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1 Introduction

There is an impressive bulk of empirical studies that aim at measuring the ease

of substitution between production factors (for surveys, see e. g. KINTIS, PANAS,

1989, or FRONDEL, SCHMIDT, 2003), with a growing emphasis on the substitution

relationships of energy with respect to other inputs (see e. g. APOSTOLAKIS, 1990,

or FRONDEL, SCHMIDT, 2002, 2004). Common to the overwhelming majority of

these studies is that the substitution parameters of interest are gleaned from a

single ‘best’ model that is estimated on the basis of the empirical data at hand,

but regardless of the purpose of inference.

To this end, model selection methods include the usage of information crite-

ria, such as AKAIKE’s (1974) AIC and SCHWARZ’ (1978) SIC. Alternatively, DETTE

(1999), DETTE, PODOLSKIJ and VETTER (2006), or PODOLSKIJ and DETTE (2008)

propose, among many others, goodness-of-fit tests. Typically, the selection of

the most appropriate model focuses on a few well-established functional forms,

such as Generalized LEONTIEF, COBB-DOUGLAS, and, most often, the Translog

model. In seeking the right functional form, however, one might ignore that any

parametric model represents a highly stylized description of the real production

process. As a consequence, none of these functional forms can claim to be the

true model. Most importantly, depending on the facet of reality that is the focus

of the analysis, divergent specifications might approximate different facets in an

optimal way.

Recognizing this argument, CLAESKENS and HJORT (2003) deviated from

the conventional avenue and conceived the Focused Information Criterion (FIC)

to allow various models to be selected for different purposes. In the illustrative

case of the estimation of the degree of substitutability of capital and energy and

of labor and energy, one kind of model might be highly appropriate for inferences

on, say, the cross-price elasticity of capital with respect to energy prices, whereas a

different sort of model may be preferable for the estimation of another parameter,
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such as the cross-price elasticity of labor with respect to energy prices. Because of

its usefulness in balancing modeling bias against estimation variability, the FIC

has been increasingly applied in the realm of statistics, but, with BEHL et al. (2010)

being an exception, this concept appears to be virtually unknown in the economic

literature.

Using the classical example of the choice among COBB-DOUGLAS and

Translog models and data for 35 U.S. industry sectors in the time period span-

ning 1960 to 2005, this article illustrates the concept and usefulness of the FIC,

thereby demonstrating that the selection of a model type critically depends on

the purpose of inference. From our three-factor example, it will become evident

that this choice is highly dependent on the focus parameter µ, that is, whether

the cross-price elasticity for either labor or capital demand with respect to energy

prices is the primary aim of the analysis.

The general idea underlying the FIC, which ultimately results from estimat-

ing the mean squared error of the modeling bias (CLAESKENS, HJORT, 2003:902),

is to study perturbations of a parametric model, with the known parameter vec-

tor γ0 := (γ0
1, ..., γ0

q)T as the point of departure, which in our example will be

set to zero without any loss of generality: γ0 = 0. A variety of models may

then be considered that depart from γ0 in some or all of q directions: γ 6= γ0.

On the basis of parameter estimates of the altogether 2q sub-models, that candi-

date model for which the FIC is minimal for a given focus parameter of choice

µ = µ(γ) will be selected. By minimizing the FIC, one captures the trade-off be-

tween modeling bias, which, by definition, is zero for the most general model for

which γ1 6= γ0
1, ..., γq 6= γ0

q , and relative estimation variability, which, by defini-

tion, is zero for the most restricted model for which γ1 = γ0
1, ..., γq = γ0

q. In our

example, we confine ourselves to these two polar model specifications, the most

general and the most restricted model, rather than estimating all of the 2q model

specifications.

The following Section 2 presents our example and derives the analytical ex-
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pressions needed for the model selection among COBB-DOUGLAS and Translog

on the basis of the FIC. Section 3 provides for a concise introduction into the con-

cept of the FIC, followed by the presentation of the empirical example in Section

4. The last section summarizes and concludes.

2 Analytical Example

To illustrate the concept of the FIC on the basis of a straightforward example that

is – for the sake of simplicity – restricted to the case of three production factors,

we employ the dual approach (BERNDT, 1996), in which a system of cost share

equations is derived from the underlying cost function via SHEPARD’s lemma.

