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Abstract: We study the Richards equation with a dynamic capillary pres-
sure, including hysteresis. We provide existence and approximation results for
degenerate capillary pressure curves pc, treating two cases. In the first case,
the permeability function k can be degenerate, but the initial saturation does
not take the critical values. In the second case, the permeability function k
is strictly positive, but the capillary pressure function can be multi-valued.
In both cases, the degenerate behavior of pc leads to the physically desired
uniform bounds for the saturation variable. Our approach exploits maximum
principles and relies on the corresponding uniform bounds for pressure and sat-
uration. A new compactness result for the saturation variable allows to take
limits in nonlinear terms. The solution concept uses tools of convex analysis.

key-words: Non-equilibrium Richards equation, nonlinear pseudo-parabolic
system, capillary hysteresis, maximum principle

mathematical subject classification: 76S05, 35K65

1 Introduction

We investigate the flow of two incompressible and immiscible phases in a porous
medium. The principal modelling assumption, eventually leading us to the Richards
equation, is that one of the two phases need not be modelled, its pressure is assumed
to be constant. We denote by Ω ⊂ Rn the bounded domain which is occupied by the
porous material, [0, T ] ⊂ R is the time interval of interest, we set ΩT := Ω × (0, T ).
Denoting the pressure of the relevant fluid by p : ΩT → R and its saturation by
s : ΩT → [0, 1] (the volume fraction of pore space filled with this fluid), the combina-
tion of mass conservation and Darcy’s law for the velocity yields

∂ts = ∇ · (k(s)[∇p+ g]) . (1.1)

In this equation, a normalization of porosity and density is performed, gravity acts in
direction −en such that the constant vector g points in direction +en. The permeability
k = k(s) is given as a function k : [0, 1]→ [0,∞), it may additionally depend explicitly
on the spatial position x ∈ Ω.

1Technische Universität Dortmund, Fakultät für Mathematik, Vogelpothsweg 87, D-44227 Dort-
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The interesting modelling problem regards the relation between saturation s and
pressure p. When we assume a constant pressure for one of the two phases (typically
the air), then p is given by the capillary pressure. A widely used model is the functional
dependence and to demand p = ϕ(s). We will use in the following a function ϕ : [0, 1]→
R to describe capillary pressure and avoid the letter pc. This is done for two reasons:
one is brevity of formulas, the other is that we prefer to work with monotonically
increasing coefficient functions. In fact, the standard convention regarding the capillary
pressure is slightly asymmetric: s is the water saturation, pc is air pressure minus water
pressure. This asymmetric definition leads to a monotonically decreasing function pc,
we prefer to work with the water pressure and use ϕ(θ) = −pc(θ).

When hysteresis and dynamical effects are relevant, one replaces the algebraic re-
lation between p and s with a dynamic relation. We will study the following relation
which includes dynamic capillary pressure and hysteresis,

∂ts ∈ ψ(p− ϕ(s)). (1.2)

A relevant example for relation (1.2) is the following play-type hysteresis model
with dynamical effects,

p ∈ ϕ(s) + γ sign(∂ts) + τ∂ts. (1.3)

In this relation, sign is the multi-valued function with sign(ξ) := ±1 for ±ξ > 0 and
sign(0) := [−1, 1]. The numbers τ, γ ≥ 0 are parameters of the hysteresis relation, γ
indicates the width of a hysteresis loop, τ indicates the relevant time scale in a dynamic
adaption of the saturation. The model was suggested in [6] and receives considerable
attention, compare e.g. [11, 14, 16]. An important feature of the hysteresis model is
that it can explain fingering effects, see [22] and references therein. For τ > 0, the
multi-valued function ξ 7→ τξ + γsign(ξ) can be inverted. If we denote the Lipschitz
continuous inverse by ψ : R→ R, equation (1.3) transforms into (1.2).

In this contribution, we derive existence results for system (1.1)–(1.2). We only treat
the case with a Lipschitz continuous function ψ, which means that τ must be positive
in model (1.3). Our analysis is based on a maximum principle for system (1.1)–(1.2)
and on compactness results for approximate solutions. We treat two different cases.
(P1) is a formally degenerate system in which the permeability vanishes in one point,
but the saturation cannot reach the corresponding critical value. (P2) is a degenerate
system with positive permeability for all saturation values, but with a multi-valued
capillary pressure function ϕ.

Comparison with the literature

The case of an algebraic relation between s and p. Even with an algebraic
relation p ∈ ϕ(s) instead of (1.2), i.e. in the case without dynamic effects and without
hysteresis, the Richards equation is an interesting mathematical object due to the
degenerate behavior of the permeability k and the capillary pressure ϕ. Typically, one
assumes a vanishing permeability k(s) for some value of s. Regarding the capillary
pressure one often assumes ϕ(s) → ±∞ for s tending to critical saturation values.
Another choice, which is closer to the physical background, is to prescribe ϕ multi-
valued in the critical points. In the first model, critical saturation values cannot be
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reached if the pressure is bounded. The model with a multi-valued function ϕ allows
critical saturation values at finite pressure.

With an algebraic relation p = ϕ(s) between p and s, the main tool for the analysis
of the Richards equation is the Kirchhoff transformation. Constructing a primitive ΦK :
[0, 1] → R satisfying Φ′K(s) = k(s)ϕ′(s), the calculation ∇[ΦK(s)] = k(s)ϕ′(s)∇s =
k(s)∇[ϕ(s)] = k(s)∇p allows to transform equation (1.1) into the system

∂ts = ∆u+∇ · [k(s)g], u = ΦK(s).

If possible, one often inverts the monotonically increasing function ΦK with b = Φ−1
K

and writes the system as ∂t[b(u)] = ∆u+∇ · [k(b(u))g]. Existence results are obtained
for such equations in the classical articles [2] and [3], uniqueness is treated e.g. in
[10, 18], physical outflow boundary conditions are treated e.g. in [1] and [20].

Concerning the analytical treatment of the system, the algebraic pressure-saturation
relation has two advantages. One advantage is that information on time derivatives
of s and information on spatial derivatives of p can be combined in order to conclude
compactness results. The other advantage is that the limit problem can be formulated
as above with the expression ∆u, such that the equation is meaningful in the distribu-
tional sense for every locally integrable function u. For the dynamic capillary pressure,
it can actually be difficult to give a meaningful definition of the velocity term −k(s)∇p.

At first sight, the inclusion of a time derivative in relation (1.2) seems to regularize
the problem and one expects simpler existence results. In fact, a positive parameter
τ allows to conclude stronger a priori estimates, we refer to (2.14) which provides an
L2(ΩT )-bound for ∂ts. On the other hand, the Kirchhoff transformation is not available.
For this reason, the dynamic capillarity makes compactness and existence results more
difficult.

Hysteresis models and dynamic capillary pressure. The play-type hysteresis
model is described in (1.3) with a singular ordinary differential equation. Even without
the coupling to a partial differential equation, the functional analytic description of this
hysteresis relation is interesting, we refer to [24] for the corresponding discussion. In
both cases, the rate-independent case τ = 0 and the rate-dependent case τ > 0, the
hysteresis relation may be considered as a functional relation s(t) = B(t, p|[0,t]), where
B maps the history of the pressure values to a saturation value, where we assume
that initial values s0 are given. We must regard p as an input and s as an output,
determined by (1.3) or by (1.2).

