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Abstract

Numerical techniques for solving the problem of fluid-stuwe interaction with an
elastic material in a laminar incompressible viscous floavdgscribed. An Arbitrary
Lagrangian-Eulerian (ALE) formulation is employed in aljutoupled monolithic
way, considering the problem as one continuum. The matheahatescription and
the numerical schemes are designed in such a way that moygicatad constitutive
relations (and more realistic for biomechanics applicet)dor the fluid as well as the
structural part can be easily incorporated. We utilize tiedl-known Q»P; finite ele-
ment pair for discretization in space to gain high accurady@erform as time-stepping
the 2nd order Crank-Nicholson, resp., Fractional-Rlegcheme for both solid and
fluid parts. The resulting nonlinear discretized algebsgitem is solved by a Newton
method which approximates the Jacobian matrices by a divdidéerences approach,
and the resulting linear systems are solved by iterativeess| preferably of Krylov-
multigrid type.

For validation and evaluation of the accuracy of the progasethodology, we present
corresponding results for a new set of FSI benchmarking gorgtions which describe
the self-induced elastic deformation of a beam attachedytireder in laminar channel
flow, allowing stationary as well as periodically oscilfaideformations. Then, as an
example for fluid-structure interaction (FSI) in biomedipeoblems, the influence of
endovascular stent implantation onto cerebral aneurysnotignamics is numerically
investigated. The aim is to study the interaction of thet&lagalls of the aneurysm
with the geometrical shape of the implanted stent strudr@rototypical 2D con-
figurations. This study can be seen as a basic step towardstiezstanding of the
resulting complex flow phenomena so that in future aneurygoture shall be sup-
pressed by an optimal setting for the implanted stent geymet

Keywords:Fluid-structure interaction (FSI), monolithic FEM, ALE uttigrid, incom-
pressible laminar flow, bio-engineering, optimizationp&emarking.
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Tell me and | will forget. Show me,
and | may not remember. Involve
me, and | will understand.

-Native American Saying

Introduction

This chapter is the foundation of this thesis. It introdueesl motivates the broad
context of the importance of the research and series of @nobin the area of Fluid-
Structure Interaction (FSI). It will establish and higliitghe grounding for the next
chapters. A birds eye view of the research contributionsthedverall organization of
this thesis will be given towards the end of the chapter.

1.1 Orientation

Fluid flows encounters in everyday life from the time of esiste of mankind and
even beyond. Blood, water are the one of the main source stegde of human being
and other living creatures. Approximately, a human bodytaios 55-60% of water in
adult male and female. Also, two third of the very own Earthsist of water. Water
is the simplest and without shadow of doubt most importaid fihich is categorized
as Newtonian fluid that means its stress depends linearlg@ddformation rate with
a constant velocity.

The fluid mechanics is the branch of science which discusse8uid flow behavior,
governed by Partial Differential Equations (PDE) whichresgnt conservation laws
for the mass, momentum and energy. With the invent of digitmhputers, Compu-
tational Fluid Dynamics (CFD) came into existence whichrisagt of replacing such
PDE systems by sets of algebraic equations and solve therariaaity with appropri-
ate numerical methods.

Structural mechanics is another discipline of Engineermgrhich the deformation

or displacement of solid materials are analytically stddid material laws and a
wide range of dynamical properties modeled. Moreover, traputational structural

mechanics (CSM) has also achieved a great advance indeyisridem the CFD.

In almost every physical system, interactions between ivlevar deformable struc-
tures with internal or external fluid flow can be observed. sTiehavior is known

in literature as fluid-structure interaction (FSI) and hasrbone of the most investi-
gated and most intensively studied coupled problems. Maayneles of this multi-

field/multi-physics phenomena can be found in practice Wwigan actual main focus
in CFD development. In this undertaken research speciascakcoupled problem
will be investigated,- the fluid-structure interaction (JFroblems.

The combined solution of fluid structure interaction probéedemands extraordinary
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CHAPTER 1. INTRODUCTION

efforts as it is schematically shown in Figure]1.1

Figure 1.1: FSI problem - lies in between the fluid (CFD) amdcttiral (CSD) dynam-
ics problems

This thesis has only one author, which is common for a PhDigheasd the author
decided to address reader as using first person plural "wef’ finst person singular
"I" for humility. If the presented contributed results am@rjtly compiled then "we”

indicates a group of authors, otherwise explicitly stated.

Almost all the calculations made for the formulated fluicusture interaction (FSI)
system of equations in this thesis were performed using thigeFElement Method
(FEM) package Featflow (Finite element analysis tool for flmablems). A compre-
hensive survey, a complete introduction and rigorous gtaideis open source software
can be found and downloadedttt p: / wwv. T eat f 1 ow. de.

1.2 Research Applications and Goals

In recent years, encouraging progress has been made in tinerinal simulation of
Fluid-Structure Interaction (FSI) problems and continodo¢ the focus of much at-
tention. The significant applications in various areas w@argg an elastic or inelastic
structure surrounded by or conveying a fluid can be founderfaHowing broad engi-
neering disciplines:

e Aerodynamics

e Aeroelasticity

Civil engineering

e Biomechanics

e Hemodynamics

e Meteorological phenomena

e Hydroelasticity

Such multi-physics problems ranging from water penetratiboff-shore structures,
modeling submarines motion, parachute modeling, intenacif the various objects
with the surroundings (air, water, structures), blood flowarteries, environmental
hazards, airfoil fluttering, rain, wind, floods involve mdhan one physical effect.

2
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1.2. RESEARCH APPLICATIONS AND GOALS

Fluid Structure Interaction problems, involving the canglof unsteady fluid flow and
structure motion, arise in many fields of engineering, a$ agih many other sciences,
e.g. medicine. From previous experience one can concladét mechanisms which
lead the vibrations of flexible structures immersed in flayfluids to become self-
excited are very sensitive to the mechanical propertieseétructure as well as to the
properties of the incoming fluid and very difficult to predict

One major application is blood flow through human arteries(fthrough the heart

flaps, flow in the heart chambers). The local hemodynamiastemporal wall shear

stress gradient is important in understanding the mechenisading to various com-
plications in cardiovascular function. Many clinical theeents can be studied in detail
only if a reliable model describing the response of artewills to the pulsatile blood

flow is consideredEl].

The multigrid FSI simulation to calculate for Fluid-Struot Interaction Optimization
is another application. Often we have an optimization poblnder the constraint
of a strong fluid-structure coupling. This state - consggtiri velocity, pressure and
deformation - shall be achieved by the optimal control of gaie part of the FSI
system. Possible values that may be influenced are the alaiéthe elastic solid or
a certain inflow control on a part of the outer boundary. Aliflo this advancement
makes it possible to consider the optimization of FSI bagstesms, the development
of efficient simulation-based optimization techniques tloee optimal design of FSI
systems is still in its beginning stage.

In this research work we seek to validate and evaluate th&racg and performance
of the proposed methodology, for a new set of FSI benchmankgurations which

describe the self-induced elastic deformation of a beaactla¢td to a cylinder in lam-
inar channel flow, allowing stationary as well as periodicakcillating deformations
and compare the results with experimental values from @sponding benchmarking
experiment.

Additionally, this benchmarking scenario is to extend takdated FSI benchmark con-
figurations to optimization problems such that minimal diéigzalues of the elastic
object, minimal pressure loss or minimal non-stationajllagions through boundary
control of the inflow, change of geometry or optimal contrblvolume forces can be
reached. The main design aim for the presented fluid strigiteraction optimization
problem is to minimize the lift on the beam with the help of bdary control of inflow
data. The simulation is based on the described FSI1 configara hen, as an example
of FSI in biomedical problems, the influence of endovascsiant implantation onto
cerebral aneurysm hemodynamics is numerically invesgtitjathe aim is to study the
interaction of the elastic walls of the aneurysm with thergetrical shape of the im-
planted stent structure for prototypical 2D configuratigmrepose corresponding more
realistic material law for vessels and put into action thelimear flow model (power-
law) and analysis with emphasis on hemodynamical applicataneurysm success-
fully. This study can be seen as a basic step towards the stadding of the resulting
complex flow phenomena so that in future aneurysm ruptunélsdauppressed by an
optimal setting for the implanted stent geometry.

Hence, the action of the dynamic fluid forces on the elasgtdistic boundaries and the
deformation of the flow domain caused by the structural disginents are modeled.
The structure is made of an isotropic elastic material, whieear and geometrically
nonlinear models are used for small and finite deformatigspectively.




CHAPTER 1. INTRODUCTION

1.3 Challenges and Motivation

Fluid-structure interaction physical processes are vempiex, nonlinear in nature
and can not be solved analytically. In fact experimentalgefare essential to provide
reliable data. However, these are generally associatédaemibrmous costs, which is
why the demand for numerical simulations as developmetigancreasing rapidly.

Both problems of viscous fluid flow and of elastic body defadiorahave been studied
separately for many years in great detail. But there are rpaslylems encountered in
real life where an interaction between those two medias ggert importance.

In bioengineering, modeling FSI in the blood circulatonst®yn is a vast and com-
plex mathematical subject; even a simplified descriptiothefvessel wall mechan-
ics assuming homogeneous linearly elastic behavior lead®implicated numerical
strategies with challenging stability and convergenceperities. To devise an accu-
rate model for the mechanical behavior of arterial wallg thiél lead to numerical
methods producing computational solutions in an acceptahk is more complicated
without introducing simplifications. There have been saldifferent approaches to
the problem of fluid-structure interaction in blood flow dymias in local arterial en-
vironments and to predict vessel wall deformation. Artenialls are anisotropic and
heterogeneous, composed of layers with different biomﬁcahcharacteristicé__[_'bl],
[@], [@]. A variety of different models has been suggésitethe literature to model
the mechanical behavior of arteriés [4], [3]} [9], [5L1]78L05], [132]. They range
from the detailed description of each of the layers to theage description of the
total mechanical response of the vessel wall assuming henemyis, linearly elastic
behavior, special geometry, symmetry and periodicity.

Similarly, typical cases are the areas of biomedical fluititctv include the influence
of hemodynamic factors in blood vessels, cerebral aneuhgmnodynamics and blood
flow interaction with elastic vein£|[46]. A fluid-stture model with the wall
modeled as a thin shell was used to model the left heart eémtand similarly, to
model the flow in collapsible tubes |ﬂdﬂ@@@@ @0 reality the thick-
ness of the wall can be significant and very important andviery hard to predict the
material property of wall thickness. For example in artetige wall thickness can be
up to 30% of the diameter and its local thickening can be thseaf an aneurysm
creation. In this thesis, we allow the walls of the aneurysnbe elastic and hence
deforming with the flow field in the vessel. Moreover, we exaenseveral config-
urations for stent geometries which clearly influence the tbiehavior inside of the
aneurysm such that a very different elastic displacemetiteofvalls is observed, too.
We demonstrate that either the elastic modeling of the gseumwalls as well as the
proper description of the geometrical details of the shdpheoaneurysm and partic-
ularly of the stents is of great importance if the compleetiattion between structure
and fluid shall be quantitatively analyzed, especially withre realistic blood flow
models and anisotropic constitutive laws of the elastidsvah this study, we restrict
at the moment to 2D prototypical numerical studies of angurgonfigurations which
is due to an easier presentation and the computational tgedad to solve the prob-
lem. In all these cases we have to deal with large deformatida deformable solid
interacting with an unsteady, often periodic, fluid flow.

With the continuous increase of processing power of conmputbese problems have
attracted more and more interest of the researchers. Howestreer the experimental
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1.4. RESEARCH METHODOLOGY

setting is too complicated for the computational tool or tluenerical setting is not

feasible for experiment. There are still challenging goest in FSI research, rang-
ing from mathematical modeling, numerical discretizatigmto implementation into

software tools. Increased efforts in numerical researchdmvelopment are presently
being observed to develop models and coupling strategies.

1.4 Research Methodology

In the past decades the computational fluid dynamics (CFBYlbaeloped many effi-
cient methods which provide a qualitative (and some time exmntitative) numerical
solution of various fluid dynamics problems. Many commerpiagrams have been
created, tested on benchmark settings and successfullgéppdiverse complex fluid
dynamics problems. Traditionally, the governing equatibave been derived using
Eulerian (spatial) description. In literature, from a nuio& point of view the finite
volume discretization has been preferred because of itseteative properties. Simi-
larly finite element discretization methods are equallijagd.

Many structural dynamics solvers have been developed te salrious structural dy-
namics phenomenon. The modeling of a wide range of matewas bnd structural
properties has been made possible by creating special dileibeents holding desired
features. Contrarily to the fluid dynamics, the Lagrangiasatérial) description has
been selected for the governing equations.

The possibilities of numerical solution of the coupled F&itgem include the numeri-
cal solutions of the fluid and the structural parts by pani&id or monolithic way. In the
case of their combination some mixed description (usuallgrred to as the Arbitrary
Lagrangian-Eulerian description or ALE) has been used lwhiings additional non-
linearity into the resulting equations. The developmenrtiools for modeling various
fluid-structure interaction problems is still an uphill teage.

Fluid-structure interaction problems solving approact&s be divided into weakly
(separated) and strongly coupled approaches, based dmeihdata exchange.

In the separated coupling approach, the coupled problerartgipned into fluid and
structural parts and then solved separately. The pariti@malysis of coupled systems
has been introduced by Park and Fell 100].

Contrarily, in a strongly coupled strategies both partshef ESI problem are solved
monolithically. That means, one system of equations ivedrafter discretizing the
governing fluid and structural equations and taking intaaot the boundary condi-
tions on the interface. Hence, the whole FSI problem is sbhteonce using a mono-
lithic ALE approach.

Obviously, both approaches have advantages and disadeania Figur€ 114, they are
referred with regard to their flexibility and stability as lhes the needed programming
robustness.

One solution strategy is to decouple the problem into the fhairt and structure part,
which is known as separated or partitioned approach. Tha atiantage of the sep-
arated coupling approach is that for each of those parte#& ssme well established,
efficient and well validated finite element based numeriocathod of solution and the
interaction is introduced as external boundary conditimngolume forces in each of

5




CHAPTER 1. INTRODUCTION

Separated
(Partitioned) n n+1

Weak coupling  (Fluid )->(Solid) == (Fluid }->(Solid)

Strong coupling  (Fluid )$5(Solid) = (Fluid )5(Solid)

Monolithic

Figure 1.2: Coupling strategies for multi-physics FSI peots

the subproblems. The drawback of a partitioned approadfeisthe treatment of the
interface and the interaction is often problematic. Althloghey are flexible, less pro-
gramming efforts required but due to the explicit naturehi$ toupling convergence
problems may often arise. Consequently, there is a rastricin the choice of the
time-step even if implicit time-stepping schemes are ugeithé two solvers.

Contrarily, the strong coupling approaches are more difficuformulate and to pro-
gram. Normally, the simultaneous solution of the whole F®bem necessitates re-
formulation of the systems of equations and confines thecehafithe numerical meth-
ods to be applied. Additionally, special approaches maydszled for modeling the
nonlinearities in each of the physical parts. Valuable pgogning efforts are required
to create and validate a program applicable to wide rangeotii@ms. However, there
are no approximation errors and convergence problemssragiproach due to the data
convey between the fluid and structural parts.

The approach which will be put into action in the presentgtigch monolithic strong
coupling strategy. This considered strong coupling sgsaté an implicit type is more
stable although difficult to program than the separated laogppproach that is more
flexible but connected with convergence problems. With me¢ia flexibility we opted
for stability and robustness, it seems to be a good compeoh@sveen the separated
and the strong coupling approaches.

In this thesis, we investigated and developed a new nunigdchniques for solv-
ing the problem of fluid structure interaction of a comprelegincompressible elastic
material in a laminar incompressible viscous flow in a fulbupled monolithic way.
We formulated the implicit set of equations via Arbitrarydrangian-Eulerian (ALE)
approach. We discretized the flow problem in two space dirnaady utilizing the
high order finite elemen®, (Taylor-Hood family) for velocityV and displacement
approximation andP; element for the pressumgapproximation to maintain high ac-
curacy, in a standard FEM approach, after applying a standaplicit one-step time-
stepping schemes in the non-stationary case. The@sedelement pair satisfies the
well known LBB-stability condition.

It is found evident by an example of FSI benchmark that thésneint pair has accept-
able grid independent results for steady state as well asfillatory benchmark cases.

6




1.5. SUMMARY OF CONTRIBUTIONS

For instance, foRe= 20, it is shown in Figurd._114.

Figure 1.3: FSI BenchmarlRe= 20, drag= 14.2943, lift= 0.76375

The resulting discrete nonlinear system for the triglétV, p) is solved by utilizing
outer quasi-Newton iterations using the line search alswkras the method of Rothe
(method of lines, or method of semi discretizatidn) [83] ifutly coupled monolithic
way. This technique is considered as the most robust iberaéichnique which may
give quadratic convergence. Due to finite element methadsparsity pattern of the
Jacobian matrix is known in advance and computed by dividféeteince approach.

Inside one Newton step, the solution of the linear subsystghe most time consum-
ing part of the solution process in terms of the CPU time![[Z&]. One choice for this
sparse systems is to put into action a direct solver like UMER [@]. This choice
provides very robust linear solvers but its memory and CRi¢ tiequirements are too
high for larger systems, for instance it allows nearly@mO0 unknowns in acceptable
time.

Similarly, large linear subproblems can be solved by Krngpace methods (BiCGStab,
GMRes |[$]) with suitable preconditioners. One possibilgythe ILU preconditioner
with special treatment of the saddle point character of gstesn, where we allow
certain fill-in for the zero diagonal blocHﬂZZ].

As an alternative, we also utilize a standard geometricigridtapproach based on a
hierarchy of grids obtained by successive regular refin¢émea given coarse mesh.
The complete multigrid iteration is performed in the stadddefect-correction setup
with the V or F-type cycle. While a direct sparse solver [4Q)sed for the coarse grid
solution, on finer levels a fixed number (2 or 4) of iteratiogddral MPSC schemes
(Vanka-like smoother@?S] with canonical gridrtsfer routines is put into
action which results in high efficiency and robustness. Tl¢hematical description
and the numerical schemes are designed in such a way thatoomoicated consti-
tutive relations can be easily incorporated. We performenical comparisons for dif-
ferent time stepping schemes, like the well known clas$tcattional ste-scheme,
Backward Euler and Crank Nicholson schemes for fluid strednteraction.

1.5 Summary of Contributions

The scientific research flourishes only by group efforts. drntgmtly, without the joint
work within the Featflow group most of the publications wontit have been possible
at all. So, to begin with this section, the author pays grdétto all collaborators,
co-authors and their contribution is gratefully acknovged.




CHAPTER 1. INTRODUCTION

During the pursuit of this thesis, the author has publishetic@ntributed to a number
of peer reviewed book chapters and intermediate results begn presented at inter-
national conferences and published in peer-reviewed pding volume and is been in
review for journal publication.

We contributed results for the special benchmark settingdldiid-structure interac-

tion problems which have been initiated and developed dahmfative project in the

DFG Research Unit 493 formed by group of universities at Geymn The results are
already published ir_[124, 125]. Also, the complete desioms, the parameter set-
tings and simulation results can be foundlin [124.] 125] 128} downloaded from

http:/ww. featflow. de/en/fsi benchnmark. htm .

Our first journal article has been accepted for publicalld8]. A chapter in the text-
book titled "Advances in Mathematical Fluid Mechanics” leeen published in late
2010 Eb], co-written by Dr. Jaroslav Hron and Prof. Dr. f&teTurek. In this

paper, we present numerical studies on different mesh typlesnerical results are
provided for all time stepping schemes which show very répcible symmetrical
two—dimensional swiveling motions. These numerical tshtsw that the solution is
independent of the mesh type and mesh refinement level.ninaliy results for the
experimental benchmark configuration are shown to see thiafive behavior of the
elastic beam for a high velocity profile fluid.

Another paper as a chapter, in the textbook titled "Fundadatdinends in Fluid-Structure
Interaction” is puinshed_L_lil], which centers around tee of Arbitrary Lagrangian
Eulerian formulation in the numerical context. As an apgtiien, the influence of en-
dovascular stent implantation onto cerebral aneurysmduyaramics is investigated.
This chapter has been co-written by Dr. Jaroslav Hron anfl Pro Stefan Turek.

One paper titled "Numerical simulation of fluid-structurgaraction with application
to aneurysm hemodynamics” is published in internationaff@@nce proceeding for
"Fluid-Structure Interaction. Theory, Numerics and Apptions” [110].

Additionally, we proposed and contributed a numerical emark scenario titled "A
numerical set-up for benchmarking and optimization of fisidicture interaction”
and provided all the data to validate codes to a Design Test Catabase workshop
http://jucri.]yu.filinitiated by the university of Jyaskyg, Finland. Annual
participations have been made.

1.6 Thesis Outline

Each chapter begins with a self introduction. Moreover,dhietents of the thesis are
organized as follows.

Chapter 2 will present the mathematical description and modelinghefrmulti phys-
ical phenomena depicting the fluid structure interactiodl)fvith all necessary theo-
retical descriptions and mathematical formulas. This trapill provide a conceptual
background that will enable the reader to understand andkaiape the contributions
described in the remaining chapters. It will also gives a@a@hensive overview over
the basic principles of continuum mechanics needed for thhematical description
of a monolithic-ALE formulation.
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1.6. THESIS OUTLINE

Chapter 3 will discuss and suggest the FEM, time discretization aspiec the sys-

tem of equations arise for the FSI modeling in a monolithigwResides suggesting
the methodology of solution, a brief overview of the math&oaa preliminaries, sim-

ulation environment, will expound upon implementation lo¢ tmethod. It will also

discuss the FEM discretization related issues comprelelpdo the problem and in
general.

Chapter 4 will design the monolithic numerical scheme and implemeta the highly
nonlinear FSI problem in a way that several realistic coogéd constitutive relations
will be used. It will explain the aspects of nonlinear as veaslllinear solvers in respect
of their efficiency and robustness. It will also provide @itito the iterative solvers
like Krylov-subspace solver and multigrid solver in geneswell as specific to the
problem undertaken.

Chapter 5 will be divided into three sections. The section 1 presemssimulation
results to the governing saddle point system for the FSIHimack settings success-
fully in respect of efficiency and robustness. The secontigiscusses the experiment
benchmark flow and shows agreeable results. The numergaltseand conclusions
for aneurysm hemodynamics applications are presentecartl. The objective of
this chapter is to give a consistent and clear descriptich@methods to make a re-
production of the simulation results possible for the bematk settings.

Chapter 6 will extend the FSI benchmark scenario given in chaptertb, time topic of
utmost importance, optimization. It is employed to the mation of fluid structure
interaction problem, at the moment only for stationary case we are in search for
applying for the non-stationary case in the for seen futligis chapter will address
the important issue of optimization in the realm of FSI.

Chapter 7 is the concluding chapter presenting a brief commentarpembpact of the
various contributions and will provide a collective oveawi of the general advantages
presented by them in the overall studies of the FSI in diffetechniques. It will give
directions for future research initiatives by highliglgisome of the open key issues.
The conclusions will be drawn and recommendations will belerfar future work at
the end.
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A Monolithic ALE-FEM
Fluid-Structure Interaction
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The very ink with which history is
written is merely fluid prejudice.

Mark Twain

Mathematical Modeling

Every physical occurrence can be presented mathematiwalifurther studies. To

start with, this chapter will present mandatory mathenadtizeliminaries and basic
principles of continuum mechanics needed for the mathealadiescription of fluid

flows and its interaction with the solid, namely fluid struetunteraction, a multi-

physics discipline. The necessary theoretical backgrdhatdwill enable the reader
to appreciate the work will be presented before hand. Thadtation of the physical

problem, small details about Eulerian, Lagrangian desorip, then the very own used
Arbitrary Lagrangian Eulerian (in short ALE) descriptiosn formulated for the FSI

problem, followed by the necessary constitutive equations

2.1 Overview

In this work, the problem of viscous fluid flow interacting ian elastic body which
is being deformed by the fluid action is considered. Such blpro is encountered in
many real life applications of great importance. Typicamyples of this type of prob-
lem are the areas of biomedical fluids which include the imibgeof hemodynamic
factors in blood vessels, cerebral aneurysm hemodynaioios,lubrication and de-

formable cartilage and blood flow interaction with elastins [2] 120, 46, 119, 100].
A fluid-structure model with the wall modeled as a thin shedlswised to model the
left heart ventricle and, similarly, to model the flow in agkible tubes irﬂﬁ@%,

103,68 69].

At present there is no analytical result proving well-posss of the fluid-structure
interaction between a viscous incompressible Newtonidd #od a hyperelastic ma-
terial or structure problem without assuming additionai@ifying assumptions, such
as the smallness of the data, periodic boundary conditrigidity in elastic shells or

plates[131] 63, 24, 80, B4]. Thus, the well-posedness ditiwstructure interaction

of blood flow conveying to (elastic or viscoelastic) arterie still an open problem
even with these simplifications.

In [@I] the well-posedness of an unsteady fluid-structureraction between a viscous
incompressible Newtonian fluid modelled by the Navier-8®okquations and a vis-
coelastic structure problem is studied. They considengtre as a collection of rigid
moving bodies and fluid domain depends on time and is defingdebgosition of the
structure.
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Initial configuration Za,(t) Current configuration

/—\

ZQ(O\ ZQ(‘/

€, X5, Xy

o—3
c“/Xl.x1

CRTXS. X3

Reference configuration

Figure 2.1: Sketch of the referential domd, initial Qg and current stat€; and
relations between them. The identificati@ne Qg is adopted in this text.

The important basic ideas, kinematic definitions are nog¢rted rather presented in
this chapter, are based on|[87| 71,7248/ 4Pl 90, 98]. Féc aeoduction and com-
plete reference of continuum theory see i2n, 67]. Ipdiegtion in biomechanics
are presented irﬂbl] for example. We will mention in thedaling sections the basic
continuum theory related to the work presented in this thasd setup used in this
work.

