)
ej

∥∥∥∥
2

‖Σ(β0)ε‖2

≤
∥∥Σ(β0)

−2 − Σ(β)−2
∥∥
op

∥∥∥nC(n)
11

∥∥∥1/2
op

∥∥∥∥(D(n)
11 (β0)

)−1∥∥∥∥
op

‖Σ(β0)ε‖2

+
∥∥Σ(β)−2

∥∥
op

∥∥∥nC(n)
11

∥∥∥1/2
op

∥∥∥∥(D(n)
11 (β0)

)−1
−
(
D

(n)
11 (β)

)−1∥∥∥∥
op

‖Σ(β0)ε‖2.

Next we use assumption (viii) to obtain the Taylor expansion

1

σ(xi, β)2
=

1

σ(xi, β0)2
− 2

(∂σ/∂β)(xi, β0)

σ(xi, β0)3
(β − β0)

+ (β − β0)T
3 [(∂σ/∂β)(xi, ξ)]

T (∂σ/∂β)(xi, ξ)− σ(xi, ξ)(∂
2σ/∂2β)(xi, ξ)

σ(xi, ξ)4
(β − β0)

=
1

σ(xi, β0)2
− 2

(∂σ/∂β)(xi, β0)

σ(xi, β0)3
(β − β0) + (β − β0)TM(xi, ξ)(β − β0),
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where the vector ξ satisfies ‖ξ−β0‖2 ≤ ‖β−β0‖2 and the last line defines M(xi, ξ) in an obvious

way. Consequently, we have∥∥Σ(β0)
−2 − Σ(β)−2

∥∥
op
≤ n

max
i=1

∣∣∣∣ 2

σ(xi, β0)3
∂σ

∂β
(xi, β0)(β − β0)

∣∣∣∣+
n

max
i=1

∣∣(β − β0)TM(xi, ξ)(β − β0)
∣∣ .

On the event {β =s β0} conditions (vii),(viii) and the Cauchy Schwarz inequality yield

n
max
i=1

∣∣∣∣ 2

σ(xi, β0)3
∂σ

∂β
(xi, β0)(β − β0)

∣∣∣∣ ≤ c
√
kn‖(β(1)− β0(1))‖2

for some constant c. By condition (ix) we have P (β =s β0)→ 1 and

n
max
i=1

∣∣∣∣ 2

σ(xi, β0)3
∂σ

∂β
(xi, β0)(β − β0)

∣∣∣∣ = OP

(
kn√
n

)
.

Let M11(xi, ξ) denote the upper left kn× kn block of the matrix M(xi, ξ). Because of assumption

(viii) we obtain

‖M11(xi, ξ)‖op ≤ ‖M11(xi, ξ)‖2 ≤ Ckn

for some constant C independent of xi and ξ. Thus on the event {β =s β0} it follows

n
max
i=1

∣∣(β − β0)TM(xi, ξ)(β − β0)
∣∣ ≤ Ckn‖(β(1)− β0(1))‖22 = OP

(
k2n
n

)
,

where the last estimate follows again from condition (ix). This gives

(3.12)
∥∥Σ(β0)

−2 − Σ(β)−2
∥∥
op

= Op

(
kn√
n

+
k2n
n

)
.

By assumption (vi) we have

(3.13)
∥∥∥nC(n)

11

∥∥∥1/2
op

= O(
√
n),

(3.14)

∥∥∥∥(D(n)
11 (β0)

)−1∥∥∥∥
op

= O(1).

Condition (vii) and the law of large numbers yield

‖Σ(β0)ε‖2 = Op(
√
n).

From these estimates and (3.12) we obtain for the first term in (3.11)

∥∥Σ(β0)
−2 − Σ(β)−2

∥∥
op

∥∥∥nC(n)
11

∥∥∥1/2
op

∥∥∥∥(D(n)
11 (β0)

)−1∥∥∥∥
op

‖Σ(β0)ε‖2 = OP

(
kn
√
n+ k2n

)
.
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Next the estimates (3.12), (3.13) and condition (vi) yield

‖D(n)
11 (β)−D(n)

11 (β0)‖op =

∥∥∥∥ 1

n
X(1)T (Σ(β0)

−2 − Σ(β)−2)X(1)

∥∥∥∥
op

(3.15)

≤ ‖C(n)
11 ‖op

∥∥Σ(β0)
−2 − Σ(β)−2

∥∥
op

= Op

(
kn√
n

+
k2n
n

)
.