For a COBB-DOUGLAS cost function, cost shares are well-known to be indepen-

dent from factor prices:

sK = βK + νK, sL = βL + νL, (1)

where sK and sL denote the cost shares of capital K and labor L, respectively,

βL and βK are parameters to be estimated, and νL and νK are random errors for

which we assume joint normality, as Maximum Likelihood (ML) is CLAESKENS’

and HJORT’s (2003) estimation method of choice.

Adding a third equation for the cost share of energy E to system (1) would

be superfluous, as the cost shares sum up to unity: sK + sL + sE = 1. Implicitly,

this property yields the restrictions βK + βL + βE = 1 and νK + νL + νE = 0, so

that an estimate of βE = 1− βL − βK can be obtained from the estimates of βL

and βK.

For the same reason, it suffices to estimate the following two-equations sys-

tem for the Translog cost function:

sK = βK + βKK pK + βKE pE + νK, sL = βL + βLK pK + βLE pE + νL, (2)
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where pK and pE denote the logged relative factor prices log( p̃K/ p̃L) and

log( p̃E/ p̃L), respectively, with labor being chosen as the numeraire. If βKK =

βKE = βLK = βLE = 0, the Translog specification degenerates to COBB-

DOUGLAS.

Adopting the terminology of CLAESKENS and HJORT (2003), the COBB-

DOUGLAS specification (1) is called the null model. For this specification, also

referred to as the narrow model, the vector ξ of parameters that are subject to

estimation comprises four elements:

ξ := (βK, βL, σK, σL)
T , (3)

where T indicates the transposition of a vector and σK and σL designate the stan-

dard deviations of νL and νK, respectively. The vector of parameters that are ad-

ditionally included in the Translog model, which is called the full model, reads:

γ := (βKK, βKE, βLK, βLE, ρKL)
T , (4)

where ρKL stands for the correlation of the error terms: ρKL := Corr(νK, νL).

For clarity, the parameters estimated from the null model are denoted by θ0 :=

(ξ0, γ0)T, with ξ0 := (β0
K, β0

L, σ0
K, σ0

L)
T and γ0 = 0 if we additionally assume

ρKL = 0 for the COBB-DOUGLAS case.

In contrast to conventional selection criteria, using the FIC for model selec-

tion orients towards one or more measures of interest, called here focus parame-

ters and designated by µ, which are typically a function of the model coefficients:

µ = µ(ξ, γ). As our focus is on the substitutability of energy by both labor and

capital, we choose the cross-price elasticities of capital and labor demand, both

with respect to the price of energy, as focus parameters. For the Translog model,
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these substitution elasticities are given by (see e. g. FRONDEL, SCHMIDT, 2006):

ηKpE
=

βKE

sK
+ sE =

βKE

sK
+ 1− sK − sL, (5)

ηLpE
=

βLE

sL
+ sE =

βLE

sL
+ 1− sK − sL, (6)

where according to system (2) the cost shares of capital and labor itself depend

on coefficients such as βK, βKK, etc. For the special case of COBB-DOUGLAS, both

elasticities degenerate to the same entity, the cost share of energy: sE.

As we will see in the subsequent section, the dependence of the FIC on a

focus measure µ – here the elasticities ηLpE
and ηKpE

– is given by the vectors of

partial derivatives of such measures with respect to both the coefficients belong-

ing to the null model, ξ, and those that exclusively belong to the full model, γ.

For µ = µ(ξ, γ) = ηLpE
, for instance, the partial derivatives are given by:

∂µ

∂ξ
=
(

∂µ

∂βK
,

∂µ

∂βL
,

∂µ

∂σK
,

∂µ

∂σL

)T
= (−1,−βLE

s2
L
− 1, 0, 0)T (7)

and

∂µ

∂γ
=

(
∂µ

∂βKK
,

∂µ

∂βKE
,

∂µ

∂βLK
,

∂µ

∂βLE
,

∂µ

∂ρKL

)T
(8)

= (−pK,−pE,−βLE

s2
L

pK − pK,
1
sL
− βLE

s2
L

pE − pE, 0)T.

Evaluating these derivatives at θ0 = (ξ0, γ0)T = (ξ0, 0)T yields the vectors

∂ηLpE

∂ξ
|
θ0 = (−1,−1, 0, 0)T,

∂ηLpE

∂γ
|
θ0 = (−pK,−pE,−pK,

1
β0

L
− pE, 0)T, (9)

which will be required for the calculation of the FIC in our empirical example.