Concerning purely static hysteresis, which means τ = 0 in the above model, an
existence result for the Richards equation was provided in [19] under the assumption
that the partial differential equation is linear, i.e. in the case that k(.) is not depending
on s and that ϕ(.) is an affine function. For other hysteresis models, existence results
for nonlinear Richards equations have been obtained in [4, 5].

Slightly more is known if the dynamic effect is included by assuming τ > 0. In
[16], an existence result was derived for this model, which includes static play-type
hysteresis. The restriction of that result is that the permeability must be bounded
from below by a positive number. We improve [16] in the direction that the function
ϕ can be degenerate and multi-valued; one relevant consequence of this extension is
that the saturation remains for all times in the physically relevant range, 0 ≤ s ≤ 1.
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Furthermore, at least in one of the two models, k may be degenerate in one point. We
note that, on the other hand, the existence result of [16] is valid for initial and boundary
conditions in the natural energy spaces, while we assume here more regularity in order
to verify the maximum principle and in order to have easier compactness proofs. In the
case τ > 0 and with strictly positive permeability, even the two-phase flow equations
can be treated by similar methods, see [15].

Degenerate permeability functions are treated in [8] and [17]. The situation in these
articles can be compared to our problem (P1), with the restriction that the special func-
tion ψ = id is analyzed, hence static hysteresis is not covered. In both contributions,
critical saturation values are essentially excluded by an integral condition.

We are not aware of literature that could be compared to our analysis of problem
(P2). In that problem, the maximum principle does not exclude critical saturation
values. The analysis of the system is more involved and a solution concept based
on variational inequalities must be used. We investigate the case that the capillary
pressure is multi-valued, but the permeability is not degenerate.

2 Preliminaries and main results

2.1 Assumptions on the coefficients

Initial and boundary conditions. The unknowns in the porous media model (1.1)–
(1.2) are s, p : Ω × [0, T ) → R. We prescribe initial values for the saturation s with
a function s0 ∈ L2(Ω). Regarding boundary conditions, we assume that ∂Ω is decom-
posed as ∂Ω = Γ̄∪ Σ̄ with Γ and Σ disjoint, relatively open subsets of ∂Ω. We impose
a homogeneous Neumann condition for p on Γ and a Dirichlet condition for p on Σ,
for which we assume positivity of the Hausdorff measure, Hn−1(Σ) > 0. The Dirichlet
conditions on Σ× (0, T ) are prescribed through a function p0 ∈ L2(0, T ;H1(Ω)).

Coefficient functions. Given are coefficient functions of the form

ϕ ⊂ R× R a maximal monotone graph, (2.1)

ψ : R→ R Lipschitz continuous, monotonically increasing, ψ(0) = 0, (2.2)

k : R→ [0,∞) Lipschitz continuous. (2.3)

We recall that ϕ = ϕ(s) is a capillary pressure function, k = k(s) is a permeability
coefficient, physically relevant arguments are saturation values s ∈ [0, 1]. The function
ψ = ψ(ζ) encodes the hysteretic behavior of the system, the argument ζ has the units
of a pressure.

When we think of the play-type model (1.3), assumption (2.2) is satisfied if and
only if τ > 0. In this article, we study (1.1)–(1.2) in two settings, made precise below
as problem (P1) and problem (P2). In problem (P1), the permeability can vanish on an
interval s ∈ [0, a]. On the other hand, the degeneracy of ϕ in s = a has the effect that
the saturation s does not reach the value a. In problem (P2), we consider a capillary
pressure function ϕ that is multi-valued in a. In this setting, the saturation s can take
the value a, hence the degeneracy of ϕ is indeed visible in the evolution. In the setting
of (P2) we assume that the permeability is strictly positive.
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(P1) The formally degenerate problem. We denote the interval of relevant
saturation values by [a, b] ⊂ [0, 1] and assume that the function ϕ is singular in the
end-points,

ϕ ∈ C1((a, b),R) strictly increasing with

ϕ(ξ)→ −∞ for ξ ↘ a and ϕ(ξ)→ +∞ for ξ ↗ b,
(2.4)

k(s) > 0 ∀ s ∈ (a, b). (2.5)

We assume that the initial saturation s0 satisfies a + ε ≤ s0 ≤ b − ε on Ω for some
ε > 0. With the help of a maximum principle we will show for problem (P1) that
the saturation s = s(x, t) remains at a distance from the end-points of (a, b) for all
times. In this sense, the problem is only formally degenerate. Once that the maximum
principle is available, we can conclude the existence theorem essentially from results of
[16].

To simplify notations, we will later identify a single-valued function ϕ : (a, b)→ R
with the multi-valued function (a, b) 3 s 7→ {ϕ(s)} ⊂ R.

(P2) The problem with a multi-valued capillary pressure. We consider a
multivalued function ϕ and assume for [a, b] ⊂ [0, 1]

there exists ϕ̃ ∈ C0,1([a, b],R), strictly increasing, such that

ϕ(ξ) = {ϕ̃(ξ)} ∀ξ ∈ (a, b), ϕ(a) = (−∞, ϕ̃(a)], ϕ(b) = [ϕ̃(b),∞),
(2.6)

k(s) > 0 ∀ s ∈ [a, b]. (2.7)

We do not assume anything on initial and boundary values that prevents the saturation
from taking one of the critical values a and b. Unfortunately, we must compensate this
generality by the non-degeneracy assumption on the permeability, assumption (2.7)
implies k ≥ κ0 on [a, b] for some κ0 > 0.

On the generality of the assumptions, further cases. Other relevant cases
concern a mixed scenario with one behavior of ϕ at a and another behavior of ϕ at b,
for example the van Genuchten model, where ϕ behaves at a as in (2.4), but it behaves
at b as in (2.6). The methods of this article can be used also in such mixed cases.

For ϕ as in (2.4), we assume that the Dirichlet values of the pressure p0 are uniformly
bounded and that the initial saturation s0 has a bounded corresponding pressure ϕ(s0).
The case of a multi-valued capillary pressure as in (2.6) and k(a) = 0 is covered by our
methods if the Dirichlet values of the pressure p0 are contained in a compact subinterval
of (ϕ̃(a), ϕ̃(b)) and if, additionally, the initial saturation s0 has its values in a compact
subinterval of (a, b). In this case, the critical values are not attained by the saturation.

The interval [0, 1] can be replaced by any other compact interval. Furthermore, in
the existence results, the choice of the whole line s ∈ R as a domain for the coefficient
functions is a possible choice; the existence results remain valid for monotone capillary
pressure function ϕ : R→ R as in (2.4) with a = −∞ and b = +∞.

Remarks on the physical interpretation of the multi-valued model (P2). The
multi-valued capillary pressure function ϕ provides an adequate and elegant description
of the physical situation in the case of extreme saturation values. This can be exploited
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also in the analysis of interface conditions, see [7, 9, 21]. The physical argument to use
a multi-valued function ϕ is best described with the situation of full water saturation,
s ≡ 1. In this situation, the pressure can be increased arbitrarily without changes in
the water saturation. Multi-valued capillary pressure functions pc can sometimes be
avoided by using the inverse S = (pc)

−1, which may have flat parts.

2.2 Existence result for problem (P1).

We search for p ∈ L2(0, T ;H1(Ω)) and use a standard weak solution concept.

Definition 2.1. We say that a pair (s, p) with s : ΩT → [a, b] and p : ΩT → R is a
weak solution of (1.1)–(1.2), if the following is satisfied.