For each invertible matrix A the mapping A 7→ A−1 is Fréchet differentiable and its derivative

at A evaluated at the matrix B is given by −A−1BA−1 (compare e.g. Example X.4.2 of Bhatia

(1997)). With the notation A = D
(n)
11 (β0) and B = D

(n)
11 (β)−D(n)

11 (β0) this directly implies∥∥∥∥(D(n)
11 (β0)

)−1
−
(
D

(n)
11 (β)

)−1∥∥∥∥
op

= ‖A−1 − (A+B)−1‖op(3.16)

≤ ‖A−1 − (A+B)−1 + A−1BA−1‖op + ‖A−1BA−1‖op
≤ O(‖B‖op) + ‖A−1‖2op‖B‖op

= Op

(
kn√
n

+
k2n
n

)
,

where the last line follows from (3.15) and assumptions (vi) and (vii). By condition (vii) we

obtain the estimate ∥∥Σ(β)−2
∥∥
op

= Op(1),

which gives for the second term in (3.11) the estimate

∥∥Σ(β)−2
∥∥
op

∥∥∥nC(n)
11

∥∥∥1/2
op

∥∥∥∥(D(n)
11 (β0)

)−1
−
(
D

(n)
11 (β)

)−1∥∥∥∥
op

‖Σ(β0)ε‖2 = OP

(
kn
√
n+ k2n

)
.

Combining these arguments finally yields

1

n

kn
max
j=1
|χj(β0)− χj(β)| = OP

(
kn√
n

+
k2n
n

)
and by condition (v)(a) it follows

P

(
1

n

kn
max
j=1
|χj(β0)− χj(β)| ≥ bn

4

)
→ 0

which implies (3.10) for the case j = 1.

Next we consider the probability P (A2) and observe

P (A2) ≤ P

(
λn
n

kn
max
j=1
|φj(β)| ≥ bn

)
.

11



For each j ≤ kn we have

|φj(β)| ≤
∥∥∥∥(D(n)

11 (β)
)−1∥∥∥∥

op

‖ŝ(1)‖2.

Let λ1(β0), . . . , λkn(β0) and λ1(β), . . . , λkn(β) denote the ordered eigenvalues of the matrices(
D

(n)
11 (β0)

)−1
and

(
D

(n)
11 (β)

)−1
, respectively. Weyl’s perturbation theorem (see e.g. Corollary

III.2.6 of Bhatia (1997)) shows

kn
max
j=1
|λj(β0)− λj(β)| ≤

∥∥∥∥(D(n)
11 (β0)

)−1
−
(
D

(n)
11 (β)

)−1∥∥∥∥
op

P−→ 0

and thus condition (vi) yields that for each ε > 0 and δ > 0 there exists an n0 ∈ N such that for

all n ≥ n0

(3.17)

∥∥∥∥(D(n)
11 (β)

)−1∥∥∥∥
op

≤ λ−12 + δ

with probability at least (1− ε). Condition (ii) yields that with probability at least (1− ε) and

for n sufficiently large the inequality

(3.18) ‖ŝ(1)‖2 ≤
√
kn

√
kn

max
j=1
|β̃j|−1 ≤

√
knb√
bn

is satisfied. The last two estimates and assumptions (v)(a) and (b) directly yield P (A2)→ 0.

Now we consider the term P (A3). We obtain analogously to P (A1) the inequality

P (A3) ≤ P

(
pn

max
j=kn+1

|ηj(β0)| ≥
λnrn

8

)
+ P

(
pn

max
j=kn+1

|ηj(β0)− ηj(β)| ≥ λnrn
8

)
(3.19)

+ P

(
pn

max
j=kn+1

|β̃| > 1

rn

)
.

Define

H(β0) = Σ(β0)
−1x(j)− Σ(β0)

−1 1

n
X(1)

(
D

(n)
11 (β0)

)−1
X(1)TΣ(β0)

−2x(j).

By condition (i) we have ‖x(j)‖2 =
√
n and thus

‖H(β0)‖2 ≤ ‖Σ(β0)
−1‖op

(
1 +

∥∥∥∥ 1

n
X(1)

(
D

(n)
11 (β0)

)−1
X(1)T

∥∥∥∥
op

‖Σ(β0)
−2‖op

)
√
n

≤ σ−1
(
1 + λ−12 λ1σ

−2)√n,
where the last inequality follows from conditions (vi) and (vii). So Lemma 1 of Huang et al.