2.2 Continuum Theory

In continuum mechanics, we are interested in material Isottiat can undergo mo-
tions and deformations regardless of mass and force. Wénasadthod of continuum
mechanics as a powerful and effective tool to explain varjghysical phenomena suc-
cessfully without detailed knowledge of the complexity loéir internal (micro) struc-
ture. Of course prediction based on macroscopic studiesadexact but good enough
for the design of machine elements in engineering. The ligiedients of continuum
mechanics, the study of motion and deformation (kinemptsteess, and fundamental
physical laws governing the motion of a continuum (balaages) are presented in the
similar order based oEg[lZQM].

2.2.1 Kinematic Descriptions

Let Q c R3 be a reference (undeformed) configuration of a given bodysipty an
abstract one. Le®; ¢ R® be a current (deformed) configuration of this body at time
t. Then there is a one-to-one, uniquely invertible, suffitieemootl mappingxq of
the reference (undeformed) configurat@rio the current (deformed) configuration

Xo - Q x [O,T] — Qt,

1The mappingyq continuously differentiable in all variables up to theiceed derivative included.

14
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Initial configuration ¢ Current configuration

X, x

Figure 2.2: Displacement field andu of a typical particles.

which determines the successive position of the materiatpsee Figurd, 2]16. For our
current purposes it suffices to define one reference confignrfr the material point,
so in further we drop the subscrif¥fy and it will be understood that the mappixg
depends on the choice of the reference configurddavhich can be fixed in a various
ways. Here we think of2 to be the initial (stress-free) configuration. If we denote
to identify an arbitrary material point in the reference figurationQ then the position
of this point at timet is given by

x=X(X,t) XeQ,

wherex is the position vector of the point i2;. The mappingxg is called the defor-
mation fromQ to Q;. The inverse of this one-to-one, invertible mappjnds written
as

X=x"1xt) xe.

Now, the displacements vector fields in the material andiapdé¢scriptions respec-
tively are defined as

UX,t) =x(X,H) =X x(X,t) =U(X,t) +X
u(x,t) = x—x(x,t) X(X,t) = u(x,t) +x

whereU(X,t) represents the displacement field of a material particleratades its
positionX in the undeformed configuration to its positioim the deformed configura-
tion at timet for all particles (illustrated in Figuife 2.2), angX,t) is the displacement
field. u(x,t) is a function of referential positior and timet, which characterizes the
material description (Lagrangian form) of the displacetrfaid. These two relations
are related by

U(th) = U[(Xil(xvt)vt)] = U(X’t)v
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CHAPTER 2. MATHEMATICAL MODELING

It is worth mentioning that, in solid mechanics the motionl @&he deformation of a
continuum body are, in general, described in terms of theatiement field. However,
the primary field quantities in fluid mechanics describing thndamental kinematic
properties are the velocity field and the acceleration fiele velocity and acceleration
fields are defined as the time derivative of the position, keg) fixed which are given

below respectively:

) 9%x

RS I

Configurations

This study is concerned with the mechanics of a body in whiath Imass and vol-
ume are continuous (or at least piecewise continuous)ifumebf continuum particles.
Such a body is called continuum body or just continuum. A icnim geometrical re-
gion can be determined uniquely. The regi@p with fixed particleX corresponds
to fixed (initial) reference at time= 0. The regionQ is referred to as (undeformed)
fixed reference configurations of the bod§ Upper case level is employed for refer-
ence (undeformed/Lagrangian/material) configurationlaner case for current (de-
formed/Eulerian/spatial) configuration. Macroscopic enials are the main interest in
this study.

The Eulerian (or spatial) description is well suited for a problem of flfldwing
through some spatially fixed region. In such a case the naqfeaiticles can enter
and leave the region of interest. The fundamental quangisgidbing the motion is the
velocity vector.

On the other hand theagrangian (or referential) description is well suited for a prob-
lem of deforming a given body consisting of a fixed set of nmiatgrarticles. In this
case the actual boundary of the body can change its shapduidi@mental quantity
describing the motion in this case is the vector of displaa@nirom the referential
state. The transformations between material and spatisdie are typically called
push forward and pull back operations. Tesh forward means transformation from
reference to current configuration aowll back known as transformation from current
to reference configuration.

Eulerian Description

In the Eulerian description mesh nodes
are fixed and the continuum moves rel- t

ative to the mesh. Material particles ~~7~~® < -’ 01 1-
move with continuum to different posi- ! ! ! !
tions with velocity over continuum and ! : [ !
occupied different position at different oo

time but nodes remain at their original
positions, (the 1D situation is sketched [IMmaterial ~ ——— Mesh motion
in Figure[Z2.B8). This approach is widely @ Nodes
used in fluid mechanics because it makes

it possible to handle very strong defor- Figure 2.3: Eulerian description-1D
mation and it can be used for any discretization techniqikesfinite differences ,

Particle motion
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finite volume, finite element in space. The structured as aglinstructured meshes
can be used. However, it is easier to use structured meshideoé fixed nodes and
there is no cost for moving the mesh this makes it very attr@etpproach. It is mainly
applied to simulate compressible, turbulent fluid flowsslsimple, robust but on the
other hand one need to dealt with imprecise interface ancernioai instability for the
connective terms.

Now, let us adopt following useful notations for some derixes in the Eulerian de-
scription. Any field quantityp with values in some vector spa¥e(i.e. scalar, vector
or tensor valued) can be expressed as a function of the pasigionx € R3

d=9P(x,t): Q x[0,T] =Y.

Then we define following notations for the derivatives of tiedd ¢

op 9%
ot at’
_0¢ 9%
D¢7ﬁ.7 W.

Lagrangian Description

In the Lagrangian description mesh nodes follow the motfanaterial particles coor-
dinates, i.e. mesh nodes are connected to same materiappainanently. It is mainly
used in the structural mechanics. Discretization is domkelyiby finite element meth-
ods.

The main application of this descrip-
tion is to study the vehicle crash tests &

and metal formation processes. Easy~~7T-~~ - .
tracking of free surfaces and interfaces
between different material is possible.

@

However, Inability to handle strong de-
formations which results in mesh tan-
gling, frequent re-meshing required, ex- [IMaterial ~ —== Mesh motion
pensive projection of data needed and @ Nodes
loss of accuracy often arise.

Particle motion

. o Figure 2.4: Lagrangian description-1D
In the case of Lagrangian description we

consider the quantity to be defined on the reference configurattonthen for any
X € Q we can express the quantifyas

d=0(X,t):Qx[0,T] =Y,

and we define the derivatives of the figicas

dp _ 0§
Pl
7] a9

Gradp = 92— 9.

Since the material particle coincide with the same meshsatien motion takes place.
In Lagrangian description there is no convective effectgctvimeans material deriva-
tive becomes a simple time derivat. A history of orientation of motion is intact
in this description (seé [21] for deeper understandings).
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Arbitrary Lagrangian Eulerian Description

The Arbitrary Lagrangian Eulerian description is a moreagahdescription that em-
beds the advantages of the two description documentedebefarthis description,
mesh nodes may be fixed or move in prescribed fashion (witlcah&nuum or rela-
tive to continuum) but mesh is allowed to move independe#tier each time step the
mesh is updated and, in the spirit of the updated Lagrangiaaription i.e Q = Q(t"),
the finite element solution is performed using the curremhost recent mesh configu-

ration (see for detail$ [118]).

The Arbitrary Lagrangian Eulerian description was firstadiuced by NohlﬁG] ad-
dressing the hydrodynamics problem in the finite differenoatext. The method
was also used by Hert et all—_E[7O], PradﬂlOZ] in the finitdedénce analysis. It
was later adopted and developed in finite element formatdat-8tructure interaction
and for free surface flow problems by Belytesch |ﬂ'n] Donea
[43,[42), Hughes [76, 77], Lid [90, 89] and their companioktre recently, the ALE
concepts was applied to nonlinear solid mechanics and cioptablems by Haber
[65], Liu et al. ] Benson[[18], Ghosh and Kikuchi [54] anthers. This ap-
proach is well suited for problems with fluid-fluid, fluid-gl solid-solid interaction.
As we know that Eulerian methods work
well for fluid mechanics and Lagrangian t
methods are well suited for structural =~ T
mechanics and if we consider fluid struc-
ture interaction problem we have solid
boundaries, like moving walls, which
is in contact with the fluid and due to
motion of the fluid it can displace then [IMmaterial ~ ——— Mesh motion
Eulerian-Lagrangian formulation is per- @ Nodes
fect. Typical applications are fluid struc-

ture interaction, all kind of problemsFigure 2.5: ALE mesh and particle
with moving boundaries. It combines thelescription-1D

advantages of Eulerian and Lagrangian approaches.

Particle motion

In the case of fluid-structure interaction problem we calhs¢e the Lagrangian de-
scription for the deformation of the solid part. The fluid flowww takes place in a
domain with boundary given by the deformation of the streeetnhich can change in
time and is influenced back by the fluid flow. The mixed ALE dgsn of the fluid
has to be used in this case. The fundamental quantity dasgthe motion of the fluid
is still the velocity vector but the description is accomigarby a certain displacement
field which describes the change of the fluid domain. Thisldegment field has no
connection to the fluid velocity field and the purpose of itsdduction is to provide a
transformation of the current fluid domain and correspogdjaverning equations to
some fixed reference domain. This method is sometimes calpsgéudo-solid map-
ping method [115].

In the following, we shall describe the basic mathematicaloepts underlying the
ALE description and then provide the relation between a#ehdescriptions.

In the ALE formulation, a third regio® 4 is the reference configuration instead of
Q or Q. The mapping]# from reference configuration to Eulerian configurat{on
which means the motion of the mesh nodes in the spatial Enleggion, is represented
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2.2. CONTINUUM THEORY

Q

Figure 2.6: Moving computational regidd 4 for ALE and region;, Q for Euler
and Lagrangian maps respectively.

by
{r:Z x0T~ %  ZCQu, HCQ We[0T]
Z(g,t) = (th)’
and its gradient is
dZ(g,t)_ ;—% Vo
ozt \0 1)’
where
_ 0y
V&= T

is the corresponding mesh velocity involved in e- region and0" is a null row-
vector. Finally, for the mappings from reference configuration to Lagrangian con-
figuration, it is suitable to represent directly its invefs;é,

(p:Zx0T|—%,  ZCQyp, ZcCQ, WeloT],

Uz H=(X1), o (Z)=YXu),
and its gradient is

05__1(Xat)_ %i VX
a(X,1) _<o 1)’

wherevy = % is considered as particle velocity in the reference conditiom Q.

The relation between velocities v andvy can be attained by

X=00074

differentiating keepingX fixed, it becomes

i{ 5 ot

ox ~
c?(ﬁ»}”,t)Z l(X’t)d(x,t)

a(X,1)

(X,t) = (X,1),
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in matrix form

& 3)-(F 1)F D

which furnishes after matrix multiplication,

ox
V:VEZ"F@'va

with v = ‘%X is the material velocity. This equation can be rewritten as

C:=V—Vy = ox %
= 7= V%
which is the relative velocity of the mesh and material géatias seen from the spatial

region. Hereyx = ‘;f‘ , is the patrticle velocity in the referential domain (as skeem

X
the referential region). Above equation is also known awective velocity.

1. c=vx only for f—% = | which results in pure translation of continuum, i.e no
deformation.

2. The Lagrangian and Eulerian descriptions are recovearddrithe following as-
sumptions:

e The Lagrangian: Fof_g =1, reduces tX = 27, and material and mesh ve-
locities material velocities coincide = v which guaranteed no convective
terms in the conservation laws, ivx = c=0.

e Eulerian: For{4 = |, reduces tx = ', a null mesh velocity is obtained
vx = 0 which means the convective velocityis identical to material ve-
locity v.

Material Spatial Time Derivative

The fundamental ALE relation between material time dervest referential time deriva-
tives and spatial gradient is finally

df  af

of of

== +
W Ot ot

+c-0Of,
P

which can be interpreted in the usual way: the variation efghysical quantity for
a given particle X is the local variation (i.e., with respéztthe reference?’) plus a
convective term taking into account the relative motionneestn the material and the
reference system. This equation is equivalent to mategi@alative equivalent to spatial
derivative but in the ALE formulation; that is, whei#,t) is the reference [44].
Material acceleration:

_dv_ ov

g AV _ov _ov
dt ot

7}
= — +V~Dv:—v
x Ot

+c-Ov.
N ot |,

z

Next, the mechanical fields describing the deformation énaihsare defined as follows
in the subsequent subsection.
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2.2. CONTINUUM THEORY

2.2.2 Deformation and Strain

A continuum body which is able to change its shape under tfeetedf forces ap-
plied (stress) is said to be deformable and the deformatiadignt with respect to
the reference configuration is defined as the spatial derévat the one-to-one, twice
continuously differentiable magp

oy oy o
ox o oc o

— A _ — | &2 9722 972
9% 0x3  Ox3

X, X, 9Xs

Local invertibility of x needs thafF be non-singular, which means det- 0. Similarly,

inversedeformation gradient is

XX %
-1 X1 X2 X3
F1_9XT _x_ e 26 %
ox 0Xq 0Xo oxz |
dXg  9X3 X3
ﬂXl 5X2 0X3

where Grad andl are the gradient operator & andQ;, respectively. The equation

dx = FdX,

furnishes a measure of how much the infinitesimal line eleérd&nof material at the
point X transform linearly under the deformation into the line ederrdx at x, addi-
tionally angle and length might have changed. The detemmiioBF is denoted a$,

ie.,

J = detF,

called the Jacobian of the deformation, which is everywlsgtietly positive, so that
deformation mapping is orientation preserving-as invertible. We then have

0<J<oo.

The relation between the deformation gradient and dispiece gradient from equa-

tions, , are

Hx =F—I and Hy=1-F!

whereHx = Gradu andHy = [Ju are the second order displacement gradient tensors
in the material and spatial descriptions respectively.

The relation between theolume elementdV of the reference configuratia to the
volume elementlv of the current configuration is related by

dv=JaV.

The deformation is called isochoric or volume preserving fo

J=detF=1
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It is mathematical requirement that# 0, andJ > 0 is physical requirement as vol-

ume can not have negative value. A material which sati’ for all deformation
gradientsF is said to be incompressible.

Now, we establish the relation between the elemenssidace areaand volume trans-
form in the material and spatial region. L&#h = NdAbe a vector surface area element
on 0Q, whereN is the outward unit normal to the surface, ahel= ndathe corre-
sponding area element @f;. Then, the area elements are related by using Nanson'’s
formula as

nda=JF TNdA  or / nda:/JF‘TNdA 210
o 0

whereF~T = (F~1T andT is for transpose. Here is not in parallel with the same
line element of material lik&. Recalling the definition of the cofactor matrix of an
invertible matrixA

cOfA = (detA)A™ T, 2.11

it is possible to state Nanson'’s theorems on normals:

Theorem 1 Nanson’s formula: From the previous definitions

nd(9Q;) = cofFyNd(9Q). 2.12

Proof 1 A proof using vector calculus tools can be found. il [98], p. B8t us consider
the infinitesimal oriented surfaded(dQ) = dX? x dX® (dX? and dX" lie on the tan-
gent plane to the surfaa®Q, with outward normaN). The inner product ¥ - N(9Q),
represents the measure of the volume extruded fra?@d along the infinitesimal in-
crement K. The push forward through the mgpof such volume transforms according

to([2.8l):
dx - nd(0Qy) = Iy (dX - Nd(9Q)), 2.13
wherend(9Q;) = dx? x dxP, dx® = F, X3, dx? = F, X®, and &k = Fy X. Hence

dx-nd(9Q;) =Jy (dX -Nd(9Q))
=J,F, 1dx-Nd(9Q)
=dx- (JyFy TN)d(0Q)
=dx- (cofFyN)d(9Q).

2.14

The result i must hold for any vectorxd Since the inner product is a linear
operator on a finite dimensional vector spal@.14]) yields|[Z.12] #.

And also the Piola identity will be used

Theorem 2 Piola Identity

0=Div(JF ")

. 2.15
=Div(cofF),
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Proof 2 The Piola identity can be proved in several ways, all veryringive on the
type of manipulations that are commonly used in continuuichar@cs. One possibil-
ity, presented next, is to apply the Gauss divergence thetwean arbitrary constant

vector fieldf and use Nanson’s formul&.12]). Let wy be an open subset 6%, thus

0= divfdv
W CQt

= f-nda by Gauss divergence theorem
oux

= f-(cofFyN)dA by Nanson’s formula 2.16
dax=x"1dux)

- /{7 (3F 1) -NdA  by(Z7) and([ZID)
wx

:/ Div (JyFy)dV by Gauss divergence theorem
wx
where we recall that is constant. Hencf] can be rewritten as

0= / Div(JyFy f)dV = ( / Div(cofFX)dV> 217
Wy wx
Recalling thaf is arbitrary and x is smooth, and using the localization theorem in the
limit of a domainwy, implies

0=Div(JFT)

. 2.18
=Div(cofF),

which concludes the proof #.

Remark 2.19 The results just proved in theorem 1 and 2 are very useful whang-
ing coordinates of integral formulations involving the eligence of a tensor or vector
quantity from the current configuration to the corresporgdconfiguration and vice
versa.

After manipulating wit it follows howlength elements changes
|dx|?> = (FM)- (FM) [dX|*> = (FTFM)-M [dX|?,

whereM is a unit vector aX in the direction ofdX. Now, the ratio|dx| /dX of the
length of a line element in the deformed and reference coraiguns takes the form

T =|FM| = M- (FTFM)]¥2 = A(M). 2.20

Equation[2.20]] express the stretch(M) at X in the direction ofdX. It is evident that
it is confined to inequalities

0<A(M) < co.
If there is no stretch in the directidvl theA (M) = 1 which follows

(FTFM)-M = 1. 2.21
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Equation holds for allM in case there is no stretch in any direction which
indicates that no strain occurst It follows thatFTF = |, wherel is identity tensor.
An appropriate strain measure tensor as a consequetideFis- |, since this tensor
vanishes for unstrained material. This leads to anothamstneasure, the so called
Green-St.\enant strain tensor

E:%(FTF—I), 2.22

where 12 is a normalization factor.

Along with F and E it is useful to consider other related tensors. Specifically
introduce the symmetric tensors

C=F'F B=FF,

which are calledight and left Cauchy-Green strain (deformation) tensorsin re-
spectively. Theigid body deformation is represented as

X(X)=d+QX ¥XcCQ

whered is some translation vector ai@lis the rotation tensor. For body to be rigid it
means there is no stretches, no changes in angle, no chastugpie. Then the measure
of strain i.e. deformation gradieRt= Q holds, which leads to

C=F'F=I

In short, a deformation mapg describes a rigid body motion, if and only if its right
Cauchy-Green strain tensor C is the identity matrix. Fromeatmanical point of view
in (the so called Green-St Vennant strain tensor) is the rlagtrain measure
since it is zero in case of a rigid body motion. This is alsodyestimate to measure
deformation. The Green-St.Venant strain terlS@an be written in terms of displace-
ments

E= %(Gradu + Gradu" + Gradu' Gradu)

2.2.3 Stress Tensors and Equilibrium Equation

Axiom 1 Cauchy stress principfe The forces acting on the a generic material volume
V of body inQ can be divided into two main categories:

1. Body force, which reach into V from a distance, an examfpéeich a body force
is gravity.

2. Contact force, which is due to the contact of the surrongdiurface of V with
the rest of the body. Contact forces or stress is due to theahirtteraction of
the particle.

The principle then states that the action exerted at a poiahg due to the material
outside S is represented by a vectpcalled stress vector, depending on P, S and
where S is any closed surface witlfinand let P is a point on S.

2The Cauchy stress principle formulated by A. L . Cauchy in 1827
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The stress vectdr has dimension of force per unit surface. Thus, fd8notes any
surface withinQ , we have

Total force exerted by the body across=S / tdS,
/S

Remark 2.23 Materials for which Cauchy'’s principle holds are also caleon-polar
materials (i.e., materials which are unable to sustain ldcaques).

Remark 2.24 Cauchy’s principle does not specify the way in which thesstreector
may depend on the surface.

A fundamental result due to W. Noll states tha stress vector at a point P of a surface
S depends on the surface S, only through the exterior unihabvectorn to S at P.
Therefore,

t =t(x,t;n), or
=t(n) where x is the position occupied by P at time t

Theorem 3 Cauchy Theorem. Fluid and continuum mechanics are basedhree t
fundamental assumptions concerning the interior forces:

1. interior forces act via the surface of a volumé&y/
2. interior forces only depend on the normal direction of skieface of the volume,

3. interior forces are additive and continuous.

Due to the Cauchy theorem these assumptions imply that tdsgcinforces acting on
a volume \{(t) must be of the form

/av ondS

Here, as usualgV denotes the boundary of the volumé&) n is the unit outward
normal, and dS denotes the surface element. imtegral theorem of Gaussthen
yields

/ ondS= / divodv.
oV \%

The surface force per unit area (or stress vector) on th@vacta elemerdais de-
noted byt. It depends om followed by the formula

t=0'n

)

whereao is called the second-order Cauchy stress tensor which épemtent of.

€
t(®) th( )ej = Gjj€j,
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in the matrix form

= [021 Op2 023

(el)] 011 012 013
031 032 033

Ozx Ozy Oz7]

Ox Txy TIxz
Tyx Gy Tyz s
Izx Tzy Oz

where gy, gy and g, are normal stresses, ang Ty, Tyx, Tyz, Tzx and gyy are shear
stresses. For the 2D computations we restricted to plamsirhich meansy, = 1y, =

T;x= Ty= 0 ando; = 1, ]. Making use o the force ordamay be written as
tda= PTNdA

where the nominal tensétis related too by

P=JF1lo

Thefirst Piola-Kirchhoff tensor is denoted by = PT, see @4] for more detail. Un-
like the Cauchy stress tensor, the first Piola-Kirchhoff tensoP is non-symmetric.
Let b be a body force per unit mass. Then, in integral form, theldmgiusim equation

for the body may be written with reference@or Q; as follows

/ ptbdv+/ oTnda:/pde+/ PNdA=0,
o FloN Q Jog

in which it is natural to introduce the symmetgecond Piola-Kirchhoff tensor S

S=PFT=0FtoF T

Frame Indifference

Quantities which are independent of the observer , i.eh mispect to different frames
is called frame indifference. Examples of this are massitemsmperature, heat flux
vector, Cauchy stress tensor, and counter examples am@tyedod acceleration fields
which are not frame indifference.
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Useful relations Three descriptions (Eulerian, Lagrangian, ALE) can beteeldo
each other through following relations

(ﬁ(x>t) =¢(X(X,t),t)7

d¢ ¢
at —E‘*‘(D‘P)W

Gradp =(0¢)F,

/qu;dv:/Q(dev
dF

NN N
NN [N
N o) (o

N
N
©

— =Gradv, 2.29
dt

2J T

eI
@ =Jdivv. 2.31
dt

2.3 Balance Laws

In this section we will formulate the balance relations fasmand momentum in three
forms: the Eulerian, the Lagrangian and the arbitrary Eamel agrangian (ALE) de-
scription. The balance relations for energy and entropyaraulated in the Eulerian
description which is sufficient for our purpose since they ased only in the specifi-
cation of the constitutive relations in sectfon 215.2.

For the formulation of the balance laws we will need to expragime derivatives
of some integrals, using the Reynolds Transport Theoremstfort RTT) and Gauss
divergence theorem. The following series of equalitiesiigtd by using the previously
stated relations will be useful

d d d
& thbdvfa/quJde/Qa(d)J)dV

B do .
= Jo, (dt +¢d|vv) dv
¢

-/ (+div(¢v)> dv RTT 2.32
Jog \ ot

_[ %var ¢v-nda Gauss theorem
Jo, ot Joaoy

:ﬁ/ ¢dv+/ ¢v-nda
ot Jo, Jooy

Theorem 4 Reynolds Transport Theorem: Consider an arbitrary volume @;. The
following transport theorem holds for all differentiable mapping

d NI
G Qt¢o|v_/Qt (at+dlv(¢v)> dv RTT 233
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Theorem 5 Gauss Divergence Theorem: TGauss divergence theorenstates that
for all differentiable mapping

div(¢v)dv:/ ¢v-nda Gauss theorem 2.34
Qt aQt

2.3.1 Balance of Mass
The massn of a fixed regionZ c R? in space with the bounda@/# of body % is
m(p) = / px,t)dv, ZcQ foralltel0,T],
2

wherep(x,t) is the Eulerian material density. The arbitrary volugreis the material

control volume, which is independent of time. The fundarakptinciple of conserva-
tion of mass states that the continuum body does not chasgesition and shape in
time. Then the balance of mass in the regi#ncan be written as

E/ p(x,t)dv=0, forallte[0,T], 2.35
dt /&

equatio is also known as conservation of mass in integral form. Makise of
the Reynolds transport theorg33]) it becomes

z/ pdv+/ pv-ngpda=0,
ot )z 0

with the boundary) & and unit outward normal vectors. After applying the Gauss
divergence theorem the principle of conservation of mask wspect to the spatial
(Eulerian) representation can be written as
/ %P | div(pv))dv=0, foralite[0,T]
2 0t p ) ) )
which is global (integral) form of the conservation of malsall the fields are suffi-
ciently smooth this equation can be written in local (diéfietial) forn? with respect to
the current configuration as
% +div(pv) =0. 2.36
ot
It will be useful to derive the mass balance equation fromltagrangian point of
view. Let 2 C Q be a fixed set of particles. Then the relation between theitikns
in reference and current configuratiof); is established, which is given by = pp.

