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Abstract

Numerical techniques for solving the problem of fluid-structure interaction with an
elastic material in a laminar incompressible viscous flow are described. An Arbitrary
Lagrangian-Eulerian (ALE) formulation is employed in a fully coupled monolithic
way, considering the problem as one continuum. The mathematical description and
the numerical schemes are designed in such a way that more complicated constitutive
relations (and more realistic for biomechanics applications) for the fluid as well as the
structural part can be easily incorporated. We utilize the well-knownQ2P1 finite ele-
ment pair for discretization in space to gain high accuracy and perform as time-stepping
the 2nd order Crank-Nicholson, resp., Fractional-Step-θ -scheme for both solid and
fluid parts. The resulting nonlinear discretized algebraicsystem is solved by a Newton
method which approximates the Jacobian matrices by a divided differences approach,
and the resulting linear systems are solved by iterative solvers, preferably of Krylov-
multigrid type.

For validation and evaluation of the accuracy of the proposed methodology, we present
corresponding results for a new set of FSI benchmarking configurations which describe
the self-induced elastic deformation of a beam attached to acylinder in laminar channel
flow, allowing stationary as well as periodically oscillating deformations. Then, as an
example for fluid-structure interaction (FSI) in biomedical problems, the influence of
endovascular stent implantation onto cerebral aneurysm hemodynamics is numerically
investigated. The aim is to study the interaction of the elastic walls of the aneurysm
with the geometrical shape of the implanted stent structurefor prototypical 2D con-
figurations. This study can be seen as a basic step towards theunderstanding of the
resulting complex flow phenomena so that in future aneurysm rupture shall be sup-
pressed by an optimal setting for the implanted stent geometry.

Keywords:Fluid-structure interaction (FSI), monolithic FEM, ALE, multigrid, incom-
pressible laminar flow, bio-engineering, optimization, benchmarking.
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Tell me and I will forget. Show me,
and I may not remember. Involve
me, and I will understand.

-Native American Saying 1
Introduction

This chapter is the foundation of this thesis. It introducesand motivates the broad
context of the importance of the research and series of problems in the area of Fluid-
Structure Interaction (FSI). It will establish and highlight the grounding for the next
chapters. A birds eye view of the research contributions andthe overall organization of
this thesis will be given towards the end of the chapter.

1.1 Orientation

Fluid flows encounters in everyday life from the time of existence of mankind and
even beyond. Blood, water are the one of the main source of existence of human being
and other living creatures. Approximately, a human body contains 55-60% of water in
adult male and female. Also, two third of the very own Earth consist of water. Water
is the simplest and without shadow of doubt most important fluid which is categorized
as Newtonian fluid that means its stress depends linearly on the deformation rate with
a constant velocity.

The fluid mechanics is the branch of science which discusses the fluid flow behavior,
governed by Partial Differential Equations (PDE) which represent conservation laws
for the mass, momentum and energy. With the invent of digitalcomputers, Compu-
tational Fluid Dynamics (CFD) came into existence which is an art of replacing such
PDE systems by sets of algebraic equations and solve them numerically with appropri-
ate numerical methods.

Structural mechanics is another discipline of Engineeringin which the deformation
or displacement of solid materials are analytically studied and material laws and a
wide range of dynamical properties modeled. Moreover, the computational structural
mechanics (CSM) has also achieved a great advance independently from the CFD.

In almost every physical system, interactions between movable or deformable struc-
tures with internal or external fluid flow can be observed. This behavior is known
in literature as fluid-structure interaction (FSI) and has been one of the most investi-
gated and most intensively studied coupled problems. Many examples of this multi-
field/multi-physics phenomena can be found in practice which is an actual main focus
in CFD development. In this undertaken research special cases of coupled problem
will be investigated,- the fluid-structure interaction (FSI) problems.

The combined solution of fluid structure interaction problems demands extraordinary

1



CHAPTER 1. INTRODUCTION

efforts as it is schematically shown in Figure. 1.1

C DF FSI C DS

Figure 1.1: FSI problem - lies in between the fluid (CFD) and structural (CSD) dynam-
ics problems

This thesis has only one author, which is common for a PhD thesis, and the author
decided to address reader as using first person plural ”we” over first person singular
”I” for humility. If the presented contributed results are jointly compiled then ”we”
indicates a group of authors, otherwise explicitly stated.

Almost all the calculations made for the formulated fluid structure interaction (FSI)
system of equations in this thesis were performed using the Finite Element Method
(FEM) package Featflow (Finite element analysis tool for flowproblems). A compre-
hensive survey, a complete introduction and rigorous guideto this open source software
can be found and downloaded athttp:/www.featflow.de.

1.2 Research Applications and Goals

In recent years, encouraging progress has been made in the numerical simulation of
Fluid-Structure Interaction (FSI) problems and continue to be the focus of much at-
tention. The significant applications in various areas considering an elastic or inelastic
structure surrounded by or conveying a fluid can be found in the following broad engi-
neering disciplines:

• Aerodynamics

• Aeroelasticity

• Civil engineering

• Biomechanics

• Hemodynamics

• Meteorological phenomena

• Hydroelasticity

Such multi-physics problems ranging from water penetration of off-shore structures,
modeling submarines motion, parachute modeling, interaction of the various objects
with the surroundings (air, water, structures), blood flow in arteries, environmental
hazards, airfoil fluttering, rain, wind, floods involve morethan one physical effect.

2
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1.2. RESEARCH APPLICATIONS AND GOALS

Fluid Structure Interaction problems, involving the coupling of unsteady fluid flow and
structure motion, arise in many fields of engineering, as well as in many other sciences,
e.g. medicine. From previous experience one can conclude that the mechanisms which
lead the vibrations of flexible structures immersed in flowing fluids to become self-
excited are very sensitive to the mechanical properties of the structure as well as to the
properties of the incoming fluid and very difficult to predict.

One major application is blood flow through human arteries (flow through the heart
flaps, flow in the heart chambers). The local hemodynamics, and temporal wall shear
stress gradient is important in understanding the mechanisms leading to various com-
plications in cardiovascular function. Many clinical treatments can be studied in detail
only if a reliable model describing the response of arterialwalls to the pulsatile blood
flow is considered [51].

The multigrid FSI simulation to calculate for Fluid-Structure Interaction Optimization
is another application. Often we have an optimization problem under the constraint
of a strong fluid-structure coupling. This state - consisting of velocity, pressure and
deformation - shall be achieved by the optimal control of a certain part of the FSI
system. Possible values that may be influenced are the material of the elastic solid or
a certain inflow control on a part of the outer boundary. Although this advancement
makes it possible to consider the optimization of FSI based systems, the development
of efficient simulation-based optimization techniques forthe optimal design of FSI
systems is still in its beginning stage.

In this research work we seek to validate and evaluate the accuracy and performance
of the proposed methodology, for a new set of FSI benchmark configurations which
describe the self-induced elastic deformation of a beam attached to a cylinder in lam-
inar channel flow, allowing stationary as well as periodically oscillating deformations
and compare the results with experimental values from a corresponding benchmarking
experiment.

Additionally, this benchmarking scenario is to extend the validated FSI benchmark con-
figurations to optimization problems such that minimal drag/lift values of the elastic
object, minimal pressure loss or minimal non-stationary oscillations through boundary
control of the inflow, change of geometry or optimal control of volume forces can be
reached. The main design aim for the presented fluid structure interaction optimization
problem is to minimize the lift on the beam with the help of boundary control of inflow
data. The simulation is based on the described FSI1 configuration. Then, as an example
of FSI in biomedical problems, the influence of endovascularstent implantation onto
cerebral aneurysm hemodynamics is numerically investigated. The aim is to study the
interaction of the elastic walls of the aneurysm with the geometrical shape of the im-
planted stent structure for prototypical 2D configurations, propose corresponding more
realistic material law for vessels and put into action the nonlinear flow model (power-
law) and analysis with emphasis on hemodynamical applications aneurysm success-
fully. This study can be seen as a basic step towards the understanding of the resulting
complex flow phenomena so that in future aneurysm rupture shall be suppressed by an
optimal setting for the implanted stent geometry.

Hence, the action of the dynamic fluid forces on the elastic/inelastic boundaries and the
deformation of the flow domain caused by the structural displacements are modeled.
The structure is made of an isotropic elastic material, where linear and geometrically
nonlinear models are used for small and finite deformations,respectively.

3



CHAPTER 1. INTRODUCTION

1.3 Challenges and Motivation

Fluid-structure interaction physical processes are very complex, nonlinear in nature
and can not be solved analytically. In fact experimental setups are essential to provide
reliable data. However, these are generally associated with enormous costs, which is
why the demand for numerical simulations as development tool is increasing rapidly.

Both problems of viscous fluid flow and of elastic body deformation have been studied
separately for many years in great detail. But there are manyproblems encountered in
real life where an interaction between those two medias is ofgreat importance.

In bioengineering, modeling FSI in the blood circulatory system is a vast and com-
plex mathematical subject; even a simplified description ofthe vessel wall mechan-
ics assuming homogeneous linearly elastic behavior leads to complicated numerical
strategies with challenging stability and convergence properties. To devise an accu-
rate model for the mechanical behavior of arterial walls that will lead to numerical
methods producing computational solutions in an acceptable time is more complicated
without introducing simplifications. There have been several different approaches to
the problem of fluid-structure interaction in blood flow dynamics in local arterial en-
vironments and to predict vessel wall deformation. Arterial walls are anisotropic and
heterogeneous, composed of layers with different biomechanical characteristics [51],
[78], [105]. A variety of different models has been suggested in the literature to model
the mechanical behavior of arteries [4], [3], [9], [51],[78], [105], [132]. They range
from the detailed description of each of the layers to the average description of the
total mechanical response of the vessel wall assuming homogeneous, linearly elastic
behavior, special geometry, symmetry and periodicity.

Similarly, typical cases are the areas of biomedical fluids which include the influence
of hemodynamic factors in blood vessels, cerebral aneurysmhemodynamics and blood
flow interaction with elastic veins [2, 129, 46]. A fluid-structure model with the wall
modeled as a thin shell was used to model the left heart ventricle, and similarly, to
model the flow in collapsible tubes in [32, 33, 105, 103, 68, 69]. In reality the thick-
ness of the wall can be significant and very important and it isvery hard to predict the
material property of wall thickness. For example in arteries the wall thickness can be
up to 30% of the diameter and its local thickening can be the cause of an aneurysm
creation. In this thesis, we allow the walls of the aneurysm to be elastic and hence
deforming with the flow field in the vessel. Moreover, we examine several config-
urations for stent geometries which clearly influence the flow behavior inside of the
aneurysm such that a very different elastic displacement ofthe walls is observed, too.
We demonstrate that either the elastic modeling of the aneurysm walls as well as the
proper description of the geometrical details of the shape of the aneurysm and partic-
ularly of the stents is of great importance if the complex interaction between structure
and fluid shall be quantitatively analyzed, especially withmore realistic blood flow
models and anisotropic constitutive laws of the elastic walls. In this study, we restrict
at the moment to 2D prototypical numerical studies of aneurysm configurations which
is due to an easier presentation and the computational time needed to solve the prob-
lem. In all these cases we have to deal with large deformations of a deformable solid
interacting with an unsteady, often periodic, fluid flow.

With the continuous increase of processing power of computers, these problems have
attracted more and more interest of the researchers. However, either the experimental

4



1.4. RESEARCH METHODOLOGY

setting is too complicated for the computational tool or thenumerical setting is not
feasible for experiment. There are still challenging questions in FSI research, rang-
ing from mathematical modeling, numerical discretizationup to implementation into
software tools. Increased efforts in numerical research and development are presently
being observed to develop models and coupling strategies.

1.4 Research Methodology

In the past decades the computational fluid dynamics (CFD) has developed many effi-
cient methods which provide a qualitative (and some time even quantitative) numerical
solution of various fluid dynamics problems. Many commercial programs have been
created, tested on benchmark settings and successfully applied to diverse complex fluid
dynamics problems. Traditionally, the governing equations have been derived using
Eulerian (spatial) description. In literature, from a numerical point of view the finite
volume discretization has been preferred because of its conservative properties. Simi-
larly finite element discretization methods are equally utilized.

Many structural dynamics solvers have been developed to solve various structural dy-
namics phenomenon. The modeling of a wide range of material laws and structural
properties has been made possible by creating special finiteelements holding desired
features. Contrarily to the fluid dynamics, the Lagrangian (material) description has
been selected for the governing equations.

The possibilities of numerical solution of the coupled FSI problem include the numeri-
cal solutions of the fluid and the structural parts by partitioned or monolithic way. In the
case of their combination some mixed description (usually referred to as the Arbitrary
Lagrangian-Eulerian description or ALE) has been used which brings additional non-
linearity into the resulting equations. The development oftools for modeling various
fluid-structure interaction problems is still an uphill challenge.

Fluid-structure interaction problems solving approachescan be divided into weakly
(separated) and strongly coupled approaches, based on the their data exchange.

In the separated coupling approach, the coupled problem is partitioned into fluid and
structural parts and then solved separately. The partitioned analysis of coupled systems
has been introduced by Park and Fellipa [100].

Contrarily, in a strongly coupled strategies both parts of the FSI problem are solved
monolithically. That means, one system of equations is arrived after discretizing the
governing fluid and structural equations and taking into account the boundary condi-
tions on the interface. Hence, the whole FSI problem is solved at once using a mono-
lithic ALE approach.

Obviously, both approaches have advantages and disadvantages. In Figure 1.4, they are
referred with regard to their flexibility and stability as well as the needed programming
robustness.

One solution strategy is to decouple the problem into the fluid part and structure part,
which is known as separated or partitioned approach. The main advantage of the sep-
arated coupling approach is that for each of those parts it uses some well established,
efficient and well validated finite element based numerical method of solution and the
interaction is introduced as external boundary conditionsor volume forces in each of

5



CHAPTER 1. INTRODUCTION
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Figure 1.2: Coupling strategies for multi-physics FSI problems

the subproblems. The drawback of a partitioned approach is that the treatment of the
interface and the interaction is often problematic. Although they are flexible, less pro-
gramming efforts required but due to the explicit nature of this coupling convergence
problems may often arise. Consequently, there is a restriction on the choice of the
time-step even if implicit time-stepping schemes are used by the two solvers.

Contrarily, the strong coupling approaches are more difficult to formulate and to pro-
gram. Normally, the simultaneous solution of the whole FSI problem necessitates re-
formulation of the systems of equations and confines the choice of the numerical meth-
ods to be applied. Additionally, special approaches may be needed for modeling the
nonlinearities in each of the physical parts. Valuable programming efforts are required
to create and validate a program applicable to wide range of problems. However, there
are no approximation errors and convergence problems in this approach due to the data
convey between the fluid and structural parts.

The approach which will be put into action in the present study is a monolithic strong
coupling strategy. This considered strong coupling strategy of an implicit type is more
stable although difficult to program than the separated coupling approach that is more
flexible but connected with convergence problems. With regard to flexibility we opted
for stability and robustness, it seems to be a good compromise between the separated
and the strong coupling approaches.

In this thesis, we investigated and developed a new numerical techniques for solv-
ing the problem of fluid structure interaction of a compressible/incompressible elastic
material in a laminar incompressible viscous flow in a fully coupled monolithic way.
We formulated the implicit set of equations via Arbitrary Lagrangian-Eulerian (ALE)
approach. We discretized the flow problem in two space dimensions by utilizing the
high order finite elementQ2 (Taylor-Hood family) for velocityV and displacementU
approximation andP1 element for the pressurep approximation to maintain high ac-
curacy, in a standard FEM approach, after applying a standard implicit one-step time-
stepping schemes in the non-stationary case. The usedQ2P1 element pair satisfies the
well known LBB-stability condition.

It is found evident by an example of FSI benchmark that this element pair has accept-
able grid independent results for steady state as well as foroscillatory benchmark cases.

6



1.5. SUMMARY OF CONTRIBUTIONS

For instance, forRe= 20, it is shown in Figure. 1.4.

Figure 1.3: FSI Benchmark:Re= 20, drag= 14.2943, lift= 0.76375

The resulting discrete nonlinear system for the triplet(U,V, p) is solved by utilizing
outer quasi-Newton iterations using the line search also known as the method of Rothe
(method of lines, or method of semi discretization) [83] in afully coupled monolithic
way. This technique is considered as the most robust iteration technique which may
give quadratic convergence. Due to finite element method, the sparsity pattern of the
Jacobian matrix is known in advance and computed by divided difference approach.

Inside one Newton step, the solution of the linear subsystemis the most time consum-
ing part of the solution process in terms of the CPU time [122,128]. One choice for this
sparse systems is to put into action a direct solver like UMFPACK [40]. This choice
provides very robust linear solvers but its memory and CPU time requirements are too
high for larger systems, for instance it allows nearly 20,0000 unknowns in acceptable
time.

Similarly, large linear subproblems can be solved by Krylov-space methods (BiCGStab,
GMRes [8]) with suitable preconditioners. One possibilityis the ILU preconditioner
with special treatment of the saddle point character of our system, where we allow
certain fill-in for the zero diagonal blocks [22].

As an alternative, we also utilize a standard geometric multigrid approach based on a
hierarchy of grids obtained by successive regular refinement of a given coarse mesh.
The complete multigrid iteration is performed in the standard defect-correction setup
with the V or F-type cycle. While a direct sparse solver [40] isused for the coarse grid
solution, on finer levels a fixed number (2 or 4) of iterations by local MPSC schemes
(Vanka-like smoother) [122, 130, 75] with canonical grid transfer routines is put into
action which results in high efficiency and robustness. The mathematical description
and the numerical schemes are designed in such a way that morecomplicated consti-
tutive relations can be easily incorporated. We perform numerical comparisons for dif-
ferent time stepping schemes, like the well known classicalFractional stepθ -scheme,
Backward Euler and Crank Nicholson schemes for fluid structure interaction.

1.5 Summary of Contributions

The scientific research flourishes only by group efforts. Importantly, without the joint
work within the Featflow group most of the publications wouldnot have been possible
at all. So, to begin with this section, the author pays gratitude to all collaborators,
co-authors and their contribution is gratefully acknowledged.
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CHAPTER 1. INTRODUCTION

During the pursuit of this thesis, the author has published and contributed to a number
of peer reviewed book chapters and intermediate results have been presented at inter-
national conferences and published in peer-reviewed proceeding volume and is been in
review for journal publication.

We contributed results for the special benchmark settings for fluid-structure interac-
tion problems which have been initiated and developed as collaborative project in the
DFG Research Unit 493 formed by group of universities at Germany. The results are
already published in [124, 125]. Also, the complete descriptions, the parameter set-
tings and simulation results can be found in [124, 125, 123] and downloaded from
http:/www.featflow.de/en/fsi_benchmark.html.

Our first journal article has been accepted for publication [108]. A chapter in the text-
book titled ”Advances in Mathematical Fluid Mechanics” hasbeen published in late
2010 [109], co-written by Dr. Jaroslav Hron and Prof. Dr. Stefan Turek. In this
paper, we present numerical studies on different mesh types. Numerical results are
provided for all time stepping schemes which show very reproducible symmetrical
two–dimensional swiveling motions. These numerical testsshow that the solution is
independent of the mesh type and mesh refinement level. Preliminary results for the
experimental benchmark configuration are shown to see the qualitative behavior of the
elastic beam for a high velocity profile fluid.

Another paper as a chapter, in the textbook titled ”Fundamental Trends in Fluid-Structure
Interaction” is published [111], which centers around the use of Arbitrary Lagrangian
Eulerian formulation in the numerical context. As an application, the influence of en-
dovascular stent implantation onto cerebral aneurysm hydrodynamics is investigated.
This chapter has been co-written by Dr. Jaroslav Hron and Prof. Dr. Stefan Turek.

One paper titled ”Numerical simulation of fluid-structure interaction with application
to aneurysm hemodynamics” is published in international conference proceeding for
”Fluid-Structure Interaction. Theory, Numerics and Applications” [110].

Additionally, we proposed and contributed a numerical benchmark scenario titled ”A
numerical set-up for benchmarking and optimization of fluid-structure interaction”
and provided all the data to validate codes to a Design Test Case Database workshop
http://jucri.jyu.fi initiated by the university of Jyv̈askyl̈a, Finland. Annual
participations have been made.

1.6 Thesis Outline

Each chapter begins with a self introduction. Moreover, thecontents of the thesis are
organized as follows.

Chapter 2 will present the mathematical description and modeling of the multi phys-
ical phenomena depicting the fluid structure interaction (FSI) with all necessary theo-
retical descriptions and mathematical formulas. This chapter will provide a conceptual
background that will enable the reader to understand and appreciate the contributions
described in the remaining chapters. It will also gives a comprehensive overview over
the basic principles of continuum mechanics needed for the mathematical description
of a monolithic-ALE formulation.
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1.6. THESIS OUTLINE

Chapter 3 will discuss and suggest the FEM, time discretization aspects for the sys-
tem of equations arise for the FSI modeling in a monolithic way. Besides suggesting
the methodology of solution, a brief overview of the mathematical preliminaries, sim-
ulation environment, will expound upon implementation of the method. It will also
discuss the FEM discretization related issues comprehensively to the problem and in
general.

Chapter 4 will design the monolithic numerical scheme and implement it to the highly
nonlinear FSI problem in a way that several realistic complicated constitutive relations
will be used. It will explain the aspects of nonlinear as wellas linear solvers in respect
of their efficiency and robustness. It will also provide insight to the iterative solvers
like Krylov-subspace solver and multigrid solver in general as well as specific to the
problem undertaken.

Chapter 5 will be divided into three sections. The section 1 presents the simulation
results to the governing saddle point system for the FSI benchmark settings success-
fully in respect of efficiency and robustness. The second part discusses the experiment
benchmark flow and shows agreeable results. The numerical results and conclusions
for aneurysm hemodynamics applications are presented at the end. The objective of
this chapter is to give a consistent and clear description ofthe methods to make a re-
production of the simulation results possible for the benchmark settings.

Chapter 6 will extend the FSI benchmark scenario given in chapter 5, into the topic of
utmost importance, optimization. It is employed to the optimization of fluid structure
interaction problem, at the moment only for stationary caseand we are in search for
applying for the non-stationary case in the for seen future.This chapter will address
the important issue of optimization in the realm of FSI.

Chapter 7 is the concluding chapter presenting a brief commentary on the impact of the
various contributions and will provide a collective overview of the general advantages
presented by them in the overall studies of the FSI in different techniques. It will give
directions for future research initiatives by highlighting some of the open key issues.
The conclusions will be drawn and recommendations will be made for future work at
the end.
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The very ink with which history is
written is merely fluid prejudice.

Mark Twain

2
Mathematical Modeling

Every physical occurrence can be presented mathematicallyfor further studies. To
start with, this chapter will present mandatory mathematical preliminaries and basic
principles of continuum mechanics needed for the mathematical description of fluid
flows and its interaction with the solid, namely fluid structure interaction, a multi-
physics discipline. The necessary theoretical backgroundthat will enable the reader
to appreciate the work will be presented before hand. The formulation of the physical
problem, small details about Eulerian, Lagrangian descriptions, then the very own used
Arbitrary Lagrangian Eulerian (in short ALE) description is formulated for the FSI
problem, followed by the necessary constitutive equations.

2.1 Overview

In this work, the problem of viscous fluid flow interacting with an elastic body which
is being deformed by the fluid action is considered. Such a problem is encountered in
many real life applications of great importance. Typical examples of this type of prob-
lem are the areas of biomedical fluids which include the influence of hemodynamic
factors in blood vessels, cerebral aneurysm hemodynamics,joint lubrication and de-
formable cartilage and blood flow interaction with elastic veins [2, 129, 46, 119, 120].
A fluid-structure model with the wall modeled as a thin shell was used to model the
left heart ventricle and, similarly, to model the flow in collapsible tubes in [32, 33, 105,
103, 68, 69].

At present there is no analytical result proving well-posedness of the fluid-structure
interaction between a viscous incompressible Newtonian fluid and a hyperelastic ma-
terial or structure problem without assuming additional simplifying assumptions, such
as the smallness of the data, periodic boundary conditions,rigidity in elastic shells or
plates [131, 63, 24, 30, 34]. Thus, the well-posedness of thefluid-structure interaction
of blood flow conveying to (elastic or viscoelastic) arteries is still an open problem
even with these simplifications.

In [61] the well-posedness of an unsteady fluid-structure interaction between a viscous
incompressible Newtonian fluid modelled by the Navier-Stokes equations and a vis-
coelastic structure problem is studied. They consider a structure as a collection of rigid
moving bodies and fluid domain depends on time and is defined bythe position of the
structure.
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CHAPTER 2. MATHEMATICAL MODELING

Figure 2.1: Sketch of the referential domainΩ, initial Ω0 and current stateΩt and
relations between them. The identificationΩ ≡ Ω0 is adopted in this text.

The important basic ideas, kinematic definitions are not invented rather presented in
this chapter, are based on [87, 71, 72, 43, 42, 90, 98]. For basic introduction and com-
plete reference of continuum theory see [64, 121, 67]. Its application in biomechanics
are presented in [51] for example. We will mention in the following sections the basic
continuum theory related to the work presented in this thesis and setup used in this
work.

2.2 Continuum Theory

In continuum mechanics, we are interested in material bodies that can undergo mo-
tions and deformations regardless of mass and force. We use the method of continuum
mechanics as a powerful and effective tool to explain various physical phenomena suc-
cessfully without detailed knowledge of the complexity of their internal (micro) struc-
ture. Of course prediction based on macroscopic studies arenot exact but good enough
for the design of machine elements in engineering. The basicingredients of continuum
mechanics, the study of motion and deformation (kinematics), stress, and fundamental
physical laws governing the motion of a continuum (balance laws) are presented in the
similar order based on [29, 64].

2.2.1 Kinematic Descriptions

Let Ω ⊂ R
3 be a reference (undeformed) configuration of a given body, possibly an

abstract one. LetΩt ⊂ R
3 be a current (deformed) configuration of this body at time

t. Then there is a one-to-one, uniquely invertible, sufficiently smooth1 mappingχΩ of
the reference (undeformed) configurationΩ to the current (deformed) configuration

χΩ : Ω× [0,T] 7→ Ωt ,

1The mappingχΩ continuously differentiable in all variables up to their second derivative included.
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2.2. CONTINUUM THEORY

Figure 2.2: Displacement fieldU andu of a typical particles.

which determines the successive position of the material point, see Figure. 2.6. For our
current purposes it suffices to define one reference configuration for the material point,
so in further we drop the subscriptΩ0 and it will be understood that the mappingχΩ
depends on the choice of the reference configurationΩ which can be fixed in a various
ways. Here we think ofΩ to be the initial (stress-free) configuration. If we denote by X
to identify an arbitrary material point in the reference configurationΩ then the position
of this point at timet is given by

x = χ(X, t) X ∈ Ω,

wherex is the position vector of the point inΩt . The mappingχΩ is called the defor-
mation fromΩ to Ωt . The inverse of this one-to-one, invertible mappingχ is written
as

X = χ−1(x, t) x ∈ Ωt .

Now, the displacements vector fields in the material and spatial descriptions respec-
tively are defined as

U(X, t) = χ(X, t)−X χ(X, t) = U(X, t)+X
�

�

�

�2.1

u(x, t) = x− χ(x, t) χ(x, t) = u(x, t)+x
�

�

�

�2.2

whereU(X, t) represents the displacement field of a material particle andrelates its
positionX in the undeformed configuration to its positionx in the deformed configura-
tion at timet for all particles (illustrated in Figure 2.2), andu(X, t) is the displacement
field. u(x, t) is a function of referential positionx and timet, which characterizes the
material description (Lagrangian form) of the displacement field. These two relations
are related by

U(X, t) = U[(χ−1(X, t), t)] = u(x, t),

15



CHAPTER 2. MATHEMATICAL MODELING

It is worth mentioning that, in solid mechanics the motion and the deformation of a
continuum body are, in general, described in terms of the displacement field. However,
the primary field quantities in fluid mechanics describing the fundamental kinematic
properties are the velocity field and the acceleration field.The velocity and acceleration
fields are defined as the time derivative of the position, keeping X fixed which are given
below respectively:

v =
∂ χ
∂ t

, a=
∂ 2χ
∂ t2 .