(2006) is applicable to n−1/2ηj and we obtain∥∥∥∥ 1√
n
ηj(β0)

∥∥∥∥
ψd

=

∥∥∥∥ 1√
n
H(β0)

T ε

∥∥∥∥
ψd

≤ c(log n)I{d=1}

12



with some constant c independent of n and j. Again the arguments given in Section 2.2 of van der

Vaart and Wellner (1996) yield

P

(
pn

max
j=kn+1

|ηj(β0)| ≥
λnrn

8

)
≤

(
exp

(
(λnrn)d

8dCd
√
n
d
(log n)I{d=1} log(1 + pn − kn)

)
− 1

)−1
for some constant C > 0. By assumption (v)(c) the right hand side of the last inequality converges

to zero. Next we consider the second term in (3.19). Using condition (i) and the Cauchy Schwarz

inequality it follows

|ηj(β0)− ηj(β)| ≤
√
n‖Σ(β)−2 − Σ(β0)

−2‖op‖Σ(β0)ε‖2

+
√
n

∥∥∥∥ 1

n

(
Σ(β)−2X(1)

(
D

(n)
11 (β)

)−1
X(1)TΣ(β)−2

−Σ(β0)
−2X(1)

(
D

(n)
11 (β0)

)−1
X(1)TΣ(β0)

−2
)∥∥∥∥

op

‖Σ(β0)ε‖2.

By assumption (vii), the law of large numbers and (3.12) we obtain for the first term
√
n‖Σ(β)−2 − Σ(β0)

−2‖op‖Σ(β0)ε‖2 = Op(kn
√
n+ k2n),

while the second term can be estimated as follows:∥∥∥∥ 1

n

(
Σ(β)−2X(1)

(
D

(n)
11 (β)

)−1
X(1)TΣ(β)−2 − Σ(β0)

−2X(1)
(
D

(n)
11 (β0)

)−1
X(1)TΣ(β0)

−2
)∥∥∥∥

op

≤
∥∥∥∥ 1

n

(
Σ(β)−2 − Σ(β0)

−2)X(1)
(
D

(n)
11 (β)

)−1
X(1)TΣ(β)−2

∥∥∥∥
op

+

∥∥∥∥ 1

n
Σ(β0)

−2X(1)

((
D

(n)
11 (β)

)−1
−
(
D

(n)
11 (β0)

)−1)
X(1)TΣ(β)−2

∥∥∥∥
op

+

∥∥∥∥ 1

n
Σ(β0)

−2X(1)
(
D

(n)
11 (β0)

)−1
X(1)T

(
Σ(β)−2 − Σ(β0)

−2)∥∥∥∥
op

≤
∥∥Σ(β)−2 − Σ(β0)

−2∥∥
op

∥∥∥C(n)
11

∥∥∥
op

∥∥∥∥(D(n)
11 (β)

)−1∥∥∥∥
op

∥∥Σ(β)−2
∥∥
op

+

∥∥∥∥(D(n)
11 (β)

)−1
−
(
D

(n)
11 (β0)

)−1∥∥∥∥
op

∥∥∥C(n)
11

∥∥∥
op

∥∥Σ(β0)
−2∥∥

op

∥∥Σ(β)−2
∥∥
op

+
∥∥Σ(β)−2 − Σ(β0)

−2∥∥
op

∥∥∥C(n)
11

∥∥∥
op

∥∥∥∥(D(n)
11 (β0)

)−1∥∥∥∥
op

∥∥Σ(β0)
−2∥∥

op

= Op

(
kn√
n

+
k2n
n

)
,

where the last line is a consequence of (3.12), (3.16), (3.17) and conditions (vi), (vii) and (ix).

The last three estimates yield

pn
max
j=kn+1

|ηj(β0)− ηj(β)| = OP

(
kn
√
n+ k2n

)
13



and by assumption (v)(d) we have

P

(
pn

max
j=kn+1

|ηj(β0)− ηj(β)| ≥ λnrn
8

)
→ 0.

Thus condition (iii) and (3.19) yield P (A3)→ 0.

Finally, we consider P (A4) and observe

P (A4) ≤ P

(
pn

max
j=kn+1

|ζj(β)| ≥ λnrn
4

)
+ P

(
pn

max
j=kn+1

|β̃j| >
1

rn

)
.

The definition of ζj yields

|ζj(β)| ≤ λn
2n

∥∥∥∥(D(n)
11 (β)

)−1
X(1)TΣ(β)−2x(j)

∥∥∥∥
2

‖ŝ(1)‖2

≤ λn
2

∥∥∥∥(D(n)
11 (β)

)−1∥∥∥∥
op

‖Σ(β)−2‖op
∥∥∥∥ 1√

n
X(1)T

∥∥∥∥
op

‖ŝ(1)‖2 = OP

(√
knλn√
bn

)
,

where the last line follows from (3.18) and arguments given above. Thus conditions (v)(b), (v)(d)

and (iii) show that P (A4)→ 0 and the sign consistency of β̂wlse follows from (3.9) and (3.10). 2

Remark 3.1 Theorem 3.1 also holds without the assumption (iv) of light tailed errors if condition

(v)(c) is replaced by the stronger assumption

(3.20)
(pn − kn)n

λ2nr
2
n

→ 0

on the number of covariates. If we assume bn to be fixed, kn =
√
nan for some sequence an

converging to 0 and λn ∼ n3/4√an we require

(3.21)
(pn − kn)

an
√
nr2n

→ 0.

