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OPTIMAL DESIGNS FOR QUANTILE REGRESSION MODELS

HOLGER DETTE / MATTHIAS TRAMPISCH

Abstract. Despite of their importance optimal designs for quantile regression models have not
been developed so far. In this paper we investigate the D-optimal design problem for the loca-
tion scale nonlinear quantile regression model. We provide a necessary condition to check for the
optimality of a given design and use it to determine bounds for the number of support points of lo-
cally D-optimal designs. The results are illustrated determining locally, Bayesian and standardized
maximin D-optimal designs for quantile regression analysis in the Michaelis-Menten and EMAX
model, where the location and the scale function are related by a known link function.

1. Introduction

Quantile regression was introduced by Koenker and Bassett (1978) as an alternative to least squares
estimation and yields a far-reaching extension of regression analysis by estimating families of
conditional quantile curves. Since its introduction, quantile regression has found great attraction
in statistics because of its ease of interpretation, its robustness and its numerous applications
which include such important areas as medicine, economics, environment modeling, toxicology or
engineering [see Buchinsky (1994); Cade et al. (1999) or Wei et al. (2006) among many others]. For
a detailed description of quantile regression analysis we refer to the monograph Koenker (2005),
which also provides a variety of additional examples. We focus on the general univariate nonlinear
quantile regression model

(1.1) y(x) = g(x, θ) + σ(x, θ)ε ,

where the functions g and σ represent the location and scale function, respectively, θT = (θ1, . . . , θp)

is a vector of unknown parameters which varies in a compact parameter space, say Θ, and ε de-
notes a random variable with distribution function F which has τ -quantile 0, that is F−1(τ) = 0.
The quantity x denotes the explanatory variable which can vary in a compact design space, say
X . We assume that in principle for each experimental condition x an observation y(x) is available
according to the model (1.1), where different observations are independent. This means that the
conditional τ -quantile of y(x) at experimental condition x ∈ X is given by g(x, θ). The model
(1.1) has found considerable attention in the literature. Koenker and Zhao (1994) and Zhou and
Portnoy (1998) proposed a weighted quantile regression estimate for the parameter θ where the
(random) weights are determined from a preliminary estimate for the parameter of the scale func-
tion. Alternatively, one can use unweighted quantile regression to estimate the parameters of the
conditional quantile function for heteroscedastic data, and in the present paper we investigate
design problems arising in the context of this estimation method.
For least squares and maximum likelihood estimation it is well known that the efficiency of statis-
tical analysis can be improved substantially by the application of optimal designs. Such designs
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result in a substantial reduction of costs and are therefore important from an ethical and econom-
ical point of view [see Atkinson (1996)]. For example, it was shown by Dette et al. (2008) in the
context of estimating the minimum effective dose in a phase II dose finding study that an optimal
design can result in a 50% reduction of sample size without losing any accuracy in the statistical
inference. Despite of these advantages for least squares and maximum likelihood estimation there
exist - to the knowledge of the authors - no results on optimal designs for statistical analysis with
quantile regression models.
It is the purpose of the present paper to determine optimal designs in quantile regression models. In
Section 2 we introduce the optimal design problem in the context of nonlinear quantile regression.
For the sake of transparency, we focus on the D-optimality criterion, which determines the design
such that the (asymptotic) confidence ellipsoid for the parameters in the conditional quantile
function has minimal volume. It turns out that - in contrast to classical design theory for maximum
likelihood and least squares estimation - the optimal design problems resulting from the quantile
regression model (1.1) are not convex. Therefore standard theory is not directly applicable which
makes the solution substantially harder. In the first part of Section 3 we present some general
results for the D-optimality criterion. The resulting designs are locally optimal designs in the
sense of Chernoff (1953) because they require a specification of the unknown parameters. There
are many situations where such preliminary knowledge about the parameters is available, such
that the application of locally optimal designs is well justified [such as phase II dose finding trials,
see Dette et al. (2008)]. Moreover, locally optimal designs usually serve as a benchmark for many
commonly used designs and are the basis for more sophisticated design strategies, which require
less precise knowledge about the model parameters, such as Bayesian or standardized maximin
optimality criteria [see Chaloner and Verdinelli (1995) and Dette (1997) among others]. Optimal
designs with respect to these robust criteria are discussed in the second part of Section 3.
We illustrate the new concepts in the construction of optimal designs for quantile regression analysis
in Section 4. In particular, we determine locally optimal, Bayesian and standardized maximin
optimal designs for the Michaelis-Menten and EMAX quantile regression model, where the scale
and the location function are related by a known link function. The benefits of an efficient design
of experiment are demonstrated in Section 5, where we compare the efficiency of a commonly
used uniform design with the designs derived in this paper in an explicit application. Finally, all
technical details are deferred to an appendix in Section 6.

2. Optimal designs for quantile regression

Let x1, . . . , xN ∈ X denote fixed predictors and suppose that N observations y(x1), . . . , y(xN) at
these experimental conditions are available. We assume that the observations are generated by the
model (1.1), that is

(2.1) y(xi) = g(xi, θ) + σ(xi, θ)εi ; i = 1, . . . , N,

where εi, . . . , εN are independent identically distributed random variables with distribution func-
tion F and τ -quantile 0, i.e. F−1(τ) = 0.
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For a given τ ∈ (0, 1), the (unweighted) quantile regression estimate of the parameter θ in model
(2.1) is defined by

(2.2) θ̂N(τ) = arg min
θ∈Θ

N∑
i=1

ρτ (y(xi)− g(xi, θ)) ,

where ρτ denotes the check function ρτ (u) = u(τ − I(u < 0)) [see Koenker (2005)]. Throughout
this paper we assume that the location function g is differentiable with respect to the parameter
θ and denote by

(2.3) ġ(x, θ) =

(
∂g(x, θ)

∂θ1

, . . . ,
∂g(x, θ)

∂θp

)T
the corresponding vector of partial derivatives. Additionally, we assume that the following standard
assumptions of nonlinear quantile regression are satisfied [see Koenker (2005)].

• A1. The distribution function F of the random variables ε1, . . . , εN in model (2.1) is
absolutely continuous, with continuous density f such that 0 < f(0) <∞.
• A2. There exist positive definite matrices D0 and D1 such that the following limits exist

(1) limN→∞N
−1
∑N

i=1 ġ(xi, θ)ġ
T (xi, θ) = D0

(2) limN→∞N
−1f(0)

∑N
i=1

1
σ(xi,θ)

ġ(xi, θ)ġ
T (xi, θ) = D1

(3) maxi=1,...,N ‖ġ(xi, θ)‖ /
√
N → 0

• A3. There exist constants k0, k1 > 0 and N0 ∈ N such that, for θ1, θ2 ∈ Θ, and N > N0,

k0||θ1 − θ2|| ≤
(
N−1

N∑
i=1

((g(xi, θ1)− g(xi, θ2))2
)1/2

≤ k1||θ1 − θ2||

Under these conditions it can be shown [see Koenker (2005)] that the estimate defined by (2.2) is
asymptotically normal distributed, that is

(2.4)
√
n
(
θ̂N(τ)− θ(τ)