3An equation which holds at every point of continuum and fdrtiates, for example e@, is
referred to as the local (or differential) form of that eqoat(local means point wise). An equation in which
physical quantities over a certain region of space areiiated is referred to as the global (or integral) form

of that equation; see for example equat . Consequently we may say t is global form

and|[2.36]] is the local form of the conservative laws of mass. In genellforms are ideally suited for
approximation techniques such as the finite difference mettile global forms are best to start with when
the finite element method is employed.
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Let x(2,t) C Q is a region occupied by these particles at the timend the balance
of mass can be expressed as

d / pdv=0, 237
dt Jx(2y

which in local form with respect to the reference configunattan be written as

%(pJ) —0. 2.38

In the case of arbitrary Lagrangian-Eulerian descriptian teke a regionZ < R3
which is itself moving independently of the motion of the pod_et the motion of
the control regionZ be described by a given mapping

Ztg’ZfX[O,T}}—)%, ZKC VtE[O,T],

with the corresponding velocityy = ‘95—{, deformation gradienf o = % and its

determinantly = detF 4. The balance equation can be written as

7]
— dv+ V—Vy)-ngda=0,
at/%p [, P=V2) Ny

this can be viewed as Eulerian description with moving spaordinate system or
as a grid deformation in the context of the finite element methin order to obtain
a local form of the balance relation we need to transform tibegration to the fixed
spatial regionZ

4 -7
E/ymg’dw /a,@vp("_"ﬁ”) ‘Fy nzdyda=0, 2.39

then the local form is
%(p.]gg)+div (PIx(V—vz)F,') =0. 2.40

The two previous special formulations can be now recovetkthe regionZ is not
moving in space, i.e.Z” = Z,Vt € [0,T], then{ is the identity mappingF 4 =
,Jo =1,vy =0and reduces t42.36]). While if the region2” moves exactly
with the material, i.e{» = x|» thenF» = F,J» = J,vo = v and([2.40] reduces to
2.38|).

2.3.2 Balance of Linear Momentum
The balance of linear momentum is postulated in a similar.wagt o denote the
Cauchy stress tensor field, representing the surface fperesnit areaf be the body

forces acting on the material per its unit mass. Then thenbelaf linear momentum
in the Eulerian description equals

i/ pvdv+/ pv®vnt@da:/ aTne@da+/ pfdv. 2.41
ot J» 0P 0P P
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The local form of the linear momentum balance is

d(yit+d|v(pv®v) =diva' + pf, 2.42

wherev @V = (VVj)1<i j<3, Or making use 0f2.36]) we arrive at
p ot +p(Dv)v =divo' +pf.
From the Lagrangian point of view the momentum balanceiczlas

d
a 0Ty oudat / fdlv.
dt /X<Q.,t / x@Qb P

Let us denote b = Jo"F~T the first Piola-Kirchhoff stress tens&[64], then the local
form of the momentum balance is

%(p‘]v) = DivP+ pJf, 2.43

or usmg we can write
dv
J— =DivP+ pJf.
p at vP+p
In the arbitrary Lagrangian-Eulerian formulation we obtai

i/ pvdv+ ' pv®(v—vg)n%da:/ o'nyda+t / pfdyv,
ot J% Jo% 0% J#

which in the local form gives

oV .
dpd{zV +div (pdzve (V_Vg))pg) — div (JEZ)O.TF;XT) LIt > a4

or with the use 0fi2.40]| we can write

, 5 TPz (V)F, T(v—vy)=div(Iz0 F,') +pIsf.

2.3.3 Balance of Angular Momentum

For the angular momentum balance we assume that there ardaroa or internal
sources of angular momentum, then it follows that the Cawstigss tensor has to be
symmetric ], i.e.

o=o0". 2.45
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2.3.4 Balance of Energy

Denoting the total energy per masdas e+ % |v|2, wheree be the internal energy per
its unit massg be the heat flux per unit arelabe the heat source per unit mass. Then,
the balance of energy is stated as

z/ pEdv+/ pEv-nda:/ (ov—q)-nda
ot J» 0» 0P

—1-/ (pf-v+pr)dv.
Jo

2.46

Making use of the mass and momentum balance equaBo88]) and[Z42) in (2.48]),
this gives the equation for the conservation of energy iallfmrm as

dpe
ot

+div(pev) =tr(ogl0v) —divg+ pr. 2.47

2.3.5 Balance of Entropy

Finally, the balance of entropy is introduced. lgebe the entropy per its unit mass,
be the temperature ase the entropy production then the entropy balance is

i/ pndv+/ pnv-nda= — nda+/ +s dv 2.48
ot )z 0P ar T

or in local form
opn

q_ pr
2t +div(pnv) = —div= THTTs

The second law of thermodynamics says that the total entpopgluction is non-

negative, implying
s> 0.
We introduce the Helmholtz potentitd = e—Tn, then usin and we
obtain the entropy inequality in the following form
n (o"g){l’ + dlv(pTv)> + dg—tw +div(pWv) + % 0T —tr(olbv) <O0. 2.51

This inequality is used to narrow the class of constitutelations for the stressesin
the sectiof 2.5]2.

2.4 Fluid Structure Interaction problem formula-
tion

Here we make few assumptions that will allow us to deal thélera more appropri-
ately. We will use the superscriptsand to denote the quantities connected with the
solid and fluid. Let us assume that the both materials aremipcessible, which is well
accepted approximation in biomechanics and denote thé¢ardrdensities of each ma-
terial by pf, pS. Further we assume all the processes to be isothermal, nuett
the temperatur@ is constant, which is also well accepted approximation &itain
biomechanical processes.
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r2

rl

Figure 2.7: Undeformed (original) and deformed (current)figurations.

2.4.1 Monolithic Description

We denote b)Otf the domain occupied by the fluid aff by the solid at time < [0, T].
Letr? = Qtf N Q7 be the part of the boundary where the solid interacts witHflthie
andT!,i = 1,2,3 be the remaining external boundaries of the solid and tle s
depicted in Figurd.217.

Let the deformation of the solid part be described by the rimapp®
X5 Q3% [0,T]— QF,

with the corresponding displacemaittand the velocityw® given by

us(X,t) = x3(X,t) — X, 2.52
S
VI(X,t) = adit(x,t). 253

The fluid flow is described by the velocity field defined on the fluid domaiﬁtf
vix,t) : Qf x[0,T]— R3.

Further we define the auxiliary mapping, denotedZbyto describe the change of the
fluid domain and corresponding displacemehby

faf x0T -9, 2.54
uf(X,t) =2 (X,t) = X.

We require that the mapping is sufficiently smooth, one to one and has to satisfy
2T = x5(X,1), V(X,t)er®x[0,T].

In the context of the finite element method this will describe artificial mesh de-
formation inside the fluid region and it will be constructeslaasolution to a suitable

boundary value problem witl2.56]) as the boundary condition.

The momentum and mass balance of the fluid in the time depéfidehdomain ac-

cording to|[2.40] and are
ov' ouf
f fervfyyf o f o of
p W+p (Ovh)(v fW):dlva inQ,
divv' =0 inQf,
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together with the momentui' and masf' balance of the solid in the solid
domain

AN + p3(Ove)v® = divo® in Qf
p 6t p - 1 .
divv®=0 inQf.

The interaction is due to the exchange of momentum througltdmmon part of the
boundary?. On this part we require that the forces are in balance, i.e.
ofn=o"n onr?.

Further, we prescribe the no slip boundary condition forfline on the interface. This
is expressed by

vi=vs onr. 2.61

The remaining external boundary conditions can be of tHeviahg kind. A pressure
boundary condition on the fluid inflow and outflow p&ft

o'n=penonr{,

with pg given value. Alternatively we can prescribe a Dirichletaypoundary condi-
tion on the inflow or outflow parft{
vi =vgonri,

wherevg is given. The Dirichlet boundary condition is prescribed ttoe solid dis-
placement at the paf

us=0onr?
and the stress free boundary condition for the solid is apii the parf?
oSn=0onl}.
We introduce the domaifd = Qf UQS, whereQf, QS are the domains occupied by the
fluid and solid in the initial undeformed state, and two fieddéined on this domain as

u:Qx[0,T] —R3,
V:Qx[0,T] — RS
such that the field represents the velocity at the given point anthe displacement

on the solid part and the artificial displacement in the fluad ptaking care of the fact
that the fluid domain is changing with time,

VS onQs,
V =

vl onQf,

us onQs,
u=

uf onQf.
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Due to the conditionf' and both fields are continuous across the inter-
facel? and we can define global quantities Onas the deformation gradient and its
determinant

F =I + Gradu,
J =detF.

It remains to prescribe some relation for the mappjiig In terms of the correspond-
ing displacement’ we formulate some simple relations together with the Dlgth

boundary conditions required \-Bld:i for example

Jdu . .

Pt =Au "mesh moving operator” nﬁ)f,
u=u® onr®
u=0 onrt.

Using this notation the solid balance Ia{' and([2.60l] can be expressed in the
Lagrangian formulation with the initial configurati@® as reference, c,

Jps% = DivP® in Q°, 2.62
J=1 in Q3. 2.63

The fluid equation' and[2.58]) are already expressed in the arbitrary Lagrangian-
Eulerian formulation with respect to the time dependenitxre@tf, now we transform

the equations to the fixed initial regi@’ by the mapping " defined b

X o' (GradF Ay - %) =3 Dvag'F ) inal,

Div(JvF~T) =0 inQ'.

The complete set of the equations can be written as

o

i S
ou_Jv in Qf’ 2.66
ot Au inQ',
L DivPs in QS,
o =q -1 du 1 Di fE=Ty inOf 2.67
ot —(Gradv)F (v—ﬁ)—i—WDlv(Jo F') inQf
-1 in Qs
0-J7" Lo 2.68
Div(QvF~") inQ',

2.4.2 Initial Condition

For time-dependent flows, a set of initial conditions at tiree0 is required. We need
to prescribe an initial velocity field, i.e.

u(x,0) = up(x)
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In general, we suppose that the elastic stresses in the flikao at timeé = 0, i.e.
g(0) =0.

That means, we assume that the elastic stresses are cdynakteed at the beginning.

2.4.3 Interface Condition

The interaction is due to the exchange of momentum througltdmmon part of the
boundary?. The boundary conditions imposed on the blood-vessel waltiace are

o'n=0, vi=v5, on I
wheren is a unit normal vector to the interfag¢. This means the no-slip condition
for the flow and that the forces are in balance on the interffice

2.4.4 Boundary Conditions

Boundary conditions usually come in two distinct variamgjchlet conditions which
fixes the value of a quantity, and Neumann, also called niatoboandary conditions
which specify the in- or out-flux. When modeling fluid flow, Dhlet conditions
uniquely set the velocities on a boundary. That is

u=0, v=vg onr?,
u=0 onr?,
o°n =0 onr3.

Usually, we set Dirichlet boundary conditions for the véties at in flow. We have to

be aware that it is not possible to simply prescribe arhjtsairess values at in flow, be-
cause they have to be consistent with the constitutive emsatTherefore, we usually
assume that the elastic stresses are relaxed at in flow.

2.5 Constitutive Equations

Balance laws derived in the previous sections are more geard applicable to all
possible FSI cases. For the case of deformable bodies trai@ugs mentioned are
certainly not sufficient on their own to determine the maierésponse and are con-
sequently incomplete. From a mathematical point of view tlepresent an undeter-
mined system. Hence, we must establish additional equsitiotihe form of appropri-
ate constitutive laws which are furnished to specify thaldeal material in question.
Constitutive relations relate forces to displacementstress to strain (deformation).
Constitutive equations are material dependent.

The concept of constitutive theory is to develop matherabtimdels representing the
real behavior of physical quantity fluid (such as water, aiit,etc.) or solid (such as
rubber, metal, ceramics, wood, living tissues etc.).

In this thesis, attempt is not made to conduct a comprehensiiew of the large
number constitutive theory, rather, only related modeés discussed with possible
future extensions.
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Constitutive equations for fluid and solid are presentetérfollowing subsections, the
properties and restrictions accompanying expressed matieally. However, BVP
which will serve as basis for the discretization is docuradni the next chapter.

2.5.1 Constitutive Equations for Fluid

As mentioned before the fluid dynamics is a part of an FSI gmobl To explain the
domain deformation, a moving mesh consideration withinsthlation of the fluid dy-
namics is required. In order to manage the dynamics of thd flomain, moving
meshes have to be considered.

The incompressible Newtonian fluids (gases, water, glgcamnd most liquids of low
molecular weight under ordinary condition of temperatund aressure), which will
be used in this study, are described by the Navier-Stokestiens derived in the ALE
framework:
f de f f . f Lo . f

P (W—kv -Ov')—dive' =0, divv'=0 in Q, 2.70
here,pf denotes the density of the fluid amd denotes the stress tensor. For in-
compressible Newtonian fluids the density of the fluid will be considered to be a
constant in space and time which means velocity is divergéee, i.e. diw’ =0, and
the stress tensar' is defined by

of =—pf1+T, 2.71

wherep' is the Lagrange multiplier corresponding to the incomphiity constraint

in , | is the identity matrix—p'| is also called the inviscid reactive component
of Cauchy stress tensor. Hefejs the active viscous component of the Cauchy stress
tensor, which is a function of deformation gradient of véipmamely,

T=2u'D,

wherepu | is the dynamic viscosity of the fluid and

1
D= E(D"f +(ovhHT,
is the rate of strain (deformation) tensor. In the followiag overview of what is used
in different applications is given which could also be gasiiplemented into the code.

The Generalized Newtonian Fluid

A fluid for which T is independent of the history of deformation is known as tea-G
eralized Newtonian Fluid. To derive a model, which is indegent of the coordinate
system, we write the viscosity as a function of the invariants @. We use the
symmetry of the rate of deformation tensor by noticing thatrg symmetric second
order tensor can be diagonalized and its eigenvalues arargead to be real. The
three principal invariant$lp, Il p,lll p) of D are the coefficients of the characteristic
polynomial

detD—Al) = -A3+1pA%2—1lipA +lllp =0,
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where they can be expressed in terms of eigenvalyed, andAs of the matrixD.
Ip=tr(D) = A1+ A2+ A3
1
Ip = 5((UD)2 — tI’(D)Z) =tr(cof(D)) = A1A2 + A2A3+ A3Aq,

=detD)tr(D" ") if Disinvertible
lll p =detD = A1A2A3

We obtain the following relation between the extra streasde and the rate of defor-
mation tensor

T=2n(lp,lIp,Nllp)D,

e Ip =0, for incompressible fluids. Theip < 0, [I1Ip| < 373@(*||D)3/2.

e |lIp = 0 for simple shear flow.

The incompressible generalized Newtonian fluid takes tha fo
T=2n(llp)D,

wheren (-) is the (nonlinear) viscosity which may depend on the secowariant of
the deformation rate tenstp.

This model is only suitable for the description of flows, whetastic effects are neg-
ligible and the shear-thinning effect has a strong influemcéhe flow behavior. Its

principal usefulness is for calculating flow rates and sihgaforces in steady-state
simple shear flow such as tube flow, steady cone and plate fldvst@ady flow be-

tween concentric cylinders.

The most commonly prototypical generalized Newtonian #uodels considered
are Power-law fluid model, Prandtle-Eyring model, Poweilitg model, Cross fluid
model, Carreau fluid model, Yasuda Model and Second ordet fiwidel. Then, de-
pending on the chosen viscosity functigr-) the following prototypical models are
considered or could be considered:

Power-law Model

The most widely used form of the general viscous constitutelation is thepower
law model, because of the number of exact solutions which can be @utdor this
model which is

. n-1

nly)=Kyz, 2.72

wheren = n(y) = n(llp) is defined as wherK is called the consistency amds the
power law index, both are positive material parameters.

As well as the Newtonian fluid, the generalized Newtoniardfhas zero first and sec-
ond normal stress differences, but it shows shear-thinfioing < 1 or shear thickening
for n > 1. The viscosity in the limit of vanishing and in the limit ofy tending to
infinity are,
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2.5 2.5

n=0.25
n=0.5
n=0.75

n 15 . n 15
— n= 1 (Newtonian) — n= 1 (Newtonian)
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Figure 2.8: Left: Power Law Fluids far < 1 (shear thinning or Newtonian), Right:
Power Law Fluids fon > 1 (shear thickening or Newtonian).

e N<1: Iimy_,on()'/) = oo, |imy—>oof7(V) =0,
enN>1: |imy_,on(y)=0, |imy—>m'7()")=°°’

The unboundedness of the viscosity function and the lack rafrazero viscosity at
zero shear rate does not match experimental results foffluedé and so limits the
applicability of the Power-Law model. The power law modehcseptably applied to
blood flow and custard flows.

Yasuda Model

Yasuda proposed a model similar to the Cross model but witbxéna material con-
stanta with which to fit the dat5]. This five parameteyo, N, A,n,a) model has
sufficient flexibility to fit a wide variety of experimentaj(y) curves; it has proven
to be useful for numerical calculation in which one needsraalydical expression for
non-Newtonian viscosity curve. The model is

(N—Nw) _ 1
(No—Nw) (14 A2p)*2"

(Mo > Nw >0,A >0,n> 1), 2.73

hereng is the zero-shear-rate viscosity,, is the infinite-shear-rate viscosity, is a
time constantn is the power-law exponent aralis a dimensionless parameter that
describes the transition region between the zero-shéaregion and the power-law
region. Several special cases of the Yasuda model are edtathiding the Carreau
model.

Carreau Model

If ais set to 2 in[2.73]), the four constant Carreau model is obtained [19]. It also
displays a non-zero bounded viscosity at both upper andrltmis,
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(N=N=) _ L (No > Ne > 0,A > 0,n> 1), 274

(No—Nw)  (14A2p)"2

Comments regarding the limiting behavior for the Cross rhbdéd for the Yasuda
model as well.

2.5.2 Constitutive Equations for Solid

The material properties of the structures are describedéyconstitutive equations.
These equations establish the relation between the sttaamsl the stresses Here,

the isotropic elastic material model of St. Venant-Kirchand a Neo-Hookean model
will be considered. Itis suitable for problems with largéatenations and small strains.

In particular, a non-linear constitutive theory suitaldelescribe a wide range of phys-
ical phenomena in which the strain may be significantly large finite is presented in
this thesis.

Invariant of Elastic Material

A material is calledCauchy-elastic or elastidf the stress field at timedepends only
on the state of deformation (and state of temperature) ahdmthe deformation his-
tory (and temperature history) i.&(X) = Grad x (X)).

Remark 2.75 Elastic or Cauchy-elastic material can also be defined via @auchy
o°® or the first Piola-Kirchhoff stress tens@&®.

Remark 2.76 The actual work done by the stress field on Cauchy-elasti@naht
does, in general depend on deformation path.

In the following we relate relation in terms of first Piolarkhhoff stress tensd?S. we
may express the constitutive equation in general form

P*=g(F(X,1).X),
whereg is referred to as theesponse functionfor the second Piola-Kirchhoff stress
tensor.
If the first Piola-Kirchhoff stress tens®® and the reference mass dengityare inde-
pendent of the positioK, then

PS= g(F)a

such materials are callédbmogeneous

We now restrict the strain energy function by a particularparty that the material
may possess, namelgotropy. This property is based on the physical idea that the
response of the material, when studied is a stress-straigriexent, is the same in all
directions.
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We now restrict to a specific elastic material which may becdesd mathematically,
in terms of the constitutive equation for the response foncof the second Piola-
Kirchhoff tensor by the relation

9(FQ) =Q"g(F)Q,

which is the material isotropic condition. From the phykjeaint of view the condi-
tion of isotropy means that the material exhibits no pref@mirections, which mean
stress-strain experiment, is the same in all directiorespective of the choice of refer-
ence configuration. For a proof of this crucial relation,dzhenthe Rivlin-Ericksen
representation theoremsee 1@4] pp. 233-235.

To further establish the representation of the stress tewedirst ensure that the stress
in the reference configuration, which we call tlesidual stress is zero, i.e.

g9(1) =0,
we say that the reference configuration is stress-free.

The Green-St. Venant strain tenddre= %(C —1) is responsible for the deviation of
the deformation from a rigid body transformation. After satering the deviation
d(1 +2E) — §(1) by making use of Taylor expansion arougid) and manipulation we
arrive at (for complete description and proof deé [29] TheoB.8-1).

g(F) = §(C) = §(E) = AS(trE)! + 2uSE + o(E). 2.77

Equatiofor a frame-indifferent, homogeneous, isotropic, elasiiterial, whose
reference configuration is the natural state (i.e. where&Cdngchy stress tensor is zero
everywhere) leads to one of the most popular materials imahctomputationsthe
St.Venant-Kirchhoff material employs the following constitutive law

0°= %F()\S(trE)l +2UE)FT S =AS(trE)l +24°,

whereA ® denotes the firdtamé coefficient andus theshear modulusof the material
and numerical values of the these two constants for a giveariabfound positive by
performing special deformations (pure shear, pure traciare compression). The
material elasticity is also characterized by a set of tw@poflarameters, thBoisson
ratio v® and theYoung modulusE. These parameters satisfy the following relations

S AS E_ “5(3)\s+2“2)
C2(AS+ ) (At
E s VSE

pe = AS= ,
2(1+vs) (1+vs)(1-2vs)

Here, frompus AS > 0, it implies thatE > 0 and—1 < v® < 1/2. The limit case of
vs=1/2is detailed at the end of the description. The St. VenantHfiof model gives
identical results to the small deformation isotropic moghken the displacements are
truly infinitesimal. If small deformations are consideré¢lae difference between the
initial and current configurations can be neglected. In #ngd deformation case it is
common to describe the constitutive equation using a sttea relation based on
the Green Lagrange strain tengband the 2nd Piola-Kirchhoff stress ten&{E) as
a fun[%on ofE. However, also incompressible structures can be handldttisame
way [75].
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Hyperelastic Material

A hyperelastic material is defined as a subclass of an elastierial, whose response
function has the form

ov
- OF’
A so called hyper elastic material (or in the literature oftalled a Green -elastic
material) postulates the existence of a Helmholtz fregggnéunction W, which is
defined per unit reference volume rather per unit mass. Theltdtz free-energy
functionW is referred to as the strain-energy function or storedggnmction E’L].

W =Y(F)is typical example of a scalar-valued function of one tersoiableF, which
is assumed to be continuous.

P*=g(F)

We now restrict attention to homogeneous, isotropic, frandéferent materials in
which the distributions of their internal constituents assumed to be uniform on the
continuum scale. For this type of ideal material the stexiergy functior depends
only upon the deformation gradieRt One example of an approximately isotropic
material with a wide range of applications is rubber.

For convenience, throughout this thesis we require thastitaén-energy function van-
ishes in the reference configuration, i.E.=1. We express this assumption by the
normalization condition

W=y()=0. 2.78

From the physical observation we know that the strain-gnérgction ¥ increases
with deformation. In addition -?Il:i we therefore require that

W=WY(F)>0. 2.79
Relation and ensure that the stress in the reference configuration, which

we call the residual stress, is zero. We say that the referemfiguration is stress-free.

For the behavior at finite strains we require additionalbt tihe scalar-valued function
W must satisfy growth conditions. This implies thBttends to+ if either J = detF
approaches-o or 0'. i.e

WYW(F) — +o as defF — oo,
WF) — 4o  as defF — 07,

physically that means that we would require an infinite aniafrstrain energy in
order to expand a continuum body to the infinite range or topress it to a point with
vanishing volume (for further survey consult the monogrﬁ‘a@]). We specify the
Helmholtz potential’ and the solid stress is given by

0% =—p°l +ps(;—LII:JFT, 2.80

the first Piola-Kirchhoff stress tensor is then given by

oV

S __ -T s¥ T
PS=-JpF " +Jp oE

2.81
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wherep® is the Lagrange multiplier corresponding to the incomphelity constraint
2.63]]. The second Piola-Kirchhoff stress tensor takes the form

S=—JpF T +Jp-°'|:*1%iJ 2.82
(7]
:—JpSC’l+2Jg—C. 2.83

The fundamental constitutive equatidfs80), (Z-81) and(Z-84)) are the most gen-
eral forms used to define incompressible hyperelastic matgeat finite strains. The
Helmholtz potential can be expressed as a function of diffequantities

W =Q(F) = ¥(I +Gradu),

but due to the principle of material frame indifference theliholtz potential de-
pends on the deformation only through the right Cauchy-Gm@&formation tensor
C =FTF [sed 64]

w=9(C). 2.84

A certain coerciveness condition is usually imposed on d¢inen fof the Helmholtz po-
tential

W(Gradu(X,t)) > al|Gradu(X,t)||? — b(X), 2.85

wherea is a positive constant artge L1(QS).

Typical examples for the Helmholtz potential used for ispic materials like rubber
are theNeo-Hookeanmodel given by

q—’ = Cl(|c— 3),

or theMooney-Rivlin material

W=ci(lc—3)+c(llc—3),

wherelc = trC,llc = 3((trC)? —tr(C)?), il c = detC are the invariants of the right
Cauchy-Green deformation tengdiandc; are some material constants.

In the case of material anisotropy we can use
Q= ci(lc—3)+co(llc—3) +c3(|Fal — ].)27

with a being the preferred material direction. The tgFfa| represents the extension in

the directiona and when rewritten a&- Ca)% we can see that it is a function Gf In
[IE,] a similar material relation of the form

W = c1 (exp(bi(lc —3)) — 1) +ca2 (exp(bz(|Fal — 1)) — 1)

has been proposed to describe a passive behavior of theaettisstle. Adding to any
form of W a term likef (t,x)(|Fal — 1) one can model the active behavior of a material
and then the system can be coupled with additional modeléehial and electric
activation of the active response of the tissue, lsele [93].

42




2.5. CONSTITUTIVE EQUATIONS

2.5.3 Slightly Compressible (Nearly Incompressible) Mataal

A material which can undergo changes of volume is said t@drapressible, e.g
foamed elastomers are able to sustain finite strain witheelahange, requiredi> 0.

A material for which volume changes require a much higheergot work than vol-
ume preserving changes is callechearly incompressibleor slightly compressible
material, for which the compressibility effects are smislathematically,

detF = 1.

In this work we will only use a neo-Hooke law in case of (nepihcompressible ma-
terial.

A Neo-Hooke incompressiblematerial:

A Neo-Hooke material model is taken which can be used for cesgible or incom-
pressible (fov®=1/2 = A% — o ) material and which is described by the constitutive
laws:

p° 1 1
0=-35+50-3) 2.86
05 = —p°l + uS(FFT —1). 2.87

By relation we need to address a mixadp formulation, or simply mixed for-
mulation, which is advantageous to deal with nearly incasgible and incompress-
ible material at the same time through the Poisson ratio. Rethformulation then
takes the form in limiting case

0% = —pl + uS(FFT —1).