Thus even if rn is almost “optimal”, that is rn ∼ n1/2−δ for some small δ > 0, the dimension of

the model pn cannot grow polynomially in this case. Nevertheless the case pn > n growing faster

than linearly with n is still covered here.

To obtain the validity of Theorem 3.1 under these different assumptions we recall that condition

(iv) was only used in the proof of Theorem 3.1 to obtain estimates for the probabilities P (A1)

and P (A3) in (3.9). If (3.20) holds we use the inequality

P (A1) ≤
kn∑
j=1

P

(
1

n
|χj(β0)| ≥

bn
4

)
+ P

(
1

n

kn
max
j=1
|χj(β0)− χj(β)| ≥ bn

4

)
.

The second term on the right hand side of this equation converges to zero by the same arguments

as in the proof of Theorem 3.1. For the first one we use the Chebychev inequality and obtain

kn∑
j=1

P

(
1

n
|χj(β0)| ≥

bn
4

)
≤ 16

n2b2n

kn∑
j=1

E
[
χj(β0)

2
]

= O

(
kn
nb2n

)
.
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Thus condition (v)(a) yields P (A1) → 0. For the probability P (A3) we use a similar argument

and E [ηj(β0)
2] = O(n) to obtain

P (A3) = O

(
(pn − kn)n

λ2nr
2
n

)
+ o(1).

Therefore the sign consistency of β̂wlse under these different assumptions follows.

Theorem 3.2 Let conditions (i)-(ix) or condition (3.20) instead of (iv) and (v)(c) be satisfied

and additionally let

(x)
λn
√
kn√

nbn
→ 0,

k5n
n
→ 0,

(xi)
1

n

n
max
i=1
‖xi(1)‖22 → 0

hold. Then for all αn ∈ Rkn with ‖αn‖2 = 1 the following weak convergence holds

(3.22)

√
n

sn
αTn (β̂wlse(1)− β0(1))

D−→ N (0, 1),

where s2n = αTn

(
D

(n)
11 (β0)

)−1
αn.

Assumption (x) is a stronger condition than conditions (v)(a) and (v)(b). In the case where bn
is constant and d > 1 it requires kn = n1/5an for some sequence an converging to 0. With this

maximal choice of kn it is satisfied for λn ∼ n2/5an. Thus conditions (v)(c) and (v)(d) yield

stronger assumptions on pn and rn than in the case where only (v)(b) gives a condition on the

rate of growth of λn. Nevertheless, pn still can grow exponentially fast. Condition (xi) is needed

for the application of the Lindeberg central limit theorem. In view of condition (i) and the second

part of (x) it is a very weak assumption because the dimension of the vectors xi(1) is kn = o(n−1/5).

Proof of Theorem 3.2: By Theorem 3.1 the probability of the event {β̂wlse =s β0} converges

to one. On that event we have by (3.7) the identity

β̂wlse(1) = β0(1) +
1

n

(
D

(n)
11 (β)

)−1
X(1)TΣ(β)−2Σ(β0)ε−

1

n

(
D

(n)
11 (β)

)−1 λn
2
ŝ(1),

where we use the same notation as in the proof of Theorem 3.1. Thus we obtain the representation
√
n

sn
αTn (β̂wlse(1)−β0(1)) =

1√
nsn

αTn

(
D

(n)
11 (β)

)−1
X(1)TΣ(β)−2Σ(β0)ε−

1√
nsn

αTn

(
D

(n)
11 (β)

)−1 λn
2
ŝ(1).
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Let ε > 0. First the proof of Theorem 3.1 yields that for n sufficiently large and small δ > 0 the

inequality ∣∣∣∣ 1√
nsn

αTn

(
D

(n)
11 (β)

)−1 λn
2
ŝ(1)

∣∣∣∣ ≤ λn
√
knb

2sn
√
nbn

(λ−12 + δ)

holds with probability at least (1− ε). Further we have s2n ≥ λ−11 σ2 by conditions (vi) and (vii).

Thus ∣∣∣∣ 1√
nsn

αTn

(
D

(n)
11 (β)

)−1 λn
2
ŝ(1)

∣∣∣∣ = Op

(
λn
√
kn√

nbn

)
= op(1),

where the last equality follows from the first part of condition (x).