Configurations

This study is concerned with the mechanics of a body in which both mass and vol-
ume are continuous (or at least piecewise continuous) functions of continuum particles.
Such a body is called continuum body or just continuum. A continuum geometrical re-
gion can be determined uniquely. The regionΩ0 with fixed particleX corresponds
to fixed (initial) reference at timet = 0. The regionΩ is referred to as (undeformed)
fixed reference configurations of the bodyB. Upper case level is employed for refer-
ence (undeformed/Lagrangian/material) configuration andlower case for current (de-
formed/Eulerian/spatial) configuration. Macroscopic materials are the main interest in
this study.

The Eulerian (or spatial) description is well suited for a problem of fluidflowing
through some spatially fixed region. In such a case the material particles can enter
and leave the region of interest. The fundamental quantity describing the motion is the
velocity vector.

On the other hand theLagrangian (or referential) description is well suited for a prob-
lem of deforming a given body consisting of a fixed set of material particles. In this
case the actual boundary of the body can change its shape. Thefundamental quantity
describing the motion in this case is the vector of displacement from the referential
state. The transformations between material and spatial regions are typically called
push forward and pull back operations. Thepush forward means transformation from
reference to current configuration andpull back known as transformation from current
to reference configuration.

Eulerian Description

Figure 2.3: Eulerian description-1D

In the Eulerian description mesh nodes
are fixed and the continuum moves rel-
ative to the mesh. Material particles
move with continuum to different posi-
tions with velocity over continuum and
occupied different position at different
time but nodes remain at their original
positions, (the 1D situation is sketched
in Figure 2.3). This approach is widely
used in fluid mechanics because it makes
it possible to handle very strong defor-
mation and it can be used for any discretization techniques like finite differences ,
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2.2. CONTINUUM THEORY

finite volume, finite element in space. The structured as wellas unstructured meshes
can be used. However, it is easier to use structured mesh because of fixed nodes and
there is no cost for moving the mesh this makes it very attractive approach. It is mainly
applied to simulate compressible, turbulent fluid flows. It is simple, robust but on the
other hand one need to dealt with imprecise interface and numerical instability for the
connective terms.

Now, let us adopt following useful notations for some derivatives in the Eulerian de-
scription. Any field quantityϕ with values in some vector spaceY (i.e. scalar, vector
or tensor valued) can be expressed as a function of the spatial positionx ∈ R

3

ϕ = ϕ̃(x, t) : Ωt × [0,T] 7→Y.

Then we define following notations for the derivatives of thefield ϕ

∂ϕ
∂ t

:=
∂ ϕ̃
∂ t

,

∇ϕ =
∂ϕ
∂x

:=
∂ ϕ̃
∂x

.

Lagrangian Description

In the Lagrangian description mesh nodes follow the motion of material particles coor-
dinates, i.e. mesh nodes are connected to same material point permanently. It is mainly
used in the structural mechanics. Discretization is done widely by finite element meth-
ods.

Figure 2.4: Lagrangian description-1D

The main application of this descrip-
tion is to study the vehicle crash tests
and metal formation processes. Easy
tracking of free surfaces and interfaces
between different material is possible.
However, Inability to handle strong de-
formations which results in mesh tan-
gling, frequent re-meshing required, ex-
pensive projection of data needed and
loss of accuracy often arise.

In the case of Lagrangian description we
consider the quantityϕ to be defined on the reference configurationΩ, then for any
X ∈ Ω we can express the quantityϕ as

ϕ = ϕ̄(X, t) : Ω× [0,T] 7→Y,

and we define the derivatives of the fieldϕ as

dϕ
dt

:=
∂ ϕ̄
∂ t

,
�

�

�

�2.3

Gradϕ =
∂ϕ
∂X

:=
∂ ϕ̄
∂X

.
�

�

�

�2.4

Since the material particle coincide with the same mesh nodes when motion takes place.
In Lagrangian description there is no convective effects which means material deriva-
tive becomes a simple time derivative

�

�

�

�2.3 . A history of orientation of motion is intact
in this description (see [21] for deeper understandings).
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CHAPTER 2. MATHEMATICAL MODELING

Arbitrary Lagrangian Eulerian Description

The Arbitrary Lagrangian Eulerian description is a more general description that em-
beds the advantages of the two description documented before. In this description,
mesh nodes may be fixed or move in prescribed fashion (with thecontinuum or rela-
tive to continuum) but mesh is allowed to move independently. After each time step the
mesh is updated and, in the spirit of the updated Lagrangian description i.e.Ω = Ω(tn),
the finite element solution is performed using the current ormost recent mesh configu-
ration (see for details [118]).

The Arbitrary Lagrangian Eulerian description was first introduced by Noh [96] ad-
dressing the hydrodynamics problem in the finite differencecontext. The method
was also used by Hert et al. [70], Pracht [102] in the finite difference analysis. It
was later adopted and developed in finite element format for fluid-structure interaction
and for free surface flow problems by Belyteschko [14, 12, 15,17, 16, 13], Donea
[43, 42], Hughes [76, 77], Liu [90, 89] and their companions.More recently, the ALE
concepts was applied to nonlinear solid mechanics and contact problems by Haber
[65], Liu et al. [88] Benson [18], Ghosh and Kikuchi [54] and others. This ap-
proach is well suited for problems with fluid-fluid, fluid-solid, solid-solid interaction.

Figure 2.5: ALE mesh and particle
description-1D

As we know that Eulerian methods work
well for fluid mechanics and Lagrangian
methods are well suited for structural
mechanics and if we consider fluid struc-
ture interaction problem we have solid
boundaries, like moving walls, which
is in contact with the fluid and due to
motion of the fluid it can displace then
Eulerian-Lagrangian formulation is per-
fect. Typical applications are fluid struc-
ture interaction, all kind of problems
with moving boundaries. It combines the
advantages of Eulerian and Lagrangian approaches.

In the case of fluid-structure interaction problem we can still use the Lagrangian de-
scription for the deformation of the solid part. The fluid flownow takes place in a
domain with boundary given by the deformation of the structure which can change in
time and is influenced back by the fluid flow. The mixed ALE description of the fluid
has to be used in this case. The fundamental quantity describing the motion of the fluid
is still the velocity vector but the description is accompanied by a certain displacement
field which describes the change of the fluid domain. This displacement field has no
connection to the fluid velocity field and the purpose of its introduction is to provide a
transformation of the current fluid domain and corresponding governing equations to
some fixed reference domain. This method is sometimes calleda pseudo-solid map-
ping method [115].

In the following, we shall describe the basic mathematical concepts underlying the
ALE description and then provide the relation between all three descriptions.

In the ALE formulation, a third regionΩZ is the reference configuration instead of
Ω or Ωt . The mappingζZ from reference configuration to Eulerian configurationΩt ,
which means the motion of the mesh nodes in the spatial Eulerian region, is represented
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2.2. CONTINUUM THEORY

Ω Ωt

ΩZ

χΩ

ζZζ̄Z

Figure 2.6: Moving computational regionΩZ for ALE and regionsΩt , Ω for Euler
and Lagrangian maps respectively.

by
ζZ : Z × [0,T] 7→ Zt , Z ⊂ ΩZ , Zt ⊂ Ωt ∀t ∈ [0,T],

ζ (Z , t) = (x, t),

and its gradient is

∂ζ (Z , t)
∂ (Z , t)

=

( ∂x
∂Z

vZ

0T 1

)
,

where

vZ =
∂ζZ

∂ t
,

is the corresponding mesh velocity involved in theΩZ region and0T is a null row-
vector. Finally, for the mappinḡζZ from reference configuration to Lagrangian con-
figuration, it is suitable to represent directly its inverseζ̄−1

Z
,

ζ̄Z : Z × [0,T] 7→ Z , Z ⊂ ΩZ , Z ⊂ Ω, ∀t ∈ [0,T],

ζ̄ (Z , t) = (X, t), or (Z , t) = ζ̄−1(X, t),

and its gradient is

∂ ζ̄−1(X, t)
∂ (X, t)

=

( ∂Z

∂X vX
0T 1

)
,

wherevX = ∂ ζ̄Z

∂ t is considered as particle velocity in the reference configuration Ω.
The relation between velocitiesv, vZ andvX can be attained by

χ = ζ ◦ ζ̄−1,
�

�

�

�2.5

differentiating
�

�

�

�2.5 keepingX fixed, it becomes

∂ χ
∂ (X, t)

(X, t) =
∂ζ

∂ (Z , t)
ζ̄−1(X, t)

∂ ζ̄−1

∂ (X, t)
(X, t),
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in matrix form
( ∂x

∂X v
0T 1

)
=

( ∂x
∂Z

vZ

0T 1

)( ∂Z

∂X vX
0T 1

)
,

which furnishes after matrix multiplication,

v = vZ +
∂x

∂Z
·vX ,

with v = ∂ χX
∂ t is the material velocity. This equation can be rewritten as

c := v−vZ =
∂x

∂Z
vX ,

which is the relative velocity of the mesh and material particle, as seen from the spatial

region. Here,vX = ∂x
∂ t

∣∣∣∣
X

, is the particle velocity in the referential domain (as seenfrom

the referential region). Above equation is also known as convective velocity.

1. c = vX only for ∂x
∂Z

= I which results in pure translation of continuum, i.e no
deformation.

2. The Lagrangian and Eulerian descriptions are recovered under the following as-
sumptions:

• The Lagrangian: For̄ζZ = I , reduces toX ≡Z , and material and mesh ve-
locities material velocities coincidevX = v which guaranteed no convective
terms in the conservation laws, i.e.vX = c= 0.

• Eulerian: ForζZ = I , reduces tox ≡ Z , a null mesh velocity is obtained
vX = 0 which means the convective velocityc is identical to material ve-
locity v.

Material Spatial Time Derivative

The fundamental ALE relation between material time derivatives, referential time deriva-
tives and spatial gradient is finally

d f
dt

=
∂ f
∂ t

∣∣∣∣
X
=

∂ f
∂ t

∣∣∣∣
x
+v ·∇ f =

∂ f
∂ t

∣∣∣∣
Z

+c·∇ f ,

which can be interpreted in the usual way: the variation of the physical quantity for
a given particle X is the local variation (i.e., with respectto the referenceZ ) plus a
convective term taking into account the relative motion between the material and the
reference system. This equation is equivalent to material derivative equivalent to spatial
derivative but in the ALE formulation; that is, when(Z , t) is the reference [44].
Material acceleration:

a=
dv
dt

=
∂v
∂ t

∣∣∣∣
X
=

∂v
∂ t

∣∣∣∣
x
+v ·∇v =

∂v
∂ t

∣∣∣∣
Z

+c·∇v.

Next, the mechanical fields describing the deformation and strain are defined as follows
in the subsequent subsection.
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2.2. CONTINUUM THEORY

2.2.2 Deformation and Strain

A continuum body which is able to change its shape under the effect of forces ap-
plied (stress) is said to be deformable and the deformation gradient with respect to
the reference configuration is defined as the spatial derivative of the one-to-one, twice
continuously differentiable mapχ

F =
∂ χ
∂X

= Gradx =




∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3


 .

Local invertibility of χ needs thatF be non-singular, which means detF> 0. Similarly,
inversedeformation gradient is

F−1 =
∂ χ−1

∂x
= ∇X =




∂X1
∂x1

∂X1
∂x2

∂X1
∂x3

∂X2
∂x1

∂X2
∂x2

∂X2
∂x3

∂X3
∂x1

∂X3
∂x2

∂X3
∂x3


 ,

where Grad and∇ are the gradient operator inΩ andΩt , respectively. The equation

dx = FdX,
�

�

�

�2.6

furnishes a measure of how much the infinitesimal line element dX of material at the
point X transform linearly under the deformation into the line element dx at x, addi-
tionally angle and length might have changed. The determinant of F is denoted asJ,
i.e.,

J = detF,
�

�

�

�2.7

called the Jacobian of the deformation, which is everywherestrictly positive, so that
deformation mapping is orientation preserving asF is invertible. We then have

0< J < ∞.

The relation between the deformation gradient and displacement gradient from equa-
tions

�

�

�

�2.1 ,
�

�

�

�2.2 , are

HX = F− I and Hx = I −F−1

whereHX = Gradu andHx = ∇u are the second order displacement gradient tensors
in the material and spatial descriptions respectively.

The relation between thevolume elementdV of the reference configurationΩ to the
volume elementdvof the current configuration is related by

dv= JdV.
�

�

�

�2.8

The deformation is called isochoric or volume preserving for

J = detF = 1
�

�

�

�2.9
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It is mathematical requirement thatJ 6= 0, andJ > 0 is physical requirement as vol-
ume can not have negative value. A material which satisfies

�

�

�

�2.9 for all deformation
gradientsF is said to be incompressible.

Now, we establish the relation between the elements ofsurface areaand volume trans-
form in the material and spatial region. LetdA ≡ NdAbe a vector surface area element
on ∂Ω, whereN is the outward unit normal to the surface, andda ≡ nda the corre-
sponding area element on∂Ωt . Then, the area elements are related by using Nanson’s
formula as

nda= JF−TNdA, or
∫

Ωt

nda=
∫

Ω
JF−TNdA,

�

�

�

�2.10

whereF−T = (F−1)T andT is for transpose. Here,n is not in parallel with the same
line element of material likeN. Recalling the definition of the cofactor matrix of an
invertible matrixA

cofA = (detA)A−T ,
�

�

�

�2.11

it is possible to state Nanson’s theorems on normals:

Theorem 1 Nanson’s formula: From the previous definitions

nd(∂Ωt) = cofFχNd(∂Ω).
�

�

�

�2.12

Proof 1 A proof using vector calculus tools can be found in [98], p. 88. Let us consider
the infinitesimal oriented surfaceNd(∂Ω) = dXa×dXb (dXa and dXb lie on the tan-
gent plane to the surface∂Ω, with outward normalN). The inner product dX ·N(∂Ω),
represents the measure of the volume extruded from d(∂Ω) along the infinitesimal in-
crement dX. The push forward through the mapχ of such volume transforms according

to
�

�

�

�2.8 :

dx ·nd(∂Ωt) = Jχ(dX ·Nd(∂Ω)),
�

�

�

�2.13

wherend(∂Ωt) = dxa×dxb, dxa = FχXa, dxb = FχXb, and dx = FχX. Hence

dx ·nd(∂Ωt) =Jχ(dX ·Nd(∂Ω))

=JχFχ
−1dx ·Nd(∂Ω)

=dx · (JχFχ
−TN)d(∂Ω)

=dx · (cofFχN)d(∂Ω).

�

�

�

�2.14

The result in
�

�

�

�2.14 must hold for any vector dx. Since the inner product is a linear

operator on a finite dimensional vector space,
�

�

�

�2.14 yields
�

�

�

�2.12 #.

And also the Piola identity will be used

Theorem 2 Piola Identity

0=Div(JF−T)

=Div(cofF),

�

�

�

�2.15
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2.2. CONTINUUM THEORY

Proof 2 The Piola identity can be proved in several ways, all very instructive on the
type of manipulations that are commonly used in continuum mechanics. One possibil-
ity, presented next, is to apply the Gauss divergence theorem to an arbitrary constant
vector fieldf and use Nanson’s formula

�

�

�

�2.12 . Letωx be an open subset ofΩt , thus

0=
∫

ωx⊂Ωt

div fdv

=
∫

∂ωx

f ·nda by Gauss divergence theorem

=
∫

∂ωX=χ−1(∂ωx)
f · (cofFχN)dA by Nanson’s formula

=
∫

∂ωX

(JχFχ
−1f) ·NdA by

�

�

�

�2.7 and
�

�

�

�2.11

=

∫

ωX

Div(JχFχ
−1f)dV by Gauss divergence theorem

�

�

�

�2.16

where we recall thatf is constant. Hence,
�

�

�

�2.16 can be rewritten as

0=
∫

ωX

Div(JχFχ
−1f)dV = f ·

(∫

ωX

Div(cofFχ)dV

) �

�

�

�2.17

Recalling thatf is arbitrary andχ is smooth, and using the localization theorem in the

limit of a domainωX ,
�

�

�

�2.17 implies

0=Div(JF−T)

=Div(cofF),

�

�

�

�2.18

which concludes the proof #.

Remark 2.19 The results just proved in theorem 1 and 2 are very useful whenchang-
ing coordinates of integral formulations involving the divergence of a tensor or vector
quantity from the current configuration to the corresponding configuration and vice
versa.

After manipulating with
�

�

�

�2.6 it follows how length elements changes

|dx|2 = (FM) · (FM) |dX|2 = (FTFM) ·M |dX|2 ,

whereM is a unit vector atX in the direction ofdX. Now, the ratio|dx|/dX of the
length of a line element in the deformed and reference configurations takes the form

|dx|
|dX| = |FM |= [M · (FTFM)]1/2 ≡ λ (M).

�

�

�

�2.20

Equation
�

�

�

�2.20 express the stretchλ (M) atX in the direction ofdX. It is evident that
it is confined to inequalities

0< λ (M)< ∞.

If there is no stretch in the directionM theλ (M) = 1 which follows

(FTFM) ·M = 1.
�

�

�

�2.21
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CHAPTER 2. MATHEMATICAL MODELING

Equation
�

�

�

�2.21 holds for all M in case there is no stretch in any direction which
indicates that no strain occurs atX. It follows thatFTF = I , whereI is identity tensor.
An appropriate strain measure tensor as a consequence isFTF− I , since this tensor
vanishes for unstrained material. This leads to another strain measure, the so called
Green-St.Venant strain tensor

E =
1
2
(FTF− I),

�

�

�

�2.22

where 1/2 is a normalization factor.

Along with F and E it is useful to consider other related tensors. Specifically, we
introduce the symmetric tensors

C = FTF B = FFT ,

which are calledright and left Cauchy-Green strain (deformation) tensors in re-
spectively. Therigid body deformation is represented as

χ(X) = d+QX ∀X ⊂ Ω

whered is some translation vector andQ is the rotation tensor. For body to be rigid it
means there is no stretches, no changes in angle, no change inshape. Then the measure
of strain i.e. deformation gradientF = Q holds, which leads to

C = FTF = I

In short, a deformation mapχ describes a rigid body motion, if and only if its right
Cauchy-Green strain tensor C is the identity matrix. From a mechanical point of view
in

�

�

�

�2.22 (the so called Green-St Vennant strain tensor) is the natural strain measure
since it is zero in case of a rigid body motion. This is also good estimate to measure
deformation. The Green-St.Venant strain tensorE can be written in terms of displace-
ments

E =
1
2
(Gradu+GraduT +GraduTGradu)

2.2.3 Stress Tensors and Equilibrium Equation

Axiom 1 Cauchy stress principle2: The forces acting on the a generic material volume
V of body inΩ can be divided into two main categories:

1. Body force, which reach into V from a distance, an example of such a body force
is gravity.

2. Contact force, which is due to the contact of the surrounding surface of V with
the rest of the body. Contact forces or stress is due to the mutual interaction of
the particle.

The principle then states that the action exerted at a point Pand due to the material
outside S is represented by a vectort, called stress vector, depending on P, S andt,
where S is any closed surface withinΩ and let P is a point on S.

2The Cauchy stress principle formulated by A. L . Cauchy in 1827
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2.2. CONTINUUM THEORY

The stress vectort has dimension of force per unit surface. Thus, if Sa denotes any
surface withinΩ , we have

Total force exerted by the body across Sa =
∫

Sa

tdSa

Remark 2.23 Materials for which Cauchy’s principle holds are also called non-polar
materials (i.e., materials which are unable to sustain local torques).

Remark 2.24 Cauchy’s principle does not specify the way in which the stress vector
may depend on the surface.

A fundamental result due to W. Noll states thatthe stress vector at a point P of a surface
S depends on the surface S, only through the exterior unit normal vectorn to S at P.
Therefore,

t =t(x, t;n), or

=t(n) where x is the position occupied by P at time t

Theorem 3 Cauchy Theorem. Fluid and continuum mechanics are based on three
fundamental assumptions concerning the interior forces:

1. interior forces act via the surface of a volume V(t),

2. interior forces only depend on the normal direction of thesurface of the volume,

3. interior forces are additive and continuous.

Due to the Cauchy theorem these assumptions imply that the interior forces acting on
a volume V(t) must be of the form

∫

∂V
σndS,

Here, as usual,∂V denotes the boundary of the volume V(t), n is the unit outward
normal, and dS denotes the surface element. Theintegral theorem of Gaussthen
yields

∫

∂V
σndS=

∫

V
divσdv.

The surface force per unit area (or stress vector) on the vector area elementda is de-
noted byt. It depends onn followed by the formula

t = σTn,

whereσ is called the second-order Cauchy stress tensor which is independent ofn.

t(ei) = t(ei)
j ej = σi j ej ,
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CHAPTER 2. MATHEMATICAL MODELING

in the matrix form

σ = σi j =

[
t(e1)

t(e2)

]
=




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33




≡




σxx σxy σxz

σyx σyy σyz

σzx σzy σzz




≡




σx τxy τxz

τyx σy τyz

τzx τzy σz


 ,

whereσx, σy and σz are normal stresses, andτxyτxz, τyx, τyz, τzx and σzy are shear
stresses. For the 2D computations we restricted to plain strain which meansτxz≡ τyz≡
τzx≡ τzy≡ 0 andσz = 1, [71]. Making use of

�

�

�

�2.10 the force ondamay be written as

tda= P̃TNdA

where the nominal tensorP̃ is related toσ by

P̃= JF−1σ

Thefirst Piola-Kirchhoff tensor is denoted byP= P̃T , see [64] for more detail. Un-
like the Cauchy stress tensorσ , the first Piola-Kirchhoff tensorP is non-symmetric.
Let b be a body force per unit mass. Then, in integral form, the equilibrium equation
for the body may be written with reference toΩ or Ωt as follows

∫

Ωt

ρtbdv+
∫

∂Ωt

σTnda=
∫

Ω
ρbdV+

∫

∂Ω
PNdA= 0,

in which it is natural to introduce the symmetricsecond Piola-Kirchhoff tensor S

S= P̃F−T = JF−1σF−T .

Frame Indifference

Quantities which are independent of the observer , i.e., with respect to different frames
is called frame indifference. Examples of this are mass density, temperature, heat flux
vector, Cauchy stress tensor, and counter examples are velocity and acceleration fields
which are not frame indifference.
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Useful relations Three descriptions (Eulerian, Lagrangian, ALE) can be related to
each other through following relations

ϕ̄(X, t) =ϕ̃(χ(X, t), t),
�

�

�

�2.25

dϕ
dt

=
∂ϕ
∂ t

+(∇ϕ)v,
�

�

�

�2.26

Gradϕ =(∇ϕ)F,
�

�

�

�2.27
∫

Ωt

ϕdv=
∫

Ω
ϕJdV

�

�

�

�2.28

dF
dt

=Gradv,
�

�

�

�2.29

∂J
∂F

=JF−T ,
�

�

�

�2.30

dJ
dt

=Jdivv.
�

�

�

�2.31

2.3 Balance Laws

In this section we will formulate the balance relations for mass and momentum in three
forms: the Eulerian, the Lagrangian and the arbitrary Eulerian-Lagrangian (ALE) de-
scription. The balance relations for energy and entropy areformulated in the Eulerian
description which is sufficient for our purpose since they are used only in the specifi-
cation of the constitutive relations in section 2.5.2.

For the formulation of the balance laws we will need to express a time derivatives
of some integrals, using the Reynolds Transport Theorem (for short RTT) and Gauss
divergence theorem. The following series of equalities obtained by using the previously
stated relations will be useful

d
dt

∫

Ωt

ϕdv=
d
dt

∫

Ω
ϕJdV=

∫

Ω

d
dt

(ϕJ)dV

=
∫

Ωt

(
dϕ
dt

+ϕ divv
)

dv

=
∫

Ωt

(
∂ϕ
∂ t

+div(ϕv)
)

dv RTT

=

∫

Ωt

∂ϕ
∂ t

dv+
∫

∂Ωt

ϕv ·nda Gauss theorem

=
∂
∂ t

∫

Ωt

ϕdv+
∫

∂Ωt

ϕv ·nda.

�

�

�

�2.32

Theorem 4 Reynolds Transport Theorem: Consider an arbitrary volume V⊂ Ωt . The
following transport theorem holds for all differentiable mappingϕ

d
dt

∫

Ωt

ϕdv=
∫

Ωt

(
∂ϕ
∂ t

+div(ϕv)
)

dv RTT
�

�

�

�2.33
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Theorem 5 Gauss Divergence Theorem: TheGauss divergence theoremstates that
for all differentiable mappingϕ

∫

Ωt

div(ϕv)dv=
∫

∂Ωt

ϕv ·nda Gauss theorem
�

�

�

�2.34

2.3.1 Balance of Mass

The massm of a fixed regionP ⊂ R
3 in space with the boundary∂P of bodyB is

m(p) =
∫

P

ρ(x, t)dv, P ⊂ Ωt for all t ∈ [0,T],

whereρ(x, t) is the Eulerian material density. The arbitrary volumeP is the material
control volume, which is independent of time. The fundamental principle of conserva-
tion of mass states that the continuum body does not change its position and shape in
time. Then the balance of mass in the regionP can be written as

d
dt

∫

P

ρ(x, t)dv= 0, for all t ∈ [0,T],
�

�

�

�2.35

equation
�

�

�

�2.35 is also known as conservation of mass in integral form. Making use of

the Reynolds transport theorem
�

�

�

�2.33 it becomes

∂
∂ t

∫

P

ρdv+
∫

∂P

ρv ·nPda= 0,

with the boundary∂P and unit outward normal vectornP . After applying the Gauss
divergence theorem the principle of conservation of mass with respect to the spatial
(Eulerian) representation can be written as

∫

P

[
∂ρ
∂ t

+div(ρv)]dv= 0, for all t ∈ [0,T],

which is global (integral) form of the conservation of mass.If all the fields are suffi-
ciently smooth this equation can be written in local (differential) form3 with respect to
the current configuration as

∂ρ
∂ t

+div(ρv) = 0.
�

�

�

�2.36

It will be useful to derive the mass balance equation from theLagrangian point of
view. Let Q ⊂ Ω be a fixed set of particles. Then the relation between the densities
in referenceΩ and current configurationΩt is established, which is given byρtJ = ρ0.

3An equation which holds at every point of continuum and for all times, for example eq
�

�

�

�2.36 , is
referred to as the local (or differential) form of that equation (local means point wise). An equation in which
physical quantities over a certain region of space are integrated is referred to as the global (or integral) form

of that equation; see for example equation
�

�

�

�2.37 . Consequently we may say that
�

�

�

�2.37 is global form

and
�

�

�

�2.36 is the local form of the conservative laws of mass. In general local forms are ideally suited for
approximation techniques such as the finite difference methodwhile global forms are best to start with when
the finite element method is employed.
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Let χ(Q, t)⊂ Ωt is a region occupied by these particles at the timet, and the balance
of mass can be expressed as

d
dt

∫

χ(Q,t)
ρdv= 0,

�

�

�

�2.37

which in local form with respect to the reference configuration can be written as

d
dt
(ρJ) = 0.

�

�

�

�2.38

In the case of arbitrary Lagrangian-Eulerian description we take a regionZ ∈ R
3

which is itself moving independently of the motion of the body. Let the motion of
the control regionZ be described by a given mapping

ζZ : Z × [0,T] 7→ Zt , Zt ⊂ Ωt ∀t ∈ [0,T],

with the corresponding velocityvZ = ∂ζZ

∂ t , deformation gradientFZ = ∂ζZ

∂X and its
determinantJZ = detFZ . The balance equation can be written as

∂
∂ t

∫

Zt

ρdv+
∫

∂Zt

ρ(v−vZ ) ·nZt da= 0,

this can be viewed as Eulerian description with moving spatial coordinate system or
as a grid deformation in the context of the finite element method. In order to obtain
a local form of the balance relation we need to transform the integration to the fixed
spatial regionZ

∂
∂ t

∫

Z

ρJZ dv+
∫

∂Z

ρ(v−vZ ) ·F−T
Z

nZ JZ da= 0,
�

�

�

�2.39

then the local form is

∂
∂ t

(ρJZ )+div
(
ρJZ (v−vZ )F−T

Z

)
= 0.