)
D−→ N

(
0, τ(1− τ)D−1

1 D0D
−1
1

)
,

where the symbol D−→ denotes convergence in distribution. We observe that the asymptotic vari-
ance of the quantile regression estimate (2.2) depends on the experimental conditions xi and a
“good” experimental design should provide “small” variances of this estimate. Optimal design
problems of this type have mainly been considered in the context of maximum likelihood and least
squares estimation and – to the best knowledge of the authors – no results are available for quantile
regression. The following discussion provides a first insight in optimal design problems for these
models.
In order to find optimal designs for quantile regression analysis, we consider approximate designs
in the sense of Kiefer (1974), which are defined as probability measures on the design space X
with finite support. The support points of an (approximate) design ξ give the locations where
observations are taken, while the weights give the corresponding relative proportions of total
observations to be taken at these points. If the design ξ has masses wi > 0 at the different points
xi (i = 1, . . . , k) and N observations can be made by the experimenter, the quantities wiN are
rounded to integers, say Ni, satisfying

∑k
i=1 Ni = N , and the experimenter takes Ni observations

at each location xi (i = 1, . . . , k). In this case the assumptions A1, A2 and A3 are satisfied if
ġ(xi, θ) and σ(xi, θ) are well-defined and σ(xi, θ) > 0 for i = 1, . . . , k. The asymptotic covariance
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matrix in (2.4) is given by
τ(1− τ)

f 2(0)
H(ξ, θ),

where f denotes the density of the errors, the matrix H is defined by

(2.5) H(ξ, θ) = D−1
1 (ξ, θ)D0(ξ, θ)D−1

1 (ξ, θ)

and the matrices D0(ξ, θ) and D1(ξ, θ) are given by

D0(ξ, θ) =

ˆ
X
ġ(x, θ)ġT (x, θ)dξ(x)(2.6)

and

D1(ξ, θ) =

ˆ
X

1

σ(x, θ)
ġ(x, θ)ġT (x, θ)dξ(x) .(2.7)

Consequently, an optimal (approximate) design for quantile regression analysis in model (1.1)
maximizes an appropriate concave functional of the inverse H−1(ξ, θ) of the asymptotic covariance
matrix, and there are numerous criteria which can be used for discriminating between competing
designs [see Silvey (1980) or Pukelsheim (2006) among others]. In contrast to classical optimal
design theory the mapping

ξ −→ H−1(ξ, θ)

is in general not concave. This fact makes the optimal design problem for quantile regression
analysis considered in this paper substantially harder, because standard convex optimization theory
is in general not applicable. For the sake of transparency, we concentrate here on the well known
D-optimality criterion, which determines the optimal design such that the determinant

(2.8) det(H−1(ξ, θ)) =
(

detD1(ξ, θ)
)2

detD−1
0 (ξ, θ)

is maximal. A design ξ∗θ which maximizes (2.8) is called locally D-optimal for quantile regression
analysis in model (2.1) and minimizes the volume of the asymptotic confidence ellipsoid for the
parameter θ with respect to the choice of the design ξ. Note that in nonlinear regression models
the information matrix H(ξ, θ) - and as a consequence the corresponding optimal designs - depend
on the unknown parameter vector θ, which justifies the name locally optimal designs [see Chernoff
(1953)]. These designs require an initial guess of the unknown parameters in the model, and there
are numerous situations where such knowledge is available [see for example Dette et al. (2008)].
Moreover, locally optimal designs serve as benchmarks for many commonly used designs, and they
form the basis for many robust optimality criteria based on the Bayesian and maximin principle.
To be precise, let ξ∗θ denote the locally D-optimal design for quantile regression analysis and define

(2.9) eff(ξ, θ) =

(
detH(ξ∗θ , θ)

detH(ξ, θ)

)1/p

∈ [0, 1]

as the D-efficiency of a given design ξ. Let π denote a prior distribution on the parameter space
Θ; following Chaloner and Verdinelli (1995) we call a design ξ∗π Bayesian D-optimal design for
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quantile regression analysis in model (2.1) if it maximizes the functional

Φπ(ξ) =

ˆ
Θ

log(eff(ξ, θ))π(dθ)(2.10)

= cΘ +
1

p

ˆ
Θ

(
2 log(detD1(ξ, θ))− log(detD0(ξ, θ))

)
π(dθ) ,

where the constant cΘ does not depend on the design ξ. Similarly, a (standardized) maximin
D-optimal design ξ∗MM for quantile regression analysis in model (2.1) maximizes the functional

(2.11) ΨΘ(ξ) = min{eff(ξ, θ) | θ ∈ Θ}

[see Dette (1997)]. Bayesian and maximin optimal designs have been investigated in the context
of least squares and maximin likelihood estimation [see Chaloner and Verdinelli (1995); Haines
(1995) or Imhof (2001) among others]. Corresponding results for quantile regression analysis are
discussed in Section 3 and 4. Furthermore, we illustrate the benefits of robust design strategies in
Section 5 reanalyzing a data example.

3. D-optimal designs

In this section, we investigate D-optimal designs for the estimating the parameters in the quantile
regression model (1.1), which maximize the determinant of the matrix H−1(ξ, θ) as defined in
(2.5). Note that in the case of homoscedasticity (σ(x, θ) = σ) we have σD1(ξ, θ) = D0(ξ, θ), and
the optimization problem reduces to a “classical” D-optimal design problem for least squares or
maximum likelihood estimation in a nonlinear regression model [see for example Ford et al. (1992);
He et al. (1996) or Fang and Hedayat (2008) among many others]. However, for non-constant scale
functions the optimal design problem for quantile and least squares regression are different. In
particular, optimal design problems for quantile regression with non-constant scale function are
substantially more difficult to solve because they are usually not convex. In order to investigate
D-optimal designs in this context recall the definition of the matrices D0 and D1 in (2.6) and (2.7),
and define

d(x, ξ, θ) =
2

σ(x, θ)
d1(x, ξ, θ)− d0(x, ξ, θ)(3.1)

as generalized dispersion function, where the functions d0 and d1 are given by

di(x, ξ) = ġT (x, θ)D−1
i (ξ, θ)ġ(x, θ), i = 0, 1.

This function plays a fundamental role in the following theorem, which gives a necessary condition
for a design to be locally D-optimal for quantile regression analysis in model (2.1). The proof can
be found in the Appendix.

Theorem 3.1. Any locally D-optimal design design ξ∗θ for quantile regression analysis in model
(2.1) satisfies the inequality

(3.2) d(x, ξ∗θ , θ) ≤ p

for all x ∈ X . Moreover, the maximum in (3.2) is attained for any support point of the locally
D-optimal design.

Throughout this paper we call a design with k support points a k-point design and an optimal
k-point design ξ∗ maximizes an appropriate concave functional of the matrix H−1(ξ, θ) defined in
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(2.5) in the class of all k-point designs. Designs which have the same number of support points
as the dimension p of the parameter vector θ are called saturated designs. The following result
shows that locally D-optimal saturated designs are always uniform designs and is proved in the
Appendix.

Lemma 3.2. The locally D-optimal saturated design for quantile regression analysis in model (2.1)
has equal masses at its support points.

We conclude this section with a statement of a corresponding necessary condition for Bayesian and
standardized maximin D-optimality. The results are proved by similar arguments as given in the
proof of Theorem 3.1 and the proofs are therefore omitted.

Theorem 3.3.