Next we use the decomposition(
D

(n)
11 (β)

)−1
X(1)TΣ(β)−2Σ(β0) =

(
D

(n)
11 (β0)

)−1
X(1)TΣ(β0)

−1

+

((
D

(n)
11 (β)

)−1
−
(
D

(n)
11 (β0)

)−1)
X(1)TΣ(β0)

−1

+
(
D

(n)
11 (β)

)−1
X(1)T

(
Σ(β)−2 − Σ(β0)

−2)Σ(β0)

= An +Bn + Cn,(3.23)

where the last line defines An, Bn and Cn in an obvious way. We directly obtain

1√
nsn

αTnAnε =
n∑
i=1

ciεi,

where the numbers ci (i = 1, . . . , n) are given by

ci =
1√

nsnσ(xi, β0)
αTn

(
D

(n)
11 (β0)

)−1
xi(1).

Direct calculations yield

E

[
n∑
i=1

ciεi

]
= 0

and

E

( n∑
i=1

ciεi

)2
 =

n∑
i=1

c2i =
1

s2n
αTn

(
D

(n)
11 (β0)

)−1 1

n

n∑
i=1

xi(1)xi(1)T

σ(xi, β0)2

(
D

(n)
11 (β0)

)−1
αn = 1

by the definition of s2n. Conditions (vi), (vii) and (xi) yield

n
max
i=1
|ci| ≤

1√
nsn

∥∥∥∥(D(n)
11 (β0)

)−1∥∥∥∥
op

n
max
i=1

∥∥∥∥ xi(1)

σ(xi, β0)

∥∥∥∥
2

≤
√
λ1λ

−1
2 σ−2

1√
n

n
max
i=1
‖xi(1)‖2 → 0.
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Thus is follows from the Lindeberg CLT

(3.24)
1√
nsn

αTnAnε
D−→ N (0, 1).

Now we consider the term Bn in (3.23). Its definition yields∣∣∣∣ 1√
nsn

αTnBnε

∣∣∣∣ ≤ √λ1σ−1√
n

∥∥∥∥(D(n)
11 (β)

)−1
−
(
D

(n)
11 (β0)

)−1∥∥∥∥
op

‖X(1)TΣ(β0)
−1ε‖2.

By Markov’s inequality we obtain for every t > 0

P

(
1

nkn
‖X(1)TΣ(β0)

−1ε‖22 > t

)
≤ 1

tkn

kn∑
j=1

1

n
E

( n∑
i=1

xij
εi

σ(xi, β0)

)2
 ≤ 1

tσ2
,

where the last line follows from conditions (i) and (vii). Thus equation (3.16) and condition (x)

yield

(3.25)

∣∣∣∣ 1√
nsn

αTnBnε

∣∣∣∣ = OP

(
k
3/2
n√
n

)
= oP (1).

Finally, we consider the term Cn in (3.23). For each ε > 0, arbitrary small δ > 0 and n sufficiently

large the inequality∣∣∣∣ 1√
nsn

αTnCnε

∣∣∣∣ ≤ √λ1√
nσ

(λ−12 + δ)
∥∥X(1)T

(
Σ(β)−2 − Σ(β0)

−2)Σ(β0)ε
∥∥
2

holds with probability at least (1 − ε). Using a Taylor expansion of the function σ(xi, β)−2 in a

neighbourhood of the point β0 we obtain

n∑
i=1

xij

(
1

σ(xi, β)2
− 1

σ(xi, β0)2

)
σ(xi, β0)εi = −2

n∑
i=1

∂σ

∂β
(xi, β0)(β − β0)

xijεi
σ(xi, β0)2

+ (β − β0)T
n∑
i=1

xijσ(xi, β0)εiM(xi, ξ)(β − β0),

where the matrix M(xi, ξ) is defined as in the proof of Theorem 3.1. On the event {β =s β0} we

obtain the estimate∣∣∣∣∣
n∑
i=1

∂σ

∂β
(xi, β0)(β − β0)

xijεi
σ(xi, β0)2

∣∣∣∣∣ ≤
kn∑
k=1

|βk − β0,k|

∣∣∣∣∣
n∑
i=1

∂σ

∂βk
(xi, β0)

xijεi
σ(xi, β0)2

∣∣∣∣∣
≤ ‖β(1)− β0(1)‖2

 kn∑
k=1

(
n∑
i=1

∂σ

∂βk
(xi, β0)

xijεi
σ(xi, β0)2

)2
1/2

= Op

(√
kn√
n

)
OP (

√
nkn) = OP (kn),
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where the last line follows by a similar argument as used for the estimate of Bn, using conditions