1. The functions have the regularity

p ∈ L2(0, T ;H1(Ω)), s, ∂ts ∈ L2(0, T ;L2(Ω)). (2.8)

2. Relation (1.1) and the no-flux condition are satisfied in the sense that∫
ΩT

∂ts φ+

∫
ΩT

k(s)[∇p+ g]∇φ = 0 (2.9)

holds for every φ ∈ L2(0, T ;H1(Ω)) with φ = 0 on Σ.

3. The hysteresis relation (1.2), ∂ts = ψ(p− ϕ(s)), holds pointwise a.e. in ΩT .

We furthermore demand that the initial and boundary conditions s = s0 on Ω × {0}
and p = p0 on Σ× (0, T ) are satisfied in the sense of traces.

We now formulate with Theorem 2.2 our existence result for problem (P1). In
contrast to [17] and [8] we include static hysteresis. Furthermore, we exploit a maximum
principle and can therefore obtain a slightly stronger solution concept.

Theorem 2.2 (Existence for the formally degenerate problem (P1)). Let Ω be a par-
allelepiped in Rn with n ≤ 3, let Γ be a union of sides of Ω. Let T > 0 and let
the coefficients ϕ, k, and ψ satisfy the general assumptions (2.1)–(2.3) and the (P1)-
assumptions (2.4)–(2.5). Let initial and boundary data be given by s0 ∈ H1(Ω, (a, b))
and p0, ∂tp0 ∈ L2(0, T ;H1(Ω)) with

p0 ∈ L∞(ΩT ), ϕ(s0) ∈ L∞(Ω). (2.10)

Then there exists a weak solution (s, p) to (1.1)–(1.2) as described in Definition 2.1.

Theorem 2.2 is shown in several steps. We consider a regularized system with a
small parameter δ > 0 in Subsection 3.1. For the regularized system we derive a
maximum principle in Subsection 3.2. We apply results of [16] to conclude the existence
of solutions to the regularized system. A compactness lemma, shown in Subsection 3.3,
allows to perform the limit δ → 0. Theorem 2.2 is concluded in Subsection 4.1.
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Remarks on the assumptions of Theorem 2.2. The theorem is formulated only
for parallelepipeds Ω. This geometric restriction is made only for one reason, namely
in order to use elliptic regularity results. With those results we verify the regularity
of solutions to the regularized system. The elliptic regularity results remain valid
also for bounded domains Ω with boundary of class C2,α. Furthermore, since also
regularizations of the domain can be considered, it would be sufficient to assume that
Ω can be approximated by such C2,α-domains Ωδ. Special care must be taken regarding
the subsets Γ and Σ of ∂Ω. We need that Dirichlet- Neumann-problems can be solved
by smooth functions on Ω or, at least, on regularized domains Ωδ with boundary parts
Γδ and Σδ.

2.3 Existence result for problem (P2).

For a multi-valued capillary pressure function ϕ, the formulation of the hysteresis
relation ∂ts ∈ ψ(p − ϕ(s)) of (1.2) is not trivial. We will demand that there exists a
scalar field ρ = ρ(x, t) with ρ ∈ ϕ(s) such that ∂ts = ψ(p− ρ) holds in a weak sense.

The latter condition is formulated with tools of convex analysis. We denote the
primitive of ψ by F : R→ R; more precisely, we demand F ′ ≡ ∂F = ψ and F (0) = 0.
Here ∂ denotes the subdifferential. We furthermore use the convex conjugate of the
convex function F , the function F ∗ : R → R, F ∗(σ) := supp∈R {σ · p− F (p)}. The
evolution equation reads ∂ts ∈ ∂F (p − ρ) and is, by the Fenchel relations, equivalent
to F (p− ρ) + F ∗(∂ts) ≤ (p− ρ) ∂ts.

Additionally, we use in Definition 2.3 a primitive Φ̃ of ϕ̃. More precisely, let Φ̃ :
[a, b]→ R be the convex and differentiable function with Φ̃′(s) = ϕ̃(s) for all s ∈ (a, b),
normalized with Φ̃((a+ b)/2) = 0.

Definition 2.3. We say that a triple (s, p, ρ) with s : ΩT → [a, b], p, ρ : ΩT → R is a
variational weak solution to (1.1)–(1.2), if the following conditions are satisfied.

1. The functions have the regularity

p ∈ L2(0, T ;H1(Ω)), s, ∂ts ∈ L2(0, T ;L2(Ω)), ρ ∈ L∞(0, T ;L2(Ω)). (2.11)

2. ∂ts = ∇· (k(s)[∇p+g]) and the no-flux condition hold in the weak sense of (2.9).

3. ρ(x, t) ∈ ϕ(s(x, t)) holds a.e. on ΩT

4. The variational inequality

0 ≥
∫

Ω

Φ̃(s(x, t)) dx

∣∣∣∣t=T
t=0

−
∫ T

0

∫
Ω

p0(x, t) ∂ts(x, t) dx dt

+

∫ T

0

∫
Ω

{F (p(x, t)− ρ(x, t)) + F ∗(∂ts(x, t))} dx dt

+

∫ T

0

∫
Ω

k(x, s(x, t)) (∇p(x, t) + g)∇(p(x, t)− p0(x, t)) dx dt

(2.12)

holds.

Concerning initial and boundary values we assume s = s0 on Ω × {0} and p = p0 on
∂Ω× (0, T ) in the sense of traces.
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In order to justify our solution concept, we show that, under an additional regularity
assumption, every variational weak solution satisfies relation (1.2) almost everywhere.

Lemma 2.4. Let ϕ = ϕ̃ be a single-valued, Lipschitz continuous function and let (s, p)
be a weak solution of problem (1.1)–(1.2) in the sense of Definition 2.1. Then the triple
(s, p, ϕ(s)) is a variational weak solution.

Vice versa, let ϕ satisfy condition (2.6) and let (s, p, ρ) be a variational weak
solution as described in Definition 2.3. We assume that the additional regularity
ρ ∈ L2(0, T ;H1(Ω)) is satisfied. Then the hysteresis evolution relation ∂ts = ψ(p− ρ)
is satisfied almost everywhere.

Proof. The function ρ = ϕ(s) has the integrability properties of s, hence item 1 of
Definition 2.1 is satisfied. The weak formulation of the evolution equation (1.1) is
identical in both solution concepts, hence item 2 is satisfied. By the choice of ρ, item
3 is trivially satisfied. Concerning item 4, it suffices to use φ := p − p0 as a test-
function in (2.9), the regularity (2.8) allows to use this test-function. We recognize
immediately the second and the fourth integral of (2.12). In order to recognize the
term

∫
p ∂ts, we have to exploit the Fenchel inequality. The hysteresis relation (1.2),

i.e. ∂ts ∈ ∂F (p − ϕ(s)), is satisfied almost everywhere by the weak solution, hence
there also holds F (p− ϕ(s)) + F ∗(∂ts) ≤ (p− ϕ(s))∂ts. This allows to calculate∫ T

0

∫
Ω

p ∂ts ≥
∫ T

0

∫
Ω

ϕ(s) ∂ts+

∫ T

0

∫
Ω

{F (p− ϕ(s)) + F ∗(∂ts)} .

The chain rule can be applied to the primitive Φ̃ of ϕ = ϕ̃ with argument s. This
provides the variational inequality (2.12) and shows that every weak solution is a
variational weak solution.