Similarly, for focus parameter µ = ηKpE
, the partial derivatives read:

∂ηKpE

∂ξ
|
θ0 = (−1,−1, 0, 0)T,

∂ηKpE

∂γ
|
θ0 = (−pK,

1
β0

K
− pE,−pK,−pE, 0)T. (10)
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From the vectors given by (9) and (10), it becomes obvious that the FIC represents

a local, rather than a global criterion, as these derivatives generally depend upon

individual observations (pK, pE) of the regressors. This is similar to the calcu-

lation of marginal effects in non-linear models, for which one has to choose the

point at which marginal effects are evaluated (see e. g. FRONDEL, VANCE, 2011).

For both the calculation of marginal effects, as well as the FIC, the sample

mean ( p̄K, p̄E) may be a natural choice. Depending on the distribution of pK and

pE, however, the sample mean may not be representative for the entire sample,

nor does it generally equal the mean of all those values that are obtained when

the FIC is evaluated at individual data points. Hence, rather than considering the

mean of the explanatory variables for the calculation of the FIC, or any other av-

erage value, such as the median, one may calculate the FIC for any composition

(pK, pE) of the regressors in the data. It can then be decided individually for any

observation whether the full or the narrow model should be preferred in estimat-

ing the focus parameters. In our empirical application, we will calculate the FIC

for both the sample means of the explanatory variables and for each individual

observation.

3 The Concept of the FIC

As the term Focused Information Criterion suggests, it is not surprising that the

FIC is based on an information matrix, which is related to FISHER’s well-known

information measure and represents the variance matrix of the score vector ∂ log L
∂θ ,

where L denotes the likelihood function that is specified below for our example.

This information matrix is evaluated for θ0, that is, for the null model:

I f ull|θ0
= E[

(
∂ log L

∂θ
|
θ0

)
·
(

∂ log L
∂θ
|
θ0

)T
] =

 I00 I01

I10 I11

 , (11)
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where the matrix entries are defined as follows:

I00 := E[(
∂ log L

∂ξ
|
θ0) · (

∂ log L
∂ξ
|
θ0)T], I01 := E[(

∂ log L
∂ξ
|
θ0) · (

∂ log L
∂γ

|
θ0)T],

I10 := E[(
∂ log L

∂γ
|
θ0) · (

∂ log L
∂ξ
|
θ0)T], I11 := E[(

∂ log L
∂γ

|
θ0) · (

∂ log L
∂γ

|
θ0)T].

The dimension of information matrix I f ull is (p+q)× (p+q). In our example, p = 4

refers to the number of parameters gathered in ξ of the null model, while q = 5 is

the number of parameters that exclusively belong to the full model and are given

by γ.

Normality assumed, the likelihood for the full model is a bivariate standard-

normal density conditional on the model parameters θ and fixed values for pK

and pE:

L := L(sL, sK|pK, pE, θ)

=
1

2πσKσL

√
1− ρ2

KL

exp

[
− 1

2(1− ρ2
KL)

(
ε2

L + ε2
K − 2ρKLεLεK

)]
, (12)

with

εK :=
1

σK
(sK − βK − βKK · pK − βKE · pE) ∼ N(0, 1) and (13)

εL :=
1
σL

(sL − βL − βLK · pK − βLE · pE) ∼ N(0, 1). (14)

By taking the logarithm of (12) and differentiating with respect to the parameter

vectors ξ and γ, we get the score vectors that are required for estimating the

information matrix I f ull|
θ0 :

∂ log L
∂ξ
|
θ0 =

(
∂ log L

∂βK
,

∂ log L
∂βL

,
∂ log L

∂σK
,

∂ log L
∂σL

)T
|
θ0

=

(
εK

σK
,

εL

σL
,

ε2
K

σK
− 1

σK
,

ε2
L

σL
− 1

σL

)T

(15)
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and

∂ log L
∂γ

|
θ0 =

(
∂ log L
∂βKK

,
∂ log L
∂βKE

,
∂ log L
∂βLK

,
∂ log L
∂βLE

,
∂ log L
∂ρKL

)T
|
θ0

=
(

εK pK

σK
,

εK pE

σK
,

εL pK

σL
,

εL pE

σL
, εK · εL

)T
. (16)

On the basis of these expressions for the score vectors, the information matrix

I f ull|
θ0 is derived in detail in the appendix.