(i), (viii) and (ix). Further the inequality∣∣∣∣∣(β − β0)T
n∑
i=1

xijσ(xi, β0)εiM(xi, ξ)(β − β0)

∣∣∣∣∣ ≤ σ
n

max
i=1
|(β(1)− β0(1))TM11(xi, ξ)(β(1)− β0(1))|

n∑
i=1

|xijεi|

= OP

(
k2n
n

)
OP (n) = OP (k2n)

holds on the event {β =s β0}, where we used conditions (i), (ix) the Chebychev inequality and

the estimate ‖M11(xi, ξ)‖op = OP (kn) in the last line. Thus we obtain

∥∥X(1)T
(
Σ(β)−2 − Σ(β0)

−2)Σ(β0)ε
∥∥
2

=

 kn∑
j=1

(
n∑
i=1

xij

(
1

σ(xi, β)2
− 1

σ(xi, β0)2

)
σ(xi, β0)εi

)2
1/2

= OP

(
k5/2n

)
which yields

(3.26)
1√
nsn

αTnCnε = oP (1)

using condition (x). Finally, (3.23) - (3.26) and the lemma of Slutsky yield the assertion of the

theorem. 2

Remark 3.2 Theorems 3.1 and 3.2 indicate that the weighted adaptive lasso estimator β̂wlse is

able to perform consistent model selection and consistent estimation of the non-null parameters

simultaneously. Moreover the estimators of the non-null parameters are unbiased and asymptot-

ically normal with the same asymptotic variance as the generalized least squares estimator which

would be used if the true model and Σ(β0) were known in advance. Thus β̂wlse satisfies the oracle

property in the sense of Fan and Li (2001).

4 Unweighted adaptive Lasso

In the previous section the asymptotic properties of the estimator β̂wlse were derived. A critical

assumption in the asymptotic theory in Theorem 3.1 and 3.2 is the existence of a preliminary

estimator β for β0 which is sign consistent and estimates the non-null parameters with the op-

timal rate. In this section we will establish that the unweighted adaptive lasso estimator β̂lse
satisfies these requirements. Moreover we will derive the asymptotic distribution of its non-null

components and show that it is asymptotically dominated by β̂wlse. For this purpose we use the

same notation as in the previous section and assume that assumptions (i)-(v) hold. Moreover,

we replace conditions (vi) and (vii) by the following ones.
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(vi)’ There exist constants λ1, λ2 such that the inequality

0 < λ1 ≤ λmin(C
(n)
11 ) ≤ λmax(C

(n)
11 ) ≤ λ2 <∞

holds.

(vii)’ There exists a constant σ such that the inequality

0 < σ(x, β) ≤ σ <∞

holds for all x in the range of xi and for all β in a neighborhood of β0.

Note that condition (vi) is slightly modified and condition (vii) is relaxed. Our first result

establishes the sign consistency of the unweighted adaptive Lasso estimate in the heteroscedastic

model (2.1).

Theorem 4.1 Under conditions (i)-(v), (vi)’ and (vii)’ the unweighted adaptive lasso estimator

β̂lse is sign consistent for β0.

Proof: As in the proof of Theorem 3.1 we obtain

β̂lse =s β0 if

sgn(β0,j)(β0,j − β̂lse,j) < |β0,j|, for all j ≤ kn

|ηj + ζj| < λn
2
ŵj, for all j > kn

,

where ηj and ζj are given by

ηj = x(j)T
(
In −

1

n
X(1)

(
C

(n)
11

)−1
X(1)T

)
Σ(β0)ε,

ζj =
λn
2n
x(j)TX(1)

(
C

(n)
11

)−1
ŝ(1),

respectively, and

(4.1) β̂lse(1) = (β̂lse,1, . . . , β̂lse,kn)T = β0(1) +
1

n

(
C

(n)
11

)−1
X(1)TΣ(β0)ε−

1

n

(
C

(n)
11

)−1 λn
2
ŝ(1).

This directly yields

P (β̂lse 6=s β0) ≤ P (Ã1) + P (Ã2) + P (Ã3) + P (Ã4),

where the events Ã1, Ã2, Ã3 and Ã4 are defined by

Ã1 =

{
1

n

∣∣∣∣eTj (C(n)
11

)−1
X(1)TΣ(β0)ε

∣∣∣∣ ≥ |β0,j|2
for some j ≤ kn

}
,

Ã2 =

{
λn
n

∣∣∣∣eTj (C(n)
11

)−1
ŝ(1)

∣∣∣∣ ≥ |β0,j| for some j ≤ kn

}
,

Ã3 =

{
|ηj| ≥

λn
4
ŵj for some j > kn

}
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and

Ã4 =

{
|ζj| ≥

λn
4
ŵj for some j > kn

}
.