In addition, the formulation can also be applied to the caagible casév® ~ 0.4) or
others.

A Neo-Hookean compressiblenaterial § = detF)

1 s
S_3S(1_ = T_
o°=A%1 J)I+J(FF 1
us

0° = ASlog(detF)l + T(FFT —1)

Remark 2.88 Alternative formulations of the compressible Neo-Hookeendel are
S S

possible (e.go® = ASlog(J)l + & (FFT —I) or 08 = AS(J— 1)1 + & (FFT —1)) which

are used in literature and should have similar behavior foradl volumetric changes.
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Remark 2.89 All these models when restricted to small deformations ahenalin-
earized lead to this standard linearized Hook's comprdegitaterial formula

0% = AS(divu®)l + pS(Ous+ OusT)

which is known as the Navier-Lame equations.

The St. Venant-Kirchhof model gives identical results far $mall deformation isotropic
model when the displacements are truly infinitesimal. If Biskeformations are con-
sidered, the difference between the initial and currenfigarations can be neglected.

Both models, the St. Venant Kirchhoff and the Neo-Hooke nietenodel, share the

isotropic and homogeneous properties, and both can be osélef computation of

large deformations. However, the St. Venant Kirchhoff malbes not allow for large

strain computation, while the Neo-Hooke model is also vididlarge strains. After

linearization, both material models have to converge testimae expression, which is
then valid only for small strains and small deformations.

With a suitable choice of the material parameters the epfr@muality and the balance
of energy is automatically satisfied. The reduced entropgulity is obtained from

by using the assumptions of isothermality and incomprdggib

p(jj—q: —tr(o0v) — pdivv <0. 2.90

For the fluid we have the constitutive equat andW¥ = 0. Then to satisfy the
reduced entropy inequali it is sufficient to require

> 0. 2.91

In the solid region with the hyper-elastic material assuomst and the
left hand side of the entropy inequal is identically equal to O.
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Mathematics are well and good
but nature keeps dragging us
around by the nose.

Albert Einstein

Discretization Methodology

In this chapter, a monolithic ALE formulation of the fluid stture interaction prob-
lem derived in chapter 2 will be numerically discretized bg standard Galerkin finite
element method in space and time discretization is done eidiad of Rothe|E3].
Before derivations, preliminary definitions will be giverhieh are heart of the pro-
ceeding discretization schemes. The time stepping teabaighich are used for the
non-stationary calculations will be derived. The issueamdropriate space and time
discretization techniques shall be addressed.

3.1 Finite Element Method

A finite element method is a numerical technique to obtainpgor@imate solution to
a class of problems governed by elliptic partial differahéiquations known as bound-
ary value problems as they consist of a partial differerg@aiation and the boundary
conditions. The finite element method converts the elliptictial differential equation
into a set of algebraic equations which are easy to solvehddfitdoubt finite element
method has emerged as one of the most powerful numericabohsthfar devised. The
history of finite element is scientifically written in [6].

Advantages of the finite element method over other numemedhods are as follows

e The finite element method can be used for any irregular shdpethin and all
types of boundary conditions.

Domains consisting of more than one material can be easillyaed.

Accuracy of the solution can be improved either by propemnegfient of the
mesh or by choosing approximation of higher degree polyatsmi

The algebraic equations can be easily generated and sahva@damputer.

A general purpose code can be developed for the analysis aifja tlass of
problems.

The standard finite element approximations are based updBaterkin formulation of
the method of weighted residuals. A general overview of Wwigid residual formulation
and classical Galerkin method are presented in the subsesgetions
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3.2 Weighted Residual Formulation

Let . denote a generic partial differential operator with homugmis (essential)
Dirichlet boundary conditions oh. Consider the linear model problem

Zu=f in Q
u=0 on

A solutionu to the equatio is a sufficiently smooth function that means it must
be continuous with continuous partial derivatives of finstl @econd order, satisfying
the homogeneous Dirichlet condition én We replace the equati by consid-
ering theweak(or variational) form. Here, the general principles of weighted residual
method is briefly described

Method of Weighted Residuals:

.

1. The problem in form of its residual error is
Z = ZLu—f1,

here, ifu is the exact solution to the problem this impli&du] = 0, but for an
approximate solutiom = u, it does not vanish.Z[u] is called the residual or
error that results from takingl instead of the solution. Here, aim is to select
u € Sfor which the residua¥[u] is zero.

2. Multiply the residual by a suitableeighting(or tes) function, integrate over the
domainQ and set equal to zero

/ wZ[u]dQ = 0, Ywe W,

Q

whereW is the space of weighting functions finishing on the Diritlglart of the
boundaryl”. Mathematically it can be attained if the projection of tlesidual
Z|u] is orthogonal to all test functions € W. The weak solution belongs to the

spaceS of trial solutionssatisfying the Dirichlet boundary conditions.

3. Put the residual into the above equation to get the weak for
/w(.zu_f)dgz:o, W e W,
Q

Making use of Green’s formula of an integration by parts antukstution of the
boundary conditions leads to

a(u,w) :/ fwdQ, YweW.
Q

Evidently, one benefit of using the weighted residual fomatioh is the possibility
to shift some derivatives from the trial functianonto the test functiomv integrating
by parts using Green’s formula.
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3.3 Classical Galerkin Method

The Galerkin method is applicable to larger class of proklem compared to other
available methods like of, Collocation, subdomain methddsre recently, Galerkin

residual method and Galerkin least squares method haveusednwith the finite ele-

ment form of trial solution to give a finite element (Galekiasidual method.

The method of choice in this thesis for spatial discretarais the classical Galerkin
method, a method which is directly applicable to the boupdaiue problem (BVP)
irrespective of the existence of an equivalent extremahtdation. In this subsection
the general procedure of classical Galerkin method basedahted residual method
is presented.

3.3.1 Galerkin Finite Element Approximation

To define the weak or variational form of BVP we need to define tlasses of func-
tions; the test or weighting functions and the trial or adifie solutions. Here these
classes are defined in the context of the standard Galerkirogmation. Let us
present the formal definition of function spaces for the &t trial functions for the
standard Galerkin formulation.

In general, integrating the product of two functiorsndw yields the so calleti? inner
product(-, -)o which includes thé.? norm|| - ||o

(V,W)g = l/().lvwdx (IV[lo = v/ (W, V)o.

ThetestspaceN consists of all functions which are square integrable

L2(Q) = {w: /Q|W\2dx < oo},

have square integrable first derivatives over the dorfaithat is,

H(Q) = {we L2(Q) : %\.I € LZ(Q)Vi}

and finish on the Dirichlet paftp of the boundary. Thus,
W={weH Q) :w=0 onlp}=H (Q)

This is a so-called Sobolev space associated with the imodupt

Ju odv
u,v)1 = uv —— | dx
(V)1 /g( +,zéxa<?xa>
which induces the so-callgd! norm
ull = v/ (u,u)s.

The space offrial functions is similar to the test space except that the adlphésfinc-
tions must satisfy the Dirichlet condition o, that is,

S={ueHYQ):u=up onfp}.
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It can be viewed as a translation of the test spAtso as to satisfy the Dirichlet
conditions o p. LetUp be an arbitrary function it*(Q) such thaup = up onTp.
Then, the test and trial spaces are related as follows:

S:W+{LTD}

Consequently it is an affine space. For instanceufog 0, the sum of two elements
of Sis not an element o&. However, for homogeneous boundary conditiog,= O,
trial and test spaces coincide

W =S=H(Q)

The space$ of trial functions and\ of test functions are infinite-dimensional [1]. In
order to solve the variational problem with the aid of congpsitthe function spaces
are approximated by appropriate finite dimensional sutesp@tc SandW" c W,
respectively. The general procedure of Galerkin finite elethmethod is as follows.

Galerkin Finite Element Method:

1. Choose a suitable basfgi(x)}N ; for the trial spaceS’ ¢ Ssuch that the ap-
proximate solution is written as

N

Un(X,t) = Zlu‘ (t)gi(x)

Here, the basis functiong(x) depend only on the spatial variable. For many
finite elements, the basis functions are associated witleswdso thatu;(t) =
up(Xj,t) correspond to the nodal solution value which may changenia.tiThis
separation of variables simplifies the computation of @gnes significantly.
The time derivative is applied to the nodal valugswhereas spatial derivatives
are applied to the basis functiots

. o dun(x,t) & dui(t)
e Time derivative =2 gt i (x)

N
e Solution gradient  Oun(X,t) = ZLUi (t)d¢i(x)
i=

2. Choose a suitable bagigi(x)}N ; for the test spac@/" c W. Choices are

e U5 = ¢; which corresponds to the so-called (Bubnov-) Galerkin e tbr
classical Galerkin method which is the method of choice is tiinesis.

o i # @i is referred to as Petrov-Galerkin method which leads to ngwi
type discretizations.

For a comprehensive introduction to the theory of finite elats, see for instance the
classical textbooks [36, B1] and the finite elements apfitina to fluid flow problems
is thoroughly discussed i 43)42].
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3.4 Construction of Finite Elements

The basic idea of the Finite element is to subdivide the regloc R" into subre-
gions. In the 1D case these subregion are intervals, in 2Buheegions are triangles
or quadrilaterals and tetrahedron or hexahedron in 3D.dardio compute an approxi-
mate solutioruy, to the above problem by the finite element method, the cortipntd
domain is subdivided into a collection df non-overlapping sub-domair® called
elements/cells

Ne
U< and ONQe=0 for k#e
k=1

From the nodal coefficients (t) = up(x;,t) given at timet the solution values within
each elemen®y can be interpolated by means of local basis functi@ﬂ% such that

[44]

m

Un(X,t) = ziui (t)¢i<k), Vx € Qg

wherem denotes the number of local degrees of freedom for each aterBamming
the local basis functions over all elements one obtains af§enctions{¢; }" which
are used to expand the approximate solution for the wholeagtoim terms of the nodal

coefficientsy;,
Nm

un(X,t) = Zlui ()i (x), VxeQ

whereNy, is the total number of degrees of freedom.

Finally we define a basis functiaf : Q — R for each nodal point in Q,i= 1,2,....n
These functions must satisfy the general properties ofppotation functions

1. The basis functiop; takes the value 1 at node and finishes at all the other

nodal points
N

Un(Xj,t) = Zui(t)¢i(xj) =ui(t)
i=
this is followed by
) 1 if j=i
#ilxj) = & =
R U
2. The sum of local basis functionﬁék) should be identically one for each element
Qy for consistency. To the global basis functigfhaunit sums

Nm
qui(x):l YXxeQC Q
i=

3. For computational efficiency, it is desirable that thealdoasis functionrpi(k)
vanishes outside of elemeg¥ to obtain a finite element approximation which
leads to sparse matrices. As a consequence, the globalfbasi®n ¢; turns
into a hat function with local support comprising the setlehgents meeting at
vertexi and equals zero outside.
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4. The sum of derivatives finishes in each element followerhfthe propert{'

Nm
Aleqbi(x) =0, Vx e Qy

It is worth mentioning that this property does not require ihape functions to be
continuous across element boundaries for non-conforminiig felements such as the
linear Crouzeix-Raviart eIemeﬁE_ﬂSS] or the rotated biéin&annacher-Turek element
]. The elements can be divided into two groups: elemeitts continuous pres-
sure (Taylor-Hood family) and elements with discontinupressure (Crouzeix-Raviart
family). Type of elements which have been studied in finierant literature are tri-
angular, quadrilateral, 3D hexahedral elements, withalinkilinear, bi-quadratic ele-
ments.

In this section we shall construct quadrilateral finite ed@twhich is been used.

3.4.1 Quadrilateral Elements

In general applications, quadrilateral elements are &hlerabove triangular elements,
but when the region is irregular or complex geometry thes tard to approximate
easily by quadrilateraIﬁBG]. Also, the derivation of lsafsinctions, element matrices
and vectors is more complicated for quadrilateral elemiatis for triangular elements,
except in the case that the boundaries of the elements ared;urecause always, even
for straight sides an isoparametric transformation is adedHowever, the advantage
of quadrilateral elements over triangular elements is bevis:

1. Compared to triangular elements, only one half of the remab elements is
needed. This reduces the computation time for the con&iruof matrices and
vectors.

2. If we divide a quadrilateral into two triangles, diaganaf the quadrilateral has
one of two possible directions. Numerical computationstovective dominant
flows, have shown, at least for rectangular grids, that thetisa is sensitive to
the direction of the diagonal. This sensitivity reduces whize of the elements
decreases. Quadrilateral elements do not exhibit thisviiahtieir results are
more "symmetric” for symmetrical problems.

The choice of an element depends on the type of problem, thbeuof elements
desired, the accuracy required, and the available comptitime. To begin with, the
element must be able to represent derivatives up to the oedeired in the solution
procedure. The simplest way of satisfying the convergeagairements is to use ele-
ments that are conforming and, across the element, can aidgdgrepresent the func-
tion and its derivatives. It needs noting, however, thas¢hsonforming may give little
increase in accuracy and require a considerable increas®riputing time compared
to elements with fewer terms. We employed the conforn@pB, element compromis-
ing the computing time for accuracy.
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3.4.2 Conformity

The requirement that the representations of the variabidstizeir principal deriva-
tives be continuous is known as tpencipal continuity condition The reduced con-
tinuity condition states that when a nodal value of a vagatgrivative is used in
a finite element formulation, the values of this variablekddive at the coincident
nodes of adjacent elements should equal this value. Thiditimm is in fact the
compatibility conditionfor the elements over the domain and must always be satis-

fied [97,/36] 28].

In general, the reduced continuity condition is not suffiti® ensure that the principle
continuity condition results. If, however, the element digtn is such that reduced
continuity means that the principal continuity conditigupéies, the element is said to
be conforming (conformable, compatible) for that probl&]|[

3.5 Conforming Q,P; Element

We approximate the domafd by a domairQy, with polygonal boundary and bg;, we
denote a set of quadrilaterals covering the doniainWe assume that;, is regular in
the sense that any two quadrilateral are disjoint or haveraan vertex or a common
edge. ByT = [—1,1]? we denote the reference quadrilateral.

Our treatment of the problem as a one system suggests toaisartte finite elements
on both, the solid part and the fluid region. We have to chogsareof finite element
spaces known to be stable for the problems with incompritigsitonstraint. We uti-
lize the LBB-stable conforming bi-quadratic, discontingdilinearQ,P; pair which
is known to be one of the "best” (sdE [5|]:t74]), that meanstnagsurate and robust
finite element pair for highly viscous incompressible rovm;mtationleb].

The basis function for this element are bi-quadratic poigiads on the reference el-
ement for the velocity and linear (discontinuous) polyralsifor the pressure. See
Figure[3.1 for the location of the degrees of freedom.

We define the usual finite dimensional spade®r displacementy for velocity, P for
pressure approximation as follows

U={uel”I,W?Q)?),u=00ndQ},
V = {ve L2(I,WH2(Q)]2) nL>(1,[L2(Q)]?),v = 0 0n dQ},
P={pel?(,L3Q))},
then the variational formulation of the fluid-structureergction problem is to find
(u,v,p) € U xV x P such that the equations are satisfied fo(8ll€,y) e U xV x P

including appropriate initial conditions. The spadés/,P on an intervalt”, t"?]
would be approximated in the case of (QgP; pair as

Un = {Un € [C(Qn)]%, unlt € [Q2(T)J? VT € Fh,up=00n0Qn},
Vh = {Vh € [C(Qn)]2 ValT € [Q2(T)]* VT € Fh,vh=00n0Qn},
Ph = {ph € L3(Qn), pnlT €P(T) VT € F}.

Let us denote by the approximation ofi(t"), vy the approximation o¥/(t") and
pp the approximation op(t"). Consider for eacli € .7 the bilinear transformation
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O Vh,Unp, bi-quadratic (9 nodal points)

@ Ph ,"(,‘;?7 ";;h linear (1 nodal point, 2 derivatives)

Figure 3.1: Location of the degrees of freedom for the (CeduRaviart)Q.P; ele-
ment

gr : T — T to the unit squar&. So the local basis on the reference elemen€iiT)
is defined as

= {qoyrt:ge span< 1x,y,xy, X2, Y2, X2y, y2x, X2y% >}
Q()—wwﬂlx>u—f»§r»&W—f»;r»&W+¢»
1-y2), Exﬂéy—f Ew«%w+f»

(x+32)(1—y?), > x+x )Y —Y?), > X+X )y+Y)}

l\)\l—‘l\)\l—‘

with nine local degrees of freedom located at the verticedpaints of the edges and
in the center of the quadrilateral. The sp&€T) consists of linear functions defined

by
T)={goyr':gespan< 1xy>}

with the function value and both partial derivatives locaitethe center of the quadri-
lateral, as its three local degrees of freedom. The velguiggsure inf-sup condition is
satisfied (semO]) in the presence of a purely viscous itxoriton ﬁ]. However, the
combination of the bilinear transformatiaf with a linear function on the reference
squarePl('f) would imply that the basis on the reference square does mbaicothe
full basis. So, the method can at most be first order accuraggeneral meshes (see

5, 207)
Ip— pnllo = O(h).

The standard remedy is to consider a local coordinate sy&em) obtained by joining
the midpoints of the opposing faces Bf(see [5] 107, 122]). Then, we set on each
elementr

P (T):=span<1,&,n>.

For this case, the inf-sup condition is also satisfied andéleend order approximation
is recovered for the pressure as well as for the velocityigraqsee 2])

Ip—prllo=0(h?) and [|0(u—un)llo = O(h?).
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For a smooth solution, the approximation error for the viéyda the Lo-norm is of or-
derO(h3) which can easily be demonstrated for prescribed polynenoiafor smooth
data on appropriate domairs|[20].

This choice results to 39 degrees of freedom on an elemehngioase of our displace-
ment, velocity, pressure formulation in two dimensions anii12 degrees of freedom
on an element in three dimensions. This seem rather privieibéspecially for a three
dimensional computation. The velocity components andspiresgradient in the cen-
troid may be eliminated, reducing the number of velocityrdeg of freedom to 16 and
number of pressure degrees of freedom to 1.

3.6 Discretization

The initial value problems which consist of a parabolic opénpolic differential equa-
tion and the initial conditions (besides the boundary ctioials) can not be completely
solved by the finite element method. The parabolic or hyderldferential equations
contain the time as one of the independent variables. Toecbtiwe time or temporal
derivatives into algebraic expressions, another numegcanique like the finite dif-
ference method (FDM) is required. Usually, IBVP are diseest first in space, thus
getting a system of coupled first order ordinary differdrgguations in time, strategy
is calledsemi discrete methodt remains to integrate the first order ordinary differ-
ential equations forward in time which is also knownnasthod of linesn numerical
analysis literature.

Thus, to solve an initial value problem, one needs both thtefalement method as
well as the finite difference method where the spatial déviea are converted into
algebraic expressions by FEM and the temporal derivatireesaverted into algebraic
equations by FDM, Rothe method in this present research [83]

3.6.1 Temporal Discretization

The first step in the numerical discretization process ishtwose an appropriate time
stepping scheme. It should not only be accurate in time, Isoteasy to realize and
computationally robust and affordable (inexpensive) te.u#\ simple and flexible
choice is theB-scheme approach, which allows for the use of the single Baykx-
ward Euler and Crank-Nicholson schemes, and also mufi-sthemes such as the
strongly A-stable Fractional-step-scheme. Thé-scheme applied to the monolithic
FSI equations for which we need to sole= (u,v, p) at the current time step,+ 1,
with known values only from the previous time step,

BasicO-Schemel et us consider an initial value problem of the followingrgrwith
X(t) e R, d > 1:
dX
— 4+ f(X;t)=0 ¥vt>0
at +f(X,t) >
X(0) = X

GivenX" at timet = t"andk = tp,1 — tn, then solve foiX = X"+1

XML ok (XML = X" — (1 0)kf(X"t")

53




CHAPTER 3. DISCRETIZATION METHODOLOGY

The time stefk is assumed constant and a paramétés to be taken in the interval
[0,1].

3.6.2 Explicit Schemes

In the past, explicit time-stepping schemes have been cantymsed in non-stationary
flow calculations. It possess the severe stability problengsrequired small time steps
prohibit the efficient treatment of long time flow simulatton

Forward Euler-Schem¢EE, with 6 = 0)

Xn+l+kf(xn’tn) — xn

Implementation and parallelization is easy, low cost peetstep

A good starting point for the development of CFD software

e Small time steps are required for stability reasons, eapledi the velocity
and/or mesh size are varying strongly

Extremely inefficient for solution of stationary problemdess local time-stepping
i.e. At = At(x) is employed

The required small time steps prohibit the efficient treattad long time flow
simulations

3.6.3 Implicit Schemes

Due to the high stiffness, one should prefer implicit scherimethe choice of time-
stepping methods. Since implicit methods have becomelfieattianks to more effi-
cient nonlinear and linear solvers, the schemes most frelyugsed are still either the
simple first-order Backward Euler scheme (BE) or more padfigrthe second-order
Crank-Nicholson scheme (CN). These two methods belongetgitbup ofOne-Step-

6-schemes

Backward Euler-ScheméBE, with 8 = 1)

xn+1+kf (Xn+1 tn+1) _ xn
e First order accurate only

e Good choice for steady state calculations

e Strongly A stable, means numerical solution is bounded

Crank-Nicholson-ScheméCN, with 6 = 1/2)

Xn+1+ gf (Xn+17tn+1) — X"_ gf (Xn7tn)

e Second order accurate

e Occasionally suffers from numerical instabilities
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e Not strongly A stable, weak damping property
The overall advantages and disadvantages of implicit sekere as follows

e Stable over a wide range of time steps, sometimes uncondilyo
e Constitute excellent iterative solvers for steady-statdiems

o Difficult to implement and parallelize, high cost per timefst

¢ Insufficiently accurate for truly transient problems agkft

e Convergence of linear solvers deteriorates/failAtascreases

Another method which has proven to have the potential tolerdhis regard is the
Fractional-Ste@-scheme (FS). It uses three different valuesfand for the time step
k at each time level.

Fractional-Ste@-Scheme By choosing

V2
2 b

1-26

6:17 6,:1726, a—m, [3:170

it divides the time step in the following consecutive sulpst@vith 8 := a 6k = B6'k):

Xn+9 + éf (Xn+6’tn+9) - X"h_ Bka (Xn’tn)
Xn+16 + éf (Xn+1—9’tn+l—9) _ Xn+9 —aO'kf (Xn+9’tn+9>
NG I-T (XML ML) = XM1-6 _ gokf (Xn+179 tn+179>

It is a strongly A-stable scheme. Hence, the FS-method psssehe full smoothing
property which is important in the case of rough initial oubdary values. Further, it
contains only very little numerical dissipation which isicial in the computation of
non-enforced temporal oscillations in the flow. For a rigartheoretical analysis of the
FS-scheme for this special choiceéee ]. Therefore, this scheme combines the
advantages of both the classical CN-scheme (2nd orderamguaind the BE-scheme
(strongly A-stable), but with the same numerical effort.

A Modified Fractional-Stef#-Scheme A modified 8-scheme (seé [128, 126]) with
macro time step k can be written again as three consecutlvesteps, wheré =
1—-1/v/2,X%= Xy, n> 0 andX" is known:

X0 ok (XM, 00) X"
N 1; O ynio 266_ Lyn
Xn+1+ ok f (Xn+1,tn+1) _ Xn+1—9

As shown in lLl_Zb], the considerable properties of thischeme are that

e Itis fully implicit

e |tis strongly A-stable means numerical solution is bounded
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e ltis second order accurate (in fact, it is "nearly” third ercccurate [126]).

The main difference to the previous ‘classical’ FS schentiegissubsteps 1. and 3. look
like a Backward Euler step while substep 2. is an extrapmiattep only for previously
computed data such that no operator evaluations at pretirnassteps are required.

The pressure terrlp = Op™?! may be replaced b@dp™*! + (1— 6)0p", but, with
appropriate post processing, both strategies lead toi@atudbf the same accuracy. In
all cases, we end up with the task of solving, at each time atapnlinear saddle point
problem of given type which has then to be discretized inspac

Summarizing, one obtains that the numerical effort of thelified scheme for each
substep is cheaper - at least for ‘small’ time steps (treatrokthe nonlinearity) and
complex right hand side evaluations while the resultingueacy is similar. Inciden-
tally, the modified6-scheme is aRunge-Kutteone; it has been derived ih__[J|26] as a
particular case of the Fractional-Stépscheme.

3.7 Non Dimensionalization

Dimensionless numbers help to identify which physical @feare dominating, and
also assist when classifying different model problems. \bfe-dimensionalize all the
guantities by a given characteristic lengttand speed/, and the subsequent scaling
of the involved variables as follows

=t g="2
L LU
~ U ~ V
U:E, V:\7,
~ L ,\f f L
O—S: Uspr27 O =0 pr27
- y - L
= :Lpi
H prL’ prz’

further using the same symbols, without the hat, for the diomensional quantities
S
and denoting by = ’% the densities ratio. The non-dimensionalized system \i¢h t

choice of material relationfi for viscous fluid an for the hyper-elastic
solid is

ou % in QS,
o |30V <7J PF T+ ;’,—‘;’) in QS
3¢ =\ —(Gradv)F1(v— %)

+Div (=Jp'F T +JuGradvF~1FT) inQf,
Ja-1 in Qs

— 3.10
{Div(JvF‘T) inQf,

56




3.8. WEAK OR WEIGHTED RESIDUAL FORMULATION

and the boundary conditions

o'n=o0°n onry,
V=vp onr,
u=0 onr?,
on=0 onl3. 3.14

We used the weak or weighted residual technique to the giodeset of equation
which goes as follows

3.8 Weak or Weighted Residual Formulation

Let | = [0, T| denotes the time interval of interest. We multiply the e'qmai-

by the test functiong, &,y such that{ =0onT?, & =0onTl?! and integrate
over the space domaid and the time interval. Using integration by parts on some of
the terms and the boundary conditions we obtain

/ /—[dth:/ / v-Zdvdt
o Jo ot 0o Jos

£ 315
—/ / Gradu- GradZdVdt
0 Qf

T ov T ov
/O QfJﬁdedtJr/o /QSBJE.Edth
T 1 ou
:-/ / IGradvFtv— 2. edvdt
Jo Jaf

at
)
+/ /JpF*T-GradEdth 3.16
0 Q

T oy

7/0 /Qsﬁ‘GradEdth
:

—/ /fJuGradvF’lF*T-GradEdVdL
0 Q

J
0=/ / (J—1)ydvdt
0 Qs

; 3.17
+ / / Div(JvF-T)ydvdt
0 Jaf
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Transforming some of the integrals to the current domaimtbmentum balance equa-

tion|[3.16l| becomes

/ /fat LEdv dt+/ / Bf Edvdt
//Dv ). Edvdt

+/ / pdiv Edvdt 3.8
0 JOt

T oy
—/0 /Qsﬁ-GradEdth

T
7/ /f;.leﬂEdvdt
0 Jo

This is our method of choice in this study, which also knowthesClassical Galerkin
residual method.