(a) If the design ξ∗π is Bayesian D-optimal with respect to the prior π for quantile regression
analysis in model (2.1), then the inequality

(3.3)
ˆ

Θ

d(x, ξ∗π, θ)π(dθ) =

ˆ
Θ

ġT (x, θ)
{

2
D−1

1 (ξ∗π, θ)

σ(x, θ)
−D−1

0 (ξ∗π, θ)
}
ġ(x, θ)π(dθ) ≤ p

holds for all x ∈ X . Moreover, in this case there is equality in (3.3) for all support points
of the Bayesian D-optimal design ξ∗π.

(b) If the design ξ∗MM is standardized maximin D-optimal for quantile regression analysis in
model (2.1), then there exists a distribution π∗ on the set

(3.4) Π(ξ∗MM) = {θ ∈ Θ | eff(ξ∗MM, θ) = ΨΘ(ξ∗MM)}

such that the inequality

(3.5)
ˆ

Π(ξ∗MM)

d(x, ξ∗MM, θ)π
∗(dθ) ≤ p

holds for all x ∈ X . Moreover, there is equality in (3.5) for all support points of the
standardized maximin D-optimal design ξ∗MM.

4. Application to nonlinear models

In this section, we investigate locally D-optimal designs for quantile regression analysis for two
nonlinear models which are widely used in applications, namely the Michaelis-Menten model

(4.1) g1(x, θ) =
θ1x

θ2 + x

and the EMAX model

(4.2) g2(x, θ) = θ0 +
θ1x

θ2 + x
,

where x ∈ X = [xl, xu] ⊂ R+
0 . In the Michaelis-Menten model (4.1) the function g1 represents the

velocity of a chemical reaction, the parameter θ1 ≥ 0 denotes the maximum velocity, the predictor
x ≥ 0 reflects the concentration of a substrate and the parameter θ2 ≥ 0 is the half-saturated
constant, the concentration x where the velocity is half-maximal. Specific applications of the
Michaelis-Menten model in such important areas as pharmacology, medical research and biological
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sciences, particularly in biochemistry and in enzyme reaction studies, can be found in Johansen
(1984) or Cornish-Browden (1995) among many others.
The EMAX model (4.2) is frequently used in pharmaceutical studies to model a dose-response
relationship of a drug where the maximum effect is achieved asymptotically at large dose levels.
The model is used to describe the relationship of drug-receptor interactions and therefore deduced
from the chemical equilibrium equation [see Boroujerdi (2002)]. Various applications of the EMAX
model have been discussed by Demana et al. (1997) among others. In model (4.2) the parameter
θ0 ≥ 0 usually represents the response at placebo, θ1 ≥ 0 is the maximum achievable increase
above the placebo response and θ2 ≥ 0 is the dose which produces 50% of the effect.
In the following two subsections we investigate properties of locally D-optimal designs for quantile
regression analysis in model (4.1) and (4.2), where the location function g(x, θ) and the scale
function σ(x, θ) are related by a known link function, say h, i.e.

(4.3) σ(x, θ) = h (g(x, θ))

for some differentiable function h. Robust design strategies are discussed in Section 4.3

4.1. Locally D-optimal designs for the Michaelis-Menten. Optimal designs for maximum
likelihood or least squares estimation in the Michaelis-Menten model have been studied by numer-
ous authors, see e.g. Dunn (1988); Rasch (1990); Dette and Wong (1999); Lopez-Fidalgo and Wong
(2002) or Dette and Biedermann (2003) among many others. The following results give some first
insights into the structure of locally D-optimal saturated designs in the Michaelis-Menten model
(4.1) with scale functions of the form (4.3) if quantile regression is used to estimate the parameters.
All proofs are deferred to the Appendix, see Section 6.2.2.

Theorem 4.1. Any locally D-optimal saturated design ξ∗θ on the design space X = [xl, xu] ⊂ R+
0

for quantile regression analysis in the Michaelis-Menten model (4.1) with scale function (4.3) has
equal masses at its support points. The design ξ∗θ is supported at the point xu if the inequality

2

g1(x, θ)
≥ h′ (g1(x, θ))

h (g1(x, θ))
,(4.4)

holds for all x ∈ X . Moreover, if additionally the inequality
∂

∂x

(
h′ (g1(x, θ))

h (g1(x, θ))

)
≥ 0(4.5)

holds for all x ∈ X , then the locally D-optimal saturated design ξ∗θ is unique and supported at the
points max{t−1(z∗), xl} and xu, where z∗ is the unique solution of the equation

(4.6) l(z) =
1

z
− 1

t(xu)− z
− h′(z)

h(z)
= 0

and the function t is defined by t(x) = θ1x/(θ2 + x).

It is easy to see that the assumption of Theorem 4.1 is satisfied for the link functions

h1(z) = 1/zn , n ≥ 0(4.7)

h2(z) = exp(−nz) , n ≥ 0.(4.8)

Note that the case of a homoscedastic quantile regression model appears for the choice n = 0 in
both cases. Moreover, if n < 0, the response at x = 0 is identically 0 and we assume for notational
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convenience throughout this paper that xl > 0 if n < 0. Note also that an optimal design for the
Michaelis Menten model never advices the experimenter to take observations at x = 0 because
the corresponding conditional τ -quantile is 0 and contains no information about the unknown
parameters.
In the following discussion we derive some explicit optimal designs for quantile regression analysis
in the Michaelis-Menten model for this type of link functions. We begin with a result on the
number of support points of the locally D-optimal design for the link function (4.7).

Theorem 4.2. The locally D-optimal design on the design space X = [xl, xu] ⊂ R+
0 for quantile

regression analysis in the Michaelis-Menten model (4.1) with scale function satisfying (4.3) and
(4.7) is supported at at most 3 support points, where one of the support points is located at the
upper boundary point of the design space X .
Moreover, if n ∈ {−2,−1, 0, 1}, the locally D-optimal design for the Michaelis-Menten model (4.1)
with scale function satisfying (4.3) and (4.7) is supported at exactly two points including the upper
boundary point xu of the design space.

By the previous result any locallyD-optimal design for quantile regression analysis in the Michaelis-
Menten model with link function (4.7) is supported at at most three support points. If n ∈
{−2,−1, 0, 1} a saturated design is also locally D-optimal in the class of all desgns. Moreover, in
an extensive numerical study we investigated the general case where n is not necessarily an integer
satisfying n ≥ −2. We could not find any value of n where the design is supported at three or
more support points. A similar observation can be made for the link function (4.8) and we state
the following conjecture.

Conjecture 4.1. The locally D-optimal design on the design space X = [xl, xu] ⊂ R+
0 for quantile

regression analysis in the Michaelis-Menten model (4.1) with scale function satisfying (4.3) and
(4.7) with n ≥ −2 or (4.8) with n ≥ 0 is supported at exactly 2 support points, where one of the
support points is located at the upper boundary point of the design space.

We now derive analytical results for D-optimal saturated designs in the Michaelis-Menten model
with link functions h1 and h2 defined in (4.7) and (4.8), respectively.