Now P (Ãj) → 0 for j = 1, . . . , 4 follows with less complexity analogously to P (Aj) → 0 in the

proof of Theorem 3.1. This proofs the assertion of the theorem. 2

As a consequence of Theorem 4.1 we obtain that β̂lse is a candidate for a preliminary estimate

in the weighted adaptive Lasso, because it satisfies the first part of condition (ix). As explained

in Remark 3.1 one can drop condition (iv) at the cost of requiring (3.20) instead of (v)(c). The

sign consistency of β̂lse also holds under these different assumptions which directly follows from

the proof of Theorem 4.1. Moreover, it also satisfies the second part of condition (ix) as shown

in the next theorem. Thus β̂lse can be used in the place of β for the calculation of β̂wlse. The

proof of Theorem 4.2 is obtained from Theorem 4.1 and the representation (4.1) analogously to

the proof of Theorem 3.2 and is therefore omitted.

Theorem 4.2 Let conditions (i)-(v), (vi)’ and (vii)’ or condition (3.20) instead of (iv) and

(v)(c) be satisfied and additionally let (x) and (xi) hold. Then for all αn ∈ Rkn with ‖αn‖2 = 1

the following weak convergence holds

(4.2)

√
n

s̃n
αTn (β̂lse(1)− β0(1))

D−→ N (0, 1),

where s̃2n = n−1αTn

(
C

(n)
11

)−1
X(1)Σ(β0)X(1)T

(
C

(n)
11

)−1
αn.

Theorem 4.2 also shows that β̂wlse dominates β̂lse in terms of asymptotic variance, because β̂lse
has to be scaled by s̃n which is the same scaling needed for the ordinary least squares estimator if

the true model was known. But in a heteroscedastic model the ordinary least squares estimator

is dominated by a generalized one which has the same scaling as β̂wlse. Thus β̂lse consistently

selects a model and has the optimal rate for estimating the non-null parameters but it yields to

a suboptimal variance.

5 Finite sample properties

5.1 Simulation study

In order to investigate the small sample performance of the adaptive Lasso estimators β̂wlse and

β̂lse in models with heteroscedastic errors we present the results of a small simulation study. All
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Table 1: Mean number of correctly zero and correctly non-zero estimated parameters in model

(2.1) (the ideal values are 185 and 15, respectively)

σ

(a) (b) (c) (d)

β̂lse = 0 159.66 161.09 142.45 145.79

6= 0 14.1 12.73 12.27 13.65

β̂wlse = 0 166.67 172.66 164.66 163

6= 0 14.34 13.67 12.23 13.70

calculations were performed using the package “penalized” available for R on http://www.R-

project.org (R Development Core Team (2008)). The data were generated using a linear model

of the form (2.1). We followed Huang et al. (2008b) and considered a design matrix X with

n = 100 rows and p = 200 columns in the following way: the n rows of X are independent

normally distributed random vectors. The first 15 covariates (xi,1, . . . , xi,15) are independent of

the remaining 185 covariates. The pairwise correlation between xi,k and xi,l is 0.5|k−l| both if

k, l ∈ {1, . . . , 15} or if k, l ∈ {16, . . . , 200}. The first five coordinates of β0 were set to 2.5, the

coordinates 6-10 were set to 1.5 and the coordinates 11-15 to 0.5; all remaining coordinates of β0
were 0. The entries of the diagonal matrix Σ were chosen as

(a) σ(xi, β0) =
1

2

√
xTi β0,

(b) σ(xi, β0) =
1

4
|xTi β0|,

(c) σ(xi, β0) =
1

25
exp |xTi β0|,

(d) σ(xi, β0) =
1

50
exp (xTi β0)

2.

The preliminary estimator β̃ was a Lasso estimator in our simulation study. We also investigated

the marginal regression estimator proposed in Huang et al. (2008b) but all results based on the

last mentioned method were inferior to the ones using a Lasso estimator and are therefore not

depicted. The estimator β needed for the calculation of β̂wlse was the adaptive Lasso estimator

β̂lse, which was shown to satisfy the requirements of Theorems 3.1 and 3.2. The tuning parameter

λn was chosen by cross-validation for β̂lse. The choice of the tuning parameter for β̂wlse was

oriented at the cross-validated one for β̂lse. A slightly smaller λn than the one for β̂lse yielded

the best results. In general we observed that the performance of the procedures was not very

sensitive with respect to the choice of λn. All reported results are based on 100 simulation

runs. The model selection properties of the investigated estimators are reported in Table 1. We

observe that that both estimators perform quite good model selection. The weighted estimator
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Table 2: Averaged mean squared error of the estimators of the non-zero coefficients in model