In order to show the opposite implication, let now (s, p, ρ) be a variational weak
solution with the additional regularity ρ ∈ L2(0, T ;H1(Ω)). We use the sets Ma :=
{(x, t) ∈ ΩT |s(x, t) = a} and Mb := {(x, t) ∈ ΩT |s(x, t) = b}. The Lemma of Stampac-
chia and Fubini’s theorem imply ∂ts = 0 on Ma ∪Mb, we therefore have∫

ΩT

(ρ− ϕ̃(s))∂ts =

∫
ΩT \(Ma∪Mb)

(ρ− ϕ̃(s))∂ts = 0,

since by property 3 of variational weak solutions ρ− ϕ̃(s) = 0 holds on ΩT \ (Ma∪Mb).
We use this observation in order to write the first integral of the variational inequality
(2.12) as ∫

Ω

Φ̃(s)

∣∣∣∣t=T
t=0

=

∫
ΩT

∂t[Φ̃(s)] =

∫
ΩT

ϕ̃(s)∂ts =

∫
ΩT

ρ∂ts.

The last integral of (2.12) can be integrated by parts, which transforms the integrand
into −∂ts (p− p0). The two integrals over ±∂ts p0 cancel and (2.12) reads

0 ≥
∫ T

0

∫
Ω

(ρ− p) ∂ts +

∫ T

0

∫
Ω

{F (p− ρ) + F ∗(∂ts)} .

The definition of the Fenchel conjugate implies F (p − ρ) + F ∗(∂ts) ≥ (p − ρ) ∂ts.
Therefore, the integral inequality is indeed an equality and, as a consequence, the
equality F (p− ρ) + F ∗(∂ts) = (p− ρ) ∂ts is satisfied pointwise almost everywhere. As
observed before, this equality implies the inclusion ∂ts ∈ ∂F (p−ρ) almost everywhere,
which is identical to ∂ts = ψ(p− ρ).
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Remark. Lemma 2.4 essentially implies that items 2-4 of Definition 2.3 encode the
hysteresis relation (1.2). An interesing aspect of this observation is that the multi-
valued behavior of ϕ in the end-points a and b does not appear in the variational
inequality; only the regular part ϕ̃ of ϕ appears through its primitive Φ̃ in (2.12).

Theorem 2.5 (Existence for the degenerate problem (P2)). Let Ω be a parallelepiped
in Rn with n ≤ 3, let Γ be a union of sides of Ω. Let T > 0 and let the coefficients ϕ,
k, and ψ satisfy the general assumptions (2.1)–(2.3) and the (P2)-assumptions (2.6)–
(2.7). Let initial and boundary data be given by s0 ∈ H1(Ω), s0 : Ω → [a, b], and
p0 ∈ L2(0, T ;H1(Ω))∩L∞(ΩT ). Then there exists a variational weak solution to (1.1)–
(1.2) as described in Definition 2.3.

Theorem 2.5 is shown in Section 4, Subsection 4.2. The proof uses Theorem 2.2,
which provides the existence of solutions to a regularized system with capillary pressure
functions ϕδ. Theorem 2.5 follows by performing the limit procedure δ → 0, exploiting
a maximum principle and a compactness result.

The regularity assumption s0 ∈ H1(Ω) of Theorem 2.5 is not essential. The as-
sumption is made here in order have with Lemma 3.3 a simple compactness proof for
the saturation variable.

A heuristic uniqueness argument. We made the step from a single-valued to a
multi-valued function ϕ. For a single-valued function ϕ, the relation ρ(x, t) ∈ ϕ(s(x, t))
of Definition 2.3 determines ρ once that s is known. By contrast, for a multi-valued
function ϕ, the relation ρ(x, t) ∈ ϕ(s(x, t)) leaves more freedom for the function ρ.
We should convince ourselves, that we can still expect uniqueness of solutions in the
multi-valued case.

Let us give a heuristic argument that uniqueness should hold also in the multi-
valued case, at least for strictly increasing ψ. Given s(., t), a monotone elliptic relation
such as ∆p−ψ(p−ρ) = 0 defines a map ρ 7→ p. In particular, given ρ(., t), the evolution
equation ∂ts = ∆p determines uniquely a saturation increment. The increment of ρ
is determined by two relations: if the saturation values are not extreme, s 6= a and
s 6= b, then we must satisfy ρ = ϕ̃(s), which determines the ρ-increment. If, on the
other hand, s takes an extreme value, we expect 0 = ∂ts = ψ(p− ρ) and are forced to
set ρ = p.

2.4 Natural function spaces

Before we start the rigorous analysis of system (1.1)–(1.2), we present the correspond-
ing a priori energy estimate. Following the usual pathway to existence results, we will
define in Section 3 a set of regularized differential equations, solve this approximate
system, and obtain a solution of the original problem as a weak limit of the approximate
solutions. The appropriate function spaces in this process are dictated by the formal
energy estimate. We note that the energy estimate could also be obtained from in-
equality (2.12), but we present here the calculation from scratch rather than analyzing
the integrand F ∗(∂ts).

A multiplication of (1.1) with p− p0 and an integration over Ω provides∫
Ω

(p− p0) ∂ts+

∫
Ω

k(s)[∇p+ g]∇(p− p0) = 0. (2.13)
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The second integral can provide an estimate for |∇p|2. In the first integral we write∫
Ω

p ∂ts =

∫
Ω

(p− ϕ(s)) ∂ts+

∫
Ω

ϕ(s) ∂ts

=

∫
Ω

(p− ϕ(s))ψ(p− ϕ(s)) +

∫
Ω

∂t[Φ(s)],

where Φ = Φ̃ is the primitive with Φ′ = ϕ. We omit the tilde symbol since we think of
problem (P1) here.

We can now exploit the Lipschitz continuity of ψ. Denoting the Lipschitz constant
by 1/τ0, using monotonicity of ψ and ψ(0) = 0, we find |ψ(ζ)| ≤ τ−1

0 |ζ| and ζ ψ(ζ) ≥
τ0|ψ(ζ)|2 for every ζ ∈ R. This allows to calculate∫

Ω

p ∂ts ≥ τ0

∫
Ω

|ψ(p− ϕ(s))|2 + ∂t

∫
Ω

Φ(s) = τ0

∫
Ω

|∂ts|2 + ∂t

∫
Ω

Φ(s).

With this observation, we have recognized several positive terms in equation (2.13).
We obtain

τ0

∫
Ω

|∂ts|2 + ∂t

∫
Ω

Φ(s) +

∫
Ω

k(s)|∇p|2 ≤
∫

Ω

{p0∂ts+ k(s)[∇p+ g]∇p0 − k(s)g∇p} .

We finally integrate over t ∈ [0, T ]. On the data we assume p0 ∈ L2(0, T ;H1(Ω)) and
that s0 satisfies Φ(s0) ∈ L1(Ω). On the coefficient functions we assume boundedness of
k and that Φ is bounded from below. With the usual application of the Cauchy-Schwarz
and the Young inequality we obtain the energy estimate∫

ΩT

k(s)|∇p|2 + τ0|∂ts|2 ≤ C0. (2.14)

In this estimate, the constant C0 depends on g, p0, and s0. It is independent of the
shape of ϕ and ψ, it only depends on the general properties that are listed in (2.1)–(2.3).