Theorem 4.3. Consider the Michaelis-Menten (4.1) model on the design space X = [xl, xu] ⊂ R+
0

with scale function satisfying (4.3).
(a) If the link function is given by (4.7) then the locally D-optimal saturated design for quantile

regression analysis has equal masses at the points

x∗1 = max
{ (n+ 1)xuθ2

(n+ 2)(θ2 + xu)
, xl

}
, and x∗2 = xu .

If n ∈ {−2,−1, 0, 1} this design is also locally D-optimal in the class of all designs, where
the cases n = −1 and n = −2 are interpreted as x∗1 = xl.

(b) If the link function is given by (4.8) then the locally D-optimal saturated design for quantile
regression analysis has equal masses at the points

x∗1 = max
{−2θ2 + θ1nxu +

√
(2θ2 + 2xu)2 + (θ1nxu)2

2(θ1n+ 2 + xu/θ2)
, xl

}
and x∗2 = xu .
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Note that for the case n = 0 Theorem 4.3 yields in both cases the locally D-optimal design ξ∗θ for
the homoscedastic Michaelis-Menten model with equal masses at the points

x∗1 = max
{ θ2xu

2θ2 + xu
, xl

}
and x∗2 = xu ,

which coincides with the locally D-optimal design for maximum likelihood estimation under nor-
mality assumption [see Rasch (1990)]. On the other hand, if n > 0 the locally D-optimal saturated
designs for quantile regression analysis in the Michaelis Menten model with link functions h1 and
h2 defined in (4.7) and (4.8) are different.

4.2. Locally D-optimal designs for the EMAX model. Optimal designs for least squares and
maximum likelihood estimation in the EMAX model have been studied by various authors [see
Merle and Mentre (1995); Wang (2006); Dette et al. (2008) or Fang and Hedayat (2008) among
many others]. Our first result establishes some general properties of locally D-optimal saturated
designs for quantile regression analysis in model (4.2) with variance function of the form (4.3).

Lemma 4.4. Any locally D-optimal saturated design ξ∗θ on the design space X = [xl, xu] ⊂ R+
0 for

quantile regression analysis in the EMAX model (4.2) with variance function defined in (4.3) has
the point xu as support point if

2

g2(x, θ)
≥ h′(g2(x, θ))

h(g2(x, θ))
(4.9)

holds for all x ∈ X .

We now provide some analytical results for D-optimal saturated designs in the EMAX model (4.2),
if the link function is defined by (4.7) or (4.8).

Theorem 4.5. In the EMAX model (4.2) model on the design space X = [xl, xu] ⊂ R+
0 with scale

function satisfying (4.3) the locally D-optimal saturated design for quantile regression analysis has
equal masses at its support points.
Moreover, if the link function is given by (4.7) define

κ =
θ2

(
a
(
a−
√

3
)
θ1xu −

(
9 +
√

3a+ 6n
)
θ0(θ2 + xu)

)
√

3aθ0θ2 + (3 + 2n)(3θ0 + 2(2 + n)θ1)θ2 +
(
9 +
√

3a+ 6n
)

(θ0 + θ1)xu
(4.10)

with a =
√

3 + 8n+ 4n2.

(a) If κ ≤ 0, then the support points of the locally D-optimal saturated design for quantile
regression analysis are given by x∗1 = xl, x∗3 = xu and

x∗2 = θ2

(1 + n)x+ − θ0 +
√

((1 + n)x+ − θ0)2 − (2 + n)(nx· − 2θ0x+)

(2 + n)θ1 − (1 + n)x+ + θ0 −
√

((1 + n)x+ − θ0)2 − (2 + n)(nx· − 2θ0x+)
(4.11)

where

(4.12) x+ =
1

2

(
θ1xl
θ2 + xl

+
θ1xu
θ2 + xu

)
and x· =

θ1xl
θ2 + xl

· θ1xu
θ2 + xu

.
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(b) If 0 ≤ xl ≤ κ, then the support points of the locally D-optimal saturated design for quantile
regression analysis in the EMAX model are given by x∗1 = κ, x∗3 = xu and

x∗2 = θ2
(3 + 4n(2 + n))θ1xu − b

(3 + 2n)(2(2 + n)θ2 + 3xu)θ1 + b

with b = 3(3 + 2n)θ0(θ2 + xu)− (θ0θ2 + (θ0 + θ1)xu)
√

9 + 12n(2 + n).
(c) If 0 < κ ≤ xl, then the support points of the locally D-optimal saturated design for quantile

regression analysis in the EMAX model are given by x∗1 = xl, x∗3 = xu and x∗2 is defined in
(4.11).

Theorem 4.6. In the EMAX model (4.2) model on the design space X = [xl, xu] ⊂ R+
0 with scale

function satisfying (4.3) the locally D-optimal saturated design for quantile regression analysis has
equal masses at its support points. Moreover, if the link function is given by (4.8) define

κ = −θ2
(3 +

√
3)(θ2 + xu)− 2nθ1xu(

3 +
√

3
)

(θ2 + xu) + 2nθ1θ2

(a) If κ ≤ 0 then the support points of the locally D-optimal saturated design for quantile
regression analysis in the EMAX model are given by x∗1 = xl, x∗3 = xu and

x∗2 = θ2

nx+ − 1 +
√

1 + n2x2
−

n(θ1 − x+) + 1−
√

1 + n2x2
−

(4.13)

where x+ is defined (4.12) and

x− =
1

2

(
θ1xl
θ2 + xl

− θ1xu
θ2 + xu

)
(b) If 0 ≤ xl ≤ κ then the support points of the locally D-optimal saturated design for quantile

regression analysis in the EMAX model are given by x∗1 = κ, x∗3 = xu and

x∗2 = −θ2
(−3 +

√
3)(θ2 + xu) + 2nθ1xu

(−3 +
√

3)(θ2 + xu)− 2nθ1θ2

(c) If 0 ≤ κ ≤ xl then the support points of the locally D-optimal saturated design for quantile
regression analysis in the EMAX model are given by x∗1 = xl, x∗3 = xu and the third support
point x∗2 is given by (4.13).

It is worthwhile to mention that for n = 0 the value of κ in Theorem 4.5 and Theorem 4.6 is
always negative, and equation (4.11) or equation (4.13) (using l’Hopital’s rule) yield the locally
D-optimal saturated design ξ∗ with design points

x∗1 = xl, x∗2 =
xu(xl + θ2) + xl(xu + θ2)

(xl + θ2) + (xu + θ2)
and x∗3 = xu .

It follows by similar arguments as given in Dette et al. (2010) that this design is also locally D-
optimal in the class of all designs. On the other hand, if n > 0, the locally D-optimal saturated
designs for the link functions h1 and h2 defined in (4.7) and (4.8) are different.

4.3. Robust designs for the Michaelis-Menten model. In this section, we illustrate how
standardized maximin and Bayesian D-optimal designs for quantile regression analysis can be
constructed. For the sake of brevity we restrict ourselves to the case of the Michaelis-Menten
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model (4.1) with link function (4.7). The following results give the Bayesian and the standardized
maximin D-optimal saturated designs for quantile regression analysis for this model on the design
space X = [0, xu].