Now, by following the steps of the classical Galerkin methodhe fluid structure
interaction main equations. We used the velotigs a test functiog in this equation
and obtain the balance of the mechanical energy

2/ /Qf e dvdt+ﬁ/ / 2 \vdvdt

ou
- / [ OV G -valve

//7 -GradvdV dt
os d

— Ov|?dvdt
/O /Q [ful |

The first term on the left hand side together with the convective term on the
right hand side can be rewritten with the help[@i31l| as

2/ /fat i dVd”/ / Ov(v——-) - vdvdt
Q
Jdu
2/ / IV dth+/ / va_ﬁ) -vdvdt
:i/ /Qfﬁ IV dth—*/ L3P dlv Cavat
P o VR G -
2/ dt/ \V|2dvdt+ //dlv<|v ))dvdt
=3 MO / / n fdadt,
eI

1
=5 [||V('f)||L2(Qtf> 0+§./o ./rtl vg/|? Vg -ngdadt

3.19

58




3.8. WEAK OR WEIGHTED RESIDUAL FORMULATION

where we have used the boundary conditi®i12]) and the fact tha%j =vonr%and
Jdu 1

=0onrl-.
ot

The second term on the right hand :;[mi[z] can be rewritten by use -FWE as

L T oW dF
/O/Qsﬁ-Gradvdthf// aF vt
— / / —dth 3.21
QS

- { st(F(t))de

Using[] and[lml] in with the initial conditio and the fact

thatW = 0 in the initial, undeformed state, we obtain

1 T
SNz g1, + ST Eage, + [ HIVIZ, g dt+ [ WR(T)AV

3.22
[3 17 2
2 Vol + 5 Vol — L[, vel*va-ngydact
t

Using the assumptigi2.85]), settingc = min(1,3) and considering the homogeneous
Dirichlet boundary conditiorvg = 0 we finally obtain an energy estimate of the fol-
lowing form

C 'T
SV g+ [ HIOVIZ, g -+l Gradu(T) [z s .

l3
< Hb”Ll(Qs ||VO|||_2 Qf ||V0|||_2 Qs)

Here we assuma priori that we have the solution and we put it into the weak formu-
lation and choose spaces which have square integrabletyettisplacement and their
gradients are also square integrable and can show thesea hasito be bounded. It
make sense to look in the spaces of square integrable farexio their gradients, that
spaces are commonly known as Sobolev spaces [1].

Definition 1 Find (u,v —vg, p) € U xV x P such that equation§8.15]), (8.16]) and
are satisfied for al({,&,y) € U xV x P.

Let us denote by the approximation ofi(t"), v the approximation of(t") and py
the approximation op(t"). Further we will use following shorthand notation

F'= | +Grad!, J"=detF" J'2= %(J”+J”+1),
(9= [ f-0av. (f.gs= [ f-gaV, (f.o)= [ f-gdv.
Q Qs of

f,g being scalars, vectors or tensors.
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For simplicity we wrote down the discrete equivalent of tlypiations for([3.15]-

by using Crank Nicholson method, then the variational fdetion of the fluid-
structure interaction problem is stated as follows

_(uﬂvn)_2{(Vﬂan)s+(muﬂamn)f}:0a 3.24

(Jn+%vﬂ+l75)f B (Vﬂﬂvf)s_ K (JanEH(FnH)*T,Gradf)s

_|_k2n{ (?ﬁ(Graduﬂ“),Gradf) +u (Jn+lGradvﬂ*l(F’”l)*l’GradE(le)fl)f
S

+ (J”HGradvﬂ“(F”“)*lvRH, E)f }
1
_ é (Jn+l Gradvﬂ“(F”*l)’l(uﬂ*l _ UR), E)

— (I 2vhE) — B

f

+k2n{ (tglﬁ(GfadUR)»Gradf) + 1 (I Gradvi(F") ™, Gradg (F") ),

1
+ (I"Gradvp(F") 1vp, €) } +5 (I"Gradvi(F")H(upt —up), &), =0, (3.25

(3" =1 y) g+ (T Grady H(FT T y) =0, 3.2

Using the basis of the spaddg, V;,, B, as the test functiong, &, y we obtain a nonlinear

algebraic set of equations. In each time step we have todiad(ul ™, v, pitt) €

Un X W, x B, such that
F(X)=0, 3.27

where.Z represents the syste E‘J?!! 3.26)). The solver aspects of this system will
be addressed in next Chapter.

3.9 |Initial and Boundary Conditions

The modeled FSI applications and physical processes agdlyisery specific in na-
ture and the studies can thus be confined to a smaller spabalegion or domain
Q c RY and a specific temporal duratid@, T]. Both these restrictions will usually
greatly simplify the modeling and also reduce the efforuisgg to obtain a solution.
Itis particularly advantageous to utilize all existing syetry axes to further shrink the
computational domain. Sometimes it is also possible tesfaam a three dimensional
model to two dimensions if the problem can be considered/exisetric. The draw-
back of restricting the models spatially is that the equestioow have to be supplied
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with suitable boundary conditions, which are supposed stiilee all interactions be-
tween and the rest of the non modeled environment. Initiaditmns, in the form
of specified velocities must be prescribed in addition tolihandary conditions for
applications where the temporal evolution is of interedte Bquations together with
fluid parameters, domain, boundary conditions, and initedditions all together now
uniquely specify the model problem.

A very detailed discussion on boundary and initial condisior fluid structure interac-
tion problems is found irﬂe]. We just describe briefly the sibke initial and boundary
conditions for the problems as follows:

Initial Conditions:For time-dependent or non-stationary problems compulsotigl
condition defines the contribution afat timet = 0

u(x,0) = up(x), vx € Q.

For stationary simulations it is also advantageous to sebd gitial guess so that the
nonlinear solver will converge faster.

Boundary ConditiondJsually, boundary conditions are, Dirichlet boundary dtods
which sets the value of a quantity, and Neumann, also caliéaral, boundary condi-
tions which assigns the in- or out-flux. In general, the baumpdnay consist of different
parts

I =Tin Ul wai Ul out,
where 1 is the outwardointing unit normal vector at the poirte I')
e n={x el :v-n <0} denotes thénflow part,
e Myal = {x €T :v-n=0}denotes zolid wall,

e Moyt ={x €T :v-n> 0} denotes theutflowpart.
Typical boundary conditions are as follows:

e Dirichlet boundary conditions
u(x,t) =up(x,t), Vvxerlp,vte(0,T)

That is, Dirichlet conditions set the value of velocityon the boundary part
'p C I, directly. These conditions are usually prescribed atténte set the
inflow velocities or to that of the wall which usually has zeriocity.

e Neumann or natural boundary conditions
(—pl + (Ou(x,t) + 0ux,t)") - n=gn(x,t) Vxely,vte(0,T)

That is, one can alternatively prescribe the stress at adawyrwith the above
natural boundary condition. For the special case of a homames Neumann
condition(gn(x,t) = 0), or zero stress condition, is commonly used as an outflow
boundary condition.

e No-Slip boundary conditions

u(x,t)-n=0 or (—pl+(du(x,t)+0ux,t)")-n=0, Vxelp,vte(0,T)
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That is, a combination of Dirichlet and Neumann conditiorsynbe used to
specify a so called no-slip or symmetry condition. No-slqubdary condition
requires that fluid in contact with the wall stay and move wita wall motion
and it should have inclination to stick with the walls.
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Expect the best, ready for the
worst.

M. A. Jinnah

Solvers

If modeling the physical problem is an uphill task then sodvit numerically is not that
easy in fact even harder. The solution strategies for fltrigeture interaction problems
have been the rage for almost two decades, this chapterostdl & all out with refer-
ences therein. Furthermore, we will explain the generéédifices between the direct
and iterative solvers. The set of core ideas of iterativeessllike Krylov subspace
solver and multigrid solvers strategies will be explainedroughly with associated
references. The methods which have been used will be s@dlgifinentioned.

4.1 Solution Algorithm

After discretization in time by following the foot steps obfhe method|[83] and in
space by the standard Galerkin finite element method weeargy

F(X)=0

which is a set of nonlinear algebraic equations of the formtfie unknown vector
X = (Un, Vh, Pn)

k
MUh_é(Mth'f‘LfUh) = rhs(up, Vi)

k 1
(Mf +BM®)vh + ENl(Vh,Vh) + éNz(Vh7 Un)

() + S () — KB () = (L, )
C3(Un) + B (vi)Vh = rhs(L, pp)

whereM is the mass matrixyIS, M are the mass matrices corresponding to the integra-
tion over only fluid or solid sub-domains such that= MS+MF, N; andN, represent

the convective term in ALE formulatior§® andS' are the stress operators (elastic for
the solid part and diffusive for the fluidg; is the incompressibility constraint for the
solid, B is discrete gradient operatoB & BS+ Bf) andL' is the operator realizing
the mesh motion in the fluid domain. All of the operators, apéthe dependences
indicated explicitly, also depend on thg. The right hand sides depend on the values
of the unknowns in the previous time step.
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This structure of the system is followed from the weak formegtiations
), derived in the Chapter 3. The involved quantities readlg\fs:

MUh — ( n+17 )
M = (40),
Uh _ (D n+1 )

SURAR) = ()~ 5 { (s (R, |

M= (471.8),
Np(Vn,Vh) = (3" Gradvji 1 (F™ ) it &)
No(Vh, Vi) = (3" Gradvii(F™) ~L(uftt —ul), €)

(Jn+l Grad\/n+1(Fn+l) l(UR-H' _ UH)7 E) ;

S(up) = (d (Gradul?), Gradf)

oF s
S (vn) = p (I Gradvp HH(FM) 1, Gradg (F™*1) 1)
B (vn) = (3" PR (F™) T, Gradé),

suR) = (138) RO+ 5 { (G (Grac. Grace

S
+ p (I"Gradvy(F") 1, Gradg (F") 1), + (3" Gradvj(F") vy, &) }
CS(Uh) _ (Jn+1’ )s
BfT(Vh)Vh _ (Jn+1 G|,-ad\/ﬂ+l(|:r'l+l)717 y) .
rhs(1, pp) = 1.

Equivalently, the discrete set of equatioi' 3.26])) can also be written as

Su S 0 u fu
Su Sy kB vii=1["f|,
aB! oB] 0/ \p fp

which is a typical nonlinear saddle point problem, wh8escribes the diffusive and
convective terms from the governing equations.

The linearized problem reads

0.7
ZZ (X)) =
M — KL Kms 0
10Ny | k (N +S°+Sh) 9B £ 10N, | kON+S?)
2o T2 au — TKaPn ME4BMT 45 02 45— kB
BST_|_0BfT BfT 0
Jup
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4.2 Nonlinear Solver

The syste of nonlinear algebraic equations is solved using Newtorhoteais
the basic iteration by two ways, either as continuous Newm@thod on variational
level (before discretization), which implies that the éonbus Frechet operator can be
analytically calculated or by inexact Newton method on maével (after discretiza-
tion) which means that the Jacobian matrix is approximasuguinite differences. In
the subsequent sections we described the general formfulesndon method then the
more specific definition of the used invariants of Newton radthare given.

4.2.1 Newton’s Methods and Its Variants

Consider a vector functiofi € C1(1) and f'(X) # 0 for all X < I, then the standard
Newtons iteration formula is

Xn+1:Xn_ f(xn) vn>0
f/(XM) - :
The basic idea of the Newton iteration is to find a root of a m@@r algebraic equation,
by using the available known function value and its non zenst fierivative.

Then the standard Newton iteration formula for this nordinggebraic system can be
formulated as for giveiX® € R" n= 1,...,n until convergence:

Solve Jz(XMX"=Z(X") = X" =[Jz(X"] LF(X")
Set XM =X"45X"
whereX = (up,Vh, pn) andJz(X") = %;n) is the Jacobian matrix. At each stap

the solution of linear system with matri- (X") is required. The convergence of this
basic iteration can be characterized by the following stathdesult.

Theorem 6 Let X be a solution of# (X) = 0 and J»(X") = %(X“) is invertible
and locally Lipschitz continuous. Then,XP is sufficiently close t&, the Newton
algorithm has the following property

XM= X < ¢ X" = X%
Proof 3 For proof seel[104] theorem 7.1.

We can see that this gives us quadratic convergence prothaéedhe initial guess is
sufficiently close to the solution. To ensure the convergeglobally some improve-
ments of this basic iteration are used which follows in thet section.

4.2.2 Modified Newton’'s Methods

There are several modification made to the Newton’s methodder to reduce the cost
when the computed solution is sufficiently closexto
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Inexact Newton It means to solve the syst by an iterative method in which
the admissible iteration is fixed a priori. The schemes agatitied as Newton-Jacobi,
Newton-SOR or Newton-Krylov methods, according to thesitige process that is used
for the linear system ir@4]. However, we used the dividdtedinces approximation
for Jacobian approximation.

Difference Approximation of the Jacobian On the discrete level thieexact New-
ton method is applied by replacinly- (X) (whose explicit computation is often expen-
sive), and since we know the sparsity pattern of the matradivance, which is given
by the used finite element method, it can be computed by fiiifitereihces from the
residual vectorZ (X)

(A7 (X");; = B}fh (X") ~ Eallt +a,—ej)2;j[ﬁ]i(x —ajej)’

wheree;j are the unit basis vectors IR" and the coefficientsr; > O are increments
to be suitably chosen at each stepf the iteratio and can be taken adaptively
according to the change in the solution in the previous titep.sNow the Newton
iteration in this case reads

XM= X"+ [0g] 7 F (X",

the truncation error w.r.trj which arise from the divided differen can be re-
duced by reducing the size orl]1 However, a too small value an‘J“ can lead of limit-
ing the truncation errors and ensuring a certain accuracpmmputations. A possible
choice which is been used is

aj' = —b.\/em

Whereb, parameter to be assigned at start, @[m, 84]. Howeweresulting
nonlinear and linear solution behavior is quite sensitivetwthe parameters, which
will be shown in Chapter 6 in detail in numerical results ggttThis computation can
be done in an efficient way so that the linear solver remaiasitdminant part in terms
of the CPU time (se 28)).

4.2.3 Quasi-Newton’s Methods

Quasi-Newton’s methods are all those schemes in which tjotanvergent methods
are coupled with Newton-like methods that are only locatiynergent, but with an
order greater than one. The Quasi-Newton’s method for dialinialue X° € R" at
each stem has the following steps

1. ComputeZ (X") by letting X" be some starting guess
2. Set the residuum vect®&" = .7 (X") and the tangent matrik = %(X").
3. Solve the linear system for correctidX

AdX =R"

or
J7(XM)EX" = 7 (X")
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4. Find optimal step lengtt.
5. Update the solutioX™ = X"+ w"dX",

wherew" are suitable damping parameters. Here step 4. is the charang part of
this family of methods. We also used the damped Newton metbitidline search
which is accomplished as follows

The Damped Newton Methodwith line search improves the chance of convergence
by adaptively changing the length of the correction veche(ljS] for more
details). The damping parametef € (—1,0) is chosen such that

j(xn-‘rl) .Xn+1 < <g\(xn) XN

The damping greatly improves the robustness of the Newswation in the case when
the current approximatioX" is not close enough to the final solution, @ 75] for
more detalils.

By using the solution update step in the Newton method wea@xphe line search
technique here

XML = X" w"3X", 4.10

where the parametes” is determined such that a certain error measure decreases. O
of the possible choices for the quantity to decrease is

f(w) =7 (X"+ w"dX") - 5X". 4.11
Since we know from e-l
f(0) = .7(X")-oX",

and taking derivative with respect taw

/ _ df(w) _ 07 n n sy n n. syn
f'(w) = 0 aX X"+ w"oX™M X" X
/ 0.7 n n n n n n
f'(0) = W(X )| oX"-oX" = [Jg;(x )]5)( -oX", 4.12

making use r!m to(/4.12]) above equation we reach
f/(0) = .7 (X")- X",

and computingf () for ap = —1 or ap determined adaptively from previous itera-
tions, we can approximati w) by a quadratic function

_ fw) -~ f(0) (a0 +1)

f(w) = o2

w?+ f(0)(w+1).

Then setting
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the new optimal step length € [—1,0] is

‘

N
|

b3

e
Il
NS NS

<O0.

I
—

>

SN~—

This line search can be repeated withtaken as the lagb until, for example,f(w) <
%f(p). By this safeguarding we can enforce a monotpne converggtbe approxi-
mationX" [84] theorem 3.2.4. Ito" = 1 then the Quasi Newton method and Newton
method are the same and only one iteration is required.

Remark 4.13 Without line search/damping the Newton’s method is onlgllpcon-
vergent. It means it converges only when we are close to foé@u If roots are far
away from the solution at start then it is not clear whetherativerges or not. These
methods (line search or damping) are all methods which mhkeNewton method
globally convergent.

Remark 4.14 Trust region methods overcome the problems that line seaethods

face. The specific trust region methods are presented wiffiett @ smooth transition
from the steepest descent direction to the Newton diredticen way that gives the
global convergence properties of steepest descent ancagitdoical convergence of
Newton’s method ir [84] (section 3.3).

4.3 Linear Solvers

Linear solvers are generally divided into two broad categorthe direct solvers and
iterative solvers. The direct methods or solvers are thdsiehwin the absence of
roundoff error give the exact solution to a linear systereradtfinite number of steps.
Contrarily iterative solvers or methods refer to techngtiat computes iterative steps
ever better approximation to obtain accurate solutionsliteear system at each step.

In the following subsections, short description of the roetlof choice for our own
problem is given briefly and further references are diretdethetter understanding.

4.3.1 Direct Solver

In this category, when we have small system for instanceniumber of unknowns less
than 20000) then a direct linear solver for sparse systems like UMW (see IEb])
is preferably used, which appears to be a good candidateast in 2D. Moreover
this choice provides very robust linear solvers, howevemiemory and CPU time
requirements are too high for larger systems.

In the next paragraph brief insight of UMFPACK is given

UMFPACK s a set of routines for solving unsymmetric sparse lineatesys,

AX =D, 4.15

68




4.3. LINEAR SOLVERS

by using the Unsymmetric-pattern MultiFrontal method airéat sparse LU factor-
ization. The sparse matri& can be square or rectangular, singular or non-singular,
and real or complex (or any sort). Only square matrisesn be used to soI

or related systems. However rectangular matrices can anfgdiorized.

Itis written in ANSI/ISO C, with a MATLAB interface and relgeon the Level-3 Basic
Linear Algebra Subprograms (dense matrix multiply) forgesformance. This code
works on Windows and many versions of Unix (Sun Solaris, Ratlhux, IBM AlX,
SGI IRIX, and Compagq Alpha). A short introduction to Unix tsef the C interface
of UMFPACK is reported in[[41, 39].

4.3.2 lterative Solvers

Iterative solvers further divided and categorized into tmajor broad classes, namely
Krylov Subspace solvers and Multigrid solver. In the follog subsection general
description of these methods documented and the solutjomitiim to solve very own
FSI problem is incorporated. For detail insight on the tigeamethods one may go
through [114].

Krylov Subspace Solver

Possibly the large linear problems can be solved by Krylmaes methods (BiCGStab,
GMRes, see[[8]) with suitable preconditioners. One pokibs the ILU precondi-
tioner with special treatment of the saddle point characteyur system, where we
allow certain fill-in for the zero diagonal blocks, seel[22].

Here, we describe the very basic detail of Krylov subspacthoteand associated
preconditioners in similar order in the following two paraghs.

The Krylov subspace methods are considered currently atinengost important iter-
ative techniques available for solving large linear systefihese techniques are based
on projection processes, both orthogonal and incline, Kngtov subspaces, which are
subspaces spanned by vectors of the f@(#)v wherep is a polynomial. Precisely,
theses techniques approximate'b by p(A)b, wherep is good polynomial. Because
the vectors tend very quickly to become almost linearly deleat, methods relying on
Krylov subspace frequently involve some orthogonalizasocheme, such as Lanczos
iteration for Hermitian matrices or Arnoldi iteration forare general matricemm]. A
general projection method for solving the linear sys@ is a method which seeks
an approximate solutioxy, from an affine subspace + K, of dimensionrmunder the
condition

b— AXmLLm

whereL, is another subspace of dimension Here,xp represents an arbitrary initial
guess to the solution. Krylov subspacemethod is a method for which the subspace
Km is the Krylov subspace

Km(A,To) = span{ro,Aro,A?rg,...,A™ro},

whererg = b— Axg. For simplicity Km(A,ro) will be denoted byK,. The different
versions of Krylov subspace methods arise from differeoiats of the subspacés,
and importantly from the ways in which the system is prectowéd.
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It is clearly seen that the approximations obtained from @d<r subspaces methods
are of the form from the approximation theory point of view,

A~ Xm = X0+ Om-1(A)ro,

in which gm_1 is a certain polynomial of degre@— 1. In the simplest case where
Xo = 0, then

A~*b~ gm_1(A)b.

In other wordsA b is approximated bym_1(A)b.

Although all the techniques provide the same type of polyiabapproximations, the
choice ofLy, i.e., the constraints used to build these approximatianls,have an

important effect on the iterative technique. Two broad césiforLy, give rise to the
best known techniquemlﬂ.

1. The first is simplyLy, = K, and the minimum-residual variatidny, = AKp.
A few of the numerous methods in this category are the Arndfdi symmet-
ric Lanczos, Conjugate gradient, GMRES (generalized minimesidual), the
Conjugate residual method, GCR, ORTHOMIN, and ORTHODIRhuds.

2. The second class of methods is based on definintp be a Krylov subspaces
methods associated wit', namelyL, = Km(AT, ro). Methods of this class are
Lanczos Bi orthoganalization, BiCG, QMR (quasi minimaidesl), BICGSTAB
(biconjugate gradient stabilized), TFQMR (transpose-fgMR), and MINRES
(minimal residual) methods.

There are also block extensions of each of these methodedédyiock Krylov subspace
methods, se4] for further comprehensive survey of efittte above sub methods.

Preconditioning Preconditioning is a key ingredient for the success of Krdab-
space methods in the applications to follow in next chaptdmaany other engineering
applications.

It is well fact that iterative solver keep inherent robussistability issues compare to
direct solvers. Although, they are applicable to largedingystem but stability related
issues restrict the wide use of iterative solvers in manystrial applications.

Itis well observed that, lack of robustness is a widely retdogd weakness of iterative
solvers, relative to direct solvers, which damage the decep of iterative methods
in industrial application despite their applicability feery large linear systems. To
circumvent this, both the efficiency and robustness of liseraechniques can be im-
proved by using preconditioning. Preconditioning is siynpleans of transforming the
original linear system into one which has the same solutiabhwhich is likely to be
easier to solve with an iterative solver. In general, thiabdity of iterative techniques,
when dealing with various applications, depends much morhe quality of the pre-
conditioner than on the the particular Krylov subspacelacator used. Finding a good
preconditioner to solve a given sparse linear system isofimved as combination of
art and science. Theoretical results are rare and some dsatvark surprisingly well,
often above expectations. A preconditioner can be definexhasipplementary ap-
proximate solver which is combined with an outer iteratiechinique, typically one of
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the Krylov subspace iterations. We employed the most sstdagchniques used to
precondition a sparse linear system arrive in our problemwéver, common feature
of the preconditioners are built from the original coeffitienatrix. Roughly speaking,
a preconditioner is any form of implicit or explicit modifitan of an original linear
system which make it easier to solve by a given iterative ough

For example, scaling all rows of a linear system to make thgafial system to make
the diagonal elements equal to one is an explicit form of@mndtioning. The resulting

system can be solved by a Krylov subspace method and mayreefgwer steps to

converge than with original system (although this is notrgnteed).

One of the simplest ways of defining a preconditioner is tdgoer an incomplete
factorization of the original matriA. This implies a decomposition of the forfa=

LU — R whereL andU have the same nonzero structure as the lower and upper parts
of A respectively andR is the residual or error of factorization.

Zero fill-in ILU(0)

The incompleté_U factorization technique with no fill-in, denoted ByJ (0), consists

of taking the zero patterpto be precisely the zero patternAf By definition , together

the L and U matrices inlLU (0) have the same number of nonzero elements as the
original matrixA, see] 10.3.2.

This incomplete factorization is rather easy and inexpens compute. On the other
hand, it often leads to a crude approximation which may testhe Krylov subspace
accelerator requiring many iteration to converge. To ¢ireent this, several alternative
incomplete factorization have been developed by allowingeniill-in in L andU. In
general, the more accurdtd) factorizations require fewer iterations to converge, but
the preprocessing cost to compute the factors is I@ [114].

Level of fill and ILU(P)

The accuracy of théLU (0) incomplete factorization may be insufficient to yield an
adequate rate of convergen@lm] example 10.2. More atecinrcompleté. U fac-
torizations are often more efficient as well as more reliableese more accurate fac-
torizations will differ fromILU (0) by allowing some fill-in. Thus|LU (1) keeps the
first order fill-in, a term which is explained iml4] 10.3.Bhere are few drawbacks
to thelLU (p).

e The amount of fill-in and computational work to get th&J (p) factorization is
not predictable fop > 0.

e The cost of updating the levels can be quite high.