An estimate of the information matrix I f ull|
θ0 can be obtained by

Î f ull|
θ0 :=

1
n

n

∑
i=1

I f ull(pK,i, pE,i)|θ0 , (17)

with pK,i and pE,i being the i-th observations of pK and pE, respectively. The

estimate of I f ull|
θ0 then reads as follows:

Î f ull|θ0
=



1/σ̂2
K 0 0 0 p̄K/σ̂2

K p̄E/σ̂2
K 0 0 0

0 1/σ̂2
L 0 0 0 0 p̄K/σ̂2

L p̄E/σ̂2
L 0

0 0 2/σ̂2
K 0 0 0 0 0 0

0 0 0 2/σ̂2
L 0 0 0 0 0

p̄K/σ̂2
K 0 0 0 p2

K/σ̂2
K

pK pE
σ̂2

K
0 0 0

p̄E/σ̂2
K 0 0 0 pK pE

σ̂2
K

p2
E/σ̂2

K 0 0 0

0 p̄K/σ̂2
L 0 0 0 0 p2

K/σ̂2
L

pK pE
σ̂2

L
0

0 p̄E/σ̂2
L 0 0 0 0 pK pE

σ̂2
L

p2
E/σ̂2

L 0

0 0 0 0 0 0 0 0 1



,

where the unknown parameters σ2
K and σ2

L have been replaced by the correspond-

ing ML estimates σ̂2
K and σ̂2

L, respectively, and p̄K, p̄E, p2
K, p2

E, and pK pE denote the

sample means of the explanatory variables, their squared values, and their cross-

products, respectively.

For didactic purposes, we now present the definition of the FIC for an im-
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portant special case for which the south-east block of the inverse of the informa-

tion matrix is diagonal:

V := I11 = (I11 − I10 I−1
00 I01)−1, (18)

although this does not hold true for our example. While balancing modeling bias

B and relative estimation variability V (CLAESKENS, HJORT, 2003:907), for the q-

dimensional case in which models may differ in q parameters γ1, ..., γq, the FIC

for a diagonal V is given by (see CLAESKENS, HJORT, 2003:903):

FIC := [
q

∑
j=1

ωjBj1(γj = γ0
j )]

2 + 2
q

∑
j=1

ω2
j Vj1(γj 6= γ0

j ), (19)

where Vj is a diagonal element of V and 1(·) denotes the indicator function. The

rationale underlying definition (19) is that for any deviation γj 6= γ0
j , there is a

trade-off between modeling bias, which, by definition, is zero if γj 6= γ0
j , and

relative estimation variability, which, by definition, is zero if γj = γ0
j .

In definition (19), the purpose of inference, given by an estimate of the focus

parameter µ, is taken into account in that ωj is the jth component of a vector ω

that generally depends on focus parameter µ (see CLAESKENS, HJORT, 2003:902):

ω := I10 I−1
00

∂µ

∂ξ
|
θ0 −

∂µ

∂γ
|
θ0 . (20)

Finally, Bj is a component of the bias vector

B :=
√

n(γ− γ0) =
√

nγ, (21)

where the difference γ− γ0 captures modeling bias. Recall that in our example

γ0 = 0 and note that the modeling bias only vanishes if the full model were to be

identical to the null model, so that γ = γ0 = 0.

For our example outlined in Section 2, the FIC simplifies for the null model
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to

FIC0 = ωTBBTω, (22)

which represents the modeling bias of the null model relative to the full model,

while the relative estimation variability vanishes for the null model by definition.

In contrast, the FIC for the full model reads:

FIC f ull = 2ωTVω, (23)

where V captures the relative estimation variability, whereas there is no modeling

bias by definition: B = 0.

Again referring to the special case (19), it bears noting that with a parsimo-

nious model, the reward is a small variance contribution, 2 ∑
q
j=1 ω2

j Vj1(γj 6= γ0
j ),

but the penalty is a larger magnitude of the term (∑
q
j=1 ωjBj1(γj = γ0

j ))
2 that orig-

inates from modeling bias. The situation is reversed for richer models. In short,

including more model parameters always implies more variance, but lower bias,

and vice versa.

4 Empirical Application

In this section, we apply the FIC to the well-established KLEM data set made

available by Dale JORGENSON.1 This data base has been frequently used for pro-

duction analysis at the aggregate level (see e. g. JORGENSON and STIROH, 2000,

FRONDEL and SCHMIDT, 2006). The data for capital, labor, energy, and materials

cover 35 sectors of the U.S. economy for the years spanning 1960 to 2005. This

amounts to a total of 1,610 observations. The data comprises information on real

factor prices and real values of inputs to production. In addition, output prices

and quantities are also included.