The energy estimate (2.14) is very valuable. The estimate holds also for a regular-
ized system, independent of the regularization parameter δ. We have therefore spatial
estimates for p and temporal estimates for s at our disposal. On the other hand, the
estimate for the pressure contains the factor k(s), which can be small in degenerate
systems. Furthermore, we lack spatial regularity for the saturation variable s. This
latter problem can be compensated by (1.2), which allows to derive spatial regularity
of s from spatial regularity of p.

We believe that, without a positive lower bound for the permeability k, it is not
possible to obtain compactness for families s ∈ L2(ΩT ) based only on (2.14) and (1.2).

3 Regularization, maximum principle, compactness

3.1 The regularized system

Our aim is to derive, in addition to the energy estimate (2.14), uniform estimates
for solutions with a maximum principle. Since we use a geometric approach to the
maximum principle, we need regular solutions to the system, say of class C2. As we
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will see below, smooth solutions can be obtained, at least if the coefficient functions ϕ,
ψ, and k, and the data p0, s0, and g are sufficiently smooth.

We choose a sequence δ = δj ↘ 0 for j ∈ N and use δ as an index for regularized
functions. On the regularized coefficient functions we assume

kδ ∈ C∞(R, (0,∞)), kδ ≥ δ. (3.1)

ϕδ : R→ R is C∞ with ∂sϕδ ≥ δ, (3.2)

ψδ : R→ R is C∞ with ∂ζψδ ≥ δ . (3.3)

We assume that these new coefficient functions are approximations in the sense that

kδ → k uniformly on R, (3.4)

ϕδ → ϕ uniformly on compact subsets of (a, b), (3.5)

ϕδ(ξ)→∞ for ξ > b and ϕδ(ξ)→ −∞ for ξ < a, (3.6)

ψδ → ψ uniformly on compact subsets of R . (3.7)

For simplicity of notation we assume here that the data p0, s0 and g are given smooth
functions. The general case can be treated with an additional regularization.

Lemma 3.1 (Existence and regularity for the regularized system). Let Ω ⊂ Rn and
Γ ⊂ ∂Ω be as in Theorem 2.2 and let the regularized coefficients satisfy (3.1)–(3.7).
Then the system

∂ts
δ = ∇ ·

(
kδ(s

δ)[∇pδ + g]
)

(3.8)

∂ts
δ = ψδ(p

δ − ϕδ(sδ)) (3.9)

together with smooth initial and boundary data, posesses a classical solution (sδ, pδ) of
class C2,α(ΩT ). The solutions satisfy the energy estimate∫

ΩT

kδ(s
δ)|∇pδ|2 + τ0|∂tsδ|2 ≤ C0, (3.10)

where C0 does not depend on δ.

Proof. Step 1. Weak solutions and initial regularity. The existence of a weak solution
(sδ, pδ) was shown in [16] with the help of a Galerkin discretization. In that work,
a spatial discretization with parameter h > 0 is introduced and discrete solutions
(sδ,h, pδ,h) are defined. These solutions satisfy the uniform energy estimate (3.10),
which is identical to the formally derived estimate (2.14). By strict positivity of kδ,
the energy bound provides an h-independent estimate for pδ,h ∈ L2(0, T ;H1(Ω)). The
essential step is then a compactness result. The hysteresis relation (3.9) transmits
spatial regularity of pδ,h to sδ,h and permits to conclude the pre-compactness of the
sequence sδ,h ∈ L2(ΩT ). From the strong convergence sδ,h → sδ for h→ 0 one concludes
that every limit function (sδ, pδ) is indeed a weak solution of the hysteresis system.

To be precise, we mention that [16] is concerned with the special function ψ cor-
responding to relation (1.3). But, as noted in [16] before the main theorem, a general
Lipschitz continuous function ψδ can be treated as well, at least concerning results on
a priori estimates and compactness. An additional regularity is observed in Section 4
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of [16]: for regular initial and boundary data an energy type estimate can be obtained
for time derivatives of the solution. Equation (4.4) of [16] provides

‖∂tpδ‖L2(0,T ;H1(Ω)) + ‖∂2
t s
δ‖L2(0,T ;L2(Ω)) ≤ C, (3.11)

where C ∈ R depends on Ω, T , and δ. This estimate is derived in the above mentioned
equation (4.4) for the discrete solutions (sδ,h, pδ,h) with C independent of h. We note
that the estimate actually implies directly the compactness statement, additionally the
pre-compactness of pδ,h, and hence the solution property for (sδ, pδ). In particular, the
existence of a solution (sδ, pδ) satisfying (3.11) follows from [16] also for general ψδ as
in (3.3).

Step 2. Hölder regularity. In order to conclude additional regularity of solutions,
we next derive Hölder estimates. We will make use of deep regularity results for elliptic
equations. In order to obtain an initial regularity, we consider (3.8) for every t ∈ [0, T ]
as an elliptic equation on Ω,

∇ ·
(
k(sδ)[∇pδ + g]

)
= f := ∂ts

δ(., t). (3.12)

We want to show that the right hand side f is bounded in some space Lq(Ω) with
q > n. Such an estimate is not contained in (3.11).

In up to three space dimensions, n ≤ 3, the embeddingH1(Ω) ⊂ Lq(Ω) is continuous
for q = 4. From (3.11) and this embedding, we infer a t-independent bound for the
pressure pδ(., t) ∈ Lq(Ω). The evolution equation (3.9) transfers this regularity estimate
to the saturation sδ and its time derivative, compare Lemma 3.3 of [16]. We find
that both sδ(., t) and ∂ts

δ(., t) are uniformly bounded in Lq(Ω). This provides the
boundedness of f ∈ Lq(Ω), independent of t ∈ [0, T ].

With this observation, we can now exploit the fundamental regularity result of
De Giorgi for elliptic equations without a continuity assumption on the coefficients.
In (3.12), the coefficient k(sδ(., t)) is measurable, bounded from above and strictly
positive. A De Giorgi result as in [12] provides an estimate for the solution pδ in
the space Cα(Ω) for some α > 0. Since we treat the case with f 6= 0, we must use
the inhomogeneous result of Stampacchia, see [23], Theorem 4.2. In this step, the
inequality q > n and the scalar character of the equation is exploited.

Step 3. Classical solutions. At this point, we have a t-independent estimate for
pδ(., t) ∈ Cα(Ω). Once more, for smooth initial data s0, the evolution equation (3.9)
transfers this estimate to the saturation sδ, a direct argument exploiting the theory of
ordinary differential equations shows this result also in Hölder spaces. Accordingly, we
now consider with (3.12) an equation in which the right hand side and the coefficients
k(sδ(., t)) are Hölder continuous with uniform bounds. This allows to use regularity
estimates for systems in divergence form, we refer to Giaquinta, [13] Chapter III,
Theorem 3.2 and the comments on global estimates after the theorem. We infer a
t-independent estimate for pδ(., t) ∈ C1,α(Ω).

We can now iterate the arguments and improve the regularity to arbitrary order.
The L∞([0, T ], C1,α(Ω))-regularity of pδ implies through (3.9) the same regularity for
sδ and ∂ts

δ. With the help of [13], Chapter III, Theorem 3.3 we achieve an arbitrary
order of regularity. This implies the claim, the existence of a solution (sδ, pδ) of class
C2,α(ΩT ) to the regularized system (3.8)–(3.9).
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Step 4. Remarks on boundary conditions. We used three classical theorems on
elliptic regularity. None of these theorems treats mixed boundary conditions. We
therefore restricted this discussion to parallelepipeds Ω with homogeneous Neumann
conditions on entire sides. For such domains, symmetric extension of the solution across
Neumann sides allows to treat Neumann boundary points as inner points.