Most importantly, the level of fill-in for indefinite matrisanay not be a good indicator
of the size of the elements that are being dropped. This riyrfeads to large number
of iteration to achieve the convergence. The popular gfi@ggo circumvent this issue
are ModifiedILU (MILU ) factorization andLUT strategies.

Historically, incomplete factorization preconditionavere developed for the regular
structure matrices, rather than for general sparse matldel].

Multigrid Solver

Multigrid methods were invented for partial differentiajuation such as Poisson’s
equation, however they work on wider class of problems toocdntrast to other it-
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erative methods discussed before, multigrid’s convergeate is independent of the
problem sizeN. For a general introduction to multigrid we refer to the badiiack-

bush [66].

As an alternative, we also utilized an efficient standardggtac multigrid approach to

solve the discretized fluid structure interaction problehnmolv is based on a hierarchy of
grids obtained by successive regular refinement of a givarseanesh which is today
one of the the fastest iterative linear solvers for CFD peots, (see [133]). Inside
multigrid, restriction is applied to the residual after ssttong on all mesh levels and
a direct sparse linear solvéI[40] is utilized to obtain tbarsest grid solution, if the

number of degrees of freedom is sufficiently small. Proldiogas then applied which

is followed by post-smoothing to give a better approximatidhese steps continue
until a V or F-cycle of multigrid iterations is finished.

To explain how multigrid works, we need some operators et & problem one one
grid level and either improve it or transform it to a relatedigem on another grid.

In the following we describe a prototypical multigrid prokcee to solve the linear
systemAju; = by , which contains the following steps:

1. Start with an initial guess on fine grid leveL?, executej = 0,...,m— 1 pres-
moothing steps to get a more accurate iterate

Uij+l:S(Uij)~

The smoothing operat@; essentially computes a first improved approximation
to Aju; = by.

2. The presmoothing steps should have “smoothed/dampedhitih frequency
components of the error/residual sufficiently so that timeaia@ing error will be
seen as having a high frequency on a coarser grid. So to speakariation of
Jacobi’'s method makes the solution smoother, which is etgrit to getting rid
of high frequency error. Calculate the residual and rastrio a coarser grid

rioa =R (b — AUl

whereR}*l is the restriction operator from the fine grid levéd the coarser grid
leveli — 1, which is an approximation on the coarser grid.

3. Solve recursively on the coarse grid system
A_1U;=ri1
to get the correction’ ;.
4. Prolongate the calculated correction to the next finef lgiiel and apply
U™t ="+ aiP Uy,

whereg; is a suitably chosen damping parameter th is the prolongation or
interpolation operator from grid level- 1 to leveli.

5. Executd =0,...,n— 1 number of postsmoothing steps (likewise in step 1) to
get the final solution™ ",
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It is common to apply these steps recursively on a succes$igrid levels to achieve
a faster reduction of error. Appropriate algorithms noweh&v be chosen for the
prolongation, restriction, smoother, and solver compts&machieve full efficiency.
The basic idea of construction of MGV and MGF which is beent pAMG is as

follows

Multigrid V-Cycle (MGV)  The basic multigrid V-cycle algorithm states

functionMGV(b', u') ...replace an approximate solutiogh

if i=1...only one unknown

compute the exact solutiart of Prob!

returnut
else
1. U =S(b',u) ...improve the solution
2.r' =AU —p ...compute the residual
3. d =P(MGV(R(r'),0) ... solve recursively on coarser grid level
4. u=x—d ...correct fine grid solution
5. u' = S(b',u) ...improve the solution again
returnu'
endif

Multigrid V-Cycle (MGV)

...of Aju; = b; with an improved one

The algorithm is called a V-cycle, because if we draw it schtéeally in (grid number
i, time) space, with a point for each recursive call to MGV. Timndtigrid cycles looks
like in Figure[4:1. Although, W-cycles are usually moreusband they are easier

Level-3

Level-2

Level-1

VW WY

Vocycle Wecycle F-cycle
time

Figure 4.1: Multigrid V, W, F cycles from left to right

to analyze in the classical multigrid convergence theorgweler, they are more ex-
pensive and in local refinement applications they may fdileee optimal work count.
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W-cycles are especially expensive in parallel algorithrhemfrequent coarse grid vis-
its leads to poor processor utilization. Either V- or W-@stan (and should be) used
in FMG. However, we used the V-cycle for the calculations.

Full Multigrid (FMG)  The ultimate multigrid algorithm which uses the MGV as a
building block and known as full multigrid (FMG) is employedd states.

Multigrid F-Cycle (FMG)

functionMGF(b',u') ...return an accurate solutiehof Aju; = by
solveAju; = by exactly to geu!

fori=2tok

u =MGV(b,PU))

end for

A picture of FMG in (grid numbetf, time) space is shown [0 4.1. There is one "V”

in this picture for each call to MGV in the inner loop of FMG. Wsed interpola-

tion operators for the prolongation and restriction roesias are normally constructed

as pure interpolation operators. There are other altematpproaches like discrete
L2-projection operators and others, which has been develfipeughly anisotropic

grids, is to embed appropriate weighting in the operatongsréperly account for the
anisotropie@G}. This approach is potentially advaetag for two-phase flow simu-
lations since the discontinuous density and viscositysie&h be interpreted as anisotropies.

Advantages The idea behind multigrid is to assemble and iterativelyesthe linear

systems on a sequence of grids. This allows for the slowlyeging low frequency

errors on the finest grid to quickly be filtered out on the ceegsids (the low frequency
error is seen as having a higher frequency on the coarses) gAdhear linear efficiency
can in this way be achieved in the optimal case (with lineaammgy that the cost of
solving the systems increase linearly with the number ofeles) of freedom) [66].

This is in contrast to standard iterative solvers which negan increasing number of
iterations to converge as the computational grids are &fine

Coupled Multigrid with Vanka-type Smoothing This type of multigrid smoothers
has been originally introduced by Vanka [130] for solving tavier-Stokes equations
discretized by finite differences. The smoother is somedidenoted as symmetrically
coupled Gauss-Seidel (SCG@SO} or box iteration/retlam@]. The Vanka tech-

nique has especially been developed to deal with saddlé gstems exhibiting a zero
block appearing on the diagonal of the system matrix, wheemredsird (point-wise) Ja-
cobi or Gauss-Seidel smoothers fail. Stokes and linealizder-Stokes systems be-
long to this category which is the main reason for the strofigénce the method had
(and still has) in the field of computational fluid dynamicd={@ and fluid-structure

interaction (FSI) is obviously not the different. Otherseas are that it can be imple-
mented with the help of elementary techniques availabld fimée element packages
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and that it is efficient and robust for a wide class of problemfigurations. The main
idea of the Vanka approach is to directly couple all field ahles, i. e., velocity, dis-
placements and pressure in our case, on a local level,iresinitsmall coupled systems
that have to be solved successively.

We used on finer levels a fixed number of smoothing steps attiters by local MPSC
schemes (Vanka-like smoother) which acts locally in eaeimehtQ; on all levels
[122,[130[ 75]. Such iterations can be written as

g+l Ul Swo,  Swo 0\ ' /def,
v = |V | - o g Suei Swja; kB def,
pt p T \cy BS\Qi c\,B”Qi 0 de f'p

The inverse of the local systems (389) can be done by hardware optimized direct
solvers. The full nodal interpolation is used as the pro#tiogn operatoiP with its
transposed operator used as the restridiea P" ﬂﬂ 122].

Idea Behind Vanka-type Smoothers The primitive idea of Vanka-type smoothers is

to divide the mesh into small subregiosand treat them separately. One smoothing
step consists of a loop over all the@gs, where steps to be followed in each iteration

are

1. Assemble a small local matrix from the global matrix whetimstitute the num-
ber of unknowns to the current subregions.

2. Construct associated local residual which is dondMia method, i. e., infor-
mation, which has been updated in previously treated sidiregs immediately
incorporated into the assembly process of the current fesadual.

3. Solve the resulting system with the local residual astrigind side. Note that
the resulting local matrices are always invertible. Theeisded boundary con-
ditions are incorporated accordingly. A direct solver isptoged to invert the
local systems.

4. Update the corresponding parts of the global solutioh thits local correction.

This is a general description of the Vanka process. In tla@sihwe used the Element-
based Vanka smoother for the FSI problem. Their numericalia$ are reported in

[@] in detail with highlighting the general drawbacks atVantages with respect to
isotropic meshes, aspect ratios, relaxation parametenatetials under consideration.

Survey on Vanka-type Smoothers Although there is not much literature found on
the theoretical aspects of Vanka-type smoothing but enbigghture can be found pre-
senting numerical studies in the context of the discretidader-Stokes equations in
CFD [&i,@?]. In all these numerical test cases, the #mods extensively tested
on the benchmark configuration 'flow around a cylind]@] for the steady and
unsteady state. Ouazzi and TureK [99] transfer the Vanlkatmledge-oriented storage-
and stabilization techniques for the Navier-Stokes equatiFor further references, see
the overview paper of Wesseling and Ooster@[l%] and eoatige solver studies
including Vanka smoothers im22]. Hron and Turek [75] eoypVanka smoothers to
solve coupled systems arising from @QgP; discretization of fluid structure interaction
problems which is been employed in this thesis.
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The fool collects facts; wise man
selects them.

John Wesley Powell

Numerical Applications

It is well known that every mathematical modeling is donetfoe real life physical
phenomena and later numerical simulation are based on it.ishot different, we
applied the proposed mathematical model to wide range ofifeapplication from
engineering to biomechanics. In this chapter validationhef proposed method for
well known numerical benchmark will be made. This chaptelt e divided into
three sections based on three different applications, Iyartee benchmarking and
validation of the code, experimental benchmark calcutatiand the hemodynamics
aneurysm application.

5.1 FSIBenchmarking

This benchmark settings are described in a way for the rigooevaluation of different
methods to test and compare numerical methods and codesitbsffucture interac-
tion problems. Itis based on the older successful BIB® around cylindebenchmark

developed in7] for incompressible laminar fluid flow. T¢enfigurations consist
of laminar incompressible channel flow around an elastieahbijvhich results in self-
induced oscillations of the structure while the deformatid the structure should be
significant. The fluid is assumed to be incompressible whidestructure is allowed
to be compressible or incompressible. The mathematicakfimagis done in Chapter
2. Moreover, characteristic flow quantities and correspumnglots are provided for a
guantitative comparison.

The overall setup of the interaction problem is such thatsthle& object with elastic
part is submerged in a channel flow. Then, self induced asiaitis in the fluid and the
deformable part of the structure are obtained so that cterstic physical quantities
and plots for the time-dependent results are provided @,1], for more
detail).

The results and experience gained from this benchmarkgettil provide invaluable
experience and data that will go into the development of gelacale, sophisticated,
accurate and reliable simulation model.

5.1.1 Definitions

Although, rigorous mathematical formulation of this bemzirk scenario is described
in Chapter 2, however, in the subsequent sections we wilheddiiefly the configu-
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ration in which the flow of arincompressible Newtonian fluidinteracting with an
elastic solidis considered.

Fluid Properties

The fluid is considered to kdewtonian, incompressibleand its state is described by
the velocity and pressure fiel#$, p*. The balance equations are
fovf

p' = +pf(Ovivi =divo’

at !

n Q.
divv' =0
The material constitutive equation is
o' = —pfl+pfvv +ovi.

The constant density of the fluid js' = 1 and the viscosity is denoted by The
Reynolds number is defined by Re2Y, with the mean velocit} = 3v(0,4.t), r
radius of the cylinder anHl height of the channel (see Fig. b.1).

Structure Properties

The structure is assumed to &lastic, and eitheincompressibleor compressible Its
odu

configuration is described by the displacemahtwith velocity fieldvs = Tts, and in
the incompressible case additionally by the Lagrange pligti p® introduced due to
the incompressibility of the material. The balance equestiare
S
psdd—\i + pS(Ove)V® = div(0®) in QF.
The Cauchy stress tenso? is specified by the constitutive laws which are derived and

explained in Chapter 2 in sectibn 2.5.2.

Interaction Condition

The boundary conditions on the fluid solid interface are m&glto be
o'n=o°n

f

onr?,
__\/S
vi=v

wheren is a unit normal vector to the interfacé.

Independent Material Parameters

To introduce the minimal set of independent parametersrithésg the materials we
divide the momentum equations by the constahtand introduce the following pa-
rameters
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which together with the Poisson ratie and the kinematic viscosity of the fluid
characterize the materials.

Domain Definition

The domain is based on the 2D version of the well-kndlow around cylindeDFG
benchmarki[127] and showed here in Figuré 5.1. By omittiegaiastic bar behind the
cylinder one can exactly recover the setup of fllegv around cylinderconfiguration
which allows for validation of the flow part by comparing tresults with the older
flow benchmark. The geometry parameters are given as follalivgalues in meters):

(0,0)

Figure 5.1: Computational domain and detail of the strucpart

e The domain dimensions are: lendth= 2.5, heightH = 0.41.

e The circle center is positioned @t= (0.2,0.2) (measured from the left bottom
corner of the channel) and the radius is 0.05.

e The elastic structure bar has lengjth 0.35 and heighh = 0.02, the right bottom
corner is positioned g0.6,0.19), and the left end is fully attached to the fixed
cylinder.

e The control point isA(t), attached to the structure and moving in time with
A(0) = (0.6,0.2).

The setting is intentionally non-symmetric (3@127]) tevent the dependence of the
onset of any possible oscillation on the precision of the motation.

Boundary Conditions
The following boundary conditions are prescribed:

e Parabolic velocity profile is prescribed in the left channébw

—y(H - — 40
vi(0,y) = 1.50 y((H )2y> — 180 7=y(0.41-y),
2
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geometry parameters value
channel length L 25
channel width H 0.41
cylinder center position | C | (0.2,0.2)
cylinder radius r 0.05
elastic structure length I 0.35
elastic structure thickness h 0.02
reference point A | (0.6,0.2)

Table 5.1: Overview of the geometry parameters.

such that the mean inflow velocity i and the maximum of the inflow velocity
profile is 15U.

e The outflow condition can be chosen by the user. For exastpss freeor do
nothingconditions. The outflow condition effectively prescribesne reference
value for the pressure variabe While this value could be arbitrarily set in the
incompressible case, in the case of compressible strutigreill have influence
on the stress and consequently the deformation of the dalithis description,
the reference pressure at the outflow is set to hea® mean value

e Theno-slipcondition is prescribed for the fluid on the other boundampa.e.
top and bottom wall, circle and fluid-structure interfdge

Initial Conditions

e Zero velocity in the fluid and no deformation of the structure

e Other suggested starting procedure is to compute the sseautjon for the same
problem withv = 102 and structure being solid (i.au® = 0) and use such a
solution as the initial solution. So the starting procedorghe non-steady tests
is to use a smooth increase of the velocity profile in time as

f 1-cogJt) .

f v'(0,y) ift<2.0

vi(t,0,y) = 2 (5.2)
(t,0) {vf (0,y) otherwise

wherev'(0,y) is the velocity profile given |i'

5.1.2 Material parameters

An overview of certain material properties for some reléids and elastic materials
is shown in the TablgB.2. The choice of the parameters fdoehehmark is guided by
several requirements. First, we would like the flow to be mldminar regime, which
implies "small” Reynolds numbers. On the other hand, the fdvould be capable
of deforming the elastic structure. A typical fluid candelébr such experiments is

lycerine.
Pn order not to introduce additional numerical complicaaonnected with high as-

pect ratios in the geometry, the deformable structure hasrtain thickness which
requires that the stiffness of the material should be lowughato allow significant
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solid material | p*[X§] | v® | E[10°X9] [ ps[10° 9]
polybutadiene 910 | 0.50 1.6 0.53
polyurethane 1200 | 0.50 25 8.3
polypropylene 1100 | 0.42 900 317
PVC 1400 | 0.42 1500 528
steel 7800 | 0.29 210000 81400
cork 180 | 0.25 32 12.8
fluid material | p' [X9] | v’ [106™] | uf[103K9]
air 1.23 0.015 0.018
aceton 790 0.405 0.32
ethyl alcohol 790 1.4 1.1
oil, vegetable 920 76.1 70
water 1000 1.14 1.14
blood 1035 3-4 3-4
glycerine 1260 1127 1420
honey 1420 7042 10000
mercury 13594 0.0114 1.55

Table 5.2: Overview of some solid and fluid material paramsetdensitiesof, pS,
Poisson ratio’S, Young modulus€E, shear modulug®, dynamic viscosityu" and kine-
matic viscosityv 1)

deformations. Certain rubber-like materials fit into sucke#ting, namely polybu-
tadiene (for a future incompressible configuration) and/papylene. In Tabl€ 513
the material parameters are presented for two combinatibgl/cerine and selected
rubber-like material.

parameter polybuta_dlene polypropylene
& glycerine & glycerine
p°[10°49] 0.91 1.1
Vs 0.5 0.42
Ko [10° 9] 0.53 317
p [10°59] 1.26 1.26
v [10-31] 113 1.13

Table 5.3: Proposed material combination

Quantities for Comparison

Comparisons will be done fdully developed flowand particularly foone full period
of the oscillationwith respect to the position of the poiAtt). The position of point
A(t) is time dependent. The quantities of interest are:

1. The displacements;(t) andua(t) in x- and y-direction of the poinA(t) at the
end of the beam structure (see Figuré 5.1) for one full period

2. Forces exerted by the fluid on tholesubmerged body, i.e. lift and drag forces
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acting on the cylinder and the beam structure together

(Fo.FL) = /S onds

(FD,FL)T:/SafndS:/SiafndSJr/SzafndS

whereS= S US, (see Fig[5.R) denotes the part of the circle being in contact
with the fluid (i.e. S;) plus part of the boundary of the beam structure being
in contact with the fluid (i.e.S) andn is the outer unit normal vector to the
integration path with respect to the fluid domain.

Figure 5.2: Integration patB= S U S, for the force calculation.

Remark: The force can be calculated in several different ways, i.e.

(FD,FL):/GndS:/ afnds+/ o'nds
s S S

:/ afndS+/ o°ndS
J§ S

:/ afndS+/ }(05+0f)nd8
Js S 2

:/ ondS
S

The time dependent values are represented by the meanamlpktude and frequency.
The mean value and amplitude are computed from the lastgefithe oscillations by

taking the maximum and minimum values, then the mean valtaken as average of
the min/max values, and the amplitude is the difference@htlx/min from the mean:

1 :
mean:E(max+ min)

amplitude:%(max— min)
The frequency of the oscillations can be computed eithen fiee period timel' as

frequency= 1
T

or by using fourier analysis on the periodic data and takimgglbwest significant fre-
guency present in the spectrum. Additionally, a plot of thargities over the period
are presented.

All quantities are time dependent and are comparedrefull period. For the valida-
tion of the employed fluid and solid solvers, we performed potations for 3 different
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parameter FSI1 | FSI2 | FSI3

K parameter FSI1 FSI2 FSI3
pS[10°:9] 1| 10 1 52 : - :
Ad 0.4 0.4 0.4 S_ ot 0z o4 o

S[10°X9, 05| 05| 20| |V : . .
Zf [[103n'232 ]] 1 1 1 Ae = ﬁ 35x10% | 1.4x10° | 1.4x10°
v [10’?’312] 1 1 1 Re= l\JTd 20 100 200
— S
U [T 0.2 1 2 U 0.2 1 5

Table 5.4: Parameter settings for the FSI benchmarks.

levels of spatial discretizatiofix (see Fig. and Tab[e3.3) and 3 time step sixesThe
example calculations presented in figures 5[4 1 5.5 are cmdpuith the second or-
der time discretization by the Crank-Nicholson scheme aitk space discretization
by the finite element method wit@z/Qz/Pfis approximation (seéEB]). The com-
putational mesh is obtained by 2 regular refinements of tlagngle mesh in Figure
which is used for the computations. All simulations hbeen performed with a
fully implicit monolithic ALE-FEM method with a fully cougd multigrid solver as
described in|E5].

%‘
%ﬁﬁ

level #el #dof
0 62 1338
1 248 5032
2 992 19488
3 3968 76672
4 15872 304128
5 63488 | 1211392
6 253952| 4835328
7 1015808| 19320832

Figure 5.3: Coarse mesh with number of degrees of freedomnefiored levels.

5.1.3 Numerical Results

The results of the benchmark computations are summariz&didled5.b and figures
and tableE5]14=55 (ignoring units). Heug(A) andu,(A) denote the displacements in
x- andy-direction of the poinfA and the drag and lift forces iy andF_ respectively.
For the unsteady case also the frequendieand f, obtained for the displacements
ui(A) anduy(A), respectively, are given. The column "Unknowns” refersthte total
number (in space), i.e., the sum of unknowns for all velocitynponents, pressure,
and displacement components.
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The following FSI tests are performed for three differeffiow speeds. FSI1 is result-
ing in a steady state solution, while FSI2 and FSI3 resultdrigalic solutions. The
parameter values for the FSI1, FSI2 and FSI3 are given in didel5.4. Here, the

level nel ndof up(A)[x1073] ux(A)[x1073] drag lift

2 992 19488 2287080 (B193038 147359 07617550
3 3968 76672 2277423 (B204231 149177 07630484
4 15872 304128 02273175 (B207084 149484 07635608
5 63488 1211392 02271553 (B208126 149486 07636992
6 253952 4835328 .02270838 (B208548 149451 07637359
7 1015808 19320832  .02270493 (B208773 149426 07637460

ref. 0.0227 08209 14294 Q7637

Table 5.5: Results fdFSI1

computed values are summarized in Tablé 5.5 for the steaty/teist FSI1.

In Figure[5.4 and5]5, resulting plots of x-y displacementhaf trailing edge point
A of the elastic bar and plots of the forces (lift, drag) agton the cylinder attached
with an elastic bar are drawn and computed values for thiféereit mesh refinement
levels and two different time steps for the non-steady €St& and FSI3 are presented
respectively, which show the (almost) grid independenttsmh behavior (for more
details se 3)D.

Comparative benchmark results for different solution radthfor fluid-structure in-
teraction problems are reported 25] which have beerldped as collaborative
project under the DFG Research Unit 493.

As said before, the benchmark configurations have beenutigrefiosen and validated
via extensive numerical tests in which various CFD codesrfain result, character-
istic flow quantities provided which allow a quantitativdidation and comparison of
different numerical methods and software tools ( [1@5¢étails).

As a first result for the FSI1 benchmark, which leads to staitip displacement of the
attached elastic beam, it is seen that all applied methodsades can approximate
the same results, at least with decreasing mesh width [125].

Evidently for FSI3, the evaluation of the results is a littfiemore difficult: First of all,
all schemes show the tendency to converge towards the (mdess) same solution
values, at least for increasing mesh level. Although théiegSI techniques are very
different w.r.t. discretization, solver and coupling maoisms, it is found that the FSI3
benchmark setting proves to be a very valuable tool for nigakFSI benchmark-

ing, leading to grid independent results for the prescripedmetrical and parameter
settings ].

Moreover, also clear differences between the different@gghes with regard to accu-
racy are visible. Particularly for the drag and lift valueglalso for the displacement
values 1[1_25]. A more detailed evaluation and also more dgsicomparisons w.r.t. the
ratio ‘accuracy vs. efficiency’ are therefore planned fa thture. The contribution
based on this benchmark setting are madel [@@ 111].
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0 0.1
0.08
x -0.005 > 0.06
é -0.01 é 88;1 i
©  -0.015 | o '0 I
o ©
g 002 g 002
© T -0.04 ¢
-0.025 -0.06 |
-0.03 : : : : -0.08 : : : :
34 342 344 346 348 35 34 342 344 346 348 35
time time
FSI2: x & y displacement of the poinA
250 300
200 280 |
150 | 260
100 ¢ 240
I 2 20|
T 50l oS 200 t
100 | 180 1
150 | 160
-200 ¢ 140
-250 : : : : 120 : : : :
34 342 344 346 348 35 34 342 344 346 348 35
time time
FSI2: lift and drag force on the cylinder+elastic bar
lev. Unknowns up(A)[x1073]  ux(A)[x10°7] o F f1 f,
2 19488  —14.02+1203 1254793 21010+7262 025+2279 3.85 1.93
3 76672  —145441250 1254807 21283+7589 092+2343 3.86 1.93
4 304128 —-14.88+1275 124+817 21506+77.76 082+2371 3.86 1.93
2 19488  —-14.01+1204 1254793  21009+7282 052+2286 3.86 1.93
3 76672  —14544-1248 1254807 21306+7576 085+2344 3.86 1.93
4 304128 —-14.87+1273  124+817 21518+77.78 087+2380 3.86 1.93
2 19488  —-14.01+1204 1284792 2101447286 049+2287 3.86 1.93
3 76672  —1448+1245  124+807  21305+7574 084+2348 3.86 1.93
4 304128 —-14.85+1270 130+816 21506+77.65 061+237.8 3.86 1.93
ref. —14.85+1270 130+817 21506+77.65 061+2378 3.86 1.93

Figure 5.4: Results fdFSI2 with time stepAt = 0.002 At = 0.001 At = 0.0005.
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0 0.04
-0.001 | 0.03 |
= > 0.02}
é '0.002 é 0-01 L
§ -0.003 ¢ § 0r
2 -0.004 | g OO
o 5 -0.02 ;
'0005 [ _003 A
-0.006 : : : : -0.04 : ‘ ‘ ‘
19.5 19.6 19.7 19.8 199 20 195 196 19.7 198 199 20
time time
FSI3: x &y displacement of the poirnk
209
150
100
- 50 o
= o
= ol 5
-50
-100
-150 : : : : 430 : : : :
195 196 19.7 19.8 199 20 195 196 19.7 198 199 20
time time
FSI3: lift and drag force on the cylinder+elastic bar
lev. Unknowns ui(A)[x1073] wp(A)[x1077 Fo =] f1 f,
2 19488 —3.02+283 141+3547 4582+2832 241+14558 10.75 5.37
3 76672 —2.78+262  144+3436 4591+2663 241+15126 10.93 5.46
4 304128 —2.86+2.70 145+34.93 4602+27.65 247+15487 10.95 5.47
2 19488 —3.02+285 142+3563 4587+2878 223+14602 10.75 5.37
3 76672 —2.78+262 144+3435 4591+2662 239+15068 10.92 5.46
4 304128 —2.86+270 145+3490 4602+2747 237+15375 10.92 5.46
2 19488 —3.02+285 132+3573 4587+2880 223+14600 10.74 5.36
3 76672 —277+261 143+3443 4591+2650 236+14991 10.93 5.46
4 304128 —2.88+272 147+3499 4605+27.74 250+15391 10.93 5.46
ref. —2.88+272 147+3499 4605+27.74 250+15391 10.93 5.46

Figure 5.5: Results fdFSI3 with time stepAt = 0.001, At = 0.0005 At = 0.00025.
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5.2 Experimental Benchmark

Experimental reference test casel [57] were proposed artlicted at the Institute of
Fluid Mechanics at University of Erlangenikhberg [Eb]. The definition of the exper-
imental benchmark is introduced in the subsequent sediitiogred by the numerical

results.