1This data set is accessible via internet: www.economics.harvard.edu/ f aculty/jorgenson.
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Following our analytical example presented in Section 2, we deliberately

restrict our empirical analysis to three factors, capital, labor, and energy, thereby

computing the respective cost shares by subtracting the cost of materials from

total cost. To keep our analysis concise, we only estimate the FIC for the null and

the full model, rather than comparing the estimates of the FIC for all 2q = 25 = 32

possible (sub-)models.

Using maximum likelihood methods for estimating both the null and the

full model, we calculate the FIC for our two focus measures of choice, ηKpE
and

ηLpE
, the cross-price elasticities of capital and labor demand both with respect to

energy prices. Estimates for the FIC evaluated at the mean of the explanatory

variables are displayed in Table 1. Several results bear highlighting: First, for

the pooled data the FIC clearly argues in favor of the less restrictive Translog

model, irrespective of the focus parameter. This does not come as a surprise,

as the FIC depends on the sample size and tends to prefer the full model for

abundant samples. This is also warranted from an economic perspective: When

various sectors with substantially different cost structures are lumped together,

the COBB-DOUGLAS model, which presumes constant cost shares (see equation

system (1)), appears to be rather implausible.

Second, for both of our focus measures, the Translog model is also preferred

for the majority of 22 of 35 individual industry sectors. Among these sectors

are ‘coal mining’, ‘apparel’, ‘lumber and wood’, and ‘leather’. In contrast, for

eleven sectors, such as ‘agriculture’, ‘metal mining’, and ‘trade’, the FIC prefers

COBB-DOUGLAS over Translog for both focus parameters. For these eleven sec-

tors, therefore, any cross-price elasticity involving the price of energy can be ex-

pected to reflect the cost share of energy.

Third, for two sectors, namely ‘transportation equipment’ and ‘electric util-

ities’, the model choice based on the FIC depends on the focus parameter, that is,

on whether the energy price elasticity of either the demand for labor or for capital

is the purpose of inference.
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Table 1: FIC Estimates at the Sample Means of the Explanatory Variables.

Focus Parameter: ηLpE
Focus Parameter: ηKpE

FIC0 FIC f ull FIC0 > FIC f ull FIC0 FIC f ull FIC0 > FIC f ull

Agriculture 0.11 1.01 0 0.11 1.36 0

Metal mining 0.12 6.80 0 0.11 10.47 0

Coal mining 16.87 4.25 1 8.31 2.59 1

Oil and gas extraction 0.37 0.22 1 3.20 0.46 1

Nonmetallic mining 3.35 1.50 1 3.02 1.11 1

Construction 9.40 1.28 1 0.22 0.04 1

Food and kindred products 10.53 5.93 1 3.10 1.65 1

Tobacco 0.52 0.23 1 1.32 0.55 1

Textile mill products 0.09 2.52 0 0.01 0.27 0

Apparel 25.42 2.25 1 1.13 0.13 1

Lumber and wood 12.45 1.61 1 2.26 0.40 1

Furniture and fixtures 1.94 2.51 0 0.13 0.14 0

Paper and allied 2.62 2.05 1 0.72 0.38 1

Printing publishing and allied 0.55 0.63 0 0.07 0.08 0

Chemicals 2.23 1.11 1 1.86 0.45 1

Petroleum and coal products 35.38 3.07 1 67.07 4.39 1

Rubber and misc. plastics 3.62 3.04 1 0.33 0.20 1

Leather 61.84 9.93 1 7.37 1.48 1

Stone clay glass 13.71 5.04 1 1.89 0.43 1

Primary metal 67.40 8.83 1 15.36 1.59 1

Fabricated metal 45.49 4.91 1 5.30 0.69 1

Machinery non-electrical 0.00 1.71 0 0.00 0.15 0

Electrical machinery 9.89 6.19 1 2.03 1.24 1

Motor vehicles 0.11 5.97 0 0.03 1.58 0

Transportation equipment 4.30 4.03 1 0.10 0.10 0

Instruments 24.21 6.02 1 0.89 0.22 1

Misc. manufacturing 3.20 7.17 0 0.55 1.33 0

Transportation 9.19 0.76 1 1.59 0.22 1

Communications 0.04 1.40 0 0.05 1.75 0

Electric utilities 0.06 0.28 0 0.24 0.08 1

Gas utilities 16.91 2.31 1 56.27 4.28 1

Trade 0.01 1.43 0 0.00 0.15 0

Finance 0.28 0.07 1 1.02 0.22 1

Services 0.00 0.90 0 0.00 0.06 0

Government enterprises 9.89 3.10 1 4.40 1.35 1

Pooled sample 400.68 9.14 1 113.31 5.43 1

Note: 1 indicates FIC0 > FIC f ull , that is, that the full model (Translog) is to be preferred over the null model

(Cobb-Douglas). Number of observations: 1,610.