�

�

�

�2.40

The two previous special formulations can be now recovered.If the regionZ is not
moving in space, i.e.Z = Zt ,∀t ∈ [0,T], thenζZ is the identity mapping,FZ =

I ,JZ = 1,vZ = 0 and
�

�

�

�2.40 reduces to
�

�

�

�2.36 . While if the regionZ moves exactly

with the material, i.e.ζZ = χ |Z thenFZ = F,JZ = J,vZ = v and
�

�

�

�2.40 reduces to
�

�

�

�2.38 .

2.3.2 Balance of Linear Momentum

The balance of linear momentum is postulated in a similar way. Let σ denote the
Cauchy stress tensor field, representing the surface forcesper unit area,f be the body
forces acting on the material per its unit mass. Then the balance of linear momentum
in the Eulerian description equals

∂
∂ t

∫

P

ρvdv+
∫

∂P

ρv⊗vnPda=
∫

∂P

σTnPda+
∫

P

ρ fdv.
�

�

�

�2.41
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The local form of the linear momentum balance is

∂ρv
∂ t

+div(ρv⊗v) = divσT +ρ f,
�

�

�

�2.42

wherev⊗v = (viv j)1≤i, j≤3, or making use of
�

�

�

�2.36 we arrive at

ρ
∂v
∂ t

+ρ(∇v)v = divσT +ρ f.

From the Lagrangian point of view the momentum balance relation is

d
dt

∫

χ(Q,t)
ρvdv=

∫

∂ χ(Q,t)
σTnχ(Q,t)da+

∫

χ(Q,t)
ρ fdv.

Let us denote byP= JσTF−T the first Piola-Kirchhoff stress tensor [64], then the local
form of the momentum balance is

d
dt

(ρJv) = Div P+ρJf,
�

�

�

�2.43

or using
�

�

�

�2.38 we can write

ρJ
dv
dt

= Div P+ρJf.

In the arbitrary Lagrangian-Eulerian formulation we obtain

∂
∂ t

∫

Zt

ρvdv+
∫

∂Zt

ρv⊗ (v−vZ )nZt da=
∫

∂Zt

σTnZt da+
∫

Zt

ρ fdv,

which in the local form gives

∂ρJZ v
∂ t

+div
(
ρJZ v⊗ (v−vZ )F−T

Z

)
= div

(
JZ σTF−T

Z

)
+ρJZ f,

�

�

�

�2.44

or with the use of
�

�

�

�2.40 we can write

ρJZ

∂v
∂ t

+ρJZ (∇v)F−T
Z

(v−vZ ) = div
(
JZ σTF−T

Z

)
+ρJZ f.

2.3.3 Balance of Angular Momentum

For the angular momentum balance we assume that there are no external or internal
sources of angular momentum, then it follows that the Cauchystress tensor has to be
symmetric [121], i.e.

σ = σT .
�

�

�

�2.45
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2.3.4 Balance of Energy

Denoting the total energy per mass asE = e+ 1
2 |v|

2, whereebe the internal energy per
its unit mass,q be the heat flux per unit area,r be the heat source per unit mass. Then,
the balance of energy is stated as

∂
∂ t

∫

P

ρEdv+
∫

∂P

ρEv ·nda=
∫

∂P

(σv−q) ·nda

+
∫

P

(ρ f ·v+ρr)dv.

�

�

�

�2.46

Making use of the mass and momentum balance equations
�

�

�

�2.36 and
�

�

�

�2.42 in
�

�

�

�2.46 ,
this gives the equation for the conservation of energy in local form as

∂ρe
∂ t

+div(ρev) = tr(σ∇v)−divq+ρr.
�

�

�

�2.47

2.3.5 Balance of Entropy

Finally, the balance of entropy is introduced. Letη be the entropy per its unit mass,T
be the temperature ands be the entropy production, then the entropy balance is

∂
∂ t

∫

P

ρηdv+
∫

∂P

ρηv ·nda=−
∫

∂P

q
T
·nda+

∫

P

(ρr
T

+s
)

dv,
�

�

�

�2.48

or in local form
∂ρη
∂ t

+div(ρηv) =−div
q
T
+

ρr
T

+s.
�

�

�

�2.49

The second law of thermodynamics says that the total entropyproduction is non-
negative, implying

s≥ 0.
�

�

�

�2.50

We introduce the Helmholtz potentialΨ = e−Tη , then using
�

�

�

�2.47 and
�

�

�

�2.50 we
obtain the entropy inequality in the following form

η
(

∂ρT
∂ t

+div(ρTv)
)
+

∂ρΨ
∂ t

+div(ρΨv)+
q
T
·∇T − tr(σ∇v)≤ 0.

�

�

�

�2.51

This inequality is used to narrow the class of constitutive relations for the stressesσ in
the section 2.5.2.

2.4 Fluid Structure Interaction problem formula-
tion

Here we make few assumptions that will allow us to deal the problem more appropri-
ately. We will use the superscriptss and f to denote the quantities connected with the
solid and fluid. Let us assume that the both materials are incompressible, which is well
accepted approximation in biomechanics and denote the constant densities of each ma-
terial by ρ f ,ρs. Further we assume all the processes to be isothermal, meaning that
the temperatureT is constant, which is also well accepted approximation for certain
biomechanical processes.
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Figure 2.7: Undeformed (original) and deformed (current) configurations.

2.4.1 Monolithic Description

We denote byΩ f
t the domain occupied by the fluid andΩs

t by the solid at timet ∈ [0,T].
Let Γ0

t = Ω̄ f
t ∩ Ω̄s

t be the part of the boundary where the solid interacts with thefluid
and Γi

t , i = 1,2,3 be the remaining external boundaries of the solid and the fluid as
depicted in Figure. 2.7.

Let the deformation of the solid part be described by the mapping χs

χs : Ωs× [0,T] 7→ Ωs
t ,

with the corresponding displacementus and the velocityvs given by

us(X, t) = χs(X, t)−X,
�

�

�

�2.52

vs(X, t) =
∂ χs

∂ t
(X, t).

�

�

�

�2.53

The fluid flow is described by the velocity fieldv f defined on the fluid domainΩ f
t

v f (x, t) : Ω f
t × [0,T] 7→ R

3.

Further we define the auxiliary mapping, denoted byζ f , to describe the change of the
fluid domain and corresponding displacementu f by

ζ f : Ω f × [0,T] 7→ Ω f
t ,

�

�

�

�2.54

u f (X, t) = ζ f (X, t)−X.
�

�

�

�2.55

We require that the mappingζ f is sufficiently smooth, one to one and has to satisfy

ζ f (X, t) = χs(X, t), ∀(X, t) ∈ Γ0× [0,T].
�

�

�

�2.56

In the context of the finite element method this will describethe artificial mesh de-
formation inside the fluid region and it will be constructed as a solution to a suitable
boundary value problem with

�

�

�

�2.56 as the boundary condition.

The momentum and mass balance of the fluid in the time dependent fluid domain ac-
cording to

�

�

�

�2.40 and
�

�

�

�2.44 are

ρ f ∂v f

∂ t
+ρ f (∇v f )(v f − ∂u f

∂ t
) = divσ f in Ω f

t ,
�

�

�

�2.57

divv f = 0 in Ω f
t ,

�

�

�

�2.58
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together with the momentum
�

�

�

�2.42 and mass
�

�

�

�2.36 balance of the solid in the solid
domain

ρs∂vs

∂ t
+ρs(∇vs)vs = divσs in Ωs

t ,
�

�

�

�2.59

divvs = 0 in Ωs
t .

�

�

�

�2.60

The interaction is due to the exchange of momentum through the common part of the
boundaryΓ0

t . On this part we require that the forces are in balance, i.e.

σ f n = σsn on Γ0
t .

Further, we prescribe the no slip boundary condition for thefluid on the interface. This
is expressed by

v f = vs on Γ0
t .

�

�

�

�2.61

The remaining external boundary conditions can be of the following kind. A pressure
boundary condition on the fluid inflow and outflow partΓ1

t

σ f n = pBn on Γ1
t ,

with pB given value. Alternatively we can prescribe a Dirichlet type boundary condi-
tion on the inflow or outflow partΓ1

t

v f = vB on Γ1
t ,

wherevB is given. The Dirichlet boundary condition is prescribed for the solid dis-
placement at the partΓ2

t

us = 0 on Γ2
t ,

and the stress free boundary condition for the solid is applied at the partΓ3
t

σsn = 0 on Γ3
t .

We introduce the domainΩ = Ω f ∪Ωs, whereΩ f ,Ωs are the domains occupied by the
fluid and solid in the initial undeformed state, and two fieldsdefined on this domain as

u : Ω× [0,T]→ R
3,

v : Ω× [0,T]→ R
3,

such that the fieldv represents the velocity at the given point andu the displacement
on the solid part and the artificial displacement in the fluid part, taking care of the fact
that the fluid domain is changing with time,

v =

{
vs on Ωs,

v f on Ω f ,

u =

{
us on Ωs,

u f on Ω f .
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Due to the conditions
�

�

�

�2.56 and
�

�

�

�2.61 both fields are continuous across the inter-
faceΓ0

t and we can define global quantities onΩ as the deformation gradient and its
determinant

F =I +Gradu,

J =detF.

It remains to prescribe some relation for the mappingζ f . In terms of the correspond-
ing displacementu f we formulate some simple relations together with the Dirichlet
boundary conditions required by

�

�

�

�2.56 , for example

∂u
∂ t

=∆u ”mesh moving operator” inΩ f ,

u =us on Γ0,

u =0 on Γ1.

Using this notation the solid balance laws
�

�

�

�2.59 and
�

�

�

�2.60 can be expressed in the

Lagrangian formulation with the initial configurationΩs as reference, cf.
�

�

�

�2.43 ,

Jρsdv
dt

= Div Ps in Ωs,
�

�

�

�2.62

J = 1 in Ωs.
�

�

�

�2.63

The fluid equations
�

�

�

�2.57 and
�

�

�

�2.58 are already expressed in the arbitrary Lagrangian-

Eulerian formulation with respect to the time dependent region Ω f
t , now we transform

the equations to the fixed initial regionΩ f by the mappingζ f defined by
�

�

�

�2.54

ρ f ∂v
∂ t

+ρ f (Gradv)F−1(v− ∂u
∂ t

) = J−1Div(Jσ f F−T) in Ω f ,
�

�

�

�2.64

Div(JvF−T) = 0 in Ω f .
�

�

�

�2.65

The complete set of the equations can be written as

∂u
∂ t

=

{
v in Ωs,

∆u in Ω f ,

�

�

�

�2.66

∂v
∂ t

=

{
1

Jρs Div Ps in Ωs,

−(Gradv)F−1(v− ∂u
∂ t )+

1
Jρ f Div(Jσ f F−T) in Ω f ,

�

�

�

�2.67

0=

{
J−1 in Ωs,

Div(JvF−T) in Ω f ,

�

�

�

�2.68

2.4.2 Initial Condition

For time-dependent flows, a set of initial conditions at timet = 0 is required. We need
to prescribe an initial velocity field, i.e.

u(x,0) = u0(x)
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2.5. CONSTITUTIVE EQUATIONS

In general, we suppose that the elastic stresses in the fluid are zero at timet = 0, i.e.

σ(0) = 0.

That means, we assume that the elastic stresses are completely relaxed at the beginning.

2.4.3 Interface Condition

The interaction is due to the exchange of momentum through the common part of the
boundaryΓ0

t . The boundary conditions imposed on the blood-vessel wall interface are

σ f n= σsn, v f = vs, on Γ0
t ,

�

�

�

�2.69

wheren is a unit normal vector to the interfaceΓ0
t . This means the no-slip condition

for the flow and that the forces are in balance on the interfaceΓ0
t .

2.4.4 Boundary Conditions

Boundary conditions usually come in two distinct variants,Dirichlet conditions which
fixes the value of a quantity, and Neumann, also called natural, boundary conditions
which specify the in- or out-flux. When modeling fluid flow, Dirichlet conditions
uniquely set the velocities on a boundary. That is

u =0, v = vB on Γ1,

u =0 on Γ2,

σsn =0 on Γ3.

Usually, we set Dirichlet boundary conditions for the velocities at in flow. We have to
be aware that it is not possible to simply prescribe arbitrary stress values at in flow, be-
cause they have to be consistent with the constitutive equations. Therefore, we usually
assume that the elastic stresses are relaxed at in flow.

2.5 Constitutive Equations

Balance laws derived in the previous sections are more general and applicable to all
possible FSI cases. For the case of deformable bodies the equations mentioned are
certainly not sufficient on their own to determine the material response and are con-
sequently incomplete. From a mathematical point of view they represent an undeter-
mined system. Hence, we must establish additional equations in the form of appropri-
ate constitutive laws which are furnished to specify the ideal real material in question.
Constitutive relations relate forces to displacements i.estress to strain (deformation).
Constitutive equations are material dependent.

The concept of constitutive theory is to develop mathematical models representing the
real behavior of physical quantity fluid (such as water, oil,air etc.) or solid (such as
rubber, metal, ceramics, wood, living tissues etc.).

In this thesis, attempt is not made to conduct a comprehensive review of the large
number constitutive theory, rather, only related models are discussed with possible
future extensions.
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CHAPTER 2. MATHEMATICAL MODELING

Constitutive equations for fluid and solid are presented in the following subsections, the
properties and restrictions accompanying expressed mathematically. However, BVP
which will serve as basis for the discretization is documented in the next chapter.

2.5.1 Constitutive Equations for Fluid

As mentioned before the fluid dynamics is a part of an FSI problem. To explain the
domain deformation, a moving mesh consideration within thesolution of the fluid dy-
namics is required. In order to manage the dynamics of the fluid domain, moving
meshes have to be considered.

The incompressible Newtonian fluids (gases, water, glycerin, and most liquids of low
molecular weight under ordinary condition of temperature and pressure), which will
be used in this study, are described by the Navier-Stokes equations derived in the ALE
framework:

ρ f (
∂v f

∂ t
+v f ·∇v f )−divσ f = 0, divv f = 0 in Ω f

t ,
�

�

�

�2.70

here,ρ f denotes the density of the fluid andσ f denotes the stress tensor. For in-
compressible Newtonian fluids the densityρ f of the fluid will be considered to be a
constant in space and time which means velocity is divergence free, i.e. divv f = 0, and
the stress tensorσ f is defined by

σ f =−pf I +T,
�

�

�

�2.71

wherepf is the Lagrange multiplier corresponding to the incompressibility constraint
in

�

�

�

�2.70 , I is the identity matrix,−pf I is also called the inviscid reactive component
of Cauchy stress tensor. Here,T is the active viscous component of the Cauchy stress
tensor, which is a function of deformation gradient of velocity, namely,

T = 2µ f D,

whereµ f is the dynamic viscosity of the fluid and

D =
1
2
(∇v f +(∇v f )T),

is the rate of strain (deformation) tensor. In the following, an overview of what is used
in different applications is given which could also be easily implemented into the code.

The Generalized Newtonian Fluid

A fluid for which T is independent of the history of deformation is known as the Gen-
eralized Newtonian Fluid. To derive a model, which is independent of the coordinate
system, we write the viscosityη as a function of the invariants ofD. We use the
symmetry of the rate of deformation tensor by noticing that every symmetric second
order tensor can be diagonalized and its eigenvalues are guaranteed to be real. The
three principal invariants(ID, II D, III D) of D are the coefficients of the characteristic
polynomial

det(D−λ I) =−λ 3+ IDλ 2− II Dλ + III D = 0,

36



2.5. CONSTITUTIVE EQUATIONS

where they can be expressed in terms of eigenvalues,λ1, λ2 andλ3 of the matrixD.

ID = tr(D) = λ1+λ2+λ3

II D =
1
2
((trD)2− tr(D)2) = tr(cof(D)) = λ1λ2+λ2λ3+λ3λ1,

= det(D) tr(D−T) if D is invertible

III D = detD = λ1λ2λ3

We obtain the following relation between the extra stress tensor and the rate of defor-
mation tensor

T = 2η(ID, II D, III D)D,

• ID = 0, for incompressible fluids. ThenIID ≤ 0, |III D| ≤ 2
3
√

3
(−IID)

3/2.

• III D = 0 for simple shear flow.

The incompressible generalized Newtonian fluid takes the form

T = 2η(II D)D,

whereη(·) is the (nonlinear) viscosity which may depend on the second invariant of
the deformation rate tensorII D.

This model is only suitable for the description of flows, where elastic effects are neg-
ligible and the shear-thinning effect has a strong influenceon the flow behavior. Its
principal usefulness is for calculating flow rates and shearing forces in steady-state
simple shear flow such as tube flow, steady cone and plate flow and steady flow be-
tween concentric cylinders.

The most commonly prototypical generalized Newtonian fluids models considered
are Power-law fluid model, Prandtle-Eyring model, Powell-Erying model, Cross fluid
model, Carreau fluid model, Yasuda Model and Second order fluid model. Then, de-
pending on the chosen viscosity functionη(·) the following prototypical models are
considered or could be considered:

Power-law Model

The most widely used form of the general viscous constitutive relation is thepower
law model, because of the number of exact solutions which can be obtained for this
model which is

η(γ̇) = Kγ̇
n−1

2 ,
�

�

�

�2.72

whereη = η(γ̇) = η(II D) is defined as whereK is called the consistency andn is the
power law index, both are positive material parameters.

As well as the Newtonian fluid, the generalized Newtonian fluid has zero first and sec-
ond normal stress differences, but it shows shear-thinningfor n< 1 or shear thickening
for n > 1. The viscosity in the limit of vanishinġγ and in the limit of γ̇ tending to
infinity are,
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CHAPTER 2. MATHEMATICAL MODELING

Figure 2.8: Left: Power Law Fluids forn ≤ 1 (shear thinning or Newtonian), Right:
Power Law Fluids forn≥ 1 (shear thickening or Newtonian).

• n< 1 : limγ̇→0 η(γ̇) = ∞, lim γ̇→∞ η(γ̇) = 0,

• n> 1 : limγ̇→0 η(γ̇) = 0, lim γ̇→∞ η(γ̇) = ∞,

The unboundedness of the viscosity function and the lack of anon-zero viscosity at
zero shear rate does not match experimental results for realfluids and so limits the
applicability of the Power-Law model. The power law model isacceptably applied to
blood flow and custard flows.

Yasuda Model

Yasuda proposed a model similar to the Cross model but with anextra material con-
stanta with which to fit the data [135]. This five parameter(η0,η∞,λ ,n,a) model has
sufficient flexibility to fit a wide variety of experimentalη(γ) curves; it has proven
to be useful for numerical calculation in which one needs an analytical expression for
non-Newtonian viscosity curve. The model is

(η −η∞)

(η0−η∞)
=

1

(1+λ aγ̇) 1−n
2

(ηo > η∞ ≥ 0,λ > 0,n> 1),
�

�

�

�2.73

hereη0 is the zero-shear-rate viscosity,η∞ is the infinite-shear-rate viscosity,λ is a
time constant,n is the power-law exponent anda is a dimensionless parameter that
describes the transition region between the zero-shear-rate region and the power-law
region. Several special cases of the Yasuda model are notable including the Carreau
model.

Carreau Model

If a is set to 2 in
�

�

�

�2.73 , the four constant Carreau model is obtained [19]. It also
displays a non-zero bounded viscosity at both upper and lower limits,
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2.5. CONSTITUTIVE EQUATIONS

(η −η∞)

(η0−η∞)
=

1

(1+λ 2γ̇) n−1
2

(ηo > η∞ ≥ 0,λ > 0,n> 1),
�

�

�

�2.74

Comments regarding the limiting behavior for the Cross model hold for the Yasuda
model as well.

2.5.2 Constitutive Equations for Solid

The material properties of the structures are described by the constitutive equations.
These equations establish the relation between the strainsE and the stressesS. Here,
the isotropic elastic material model of St. Venant-Kirchhof and a Neo-Hookean model
will be considered. It is suitable for problems with large deformations and small strains.

In particular, a non-linear constitutive theory suitable to describe a wide range of phys-
ical phenomena in which the strain may be significantly large, i.e. finite is presented in
this thesis.

Invariant of Elastic Material

A material is calledCauchy-elastic or elasticif the stress field at timet depends only
on the state of deformation (and state of temperature) and not on the deformation his-
tory (and temperature history) i.e.,F(X) = Grad(χ(X)).

Remark 2.75 Elastic or Cauchy-elastic material can also be defined via the Cauchy
σs or the first Piola-Kirchhoff stress tensorPs.

Remark 2.76 The actual work done by the stress field on Cauchy-elastic material
does, in general depend on deformation path.

In the following we relate relation in terms of first Piola-Kirchhoff stress tensorPs. we
may express the constitutive equation in general form

Ps = g(F(X, t),X),

whereg is referred to as theresponse functionfor the second Piola-Kirchhoff stress
tensor.

If the first Piola-Kirchhoff stress tensorPs and the reference mass densityρ0 are inde-
pendent of the positionX, then

Ps = g(F),

such materials are calledhomogeneous.

We now restrict the strain energy function by a particular property that the material
may possess, namelyisotropy. This property is based on the physical idea that the
response of the material, when studied is a stress-strain experiment, is the same in all
directions.
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CHAPTER 2. MATHEMATICAL MODELING

We now restrict to a specific elastic material which may be described mathematically,
in terms of the constitutive equation for the response function of the second Piola-
Kirchhoff tensor by the relation

g(FQ) = QTg(F)Q,

which is the material isotropic condition. From the physical point of view the condi-
tion of isotropy means that the material exhibits no preferred directions, which mean
stress-strain experiment, is the same in all directions irrespective of the choice of refer-
ence configuration. For a proof of this crucial relation, based onthe Rivlin-Ericksen
representation theoremsee [64] pp. 233-235.

To further establish the representation of the stress tensor, we first ensure that the stress
in the reference configuration, which we call theresidual stress, is zero, i.e.

g(I) = 0,

we say that the reference configuration is stress-free.

The Green-St. Venant strain tensorE = 1
2(C− I) is responsible for the deviation of

the deformation from a rigid body transformation. After considering the deviation
ĝ(I +2E)− ĝ(I) by making use of Taylor expansion around ˆg(I) and manipulation we
arrive at (for complete description and proof see [29] Theorem 3.8-1).

g(F) = ĝ(C) = g̃(E) = λ s(trE)I +2µsE+o(E).
�

�

�

�2.77

Equation
�

�

�

�2.77 for a frame-indifferent, homogeneous, isotropic, elasticmaterial, whose
reference configuration is the natural state (i.e. where theCauchy stress tensor is zero
everywhere) leads to one of the most popular materials in actual computations,the
St.Venant-Kirchhoff material employs the following constitutive law

σs =
1
J

F(λ s(trE)I +2µsE)FT Ss = λ s(trE)I +2µsE,

whereλ s denotes the firstLamé coefficient, andµs theshear modulusof the material
and numerical values of the these two constants for a given material found positive by
performing special deformations (pure shear, pure traction, pure compression). The
material elasticity is also characterized by a set of two other parameters, thePoisson
ratio νs and theYoung modulusE. These parameters satisfy the following relations

νs =
λ s

2(λ s+µs)
E =

µs(3λ s+2µ2)

(λ s+µs)

µs =
E

2(1+νs)
λ s =

νsE
(1+νs)(1−2νs)

,

Here, fromµs,λ s > 0, it implies thatE > 0 and−1 < νs < 1/2. The limit case of
νs= 1/2 is detailed at the end of the description. The St. Venant-Kirchhof model gives
identical results to the small deformation isotropic modelwhen the displacements are
truly infinitesimal. If small deformations are considered,the difference between the
initial and current configurations can be neglected. In the large deformation case it is
common to describe the constitutive equation using a stress-strain relation based on
the Green Lagrange strain tensorE and the 2nd Piola-Kirchhoff stress tensorS(E) as
a function ofE. However, also incompressible structures can be handled inthe same
way [75].
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Hyperelastic Material

A hyperelastic material is defined as a subclass of an elasticmaterial, whose response
function has the form

Ps = g(F) =
∂Ψ
∂F

.

A so called hyper elastic material (or in the literature often called a Green -elastic
material) postulates the existence of a Helmholtz free-energy function Ψ, which is
defined per unit reference volume rather per unit mass. The Helmholtz free-energy
functionΨ is referred to as the strain-energy function or stored-energy function [71].
Ψ=Ψ(F) is typical example of a scalar-valued function of one tensorvariableF, which
is assumed to be continuous.

We now restrict attention to homogeneous, isotropic, frameindifferent materials in
which the distributions of their internal constituents areassumed to be uniform on the
continuum scale. For this type of ideal material the strain-energy functionΨ depends
only upon the deformation gradientF. One example of an approximately isotropic
material with a wide range of applications is rubber.

For convenience, throughout this thesis we require that thestrain-energy function van-
ishes in the reference configuration, i.e.F = I . We express this assumption by the
normalization condition

Ψ = Ψ(I) = 0.
�

�

�

�2.78

From the physical observation we know that the strain-energy function Ψ increases
with deformation. In addition to

�

�

�

�2.78 we therefore require that

Ψ = Ψ(F)≥ 0.
�

�

�

�2.79

Relation
�

�

�

�2.78 and
�

�

�

�2.79 ensure that the stress in the reference configuration, which
we call the residual stress, is zero. We say that the reference configuration is stress-free.

For the behavior at finite strains we require additionally that the scalar-valued function
Ψ must satisfy growth conditions. This implies thatΨ tends to+∞ if either J = detF
approaches+∞ or 0+. i.e

Ψ(F)−→+∞ as detF −→+∞,

Ψ(F)−→+∞ as detF −→ 0+,

physically that means that we would require an infinite amount of strain energy in
order to expand a continuum body to the infinite range or to compress it to a point with
vanishing volume (for further survey consult the monograph[29, 98]). We specify the
Helmholtz potentialΨ and the solid stress is given by

σs =−psI +ρs∂Ψ
∂F

FT ,
�

�

�

�2.80

the first Piola-Kirchhoff stress tensor is then given by

Ps =−JpsF−T +Jρs∂Ψ
∂F

,
�

�

�

�2.81
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whereps is the Lagrange multiplier corresponding to the incompressibility constraint�

�

�

�2.63 . The second Piola-Kirchhoff stress tensor takes the form

Ss =−JpsF−1F−T +JρsF−1 ∂Ψ
∂F

�

�

�

�2.82

=−JpsC−1+2J
∂Ψ
∂C

.
�

�

�

�2.83

The fundamental constitutive equations
�

�

�

�2.80 ,
�

�

�

�2.81 and
�

�

�

�2.84 are the most gen-
eral forms used to define incompressible hyperelastic materials at finite strains. The
Helmholtz potential can be expressed as a function of different quantities

Ψ = Ψ̂(F) = Ψ̂(I +Gradu),

but due to the principle of material frame indifference the Helmholtz potentialΨ de-
pends on the deformation only through the right Cauchy-Green deformation tensor
C = FTF [see 64]

Ψ = Ψ̃(C).
�

�

�

�2.84

A certain coerciveness condition is usually imposed on the form of the Helmholtz po-
tential

Ψ̄(Gradu(X, t))≥ a‖Gradu(X, t)‖2−b(X),
�

�

�

�2.85

wherea is a positive constant andb∈ L1(Ωs).

Typical examples for the Helmholtz potential used for isotropic materials like rubber
are theNeo-Hookeanmodel given by

Ψ̃ = c1(IC−3),

or theMooney-Rivlin material

Ψ̃ = c1(IC−3)+c2(II C−3),

whereIC = trC, II C = 1
2((trC)2 − tr(C)2), III C = detC are the invariants of the right

Cauchy-Green deformation tensorC andci are some material constants.