5.2.1 Introduction

The definition of the proposed test case.if @E’V 58] toak &mcount four principal
aspects: (i) reproducibility of the resulting motion, (ijo-dimensionality of the struc-
ture deflection, (iii) moderate structure motion frequeany (iv) significant excursion
of the structure.

The main objective of the following numerical investigatis to analyze and to vali-
date our monolithic approach for a configuration with a paiostraint ("rigid solid
with rotational degree of freedom”) for a special experitakset up. In the future,
these numerical and experimental studies shall lead toableldata basis for the vali-
dation and comparison purposes of different numerical otsttand code implementa-
tions for fluid-structure interaction simulations. Theseerical studies are focused on
the two-dimensional periodical swiveling motion of a simfflexible structure driven
by a prescribed inflow velocity (seE[SG]). The structure&fisear mechanical behav-
ior and the fluid is considered incompressible and in thedamiegime. The cylinder
is fixed only at the center and can rotate freely. To allow Fas kind of additional
rotational movement in our method, the cylinder has to brided in the mesh in our
recent approach. By prescribing zero displacement for dlae tocated in the center of
the cylinder we eliminate the translational degree of foge@f the whole structure but
preserve the rotational freedom of the cylinder. Henceptiggtion of all other nodes
located inside the cylinder are taken into account as patietolution. We divided
the numerical tests into two parts corresponding to thetigss of the elastic beam i.e
for Immthick beam and for @4mmthick beam attached to an aluminum cylinder. At
the trailing edge of the elastic beam a rectangular stairdesel mass is located. Both
the rear mass and the cylinder are considered rigid. All thetire is free to rotate
around an axis located in the center point of the cylinder.

Structure Properties

The structure consists of a thin elastic beam attached twytheler, which is identified
by the center of the cylinder with one grid point. This poiahstraint effectively fixes
the position of the cylinder axis, but still allows the frestation around this point. At
the trailing end of the beam a rear mass is attached. Suctb&eprads encountered in
many real life applications of great importance. Typicamyples of this type of prob-
lem are the areas of biomedical fluids which include jointilcdtion and deformable
cartilage and blood flow interaction with implants. The dethdimensions of the
structure are presented in Fig._]5.6. The densities of ttierdift materials used in the
construction of the model are given in Table 52.1. The shemtulus of stainless steel
is 7.58 x 10’kg/mm¢ and Poisson ratio of the beaw® is taken as 0.3. The Young
modulus is measured to be<2L0Pkg/mn¥.
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60

D=22

Figure 5.6: Structure (dimensions in millimeters)

variable material value

Peylinder (aluminum) 2828x 10 %kg/mn?
Poeam (stainless steel) .855x 10 %kg/mn?
Prearmass (stainless steel) .B00x 10 %kg/mn?

Table 5.6: Density values of the structure components

Fluid Properties

As fluid for the tests, an incompressible fluid Polyethylelyed syrup is chosen be-
cause of its high viscosity and a density close to water. $tdn&inematic viscosity
164mnt /s and the density of the fluid isQ5 x 10-%kg/mn?.

Geometry of the Problem

The geometry of the physical domain coincides with the sludiee facility test func-
tion. The co-ordinate system used is centered in the rotatxs of the flexible struc-
ture front body. The x-axis is aligned with the incoming flowhen, the geometric
details are as follows:

e The overall dimensions of the physical domain are lehgth338nmand width
W = 240mm

e The center of the cylindrical front body is C which is locat&simm downstream
of the beginning of the physical domain, and the radiokthe cylinder is 11mm.

e The dimensions of the flow field measuring domain (hatcheg) lame given by
length L’ = 272nm and widthW’ = 170mm The measuring domain begins
19mmafter the beginning of the physical domain as shown in Fidbiré. The
Reynolds number is defined IRe= 2 with mean velocityV = 2v(0,W/2,t)
andW height of the channel (see FIﬁE.?).

e The gravity force 981@nys’ is aligned with the x-axis.
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(-55,120) A (284.120)
y
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Figure 5.7: Physical domain (continuous line) and flow fieléasuring domain
(hatched line)

Boundary and Initial Conditions

The velocity profile prescribed at the left channel inflowédided as approximation of
the experimental inflow data

v (0.y) = U(1- (y/120®)(1+ (y/120)%),

such that the maximum of the inflow velocity profilele Figure [5.8 shows the

¥ [mm)
y [mm)

) 025 [ 075

125 15 175 2 ) 025 05 075 125 15 175 2

1 1
velocity [mis] velocity [mis]

Figure 5.8: Inlet velocity profiles for the first (left) andcemd (right) laminar reference
test case.

inlet velocity profiles for laminar case 1 and case 2. The owtfiondition effectively
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prescribes some reference value for the pressure vanabéhile this value could be
arbitrarily set in the incompressible case, in the case afmapressible structure this
will have influence onto the stress and consequently therahefiion of the solid. The
no-slip condition is prescribed for the fluid on the other boundamtga.e. top and
bottom wall, circle and fluid-structure interfaE@. Suggested starting procedure for
the non-steady tests is to use a smooth increase of the tygbwofile in time as

1—coqmt/2) .

f

oy)——= if t<1

Vioy =TT A
vi(0,y) otherwise

wherev' (0,y) is the velocity profile given i. Since the cylinder is allowed to
freely rotate around its axis, we need to incorporate this @ur setup. As described
before, by identifying the center of the cylinder with on@groint of our mesh we can
prescribe a Dirichlet type boundary condition for the vélpand the displacement of
the structure at this point. This point constraint effeglfjvfixes the position of the
cylinder axis, but still allows the free rotation aroundstpoint.

We perform numerical comparisons for different time stagpschemes, including
variants of the Fractional-Step-scheme (FS), BackwardrBIE) and Crank- Nichol-
son scheme (CN) for both solid and fluid parts which have besivet in Chapter
3.

5.2.2 Numerical Investigations

In this section we will present numerical results for tmamthick beam and for the
actual thickness.04mm(see ])of the beam in similar order.

Results foriImmThick Beam In the first numerical test we set the thickness of the
beam Inm(see Fig.[5J6) and also we reduce the rigidity of the beam gtear mod-
ulus) from 769 x 10’kg/mm¢ to 7.69 x 10*kg/mm¢, all other parameters are from
table[5.2Z.1l. We applied the presented time stepping schemeawly (BE, CN, FS,
GL) prescribed in Chapter 3 to analyze the behavior for dbffe€At. For At = 0.0005
almost the identical amplitude of oscillatiofrs 13.84) of rear mass is observed (see
figure[5.11) for the higher order schemes (CN, FS, GL) andHerlst order Back-
ward Euler (BE) the amplitude of oscillatiofs 12.42) of rear mass shows 10 percent
less accuracy compared to CN, FS and GL. &b 0.00005 Backward Euler (BE)
shows better agreement of the amplitude of oscillatigad3.71) of the rear mass to
CN, FS, GL. For larger time step, GL is more damped than CN &dWe use two
different meshes (see Fig_b5.9 add 5.10) and also we inctkasmesh refinement
level from level 1 to level 2. Corresponding plots for twofdient meshes and different
mesh refinement levels are given in figlre .12 and figurd 5Hi8hashows that our
solution is almost independent of mesh type and mesh refingaels. From exper-
imental results, for velocity 1130nys the structure shows hysteric behavior, but in
our simulations no hysteric behavior could be observed sarid resulting frequency
of oscillations is~~ 10Hz for applying all the four time stepping schemes mentioned
above. The displacement path of the rear mass is shown irfdui# anf5.15.

The following observations are made and corresponding rigatieesults were ob-
tained:
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1. The experimental thickness of the beam is taken.@éntmand we have taken
the thickness of the beam as 1mm for simplicity.

2. When we increase the velocity, the frequency of oscilfetimcreases linearly
with the velocity.

3. The frequency of oscillations for the beam with thickn@€gl mm with velocity
1070mnys is 6.38Hz, while with the thickness 1mm and velocity 1130 mm/s,
the frequency of oscillations of the rear mass is approd 2.0

Figure 5.9: Coarse mesh 1 with 576 elements, 622 nodes aid to3.

Figure 5.10: Coarse mesh 2 with 529 elements, 574 nodes @Y Hof.

vertical displacement

. . . . .
7 7.05 7.1 7.15 72 7.25 73
time[s]

Figure 5.11: ForAt = 0.0005, the amplitude of oscillations of rear mass is almost
identical for the different time stepping schemes CN, FS, GL
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vertical displacement

L L L L L
27 275 28 285 29 2.95 3
time[s]

Figure 5.12: For the two different meshes, the amplitudesailiations is almost the
same for the Fractional-Stefpscheme.

15 T

T
levell
level2 -------

vertical displacement
o

L L L L L
3 3.05 31 3.15 32 3.25 33
time[s]

Figure 5.13: For refinement level 1 and 2 the amplitude ofllasicin is almost identi-
cal.

Figure 5.14: Snapshots of the vertical displacement ofé¢hemass with frequency of
oscillations~ 10Hz for Immthick beam.

Figure 5.15: Zoomed snapshots of the deformedrithick beam.
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For velocity 600mnys and 800mnyswith 0.04mmThick Beam In this test we keep
the thickness of the beam@Immas described in the experimental set@ [58]. The
minimum velocity needed to excite the movement of the stimecslightly varied from
test to test. In our case for velocity 60@y's (Re~ 80) we are able to excite the struc-
ture. ForAt = 0.0025, path of the rear mass is shown in figure 5.16 for the Baakw
Euler (BE) and Fractional-stefp-schemes and the difference in the amplitude of os-
cillations of rear mass is plotted in figure 5.16. Frequerfcthe structure movement
increases linearly with the increase of the velocity of thédfl We used the velocity
600mnys (Re~ 80) at beginning, then switching to 8®d/s (Re~ 107) for simplic-

ity, see figure[ 5.117 anfd_5.118.

Vertical displacement

. . . .
75 76 77 78 7.9 8
Time step

Figure 5.16: Foit = 0.0025, the amplitude of oscillations of rear mass for theediff
ent time stepping schemes BE, FS for velocity 850's.

Figure 5.17: Snapshots of the vertical displacement of ¢ae mass with maximum
amplitude~ 17.0 and frequency 4.5Hz and velocity 80enny's.

Figure 5.18: Zoomed snapshots of the deformed beam foritaeR@OMNY's.

95




CHAPTER 5. NUMERICAL APPLICATIONS

5.2.3 Comparison of Experimental and Numerical Results

Experimental Results Experimental studies on reference test cases were coiwducte
in laminar flows(Re< 200) at the Institute of Fluid Mechanics at University of Erlange
Niirnberg[56]. The structure was defined to be constituted®@4mmthick stainless
steel sheet attached to am@&diameter aluminum cylindrical front body. At the trail-
ing edge of the beam a finx 4mmrectangular stainless steel mass was located. All
the structure was free to rotate around an axis located iceheer point of the front
cylinder. Both the front cylinder and the rear mass were iclemed rigid. The structure
model was tested in a viscous liquid flow at different velesitup to 200thnys. The
minimum velocity needed for the movement of the structuightlly varied from test
to test. In most of the cases it was already possible to aetdesonsistent swiveling
motion for velocities slightly smaller than 10@@rys. The frequency of the structure
movement increased linearly with the velocity of the apphiag fluid. For velocity
ranging from 114fnys to 1300nny's, the frequency of oscillations showed a pro-
nounced hysteresis depending on increasing versus deaydbmsv velocity. There
were two test cases performed using different flow veloaity e corresponding re-
sults were as follows: Using velocity 10m0r/s (Re~ 140) one measures a frequency
of oscillations of the structurer 6.38Hz, and with velocity 145fnys (Re~ 190) a
frequency of oscillations of the structure13.58Hzis observed [58]. At higher veloci-
ties the motion of the structure became faster and more @mpt around 1300ny's
the structure shifted abruptly to a new swiveling mode inchitthe second deflection
mode played an important role [56] 57| 58]. Figure b.19 sitbesomparison between
experimental versus numerical results of the problem.

laminar cases experimentRe= 140 experiment 2Re= 190
measured frequency[Hz] 6.38 13.58
computed frequency[Hz] 6.42 10.90
computed frequency[Hz] [1] 7.47 16.78
computed frequency[Hz] [8] 6.72 14.42

Figure 5.19: Experiment from Erlangen (left) and numericadult for velocity
1450mnys (right). Table shows the computed frequencies of osdiietiersus ex-
periment.
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Laminar case 1: velocityl070mnys  Figure shows the amplitude of oscilla-
tions of rear mass attached to the elastic beam for velo€®0tnys and the fre-
quency of oscillation observed is 6.42Hz. Figure [5.2]l shows the deformed shape
of the beam for velocity 10#ny's and figure[5.22 shows the complete mesh behav-
ior during simulation. The experimentally determined sliig frequency inIES] is

30

Vertical displacement

-30

L L L L L
43 435 44 4.45 45 455 46
Time step

Figure 5.20: Frequency of oscillations of the rear mass é&waity 1070nmny's for the
described numerical set upAs6.42Hz

Figure 5.21: Left: Snapshots of the vertical displacemétit® rear mass for velocity
1070mnys. Right: Zoomed snapshots of the structure.

6.38Hz while in case of numerical simulation it is yielded7@Hz [116], 7.47Hz [52]
and our finding is 812Hz. Here, numerical value is bit high but still in fairly good
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Figure 5.22: Snapshot of the complete mesh.

agreement tdES]. A front cylinder angle for one swivelirgripd is given in Figure
[B.23. A front cylinder body angle from the calculations and [52] are shown
in comparison of experimerﬂES] left of the figufe_5.23 and pumerical result is
plotted to the right of the figure. Here, the absolute valwesmared to the experiment
differed noticeably. Here again, the computed results ar&ller than the measured
ones. The figure’5.24 shows the trailing edge xy-coordirfatesne swiveling period.

30 a

)

front body angle [deg]

REEEREE - - e . . ‘ ‘
0 60 120 180 240 300 360 a1s 416 418 42 1z
time-phase angle [deg] T sl

Figure 5.23: Comparison of front body angle for one periotitatOmny's.

Here, numerical results are lesser than the measure oneofaring the flow field
two monitor points are chosen. The first point (point 1) isaled at the coordinate
(82mm Omm) and the second point (point 2) at the coordin@2mm 40mm). Numer-
ical velocity out put data is available only i@m} and the and v-components are
plotted together with the experiment datal[58] in figure ba2#l in figure 5.26 for
these two monitor points respectively. The numerical aqEkgrment result compara-
ble for the second monitor point and for the point 1 predicimquite hard[[58]. For
these monitor points numerical results are also reporte{@]. Numerical results
and experiment results matched very well at the second orqmitint.
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Figure 5.24: Comparison of the x-y trailing edge coordinater one period at
1070mnys.
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Figure 5.25: Comparison of the flow velocity at point 1 for qegiod at 107Mny's.
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Figure 5.26: Comparison of the flow velocity at point 2 for quegiod at 107fny's.
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Laminar case 2: Velocity1450mnys The experimentally determined swiveling fre-
quency is 138Hz while in case of numerical simulation it {s 10.9Hz and also the
simulations resulted in values of %2 [116] and 1678 [52], see figurE5.27. For the
velocity 1450nmy's the deformation of the elastic beam and rear mass is even more
significant, see figufe 5.28.

25

20 |-

15

10 -

Vertical displacement
o

10 b

a5 b

20 b

L L L L L
43 435 4.4 4.45 45 455 46
Time step

Figure 5.27: Frequency of oscillations of the rear mass éwaity 1450nmny's for the
described numerical set up4510.9Hz

Figure 5.28: Left: Snapshots of the vertical displaceméti@rear mass for velocity
1450mnys. Right: Zoomed snapshots of the structure.
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5.2. EXPERIMENTAL BENCHMARK

In figure[5.29 front body angle is plotted and difference imaiyic response of the
structure is shown for two swiveling modes with ComparismreXperimenﬂES]. A
comparison between figufe 5123 (left) and figure_b.29 (ldfves the response of
structure for the two swiveling modes and experiment findiir@].

Franl budy angla

L
4m +1 412 114 416 418 2 422
Time skp

Figure 5.29: Comparison of front body angle for one periot4&0mnys.

The figurd5.3D displays the path of trailing edge for one slirig period at 145@ny's.
Here, numerically calculated results (right) are gredtantthe measure one (left) [58,
@,]. Numerically calculated velocity out put for the and v-components for the
first monitor point 1 are plotted in Figufe_5]31 in comparisdexperiment as well as
other computed finding&bﬂm] (left). For the first monpoint agreement is good
enough although slightly less value for the v-componentamspare to experiment
finding in [58]. In figurd5.3P the u-, and v-components ardtptbfor the the second
monitor point. The second monitor point is com arabl&b.[ﬁﬁhmerical velocity out
put data for monitor points is available only 16] and oumerical calculations.

¥ [mm]

X [mm] ]

Figure 5.30: Comparison of x-y trailing edge coordinatesfre period at 145@ny's.
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Figure 5.31: Comparison of the flow velocity at point 1 for qegiod at 145Mny's.
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Figure 5.32: Comparison of the flow velocity at point 2 for gagiod at 145Mny's.

5.3 Biomedical Applications: Aneurysm

In the following, we consider the numerical simulation oesjal problems encoun-
tered in the area of cardiovascular hemodynamics, nameWifit@raction with thick-
walled deformable material i.e Aneurysm hemodynamics.ulysms are of two kind,
abdominal aneurysm (AA) and brain aneurysm (BA). The wortktaysm’ comes
from the Latin wordaneurysmawhich means dilatation. Aneurysm is a local dilata-
tion in the wall of a blood vessel, usually an artery, due tetect, disease or injury.
Typically, as the aneurysm enlarges, the arterial wall bexothinner and eventually
leaks or ruptures, causing sub-arachnoid hemorrhage (8#&Hding into brain fluid)
or formation of a blood clot within the brain. In the case ofessel rupture, there is a
hemorrhage, and when an artery ruptures, then the hemeribhagpre rapid and more
intense. In arteries the wall thickness can be up to 30% otlizmmeter and its local
thickening can lead to the creation of an aneurysm.

From a medical point of view, the use of stents provides awiefft treatment for
managing the difficult entity of intra-cranial aneurysmsere} the thickness of the
aneurysm wall is attenuated and the aneurysm hemodynaimcgyes significantly.
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Since the purpose of this device is to control the flux witlie aneurysm in order to
occlude it by a clot or rupture, the resulting flow behavidoiand within the aneurysm
is the main objective, particularly in view of the differestent geometries. Therefore,
we decided for the 2D studies to locate the (2D parts of thejtstonly in direct con-
nection to the aneurysm.

5.3.1 Aneurysm Configuration

We employ the proposed numerical methods for aneurysm hgmaatics, which in-
clude the interaction of the flow with the deformable materihis numerical sim-
ulation aims to relate the aneurysm state (unrupture owraptwith wall pressure,
wall deformation and effective wall stress, which would\pde information for the
diagnosis and treatment of unrupture and rupture of an gseuby elucidating the
risk of bleeding or re-bleeding, respectively. Severakagsh groups focus on CFD
simulations with realistic 3D geometries, assuming rigalls(seel[46,12, 129]). On
the contrary, comparing our studies with the CFD literatuve concentrate on the
complex interaction between elastic deformations and flevtupbations induced by
the stent, to analyze qualitatively the influence of geoitatdetails onto the elastic
material behavior, particularly in view of more complex ddbmodels and constitutive
equations for the structure.

Therefore, the aims of our studies can be described as fallow

1. What is the influence of the elasticity of the walls onto tlegvfbehavior inside
of the aneurysm, particularly w.r.t. the resulting shapghefaneurysm?

2. What is the influence of the geometrical details of the (2@ts, that means
shape, size, position, onto the flow behavior into and insfdee aneurysm?

3. Do both aspects, small-scale geometrical details asas@lastic fluid-structure
interaction, have to be considered simultaneously or isodtigem negligible in
first order approximation?

4. Are modern numerical methods and corresponding CFD atinuk tools able
to simulate qualitatively the multi-physics behavior o€slbiomedical configu-
rations?

The geometry of the fluid domain under consideration is ailydased on 2D models
(see Fig[’5.33) which allows us to concentrate on the detajialitative evaluation
of our approach based on the described monolithic ALE foatah. The underlying
construction of the (2D) shape of the aneurysm can be exgaldinthe Tablé5]7 and
for further explanation about the construction of meshes ,0]. The

Table 5.7: Overview of the geometry parameters.

without aneurysma values [mm] with aneurysma value [mm]
innermost circle radius rq 6 anuerysma middle m  (—6.75,6)
next circle radius ro 8 inner fundus radius r4 1.125
last circle radius ra 8.25 outer fundus radius rs 1.25

examined stents are of circular shape, placed on the netle @frteurysm, and we use
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three, resp., five stents (simplified ‘circles’ in 2D as clargs from 3D configurations)
of different size and position. The stents also consist aid gnmersed in the blood
flow, which is located at the inlet of the aneurysm so that toreielastic deformations
of the stents can be included, too, since in real life, thietssea medical device which
consists of a metal wire tube. Stents are typically used &p keteries open and are
located on the vessel wall while this stent is immersed inbfleed flow (Fig.[5.3B).
The purpose of this device is to reduce the flux into and withenaneurysm in order
to occlude it by a clot or rupture. Flow through a deformat#@wvith elastic walls

| (0,8.25)
(0,8)

I2mm
(0,6)

(-8.25,0)(-8,0) (-6,0)

Figure 5.33: Schematic drawing of the measurement section.

of a brain aneurysm is simulated to analyze qualitativetydbscribed methods; here,
the flow is driven by prescribing the flow velocity at the inflegction while the elastic
part of the boundary is either fixed or stress-free. Both erfidbe walls are fixed,
and the flow is driven by a periodical change of the inflow atléfeend. Theo-slip
condition is prescribed for the fluid on the other boundartga.e. top and bottom
wall, stents and fluid-structure interface. The naturaflowt condition at the lower
left part effectively prescribes some reference value liiergressure variablp, here

p = 0. While this value could be arbitrarily set in the incompilelescase, in the case
of a compressible structure this might have influence orgsstress and consequently
the deformation of the solid.

Table 5.8: Parameter values.

structure parameter values fluid parameter values
density pS [10*6nf—r?§] 1.12 density pf [10*6'%] 1.035
poisson ratio VS 0.4 viscosity vf [Me-] 3.38
shear modulus  us [%] 42.85 velocity U [T 20
Young modulus E [W] 120  Reynolds number Re 120

In the following, we show some corresponding results fordbscribed prototypical
aneurysm geometry, by using parameter values from Tab)dis&or the steady state
inflow profile, followed by non-steady tests for the pulsaiiiflow, both with rigid and
elastic walls, respectively. Also, results for non-New#onCarreau model are given at
the end.
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5.3.2 Steady Configurations

The (steady) velocity profile, to flow from the right to thetlpirt of the channel, is
defined as parabolic inflow, namely

vi(0y)=U(y—6)(y-8),

which is not time-dependent. Due to the low Re number, the flehavior leads to a
steady state which only depends on the elasticity and theesbfahe stents. Moreover,
for the following simulations, we only treat the aneurysmllves elastic structure.
Then, the aneurysm undergoes some slight deformationwehit be seen in the Fig.
BE.34. Moreover they result in a different volume of the flowrdon (see Fig_5.35).

Figure 5.34: Deformed mesh for steady configuration witlsbeits, with elastic wall
(left). Mesh for rigid wall (776 elements) (right).

Particularly the influence of the number of stents onto thapete fluid flow through

26.65 ‘ . ‘
no stents, elastic fundus
no stents, rigid walls -------

T T T T
3 stents, elastic fundus --------
5 stents, elastic fundus

26.6 .l

26.55-\'”}‘/]]VV 4

volume

26.4 - —

26.35
1

L L
2 3 4 5 6 7 8
time step

Figure 5.35: Resulting volume of the fluid domain for differeonfigurations.

the channel including the aneurysm can be clearly seen. @wizing these results
for steady inflow, the simulations show that the stent imjglion across the neck of
the aneurysm prevents blood penetration into the aneurysviaeover, the elastic

geometrical deformation of the wall is slightly reduced planting the stents while
the local flow behavior inside of the aneurysm is more sigaifity influenced by the

elastic properties of the outer wall, particularly due @ dfferent width between stents
and walls of the aneurysm as can be seen in the Fidure$[533H 538 5.39.
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Figure 5.36: Left: Rigid walls with no stents, blood flow vectmagnitude., Right:
Scaled to view fluid flow concentration inside aneurysm.

Figure 5.37: Left: Elastic walls with no stents, blood flonct@ magnitude., Right:
Scaled to view fluid flow concentration inside aneurysm.

Figure 5.38: Left: Rigid walls with stents, blood flow vectoagnitude., Right: Scaled
to view fluid flow concentration inside aneurysm.

Figure 5.39: Left: Elastic walls with stents, blood flow wva@cmagnitude., Right:
Scaled to view fluid flow concentration inside aneurysm.
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5.3.3 Pulsatile Configurations

Correspondingly, the pulsatile inflow profile for the noealy tests for which peak
systole and diastole occur fAt = 0.25s andAt = 0.75s respectively, is prescribed as

vi(t,0,y) = v (0,y)(1+0.75sin(27t)).