While for ‘transportation equipment’ the simple COBB-DOUGLAS approach

appears to be appropriate for measuring the substitutability of capital and energy,

the richer Translog model is preferred for measuring the substitutability of labor

and energy. For the electric utilities sector, the opposite holds true. In essence,
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this means that no uniformly best model exists when the FIC is employed to

choose among a diversity of model specifications. Rather, to appropriately cap-

ture specific features of the technology of production in these sectors, distinct

model specifications have to be applied.

Table 2: Sample Means of FIC Individually Estimated at each Data Point.

Focus Parameter: ηLpE
Focus Parameter: ηKpE

FIC0 FIC f ull Share of FIC0 FIC f ull Share of
FIC0 > FIC f ull FIC0 > FIC f ull

Agriculture 0.11 1.07 0.000 0.12 1.41 0.000
Metal mining 0.18 6.86 0.000 0.17 10.53 0.000
Coal mining 17.37 4.33 1.000 8.81 2.66 0.935
Oil and gas extraction 0.51 0.23 0.652 3.35 0.47 1.000
Nonmetallic mining 3.45 1.52 0.978 3.12 1.13 1.000
Construction 9.45 1.29 1.000 0.27 0.04 0.870
Food and kindred products 10.61 5.98 1.000 3.19 1.70 1.000
Tobacco 0.57 0.25 0.913 1.37 0.56 1.000
Textile mill products 0.10 2.53 0.000 0.01 0.28 0.000
Apparel 25.53 2.26 1.000 1.25 0.14 1.000
Lumber and wood 12.59 1.62 1.000 2.40 0.42 1.000
Furniture and fixtures 1.95 2.52 0.000 0.14 0.14 0.413
Paper and allied 2.64 2.06 0.935 0.74 0.39 0.978
Printing publishing and allied 0.56 0.64 0.130 0.07 0.08 0.239
Chemicals 2.31 1.14 1.000 1.93 0.47 1.000
Petroleum and coal products 35.52 3.08 1.000 67.21 4.40 1.000
Rubber and misc. plastics 3.64 3.04 0.935 0.35 0.21 0.913
Leather 62.22 9.99 1.000 7.74 1.55 1.000
Stone clay glass 13.80 5.06 1.000 1.99 0.44 1.000
Primary metal 67.78 8.86 1.000 15.74 1.61 1.000
Fabricated metal 45.75 4.94 1.000 5.56 0.72 1.000
Machinery non-electrical 0.00 1.72 0.000 0.00 0.15 0.000
Electrical machinery 10.00 6.25 1.000 2.15 1.30 0.891
Motor vehicles 0.11 6.02 0.000 0.04 1.63 0.000
Transportation equipment 4.31 4.04 0.935 0.10 0.11 0.370
Instruments 24.26 6.03 1.000 0.93 0.23 1.000
Misc. manufacturing 3.23 7.21 0.000 0.58 1.38 0.000
Transportation 9.40 0.77 1.000 1.79 0.23 0.935
Communications 0.04 1.42 0.000 0.05 1.78 0.000
Electric utilities 0.07 0.29 0.000 0.25 0.10 0.978
Gas utilities 17.03 2.33 1.000 56.38 4.29 1.000
Trade 0.01 1.44 0.000 0.00 0.15 0.000
Finance 0.30 0.07 1.000 1.05 0.22 1.000
Services 0.00 0.90 0.000 0.00 0.07 0.000
Government enterprizes 10.21 3.14 1.000 4.72 1.39 0.957
Pooled sample 409.04 9.40 1.000 121.66 5.69 0.995

The dependence of the model choice on the purpose of inference is more rel-

evant if the FIC is alternatively computed for any data point individually, rather

than calculating it at the sample mean of the explanatory variables. Table 2 re-
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ports the means of the FIC resulting from this exercise. There are some impor-

tant discrepancies, but there is also a range of similarities to Table 1: First, for

twelve sectors, the FIC unanimously prefers the Translog model for each indi-

vidual observation and irrespective of the focus parameter. Among these sectors

are ‘apparel’, ‘lumber and wood’, and ‘leather’. Second, for nine sectors, such

as ‘agriculture’, ‘metal mining’, and ‘trade’, the FIC always recommends COBB-

DOUGLAS for any point of time and both focus parameters.