3.2 The maximum principle

Lemma 3.2 below provides a maximum principle for smooth solutions of (1.1)–(1.2).
Let us note already here that the maximum principle can be transferred to weak

solutions of (1.1)–(1.2). We regularize the system as above, using the regularization
parameter δ > 0. By Lemma 3.1 the regularized system posesses a smooth solution
(sδ, pδ). Lemma 3.2 provides uniform bounds for pδ and ϕδ(s

δ). Performing the limit
δ → 0, we obtain weak solutions (s, p) as limits of (sδ, pδ). The uniform bounds for
the regular solutions remain valid also for weak limits, hence we obtain a maximum
principle for every weak solution of the original problem that was obtained with a
regularization procedure.

In order to avoid the sub- and superscipts δ, we assume in this subsection that
k ∈ C∞(R, (0,∞)) is strictly positive and that ϕ, ψ ∈ C∞(R,R) have positive lower
bounds for the derivatives.

Lemma 3.2 (Maximum principle). Let Ω ⊂ Rn be bounded with piecewise C1-boundary
and let [0, T ] be a time interval. We assume that the coefficient functions are as specified
in (2.1)–(2.3), with strict inequalities k, ∂sϕ, ∂ζψ > 0. Let the coefficient functions, the
initial and the boundary data be such that there exists a solution (s, p) of system (1.1)–
(1.2) of class C2(Ω̄T ). Let M > 0 be a constant such that

|p0(x, t) + g · x| < M ∀(x, t) ∈ Ω̄T ,

|ϕ(s0(x)) + g · x| < M ∀x ∈ Ω̄.

Then there holds, for all (x, t) ∈ ΩT ,

|p(x, t) + g · x| < M,

|ϕ(s(x, t)) + g · x| < M.

Proof. The estimate for p. We use the geometric approach to prove the maximum
principle. We introduce the functions p̂(x, t) := p(x, t)+g·x and p̂0(x, t) := p0(x, t)+g·x.
We perform the calculations for the upper bounds, the lower bounds are derived in an
analogous fashion.

For a contradiction argument we consider the first time instance t0 ∈ [0, T ] such
that maxx∈Ω p̂(x, t0) = M . We choose one maximum x0 ∈ Ω̄ such that p̂(x0, t0) = M .

Claim A: ∂ts(x0, t0) is positive. We derive the positivity of the time derivative from
(1.2). In the case t0 = 0, it suffices to calculate ∂ts(x0, t0) = ψ(p − ϕ(s))(x0, t0) =
ψ(M − g · x0 − ϕ(s0(x))) > ψ(0) = 0.

In the case t0 > 0 we consider the segment {x0} × [0, t0] ⊂ Ω̄T . We claim that
ϕ(s(x0, t))+g·x0 < M holds for all t ∈ [0, t0]. Indeed, for t = 0 holds ϕ(s(x0, t))+g·x0 =
ϕ(s0(x0))+g ·x0 < M by assumption. Let now t1 ∈ (0, t0] be the minimal time instance
with ϕ(s(x0, t1)) + g · x0 = M . In this point holds ∂ts(x0, t1) = ψ(p − ϕ(s))(x0, t1) =
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ψ(p̂(x0, t1) − g · x0 − ϕ(s(x0, t1))) = ψ(p̂(x0, t1) −M) < ψ(0) = 0, in contradiction to
minimality of t1. This shows ϕ(s(x0, t)) + g · x0 < M for all t ∈ [0, t0].

We can now use this property to calculate ∂ts(x0, t0) = ψ(p−ϕ(s))(x0, t0) > ψ(M−
g · x0 −M + g · x0) = ψ(0) = 0. This shows Claim A.

Conclusion of the contradiction argument. Using Claim A, we now continue the
analysis of the point (x0, t0). Equation (1.1) in the point (x0, t0) reads

∂ts(x0, t0) = ∇ · (k(s)∇p̂)(x0, t0),

and we recall that x0 is, by construction, a maximum of p̂(., t0).
Case 1. x0 is an interior point, i.e. x0 ∈ Ω. In this case, the geometrical condition

of a maximum yields ∇ · (k(s)∇p̂)(x0, t0) ≤ 0 for the right hand side. This is in
contradiction with Claim A that provides the positivity ∂ts(x0, t0) > 0 of the left hand
side.

Case 2. x0 ∈ ∂Ω is a boundary point. We note that x0 cannot lie on the Dirichlet
boundary or its closure. This is a consequence of our assumption on the boundary
values, p̂0 < M on Ω̄T .

It remains to study the case that x0 ∈ Γ is a point on the Neumann boundary.
Regarding this case we first observe that, by continuity of ∂ts, the positivity ∂ts > 0
holds also in a neighborhood of (x0, t0). This implies the positivity ∇ · (k(s)∇p̂) > 0
in this neighborhood, hence p̂(., t0) is a subsolution for the elliptic operator L = −∇ ·
(k(s(., t0))∇ in this neighborhood, Lp̂(., t0) ≤ 0. We can therefore apply the Hopf
lemma for subsolutions, treating strict maxima on the boundary. We conclude for the
exterior normal vector ν the inequality ν ·∇p̂(x0, t0) > 0. This is in contradiction with
the homogeneous Neumann condition ν · k(s)∇p̂ = 0 on Γ× [0, T ].

We found a contradiction to the assumption that p̂(x0, t0) = M . This contradiction
implies p̂ < M .

The estimate for ϕ(s). The estimate for ϕ(s) follows with a similar contradiction
argument. We denote by t1 ∈ (0, T ] the first time instance such that ϕ(s(x, t))+g ·x =
M for some point x ∈ Ω. In such a point x = x0 we can calculate, using the uniform
pressure estimate of the first step, ∂ts = ψ(p−ϕ(s)) < ψ(M − g · x0−M + g · x0) = 0.
This provides the contradiction to minimality of t1.

3.3 Compactness

Compactness for the saturation in problems (P1) and (P2)

Lemma 3.3 (Saturation compactness). Let Ω ⊂ Rn be as in Lemma 3.2, T > 0 and
C0, κ0 > 0 real numbers. Let the family of coefficient functions ϕδ, kδ, and ψδ satisfy
(3.1)–(3.3) for δ = δj → 0. Let pδ0 and sδ0 be regularized boundary data with pδ0 → p0 in
L2(0, T ;H1(Ω)) and sδ0 → s0 in H1(Ω). We assume that pδ0 and ϕδ(s

δ
0) are uniformly

bounded by C0. Let (sδ, pδ) be classical solutions of class C2(Ω̄T ) to the regularized
system (3.8)–(3.9). We assume that for all δ = δj holds

0 < ∂ζψδ(ζ) ≤ C0 ∀ζ ∈ R, 0 < ∂sϕδ(s) ∀s ∈ R, 0 < κ0 ≤ kδ(s
δ) on ΩT . (3.13)

Then the solution sequence has the property that

(sδ)δ is pre-compact in L2(0, T ;L2(Ω)). (3.14)
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We recall that the regular solution exists by Lemma 3.1 for parallelepipeds Ω. Every
solution (sδ, pδ) satisfies uniform bounds by Lemma 3.2.