Theorem 4.7. Consider the the Michaelis-Menten model on the design space X = [0, xu] with scale
function defined by (4.7) such that n > −1, and let π denote a prior on the set Θ = [0,∞)× [0,∞)

with marginals π1 and π2 such that supp(π2) ⊂ [x̄ · xu,∞), where x̄ = 1
2

(
−1 +

√
−9 + 6

√
3
)
≈

0.0899798. Furthermore, let the integral
´

Θ
| log θ2|π2(dθ2) be finite. The Bayesian D-optimal

saturated design for quantile regression analysis with respect to the prior π has equal masses at the
points xu and the point x∗, which is the unique solution of the equation

− 1

1− x
+

1 + n

x
− (2 + n)

ˆ
Θ

π2(dθ)

θ2/xu + x
= 0(4.14)

in the interval (0, xu).

Theorem 4.8. Consider the the Michaelis-Menten model on the design space X = [0, xu] with
scale function defined by (4.7). The standardized maximin D-optimal saturated design ξMM for
quantile regression analysis with respect to the set Θ = [0,∞)× [θ2,l, θ2,u] has equal masses at the
points xu and the point

x∗ =
θ2,u

(
θ2,l(xu + θ2,l)

n+1
) 1

2+n − θ2,l

(
θ2,u(xu + θ2,u)

n+1
) 1

2+n

(
θ2,u(xu + θ2,u)n+1

) 1
2+n −

(
θ2,l(xu + θ2,l)n+1

) 1
2+n

.(4.15)

Moreover, for this design the set Π(ξ∗) defined in (3.4) is given by

N (ξMM) =

{
θ2,l

xu
,
θ2,u

xu

}
.

5. Data example

In this section, we reanalyze data from hormone receptor assays, where the relationship between
the response and explanatory variable is usually modeled by the Michaelis-Menten equation [see
Cressie and Keightley (1979)]. These authors investigated estrogen receptor assays, which are used
in the study of human breast cancer. The response Y represents the amount of estrogen bound to
receptor and x is the amount of hormone not bound to receptor and the Michaelis Menten model
was used to evaluated the data. In the specific example the range for the variable x is the design
space X = [0, xu] = [0, 2000].
To be precise, consider model (4.1) with link function (4.7), where the assumed design space is
given by X = [0, 2000]. Robust designs for maximum likelihood estimation have been determined
by Dette and Biedermann (2003) under the assumption of homoscedastic data (n = 0), and in
this section we investigate designs for quantile regression analysis. We consider the optimal design
problem under the assumptions of homoscedasticity (n = 0) and two cases of heteroscedasticity
(n = 1 and n = 5) where two possible regions for the parameter θ are considered, namely

Θ1 = [0,∞)× [100, 2000](5.1)

Θ2 = [0,∞)× [500, 5000] .(5.2)
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Θ n ξMM eff ξ∗MM eff

Θ1 0 267.4 2000
.500 .500

0.7208
109.6 635.8 2000
.235 .321 .444

0.7925

Θ1 1 499.2 2000
.500 .500

0.6469
211.2 846.3 2000
.198 .353 .449

0.7438

Θ1 5 1, 041.0 2000
.500 .500

0.5733
489.0 1, 256.8 2000
.107 .430 .463

0.6199

Θ2 0 548.6 2000
.500 .500

0.9052
548.6 2000
.500 .500

0.9052

Θ2 1 872.0 2000
.500 .500

0.8756
872.0 2000
.500 .500

0.8756

Θ2 5 1, 408.1 2000
.500 .500

0.8433
1, 408.1 2000
.500 .500

0.8433

Table 1. Standardized maximin D-optimal saturated design ξMM derived by Theo-
rem 4.8 and standardized maximin D-optimal design ξ∗MM (determined in the class
of all designs) for quantile regression analysis in the Michaelis-Menten model. The
corresponding minimum D-efficiency (2.11) is listed in the columns labeled ’eff’.

Θ n ξ∗π1 ξ∗π2 ξ∗π3

Θ1 0 451.2 2000
.500 .500

552.5 2000
.500 .500

359.5 2000
.500 .500

Θ1 1 754.4 2000
.500 .500

871.8 2000
.500 .500

630.0 2000
.500 .500

Θ1 5 1, 306.8 2000
.500 .500

1, 402.3 2000
.500 .500

1, 183.1 2000
.500 .500

Θ2 0 686.0 2000
.500 .500

759.4 2000
.500 .500

615.0 2000
.500 .500

Θ2 1 1, 028.7 2000
.500 .500

1, 103.0 2000
.500 .500

948.9 2000
.500 .500

Θ2 5 1, 526.4 2000
.500 .500

1, 575.0 2000
.500 .500

1, 467.6 2000
.500 .500

Table 2. Bayesian D-optimal designs with respect to the priors πi, i = 1, 2, 3 for
quantile regression analysis in the Michaelis-Menten model. All saturated designs
are Bayesian D-optimal in the class of all designs.

Note that the efficiency (2.9) does not depend on the parameter θ1. We calculate the standardized
maximin D-optimal saturated design ξMM derived by Theorem 4.8 and the standardized maximin
D-optimal design in the class of all designs by numerical methods, which is denoted by ξ∗MM. For
the parameter ranges in (5.1) and (5.2), these designs have two or three support points. The results
are listed in Table 1 which also shows the worst D-efficiency defined in (2.9). For example, if the
set Θ in (2.11) is given by Θ1 and n = 1, then the standardized maximin D-optimal saturated
design ξMM for quantile regression analysis in the Michaelis-Menten model with scale function
σ(x, θ) = (θ2 + x)/(θ1x) advises the experimenter to take 50% of the observations at the points
499.2 and 2000 and its worst efficiency in the set Θ1 is given by 64.7%. The standardized maximin
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D-optimal design ξ∗MM in the class of all designs has masses 19.8%, 35.3% and 44.9% at the points
211.2, 846.3 and 2000 and its worst efficiency in the set Θ1 is given by 74.4%.
The corresponding results for the Bayesian D-optimality criterion are depicted in Table 2, where
ξ∗π1 denotes the Bayesian D-optimal saturated designs derived by Theorem 4.7 with respect to a
uniform prior, and ξ∗π2 and ξ∗π3 denote the Bayesian D-optimal saturated designs with respect to
the absolute continuous priors

π2(dθ2) = 2
θ2 − θ2,l

(θ2,u − θ2,l)2
dθ2, θ2 ∈ [θ2,l, θ2,u] ,

π3(dθ2) = −2
θ2 − θ2,u

(θ2,l − θ2,u)2
dθ2, θ2 ∈ [θ2,l, θ2,u] .

In all cases the saturated designs are globally Bayesian D-optimal (this was verified numerically).
The necessary conditions specified by the equations (3.3) and (3.5) in Theorem 3.3 are displayed
in the left panel of Figure 5.1 for the set Θ1 and the scale function σ(x,Θ) = (θ1x/(θ2 + x))−n

corresponding to the case n = 1, while the necessary condition for the set Θ2 and n = 5 is shown
in the right panel of of this figure.

(a) Θ = Θ1 and n = 1 (b) Θ = Θ2 and n = 5

Figure 5.1. Plots of the function (3.3) for the design ξ∗π1 (· · ··) and of the function
(3.5) for the designs ξ∗MM (—) and ξMM (-·-·) for two different sets of parameters
and link functions h1(z) = z−n. The designs are Bayesian or standardized maximin
D-optimal if the curve stays below the line y = 2.