For the remaining 14 sectors, however, the application of the FIC yields

mixed results. Four sectors, such as ‘paper and allied’ and ‘transportation equip-

ment’, exhibit a mixed pattern across observations for both focus parameters,

whereas for the remaining ten sectors, such as ‘coal mining’ or ‘tobacco’, the FIC

uniformly prefers one model for one of either cross-price elasticities, but yields

ambiguous recommendations across observations for the other focus parame-

ter. This also applies to the pooled sample: for eight observations the COBB-

DOUGLAS specification is preferred if the focus is on ηKpE
, while Translog is al-

ways preferred for focus parameter ηLpE
.

5 Summary and Conclusions

In choosing an appropriate model specification for describing production tech-

nologies, econometric studies on factor substitution typically resort to a few num-

ber of well-established functional forms, such as Generalized Leontief, Cobb-

Douglas, or, often, Translog cost functions. In selecting a single specification out

of a variety of functional forms, however, it should be recognized that one speci-

fication might be more appropriate for a certain task then another.

In this paper, we advise against selecting a production model that is pre-

ferred without any reference to the research question addressed, such as calcu-

lating a specific measure of substitutability. Rather, we suggest choosing those

14



model specifications that fit best to the specific purposes of inference. This is

precisely the core of the concept of the Focused Information Criterion (FIC), de-

veloped by CLAESKENS and HJORT (2003) to allow for purpose-specific model

selection. In addition to this feature, the FIC is distinguished from other model

selection measures, such as AIC and SIC, in that it is not a global criterion that

recommends a single, most preferred model irrespective of the values of the co-

variates. Rather, it is a local criterion that may indicate the appropriateness of

various models, depending upon the vicinity of the values of the conditioning

variables. This is not a paradox, as CLAESKENS and HJORT (2003:?) note, but

stems from the wish to estimate conditional expected values with optimal preci-

sion.

Using the classical example of the choice among COBB-DOUGLAS and

Translog specifications and empirical data for 35 U.S. industry sectors for the

time period spanning 1960 to 2005, this paper has illustrated the concept and

usefulness of the FIC. When evaluated at the sample means of the explanatory

variables, the model choice based on the FIC depends on the focus parameter

for two out of 35 sectors. If, alternatively and more reasonably, the FIC is com-

puted for each data point individually, the recommendations based on the FIC

results are highly mixed and depend on the purpose of inference for 14 out of 35

industry sectors. This outcome, as well as the general reasoning with respect to

model selection, is in line with the conclusion of FUSS, MCFADDEN and MUND-

LAK (1978:241) in the context of choosing the most appropriate among a variety

of substitution measures: there “is no unique natural generalization of the two

factor definition ... [and] the selection of a particular definition should depend on

the question asked”.
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Appendix

In what follows, a range of entries of information matrix I f ull|θ0
(pK, pE) are

calculated using definition (11), the score vectors (15) and (16), as well as

E[(εK)2] = E[(εL)2] = 1, E[(εK)3] = E[εK] = E[(εL)3] = E[εL] = 0, while

E[εKεL] = ρKLσKσL = 0, E[(εK)2εL] = E[(εL)2εK] = 0 for θ0, as then ρKL = 0.

The nine entries for the first row of I f ull|θ0
then read as follows:

E[(
∂ log L

∂βK
)2]|

θ0 = E[(
εK

σK
)2] =

1
σ2

K
E[(εK)2] =

1
σ2

K
,

E[
∂ log L

∂βK

∂ log L
∂βL

]|
θ0 = E[

εK

σK

εL

σL
] =

1
σKσL

E[εKεL] = 0,

E[
∂ log L

∂βK

∂ log L
∂σK

]|
θ0 = E[

εK

σK
(

ε2
K

σK
− 1

σK
)] =

1
σ2

K
(E[(εK)3]− E[εK]) = 0,

E[
∂ log L

∂βK

∂ log L
∂σL

]|
θ0 = E[

εK

σK
(

ε2
L

σL
− 1

σL
)] =

1
σKσL

(E[εK(εL)2]− E[εK]) = 0,

E[
∂ log L

∂βK

∂ log L
∂βKK

]|
θ0 = E[

εK

σK

εK pK

σK
] =

pK

σ2
K

E[(εK)2] =
pK

σ2
K

,

E[
∂ log L

∂βK

∂ log L
∂βKE

]|
θ0 = E[

εK

σK

εK pE

σK
] =

pE

σ2
K

E[(εK)2] =
pE

σ2
K

,

E[
∂ log L

∂βK

∂ log L
∂βLK

]|
θ0 = E[

εK

σK

εL pK

σL
] =

pK

σKσL
E[εKεL] = 0,

E[
∂ log L

∂βK

∂ log L
∂βLE

]|
θ0 = E[

εK

σK

εL pE

σL
] =

pE

σKσL
E[εKεL] = 0,

E[
∂ log L

∂βK

∂ log L
∂ρKL

]|
θ0 = E[

εK

σK
εKεL] =

1
σK

E[(εK)2εL] = 0.

While, by analogy, the second row of I f ull|θ0
is similar to the first, and is thus not

calculated explicitly here, the unknown entries of the third row, beginning from

the diagonal element for symmetry reasons, are given by:

E[(
∂ log L

∂σK
)2]|

θ0 = E[(
ε2

K
σK
− 1

σK
)2] = E[

(εK)4

σ2
K
− 2

(εK)2

σ2
K

+
1

σ2
K
]

=
1

σ2
K

E[(εK)4 − 2(εK)2 + 1] =
1

σ2
K
[3− 2 + 1] =

2
σ2

K
,
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E[
∂ log L

∂σK

∂ log L
∂σL

]|
θ0 = E[(

ε2
K

σK
− 1

σK
)(

ε2
L

σL
− 1

σL
)] =

1
σKσL

E[(εKεL)2 − (εK)2 − (εL)2 + 1]

=
1

σKσL
[1− 1− 1 + 1] = 0,

E[
∂ log L

∂σK

∂ log L
∂βKK

]|
θ0 = E[(

ε2
K

σK
− 1

σK
)

εK pK

σK
] =

pK

σ2
K

E[(εK)3 − εK] = 0,

E[
∂ log L

∂σK

∂ log L
∂βKE

]|
θ0 = E[(

ε2
K

σK
− 1

σK
)

εK pE

σK
] =

pE

σ2
K

E[(εK)3 − εK] = 0,

E[
∂ log L

∂σK

∂ log L
∂βLK

]|
θ0 = E[(

ε2
K

σK
− 1

σK
)

εL pK

σL
] =

pK

σKσL
E[(εK)2εL − εL] = 0,

E[
∂ log L

∂σK

∂ log L
∂βLE

]|
θ0 = E[(

ε2
K

σK
− 1

σK
)

εL pE

σL
] =

pE

σKσL
E[(εK)2εL − εL] = 0,

E[
∂ log L

∂σK

∂ log L
∂ρKL

]|
θ0 = E[(

ε2
K

σK
− 1

σK
)εKεL] =

1
σK

E[(εK)3εL − εKεL] = 0,

as for θ0 and thus ρKL = 0, E[(εKεL)2] = E[(εK)2] · E[(εL)2] = 1 and E[(εK)3εL] =

E[(εK)3] · E[εL] = 0. Again, by analogy, the fourth row resembles the third row,

so that its explicit calculation can be omitted. Next, the five unknown entries of

the fifth row read as follows:

E[(
∂ log L
∂βKK

)2]|
θ0 = E[(

εK pK

σK
)2] =

p2
K

σ2
K

E[(εK)2] =
p2

K
σ2

K
,

E[
∂ log L
∂βKK

∂ log L
∂βKL

]|
θ0 = E[(

εK pK

σK
)(

εK pE

σK
)] =

pK pE

σ2
K

E[(εK)2] =
pK pE

σ2
K

,

E[
∂ log L
∂βKK

∂ log L
∂βLK

]|
θ0 = E[(

εK pK

σK
)(

εL pK

σL
)] =

(pK)2

σKσL
E[εKεL] = 0,

E[
∂ log L
∂βKK

∂ log L
∂βLE

]|
θ0 = E[(

εK pK

σK
)(

εL pE

σL
)] =

pK pE

σKσL
E[εKεL] = 0,

E[
∂ log L
∂βKK

∂ log L
∂ρKL

]|
θ0 = E[(

εK pK

σK
)(εKεL)] =

pK

σK
E[(εK)2εL] = 0.

While the remaining rows can be calculated accordingly, the last entry of the last

row is given by:

E[(
∂ log L
∂ρKL

)2]|
θ0 = E[(εKεL)2] = E[(εK)2] · E[(εL)2] = 1.
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