In the case of material anisotropy we can use

Ψ̃ = c1(IC−3)+c2(II C−3)+c3(|Fa|−1)2,

with a being the preferred material direction. The term|Fa| represents the extension in

the directiona and when rewritten as(a·Ca)
1
2 we can see that it is a function ofC. In

[79, 80] a similar material relation of the form

Ψ̃ = c1 (exp(b1(IC−3))−1)+c2 (exp(b2(|Fa|−1))−1)

has been proposed to describe a passive behavior of the muscle tissue. Adding to any
form of Ψ a term like f (t,x)(|Fa|−1) one can model the active behavior of a material
and then the system can be coupled with additional models of chemical and electric
activation of the active response of the tissue, see [93].
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2.5.3 Slightly Compressible (Nearly Incompressible) Material

A material which can undergo changes of volume is said to becompressible, e.g
foamed elastomers are able to sustain finite strain with volume change, requiredJ > 0.

A material for which volume changes require a much higher exterior work than vol-
ume preserving changes is called anearly incompressibleor slightly compressible
material, for which the compressibility effects are small.Mathematically,

detF = 1.

In this work we will only use a neo-Hooke law in case of (nearly) incompressible ma-
terial.

A Neo-Hooke incompressiblematerial:
A Neo-Hooke material model is taken which can be used for compressible or incom-
pressible (forνs= 1/2⇒ λ s→ ∞ ) material and which is described by the constitutive
laws:

0=− ps

λ s +
1
2
(J− 1

J
)

�

�

�

�2.86

σs =−psI +µs(FFT − I).
�

�

�

�2.87

By relation
�

�

�

�2.86 we need to address a mixedu/p formulation, or simply mixed for-
mulation, which is advantageous to deal with nearly incompressible and incompress-
ible material at the same time through the Poisson ratio. A mixed formulation then
takes the form in limiting case

1= J

σs =−psI +µs(FFT − I).

In addition, the formulation can also be applied to the compressible case(νs ≈ 0.4) or
others.

A Neo-Hookean compressiblematerial (J = detF)

σs = λ s(J− 1
J
)I +

µs

J
(FFT − I)

σs = λ s log(detF)I +
µs

J
(FFT − I)

Remark 2.88 Alternative formulations of the compressible Neo-Hookeanmodel are
possible (e.g.σs= λ s log(J)I + µs

J (FFT − I) or σs= λ s(J−1)I + µs

J (FFT − I)) which
are used in literature and should have similar behavior for small volumetric changes.
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Remark 2.89 All these models when restricted to small deformations and when lin-
earized lead to this standard linearized Hook’s compressible material formula

σs = λ s(divus)I +µs(∇us+∇usT)

which is known as the Navier-Lame equations.

The St. Venant-Kirchhof model gives identical results for the small deformation isotropic
model when the displacements are truly infinitesimal. If small deformations are con-
sidered, the difference between the initial and current configurations can be neglected.

Both models, the St. Venant Kirchhoff and the Neo-Hooke material model, share the
isotropic and homogeneous properties, and both can be used for the computation of
large deformations. However, the St. Venant Kirchhoff model does not allow for large
strain computation, while the Neo-Hooke model is also validfor large strains. After
linearization, both material models have to converge to thesame expression, which is
then valid only for small strains and small deformations.

With a suitable choice of the material parameters the entropy inequality and the balance
of energy is automatically satisfied. The reduced entropy inequality is obtained from�

�

�

�2.51 by using the assumptions of isothermality and incompressibility

ρ
dΨ
dt

− tr(σ∇v)− pdivv ≤ 0.
�

�

�

�2.90

For the fluid we have the constitutive equation
�

�

�

�2.71 andΨ = 0. Then to satisfy the

reduced entropy inequality
�

�

�

�2.90 it is sufficient to require

µ > 0.
�

�

�

�2.91

In the solid region with the hyper-elastic material assumptions
�

�

�

�2.80 and
�

�

�

�2.84 the

left hand side of the entropy inequality
�

�

�

�2.90 is identically equal to 0.
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Mathematics are well and good
but nature keeps dragging us
around by the nose.

Albert Einstein 3
Discretization Methodology

In this chapter, a monolithic ALE formulation of the fluid structure interaction prob-
lem derived in chapter 2 will be numerically discretized by the standard Galerkin finite
element method in space and time discretization is done via method of Rothe [83].
Before derivations, preliminary definitions will be given which are heart of the pro-
ceeding discretization schemes. The time stepping techniques which are used for the
non-stationary calculations will be derived. The issues ofappropriate space and time
discretization techniques shall be addressed.

3.1 Finite Element Method

A finite element method is a numerical technique to obtain an approximate solution to
a class of problems governed by elliptic partial differential equations known as bound-
ary value problems as they consist of a partial differentialequation and the boundary
conditions. The finite element method converts the ellipticpartial differential equation
into a set of algebraic equations which are easy to solve. Without doubt finite element
method has emerged as one of the most powerful numerical method so far devised. The
history of finite element is scientifically written in [6].

Advantages of the finite element method over other numericalmethods are as follows

• The finite element method can be used for any irregular shapeddomain and all
types of boundary conditions.

• Domains consisting of more than one material can be easily analyzed.

• Accuracy of the solution can be improved either by proper refinement of the
mesh or by choosing approximation of higher degree polynomials.

• The algebraic equations can be easily generated and solved on a computer.

• A general purpose code can be developed for the analysis of a large class of
problems.

The standard finite element approximations are based upon the Galerkin formulation of
the method of weighted residuals. A general overview of weighted residual formulation
and classical Galerkin method are presented in the subsequent sections
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3.2 Weighted Residual Formulation

Let L denote a generic partial differential operator with homogeneous (essential)
Dirichlet boundary conditions onΓ. Consider the linear model problem

L u= f in Ω,
�

�

�

�3.1

u= 0 on Γ.
�

�

�

�3.2

A solutionu to the equation
�

�

�

�3.1 is a sufficiently smooth function that means it must
be continuous with continuous partial derivatives of first and second order, satisfying
the homogeneous Dirichlet condition onΓ. We replace the equation

�

�

�

�3.1 by consid-
ering theweak(or variational) form. Here, the general principles of weighted residual

method is briefly described
Method of Weighted Residuals:

1. The problem in form of its residual orerror is

R[u] = L u− f ,

here, ifu is the exact solution to the problem this impliesR[u] = 0, but for an
approximate solution ¯u ≈ u, it does not vanish.R[u] is called the residual or
error that results from taking ¯u instead of the solutionu. Here, aim is to select
u∈ S for which the residualR[u] is zero.

2. Multiply the residual by a suitableweighting(or test) function, integrate over the
domainΩ and set equal to zero

∫

Ω
wR[u]dΩ = 0, ∀w∈W,

whereW is the space of weighting functions finishing on the Dirichlet part of the
boundaryΓ. Mathematically it can be attained if the projection of the residual
R[u] is orthogonal to all test functionsw∈W. The weak solution belongs to the
spaceSof trial solutionssatisfying the Dirichlet boundary conditions.

3. Put the residual into the above equation to get the weak form

∫

Ω
w(L u− f )dΩ = 0, ∀w∈W.

�

�

�

�3.3

Making use of Green’s formula of an integration by parts and substitution of the
boundary conditions leads to

a(u,w) =
∫

Ω
f wdΩ, ∀w∈W.

�

�

�

�3.4

Evidently, one benefit of using the weighted residual formulation
�

�

�

�3.3 is the possibility
to shift some derivatives from the trial functionu onto the test functionw integrating
by parts using Green’s formula.
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3.3 Classical Galerkin Method

The Galerkin method is applicable to larger class of problems as compared to other
available methods like of, Collocation, subdomain methods. More recently, Galerkin
residual method and Galerkin least squares method have beenused with the finite ele-
ment form of trial solution to give a finite element (Galerkin) residual method.

The method of choice in this thesis for spatial discretization is the classical Galerkin
method, a method which is directly applicable to the boundary value problem (BVP)
irrespective of the existence of an equivalent extremal formulation. In this subsection
the general procedure of classical Galerkin method based onweighted residual method
is presented.

3.3.1 Galerkin Finite Element Approximation

To define the weak or variational form of BVP we need to define two classes of func-
tions; the test or weighting functions and the trial or admissible solutions. Here these
classes are defined in the context of the standard Galerkin approximation. Let us
present the formal definition of function spaces for the testand trial functions for the
standard Galerkin formulation.

In general, integrating the product of two functionsv andw yields the so calledL2 inner
product(·, ·)0 which includes theL2 norm‖ · ‖0

(v,w)0 =
∫ 1

0
vwdx, ‖v‖0 =

√
(v,v)0.

The testspaceW consists of all functions which are square integrable

L2(Ω) =

{
w :

∫

Ω
|w|2dx < ∞

}
,

have square integrable first derivatives over the domainΩ, that is,

H1(Ω) =

{
w∈ L2(Ω) :

∂w
∂xi

∈ L2(Ω)∀i

}

and finish on the Dirichlet partΓD of the boundary. Thus,

W =
{

w∈ H1(Ω) : w= 0 onΓD
}
≡ H1

ΓD
(Ω).

This is a so-called Sobolev space associated with the inner product

(u,v)1 =
∫

Ω

(
uv+∑

i

∂u
∂xi

∂v
∂xi

)
dx

which induces the so-calledH1 norm

‖u‖1 =
√
(u,u)1.

The space oftrial functions is similar to the test space except that the admissible func-
tions must satisfy the Dirichlet condition onΓD, that is,

S=
{

u∈ H1(Ω) : u= uD on ΓD
}
.
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It can be viewed as a translation of the test spaceW so as to satisfy the Dirichlet
conditions onΓD. Let ūD be an arbitrary function inH1(Ω) such that ¯uD = uD on ΓD.
Then, the test and trial spaces are related as follows:

S=W+{ūD}

Consequently it is an affine space. For instance, foruD 6= 0, the sum of two elements
of S is not an element ofS. However, for homogeneous boundary condition,uD = 0,
trial and test spaces coincide

W = S= H1
0(Ω)

The spacesSof trial functions andW of test functions are infinite-dimensional [1]. In
order to solve the variational problem with the aid of computers the function spaces
are approximated by appropriate finite dimensional subspacesSh ⊂ S andWh ⊂ W,
respectively. The general procedure of Galerkin finite element method is as follows.

Galerkin Finite Element Method:

1. Choose a suitable basis{ϕi(x)}N
i=1 for the trial spaceSh ⊂ S such that the ap-

proximate solution is written as

uh(x, t) =
N

∑
i=1

ui(t)ϕi(x)

Here, the basis functionsϕi(x) depend only on the spatial variable. For many
finite elements, the basis functions are associated with nodesx j so thatui(t) =
uh(xi , t) correspond to the nodal solution value which may change in time. This
separation of variables simplifies the computation of derivatives significantly.
The time derivative is applied to the nodal valuesui , whereas spatial derivatives
are applied to the basis functionsϕi .

• Time derivative
∂uh(x, t)

∂ t
=

N

∑
i=1

∂ui(t)
∂ t

ϕi(x)

• Solution gradient ∇uh(x, t) =
N

∑
i=1

ui(t)∇ϕi(x)

2. Choose a suitable basis{ψi(x)}N
i=1 for the test spaceWh ⊂W. Choices are

• ψi = ϕi which corresponds to the so-called (Bubnov-) Galerkin method or
classical Galerkin method which is the method of choice in this thesis.

• ψi 6= ϕi is referred to as Petrov-Galerkin method which leads to upwind-
type discretizations.

For a comprehensive introduction to the theory of finite elements, see for instance the
classical textbooks [36, 81] and the finite elements applications to fluid flow problems
is thoroughly discussed in [44, 43, 42].
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3.4 Construction of Finite Elements

The basic idea of the Finite element is to subdivide the region Ω ⊂ R
n into subre-

gions. In the 1D case these subregion are intervals, in 2D thesubregions are triangles
or quadrilaterals and tetrahedron or hexahedron in 3D. In order to compute an approxi-
mate solutionuh to the above problem by the finite element method, the computational
domain is subdivided into a collection ofNE non-overlapping sub-domainsΩ called
elements/cells

NE⋃

k=1

Ωk ⊆ Ω and Ωk∩Ωe = 0 for k 6= e.

From the nodal coefficientsui(t) = uh(xi , t) given at timet the solution values within

each elementΩk can be interpolated by means of local basis functionsϕ(k)
i such that

[44]

uh(x, t) =
m

∑
i=1

ui(t)ϕ
(k)
i , ∀x ∈ Ωk

wherem denotes the number of local degrees of freedom for each element. Summing
the local basis functions over all elements one obtains a setof functions{ϕi}Nm

i=1 which
are used to expand the approximate solution for the whole domain in terms of the nodal
coefficientsui ,

uh(x, t) =
Nm

∑
i=1

ui(t)ϕi(x), ∀x ∈ Ω

whereNm is the total number of degrees of freedom.

Finally we define a basis functionϕi : Ω̄→R for each nodal pointxi in Ω̄, i = 1,2, . . . ,n.
These functions must satisfy the general properties of interpolation functions

1. The basis functionϕi takes the value 1 at nodexi and finishes at all the other
nodal points

uh(x j , t) =
Nm

∑
i=1

ui(t)ϕi(x j) = ui(t)

this is followed by

ϕi(x j) = δi j =

{
1 if j = i

0 if j 6= i

2. The sum of local basis functionsϕ(k)
i should be identically one for each element

Ωk for consistency. To the global basis functionsϕi unit sums

Nm

∑
i=1

ϕi(x) = 1 ∀x∈ Ωk ⊂ Ω
�

�

�

�3.5

3. For computational efficiency, it is desirable that the local basis functionϕ(k)
i

vanishes outside of elementΩk to obtain a finite element approximation which
leads to sparse matrices. As a consequence, the global basisfunction ϕi turns
into a hat function with local support comprising the set of elements meeting at
vertexi and equals zero outside.

49
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4. The sum of derivatives finishes in each element followed from the property
�

�

�

�3.5

Nm

∑
i=1

∇ϕi(x) = 0, ∀x ∈ Ωk

It is worth mentioning that this property does not require the shape functions to be
continuous across element boundaries for non-conforming finite elements such as the
linear Crouzeix-Raviart element [35] or the rotated bilinear Rannacher-Turek element
[107]. The elements can be divided into two groups: elementswith continuous pres-
sure (Taylor-Hood family) and elements with discontinuouspressure (Crouzeix-Raviart
family). Type of elements which have been studied in finite element literature are tri-
angular, quadrilateral, 3D hexahedral elements, with linear, bilinear, bi-quadratic ele-
ments.

In this section we shall construct quadrilateral finite element which is been used.

3.4.1 Quadrilateral Elements

In general applications, quadrilateral elements are favorable above triangular elements,
but when the region is irregular or complex geometry then it is hard to approximate
easily by quadrilaterals [36]. Also, the derivation of basis functions, element matrices
and vectors is more complicated for quadrilateral elementsthan for triangular elements,
except in the case that the boundaries of the elements are curved, because always, even
for straight sides an isoparametric transformation is needed. However, the advantage
of quadrilateral elements over triangular elements is as follows:

1. Compared to triangular elements, only one half of the number of elements is
needed. This reduces the computation time for the construction of matrices and
vectors.

2. If we divide a quadrilateral into two triangles, diagonals of the quadrilateral has
one of two possible directions. Numerical computations forconvective dominant
flows, have shown, at least for rectangular grids, that the solution is sensitive to
the direction of the diagonal. This sensitivity reduces when size of the elements
decreases. Quadrilateral elements do not exhibit this behavior their results are
more ”symmetric” for symmetrical problems.

The choice of an element depends on the type of problem, the number of elements
desired, the accuracy required, and the available computing time. To begin with, the
element must be able to represent derivatives up to the orderrequired in the solution
procedure. The simplest way of satisfying the convergence requirements is to use ele-
ments that are conforming and, across the element, can adequately represent the func-
tion and its derivatives. It needs noting, however, that these conforming may give little
increase in accuracy and require a considerable increase incomputing time compared
to elements with fewer terms. We employed the conformingQ2P1 element compromis-
ing the computing time for accuracy.
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3.4.2 Conformity

The requirement that the representations of the variables and their principal deriva-
tives be continuous is known as theprincipal continuity condition. The reduced con-
tinuity condition states that when a nodal value of a variable/derivative is used in
a finite element formulation, the values of this variable/derivative at the coincident
nodes of adjacent elements should equal this value. This condition is in fact the
compatibility conditionfor the elements over the domain and must always be satis-
fied [97, 36, 28].

In general, the reduced continuity condition is not sufficient to ensure that the principle
continuity condition results. If, however, the element definition is such that reduced
continuity means that the principal continuity condition applies, the element is said to
be conforming (conformable, compatible) for that problem [97].

3.5 Conforming Q2P1 Element

We approximate the domainΩ by a domainΩh with polygonal boundary and byTh we
denote a set of quadrilaterals covering the domainΩh. We assume thatTh is regular in
the sense that any two quadrilateral are disjoint or have a common vertex or a common
edge. ByT̄ = [−1,1]2 we denote the reference quadrilateral.

Our treatment of the problem as a one system suggests to use the same finite elements
on both, the solid part and the fluid region. We have to choose apair of finite element
spaces known to be stable for the problems with incompressibility constraint. We uti-
lize the LBB-stable conforming bi-quadratic, discontinuous bilinearQ2P1 pair which
is known to be one of the ”best” (see [5], [74]), that means most accurate and robust
finite element pair for highly viscous incompressible flow computations [50].

The basis function for this element are bi-quadratic polynomials on the reference el-
ement for the velocity and linear (discontinuous) polynomials for the pressure. See
Figure 3.1 for the location of the degrees of freedom.

We define the usual finite dimensional spacesU for displacement,V for velocity,P for
pressure approximation as follows

U = {u ∈ L∞(I , [W1,2(Ω)]2),u = 0 on ∂Ω},
V = {v ∈ L2(I , [W1,2(Ωt)]

2)∩L∞(I , [L2(Ωt)]
2),v = 0 on ∂Ω},

P= {p∈ L2(I ,L2(Ω))},

then the variational formulation of the fluid-structure interaction problem is to find
(u,v, p) ∈U ×V ×P such that the equations are satisfied for all(ζ ,ξ ,γ) ∈U ×V ×P
including appropriate initial conditions. The spacesU,V,P on an interval[tn, tn+1]
would be approximated in the case of theQ2P1 pair as

Uh = {uh ∈ [C(Ωh)]
2,uh|T ∈ [Q2(T)]

2 ∀T ∈ Th,uh = 0 on ∂Ωh},
Vh = {vh ∈ [C(Ωh)]

2,vh|T ∈ [Q2(T)]
2 ∀T ∈ Th,vh = 0 on ∂Ωh},

Ph = {ph ∈ L2(Ωh), ph|T ∈ P1(T) ∀T ∈ Th}.

Let us denote byun
h the approximation ofu(tn), vn

h the approximation ofv(tn) and
pn

h the approximation ofp(tn). Consider for eachT ∈ Th the bilinear transformation
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vh,uh, bi-quadratic (9 nodal points)

ph,
∂ ph
∂x ,

∂ ph
∂y linear (1 nodal point, 2 derivatives)

x

y

Figure 3.1: Location of the degrees of freedom for the (Crouzeix-Raviart)Q2P1 ele-
ment

ψT : T̂ → T to the unit squareT. So the local basis on the reference element forQ2(T)
is defined as

Q2(T) =
{

q◦ψ−1
T : q∈ span< 1,x,y,xy,x2,y2,x2y,y2x,x2y2 >

}

Q2(T) = span{(1−x2)(1−y2),
1
2
(1−x2)(y−y2),

1
2
(1−x2)(y+y2),

1
2
(x−x2)(1−y2),

1
4
(x−x2)(y−y2),

1
4
(x−x2)(y+y2),

1
2
(x+x2)(1−y2),

1
4
(x+x2)(y−y2),

1
4
(x+x2)(y+y2)},

with nine local degrees of freedom located at the vertices, midpoints of the edges and
in the center of the quadrilateral. The spaceP1(T) consists of linear functions defined
by

P1(T) =
{

q◦ψ−1
T : q∈ span< 1,x,y>

} �

�

�

�3.6

with the function value and both partial derivatives located in the center of the quadri-
lateral, as its three local degrees of freedom. The velocity-pressure inf-sup condition is
satisfied (see [20]) in the presence of a purely viscous contribution [7]. However, the
combination of the bilinear transformationψ with a linear function on the reference
squareP1(T̂) would imply that the basis on the reference square does not contain the
full basis. So, the method can at most be first order accurate on general meshes (see
[5, 20])

‖p− ph‖0 = O(h).

The standard remedy is to consider a local coordinate system(ξ ,η) obtained by joining
the midpoints of the opposing faces ofT (see [5, 107, 122]). Then, we set on each
elementT

P1(T) := span< 1,ξ ,η > .

For this case, the inf-sup condition is also satisfied and thesecond order approximation
is recovered for the pressure as well as for the velocity gradient (see [20, 62])

‖p− ph‖0 = O(h2) and ‖∇(u−uh)‖0 = O(h2).
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For a smooth solution, the approximation error for the velocity in theL2-norm is of or-
derO(h3) which can easily be demonstrated for prescribed polynomials or for smooth
data on appropriate domains [20].

This choice results to 39 degrees of freedom on an element in the case of our displace-
ment, velocity, pressure formulation in two dimensions andto 112 degrees of freedom
on an element in three dimensions. This seem rather prohibitive, especially for a three
dimensional computation. The velocity components and pressure gradient in the cen-
troid may be eliminated, reducing the number of velocity degrees of freedom to 16 and
number of pressure degrees of freedom to 1.

3.6 Discretization

The initial value problems which consist of a parabolic or hyperbolic differential equa-
tion and the initial conditions (besides the boundary conditions) can not be completely
solved by the finite element method. The parabolic or hyperbolic differential equations
contain the time as one of the independent variables. To convert the time or temporal
derivatives into algebraic expressions, another numerical technique like the finite dif-
ference method (FDM) is required. Usually, IBVP are discretized first in space, thus
getting a system of coupled first order ordinary differential equations in time, strategy
is calledsemi discrete method. It remains to integrate the first order ordinary differ-
ential equations forward in time which is also known asmethod of linesin numerical
analysis literature.

Thus, to solve an initial value problem, one needs both the finite element method as
well as the finite difference method where the spatial derivatives are converted into
algebraic expressions by FEM and the temporal derivatives are converted into algebraic
equations by FDM, Rothe method in this present research [83].

3.6.1 Temporal Discretization

The first step in the numerical discretization process is to choose an appropriate time
stepping scheme. It should not only be accurate in time, but also easy to realize and
computationally robust and affordable (inexpensive) to use. A simple and flexible
choice is theθ -scheme approach, which allows for the use of the single stepBack-
ward Euler and Crank-Nicholson schemes, and also multi-step schemes such as the
strongly A-stable Fractional-step-θ -scheme. Theθ -scheme applied to the monolithic
FSI equations for which we need to solveX = (u,v, p) at the current time step,n+1,
with known values only from the previous time step,n.

Basicθ -Scheme:Let us consider an initial value problem of the following form, with
X(t) ∈ R

d,d ≥ 1: 



dX
dt

+ f (X, t) = 0 ∀t > 0

X(0) = X0

�

�

�

�3.7

GivenXn at timet = tnandk= tn+1− tn, then solve forX = Xn+1

Xn+1+θk f
(
Xn+1, tn+1) = Xn− (1−θ)k f (Xn, tn)
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The time stepk is assumed constant and a parameterθ is to be taken in the interval
[0,1].

3.6.2 Explicit Schemes

In the past, explicit time-stepping schemes have been commonly used in non-stationary
flow calculations. It possess the severe stability problemsand required small time steps
prohibit the efficient treatment of long time flow simulations.
Forward Euler-Scheme:(FE, withθ = 0)

Xn+1+k f (Xn, tn) = Xn

• Implementation and parallelization is easy, low cost per time step

• A good starting point for the development of CFD software

• Small time steps are required for stability reasons, especially if the velocity
and/or mesh size are varying strongly

• Extremely inefficient for solution of stationary problems unless local time-stepping
i.e. ∆t = ∆t(x) is employed

• The required small time steps prohibit the efficient treatment of long time flow
simulations

3.6.3 Implicit Schemes

Due to the high stiffness, one should prefer implicit schemes in the choice of time-
stepping methods. Since implicit methods have become feasible thanks to more effi-
cient nonlinear and linear solvers, the schemes most frequently used are still either the
simple first-order Backward Euler scheme (BE) or more preferably the second-order
Crank-Nicholson scheme (CN). These two methods belong to the group ofOne-Step-
θ -schemes
Backward Euler-Scheme: (BE, with θ = 1)

Xn+1+k f
(
Xn+1, tn+1) = Xn

• First order accurate only

• Good choice for steady state calculations

• Strongly A stable, means numerical solution is bounded

Crank-Nicholson-Scheme: (CN, with θ = 1/2)

Xn+1+
k
2

f
(
Xn+1, tn+1) = Xn− k

2
f (Xn, tn)

• Second order accurate

• Occasionally suffers from numerical instabilities
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• Not strongly A stable, weak damping property

The overall advantages and disadvantages of implicit schemes are as follows

• Stable over a wide range of time steps, sometimes unconditionally

• Constitute excellent iterative solvers for steady-state problems

• Difficult to implement and parallelize, high cost per time step

• Insufficiently accurate for truly transient problems at large∆t

• Convergence of linear solvers deteriorates/fails as∆t increases

Another method which has proven to have the potential to excel in this regard is the
Fractional-Step-θ -scheme (FS). It uses three different values forθ and for the time step
k at each time level.
Fractional-Step-θ -Scheme: By choosing

θ = 1−
√

2
2

, θ ′ = 1−2θ , α =
1−2θ
1−θ

, β = 1−α

it divides the time step in the following consecutive sub steps (withθ̃ := αθk= βθ ′k):

Xn+θ + θ̃ f
(

Xn+θ , tn+θ
)

= Xn−βθk f (Xn, tn)

Xn+1θ + θ̃ f
(

Xn+1−θ , tn+1−θ
)

= Xn+θ −αθ ′k f
(

Xn+θ , tn+θ
)

Xn+1+ θ̃ f
(
Xn+1, tn+1) = Xn+1−θ −βθk f

(
Xn+1−θ , tn+1−θ

)

It is a strongly A-stable scheme. Hence, the FS-method possesses the full smoothing
property which is important in the case of rough initial or boundary values. Further, it
contains only very little numerical dissipation which is crucial in the computation of
non-enforced temporal oscillations in the flow. For a rigorous theoretical analysis of the
FS-scheme for this special choice ofθ see [128]. Therefore, this scheme combines the
advantages of both the classical CN-scheme (2nd order accuracy) and the BE-scheme
(strongly A-stable), but with the same numerical effort.

A Modified Fractional-Step-θ -Scheme: A modified θ -scheme (see [128, 126]) with
macro time step k can be written again as three consecutive sub steps, whereθ =
1−1/

√
2, X0 = X0, n≥ 0 andXn is known:

Xn+θ +θk f
(

Xn+θ , tn+θ
)

= Xn

Xn+1−θ =
1−θ

θ
Xn+θ +

2θ −1
θ

Xn

Xn+1+θk f
(
Xn+1, tn+1) = Xn+1−θ

As shown in [126], the considerable properties of thisθ -scheme are that

• It is fully implicit

• It is strongly A-stable means numerical solution is bounded
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• It is second order accurate (in fact, it is ”nearly” third order accurate [126]).

The main difference to the previous ‘classical’ FS scheme isthat substeps 1. and 3. look
like a Backward Euler step while substep 2. is an extrapolation step only for previously
computed data such that no operator evaluations at previoustime steps are required.

The pressure term∇p= ∇pn+1 may be replaced byθ∇pn+1+(1−θ)∇pn, but, with
appropriate post processing, both strategies lead to solutions of the same accuracy. In
all cases, we end up with the task of solving, at each time step, a nonlinear saddle point
problem of given type which has then to be discretized in space.

Summarizing, one obtains that the numerical effort of the modified scheme for each
substep is cheaper - at least for ‘small’ time steps (treatment of the nonlinearity) and
complex right hand side evaluations while the resulting accuracy is similar. Inciden-
tally, the modifiedθ -scheme is aRunge-Kuttaone; it has been derived in [126] as a
particular case of the Fractional-Step-θ -scheme.

