Berlin Institute of Technology
FG Security in Telecommunications

1i‘lﬂz‘%\;\ﬁ]l";l\E!III!‘!!U!!‘!‘!!!!
1 11 M“E“Ilﬂ”“i“' .|
! SiRAEAAN

| EE!F?&\MHIIIME!!!!E!!:

i L LR TETT

MI!'!II‘Z!'

=

OS Agnostic Sandboxing Using Virtual CPUs

Spring 6 - SIDAR Graduierten-Workshop Gber Reaktive Sicherheit

Matthias Lange, March 21st, 2011
mlange@sec.t-labs.tu-berlin.de

QOutline

Introduction
Design
Implementation
Evaluation

Conclusion

Matthias Lange - SPRING 6: “OS Agnostic Sandboxing Using Virtual CPUs”

Introduction

= |nsufficient access control mechanisms of current OS
— No principle of least authority
= Untrusted 3" party code within trustworthy environment
— e.9. plugins
= Sandboxing to restrict programs
— Many different (special purpose) implementations
— No general approach

Matthias Lange - SPRING 6: “OS Agnostic Sandboxing Using Virtual CPUs”

Background - Sandboxing

Jail program into restricted execution environment
Check adherence to policy

— Faults trap into sandbox
Address spaces, Process VMs, Software Fault Isolation
Java VM

— Disliked because of performance penalty
Google NaCL

— Uses (x86) platform specific features

Matthias Lange - SPRING 6: “OS Agnostic Sandboxing Using Virtual CPUs”

Berlin Institute of Technology
FG Security in Telecommunications

Design

Design Goals

Native code execution
— Performance

Low complexity

OS agnostic

Enable multimedia applications
— Low latency
— High data throughput
— Multiple event sources

Threading

Prioritization

Matthias Lange - SPRING 6: “OS Agnostic Sandboxing Using Virtual CPUs”

Execution Model - Virtual CPUs

Standard threading model not sufficient

— Complex upon control flow diversions
vCPU is an execution abstraction
Strongly resemble physical CPU

— Upcalls

— State indicator

— Virtual interrupt flag

— State save area

Matthias Lange - SPRING 6: “OS Agnostic Sandboxing Using Virtual CPUs”

Host-Client Interaction

System calls

— Client state change to notify host
Events

— Client notification, upcall to entry point
State indicator

— Enable / disable notifications
State save area

— Store state of interrupted client thread

Matthias Lange - SPRING 6: “OS Agnostic Sandboxing Using Virtual CPUs”

Threading Library

Multi-threading
— Preemption
— Scheduling
— Prioritization of events and threads
— Synchronisation
Dynamic memory

Matthias Lange - SPRING 6: “OS Agnostic Sandboxing Using Virtual CPUs”

Berlin Institute of Technology
FG Security in Telecommunications

Implementation

General Overview

Linux as host
Sandboxing implemented using ptrace
vCPU implemented on shared memory page
Scheduling

— Fixed priority round robin scheduling
Event Handling

— Event handler threads, allows prioritization

Matthias Lange - SPRING 6: “OS Agnostic Sandboxing Using Virtual CPUs”

VCPU System Calls

Host waits for client changes using waitpid
Client issues segmentation fault at specific address
Manipulation of client state using ptrace

— save/restore register state

— Resume vCPU at entry point vector

Matthias Lange - SPRING 6: “OS Agnostic Sandboxing Using Virtual CPUs”

Berlin Institute of Technology
FG Security in Telecommunications

Evaluation

Setup

AMD Athlon 64 X2 dual core @ 2,6GHz
3,9 GB RAM
Ubuntu 9.10

Matthias Lange - SPRING 6: “OS Agnostic Sandboxing Using Virtual CPUs”

System Call Roundtrip

Clock cycles Time in ys
vCPU (syscall_null) 37.702 35.671
native (getpid) 248 0.234

= vCPU syscall around 100 times slower than native
— Several invocations of ptrace
— Address space switches

Matthias Lange - SPRING 6: “OS Agnostic Sandboxing Using Virtual CPUs”

o

Computation Overhead

Time in ms Relation
vCPU 13.733 100%
native 13.643 99,3%

= Compute Fibonacci numbers
= Native performance for compute bound tasks

Matthias Lange - SPRING 6: “OS Agnostic Sandboxing Using Virtual CPUs”

o

Event Latency

14000

] I 1
Latency of events with parallel computation threads

12000]

10000 -

8000 -

6000 .

Latency in CPU clock

4000 -

2000 .

0 1 1 I 1
0 1 2 3 4 5

Number of parallel computation threads

= Event latency does not depend on number of computational tasks
= Latency around 10,7ps

ab 4>
ab N
b
21.03.2011 17

Matthias Lange - SPRING 6: “OS Agnostic Sandboxing Using Virtual CPUs”

Berlin Institute of Technology
FG Security in Telecommunications

Conclusion & Outlook

Conclusion

Low complexity implementation
— Around 4.000 SLOC

Low porting effort for legacy applications
— Ported libav (former ffmpeg)

Low latency and low overhead
— Usable for multimedia applications

Matthias Lange - SPRING 6: “OS Agnostic Sandboxing Using Virtual CPUs”

Future Work

Implement vCPU on other platforms

Investigate platforms with native vCPU implementation
— Microkernel

Reduce ptrace overhead
— Use seccomp?

Investigate effort for legacy applications

Matthias Lange - SPRING 6: “OS Agnostic Sandboxing Using Virtual CPUs”

Berlin Institute of Technology
FG Security in Telecommunications

Thank you!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