Finally, we investigate the efficiencies of the robust designs ξ∗MM and ξ∗π1 as a function of the
parameter θ2. The results are depicted in Figure 5.2, where we also show the efficiency of the
uniform design ξU with equal masses at the 10 support points {200 · i}10

i=1 and the standardized
maximin D-optimal design ξ0

MM derived under the assumption of a constant scale function (i.e.
n = 0). We observe that the robust designs yield substantially better efficiencies than the uniform
design ξU . Additionally, the standardized maximin D-optimal design ξ0

MM derived under the (false)
assumption of homoscedasticity also yields a considerably loss of efficiency. This effect is even more
visible in the right panel of Figure 5.2 for the above-mentioned two designs. These results indicate
that the variation in the data has to be addressed carefully in the design of experiments for quantile
regression analysis.
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(a) Θ = Θ1 and n = 1 (b) Θ = Θ2 and n = 5

Figure 5.2. D-efficiencies (2.9) for the designs ξ∗π1 (· · ··), ξ∗MM (—), ξ0
MM (-·-·) and

ξU (----) for two different sets of parameters.
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6. Appendix: Proofs

6.1. Proof of the results in Section 3.
Proof of Theorem 3.1. Assume that ξ∗θ is locally D-optimal for quantile regression analysis in
model (2.1), that is ξ∗θ maximizes the determinant defined in (2.8). For α ∈ [0, 1] and a further
design ξ consider the design ξα = (1− α)ξ∗θ + αξ. By a straightforward calculation we obtain the
directional derivative of the function

m(ξ) = log det(H−1(ξ, θ)) = 2 log detD1(ξ, θ)− log detD0(ξ, θ)

at ξ∗θ in the direction of ξ − ξ∗θ as
d

dα
m(ξα)|α=0 =

d

dα
(2 log |D1(ξα, θ)| − log |D0(ξα, θ)|) |α=0

= 2tr
(
D−1

1 (ξ∗θ , θ) [D1(ξ, θ)−D1(ξ∗θ , θ)]
)
− tr

(
D−1

0 (ξ∗θ , θ) [D0(ξ, θ)−D0(ξ∗θ , θ)]
)

= 2tr
(
D−1

1 (ξ∗θ , θ)D1(ξ, θ)
)
− tr

(
D−1

0 (ξ∗θ , θ)D0(ξ, θ)
)
− p ,(6.1)

where tr(B) denotes the trace of the matrix B. Because the design ξ∗θ is D-optimal, the derivative
is not positive for all designs ξ and using Dirac measures δx with mass 1 at the points x ∈ X for
the design ξ we have for j = 0, 1

tr
(
D−1
j (ξ∗θ , θ)Dj(δx, θ)

)
= tr

(
D−1
j (ξ∗θ , θ)

1

(σ(x, θ))j
g(x, θ)ġT (x, θ)

)
=

1

(σ(x, θ))j
dj(x, ξθ, θ).

Therefore, we obtain from (6.1) the inequality d(x, ξ∗θ) ≤ p for all x ∈ X . Next, assume for the
locally D-optimal design ξ∗θ that maxx∈X d(x, ξ∗θ , θ) < p, which would yield

(6.2)
ˆ
X
d(x, ξ∗θ , θ)dξ

∗(x) < p

ˆ
X
dξ∗θ(x) = p .
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On the other hand, it follows from the definition of the functions d0 and d1 and a straightforward
calculation that for any design ξˆ

X
d0(x, ξ, θ)dξ(x) =

ˆ
X

1

σ(x, θ)
d1(x, ξ, θ)dξ(x) = p ,

which yields
´
X d(x, ξ∗θ)dξ

∗
θ(x) = p and contradicts (6.2). Therefore, maxx∈X d(x, ξ∗θ) = p and from´

X d(x, ξ∗θ , θ)dξ
∗
θ(x) = p it follows that the maximum is attained at each support point of the locally

D-optimal design ξ∗θ , which concludes the proof of Theorem 3.1. �

Proof of Lemma 3.2. For any saturated design ξ with weights w1, . . . , wp at support points
x1, . . . , xp, let X denote the p × p matrix with i-th row given by ġT (xi, θ), W = diag(w1, . . . , wp)

and L = diag(σ(x1, θ), . . . , σ(xp, θ)). We obtain from (2.8) by a simple calculation that

(6.3) det(H−1(ξ, θ)) = (detX)2(detL)−2 detW ,

and the assertion follows by a standard calculation maximizing detW = w1 · . . . · wp with respect
to the choice of the weights. �

6.2. Proof of results on locally D-optimal designs.
An important argument in the proof of most results on locally optimal designs is a transformation
from the original design space X onto a new design space Z. It turns out that the optimization
problems corresponding to the D-optimal design problem on the new design space Z have some
favorable properties for both the Michaelis-Menten and the EMAX model. In particular, we obtain
a very simple representation of the support points of the locally D-optimal designs on the design
space Z. Furthermore, the statements of the theorems can easily be obtained by transforming the
designs on the design space Z back onto the design space X .

6.2.1. The induced design space Z.
To be precise, note that the gradient ġ defined in (2.3) with respect to the parameter vector θ for
the Michaelis-Menten model (4.1) is given by

ġ1(x, θ) =
∂

∂θ
g1(x, θ) =

(
x

θ2 + x
,− θ1x

(θ2 + x)2

)T
.

We introduce the transformation

z = t(x) =
θ1x

θ2 + x
,(6.4)

which gives σ(t−1(z), θ) = hj(g1(t−1(z), θ)) = hj(z) for j = 1, 2 and

ġ1(t−1(z), θ) =

(
z

θ1

,
−z(θ1 − z)

θ1θ2

)T
=

z

θ1

(
1,
z − θ1

θ2

)T
= A

(
z, z2

)T
on the design space Z = [zl, zu] with zl = θ1xl/(xl + θ2) and zu = θ1xu/(xu + θ2) and a nonsingular
matrix A. For a design ξ on the design space X let ξ̃ denote the design on Z = t(X ) = [zl, zu]

induced by the transformation x → t(x) = z, that is dξ̃(z) = dξ(t−1(z)). Then it is easy to see
that the matrix H(ξ, θ) defined in (2.5) can be represented as

(6.5) H(ξ, θ) = H̃(ξ̃) := (AT )−1D̃−1
1 (ξ̃)D̃0(ξ̃)D̃−1

1 (ξ̃)A−1,
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where the matrices D̃0 and D̃1 do not depend on the parameter vector θ and are defined by

(6.6) D̃j(ξ̃) =

ˆ
Z
z2f1(z)fT1 (z)

dξ̃(z)

(h(z))j
j = 0, 1,

the function h is given in (4.3) and fT1 (z) = (1, z). Consequently, the locally D-optimal design
problem for the Michaelis-Menten model on the design space X can be solved by maximizing
2 log det D̃1(ξ̃) − log det D̃0(ξ) on the design space Z and transforming the results back to the
original design space X . Moreover, the corresponding analogue of the function (3.1) in Theorem
3.1 is given by

(6.7) d̃(z, ξ̃) = z2
{ 2

h(z)
fT1 (z)D̃−1

1 (ξ̃)f1(z)− fT1 (z)D̃−1
0 (ξ̃)f1(z)

}
.