3.7 Non Dimensionalization

Dimensionless numbers help to identify which physical effects are dominating, and
also assist when classifying different model problems. We non-dimensionalize all the
quantities by a given characteristic lengthL and speedV, and the subsequent scaling
of the involved variables as follows

t̂ = t
V
L
, x̂ =

x
L
,

û =
u
L
, v̂ =

v
V
,

σ̂s = σs L
ρ fV2 , σ̂ f = σ f L

ρ fV2 ,

µ̂ =
µ

ρ fVL
, Ψ̂ = Ψ

L
ρ fV2 ,

further using the same symbols, without the hat, for the non-dimensional quantities
and denoting byβ = ρs

ρ f the densities ratio. The non-dimensionalized system with the

choice of material relations,
�

�

�

�2.71 for viscous fluid and
�

�

�

�2.81 for the hyper-elastic
solid is

∂u
∂ t

=

{
v in Ωs,

∆u in Ω f ,

�

�

�

�3.8

∂v
∂ t

=





1
β Div

(
−JpsF−T + ∂Ψ

∂F

)
in Ωs,

−(Gradv)F−1(v− ∂u
∂ t )

+Div
(
−Jpf F−T +Jµ GradvF−1F−T

)
in Ω f ,

�

�

�

�3.9

0=

{
J−1 in Ωs,

Div(JvF−T) in Ω f ,

�

�

�

�3.10
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and the boundary conditions

σ f n = σsn on Γ0
t ,

�

�

�

�3.11

v = vB on Γ1
t ,

�

�

�

�3.12

u = 0 on Γ2
t ,

�

�

�

�3.13

σ f n = 0 on Γ3
t .

�

�

�

�3.14

We used the weak or weighted residual technique to the governing set of equation
which goes as follows

3.8 Weak or Weighted Residual Formulation

Let I = [0,T] denotes the time interval of interest. We multiply the equations
�

�

�

�3.8 -
�

�

�

�3.10 by the test functionsζ ,ξ ,γ such thatζ = 0 on Γ2, ξ = 0 on Γ1 and integrate
over the space domainΩ and the time intervalI . Using integration by parts on some of
the terms and the boundary conditions we obtain

∫ T

0

∫

Ω

∂u
∂ t

·ζdVdt=
∫ T

0

∫

Ωs
v ·ζdVdt

−
∫ T

0

∫

Ω f
Gradu ·GradζdVdt,

�

�

�

�3.15

∫ T

0

∫

Ω f
J

∂v
∂ t

·ξdVdt+
∫ T

0

∫

Ωs
βJ

∂v
∂ t

·ξdVdt

=−
∫ T

0

∫

Ω f
JGradvF−1(v− ∂u

∂ t
) ·ξdVdt

+

∫ T

0

∫

Ω
JpF−T ·GradξdVdt

−
∫ T

0

∫

Ωs

∂Ψ
∂F

·GradξdVdt

−
∫ T

0

∫

Ω f
Jµ GradvF−1F−T ·GradξdVdt,

�

�

�

�3.16

0=

∫ T

0

∫

Ωs
(J−1)γdVdt

+
∫ T

0

∫

Ω f
Div(JvF−T)γdVdt.

�

�

�

�3.17
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Transforming some of the integrals to the current domain themomentum balance equa-
tion

�

�

�

�3.16 becomes

∫ T

0

∫

Ω f
t

∂v
∂ t

·ξdvdt+
∫ T

0

∫

Ωs
t

β
∂v
∂ t

·ξdvdt

=−
∫ T

0

∫

Ω f
t

∇v(v− ∂u
∂ t

) ·ξdvdt

+

∫ T

0

∫

Ωt

pdivξdvdt

−
∫ T

0

∫

Ωs

∂Ψ
∂F

·GradξdVdt

−
∫ T

0

∫

Ω f
t

µ∇v ·∇ξdvdt.

�

�

�

�3.18

This is our method of choice in this study, which also known asthe Classical Galerkin
residual method.

Now, by following the steps of the classical Galerkin methodto the fluid structure
interaction main equations. We used the velocityv as a test functionξ in this equation
and obtain the balance of the mechanical energy

1
2

∫ T

0

∫

Ω f
t

∂
∂ t

|v|2dvdt+
β
2

∫ T

0

∫

Ωs
t

∂
∂ t

|v|2dvdt

=−
∫ T

0

∫

Ω f
t

∇v(v− ∂u
∂ t

) ·vdvdt

−
∫ T

0

∫

Ωs

∂Ψ
∂F

·GradvdVdt

−
∫ T

0

∫

Ω f
t

µ |∇v|2dvdt.

�

�

�

�3.19

The first term on the left hand side of
�

�

�

�3.19 together with the convective term on the

right hand side can be rewritten with the help of
�

�

�

�2.31 as

1
2

∫ T

0

∫

Ω f
t

∂
∂ t

|v|2dvdt+
∫ T

0

∫

Ω f
t

∇v(v− ∂u
∂ t

) ·vdvdt

=
1
2

∫ T

0

∫

Ω f
J

∂
∂ t

|v|2dVdt+
∫ T

0

∫

Ω f
t

∇v(v− ∂u
∂ t

) ·vdvdt

=
1
2

∫ T

0

∫

Ω f

∂
∂ t

(
J |v|2

)
dVdt− 1

2

∫ T

0

∫

Ω f
J |v|2div

∂u
∂ t

dVdt

+
1
2

∫ T

0

∫

Ω f
t

∇ |v|2 (v− ∂u
∂ t

)dvdt

=
1
2

∫ T

0

∂
∂ t

∫

Ω f
t

|v|2dvdt+
1
2

∫ T

0

∫

Ω f
t

div

(
|v|2 (v− ∂u

∂ t
)

)
dvdt

=
1
2

[
‖v(t)‖2

L2(Ω f
t )

]T

0
+

1
2

∫ T

0

∫

∂Ω f
t

|v|2 (v− ∂u
∂ t

) ·nΩ f
t
dadt,

=
1
2

[
‖v(t)‖2

L2(Ω f
t )

]T

0
+

1
2

∫ T

0

∫

Γ1
t

|vB|2vB ·nΩ f
t
dadt.

�

�

�

�3.20
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where we have used the boundary condition
�

�

�

�3.12 and the fact that∂u
∂ t = v on Γ0 and

∂u
∂ t = 0 on Γ1.

The second term on the right hand side of
�

�

�

�3.19 can be rewritten by use of
�

�

�

�2.29 as

∫ T

0

∫

Ωs

∂Ψ
∂F

·GradvdVdt=
∫ T

0

∫

Ωs

∂Ψ
∂F

· dF
dt

dVdt

=
∫ T

0

∫

Ωs

dΨ
dt

dVdt

=

[∫

Ωs
Ψ(F(t))dV

]T

0
.

�

�

�

�3.21

Using
�

�

�

�3.20 and
�

�

�

�3.21 in
�

�

�

�3.19 with the initial condition
�

�

�

�3.11 –
�

�

�

�3.14 and the fact
thatΨ = 0 in the initial, undeformed state, we obtain

1
2
‖v(T)‖2

L2(Ω f
T )
+

β
2
‖v(T)‖2

L2(Ωs
T )
+

∫ T

0
µ‖∇v‖2

L2(Ω f
t )

dt+
∫

Ωs
Ψ(F(T))dV

=
1
2
‖v0‖2

L2(Ω f )+
β
2
‖v0‖2

L2(Ωs)−
1
2

∫ T

0

∫

Γ1
t

|vB|2vB ·nΩ f
t
dadt.

�

�

�

�3.22

Using the assumption
�

�

�

�2.85 , settingc= min(1,β ) and considering the homogeneous
Dirichlet boundary conditionvB = 0 we finally obtain an energy estimate of the fol-
lowing form

c
2
‖v(T)‖2

L2(ΩT )
+
∫ T

0
µ‖∇v‖2

L2(Ω f
t )

dt+a‖Gradu(T)‖2
L2(Ωs)

≤ ‖b‖L1(Ωs)+
1
2
‖v0‖2

L2(Ω f )+
β
2
‖v0‖2

L2(Ωs).

�

�

�

�3.23

Here we assumea priori that we have the solution and we put it into the weak formu-
lation and choose spaces which have square integrable velocity, displacement and their
gradients are also square integrable and can show these norms has to be bounded. It
make sense to look in the spaces of square integrable function and their gradients, that
spaces are commonly known as Sobolev spaces [1].

Definition 1 Find (u,v− vB, p) ∈ U ×V ×P such that equations
�

�

�

�3.15 ,
�

�

�

�3.16 and
�

�

�

�3.17 are satisfied for all(ζ ,ξ ,γ) ∈U ×V ×P.

Let us denote byun
h the approximation ofu(tn), vn

h the approximation ofv(tn) andpn
h

the approximation ofp(tn). Further we will use following shorthand notation

Fn = I +Gradun
h, Jn = detFn Jn+ 1

2 =
1
2
(Jn+Jn+1),

( f ,g) =
∫

Ω
f ·gdV, ( f ,g)s =

∫

Ωs
f ·gdV, ( f ,g) f =

∫

Ω f
f ·gdV,

f ,g being scalars, vectors or tensors.
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For simplicity we wrote down the discrete equivalent of the equations for
�

�

�

�3.15 -
�

�

�

�3.17 by using Crank Nicholson method, then the variational formulation of the fluid-
structure interaction problem is stated as follows

(
un+1

h ,η
)
− kn

2

{(
vn+1

h ,η
)

s+
(
∇un+1

h ,∇η
)

f

}

− (un
h,η)−

kn

2

{
(vn

h,η)s+(∇un
h,∇η) f

}
= 0,

�

�

�

�3.24

(
Jn+ 1

2 vn+1
h ,ξ

)
f
+β

(
vn+1

h ,ξ
)

s−kn
(
Jn+1pn+1

h (Fn+1)−T ,Gradξ
)

s

+
kn

2

{(
∂Ψ
∂F

(Gradun+1
h ),Gradξ

)

s
+µ

(
Jn+1Gradvn+1

h (Fn+1)−1,Gradξ (Fn+1)−1)
f

+
(
Jn+1Gradvn+1

h (Fn+1)−1vn+1
h ,ξ

)
f

}

− 1
2

(
Jn+1Gradvn+1

h (Fn+1)−1(un+1
h −un

h),ξ
)

f

−
(

Jn+ 1
2 vn

h,ξ
)

f
−β (vn

h,ξ )s

+
kn

2

{(
∂Ψ
∂F

(Gradun
h),Gradξ

)

s
+µ

(
JnGradvn

h(F
n)−1,Gradξ (Fn)−1)

f

+
(
JnGradvn

h(F
n)−1vn

h,ξ
)

f

}
+

1
2

(
JnGradvn

h(F
n)−1(un+1

h −un
h),ξ

)
f = 0,

�

�

�

�3.25

(
Jn+1−1,γ

)
s+
(
Jn+1Gradvn+1

h (Fn+1)−1,γ
)

f = 0.
�

�

�

�3.26

Using the basis of the spacesUh,Vh,Ph as the test functionsζ ,ξ ,γ we obtain a nonlinear
algebraic set of equations. In each time step we have to findX = (un+1

h ,vn+1
h , pn+1

h ) ∈
Uh×Vh×Ph such that

F (X) = 0,
�

�

�

�3.27

whereF represents the system (
�

�

�

�3.24 –
�

�

�

�3.26 ). The solver aspects of this system will
be addressed in next Chapter.

3.9 Initial and Boundary Conditions

The modeled FSI applications and physical processes are usually very specific in na-
ture and the studies can thus be confined to a smaller spatial sub region or domain
Ω ⊂ R

d and a specific temporal duration[0,T]. Both these restrictions will usually
greatly simplify the modeling and also reduce the effort required to obtain a solution.
It is particularly advantageous to utilize all existing symmetry axes to further shrink the
computational domain. Sometimes it is also possible to transform a three dimensional
model to two dimensions if the problem can be considered axisymmetric. The draw-
back of restricting the models spatially is that the equations now have to be supplied
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3.9. INITIAL AND BOUNDARY CONDITIONS

with suitable boundary conditions, which are supposed to describe all interactions be-
tween and the rest of the non modeled environment. Initial conditions, in the form
of specified velocities must be prescribed in addition to theboundary conditions for
applications where the temporal evolution is of interest. The equations together with
fluid parameters, domain, boundary conditions, and initialconditions all together now
uniquely specify the model problem.

A very detailed discussion on boundary and initial conditions for fluid structure interac-
tion problems is found in [6]. We just describe briefly the possible initial and boundary
conditions for the problems as follows:

Initial Conditions:For time-dependent or non-stationary problems compulsoryinitial
condition defines the contribution ofu at timet = 0

u(x,0) = u0(x), ∀x ∈ Ω.

For stationary simulations it is also advantageous to set a good initial guess so that the
nonlinear solver will converge faster.
Boundary Conditions:Usually, boundary conditions are, Dirichlet boundary conditions
which sets the value of a quantity, and Neumann, also called natural, boundary condi-
tions which assigns the in- or out-flux. In general, the boundary may consist of different
parts

Γ = Γin ∪Γwall ∪Γout,

where (n is the outwardpointing unit normal vector at the pointx ∈ Γ)

• Γin = {x ∈ Γ : v ·n < 0} denotes theinflow part,

• Γwall = {x ∈ Γ : v ·n = 0} denotes asolid wall,

• Γout = {x ∈ Γ : v ·n > 0} denotes theoutflowpart.

Typical boundary conditions are as follows:

• Dirichlet boundary conditions

u(x, t) = uD(x, t), ∀x ∈ ΓD, ∀t ∈ (0,T)

That is, Dirichlet conditions set the value of velocityu on the boundary part
ΓD ⊂ Γ, directly. These conditions are usually prescribed at inlets to set the
inflow velocities or to that of the wall which usually has zerovelocity.

• Neumann or natural boundary conditions

(−pI +(∇u(x, t)+∇u(x, t)T) ·n = g̃N(x, t) ∀x ∈ ΓN, ∀t ∈ (0,T)

That is, one can alternatively prescribe the stress at a boundary with the above
natural boundary condition. For the special case of a homogeneous Neumann
condition(gN(x, t)= 0), or zero stress condition, is commonly used as an outflow
boundary condition.

• No-Slip boundary conditions

u(x, t) ·n= 0 or (−pI +(∇u(x, t)+∇u(x, t)T) ·n= 0, ∀x∈ ΓD, ∀t ∈ (0,T)
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CHAPTER 3. DISCRETIZATION METHODOLOGY

That is, a combination of Dirichlet and Neumann conditions may be used to
specify a so called no-slip or symmetry condition. No-slip boundary condition
requires that fluid in contact with the wall stay and move withthe wall motion
and it should have inclination to stick with the walls.

62



Expect the best, ready for the
worst.

M. A. Jinnah

4
Solvers

If modeling the physical problem is an uphill task then solving it numerically is not that
easy in fact even harder. The solution strategies for fluid-structure interaction problems
have been the rage for almost two decades, this chapter will sorts it all out with refer-
ences therein. Furthermore, we will explain the general differences between the direct
and iterative solvers. The set of core ideas of iterative solvers like Krylov subspace
solver and multigrid solvers strategies will be explained thoroughly with associated
references. The methods which have been used will be specifically mentioned.

4.1 Solution Algorithm

After discretization in time by following the foot steps of Rothe method [83] and in
space by the standard Galerkin finite element method we arrived at

F (X) = 0
�

�

�

�4.1

which is a set of nonlinear algebraic equations of the form for the unknown vector
X = (uh,vh, ph)

Muh−
k
2
(Msvh+L f uh) = rhs(un

h,v
n
h)

�

�

�

�4.2

(M f +βMs)vh+
k
2

N1(vh,vh)+
1
2

N2(vh,uh)

+
k
2
(Ss(uh)+Sf (vh))−kBf (vh)ph = rhs(un

h,v
n
h)

�

�

�

�4.3

Cs(uh)+Bf T
(vh)vh = rhs(1, ph)

�

�

�

�4.4

whereM is the mass matrix,Ms, M f are the mass matrices corresponding to the integra-
tion over only fluid or solid sub-domains such thatM = Ms+M f , N1 andN2 represent
the convective term in ALE formulation,Ss andSf are the stress operators (elastic for
the solid part and diffusive for the fluid),C is the incompressibility constraint for the
solid, B is discrete gradient operator (B = Bs+Bf ) andL f is the operator realizing
the mesh motion in the fluid domain. All of the operators, apart of the dependences
indicated explicitly, also depend on theuh. The right hand sides depend on the values
of the unknowns in the previous time step.
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This structure of the system is followed from the weak form ofequations (
�

�

�

�3.24 –
�

�

�

�3.26 ), derived in the Chapter 3. The involved quantities read as follows:

Muh =
(
un+1

h ,η
)

Msvh =
(
vn+1

h ,η
)

s

L f uh =
(
∇un+1

h ,∇η
)

f

rhs(un
h,v

n
h) = (un

h,η)−
kn

2

{
(vn

h,η)s+(∇un
h,∇η) f

}

M f vh =
(

Jn+ 1
2 vn+1

h ,ξ
)

f

Msvh =
(
vn+1

h ,ξ
)

s

N1(vh,vh) =
(
Jn+1Gradvn+1

h (Fn+1)−1vn+1
h ,ξ

)
f

N2(vh,vh) =
(
JnGradvn

h(F
n)−1(un+1

h −un
h),ξ

)
f

−
(
Jn+1Gradvn+1

h (Fn+1)−1(un+1
h −un

h),ξ
)

f

Ss(uh) =

(
∂Ψ
∂F

(Gradun+1
h ),Gradξ

)

s

Sf (vh) = µ
(
Jn+1Gradvn+1

h (Fn+1)−1,Gradξ (Fn+1)−1)
f

Bf (vh) =
(
Jn+1pn+1

h (Fn+1)−T ,Gradξ
)

s

rhs(un
h,v

n
h) =−

(
Jn+ 1

2 vn
h,ξ
)

f
−β (vn

h,ξ )s+
kn

2

{(
∂Ψ
∂F

(Gradun
h),Gradξ

)

s

+µ
(
JnGradvn

h(F
n)−1,Gradξ (Fn)−1)

f +
(
JnGradvn

h(F
n)−1vn

h,ξ
)

f

}

Cs(uh) =
(
Jn+1,γ

)
s

Bf T
(vh)vh =

(
Jn+1Gradvn+1

h (Fn+1)−1,γ
)

f

rhs(1, ph) = 1.

Equivalently, the discrete set of equations (
�

�

�

�3.24 –
�

�

�

�3.26 ) can also be written as




Suu Suv 0
Svu Svv kB

cuBT
s cvBT

f 0






u
v
p


=




fu
fv
fp


 ,

which is a typical nonlinear saddle point problem, whereSdescribes the diffusive and
convective terms from the governing equations.

The linearized problem reads

∂F

∂X
(X) =



M− k
2L f k

2Ms 0
1
2

∂N2
∂uh

+ k
2

∂ (N1+Ss+Sf )
∂uh

+k ∂B
∂uh

ph Ms+βM f + 1
2

∂N2
∂vh

+ k
2

∂ (N1+S2
f )

∂vh
kB

BsT + ∂Bf T

∂uh
vh Bf T

0



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4.2 Nonlinear Solver

The system
�

�

�

�4.1 of nonlinear algebraic equations is solved using Newton method as
the basic iteration by two ways, either as continuous Newtonmethod on variational
level (before discretization), which implies that the continuous Frechet operator can be
analytically calculated or by inexact Newton method on matrix level (after discretiza-
tion) which means that the Jacobian matrix is approximated using finite differences. In
the subsequent sections we described the general formulas of Newton method then the
more specific definition of the used invariants of Newton methods are given.

4.2.1 Newton’s Methods and Its Variants

Consider a vector functionf ∈ C1(I) and f
′
(X) 6= 0 for all X ∈ I , then the standard

Newtons iteration formula is

Xn+1 = Xn− f (Xn)

f ′(Xn)
∀n≥ 0.

�

�

�

�4.5

The basic idea of the Newton iteration is to find a root of a nonlinear algebraic equation,�

�

�

�4.1 by using the available known function value and its non zero first derivative.
Then the standard Newton iteration formula for this nonlinear algebraic system can be
formulated as for givenX0 ∈ R

n n= 1, . . . ,n until convergence:

Solve JF (Xn)δXn = F (Xn) ⇒ δXn = [JF (Xn)]−1
F (Xn)

�

�

�

�4.6

Set Xn+1 = Xn+δXn
�

�

�

�4.7

whereX = (uh,vh, ph) andJF (Xn) = ∂F (Xn)
∂X is the Jacobian matrix. At each stepn

the solution of linear system with matrixJF (Xn) is required. The convergence of this
basic iteration can be characterized by the following standard result.

Theorem 6 Let X be a solution ofF (X) = 0 and JF (Xn) = ∂F

∂X (Xn) is invertible
and locally Lipschitz continuous. Then, ifX0 is sufficiently close toX, the Newton
algorithm has the following property

||Xn+1−X|| ≤ c||Xn−X||2.

Proof 3 For proof see [104] theorem 7.1.

We can see that this gives us quadratic convergence providedthat the initial guess is
sufficiently close to the solution. To ensure the convergence globally some improve-
ments of this basic iteration are used which follows in the next section.

4.2.2 Modified Newton’s Methods

There are several modification made to the Newton’s method inorder to reduce the cost
when the computed solution is sufficiently close toX.
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Inexact Newton It means to solve the system
�

�

�

�4.7 by an iterative method in which
the admissible iteration is fixed a priori. The schemes are identified as Newton-Jacobi,
Newton-SOR or Newton-Krylov methods, according to the iterative process that is used
for the linear system in [84]. However, we used the divided differences approximation
for Jacobian approximation.

Difference Approximation of the Jacobian On the discrete level theinexact New-
ton method is applied by replacingJF (X) (whose explicit computation is often expen-
sive), and since we know the sparsity pattern of the matrix inadvance, which is given
by the used finite element method, it can be computed by finite differences from the
residual vectorF (X)

(JF (Xn))i j =

[
∂F

∂X

]

i j
(Xn)≈ [F ]i(Xn+α jej)− [F ]i(Xn−α jej)

2α j
,

�

�

�

�4.8

whereej are the unit basis vectors inRn and the coefficientsα j > 0 are increments

to be suitably chosen at each stepn of the iteration
�

�

�

�4.7 and can be taken adaptively
according to the change in the solution in the previous time step. Now the Newton
iteration in this case reads

Xn+1 = Xn+[Jn
α ]

−1
F (Xn),

�

�

�

�4.9

the truncation error w.r.tα j which arise from the divided difference
�

�

�

�4.8 can be re-
duced by reducing the size ofαn

j . However, a too small value ofαn
j can lead of limit-

ing the truncation errors and ensuring a certain accuracy incomputations. A possible
choice which is been used is

αn
j =−b∗

√
εM

Whereb∗ parameter to be assigned at start, see [114, 84]. However, the resulting
nonlinear and linear solution behavior is quite sensitive w.r.t. the parameters, which
will be shown in Chapter 6 in detail in numerical results section. This computation can
be done in an efficient way so that the linear solver remains the dominant part in terms
of the CPU time (see [122, 128]).

4.2.3 Quasi-Newton’s Methods

Quasi-Newton’s methods are all those schemes in which globally convergent methods
are coupled with Newton-like methods that are only locally convergent, but with an
order greater than one. The Quasi-Newton’s method for an initial valueX0 ∈ R

n at
each stepn has the following steps

1. ComputeF (Xn) by lettingXn be some starting guess

2. Set the residuum vectorRn = F (Xn) and the tangent matrixA = ∂F

∂X (Xn).

3. Solve the linear system for correctionδX

AδX = Rn

or
JF (Xn)δXn = F (Xn)
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4. Find optimal step lengthω.

5. Update the solutionXn+1 = Xn+ωnδXn,

whereωn are suitable damping parameters. Here step 4. is the characterizing part of
this family of methods. We also used the damped Newton methodwith line search
which is accomplished as follows

The Damped Newton Methodwith line search improves the chance of convergence
by adaptively changing the length of the correction vector (see [122, 75] for more
details). The damping parameterωn ∈ (−1,0) is chosen such that

F (Xn+1) ·Xn+1 ≤ F (Xn) ·Xn.

The damping greatly improves the robustness of the Newton iteration in the case when
the current approximationXn is not close enough to the final solution, see [122, 75] for
more details.

By using the solution update step in the Newton method we explain the line search
technique here

Xn+1 = Xn+ωnδXn,
�

�

�

�4.10

where the parameterωn is determined such that a certain error measure decreases. One
of the possible choices for the quantity to decrease is

f (ω) = F (Xn+ωnδXn) ·δXn.
�

�

�

�4.11

Since we know from eq
�

�

�

�4.11

f (0) = F (Xn) ·δXn,

and taking derivative of
�

�

�

�4.11 with respect toω

f ′(ω) =
∂ f (ω)

∂ω
=

∂F

∂X
(Xn+ωnδXn)δXn ·δXn

f ′(0) =

[
∂F

∂X
(Xn)

]
δXn ·δXn ≡ [JF (Xn)]δXn ·δXn,

�

�

�

�4.12

making use of
�

�

�

�4.7 to
�

�

�

�4.12 above equation we reach

f ′(0) = F (Xn) ·δXn,

and computingf (ω0) for ω0 = −1 or ω0 determined adaptively from previous itera-
tions, we can approximatef (ω) by a quadratic function

f (ω) =
f (ω0)− f (0)(ω0+1)

ω2
0

ω2+ f (0)(ω +1).

Then setting

ω̃ =
f (0)ω2

0

f (ω0)− f (0)(ω0+1)
,
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the new optimal step lengthω ∈ [−1,0] is

ω =





− ω̃
2

if
f (0)

f (ω0)
> 0,

− ω̃
2
−
√

ω̃2

4
− ω̃ if

f (0)
f (ω0)

≤ 0.

This line search can be repeated withω0 taken as the lastω until, for example,f (ω)≤
1
2 f (0). By this safeguarding we can enforce a monotone convergenceof the approxi-
mationXn [84] theorem 3.2.4. Ifωn = 1 then the Quasi Newton method and Newton
method are the same and only one iteration is required.

Remark 4.13 Without line search/damping the Newton’s method is only locally con-
vergent. It means it converges only when we are close to the solution. If roots are far
away from the solution at start then it is not clear whether itconverges or not. These
methods (line search or damping) are all methods which make the Newton method
globally convergent.

Remark 4.14 Trust region methods overcome the problems that line searchmethods
face. The specific trust region methods are presented which effect a smooth transition
from the steepest descent direction to the Newton directionin a way that gives the
global convergence properties of steepest descent and the fast local convergence of
Newton’s method in [84] (section 3.3).

4.3 Linear Solvers

Linear solvers are generally divided into two broad categories, the direct solvers and
iterative solvers. The direct methods or solvers are those which in the absence of
roundoff error give the exact solution to a linear system after a finite number of steps.
Contrarily iterative solvers or methods refer to techniques that computes iterative steps
ever better approximation to obtain accurate solutions to alinear system at each step.

In the following subsections, short description of the method of choice for our own
problem is given briefly and further references are directedfor better understanding.

4.3.1 Direct Solver

In this category, when we have small system for instance (i.e. number of unknowns less
than 20.000) then a direct linear solver for sparse systems like UMFPACK (see [40])
is preferably used, which appears to be a good candidate, at least in 2D. Moreover
this choice provides very robust linear solvers, however its memory and CPU time
requirements are too high for larger systems.

In the next paragraph brief insight of UMFPACK is given

UMFPACK is a set of routines for solving unsymmetric sparse linear systems,

AX = b,
�

�

�

�4.15
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by using the Unsymmetric-pattern MultiFrontal method and direct sparse LU factor-
ization. The sparse matrixA can be square or rectangular, singular or non-singular,
and real or complex (or any sort). Only square matricesA can be used to solve

�

�

�

�4.15
or related systems. However rectangular matrices can only be factorized.