Proof. We first consider the time derivative ∂ts
δ. We note that uniform bounds for

∂ts
δ ∈ L2(ΩT ) could be concluded from the energy estimate (3.10) (which holds also

for general Lipschitz domains), but this estimate can be improved to uniform bounds
in the situation of this lemma. We use the hysteresis relation (3.9), which reads

∂ts
δ = ψδ(p

δ − ϕδ(sδ)), (3.15)

and combine it with the maximum principle. Lemma 3.2 implies that the right hand
side of (3.15) is uniformly bounded, hence we find boundedness of ‖∂tsδ‖L∞(ΩT ).

In order to show the compactness statement (3.14), we want to derive additionally
spatial regularity estimates for sδ. We take the gradient of both sides of (3.15), which
is possible by our regularity assumptions. We obtain

∂t∇sδ = (∂ζψδ)|(pδ−ϕδ(sδ)) · (∇p
δ − (∂sϕδ)|sδ∇sδ). (3.16)

We multiply this relation with ∇sδ. Using 0 ≤ ∂ζψδ ≤ C0 and 0 ≤ ∂sϕδ, we obtain

∂t
1

2

∫
Ω

|∇sδ|2 =

∫
Ω

∂t∇sδ · ∇sδ =

∫
Ω

(∂ζψδ)|pδ−ϕδ(sδ) · (∇p
δ − (∂sϕδ)|sδ∇sδ) · ∇sδ

≤ C

∫
Ω

∇pδ · ∇sδ ≤ C‖∇pδ‖L2(Ω)‖∇sδ‖L2(Ω) .

We obtain that yδ(t) :=
(∫

Ω
|∇sδ(., t)|2

)1/2
satisfies

yδ(0) = ‖∇sδ0‖L2(Ω) ≤ C, ∂tyδ(t) ≤ C‖∇pδ‖L2(Ω) .

Because of the lower bound kδ(s
δ) ≥ κ0 > 0 along solutions, the energy estimate

(3.10) implies the boundedness of ∇pδ ∈ L2(ΩT ). Therefore, the map t 7→ ‖∇pδ‖L2(Ω)

is bounded in L1(0, T ;R), and we conclude

sup
t∈[0,T ]

∫
Ω

|∇sδ|2 ≤ C. (3.17)

Since both the temporal derivatives ∂ts
δ and the spatial derivatives ∇sδ are bounded

in L2(ΩT ), the Rellich embedding theorem provides the pre-compactness of the family
sδ in L2(ΩT ).

Compactness for the pressure in the formally degenerate problem (P1)

Our second compactness result concerns the pressure variable in problem (P1). Even
though we consider, in general, permeabilities k that take the value 0 in one point, we
are, effectively, in a non-degenerate situation. This is a consequence of the maximum
principle and the behavior of ϕ. The maximum principle implies that the pressure
function p and the expression ϕ(s) are uniformly bounded for solutions (s, p). As a
consequence, the degeneracy of ϕ implies that the saturation s stays away from the
critical values. This leads to the fact that, along solutions, the derivative ∂sϕ(s) is
bounded and the function k(s) is strictly positive.
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Once this effective non-degeneracy is shown, we can derive higher order estimates
for the pressure. These estimates imply immediately the compactness. We remark that
analogous higher order estimates are also observed in Proposition 4.2 of [16] and that
they have already been used for fixed δ > 0 in the regularity proof of Lemma 3.1.

Lemma 3.4 (Pressure compactness for (P1)). Let the situation be as in Theorem
2.2, in particular with the formally degenerate coefficient functions of (P1). Let the
regularizations of the coefficient functions be as in (3.1)–(3.7) for δ = δj → 0. Let
the regularized boundary data satisfy pδ0 → p0 and ∂tp

δ
0 → ∂tp0 in L2(0, T ;H1(Ω)), and

sδ0 → s0 in H1(Ω), furthermore we assume that pδ0 and ϕδ(s
δ
0) are uniformly bounded.

On the regularized coefficients we additionally assume that for every ε > 0 there
exist constants C,Cε > 0 such that

0 < ∂sϕδ(ξ) ≤ Cε ∀δ = δj, ξ ∈ [a+ ε, b− ε], (3.18)

0 < ∂ζψδ(ζ) ≤ C ∀δ = δj, ζ ∈ R, (3.19)

0 < kδ(s), ∂skδ(s) ≤ C ∀δ = δj, s ∈ [a, b]. (3.20)

Let (sδ, pδ) be classical solutions of class C2(Ω̄T ) to the regularized system (3.8)–(3.9),
which exist by Lemma 3.1 and which satisfy uniform bounds by Lemma 3.2. Then

(pδ)δ is pre-compact in L2(0, T ;L2(Ω)). (3.21)

We note already here that arbitrary coefficient functions ϕ, ψ, k of problem (P1)
can be approximated such that the regularized function ϕδ, ψδ, kδ satisfy the conditions
(3.1)–(3.7) and (3.18)–(3.20).

Proof. We derive an higher order a priori estimate for pδ essentially by testing the time
derivative of the evolution equation with time derivatives of pδ. Since the gravity force
g does not depend on t, the time derivative of (3.8) is

∂2
t s
δ = ∇ ·

(
kδ(s

δ)∇∂tpδ + ∂skδ(s
δ)∂ts

δ[∇pδ + g]
)
. (3.22)

We recall that the solutions are classical solutions such that all expressions are mean-
ingful. The second derivative ∂2

t s
δ on the left hand side can also be evaluated using

the time derivative of (3.9),

∂2
t s
δ = ∂ζψδ|(pδ−ϕδ(sδ)) · (∂tp

δ − ∂sϕδ(sδ) · ∂tsδ). (3.23)

Multiplication of (3.22) with ∂tp
δ − ∂tpδ0 provides, exploiting (3.23) and omitting the

arguments of the coefficient functions,∫
ΩT

kδ|∇∂tpδ|2 +

∫
ΩT

(∇∂tpδ −∇∂tpδ0) · ∂skδ ∂tsδ [∇pδ + g]

−
∫

ΩT

kδ∇∂tpδ · ∇∂tpδ0 +

∫
ΩT

∂ζψδ · (∂tpδ − ∂sϕδ · ∂tsδ) (∂tp
δ − ∂tpδ0) = 0.

(3.24)

This equation can provide an estimate for ∇∂tpδ ∈ L2(ΩT ) in the case that ∂sϕδ is
bounded. In the situation of this lemma, the functions pδ and ϕδ(s

δ) are uniformly
bounded by the maximum principle. The degeneracy (2.4) of ϕ at a and b together
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with the approximation property (3.5) implies that, for some ε > 0, the values of sδ

are restricted to the interval [a+ ε, b− ε]. Therefore, (3.18) implies the uniform bound
∂sϕδ(s

δ) ≤ Cε. Using additionally the non-negativity of the integrand ∂ζψδ|∂tpδ|2 and
the strict positivity kδ(s

δ) ≥ κε > 0, which follows from (2.5) and (3.4), we obtain

κε

∫
ΩT

|∇∂tpδ|2 ≤
∫

ΩT

|∇∂tpδ −∇∂tpδ0| · |∂skδ| |∂tsδ| |∇pδ + g| (3.25)

+

∫
ΩT

kδ|∇∂tpδ| |∇∂tpδ0|+ C Cε

∫
ΩT

|∂tsδ| |∂tpδ|+
∫

ΩT

|∂tpδ − ∂sϕδ · ∂tsδ| |∂tpδ0|.