For the EMAX model (4.2), the gradient with respect to the parameter vector θ on the design
space X is given by

ġ2(x, θ) =
∂

∂θ
g2(x, θ) =

(
1,

x

θ2 + x
,− θ1x

(θ2 + x)2

)T
,

and the situation is slightly more complicated. The same transformation defined by (6.4) yields

ġ2(t−1(z), θ) =

(
1,
z

θ1

,
z(z − θ1)

θ1θ2

)T
= B

(
1, z, z2

)T(6.8)

for some appropriate non-singular matrix B and g2(t−1(z), θ) = θ0 + z. By the same arguments
as before D-optimal designs for the EMAX model can be found by maximizing 2 log det D̄1(ξ̃) −
log det D̄0(ξ̃), where the matrices D̄0 and D̄1 are given by

D̄j(ξ̃) =

ˆ
Z
f2(z)fT2 (z)

dξ̃(z)

h(θ0 + z)j
j = 1, 2,

and fT2 (z) = (1, z, z2). The analogue of the function (3.1) is given by

d̄(z, ξ̃) =
2

h(z + θ0)
fT2 (z)D̄−1

1 (ξ̃)f2(z)− fT2 (z)D̄−1
0 (ξ)f2(z).

Note that we do not reflect the dependence of D̄j, j = 1, 2 on the parameter θ0 in the notation.

6.2.2. Proof of results on locally D-optimal designs for the Michaelis-Menten model.
Proof of Theorem 4.1. Note that the induced design space is given by Z = [zl, zu] = [t(xl), t(xr)] ⊂
R+

0 . By Lemma 3.2 the optimal design has equal masses at its support points. For any saturated
design ξ̃ with equal weights at support points z1 < z2 on the design space Z a straightforward
calculation yields for the determinant of the inverse of the matrix H̃ defined in (6.5)

det H̃−1(ξ̃) = c · n(z1, z2) := c ·
(
z1z2(z2 − z1)h−1(z1)h−1(z2)

)2
,(6.9)

with a constant c not depending on the points z1 and z2. Taking the logarithmic derivative of
n(z1, z2) with respect to the upper support point z2 yields

∂

∂z2

log n(z1, z2) = 2
( 1

z2

+
1

z2 − z1

− h′(z2)

h(z2)

)
.(6.10)

On the design space Z the condition (4.4) shows that the inequality 2
z
− h′(z)

h(z)
≥ 0 holds for all

z ∈ Z. Observing that for z2 > z1 > 0 we have 1
z2−z1 >

1
z2

and it follows that ∂
∂z2

log
(
n(z1, z2)

)
> 0
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for all z2 > z1 > 0. Therefore, the function n(z1, z2) is increasing with respect to z2 > z1 and zu
is a support point of the best saturated design maximizing det H̄−1(ξ̃), which proves the first part
of the assertion.
For the proof of the second part let ξ̃ denote a saturated design with equal weights at support
points z1, zu on the design space Z. Consider the logarithmic derivative of the function n(z1, zu)

with respect to z1

l(z1) =
∂

∂z1

log detn(z1, zu) =
1

z1

− 1

zu − z1

− h′(z1)

h(z1)
.(6.11)

The function j(z) = 1
z
− 1

zu−z is continuous and strictly decreasing on Z = [zl, zu) ⊂ R+. By
assumption (4.5) the function h′(z)

h(z)
is non-decreasing and therefore the equation l(z1) = 0 is solved

by exactly one z∗ ∈ R+. If z∗ ∈ Z = [zl, zu], then the best saturated design is supported at z∗ and
zu, otherwise the support points are given by zl and zu. The assertion follows transforming these
results to the original design space X . �

Proof of Theorem 4.2. By the discussion in Section 6.2.1 the D-optimality of the design ξ̃ implies
that the inequality d̃(z, ξ̃) ≤ 2 is satisfied for all z ∈ Z, where the function d̃ is defined in (6.7).
Moreover, there is equality for all support points of the D-optimal design ξ̃. It is easy to see that
for the link function h1(z) = z−n this inequality is of the form

(6.12) H(z) = zn+2P2(z) + z2Q2(z)− 2 ≤ 0 ,

where P2(z) = a2z
2 + a1z + a0 and Q2(z) = b2z

2 + b1z + b0 are nonnegative quadratic polynomials
with a0, a2, b1 ≥ 0; a1, b0, b2 ≤ 0.
We first consider the case n ≥ 2, where the derivative of the polynomial H(z) is a polynomial of
degree n+ 3 whose sequence of coefficients has at most 5 sign changes. By Descartes’ rule of signs
[see Polya and Szegö (1971)] this means thatH ′(z) has either exactly 5 positive roots or the number
of roots is less or equal than 3 (counting multiplicities). A straightforward counting argument now
shows that the function H in (6.12) has at most 3 positive roots including the boundary point zu.
Consequently, the locally D-optimal design has at most 3 support points including the point zu.
The remaining cases n ∈ {−2,−1, 0, 1} have to be considered separately and we restrict ourselves
to the case n = 1 (all other cases are treated similarly). If n = 1 we obtain for the derivative of
the function H in (6.12) that H ′(z) = zQ3(z) where Q3 is a polynomial of degree 3. Because 0

cannot be a support point of the locally D-optimal design (note that H(0) = −2), the assumption
of a locally D-optimal 3-point design would yield that the derivative H ′(z) had at least 4 positive
roots contradicting to the fact that the degree of the polynomial Q3 is 3. Therefore, the locally D-
optimal design is supported at two points. The same argument shows (observing that H(z)→∞
as z →∞) that the right boundary point zu must be a support point. �

Proof of Theorem 4.3. Note that for the weight function h1 in (4.7) we have h′(z)/h(z) = −n/z and
therefore in the case n ≥ 0 Theorem 4.1 is directly applicable and shows that the locally D-optimal
saturated design has equal masses at the points max{x∗, xl} and xu, where x∗ = t−1(z∗) and z∗ is
a solution of the equation l(z∗) = 0 where the function l is defined in (6.11); that is (zu = t(xu))

z∗ =
(1 + n)zu

2 + n
=

(1 + n) θ1xu
xu+θ2

2 + n
.
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Now an application of the inverse of the transformation (6.4) yields x∗1 = t−1(z∗1) = (n+1)xuθ2
(n+2)θ2+xu

and completes the proof of the first part of Theorem 4.3. The arguments for the remaining case
n ∈ [−2, 0) are similar and are left to the reader.
For the weight function h2 in (4.8) we have h′(z)/h(z) = −n and Theorem 4.1 is also applicable.
The solution of the equation l(z∗) = 0 is given by

z∗1 =
−2 + nz2 +

√
4 + n2z2

2

2n
,

and the proof is now completed by the same arguments as in the previous paragraph. �

6.2.3. Proof of results on locally D-optimal designs for the EMAX model.
Proof of Lemma 4.4. The proof follows by similar arguments as the proof of Theorem 4.1 and we
only mention the main differences. Let ξ̃ denote a saturated design on the induced design space Z
with equal weights at the points 0 ≤ zl ≤ z1 < z2 < z3 ≤ zu. It easy to see that the determinant
detH−1(ξ̃, θ) is proportional to the function

m(z1, z2, z3) =
(
(z1 − z2)(z1 − z3)(z2 − z3)h−1(z1 + θ0)h−1(z2 + θ0)h−1(z3 + θ0)