(2.1) with β0,1 = · · · = β0,5 = 2.5, β0,6 = · · · = β0,10 = 1.5, β0,11 = · · · = β0,15 = 0.5

σ

(a) (b) (c) (d)

β̂lse β1, . . . , β5 0.0641 0.2374 0.4827 0.1346

β6, . . . , β10 0.0742 0.2741 0.5583 0.1569

β11, . . . , β15 0.1016 0.2085 0.2812 0.1394

β̂wlse β1, . . . , β5 0.0410 0.2514 0.4614 0.1173

β6, . . . , β10 0.0458 0.1456 0.4858 0.1345

β11, . . . , β15 0.0760 0.1101 0.2150 0.1396

β̂wlse always excludes more variables correctly from the model than the “classical” adaptive Lasso

estimator β̂lse. In all cases except of example (c) it also includes slightly more variables correctly

in the model. Thus the estimator β̂wlse was superior to β̂lse in terms of model selection in our

simulations.

In Table 2 we present the mean squared error (MSE) for the estimators of the non-zero components

of β0. The displayed values are MSEs averaged over the first five (big) components of β0, over

the sixth to tenth (moderately sized) components of β0 and over the eleventh to fifteenth (small)

components of β0, respectively. For most cases we observe that the weighted Lasso estimator

β̂wlse yields more precise estimates of the non-zero components of β0 than β̂lse in terms of mean

squared error. In several cases the improvement is substantial (see for example model (a) and

model (b) for the parameters β6, . . . , β10 and β11, . . . , β15. Only in model (b) the estimators for

the large components β1, . . . , β5 of the parameter β0 have a slightly smaller mean squared error

if no scaling is used, while the estimators for the small components in model (d) perform nearly

identically. Thus the simulations in these examples support our theoretical findings.

5.2 Data example

In this section we illustrate the different properties of the estimators β̂lse and β̂wlse in a real data

example. We use the diabetes data considered in Efron et al. (2004). The data consist of a re-

sponse variable Y which is a quantitative measure of diabetes progression one year after baseline

and of ten covariates (age, sex, body mass index, average blood pressure and six blood serum

measurements). Further we consider the squares of all covariates and their interactions. This

finally results in p = 65 covariates (including an intercept) while there are n = 442 observations.

First we calculated the unweighted adaptive Lasso estimate β̂lse using a cross-validated (conserva-

tive) tuning parameter λn. We used an unweighted Lasso estimator in the place of β̃ to calculate
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Figure 1: Left panel: residuals obtained by Lasso; Center: Squared residuals together with a

piecewise linear fit, Right panel: rescaled residuals

the weights of the adaptive Lasso estimator. This solution included 8 variables in the model,

namely an intercept, the body mass index, the blood pressure, the blood serums HDL, LTG and

the square of GLU and the interactions between age and sex and body mass index and blood

pressure. In a next step we calculated the resulting residuals

ε = Y −Xβ̂lse

which are plotted in the left panel of Figure 1. This picture suggests a heteroscedastic nature

of the residuals. In fact the hypothesis of homoscedasticity was rejected at level 5% by the test

of Dette and Munk (1998) (p-value 0.033). Next we computed an estimator of the conditional

variance σ(xTi β) of the residuals. We used the ad-hoc chosen piecewise linear function

σ2(y) = (86.1y − 3110.4)I
{
y ≤ Xβ̂lse

}
+ (−63.1y + 19606.9)I

{
y > Xβ̂lse

}
,

(see the middle panel in Figure 1 which shows the squared residuals plotted against the values

xTi β̂lse together with the estimator). In the right panel of Figure 1 we present the rescaled residuals

ε̃i = (Yi−xTi β̂lse)/σ(|xTi β̂lse|)sd(ε). These look “more homoscedastic” than the unscaled residuals

and the test of Dette and Munk (1998) yields a p-value of 0.173, thus not rejecting the hypothesis

of homoscedasticity. The weighted adaptive Lasso estimator β̂wlse was calculated by (2.2) on the

basis of the weights σ(xTi β̂lse). This estimator included the same variables as β̂lse and additionally

the interactions between age and blood pressure, between BMI and GLU and between HDL and

LTG.

In Figure 2 we present the data plotted against the fitted values xTi β̂lse and xTi β̂wlse and the

residuals in the weighted model. The final residuals look very homoscedastic and both fits are of

comparable (moderate) quality.
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Figure 2: Left panel: scatterplot of Y and Xβ̂lse, Center: scatterplot Y and Xβ̂wlse, Right panel

: residuals in the weighted model
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