It is written in ANSI/ISO C, with a MATLAB interface and relies on the Level-3 Basic
Linear Algebra Subprograms (dense matrix multiply) for itsperformance. This code
works on Windows and many versions of Unix (Sun Solaris, Red Hat Linux, IBM AIX,
SGI IRIX, and Compaq Alpha). A short introduction to Unix users of the C interface
of UMFPACK is reported in [41, 39].

4.3.2 Iterative Solvers

Iterative solvers further divided and categorized into twomajor broad classes, namely
Krylov Subspace solvers and Multigrid solver. In the following subsection general
description of these methods documented and the solution algorithm to solve very own
FSI problem is incorporated. For detail insight on the iterative methods one may go
through [114].

Krylov Subspace Solver

Possibly the large linear problems can be solved by Krylov-space methods (BiCGStab,
GMRes, see [8]) with suitable preconditioners. One possibility is the ILU precondi-
tioner with special treatment of the saddle point characterof our system, where we
allow certain fill-in for the zero diagonal blocks, see [22].

Here, we describe the very basic detail of Krylov subspace method and associated
preconditioners in similar order in the following two paragraphs.

The Krylov subspace methods are considered currently amongthe most important iter-
ative techniques available for solving large linear systems. These techniques are based
on projection processes, both orthogonal and incline, ontoKrylov subspaces, which are
subspaces spanned by vectors of the formp(A)v wherep is a polynomial. Precisely,
theses techniques approximateA−1b by p(A)b, wherep is good polynomial. Because
the vectors tend very quickly to become almost linearly dependent, methods relying on
Krylov subspace frequently involve some orthogonalization scheme, such as Lanczos
iteration for Hermitian matrices or Arnoldi iteration for more general matrices [114]. A
general projection method for solving the linear system

�

�

�

�4.15 is a method which seeks
an approximate solutionxm from an affine subspacex0+Km of dimensionmunder the
condition

b−Axm⊥Lm

whereLm is another subspace of dimensionm. Here,x0 represents an arbitrary initial
guess to the solution. AKrylov subspacemethod is a method for which the subspace
Km is the Krylov subspace

Km(A, r0) = span
{

r0,Ar0,A2r0, . . . ,Am−1r0
}
,

wherer0 = b−Ax0. For simplicityKm(A, r0) will be denoted byKm. The different
versions of Krylov subspace methods arise from different choices of the subspacesLm

and importantly from the ways in which the system is preconditioned.
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It is clearly seen that the approximations obtained from a Krylov subspaces methods
are of the form from the approximation theory point of view,

A−1b≈ xm = x0+qm−1(A)r0,

in which qm−1 is a certain polynomial of degreem− 1. In the simplest case where
x0 = 0, then

A−1b≈ qm−1(A)b.

In other words,A−1b is approximated byqm−1(A)b.

Although all the techniques provide the same type of polynomial approximations, the
choice ofLm, i.e., the constraints used to build these approximations,will have an
important effect on the iterative technique. Two broad choices forLm give rise to the
best known techniques [114].

1. The first is simplyLm = Km and the minimum-residual variationLm = AKm.
A few of the numerous methods in this category are the Arnoldi, the symmet-
ric Lanczos, Conjugate gradient, GMRES (generalized minimum residual), the
Conjugate residual method, GCR, ORTHOMIN, and ORTHODIR methods.

2. The second class of methods is based on definingLm to be a Krylov subspaces
methods associated withAT , namely,Lm=Km(AT , r0). Methods of this class are
Lanczos Bi orthoganalization, BiCG, QMR (quasi minimal residual), BiCGSTAB
(biconjugate gradient stabilized), TFQMR (transpose-free QMR), and MINRES
(minimal residual) methods.

There are also block extensions of each of these methods termed block Krylov subspace
methods, see [114] for further comprehensive survey of eachof the above sub methods.

Preconditioning Preconditioning is a key ingredient for the success of Krylov sub-
space methods in the applications to follow in next chapter and many other engineering
applications.

It is well fact that iterative solver keep inherent robustness/stability issues compare to
direct solvers. Although, they are applicable to large linear system but stability related
issues restrict the wide use of iterative solvers in many industrial applications.

It is well observed that, lack of robustness is a widely recognized weakness of iterative
solvers, relative to direct solvers, which damage the acceptance of iterative methods
in industrial application despite their applicability forvery large linear systems. To
circumvent this, both the efficiency and robustness of iterative techniques can be im-
proved by using preconditioning. Preconditioning is simply means of transforming the
original linear system into one which has the same solution,but which is likely to be
easier to solve with an iterative solver. In general, the reliability of iterative techniques,
when dealing with various applications, depends much more on the quality of the pre-
conditioner than on the the particular Krylov subspace accelerator used. Finding a good
preconditioner to solve a given sparse linear system is often viewed as combination of
art and science. Theoretical results are rare and some methods work surprisingly well,
often above expectations. A preconditioner can be defined asan supplementary ap-
proximate solver which is combined with an outer iteration technique, typically one of
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the Krylov subspace iterations. We employed the most successful techniques used to
precondition a sparse linear system arrive in our problem. However, common feature
of the preconditioners are built from the original coefficient matrix. Roughly speaking,
a preconditioner is any form of implicit or explicit modification of an original linear
system which make it easier to solve by a given iterative methods.

For example, scaling all rows of a linear system to make the diagonal system to make
the diagonal elements equal to one is an explicit form of preconditioning. The resulting
system can be solved by a Krylov subspace method and may require fewer steps to
converge than with original system (although this is not guaranteed).

One of the simplest ways of defining a preconditioner is to perform an incomplete
factorization of the original matrixA. This implies a decomposition of the formA =
LU −R whereL andU have the same nonzero structure as the lower and upper parts
of A respectively andR is the residual or error of factorization.

Zero fill-in ILU(0)
The incompleteLU factorization technique with no fill-in, denoted byILU (0), consists
of taking the zero patternp to be precisely the zero pattern ofA. By definition , together
the L andU matrices inILU (0) have the same number of nonzero elements as the
original matrixA, see [114] 10.3.2.

This incomplete factorization is rather easy and inexpensive to compute. On the other
hand, it often leads to a crude approximation which may result in the Krylov subspace
accelerator requiring many iteration to converge. To circumvent this, several alternative
incomplete factorization have been developed by allowing more fill-in in L andU. In
general, the more accurateILU factorizations require fewer iterations to converge, but
the preprocessing cost to compute the factors is high [114].

Level of fill and ILU(P)
The accuracy of theILU (0) incomplete factorization may be insufficient to yield an
adequate rate of convergence [114] example 10.2. More accurate incompleteLU fac-
torizations are often more efficient as well as more reliable. These more accurate fac-
torizations will differ fromILU (0) by allowing some fill-in. Thus,ILU (1) keeps the
first order fill-in, a term which is explained in [114] 10.3.3.There are few drawbacks
to theILU (p).

• The amount of fill-in and computational work to get theILU (p) factorization is
not predictable forp> 0.

• The cost of updating the levels can be quite high.

Most importantly, the level of fill-in for indefinite matrices may not be a good indicator
of the size of the elements that are being dropped. This normally leads to large number
of iteration to achieve the convergence. The popular strategies to circumvent this issue
are ModifiedILU (MILU ) factorization andILUT strategies.

Historically, incomplete factorization preconditionerswere developed for the regular
structure matrices, rather than for general sparse matrices [114].

Multigrid Solver

Multigrid methods were invented for partial differential equation such as Poisson’s
equation, however they work on wider class of problems too. In contrast to other it-
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erative methods discussed before, multigrid’s convergence rate is independent of the
problem sizeN. For a general introduction to multigrid we refer to the bookof Hack-
bush [66].

As an alternative, we also utilized an efficient standard geometric multigrid approach to
solve the discretized fluid structure interaction problem which is based on a hierarchy of
grids obtained by successive regular refinement of a given coarse mesh which is today
one of the the fastest iterative linear solvers for CFD problems, (see [133]). Inside
multigrid, restriction is applied to the residual after smoothing on all mesh levels and
a direct sparse linear solver [40] is utilized to obtain the coarsest grid solution, if the
number of degrees of freedom is sufficiently small. Prolongation is then applied which
is followed by post-smoothing to give a better approximation. These steps continue
until a V or F-cycle of multigrid iterations is finished.

To explain how multigrid works, we need some operators that take a problem one one
grid level and either improve it or transform it to a related problem on another grid.

In the following we describe a prototypical multigrid procedure to solve the linear
systemAiui = bi , which contains the following steps:

1. Start with an initial guess on fine grid leveli, u0
i , executej = 0, . . . ,m−1 pres-

moothing steps to get a more accurate iterate

u j+1
i = Si(u

j
i ).

The smoothing operatorSi essentially computes a first improved approximation
to A iui = bi .

2. The presmoothing steps should have “smoothed/damped” the high frequency
components of the error/residual sufficiently so that the remaining error will be
seen as having a high frequency on a coarser grid. So to speak,The variation of
Jacobi’s method makes the solution smoother, which is equivalent to getting rid
of high frequency error. Calculate the residual and restrict it to a coarser grid

r i−1 = Ri−1
i (bi −Aiu

m
i )

whereRi−1
i is the restriction operator from the fine grid leveli to the coarser grid

level i −1, which is an approximation on the coarser grid.

3. Solve recursively on the coarse grid system

Ai−1u∗i−1 = r i−1

to get the correctionu∗i−1.

4. Prolongate the calculated correction to the next finer grid level and apply

um+1
i = um

i +αiPi
i−1u∗i−1,

whereαi is a suitably chosen damping parameter andPi
i−1 is the prolongation or

interpolation operator from grid leveli −1 to leveli.

5. Executel = 0, . . . ,n−1 number of postsmoothing steps (likewise in step 1) to
get the final solutionum+1+n

i .
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It is common to apply these steps recursively on a successionof grid levels to achieve
a faster reduction of error. Appropriate algorithms now have to be chosen for the
prolongation, restriction, smoother, and solver components to achieve full efficiency.
The basic idea of construction of MGV and MGF which is been part of MG is as
follows

Multigrid V-Cycle (MGV) The basic multigrid V-cycle algorithm states

Multigrid V-Cycle (MGV)

functionMGV(bi ,ui) . . . replace an approximate solutionui

. . . of Aiui = bi with an improved one

if i = 1 . . . only one unknown

compute the exact solutionu1 of Prob1

returnu1

else

1. ui = S(bi ,ui) . . . improve the solution

2. r i = A i ·ui −bi . . . compute the residual

3. di = P(MGV(R(r i),0) . . . solve recursively on coarser grid level

4. ui = xi −di . . . correct fine grid solution

5. ui = S(bi ,ui) . . . improve the solution again

returnui

endif

The algorithm is called a V-cycle, because if we draw it schematically in (grid number
i, time) space, with a point for each recursive call to MGV. Themultigrid cycles looks
like in Figure. 4.1. Although, W-cycles are usually more robust and they are easier

Figure 4.1: Multigrid V, W, F cycles from left to right

to analyze in the classical multigrid convergence theory. However, they are more ex-
pensive and in local refinement applications they may fail tohave optimal work count.
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W-cycles are especially expensive in parallel algorithms when frequent coarse grid vis-
its leads to poor processor utilization. Either V- or W-cycles can (and should be) used
in FMG. However, we used the V-cycle for the calculations.

Full Multigrid (FMG) The ultimate multigrid algorithm which uses the MGV as a
building block and known as full multigrid (FMG) is employedand states.

Multigrid F-Cycle (FMG)

functionMGF(bi ,ui) . . . return an accurate solutionui of Aiui = bi

solveA1u1 = b1 exactly to getu1

for i = 2 tok

ui = MGV(bi ,P(ui))

end for

A picture of FMG in (grid numberi, time) space is shown in 4.1. There is one ”V”
in this picture for each call to MGV in the inner loop of FMG. Weused interpola-
tion operators for the prolongation and restriction routines as are normally constructed
as pure interpolation operators. There are other alternative approaches like discrete
L2-projection operators and others, which has been developedfor highly anisotropic
grids, is to embed appropriate weighting in the operators toproperly account for the
anisotropies [106]. This approach is potentially advantageous for two-phase flow simu-
lations since the discontinuous density and viscosity fields can be interpreted as anisotropies.

Advantages The idea behind multigrid is to assemble and iteratively solve the linear
systems on a sequence of grids. This allows for the slowly converging low frequency
errors on the finest grid to quickly be filtered out on the coarser grids (the low frequency
error is seen as having a higher frequency on the coarser grids). A near linear efficiency
can in this way be achieved in the optimal case (with linear meaning that the cost of
solving the systems increase linearly with the number of degrees of freedom) [66].
This is in contrast to standard iterative solvers which require an increasing number of
iterations to converge as the computational grids are refined.

Coupled Multigrid with Vanka-type Smoothing This type of multigrid smoothers
has been originally introduced by Vanka [130] for solving the Navier-Stokes equations
discretized by finite differences. The smoother is sometimes denoted as symmetrically
coupled Gauss-Seidel (SCGS) [130] or box iteration/relaxation [133]. The Vanka tech-
nique has especially been developed to deal with saddle point systems exhibiting a zero
block appearing on the diagonal of the system matrix, where standard (point-wise) Ja-
cobi or Gauss-Seidel smoothers fail. Stokes and linearizedNavier-Stokes systems be-
long to this category which is the main reason for the strong influence the method had
(and still has) in the field of computational fluid dynamics (CFD) and fluid-structure
interaction (FSI) is obviously not the different. Other reasons are that it can be imple-
mented with the help of elementary techniques available in all finite element packages
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and that it is efficient and robust for a wide class of problem configurations. The main
idea of the Vanka approach is to directly couple all field variables, i. e., velocity, dis-
placements and pressure in our case, on a local level, resulting in small coupled systems
that have to be solved successively.

We used on finer levels a fixed number of smoothing steps of iterations by local MPSC
schemes (Vanka-like smoother) which acts locally in each elementΩi on all levels
[122, 130, 75]. Such iterations can be written as




ul+1

vl+1

pl+1


=




ul

vl

pl


−ω l ∑

Ωi




Suu|Ωi
Suv|Ωi

0
Svu|Ωi

Svv|Ωi
kB|Ωi

cuBT
s|Ωi

cvBT
f |Ωi

0




−1


deflu
deflv
de flp


 .

The inverse of the local systems (39×39) can be done by hardware optimized direct
solvers. The full nodal interpolation is used as the prolongation operatorP with its
transposed operator used as the restrictionR = PT [73, 122].

Idea Behind Vanka-type Smoothers The primitive idea of Vanka-type smoothers is
to divide the mesh into small subregionsΩi and treat them separately. One smoothing
step consists of a loop over all theseΩi ’s, where steps to be followed in each iteration
are

1. Assemble a small local matrix from the global matrix whichconstitute the num-
ber of unknowns to the current subregions.

2. Construct associated local residual which is done viaILU method, i. e., infor-
mation, which has been updated in previously treated subregions, is immediately
incorporated into the assembly process of the current localresidual.

3. Solve the resulting system with the local residual as right hand side. Note that
the resulting local matrices are always invertible. The associated boundary con-
ditions are incorporated accordingly. A direct solver is employed to invert the
local systems.

4. Update the corresponding parts of the global solution with this local correction.

This is a general description of the Vanka process. In this thesis we used the Element-
based Vanka smoother for the FSI problem. Their numerical studies are reported in
[134] in detail with highlighting the general drawbacks andadvantages with respect to
isotropic meshes, aspect ratios, relaxation parameter andmaterials under consideration.

Survey on Vanka-type Smoothers Although there is not much literature found on
the theoretical aspects of Vanka-type smoothing but enoughliterature can be found pre-
senting numerical studies in the context of the discretisedNavier-Stokes equations in
CFD [91, 94, 117]. In all these numerical test cases, the smoother is extensively tested
on the benchmark configuration ’flow around a cylinder’ [127,122] for the steady and
unsteady state. Ouazzi and Turek [99] transfer the Vanka idea to edge-oriented storage-
and stabilization techniques for the Navier-Stokes equations. For further references, see
the overview paper of Wesseling and Oosterlee [133] and comparative solver studies
including Vanka smoothers in [122]. Hron and Turek [75] employ Vanka smoothers to
solve coupled systems arising from theQ2P1 discretization of fluid structure interaction
problems which is been employed in this thesis.
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The fool collects facts; wise man
selects them.

John Wesley Powell

5
Numerical Applications

It is well known that every mathematical modeling is done forthe real life physical
phenomena and later numerical simulation are based on it. Our is not different, we
applied the proposed mathematical model to wide range of real life application from
engineering to biomechanics. In this chapter validation ofthe proposed method for
well known numerical benchmark will be made. This chapter will be divided into
three sections based on three different applications, namely, the benchmarking and
validation of the code, experimental benchmark calculations and the hemodynamics
aneurysm application.

5.1 FSI Benchmarking

This benchmark settings are described in a way for the rigorous evaluation of different
methods to test and compare numerical methods and codes for fluid-structure interac-
tion problems. It is based on the older successful DFGflow around cylinderbenchmark
developed in [127] for incompressible laminar fluid flow. Theconfigurations consist
of laminar incompressible channel flow around an elastic object which results in self-
induced oscillations of the structure while the deformation of the structure should be
significant. The fluid is assumed to be incompressible while the structure is allowed
to be compressible or incompressible. The mathematical modeling is done in Chapter
2. Moreover, characteristic flow quantities and corresponding plots are provided for a
quantitative comparison.

The overall setup of the interaction problem is such that thesolid object with elastic
part is submerged in a channel flow. Then, self induced oscillations in the fluid and the
deformable part of the structure are obtained so that characteristic physical quantities
and plots for the time-dependent results are provided (see [124, 125, 111], for more
detail).

The results and experience gained from this benchmark setting will provide invaluable
experience and data that will go into the development of a large scale, sophisticated,
accurate and reliable simulation model.

5.1.1 Definitions

Although, rigorous mathematical formulation of this benchmark scenario is described
in Chapter 2, however, in the subsequent sections we will define briefly the configu-
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ration in which the flow of anincompressible Newtonian fluid interacting with an
elastic solidis considered.

Fluid Properties

The fluid is considered to beNewtonian, incompressibleand its state is described by
the velocity and pressure fieldsv f , pf . The balance equations are

ρ f ∂v f

∂ t
+ρ f (∇v f )v f = divσ f

divv f = 0
in Ω f

t .

The material constitutive equation is

σ f =−pf I +ρ f ν(∇v f +∇v f T
).

The constant density of the fluid isρ f = 1 and the viscosity is denoted byν . The
Reynolds number is defined by Re= 2rV̄

ν , with the mean velocitȳV = 2
3v(0, H

2 , t), r
radius of the cylinder andH height of the channel (see Fig. 5.1).

Structure Properties

The structure is assumed to beelastic, and eitherincompressibleor compressible. Its
configuration is described by the displacementus, with velocity fieldvs = ∂us

∂ t , and in
the incompressible case additionally by the Lagrange multiplier ps introduced due to
the incompressibility of the material. The balance equations are

ρs∂vs

∂ t
+ρs(∇vs)vs = div(σs) in Ωs

t .

The Cauchy stress tensorσs is specified by the constitutive laws which are derived and
explained in Chapter 2 in section 2.5.2.

Interaction Condition

The boundary conditions on the fluid solid interface are assumed to be

σ f n = σsn

v f = vs
on Γ0

t ,

wheren is a unit normal vector to the interfaceΓ0
t .

Independent Material Parameters

To introduce the minimal set of independent parameters describing the materials we
divide the momentum equations by the constantρ f and introduce the following pa-
rameters

β =
ρs

ρ f

α =
µ
ρ f
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which together with the Poisson ratioνP and the kinematic viscosityν of the fluid
characterize the materials.

Domain Definition

The domain is based on the 2D version of the well-knownflow around cylinderDFG
benchmark [127] and showed here in Figure 5.1. By omitting the elastic bar behind the
cylinder one can exactly recover the setup of theflow around cylinderconfiguration
which allows for validation of the flow part by comparing the results with the older
flow benchmark. The geometry parameters are given as follows(all values in meters):

L

H

l

h

(0,0)

C

r

l

h
A

Figure 5.1: Computational domain and detail of the structure part

• The domain dimensions are: lengthL = 2.5, heightH = 0.41.

• The circle center is positioned atC = (0.2,0.2) (measured from the left bottom
corner of the channel) and the radius isr = 0.05.

• The elastic structure bar has lengthl = 0.35 and heighth= 0.02, the right bottom
corner is positioned at(0.6,0.19), and the left end is fully attached to the fixed
cylinder.

• The control point isA(t), attached to the structure and moving in time with
A(0) = (0.6,0.2).

The setting is intentionally non-symmetric (see [127]) to prevent the dependence of the
onset of any possible oscillation on the precision of the computation.

Boundary Conditions

The following boundary conditions are prescribed:

• Parabolic velocity profile is prescribed in the left channelinflow

vf (0,y) = 1.5Ū
y(H −y)
(

H
2

)2 = 1.5Ū
4.0

0.1681
y(0.41−y),

�

�

�

�5.1
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geometry parameters value
channel length L 2.5
channel width H 0.41
cylinder center position C (0.2,0.2)
cylinder radius r 0.05
elastic structure length l 0.35
elastic structure thickness h 0.02
reference point A (0.6,0.2)

Table 5.1: Overview of the geometry parameters.

such that the mean inflow velocity is̄U and the maximum of the inflow velocity
profile is 1.5Ū .

• The outflow condition can be chosen by the user. For examplestress freeor do
nothingconditions. The outflow condition effectively prescribes some reference
value for the pressure variablep. While this value could be arbitrarily set in the
incompressible case, in the case of compressible structurethis will have influence
on the stress and consequently the deformation of the solid.In this description,
the reference pressure at the outflow is set to havezero mean value.

• Theno-slipcondition is prescribed for the fluid on the other boundary parts. i.e.
top and bottom wall, circle and fluid-structure interfaceΓ0

t .

Initial Conditions

• Zero velocity in the fluid and no deformation of the structure.

• Other suggested starting procedure is to compute the steadysolution for the same
problem withν = 10−2 and structure being solid (i.e.us = 0) and use such a
solution as the initial solution. So the starting procedurefor the non-steady tests
is to use a smooth increase of the velocity profile in time as

vf (t,0,y) =

{
vf (0,y)

1−cos( π
2 t)

2 if t < 2.0

vf (0,y) otherwise

�

�

�

�5.2

wherevf (0,y) is the velocity profile given in
�

�

�

�5.1 .

5.1.2 Material parameters

An overview of certain material properties for some relevant fluids and elastic materials
is shown in the Table 5.2. The choice of the parameters for thebenchmark is guided by
several requirements. First, we would like the flow to be in the laminar regime, which
implies ”small” Reynolds numbers. On the other hand, the flowshould be capable
of deforming the elastic structure. A typical fluid candidate for such experiments is
glycerine.
In order not to introduce additional numerical complications connected with high as-
pect ratios in the geometry, the deformable structure has a certain thickness which
requires that the stiffness of the material should be low enough to allow significant
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solid material ρs [ kg
m3 ] νs E [106 kg

ms2
] µs [106 kg

ms2
]

polybutadiene 910 0.50 1.6 0.53
polyurethane 1200 0.50 25 8.3
polypropylene 1100 0.42 900 317
PVC 1400 0.42 1500 528
steel 7800 0.29 210000 81400
cork 180 0.25 32 12.8

fluid material ρ f [ kg
m3 ] ν f [10−6 m2

s ] µ f [10−3 kg
ms]

air 1.23 0.015 0.018
aceton 790 0.405 0.32
ethyl alcohol 790 1.4 1.1
oil, vegetable 920 76.1 70
water 1000 1.14 1.14
blood 1035 3 – 4 3 – 4
glycerine 1260 1127 1420
honey 1420 7042 10000
mercury 13594 0.0114 1.55

Table 5.2: Overview of some solid and fluid material parameters (densitiesρ f , ρs,
Poisson ratioνs, Young modulusE, shear modulusµs, dynamic viscosityµ f and kine-
matic viscosityν f )

deformations. Certain rubber-like materials fit into such asetting, namely polybu-
tadiene (for a future incompressible configuration) and polypropylene. In Table 5.3
the material parameters are presented for two combinationsof glycerine and selected
rubber-like material.

parameter
polybutadiene
& glycerine

polypropylene
& glycerine

ρs [103 kg
m3 ] 0.91 1.1

νs 0.5 0.42
µs [106 kg

ms2
] 0.53 317

ρ f [103 kg
m3 ] 1.26 1.26

ν f [10−3 m2

s ] 1.13 1.13

Table 5.3: Proposed material combination

Quantities for Comparison

Comparisons will be done forfully developed flow, and particularly forone full period
of the oscillationwith respect to the position of the pointA(t). The position of point
A(t) is time dependent. The quantities of interest are:

1. The displacementsu1(t) andu2(t) in x- and y-direction of the pointA(t) at the
end of the beam structure (see Figure 5.1) for one full period.

2. Forces exerted by the fluid on thewholesubmerged body, i.e. lift and drag forces
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acting on the cylinder and the beam structure together

(FD,FL) =
∫

S
σndS,

(FD,FL)
T =

∫

S
σ fndS=

∫

S1

σ fndS+
∫

S2

σ fndS,

whereS= S1∪S2 (see Fig. 5.2) denotes the part of the circle being in contact
with the fluid (i.e. S1) plus part of the boundary of the beam structure being
in contact with the fluid (i.e.S2) andn is the outer unit normal vector to the
integration path with respect to the fluid domain.

S1
S2

S0

Figure 5.2: Integration pathS= S1∪S2 for the force calculation.

Remark: The force can be calculated in several different ways, i.e.

(FD,FL) =
∫

S
σndS=

∫

S1

σ f ndS+
∫

S2

σ f ndS

=
∫

S1

σ f ndS+
∫

S2

σsndS

=
∫

S1

σ f ndS+
∫

S2

1
2
(σs+σ f )ndS

=
∫

S0

σndS

The time dependent values are represented by the mean value,amplitude and frequency.
The mean value and amplitude are computed from the last period of the oscillations by
taking the maximum and minimum values, then the mean value istaken as average of
the min/max values, and the amplitude is the difference of the max/min from the mean:

mean=
1
2
(max+min)

amplitude=
1
2
(max−min)

The frequency of the oscillations can be computed either from the period timeT as

frequency=
1
T

or by using fourier analysis on the periodic data and taking the lowest significant fre-
quency present in the spectrum. Additionally, a plot of the quantities over the period
are presented.

All quantities are time dependent and are compared foronefull period. For the valida-
tion of the employed fluid and solid solvers, we performed computations for 3 different
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parameter FSI1 FSI2 FSI3
ρs [103 kg

m3 ] 1 10 1
νs 0.4 0.4 0.4
µs [106 kg

ms2
] 0.5 0.5 2.0

ρ f [103 kg
m3 ] 1 1 1

ν f [10−3 m2

s ] 1 1 1
Ū [ m

s ] 0.2 1 2

parameter FSI1 FSI2 FSI3

β = ρs

ρ f 1 10 1

νs 0.4 0.4 0.4
Ae= Es

ρ f Ū2 3.5×104 1.4×103 1.4×103

Re= Ūd
ν f 20 100 200

Ū 0.2 1 2

Table 5.4: Parameter settings for the FSI benchmarks.

levels of spatial discretization∆x (see Fig. and Table 5.3) and 3 time step sizes∆t. The
example calculations presented in figures 5.4 – 5.5 are computed with the second or-
der time discretization by the Crank-Nicholson scheme and with space discretization
by the finite element method withQ2/Q2/Pdis

1 approximation (see [123]). The com-
putational mesh is obtained by 2 regular refinements of the example mesh in Figure
5.3 which is used for the computations. All simulations havebeen performed with a
fully implicit monolithic ALE-FEM method with a fully coupled multigrid solver as
described in [75].

level #el #dof
0 62 1338
1 248 5032
2 992 19488
3 3968 76672
4 15872 304128
5 63488 1211392
6 253952 4835328
7 1015808 19320832

Figure 5.3: Coarse mesh with number of degrees of freedom forrefined levels.