)2
.(6.13)

Taking the logarithmic derivative of m(z1, z2, z3) with respect to the largest support point z3 yields
∂

∂z3

logm(z1, z2, z3) =
1

z3 − z1

+
1

z3 − z2

− h′(θ0 + z3)

h(θ0 + z3)
> 0 ,

where the inequality follows from condition (4.9) (transferred to the induced design space) and a
straightforward calculation. Transforming these results back to the design space X concludes the
proof. �

Proof of Theorem 4.5 and Theorem 4.6. We only prove Theorem 4.5 since the proof of Theo-
rem 4.6 follows by similar arguments. Note that for the link function h1 in (4.7) Lemma 4.4 is
applicable and shows that the locally D-optimal design has upper support point z∗3 = zu. Recall-
ing the definition of the function m(z1, z2, z3) in (6.13) we determine the solution of the equation
(∂/∂z1, ∂/∂z2)Tm(z1, z2, zu) = 0 with respect to z1 and z2. There exist two (symmetric) solutions
and the vector (z̄−, z̄+) with

z̄± =
−3(3 + 2n)θ0 + (3 + 4n(2 + n))zu ±

√
3
√

(3 + 4n(2 + n))(θ0 + zu)2

2(2 + n)(3 + 2n)

corresponds to a maximum of the function m. Thus, if z̄− ≥ zl, then we obtain z∗1 = z̄− and
z∗2 = z̄+ for the support points of the D-optimal design, and transforming back to the design space
X yields part a) and c) of the theorem.
In the opposite case note that κZ = z̄− is the analogue of the quantity κ defined in (4.10) on
the induced design space Z. If κz = z̄− < zl, then z∗1 = zl, and solving ∂

∂z2
m(zl, z2, zu) = 0 and

transforming these results back to the design space X yields part b) of the theorem. �

6.3. Proof of results for robust designs.

For the sake of transparency we assume in this section that the design space is given by X = [0, 1],
i.e. xu = 1. The general statement can easily be obtained by a linear transformation. We also
note that the efficiency defined in (2.9) does not depend on the parameter θ1.
Proof of Theorem 4.7. The Bayesian D-optimal design depends only on the marginal distribution
π2 of the prior π. It is also easy to check that the optimal weights of a saturated design must be
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equal and that the Bayesian optimality criterion Φπ(ξ) for a saturated design with equal weights is
an increasing function of the larger support point. Consequently, we can restrict the optimization
to saturated designs with equal masses at the points x1 and 1, for which the optimality criterion
(2.10) reduces to

p · Φπ(ξ) = cΘ + log(1− x1) + (1 + n) log(x1)− (2 + n)

ˆ
Θ

log(θ2 + x1)π2(dθ2) ,(6.14)

where the constant cΘ does not depend on x1. Since
´

Θ
| log θ2|π2(dθ2) < ∞, this function is

continuously differentiable with respect to x1 and the first derivative is given by

b(x1) :=
∂

∂x1

Φπ(ξ) = − 1

1− x1

+
1 + n

x1

− (2 + n)

ˆ
Θ

π2(dθ2)

θ2 + x1

.

Because limx1→0 b(x1) =∞ and limx1→1 b(x1) = −∞, there exists at least one zero in the interval
(0, 1). In the following we prove that the solution is unique. This implies that it corresponds to a
global maximum of (6.14) in the interval (0, 1), and proves the theorem. For this purpose recall
the definition of x̄ in Theorem 4.7 and note that

b′(x1) = − 1

(1− x1)2
− 1 + n

x2
1

+ (2 + n)

ˆ
Θ

π2(dθ2)

(θ2 + x1)2

<
−x2

1(x1 + x̄)2 − (n+ 1)(1− x1)2(x1 + x̄)2 + (n+ 2)(1− x1)2x2
1

(1− x1)2x2
1(x1 + x̄)2

.

It now follows by a straightforward calculation that the definition of x̄ implies b′(x1) < 0 for all
x1 ∈ (0, 1), which completes the proof of Theorem 4.7 in the case xu = 1. �

Proof of Theorem 4.8. Because the efficiency in (2.9) does not depend on the parameter θ1 the
standardized maximin optimal design maximizes

(ΨΘ(ξ))p = min

{
|M(ξ, θ2)|
|M(ξ∗θ2 , θ2)|

∣∣∣ θ2 ∈ [θ2,l, θ2,u]

}
,(6.15)

where

|M(ξ∗θ2 , θ2)| =
1

4θ2
2

(
(1 + n)

(2 + n)2

)2+n(
1

1 + θ2

)6+4n

(6.16)

by Theorem 4.3. It follows by a standard argument that the weights of a standardized D-optimal
saturated design must be equal, and for a design ξx1,x2 with equal masses at the points x1, x2 ∈ [0, 1]

the determinant of the information matrix defined in (2.5) is given by

|M(ξx1,x2 , θ2)| =

(
x1

θ2+x1

)2(1+n)

(x1 − x2)2
(

x2
θ2+x2

)2(1+n)

4(θ2 + x1)2(θ2 + x2)2
.

Therefore, the standardized maximin D-optimality criterion reduces to

(ΨΘ(ξx1,x2))
p = dn ·min

{
θ2

2(1 + θ2)6+4n x
2(1+n)
1 (x1 − x2)2x2

2(1+n)

(θ2 + x1)2(n+2)(θ2 + x2)2(n+2)

∣∣∣ θ2 ∈ [θ2,l, θ2,u]
}
,

where the constant dn = (2+n)4+2n/(1+n)2+2n does not depend on x1, x2 and θ2 and we have used
the representation for the determinant in (6.16). Taking derivatives it can be shown that for fixed
x1 the function ΨΘ(ξx1,x2) is strictly increasing in x2 ∈ [x1, 1] and, consequently, the boundary
point 1 is a support point of the best saturated design. We introduce the notation ξx = ξx,1 and
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the criterion reduces further to

(ΨΘ(ξx))
p = dn ·min

{
u(x, θ2)

∣∣∣ θ2 ∈ [θ2,l, θ2,u]
}
,(6.17)

where the function u is defined by

u(x, θ2) =
θ2

2(1 + θ2)2(1+n)x2(1+n)(x− 1)2

(θ2 + x)2(2+n)
.

Recalling the definition of the point x∗ in (4.15) for xu = 1, it can be shown by similar arguments
as in Dette and Biedermann (2003) that

(1) for any fixed x ∈ (0, 1) and n > −1, the function θ2 → log u(x, θ2) is unimodal, and
(2) if ξx∗ maximizes the function ΨΘ in the class of all saturated designs, then u(x∗, θ2,l) =

u(x∗, θ2,u).

Solving the last equation with respect to x∗ yields by a straightforward calculation that

x∗ = x∗(θ2,l, θ2,u) =
θ2,u (θ2,l(1 + θ2,l)

1+n)
1

2+n − θ2,l (θ2,u(1 + θ2,u)
1+n)

1
2+n

(θ2,u(1 + θ2,u)1+n)
1

2+n − (θ2,l(1 + θ2,l)1+n)
1

2+n

,

which proves the assertion of Theorem 4.8 in the case xu = 1. �
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