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Introduction

= |nsufficient access control mechanisms of current OS
— No principle of least authority
= Untrusted 3" party code within trustworthy environment
— e.9. plugins
= Sandboxing to restrict programs
— Many different (special purpose) implementations
— No general approach
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Background - Sandboxing

Jail program into restricted execution environment
Check adherence to policy

— Faults trap into sandbox
Address spaces, Process VMs, Software Fault Isolation
Java VM

— Disliked because of performance penalty
Google NaCL

— Uses (x86) platform specific features

Matthias Lange - SPRING 6: “OS Agnostic Sandboxing Using Virtual CPUs”



Berlin Institute of Technology
FG Security in Telecommunications

Design




Design Goals

Native code execution
— Performance

Low complexity

OS agnostic

Enable multimedia applications
— Low latency
— High data throughput
— Multiple event sources

Threading

Prioritization
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Execution Model - Virtual CPUs

Standard threading model not sufficient

— Complex upon control flow diversions
vCPU is an execution abstraction
Strongly resemble physical CPU

— Upcalls

— State indicator

— Virtual interrupt flag

— State save area
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Host-Client Interaction

System calls

— Client state change to notify host
Events

— Client notification, upcall to entry point
State indicator

— Enable / disable notifications
State save area

— Store state of interrupted client thread
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Threading Library

Multi-threading
— Preemption
— Scheduling
— Prioritization of events and threads
— Synchronisation
Dynamic memory
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General Overview

Linux as host
Sandboxing implemented using ptrace
vCPU implemented on shared memory page
Scheduling

— Fixed priority round robin scheduling
Event Handling

— Event handler threads, allows prioritization
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VCPU System Calls

Host waits for client changes using waitpid
Client issues segmentation fault at specific address
Manipulation of client state using ptrace

— save/restore register state

— Resume vCPU at entry point vector
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Setup

AMD Athlon 64 X2 dual core @ 2,6GHz
3,9 GB RAM
Ubuntu 9.10
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System Call Roundtrip

Clock cycles Time in ys
vCPU (syscall_null) 37.702 35.671
native (getpid) 248 0.234

= vCPU syscall around 100 times slower than native
— Several invocations of ptrace
— Address space switches
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Computation Overhead

Time in ms Relation
vCPU 13.733 100%
native 13.643 99,3%

=  Compute Fibonacci numbers
= Native performance for compute bound tasks
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Event Latency
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Conclusion

Low complexity implementation
— Around 4.000 SLOC

Low porting effort for legacy applications
— Ported libav (former ffmpeg)

Low latency and low overhead
— Usable for multimedia applications
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Future Work

Implement vCPU on other platforms

Investigate platforms with native vCPU implementation
— Microkernel

Reduce ptrace overhead
— Use seccomp?

Investigate effort for legacy applications
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Thank you!

Questions?
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