5.1.3 Numerical Results

The results of the benchmark computations are summarized inTables 5.5 and figures
and tables 5.4–5.5 (ignoring units). Here,u1(A) andu2(A) denote the displacements in
x- andy-direction of the pointA and the drag and lift forces byFD andFL respectively.
For the unsteady case also the frequenciesf1 and f2 obtained for the displacements
u1(A) andu2(A), respectively, are given. The column ”Unknowns” refers to the total
number (in space), i.e., the sum of unknowns for all velocitycomponents, pressure,
and displacement components.
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The following FSI tests are performed for three different inflow speeds. FSI1 is result-
ing in a steady state solution, while FSI2 and FSI3 result in periodic solutions. The
parameter values for the FSI1, FSI2 and FSI3 are given in the Table 5.4. Here, the

level nel ndof u1(A)[×10−3] u2(A)[×10−3] drag lift
2 992 19488 0.02287080 0.8193038 14.27359 0.7617550
3 3968 76672 0.02277423 0.8204231 14.29177 0.7630484
4 15872 304128 0.02273175 0.8207084 14.29484 0.7635608
5 63488 1211392 0.02271553 0.8208126 14.29486 0.7636992
6 253952 4835328 0.02270838 0.8208548 14.29451 0.7637359
7 1015808 19320832 0.02270493 0.8208773 14.29426 0.7637460

ref. 0.0227 0.8209 14.294 0.7637

Table 5.5: Results forFSI1

computed values are summarized in Table 5.5 for the steady state test FSI1.

In Figure 5.4 and 5.5, resulting plots of x-y displacement ofthe trailing edge point
A of the elastic bar and plots of the forces (lift, drag) acting on the cylinder attached
with an elastic bar are drawn and computed values for three different mesh refinement
levels and two different time steps for the non-steady testsFSI2 and FSI3 are presented
respectively, which show the (almost) grid independent solution behavior (for more
details see [123]).

Comparative benchmark results for different solution methods for fluid-structure in-
teraction problems are reported in [125] which have been developed as collaborative
project under the DFG Research Unit 493.

As said before, the benchmark configurations have been carefully chosen and validated
via extensive numerical tests in which various CFD codes formain result, character-
istic flow quantities provided which allow a quantitative validation and comparison of
different numerical methods and software tools (see [125] for details).

As a first result for the FSI1 benchmark, which leads to stationary displacement of the
attached elastic beam, it is seen that all applied methods and codes can approximate
the same results, at least with decreasing mesh width [125].

Evidently for FSI3, the evaluation of the results is a littlebit more difficult: First of all,
all schemes show the tendency to converge towards the (more or less) same solution
values, at least for increasing mesh level. Although the applied FSI techniques are very
different w.r.t. discretization, solver and coupling mechanisms, it is found that the FSI3
benchmark setting proves to be a very valuable tool for numerical FSI benchmark-
ing, leading to grid independent results for the prescribedgeometrical and parameter
settings [125].

Moreover, also clear differences between the different approaches with regard to accu-
racy are visible. Particularly for the drag and lift values and also for the displacement
values [125]. A more detailed evaluation and also more rigorous comparisons w.r.t. the
ratio ‘accuracy vs. efficiency’ are therefore planned for the future. The contribution
based on this benchmark setting are made [123, 125, 111].

86



5.1. FSI BENCHMARKING

FSI2: x & y displacement of the pointA

FSI2: lift and drag force on the cylinder+elastic bar

lev. Unknowns u1(A)[×10−3] u2(A)[×10−3] FD FL f1 f2
2 19488 −14.02±12.03 1.25±79.3 210.10±72.62 0.25±227.9 3.85 1.93
3 76672 −14.54±12.50 1.25±80.7 212.83±75.89 0.92±234.3 3.86 1.93
4 304128 −14.88±12.75 1.24±81.7 215.06±77.76 0.82±237.1 3.86 1.93
2 19488 −14.01±12.04 1.25±79.3 210.09±72.82 0.52±228.6 3.86 1.93
3 76672 −14.54±12.48 1.25±80.7 213.06±75.76 0.85±234.4 3.86 1.93
4 304128 −14.87±12.73 1.24±81.7 215.18±77.78 0.87±238.0 3.86 1.93
2 19488 −14.01±12.04 1.28±79.2 210.14±72.86 0.49±228.7 3.86 1.93
3 76672 −14.48±12.45 1.24±80.7 213.05±75.74 0.84±234.8 3.86 1.93
4 304128 −14.85±12.70 1.30±81.6 215.06±77.65 0.61±237.8 3.86 1.93

ref. −14.85±12.70 1.30±81.7 215.06±77.65 0.61±237.8 3.86 1.93

Figure 5.4: Results forFSI2 with time step∆t = 0.002,∆t = 0.001,∆t = 0.0005.
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FSI3: x & y displacement of the pointA

FSI3: lift and drag force on the cylinder+elastic bar

lev. Unknowns u1(A)[×10−3] u2(A)[×10−3] FD FL f1 f2
2 19488 −3.02±2.83 1.41±35.47 458.2±28.32 2.41±145.58 10.75 5.37
3 76672 −2.78±2.62 1.44±34.36 459.1±26.63 2.41±151.26 10.93 5.46
4 304128 −2.86±2.70 1.45±34.93 460.2±27.65 2.47±154.87 10.95 5.47
2 19488 −3.02±2.85 1.42±35.63 458.7±28.78 2.23±146.02 10.75 5.37
3 76672 −2.78±2.62 1.44±34.35 459.1±26.62 2.39±150.68 10.92 5.46
4 304128 −2.86±2.70 1.45±34.90 460.2±27.47 2.37±153.75 10.92 5.46
2 19488 −3.02±2.85 1.32±35.73 458.7±28.80 2.23±146.00 10.74 5.36
3 76672 −2.77±2.61 1.43±34.43 459.1±26.50 2.36±149.91 10.93 5.46
4 304128 −2.88±2.72 1.47±34.99 460.5±27.74 2.50±153.91 10.93 5.46

ref. −2.88±2.72 1.47±34.99 460.5±27.74 2.50±153.91 10.93 5.46

Figure 5.5: Results forFSI3 with time step∆t = 0.001,∆t = 0.0005,∆t = 0.00025.
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5.2 Experimental Benchmark

Experimental reference test case [57] were proposed and conducted at the Institute of
Fluid Mechanics at University of Erlangen-Nürnberg [56]. The definition of the exper-
imental benchmark is introduced in the subsequent sectionsfollowed by the numerical
results.

5.2.1 Introduction

The definition of the proposed test case in [56, 57, 58] took into account four principal
aspects: (i) reproducibility of the resulting motion, (ii)two-dimensionality of the struc-
ture deflection, (iii) moderate structure motion frequencyand (iv) significant excursion
of the structure.

The main objective of the following numerical investigation is to analyze and to vali-
date our monolithic approach for a configuration with a pointconstraint (”rigid solid
with rotational degree of freedom”) for a special experimental set up. In the future,
these numerical and experimental studies shall lead to a reliable data basis for the vali-
dation and comparison purposes of different numerical methods and code implementa-
tions for fluid-structure interaction simulations. These numerical studies are focused on
the two-dimensional periodical swiveling motion of a simple flexible structure driven
by a prescribed inflow velocity (see [56]). The structure hasa linear mechanical behav-
ior and the fluid is considered incompressible and in the laminar regime. The cylinder
is fixed only at the center and can rotate freely. To allow for this kind of additional
rotational movement in our method, the cylinder has to be included in the mesh in our
recent approach. By prescribing zero displacement for the node located in the center of
the cylinder we eliminate the translational degree of freedom of the whole structure but
preserve the rotational freedom of the cylinder. Hence, theposition of all other nodes
located inside the cylinder are taken into account as part ofthe solution. We divided
the numerical tests into two parts corresponding to the thickness of the elastic beam i.e
for 1mmthick beam and for 0.04mmthick beam attached to an aluminum cylinder. At
the trailing edge of the elastic beam a rectangular stainless steel mass is located. Both
the rear mass and the cylinder are considered rigid. All the structure is free to rotate
around an axis located in the center point of the cylinder.

Structure Properties

The structure consists of a thin elastic beam attached to thecylinder, which is identified
by the center of the cylinder with one grid point. This point constraint effectively fixes
the position of the cylinder axis, but still allows the free rotation around this point. At
the trailing end of the beam a rear mass is attached. Such a problem is encountered in
many real life applications of great importance. Typical examples of this type of prob-
lem are the areas of biomedical fluids which include joint lubrication and deformable
cartilage and blood flow interaction with implants. The detailed dimensions of the
structure are presented in Fig. 5.6. The densities of the different materials used in the
construction of the model are given in Table 5.2.1. The shearmodulus of stainless steel
is 7.58× 107kg/mms2 and Poisson ratio of the beamν p is taken as 0.3. The Young
modulus is measured to be 2×108kg/mm2.
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Figure 5.6: Structure (dimensions in millimeters)

variable material value

ρcylinder (aluminum) 2.828×10−6kg/mm3

ρbeam (stainless steel) 7.855×10−6kg/mm3

ρrearmass (stainless steel) 7.800×10−6kg/mm3

Table 5.6: Density values of the structure components

Fluid Properties

As fluid for the tests, an incompressible fluid Polyethylene glycol syrup is chosen be-
cause of its high viscosity and a density close to water. It has a kinematic viscosity
164mm2/s and the density of the fluid is 1.05×10−6kg/mm3.

Geometry of the Problem

The geometry of the physical domain coincides with the shapeof the facility test func-
tion. The co-ordinate system used is centered in the rotating axis of the flexible struc-
ture front body. The x-axis is aligned with the incoming flow.Then, the geometric
details are as follows:

• The overall dimensions of the physical domain are lengthL = 338mmand width
W = 240mm.

• The center of the cylindrical front body is C which is located55mm downstream
of the beginning of the physical domain, and the radiusr of the cylinder is 11mm.

• The dimensions of the flow field measuring domain (hatched line) are given by
length L′ = 272mm and widthW′ = 170mm. The measuring domain begins
19mmafter the beginning of the physical domain as shown in Figure5.7. The
Reynolds number is defined byRe= 2rV̄

ν f with mean velocityV̄ = 2
3v(0,W/2, t)

andW height of the channel (see Fig. 5.7).

• The gravity force 9810mm/s2 is aligned with the x-axis.
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Figure 5.7: Physical domain (continuous line) and flow field measuring domain
(hatched line)

Boundary and Initial Conditions

The velocity profile prescribed at the left channel inflow is defined as approximation of
the experimental inflow data

v f (0,y) = Ū(1− (y/120)8)(1+(y/120)8),
�

�

�

�5.3

such that the maximum of the inflow velocity profile is̄U . Figure 5.8 shows the
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Figure 5.8: Inlet velocity profiles for the first (left) and second (right) laminar reference
test case.

inlet velocity profiles for laminar case 1 and case 2. The outflow condition effectively
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prescribes some reference value for the pressure variablep. While this value could be
arbitrarily set in the incompressible case, in the case of a compressible structure this
will have influence onto the stress and consequently the deformation of the solid. The
no-slip condition is prescribed for the fluid on the other boundary parts, i.e. top and
bottom wall, circle and fluid-structure interfaceΓ0

t . Suggested starting procedure for
the non-steady tests is to use a smooth increase of the velocity profile in time as

v f (t,0,y) =





v f (0,y)
1−cos(πt/2)

2
if t < 1

v f (0,y) otherwise

�

�

�

�5.4

wherev f (0,y) is the velocity profile given in
�

�

�

�5.3 . Since the cylinder is allowed to
freely rotate around its axis, we need to incorporate this into our setup. As described
before, by identifying the center of the cylinder with one grid point of our mesh we can
prescribe a Dirichlet type boundary condition for the velocity and the displacement of
the structure at this point. This point constraint effectively fixes the position of the
cylinder axis, but still allows the free rotation around this point.

We perform numerical comparisons for different time stepping schemes, including
variants of the Fractional-Step-scheme (FS), Backward Euler (BE) and Crank- Nichol-
son scheme (CN) for both solid and fluid parts which have been derived in Chapter
3.

5.2.2 Numerical Investigations

In this section we will present numerical results for the 1mm thick beam and for the
actual thickness 0.04mm(see [56])of the beam in similar order.

Results for1mmThick Beam In the first numerical test we set the thickness of the
beam 1mm(see Fig. 5.6) and also we reduce the rigidity of the beam (i.e., shear mod-
ulus) from 7.69×107kg/mms2 to 7.69×104kg/mms2, all other parameters are from
table 5.2.1. We applied the presented time stepping schemes, namely (BE, CN, FS,
GL) prescribed in Chapter 3 to analyze the behavior for different∆t. For∆t = 0.0005
almost the identical amplitude of oscillations(≈ 13.84) of rear mass is observed (see
figure 5.11) for the higher order schemes (CN, FS, GL) and for the 1st order Back-
ward Euler (BE) the amplitude of oscillations(≈ 12.42) of rear mass shows 10 percent
less accuracy compared to CN, FS and GL. For∆t = 0.00005 Backward Euler (BE)
shows better agreement of the amplitude of oscillations(≈ 13.71) of the rear mass to
CN, FS, GL. For larger time step, GL is more damped than CN and FS. We use two
different meshes (see Fig. 5.9 and 5.10) and also we increasethe mesh refinement
level from level 1 to level 2. Corresponding plots for two different meshes and different
mesh refinement levels are given in figure 5.12 and figure 5.13 which shows that our
solution is almost independent of mesh type and mesh refinement levels. From exper-
imental results, for velocity 1130mm/s the structure shows hysteric behavior, but in
our simulations no hysteric behavior could be observed so for and resulting frequency
of oscillations is≈ 10Hz for applying all the four time stepping schemes mentioned
above. The displacement path of the rear mass is shown in figures 5.14 and 5.15.

The following observations are made and corresponding numerical results were ob-
tained:
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1. The experimental thickness of the beam is taken as 0.04mmand we have taken
the thickness of the beam as 1mm for simplicity.

2. When we increase the velocity, the frequency of oscillations increases linearly
with the velocity.

3. The frequency of oscillations for the beam with thickness0.04 mm with velocity
1070mm/s is 6.38Hz, while with the thickness 1mm and velocity 1130 mm/s,
the frequency of oscillations of the rear mass is approx. 10Hz.

Figure 5.9: Coarse mesh 1 with 576 elements, 622 nodes and 11308 dof.

Figure 5.10: Coarse mesh 2 with 529 elements, 574 nodes and 10407 dof.
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Figure 5.11: For∆t = 0.0005, the amplitude of oscillations of rear mass is almost
identical for the different time stepping schemes CN, FS, GL.
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Figure 5.12: For the two different meshes, the amplitude of oscillations is almost the
same for the Fractional-Step-θ -scheme.
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Figure 5.13: For refinement level 1 and 2 the amplitude of oscillation is almost identi-
cal.

Figure 5.14: Snapshots of the vertical displacement of the rear mass with frequency of
oscillations≈ 10Hz for 1mmthick beam.

Figure 5.15: Zoomed snapshots of the deformed 1mmthick beam.
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For velocity 600mm/s and 800mm/s with 0.04mmThick Beam In this test we keep
the thickness of the beam 0.04mmas described in the experimental set up [58]. The
minimum velocity needed to excite the movement of the structure slightly varied from
test to test. In our case for velocity 600mm/s (Re≈ 80) we are able to excite the struc-
ture. For∆t = 0.0025, path of the rear mass is shown in figure 5.16 for the Backward
Euler (BE) and Fractional-step-θ schemes and the difference in the amplitude of os-
cillations of rear mass is plotted in figure 5.16. Frequency of the structure movement
increases linearly with the increase of the velocity of the fluid. We used the velocity
600mm/s (Re≈ 80) at beginning, then switching to 800mm/s (Re≈ 107) for simplic-
ity, see figure 5.17 and 5.18.
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Figure 5.16: For∆t = 0.0025, the amplitude of oscillations of rear mass for the differ-
ent time stepping schemes BE, FS for velocity 600mm/s.

Figure 5.17: Snapshots of the vertical displacement of the rear mass with maximum
amplitude≈ 17.0 and frequency≈ 4.5Hz and velocity 800mm/s.

Figure 5.18: Zoomed snapshots of the deformed beam for velocity 800mm/s.
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5.2.3 Comparison of Experimental and Numerical Results

Experimental Results Experimental studies on reference test cases were conducted
in laminar flows(Re≤ 200) at the Institute of Fluid Mechanics at University of Erlangen-
Nürnberg [56]. The structure was defined to be constituted by a0.04mmthick stainless
steel sheet attached to an 22mmdiameter aluminum cylindrical front body. At the trail-
ing edge of the beam a 10mm×4mmrectangular stainless steel mass was located. All
the structure was free to rotate around an axis located in thecenter point of the front
cylinder. Both the front cylinder and the rear mass were considered rigid. The structure
model was tested in a viscous liquid flow at different velocities up to 2000mm/s. The
minimum velocity needed for the movement of the structure slightly varied from test
to test. In most of the cases it was already possible to achieve a consistent swiveling
motion for velocities slightly smaller than 1000mm/s. The frequency of the structure
movement increased linearly with the velocity of the approaching fluid. For velocity
ranging from 1140mm/s to 1300mm/s, the frequency of oscillations showed a pro-
nounced hysteresis depending on increasing versus decreasing flow velocity. There
were two test cases performed using different flow velocity and the corresponding re-
sults were as follows: Using velocity 1070mm/s (Re≈ 140) one measures a frequency
of oscillations of the structure≈ 6.38Hz, and with velocity 1450mm/s (Re≈ 190) a
frequency of oscillations of the structure≈ 13.58Hz is observed [58]. At higher veloci-
ties the motion of the structure became faster and more complex. At around 1300mm/s
the structure shifted abruptly to a new swiveling mode in which the second deflection
mode played an important role [56, 57, 58]. Figure 5.19 showsthe comparison between
experimental versus numerical results of the problem.

laminar cases experiment 1:Re= 140 experiment 2:Re= 190
measured frequency[Hz] 6.38 13.58
computed frequency[Hz] 6.42 10.90
computed frequency[Hz] [1] 7.47 16.78
computed frequency[Hz] [8] 6.72 14.42

Figure 5.19: Experiment from Erlangen (left) and numericalresult for velocity
1450mm/s (right). Table shows the computed frequencies of oscillation versus ex-
periment.
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Laminar case 1: velocity1070mm/s Figure 5.20 shows the amplitude of oscilla-
tions of rear mass attached to the elastic beam for velocity 1070mm/s and the fre-
quency of oscillation observed is≈ 6.42Hz. Figure 5.21 shows the deformed shape
of the beam for velocity 1070mm/s and figure 5.22 shows the complete mesh behav-
ior during simulation. The experimentally determined swiveling frequency in [58] is
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Figure 5.20: Frequency of oscillations of the rear mass for velocity 1070mm/s for the
described numerical set up is≈ 6.42Hz.

Figure 5.21: Left: Snapshots of the vertical displacement of the rear mass for velocity
1070mm/s. Right: Zoomed snapshots of the structure.

6.38Hz while in case of numerical simulation it is yielded 6.72Hz [116], 7.47Hz [52]
and our finding is 6.42Hz. Here, numerical value is bit high but still in fairly good
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Figure 5.22: Snapshot of the complete mesh.

agreement to [58]. A front cylinder angle for one swiveling period is given in Figure
5.23. A front cylinder body angle from the calculations of [116] and [52] are shown
in comparison of experiment [58] left of the figure 5.23 and our numerical result is
plotted to the right of the figure. Here, the absolute values compared to the experiment
differed noticeably. Here again, the computed results are smaller than the measured
ones. The figure 5.24 shows the trailing edge xy-coordinatesfor one swiveling period.

Figure 5.23: Comparison of front body angle for one period at1070mm/s.

Here, numerical results are lesser than the measure one. Forcomparing the flow field
two monitor points are chosen. The first point (point 1) is located at the coordinate
(82mm,0mm) and the second point (point 2) at the coordinate(82mm,40mm). Numer-
ical velocity out put data is available only in [116] and the u-, and v-components are
plotted together with the experiment data [58] in figure 5.25and in figure 5.26 for
these two monitor points respectively. The numerical and experiment result compara-
ble for the second monitor point and for the point 1 prediction is quite hard [58]. For
these monitor points numerical results are also reported in[116]. Numerical results
and experiment results matched very well at the second monitor point.
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Figure 5.24: Comparison of the x-y trailing edge coordinates for one period at
1070mm/s.

Figure 5.25: Comparison of the flow velocity at point 1 for oneperiod at 1070mm/s.

Figure 5.26: Comparison of the flow velocity at point 2 for oneperiod at 1070mm/s.
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Laminar case 2: Velocity1450mm/s The experimentally determined swiveling fre-
quency is 13.58Hz while in case of numerical simulation it is≈ 10.9Hz and also the
simulations resulted in values of 14.42 [116] and 16.78 [52], see figure 5.27. For the
velocity 1450mm/s the deformation of the elastic beam and rear mass is even more
significant, see figure 5.28.
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Figure 5.27: Frequency of oscillations of the rear mass for velocity 1450mm/s for the
described numerical set up is≈ 10.9Hz.

Figure 5.28: Left: Snapshots of the vertical displacement of the rear mass for velocity
1450mm/s. Right: Zoomed snapshots of the structure.
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In figure 5.29 front body angle is plotted and difference in dynamic response of the
structure is shown for two swiveling modes with comparison to experiment [58]. A
comparison between figure 5.23 (left) and figure 5.29 (left) shows the response of
structure for the two swiveling modes and experiment findingin [58].

Figure 5.29: Comparison of front body angle for one period at1450mm/s.

The figure 5.30 displays the path of trailing edge for one swiveling period at 1450mm/s.
Here, numerically calculated results (right) are greater than the measure one (left) [58,
52, 116]. Numerically calculated velocity out put for the u-, and v-components for the
first monitor point 1 are plotted in Figure 5.31 in comparisonof experiment as well as
other computed findings [58, 116] (left). For the first monitor point agreement is good
enough although slightly less value for the v-component as compare to experiment
finding in [58]. In figure 5.32 the u-, and v-components are plotted for the the second
monitor point. The second monitor point is comparable to [58]. Numerical velocity out
put data for monitor points is available only in [116] and ournumerical calculations.

Figure 5.30: Comparison of x-y trailing edge coordinates for one period at 1450mm/s.
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Figure 5.31: Comparison of the flow velocity at point 1 for oneperiod at 1450mm/s.

Figure 5.32: Comparison of the flow velocity at point 2 for oneperiod at 1450mm/s.

5.3 Biomedical Applications: Aneurysm

In the following, we consider the numerical simulation of special problems encoun-
tered in the area of cardiovascular hemodynamics, namely flow interaction with thick-
walled deformable material i.e Aneurysm hemodynamics. Aneurysms are of two kind,
abdominal aneurysm (AA) and brain aneurysm (BA). The word ‘aneurysm’ comes
from the Latin wordaneurysmawhich means dilatation. Aneurysm is a local dilata-
tion in the wall of a blood vessel, usually an artery, due to a defect, disease or injury.
Typically, as the aneurysm enlarges, the arterial wall becomes thinner and eventually
leaks or ruptures, causing sub-arachnoid hemorrhage (SAH)(bleeding into brain fluid)
or formation of a blood clot within the brain. In the case of a vessel rupture, there is a
hemorrhage, and when an artery ruptures, then the hemorrhage is more rapid and more
intense. In arteries the wall thickness can be up to 30% of thediameter and its local
thickening can lead to the creation of an aneurysm.

From a medical point of view, the use of stents provides an efficient treatment for
managing the difficult entity of intra-cranial aneurysms. Here, the thickness of the
aneurysm wall is attenuated and the aneurysm hemodynamics changes significantly.
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Since the purpose of this device is to control the flux within the aneurysm in order to
occlude it by a clot or rupture, the resulting flow behavior into and within the aneurysm
is the main objective, particularly in view of the differentstent geometries. Therefore,
we decided for the 2D studies to locate the (2D parts of the) stents only in direct con-
nection to the aneurysm.

5.3.1 Aneurysm Configuration

We employ the proposed numerical methods for aneurysm hemodynamics, which in-
clude the interaction of the flow with the deformable material. This numerical sim-
ulation aims to relate the aneurysm state (unrupture or rupture) with wall pressure,
wall deformation and effective wall stress, which would provide information for the
diagnosis and treatment of unrupture and rupture of an aneurysm by elucidating the
risk of bleeding or re-bleeding, respectively. Several research groups focus on CFD
simulations with realistic 3D geometries, assuming rigid walls (see [46, 2, 129]). On
the contrary, comparing our studies with the CFD literature, we concentrate on the
complex interaction between elastic deformations and flow perturbations induced by
the stent, to analyze qualitatively the influence of geometrical details onto the elastic
material behavior, particularly in view of more complex blood models and constitutive
equations for the structure.

Therefore, the aims of our studies can be described as follows:

1. What is the influence of the elasticity of the walls onto the flow behavior inside
of the aneurysm, particularly w.r.t. the resulting shape ofthe aneurysm?

2. What is the influence of the geometrical details of the (2D) stents, that means
shape, size, position, onto the flow behavior into and insideof the aneurysm?

3. Do both aspects, small-scale geometrical details as wellas elastic fluid-structure
interaction, have to be considered simultaneously or is oneof them negligible in
first order approximation?

4. Are modern numerical methods and corresponding CFD simulations tools able
to simulate qualitatively the multi-physics behavior of such biomedical configu-
rations?

The geometry of the fluid domain under consideration is currently based on 2D models
(see Fig. 5.33) which allows us to concentrate on the detailed qualitative evaluation
of our approach based on the described monolithic ALE formulation. The underlying
construction of the (2D) shape of the aneurysm can be explained in the Table 5.7 and
for further explanation about the construction of meshes see [124, 111, 110]. The

Table 5.7: Overview of the geometry parameters.
without aneurysma values [mm] with aneurysma value [mm]

innermost circle radius r1 6 anuerysma middle m (−6.75,6)
next circle radius r2 8 inner fundus radius r4 1.125
last circle radius r3 8.25 outer fundus radius r5 1.25

examined stents are of circular shape, placed on the neck of the aneurysm, and we use
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three, resp., five stents (simplified ‘circles’ in 2D as cut-planes from 3D configurations)
of different size and position. The stents also consist of a grid, immersed in the blood
flow, which is located at the inlet of the aneurysm so that in future elastic deformations
of the stents can be included, too, since in real life, the stent is a medical device which
consists of a metal wire tube. Stents are typically used to keep arteries open and are
located on the vessel wall while this stent is immersed in theblood flow (Fig. 5.33).
The purpose of this device is to reduce the flux into and withinthe aneurysm in order
to occlude it by a clot or rupture. Flow through a deformable vein with elastic walls
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Figure 5.33: Schematic drawing of the measurement section.

of a brain aneurysm is simulated to analyze qualitatively the described methods; here,
the flow is driven by prescribing the flow velocity at the inflowsection while the elastic
part of the boundary is either fixed or stress-free. Both endsof the walls are fixed,
and the flow is driven by a periodical change of the inflow at theleft end. Theno-slip
condition is prescribed for the fluid on the other boundary parts, i.e. top and bottom
wall, stents and fluid-structure interface. The natural outflow condition at the lower
left part effectively prescribes some reference value for the pressure variablep, here
p= 0. While this value could be arbitrarily set in the incompressible case, in the case
of a compressible structure this might have influence onto the stress and consequently
the deformation of the solid.

Table 5.8: Parameter values.
structure parameter values fluid parameter values
density ρs [10−6 kg

mm3 ] 1.12 density ρ f [10−6 kg
mm3 ] 1.035

poisson ratio νs 0.4 viscosity ν f [ mm2

s ] 3.38
shear modulus µs [ kg

mms2
] 42.85 velocity Ū [ mm

s ] 20
Young modulus E [ kN

mm2 ] 120 Reynolds number Re 120

In the following, we show some corresponding results for thedescribed prototypical
aneurysm geometry, by using parameter values from Table 5.8, first for the steady state
inflow profile, followed by non-steady tests for the pulsatile inflow, both with rigid and
elastic walls, respectively. Also, results for non-Newtonian Carreau model are given at
the end.
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5.3.2 Steady Configurations

The (steady) velocity profile, to flow from the right to the left part of the channel, is
defined as parabolic inflow, namely

v f (0,y) = Ū(y−6)(y−8),
�

�

�

�5.5

which is not time-dependent. Due to the low Re number, the flowbehavior leads to a
steady state which only depends on the elasticity and the shape of the stents. Moreover,
for the following simulations, we only treat the aneurysm wall as elastic structure.
Then, the aneurysm undergoes some slight deformations which can be seen in the Fig.
5.34. Moreover they result in a different volume of the flow domain (see Fig. 5.35).