We show again (see Fig.5]40) the resulting volume of the flomain for 5, 3 and no
stents. In all cases, the oscillating behavior due to thegpive inflow is visible which
also leads to different volume sizes. For the resulting fl@havior, we see global

26.62

26.63

T T T

no stents, elastic fundus

3 stents, elastic fundus --------

5 stents, elastic fundus ---— | 26615 -
tigid walls -~

2662
2661 [ 2661 -

. 26.605 -

Volume
Volume

266 [
26.59

26595 -
26.58

2650 177

2657 |-

26.585
19

. | | | 1
1 15 2 25 3 35 a
Time step

| Cells Vect Mag

16 16
[ 14 [ 14

Figure 5.41: Blood flow flux inside aneurysm is less for 5 stex@tmpare to 3 or no
stents.

differences w.r.t. the channel flow near the aneurysm, dtleetdifferent flow rate into
the aneurysm in case of 5, 3, and no stents. Moreover, signifiocal differences
inside of the aneurysm can be observed, which means, attemo&blood flow inside
aneurysm as the stent implanted across the neck of aneusgenfrigl5.411).

5.3.4 Non-Newtonian Model

We considered the effects of a non-Newtonian fluid model anddynamics. The
Carreau fluid model was selected because it is an accuratel toodescribe the rhe-
ological behavior of blood|B2]. Experimental tests showtthlood exhibits shear
thinning apart of other non-Newtonian phenom@[lZQ].sThuorder to include this
feature the viscosity in the following form is used.

H(ID(V)]) = Hoo + (Ho — Ho) (1+K[D(V) 2)".
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The Carreau blood model predicts decreasing viscositygit &irain, whereiy and

U are low and high shear rate asymptotic values, and parasrtétand n control

the transition region. We have taken the parameter valugs,as 0.00345Ns/n?,

Uo = 0.056N's/m?, K = 10.976n = —0.3216 and other parameters, configurations are
same as was for pulsatile configuration.

The corresponding parametrization was based on absmaaiidoiomedical data (i.e.,
cut planes of 3D specimens from New Zealand white rabbitssdlsas computer tomo-
graphic (see figue 5.42 right) and magnetic resonance igatata of human neuro-
crania). A very complex mesh (5142 left) is constructed Hasethis image (i.e figure
right). The green and red color part in figlire 5.42 (lafe) for elastic walls and
they can have separate stiffness. Blue color is the flow regio

005
i,
I REE I
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NS A Ny
LA o
PP A
% “1‘}?&““"%‘3&“{\\\w
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Figure 5.42: Left: Mesh constructed. Right: Histologic géerof aneurysm.

Figure[5.48 show the effective stress distribution at peakose. The pressure on the

Cells Sxy-cauchy

Figure 5.43: Effective stress distributions.

wall is nearly constant after the flow is fully developed, figere[5.44. The intensity of
flow behavior to the aneurysm is shown in figlire .45 by meaheofector magnitude
of the blood flow. It is shown by two ways, at top of the figure gbate domain is
shown and at bottom flow inside the aneurysm is shown.
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Cells pressure

Cells Vect Mag
58.2
l:SS.ﬂ
— 44
— 414
— 355
28.6
23.7
‘ —17.8
11.8

592

Cells Vect Mag
[ |
— 08

— 08

Figure 5.45: Top: FLow vector magnitude complete domainttdn: Flow vector
magnitude inside aneurysm.
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Have patience. All things are diffi-
cult before they become easy.

Saadi

Fluid-Structure Interaction Optimization

In recent years encouraging progress has been made in therinahsimulation of
fluid-structure interaction (FSI) problems. However, teee&lopment of efficient simulation-
based optimization techniques for the optimal design of$yStems is still in its in-
fancy. This Chapter will concerns to develop an efficienthods for fluid structure in-
teraction optimization, which will combine modern techugg from PDE-constrained
optimization, design optimization of stationary as welhas-stationary strongly cou-

pled FSI problems and multigrid FSI simulation methods iarrfeture based on mono-
lithic ALE approach.

Before stating FSI-Opt benchmark an overview of optimaatihistorical develop-

ment of optimization methods and its applicability to vastlrapplication is glanced
through.At the end of the Chapter the results for FSI1-Opichenark are presented
and the future possible extensions hinted.

6.1 Overview

Optimization is the discipline of mathematics in which td tiee best result under cer-
tain conditions is aimed. Almost every engineering systequires design construction
and later its maintenance. The ultimate goal is either tammire the effort needed or
to maximize the desired benefit. Hence optimization can lieetkas the process of
finding the conditions that give the minimum or maximum vatdie function, where
the function represents the effort needed or the desiregfiben

Historical Developments The major recently developed novel approaches are goal
programming for multi-objective optimization, genetigatithms, simulated anneal-
ing and neural network methods. Engineering applicatidoptmization with differ-

ent modeling approaches and optimization techniques awiigg with time.

The existence of optimization methods go to the days of Newtagrange, and Cauchy.
The work of Newton and Leibnitz to differential calculus reaig@asible the differen-
tial calculus methods for optimization. The calculus ofiaons dealing with the
minimization of functions founded by Bernoulli, Euler, lragge, and Weistrass. The
constrained optimization problems, which involve the &ddiof unknown multipli-
ers, is known by the name of its inventor, Lagrange. The mom@plementation
of the steepest descent method made by Cauchy to solve trainaed optimization
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problems|[[55]. By the invent of the high-speed digital cotepsiit became feasible to
implement the complex optimization operations and furtkeearch on newer methods
advanced. This opened the new areas in optimization methods

They are outlined here with a few milestones.

1. The simplex method for linear programming problems dgsedl by Dantzig in

1947 [37]38].

2. The principle of optimality for dynamic programming pleims is stated by Bell-
man in 1957[[11].

3. Work by Kuhn and Tucker in 1951 on the necessary and sufficenditions
for the optimal solution of programming problems laid theridation for later
research in non-linear programmi@[%].

4. The contributions of Zoutendijk and Rosen to nonlineagpamming during the
early 1960s have been very signific@@ 113 136].

5. Work of Carroll EB] and Fiacco and McCormick facilitatethny difficult prob-
lems to be solved by using the well-known techniques of ustramed opti-

mization EIIS].

6. Geometric programming was developed in the 1960s by Du#Bner, and Pe-

terson 5].

7. Gomory did pioneering work in integer programming, onehef most exciting
and rapidly developing areas of optimization. The reasornHis is that most
real world applications fall under this category of probtejB9, 60].

8. Dantzig and Charnes and Cooper developed stochasticapnagng techniques
[@,,] and solved problems by assuming design parastetbe indepen-
dent and normally distributed.

Engineering Applications of Optimization To indicate the widespread scope of the
subject, some typical applications in different enginegudisciplines are:

e Design of civil engineering structures such as frames,dations, bridges, tow-
ers, chimneys and dams for minimum cost.

e Design of minimum weight structures for earth quake, wind ather types of
random loading.

e Optimal plastic design of frame structures (e.g., to deteenthe ultimate mo-
ment capacity for minimum weight of the frame).

e Design of water resources systems for obtaining maximurefiten
e Design of optimum pipeline networks for process industry.
e Design of aircraft and aerospace structure for minimum fteig

e Design of pumps, turbines and heat transfer equipment fairman efficiency.
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e Optimum design of electrical machinery such as motors, g¢oes and trans-
formers.

e Optimum design of electrical networks, control systemsneical processing
equipments and plants .

In the below section, the configuration of the problem is doented then the em-

ployed Nelder-Mead method to very own benchmark setting¢aened followed by
the computation results.

6.2 FSI Optimization Benchmarking

The main purpose of this benchmark scenario is to describeifgp configurations
which shall help in future to test and to compare differeninetical methods and
code implementations for the fluid-structure interactiBSIj problem which can be
additionally coupled with an additional optimization pedlure. This FSI optimization
benchmark is based on 2D steady FSI problem based on therbarichonfiguration
of Turek and Hron|m3] with additional altered boundary tohflows as shown in
figure[6.5. The idea is to integrate the FSI solver into annoigtition procedure for
FSI problems. Furthermore, these FSI configurations canteadéed towards optimal
control of body forces acting on and deformations of thetelabject in which case
additional outer in flow/out flow regions control the optinnesult.

6.2.1 Optimizer

As optimizer a derivative-free optimization method forsthinconstrained minimiza-
tion problem is chosen, which is the SIMPLEX algorithm deypsd by Nelder and

Mead [86] 95]. The method is wide spread due to the fact thalees no assumptions
about the objective functional except that it is continudasrthermore, it is quite nu-

merically robustlL_JJdEZ]. The basic operations (reflegtepansion, and contraction)
of this method are explained in the following .

Nelder-Mead Method

A simplex method for finding a local minimum of a function ofveeal variables has
been devised by Nelder and Me@[, 86]. For two variablegnalex is a triangle,
and the method is a pattern search that compares functioasvat the three vertices of
atriangle. The worst vertex, wheféx,y) is largest, is rejected and replaced with a new
vertex. A new triangle is formed and the search is continudte process generates
a sequence of triangles (which might have different shages)which the function
values at the vertices get smaller and smaller. The sizeedfridingles is reduced and
the coordinates of the minimum point are found.

The basic strategy is explained in the subsequent subssctio

Initial Triangle BGW  Let f(x,y) be the function that is to be minimized. To start,
three vertices of a triangle are givevk = (X, k), k= 1,2,3. The functionf(x,y) is
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then evaluated at each of the three poiggs= f(x,y«) for k= 1,2,3. The subscripts
are then reordered so that< z, < z3. The notation

B=(x,y1), G=(x¥2), and W=/(xsYa),

are used to remember thRtis the best vertexG is good (next to best), arl is the
worst vertex to be discarded.

Midpoint of the Good Side The building process uses the midpoint of the line seg-
ment joiningB andG, by averaging the coordinates:

_B+G  xit+X yi+Y2

1O _ (b ity

M

Reflection Using the Point R The function values decreases moving along the side
of the triangle fromW to B, and it decreases moving along the side fidfo G.
Hence it is feasible thatt(x,y) takes on smaller values at points that lie away fidm

on the opposite side of the line betweBrandG. A test pointR that is obtained by
"reflecting” the triangle through the sideG is chosen. To determin, we first find

the midpointM of the sideBG. Then draw the line segment frovd to M and call its
lengthd. This last segment is extended a distance d thrdvdgb locate the poinR
(see FiguleBll). The vector formula feiis

R=M+(M—W)=2M—W.

G

Figure 6.1: The triangl&ABGW and midpointV and reflected poirRR

Expansion Using the Point E If the function value aR is smaller than the function
value atW, then we have moved in the correct direction toward the mimmPerhaps
the minimum is just a bit farther than the poiRt So we extend the line segment
throughM andR to the pointE. This forms an expanded triangBGE. The pointE

is found by moving an additional distance d along the linaijgg M andR (see Figure
[62). If the function value & is less than the function value Bf then have to found
a better vertex thaR. The vector formula foE is

E=R+(R-M)=2R-M.
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Figure 6.2: The triangl&\BGW and pointR and extende&

Contraction Using the Point C If the function values aR andW are the same, an-
other point must be tested. Perhaps the function is smallgt, dut cannot replace
W with M because there must have a triangle. Consider the two migielnandC2

of the line segment¥/ M and MR, respectively (see Figufe 6.3). The point with the
smaller function value is calle@, and the new triangle iIBGC. Note. The choice
betweenC1 andC2 might seem inappropriate for the two-dimensional casejthsi
important in higher dimensions.

Figure 6.3: The contraction poi@ or C,.

Shrink toward B If the function value a€ is not less than the value\at, the points
G andW must be shrunk towarB (see Figuré 6]4). The poif@ is replaced withM,
andW is replaced witts, which is the midpoint of the line segment joiniBgvith W.

w G

Figure 6.4: Shrinking the triangle towaBl
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6.2.2 Objectives

The objective of the following benchmarking scenario is xtead the validated FSI
benchmark configurations to optimization problems sucl thaimal drag/lift val-
ues of the elastic object, minimal pressure loss or mininalstationary oscillations
through boundary control of the inflow, change of geometrgmimal control of vol-
ume forces can be reached. The main design aim for the peesénid structure
interaction optimization problem is to minimize the lift time beam with the help of
boundary control of inflow data.

Further extension or design aim of this optimization prabis to measure minimal
pressure loss, minimal non-stationary oscillations offlastic beam through boundary
control of inflow section, change of geometry (elastic clemvalls or length/thickness
of elastic beam), optimal control of volume forces. To inmpént optimization within
monolithic FSI solver, the optimization components arerdgefibelow.

Definition The domain is based on the 2D version of the described FShbea,
see figurd 8)5. The thickness of the beam is increased fr6&t0 Q04 and other
geometry parameters kept as definedE[ 124]. As desthbifore the beam is
not symmetric so that the lift is not zero at the beginning.

An objective functional is the minimization of lift/dragifces on the deformable struc-
tures through boundary flow control. Mathematically thisimfzation problem can be
written as

minimize(lift? + aV&)
subjectto Vi,Va,

The control velocity profile from top and bottom is prescdbe the following

f Vi(x— 0.45)(x—0.60), top
Ve (x,0) =Ve = {Vz(x— 0.45)(x—0.60),  bottom
whereV; the magnitude of the parabolic velocity from/to top andvelocity from/to
below, these can be set directly when SIMPLEX method is n@leyed. The location
of the inlet, outlet is shown in the schematic diagram of tkergetry sketched in
figure[65. The region through are coordinated@#5,0) (0.60,0) and (0.45,0.41)
(0.60,0.41). However\; andV, will be resulting velocities which results in minimum
lift on beam when SIMPLEX Nelder Mead algorithm is in place.

A parabolic velocity profile is prescribed at the left charindow

y(H-y)

< 40
7 = L8U G Teny(041-y),

2

vi(0,y) =150

whereU = 0.2 denotes the mean inflow velocity in x-direction adddenotes the
channel height. Fluid and structural parameter values asedon the FSI1 bench-
mark as given in Chapter 5. The density and dynamic viscasitfuid is pf =
100tkg/m?, v = 1kg/msrespectively. Thus the Reynolds numbeRis= 20 based
on the cylinder diameter. The structure dengity= 100kg/m?, the Young modulus
E = 17800&g/ms and the Poisson ratig® = 0.4 as set in the paper of Turek and

Hron ].
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Figure 6.5: Geometry and computational domain of the cordign.

Finally, numerical results for this problem involving apization for a steady fluid-
structure interaction are given here to illustrate the bdipya of the approach consid-
ered.

6.3 Results

We simulated this FSI1-Opt configuration on same mesh reéva bs used for FSI
benchmark in Chapter 5. The reference value of lift forceaisecof stationary FSI cal-
culation is 76e— 1 (seeMS] for more details). When we introduced orciejg
the flow with velocityV, = 10 from below the lift on the beam obviously increase see
figure[6.6 which shows that it is wrong direction to inject flavwor the case when we
suck the flow with same velocityb = 10 from below we get the negative values of lift
in increasing order see figure b.7. If we inject flow from topl anck from below with
same velocitie¥; =V, = 10 and not consider the simplex method then the resulting
lift force on beam seems to be quite smeared, irregular artitbaredict or conclude
what could be best coordinate which can give minimum lifte flow vector magnitude
behavior is shown in figufe 8.8.

From this it is clear that, =V, > 10 is not good idea to set. Hence it became clear
that for the implementation of simplex method the coordisatf triangle should be
between[0,10]. For numerical simulation we set the coordinates-3), (3,3) and
(—3,3 for two variable Nelder-Mead algorithm. For this case & gimplex method

is in place lift goes to almost zero as shown in figurd 6.9 arairbis almost static.
Optimal points are then th@/;,V,) values which result in minimum lift on the beam
depending on the parameter As a decreases we get the reduction of the lift on the
beam and the optimal poifit.06e+ 0,1.08+ 1) for level 1,(1.04e+ 0,1.05e+ 01) for
level 2 and for level 31.04e+ 0,1.05e+ 01) using the simplex algorithm proposed by
Nelder and MeadI!)S]. Results are shown in figires]d.10] enti{Gal2, for level 1,
level 2 and level 3 in respective order, which show the optweocity valuesv; and

V5, providing the minimum lift on the beam as compared with thélR$&nchmark
reference lift values which is.@e— 1. In Figure[6.1D, it is quite visible that beam is
not displaced i.e. no lift on the beam is observed due to thadary control, and
results are shown for three different mesh refinement leviels force on the beam
with changinga parameter is given in the corresponding tables]$.10] 6.dBdiR.
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Figure 6.8: No SIMPLEX: Flow vector magnitude (Injectiondssuction) level 1.
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Figure 6.9: SIMPLEX: Flow vector magnitude (Injection antton) level 1.
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M e ——— —

a level 1
iter | optimal valueévy,V>) lift
le+0 | 57| (3.74e—1,388—1) | 819041
le—2 | 60| (1.04e+0,1.06e+0) | 2.2684—2
le—4 | 73| (1.06e+0,1.08+1) | 2.3092—-4
le—6| 81| (1.06e+0,1.08+1) | 2.3096—6

Figure 6.10: No displacement is visible of the beam due tinggtboundary flow
control: Level 1

a level2
iter | optimal value$vi,Va) lift
le+0 | 59| (3.66e—1,3.7%—1) | 7.849%—1
le—2 | 59| (1.02e+0,1.04e+0) | 2.175%—2
le—4 | 71| (1.04e+0,1.05e+01) | 2.214%—4
le—6 | 86| (1.04e+0,1.05%+01) | 2.215e—6

Figure 6.11: No displacement is visible of the beam due tinmdtboundary flow
control: Level 2
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a level3

iter | optimal valuegvi,Vs) lift
le+0 | 67| (3.66e—1,3.7%—1) 7.87e—1
le—2 | 77| (1.02e+0,1.06e+ 0) 1.97e-2
le—4 | 100 | (1.04e+0,1.06e+ 0) 2.03e-4
le—6 | 100 | (1.04e+0,1.06e+0) | 1.3372—6

Figure 6.12: No displacement is visible of the beam due tinmdtboundary flow
control: Level 3
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6.4 Summary

In this Chapter we have presented 2D benchmark results foolitisic ALE numerical
approach for fluid-structure interaction optimization fgieam. we employed a deriva-
tive free mathematical optimization technique (see forembetails 2]). To the
authors knowledge, this approach is not investigated ykteirature in the context of
FSI optimization.

The simplex method presented is a robust algorithm for ustcaimed optimization
problems. Although, not all direct search methods relidinlgt solutions. Some algo-
rithms, such as the simplex algorithm of Nelder and Mead etones find minimizers
very efficiently, but they can also fail unpredictably formyaeasons. Thus it is neces-
sary to circumvent this problem for constrained optim@atso that simplex does not
deteriorate. Interested readers are referrefl to [86] famapcehensive survey of the
original Nelder-Mead simplex algorithm and for its advaygis.and disadvantages.

In case one need to optimize more complex shape then mormegmawill require
then it is very hard to get solution through simplex method #ns required to use
more sophisticated with this approach. As a outlook oneccthuhk for more complex
optimization for instance some gradient based metHods [53]

As an extension, corresponding 3D simulations are planseded as the embedding
into outer optimization tools (selett p://jucri.]yu.fi/?qg=node/ 14| for a
first attempt towards optimal control on the basis of thegmésd FSI1 configuration).
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The scientific observer of Nature
is a kind of mystic seeker in the
act of prayer.

M. Igbal

Conclusions and Outlook

The work presented in this thesis is based on the intensdeareh carried out to inves-
tigate the mathematical modeling for the fluid structurerattion problems and the
validation to benchmark scenarios as well as its applitglidr real life problems.

The performance of the proposed methodology has been a&adabyz conducting ex-
tensive and accurate simulation based on experimentagetind compared with the
existing standard benchmark settings. This concludingtenavill give a summary of
the work undertaken and the results achieved towards themcahsolution and opti-
mization of various aspects of FSI problems. It will alsoraiut areas where further
research is required in order to ensure a continual progress

A summarized account of the various topics and respectintFibations discussed and
proposed in this thesis is provided in the subsequent sectielow.

7.1 Summary and Conclusion

In this respect the contents of this thesis cover variousaspertaining to the appro-
priate findings to enhance the performance of a monolithiEAEM fluid-structure
interaction solver.

Numerical techniques for solving the problem of fluid-stuwe interaction with an
elastic material in a laminar incompressible viscous floev@ascribed. An Arbitrary
Lagrangian-Eulerian (ALE) formulation is used in a fullyugded monolithic way, con-
sidering the problem as one continuum. The mathematicarig¢ion and the numer-
ical schemes are designed in such a way that more complicateditutive relations
(and more realistic for biomechanics applications) forfthiel as well as the structural
part can be easily incorporated. We utilize the well-knd@a#; finite element pair
for discretization in space to gain high accuracy and perfas time-stepping the 2nd
order Crank-Nicholson, resp., Fractional-Stscheme for both solid and fluid parts.
The resulting nonlinear discretized algebraic system igesioby a Newton method
which approximates the Jacobian matrices by a dividedréiffees approach, and the
resulting linear systems are solved by iterative solvarsfgpably of Krylov-multigrid
type.

For validation and evaluation of the accuracy of the progasethodology, we present
corresponding results for a new set of FSI benchmarking gordtions (‘channel flow
around cylinder with attached elastic beam’, @[123]):Whiescribe the self-induced
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elastic deformation of a beam attached to a cylinder in lam@tannel flow, allowing
stationary as well as periodically oscillating deformaso

Results have been given for the structure consisting ofradlaistic beam attached to
the cylinder and at the trailing end of the beam a rear madtaisheed in laminar flow.

We simulated two cases corresponding to the thickness dbehen to be dhmand
0.04mm respectively. Additionally, we present numerical stgdim different mesh
types. Numerical results are provided for all time stepgiolgemes which show very
reproducible symmetrical two—dimensional swiveling rant. These numerical tests
show that the solution is independent of the mesh type andh mefmement level.
Preliminary results for the experimental benchmark coméiion are shown to see the
qualitative behavior of the elastic beam for a high velopitgfile fluid.

Then, as an example for fluid-structure interaction (FShiomedical problems, the
influence of endovascular stent implantation onto cerebratirysm hemodynamics is
numerically investigated. The aim is to study the inte@atf the elastic walls of the
aneurysm with the geometrical shape of the implanted staudtare for prototypical
2D configurations. This study can be seen as a basic stepdswe understanding
of the resulting complex flow phenomena so that in future grsen rupture shall be
suppressed by an optimal setting for the implanted stermhgégy.

The used numerical methodology allows the system to be edwpith additional mod-
els of chemical and electric activation of the active reseoof the biological material
as well as non-Newtonian models to describe the shear tigrprioperty of the blood.
Further extension to viscoelastic models and coupling witkture based models for
soft tissues together with chemical and electric processetd allow to perform more
realistic simulations for real life applications. Fututedies need to evaluate the ap-
plicability of this 2D approach to calculations in 3D.

7.2 Outlook

During the course of evaluating and comparing the perfoomai this proposed solver
with the standard benchmark settings, various considgratiame up. In order to en-
hance the overall capabilities and applicability of thiprgach, it is important to ad-
dress few considerations as part of the future developneadtmap. The contributions
presented in this thesis are based on the proposition atgs@naf novel benchmark
settings for FSI.

Itis evident that the computational complexity increasesiendously for full 3D prob-
lems and with more complicated models like visco-elastid¢emials for the fluid or

solid components. The presented numerical method is aecaral robust with re-
spect to the constitutive models. The possible next stagardeng better efficiency
of the solvers include the development of improved multigiblvers, for instance of
global pressure Schur complement type [122], and the @abeatnbination with par-

allel high performance computing techniques in futuretipalarly towards actual 3D
configurations.

As mentioned before, the formulation kept general enougdiltov immediate exten-
sion to more realistic material models. For example in treead material anisotropy
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one can consider
¥ =ci(lc —3) +co(llc — 3) +c3(|Fa] — 1)2,

with a being the preferred material direction. The telffal represents the extension
in the directiona. In the same manner the constitutive relation for the fluid ba
directly extended to the power law models used to describestiear thinning prop-
erty of blood. Further extension to viscoelastic models @mapling with the mixture
based model for soft tissues together with models for chalnaied electric processes
involved in biomechanical problems would allow to perforealistic simulations for
real applications.

This thesis presented the proof-of-concept of the propsségr towards enhancing
3D real life application of the code and collecting the feksidata respectively. For
this purpose the performance was analyzed based on cesgimations.

However, as part of the future research the recommendatidoe tincorporated for
further tests are analyzed in the following section.

7.3 Vision for the Future

Throughout the discussion presented in this thesis, foaadhen to provide and test
the solver for benchmark settings and extend it to real lifigliaations. The topic of
biomechanics holds great relevance as transition towhedsetilization of future need
of numerical simulation in this era.

The future scenario and aim for the cerebral aneurysm gstigto extend it to an
3D cerebral aneurysm hemodynamics application comprisimgal life data received
by the medical partners. However, to handle such situaiiolssimperative to have
effective numerical tool, mechanisms in place.

Furthermore, the benchmarking scenario has to extend fidated FSI benchmark
configurations to optimization problems such that mininralgdift values of the elas-
tic object, minimal pressure loss or minimal non-statignascillations of the elastic
beam through boundary control of the inflow, change of gepm@lastic channel

walls or length/thickness of elastic beam) or optimal colndf volume forces can be
reached. The simulation is based on the described FSI1 coafign. At present the
Simplex method according to Nelder and Mead [86] is chosdrichwis a derivative

free optimization method for unconstrained minimizationlgems and quite numer-
ically robust but it requires big CPU time for computatioreevfor less degrees of
freedoms. Aim is to apply the gradient base method in theigidgperator presence
and for non-stationary problem settings to minimize thtedif the beam via boundary
control.

We believe that such basic studies may help towards theajawelnt of future ‘Virtual
Flow Laboratories’ which individually assist to developrgenal medical tools in an
individual style.
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