Figure 5.34: Deformed mesh for steady configuration withoutstents, with elastic wall
(left). Mesh for rigid wall (776 elements) (right).

Particularly the influence of the number of stents onto the complete fluid flow through

 26.35

 26.4

 26.45

 26.5

 26.55

 26.6

 26.65

 1  2  3  4  5  6  7  8

vo
lu

m
e

time step

no stents, elastic fundus
no stents, rigid walls

3 stents, elastic fundus
5 stents, elastic fundus

Figure 5.35: Resulting volume of the fluid domain for different configurations.

the channel including the aneurysm can be clearly seen. Summarizing these results
for steady inflow, the simulations show that the stent implantation across the neck of
the aneurysm prevents blood penetration into the aneurysma. Moreover, the elastic
geometrical deformation of the wall is slightly reduced by implanting the stents while
the local flow behavior inside of the aneurysm is more significantly influenced by the
elastic properties of the outer wall, particularly due to the different width between stents
and walls of the aneurysm as can be seen in the Figures. 5.36, 5.37, 5.38, 5.39.
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Figure 5.36: Left: Rigid walls with no stents, blood flow vector magnitude., Right:
Scaled to view fluid flow concentration inside aneurysm.

Figure 5.37: Left: Elastic walls with no stents, blood flow vector magnitude., Right:
Scaled to view fluid flow concentration inside aneurysm.

Figure 5.38: Left: Rigid walls with stents, blood flow vectormagnitude., Right: Scaled
to view fluid flow concentration inside aneurysm.

Figure 5.39: Left: Elastic walls with stents, blood flow vector magnitude., Right:
Scaled to view fluid flow concentration inside aneurysm.
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5.3.3 Pulsatile Configurations

Correspondingly, the pulsatile inflow profile for the non-steady tests for which peak
systole and diastole occur for∆t = 0.25s and∆t = 0.75s respectively, is prescribed as

v f (t,0,y) = v f (0,y)(1+0.75sin(2πt)).
�

�

�

�5.6

We show again (see Fig. 5.40) the resulting volume of the flow domain for 5, 3 and no
stents. In all cases, the oscillating behavior due to the pulsative inflow is visible which
also leads to different volume sizes. For the resulting flow behavior, we see global
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Figure 5.40: Domain volume with rigid and elastic behavior of the aneurysm wall.

Figure 5.41: Blood flow flux inside aneurysm is less for 5 stents compare to 3 or no
stents.

differences w.r.t. the channel flow near the aneurysm, due tothe different flow rate into
the aneurysm in case of 5, 3, and no stents. Moreover, significant local differences
inside of the aneurysm can be observed, which means, attenuation of blood flow inside
aneurysm as the stent implanted across the neck of aneurysm (see Fig. 5.41).

5.3.4 Non-Newtonian Model

We considered the effects of a non-Newtonian fluid model on hemodynamics. The
Carreau fluid model was selected because it is an accurate model to describe the rhe-
ological behavior of blood [82]. Experimental tests show that blood exhibits shear
thinning apart of other non-Newtonian phenomena[129]. Thus, in order to include this
feature the viscosity in the following form is used.

µ(|D(v)|) = µ∞ +(µ0−µ∞)(1+K|D(v)|2)n.
�

�

�

�5.7
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The Carreau blood model predicts decreasing viscosity at high strain, whereµ0 and
µ∞ are low and high shear rate asymptotic values, and parameters K and n control
the transition region. We have taken the parameter values asµ∞ = 0.00345Ns/m2,
µ0 = 0.056Ns/m2, K = 10.976n=−0.3216 and other parameters, configurations are
same as was for pulsatile configuration.

The corresponding parametrization was based on abstractions of biomedical data (i.e.,
cut planes of 3D specimens from New Zealand white rabbits as well as computer tomo-
graphic (see figure 5.42 right) and magnetic resonance imaging data of human neuro-
crania). A very complex mesh (5.42 left) is constructed based on this image (i.e figure
5.42 right). The green and red color part in figure 5.42 (left)are for elastic walls and
they can have separate stiffness. Blue color is the flow region.

Figure 5.42: Left: Mesh constructed. Right: Histologic sample of aneurysm.

Figure 5.43 show the effective stress distribution at peak systole. The pressure on the

Figure 5.43: Effective stress distributions.

wall is nearly constant after the flow is fully developed, seefigure 5.44. The intensity of
flow behavior to the aneurysm is shown in figure 5.45 by mean of the vector magnitude
of the blood flow. It is shown by two ways, at top of the figure complete domain is
shown and at bottom flow inside the aneurysm is shown.
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Figure 5.44: Pressure distributions.

Figure 5.45: Top: FLow vector magnitude complete domain. Bottom: Flow vector
magnitude inside aneurysm.
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Have patience. All things are diffi-
cult before they become easy.

Saadi

6
Fluid-Structure Interaction Optimization

In recent years encouraging progress has been made in the numerical simulation of
fluid-structure interaction (FSI) problems. However, the development of efficient simulation-
based optimization techniques for the optimal design of FSIsystems is still in its in-
fancy. This Chapter will concerns to develop an efficient methods for fluid structure in-
teraction optimization, which will combine modern techniques from PDE-constrained
optimization, design optimization of stationary as well asnon-stationary strongly cou-
pled FSI problems and multigrid FSI simulation methods in near future based on mono-
lithic ALE approach.

Before stating FSI-Opt benchmark an overview of optimization, historical develop-
ment of optimization methods and its applicability to vast real application is glanced
through.At the end of the Chapter the results for FSI1-Opt benchmark are presented
and the future possible extensions hinted.

6.1 Overview

Optimization is the discipline of mathematics in which to get the best result under cer-
tain conditions is aimed. Almost every engineering system requires design construction
and later its maintenance. The ultimate goal is either to minimize the effort needed or
to maximize the desired benefit. Hence optimization can be defined as the process of
finding the conditions that give the minimum or maximum valueof a function, where
the function represents the effort needed or the desired benefit.

Historical Developments The major recently developed novel approaches are goal
programming for multi-objective optimization, genetic algorithms, simulated anneal-
ing and neural network methods. Engineering applications of optimization with differ-
ent modeling approaches and optimization techniques are growing with time.

The existence of optimization methods go to the days of Newton, Lagrange, and Cauchy.
The work of Newton and Leibnitz to differential calculus made feasible the differen-
tial calculus methods for optimization. The calculus of variations dealing with the
minimization of functions founded by Bernoulli, Euler, Lagrange, and Weistrass. The
constrained optimization problems, which involve the addition of unknown multipli-
ers, is known by the name of its inventor, Lagrange. The pioneer implementation
of the steepest descent method made by Cauchy to solve unconstrained optimization
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problems [55]. By the invent of the high-speed digital computers it became feasible to
implement the complex optimization operations and furtherresearch on newer methods
advanced. This opened the new areas in optimization methods.

They are outlined here with a few milestones.

1. The simplex method for linear programming problems developed by Dantzig in
1947 [37, 38].

2. The principle of optimality for dynamic programming problems is stated by Bell-
man in 1957 [11].

3. Work by Kuhn and Tucker in 1951 on the necessary and sufficient conditions
for the optimal solution of programming problems laid the foundation for later
research in non-linear programming [85].

4. The contributions of Zoutendijk and Rosen to nonlinear programming during the
early 1960s have been very significant [112, 113, 136].

5. Work of Carroll [23] and Fiacco and McCormick facilitatedmany difficult prob-
lems to be solved by using the well-known techniques of unconstrained opti-
mization [49, 47, 48].

6. Geometric programming was developed in the 1960s by Duffin, Zener, and Pe-
terson [101, 45].

7. Gomory did pioneering work in integer programming, one ofthe most exciting
and rapidly developing areas of optimization. The reason for this is that most
real world applications fall under this category of problems [59, 60].

8. Dantzig and Charnes and Cooper developed stochastic programming techniques
[25, 26, 27] and solved problems by assuming design parameters to be indepen-
dent and normally distributed.

Engineering Applications of Optimization To indicate the widespread scope of the
subject, some typical applications in different engineering disciplines are:

• Design of civil engineering structures such as frames, foundations, bridges, tow-
ers, chimneys and dams for minimum cost.

• Design of minimum weight structures for earth quake, wind and other types of
random loading.

• Optimal plastic design of frame structures (e.g., to determine the ultimate mo-
ment capacity for minimum weight of the frame).

• Design of water resources systems for obtaining maximum benefit.

• Design of optimum pipeline networks for process industry.

• Design of aircraft and aerospace structure for minimum weight.

• Design of pumps, turbines and heat transfer equipment for maximum efficiency.
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• Optimum design of electrical machinery such as motors, generators and trans-
formers.

• Optimum design of electrical networks, control systems, chemical processing
equipments and plants .

In the below section, the configuration of the problem is documented then the em-
ployed Nelder-Mead method to very own benchmark setting is explained followed by
the computation results.

6.2 FSI Optimization Benchmarking

The main purpose of this benchmark scenario is to describe specific configurations
which shall help in future to test and to compare different numerical methods and
code implementations for the fluid-structure interaction (FSI) problem which can be
additionally coupled with an additional optimization procedure. This FSI optimization
benchmark is based on 2D steady FSI problem based on the benchmark configuration
of Turek and Hron [123] with additional altered boundary control flows as shown in
figure 6.5. The idea is to integrate the FSI solver into an optimization procedure for
FSI problems. Furthermore, these FSI configurations can be extended towards optimal
control of body forces acting on and deformations of the elastic object in which case
additional outer in flow/out flow regions control the optimalresult.

6.2.1 Optimizer

As optimizer a derivative-free optimization method for this unconstrained minimiza-
tion problem is chosen, which is the SIMPLEX algorithm developed by Nelder and
Mead [86, 95]. The method is wide spread due to the fact that ismakes no assumptions
about the objective functional except that it is continuous. Furthermore, it is quite nu-
merically robust [10, 92]. The basic operations (reflection, expansion, and contraction)
of this method are explained in the following .

Nelder-Mead Method

A simplex method for finding a local minimum of a function of several variables has
been devised by Nelder and Mead [95, 86]. For two variables, asimplex is a triangle,
and the method is a pattern search that compares function values at the three vertices of
a triangle. The worst vertex, wheref (x,y) is largest, is rejected and replaced with a new
vertex. A new triangle is formed and the search is continued.The process generates
a sequence of triangles (which might have different shapes), for which the function
values at the vertices get smaller and smaller. The size of the triangles is reduced and
the coordinates of the minimum point are found.

The basic strategy is explained in the subsequent subsections.

Initial Triangle BGW Let f (x,y) be the function that is to be minimized. To start,
three vertices of a triangle are given:Vk = (xk,yk), k = 1,2,3. The functionf (x,y) is
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then evaluated at each of the three points:zk = f (xk,yk) for k= 1,2,3. The subscripts
are then reordered so thatz1 ≤ z2 ≤ z3. The notation

B= (x1,y1), G= (x2,y2), and W = (x3,y3),
�

�

�

�6.1

are used to remember thatB is the best vertex,G is good (next to best), andW is the
worst vertex to be discarded.

Midpoint of the Good Side The building process uses the midpoint of the line seg-
ment joiningB andG, by averaging the coordinates:

M =
B+G

2
= (

x1+x2

2
,
y1+y2

2
),

�

�

�

�6.2

Reflection Using the Point R The function values decreases moving along the side
of the triangle fromW to B, and it decreases moving along the side fromW to G.
Hence it is feasible thatf (x,y) takes on smaller values at points that lie away fromW
on the opposite side of the line betweenB andG. A test pointR that is obtained by
”reflecting” the triangle through the sideBG is chosen. To determineR, we first find
the midpointM of the sideBG. Then draw the line segment fromW to M and call its
lengthd. This last segment is extended a distance d throughM to locate the pointR
(see Figure6.1). The vector formula forR is

R= M+(M−W) = 2M−W.
�

�

�

�6.3

Figure 6.1: The triangle△BGW and midpointM and reflected pointR

Expansion Using the Point E If the function value atR is smaller than the function
value atW, then we have moved in the correct direction toward the minimum. Perhaps
the minimum is just a bit farther than the pointR. So we extend the line segment
throughM andR to the pointE. This forms an expanded triangleBGE. The pointE
is found by moving an additional distance d along the line joiningM andR (see Figure
6.2). If the function value atE is less than the function value atR, then have to found
a better vertex thanR. The vector formula forE is

E = R+(R−M) = 2R−M.
�

�

�

�6.4

.
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Figure 6.2: The triangle△BGW and pointRand extendedE

Contraction Using the Point C If the function values atR andW are the same, an-
other point must be tested. Perhaps the function is smaller at M, but cannot replace
W with M because there must have a triangle. Consider the two midpointsC1 andC2
of the line segmentsWM andMR, respectively (see Figure 6.3). The point with the
smaller function value is calledC, and the new triangle isBGC. Note. The choice
betweenC1 andC2 might seem inappropriate for the two-dimensional case, but it is
important in higher dimensions.

Figure 6.3: The contraction pointC1 or C2.

Shrink toward B If the function value atC is not less than the value atW, the points
G andW must be shrunk towardB (see Figure 6.4). The pointG is replaced withM,
andW is replaced withS, which is the midpoint of the line segment joiningB with W.

Figure 6.4: Shrinking the triangle towardB
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6.2.2 Objectives

The objective of the following benchmarking scenario is to extend the validated FSI
benchmark configurations to optimization problems such that minimal drag/lift val-
ues of the elastic object, minimal pressure loss or minimal non-stationary oscillations
through boundary control of the inflow, change of geometry oroptimal control of vol-
ume forces can be reached. The main design aim for the presented fluid structure
interaction optimization problem is to minimize the lift onthe beam with the help of
boundary control of inflow data.

Further extension or design aim of this optimization problem is to measure minimal
pressure loss, minimal non-stationary oscillations of theelastic beam through boundary
control of inflow section, change of geometry (elastic channel walls or length/thickness
of elastic beam), optimal control of volume forces. To implement optimization within
monolithic FSI solver, the optimization components are defined below.

Definition The domain is based on the 2D version of the described FSI benchmark,
see figure 6.5. The thickness of the beam is increased from 0.02 to 0.04 and other
geometry parameters kept as defined in [123, 124]. As described before the beam is
not symmetric so that the lift is not zero at the beginning.

An objective functional is the minimization of lift/drag forces on the deformable struc-
tures through boundary flow control. Mathematically this optimization problem can be
written as

minimize
(
li f t 2+αV2

C

) �

�

�

�6.5

subject to V1,V2,
�

�

�

�6.6

The control velocity profile from top and bottom is prescribed in the following

vf
C(x,0) =VC =

{
V1(x−0.45)(x−0.60), top

V2(x−0.45)(x−0.60), bottom

�

�

�

�6.7

whereV1 the magnitude of the parabolic velocity from/to top andV2 velocity from/to
below, these can be set directly when SIMPLEX method is not employed. The location
of the inlet, outlet is shown in the schematic diagram of the geometry sketched in
figure 6.5. The region through are coordinated at(0.45,0) (0.60,0) and(0.45,0.41)
(0.60,0.41). However,V1 andV2 will be resulting velocities which results in minimum
lift on beam when SIMPLEX Nelder Mead algorithm is in place.

A parabolic velocity profile is prescribed at the left channel inflow

vf (0,y) = 1.5Ū
y(H −y)
(

H
2

)2 = 1.5Ū
4.0

0.1681
y(0.41−y),

�

�

�

�6.8

whereŪ = 0.2 denotes the mean inflow velocity in x-direction andH denotes the
channel height. Fluid and structural parameter values are based on the FSI1 bench-
mark as given in Chapter 5. The density and dynamic viscosityof fluid is ρ f =
1000kg/m3, ν f = 1kg/msrespectively. Thus the Reynolds number isRe= 20 based
on the cylinder diameter. The structure densityρs = 1000kg/m3, the Young modulus
E = 178000kg/ms2 and the Poisson ratioµs = 0.4 as set in the paper of Turek and
Hron [123].
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Figure 6.5: Geometry and computational domain of the configuration.

Finally, numerical results for this problem involving optimization for a steady fluid-
structure interaction are given here to illustrate the capability of the approach consid-
ered.

6.3 Results

We simulated this FSI1-Opt configuration on same mesh refine level as used for FSI
benchmark in Chapter 5. The reference value of lift force in case of stationary FSI cal-
culation is 7.6e−1 (see [124, 125] for more details). When we introduced or injected
the flow with velocityV2 = 10 from below the lift on the beam obviously increase see
figure 6.6 which shows that it is wrong direction to inject flow. For the case when we
suck the flow with same velocityV2 = 10 from below we get the negative values of lift
in increasing order see figure 6.7. If we inject flow from top and suck from below with
same velocitiesV1 = V2 = 10 and not consider the simplex method then the resulting
lift force on beam seems to be quite smeared, irregular and hard to predict or conclude
what could be best coordinate which can give minimum lift. The flow vector magnitude
behavior is shown in figure 6.8.

From this it is clear thatV1 = V2 > 10 is not good idea to set. Hence it became clear
that for the implementation of simplex method the coordinates of triangle should be
between[0,10]. For numerical simulation we set the coordinates(0,−3), (3,3) and
(−3,3 for two variable Nelder-Mead algorithm. For this case if the simplex method
is in place lift goes to almost zero as shown in figure 6.9 and beam is almost static.
Optimal points are then the(V1,V2) values which result in minimum lift on the beam
depending on the parameterα. As α decreases we get the reduction of the lift on the
beam and the optimal point(1.06e+0,1.08+1) for level 1,(1.04e+0,1.05e+01) for
level 2 and for level 3(1.04e+0,1.05e+01) using the simplex algorithm proposed by
Nelder and Mead [95]. Results are shown in figures 6.10, 6.11 and 6.12, for level 1,
level 2 and level 3 in respective order, which show the optimal velocity valuesV1 and
V2 providing the minimum lift on the beam as compared with the FSI1 benchmark
reference lift values which is 7.6e−1. In Figure 6.10, it is quite visible that beam is
not displaced i.e. no lift on the beam is observed due to the boundary control, and
results are shown for three different mesh refinement levels. Lift force on the beam
with changingα parameter is given in the corresponding tables 6.10, 6.11 and 6.12.
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Figure 6.6: No SIMPLEX: Flow vector magnitude (Injection) level 3.

Figure 6.7: No SIMPLEX: Flow vector magnitude (suction) level 3.

Figure 6.8: No SIMPLEX: Flow vector magnitude (Injection and suction) level 1.

Figure 6.9: SIMPLEX: Flow vector magnitude (Injection and suction) level 1.
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α level 1
iter optimal values(V1,V2) lift

1e+0 57 (3.74e−1,3.88e−1) 8.1904e−1
1e−2 60 (1.04e+0,1.06e+0) 2.2684e−2
1e−4 73 (1.06e+0,1.08e+1) 2.3092e−4
1e−6 81 (1.06e+0,1.08e+1) 2.3096e−6

Figure 6.10: No displacement is visible of the beam due to optimal boundary flow
control: Level 1

α level2
iter optimal values(V1,V2) lift

1e+0 59 (3.66e−1,3.79e−1) 7.8497e−1
1e−2 59 (1.02e+0,1.04e+0) 2.1755e−2
1e−4 71 (1.04e+0,1.05e+01) 2.2147e−4
1e−6 86 (1.04e+0,1.05e+01) 2.2151e−6

Figure 6.11: No displacement is visible of the beam due to optimal boundary flow
control: Level 2

α level3
iter optimal values(V1,V2) lift

1e+0 67 (3.66e−1,3.79e−1) 7.87e−1
1e−2 77 (1.02e+0,1.06e+0) 1.97e−2
1e−4 100 (1.04e+0,1.06e+0) 2.03e−4
1e−6 100 (1.04e+0,1.06e+0) 1.3372e−6

Figure 6.12: No displacement is visible of the beam due to optimal boundary flow
control: Level 3
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6.4 Summary

In this Chapter we have presented 2D benchmark results for monolithic ALE numerical
approach for fluid-structure interaction optimization problem. we employed a deriva-
tive free mathematical optimization technique (see for more details [31, 92]). To the
authors knowledge, this approach is not investigated yet inliterature in the context of
FSI optimization.

The simplex method presented is a robust algorithm for unconstrained optimization
problems. Although, not all direct search methods reliablyfind solutions. Some algo-
rithms, such as the simplex algorithm of Nelder and Mead, sometimes find minimizers
very efficiently, but they can also fail unpredictably for many reasons. Thus it is neces-
sary to circumvent this problem for constrained optimization so that simplex does not
deteriorate. Interested readers are referred to [86] for a comprehensive survey of the
original Nelder-Mead simplex algorithm and for its advantages and disadvantages.

In case one need to optimize more complex shape then more parameter will require
then it is very hard to get solution through simplex method and it is required to use
more sophisticated with this approach. As a outlook one could think for more complex
optimization for instance some gradient based methods [53].

As an extension, corresponding 3D simulations are planned as well as the embedding
into outer optimization tools (seehttp://jucri.jyu.fi/?q=node/14 for a
first attempt towards optimal control on the basis of the presented FSI1 configuration).
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The scientific observer of Nature
is a kind of mystic seeker in the
act of prayer.

M. Iqbal 7
Conclusions and Outlook

The work presented in this thesis is based on the intensive research carried out to inves-
tigate the mathematical modeling for the fluid structure interaction problems and the
validation to benchmark scenarios as well as its applicability for real life problems.

The performance of the proposed methodology has been analyzed by conducting ex-
tensive and accurate simulation based on experiments settings and compared with the
existing standard benchmark settings. This concluding chapter will give a summary of
the work undertaken and the results achieved towards the numerical solution and opti-
mization of various aspects of FSI problems. It will also point out areas where further
research is required in order to ensure a continual progress.

A summarized account of the various topics and respective contributions discussed and
proposed in this thesis is provided in the subsequent sections below.

7.1 Summary and Conclusion

In this respect the contents of this thesis cover various aspects pertaining to the appro-
priate findings to enhance the performance of a monolithic ALE-FEM fluid-structure
interaction solver.

Numerical techniques for solving the problem of fluid-structure interaction with an
elastic material in a laminar incompressible viscous flow are described. An Arbitrary
Lagrangian-Eulerian (ALE) formulation is used in a fully coupled monolithic way, con-
sidering the problem as one continuum. The mathematical description and the numer-
ical schemes are designed in such a way that more complicatedconstitutive relations
(and more realistic for biomechanics applications) for thefluid as well as the structural
part can be easily incorporated. We utilize the well-knownQ2P1 finite element pair
for discretization in space to gain high accuracy and perform as time-stepping the 2nd
order Crank-Nicholson, resp., Fractional-Step-θ -scheme for both solid and fluid parts.
The resulting nonlinear discretized algebraic system is solved by a Newton method
which approximates the Jacobian matrices by a divided differences approach, and the
resulting linear systems are solved by iterative solvers, preferably of Krylov-multigrid
type.

For validation and evaluation of the accuracy of the proposed methodology, we present
corresponding results for a new set of FSI benchmarking configurations (‘channel flow
around cylinder with attached elastic beam’, see [123]) which describe the self-induced
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elastic deformation of a beam attached to a cylinder in laminar channel flow, allowing
stationary as well as periodically oscillating deformations.

Results have been given for the structure consisting of a thin elastic beam attached to
the cylinder and at the trailing end of the beam a rear mass is attached in laminar flow.

We simulated two cases corresponding to the thickness of thebeam to be 1mmand
0.04mm, respectively. Additionally, we present numerical studies on different mesh
types. Numerical results are provided for all time steppingschemes which show very
reproducible symmetrical two–dimensional swiveling motions. These numerical tests
show that the solution is independent of the mesh type and mesh refinement level.
Preliminary results for the experimental benchmark configuration are shown to see the
qualitative behavior of the elastic beam for a high velocityprofile fluid.

Then, as an example for fluid-structure interaction (FSI) inbiomedical problems, the
influence of endovascular stent implantation onto cerebralaneurysm hemodynamics is
numerically investigated. The aim is to study the interaction of the elastic walls of the
aneurysm with the geometrical shape of the implanted stent structure for prototypical
2D configurations. This study can be seen as a basic step towards the understanding
of the resulting complex flow phenomena so that in future aneurysm rupture shall be
suppressed by an optimal setting for the implanted stent geometry.

The used numerical methodology allows the system to be coupled with additional mod-
els of chemical and electric activation of the active response of the biological material
as well as non-Newtonian models to describe the shear thinning property of the blood.
Further extension to viscoelastic models and coupling withmixture based models for
soft tissues together with chemical and electric processeswould allow to perform more
realistic simulations for real life applications. Future studies need to evaluate the ap-
plicability of this 2D approach to calculations in 3D.

7.2 Outlook

During the course of evaluating and comparing the performance of this proposed solver
with the standard benchmark settings, various considerations came up. In order to en-
hance the overall capabilities and applicability of this approach, it is important to ad-
dress few considerations as part of the future development road map. The contributions
presented in this thesis are based on the proposition and analysis of novel benchmark
settings for FSI.

It is evident that the computational complexity increases tremendously for full 3D prob-
lems and with more complicated models like visco-elastic materials for the fluid or
solid components. The presented numerical method is accurate and robust with re-
spect to the constitutive models. The possible next steps regarding better efficiency
of the solvers include the development of improved multigrid solvers, for instance of
global pressure Schur complement type [122], and the essential combination with par-
allel high performance computing techniques in future, particularly towards actual 3D
configurations.

As mentioned before, the formulation kept general enough toallow immediate exten-
sion to more realistic material models. For example in the case of material anisotropy
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one can consider

Ψ̃ = c1(IC−3)+c2(II C−3)+c3(|Fa|−1)2,

with a being the preferred material direction. The term|Fa| represents the extension
in the directiona. In the same manner the constitutive relation for the fluid can be
directly extended to the power law models used to describe the shear thinning prop-
erty of blood. Further extension to viscoelastic models andcoupling with the mixture
based model for soft tissues together with models for chemical and electric processes
involved in biomechanical problems would allow to perform realistic simulations for
real applications.

This thesis presented the proof-of-concept of the proposedsolver towards enhancing
3D real life application of the code and collecting the feasible data respectively. For
this purpose the performance was analyzed based on certain assumptions.

However, as part of the future research the recommendation to be incorporated for
further tests are analyzed in the following section.

7.3 Vision for the Future

Throughout the discussion presented in this thesis, focus has been to provide and test
the solver for benchmark settings and extend it to real life applications. The topic of
biomechanics holds great relevance as transition towards the realization of future need
of numerical simulation in this era.

The future scenario and aim for the cerebral aneurysm settings is to extend it to an
3D cerebral aneurysm hemodynamics application comprisingof real life data received
by the medical partners. However, to handle such situationsit is imperative to have
effective numerical tool, mechanisms in place.

Furthermore, the benchmarking scenario has to extend the validated FSI benchmark
configurations to optimization problems such that minimal drag/lift values of the elas-
tic object, minimal pressure loss or minimal non-stationary oscillations of the elastic
beam through boundary control of the inflow, change of geometry (elastic channel
walls or length/thickness of elastic beam) or optimal control of volume forces can be
reached. The simulation is based on the described FSI1 configuration. At present the
Simplex method according to Nelder and Mead [86] is chosen, which is a derivative
free optimization method for unconstrained minimization problems and quite numer-
ically robust but it requires big CPU time for computation even for less degrees of
freedoms. Aim is to apply the gradient base method in the adjoint operator presence
and for non-stationary problem settings to minimize the lift on the beam via boundary
control.

We believe that such basic studies may help towards the development of future ‘Virtual
Flow Laboratories’ which individually assist to develop personal medical tools in an
individual style.
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