Regarding the different expressions on the right hand side we observe that kδ and
∂skδ are bounded, by assumption the boundary values are bounded functions ∇∂tpδ0 ∈
L2(ΩT ). Furthermore, the solution (sδ, pδ) satisfies the a priori estimates in energy
spaces as in (3.10), i.e. uniform bounds for ∇pδ ∈ L2(ΩT ) and ∂ts

δ ∈ L2(ΩT ).
In order to treat the right hand side of the above inequality, we must make an

additional observation. The maximum principle of Lemma 3.2 provides uniform bounds
for pδ and ϕδ(s

δ). This can be exploited in the evolution equation ∂ts
δ = ψδ(p

δ −
ϕδ(s

δ)). The uniform global Lipschitz constant for ψδ implies that also ∂ts
δ is uniformly

bounded, ‖∂tsδ‖L∞(ΩT ) ≤ C. With this additional information, exploiting the Cauchy-
Schwarz and the Poincaré inequality, we conclude from (3.25)

κε

∫
ΩT

|∇∂tpδ|2 ≤ C + C‖∇∂tpδ‖L2(ΩT ).

We use Young’s inequality and absorb terms into the left hand side to obtain∫
ΩT

|∇∂tpδ|2 ≤ C, (3.26)

with a constant that is independent of δ. This implies, in particular, the compactness
of the sequence pδ in L2(ΩT ).

4 Derivation of the existence results

4.1 Existence in the formally degenerate case (P1)

Proof of Theorem 2.2. Let the situation be as described in Theorem 2.2. We approx-
imate the coefficient functions as in Subsection 3.1 with coefficient functions ϕδ, kδ,
and ψδ as in (3.4)–(3.7). We can choose regularizations that satisfy the assumptions
of Lemma 3.4. Furthermore, we approximate p0 and s0 by smooth functions pδ0 and
sδ0 → s0 as required in Lemma 3.4. The resulting regularized system has a smooth solu-
tion (sδ, pδ) by Lemma 3.1. The energy estimate (3.10) allows to choose a subsequence
δ → 0 and limit functions such that

(sδ, ∂ts
δ, pδ,∇pδ) ⇀ (s, ∂ts, p,∇p) in L2(ΩT ). (4.1)

The weak convergence of ∇pδ and ∂ts
δ implies that the initial and boundary conditions

are satisfied in the sense of traces by the limit functions.
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We have additional information on the approximating sequence: the maximum
principle of Lemma 3.2 provides a constant M0 > 0 such that |pδ| ≤M0 and |ϕδ(sδ)| ≤
M0 on Ω̄T , independent of δ. As in the last proof, the singularity property (2.4) for
ϕ then provides uniform bounds for sδ: For some ε > 0 there holds sδ ∈ [a + ε, b − ε]
on Ω̄T for all δ. As a consequence, the permeability kδ(s

δ) is bounded from below by
some constant κε > 0 and ∂sϕδ(s

δ) is uniformly bounded.
This observation allows to apply the compactness results of Lemma 3.3 and Lemma

3.4. We conclude that (sδ, pδ) → (s, p) strongly in L2(ΩT ) and, upon choice of
a subsequence, pointwise almost everywhere. This allows to take the weak limit
kδ(s

δ)∇pδ ⇀ k(s)∇p in (1.1). Furthermore, using once more the maximum princi-
ple, it implies the strong convergence ϕδ(s

δ)→ ϕ(s). This strong convergence and the
strong convergence of pδ, together with the uniform convergence ψδ → ψ on compact
sets allows to perform the limit in relation (3.9); we obtain that (1.2) holds pointwise
almost everywhere. This verifies the weak solution properties of the limit pair (s, p)
and concludes the proof of Theorem 2.2.

4.2 Existence in the multi-valued case (P2)

In the multi-valued case, the saturation values a and b may be attained. This has the
consequence that we have no uniform bound for ∂sϕ along solutions. A compactness
result for the pressure functions pδ is not available, Lemma 3.4 can not be applied.

Our way to circumvent this problem is to use a weaker solution concept in the
multi-valued case. We introduced variational weak solutions in Definition 2.3; our aim
is now to derive that every weak limit of regularized solutions is a variational weak
solution.

Proof of Theorem 2.5. Let the situation be as described in Theorem 2.5, ϕδ, kδ, and
ψδ approximations of the coefficient functions as in (3.4)–(3.7), satisfying additionally
the assumptions of Lemma 3.3. The boundary data p0 and s0 are approximated by
pδ0 → p0 in L2(0, T ;H1(Ω)) and sδ0 → s0 in H1(Ω) as before. The regularized system
has a smooth solution (sδ, pδ). As in the last proof, we choose a subsequence and a
limit pair (s, p) such that (4.1) holds. We recall that the maximum principle of Lemma
3.2 provides M0 > 0 such that |pδ| ≤ M0 and |ϕδ(sδ)| ≤ M0 holds. In particular, we
can assume on the regularization ψδ that ψ = ψδ outside of a compact subset of R.
Lemma 3.3 can be applied and provides the strong convergence sδ → s in L2(ΩT ) and
we can assume the convergence pointwise almost everywhere along the subsequence.

For a further subsequence we can define ρ as a limit of ϕδ(s
δ), more precisely

ϕδ(s
δ) → ρ ∈ L∞(ΩT ) weak-∗. We have to verify items 1-4 of Definition 2.3 of varia-

tional weak solutions.

Item 1. By construction as weak limits, the function spaces for the limit functions
p, s, and ρ are as required.

Item 2. As in the last proof, we have to verify (2.9), the weak form of the evolution
(1.1). The verification of this relation poses no problems. We fix a test-function
φ ∈ L2(0, T ;H1(Ω)) with φ = 0 on Σ. The regularized solutions satisfy∫

ΩT

∂ts
δ φ+

∫
ΩT

kδ(s
δ)[∇pδ + g]∇φ = 0. (4.2)
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The weak convergences ∂ts
δ ⇀ ∂ts and∇pδ ⇀ ∇p together with the strong convergence

of sδ implies that the limit functions satisfy (2.9).

Item 3. We must verify that the inclusion ρ(x, t) ∈ ϕ(s(x, t)) holds almost every-
where on ΩT . We derive this inclusion easily from ρ ↼ ρδ := ϕδ(s

δ) weakly in L2(ΩT ),
the strong convergence sδ → s and the uniform convergence ϕδ → ϕ on compact sub-
sets of (a, b). We present here an elementary proof without reference to theory on
maximal monotone functions. For a subsequence, we have the pointwise convergence
sδ(x, t) → s(x, t) for almost every (x, t). By the Theorem of Egorov, the convergence
is uniform on arbitrarily large subsets of ΩT .

In a first step, we consider the set Aε = {(x, t) ∈ ΩT |s(x, t) ∈ [a+ ε, b− ε]}. On
an arbitrarily large subset of Ãε ⊂ Aε, there holds sδ(x, t) ∈ [a + ε/2, b − ε/2] for all
sufficiently small δ. We therefore find the pointwise convergence ϕδ(s

δ)→ ϕ̃(s) on this
set. For an arbitrary test-function φ ∈ C∞c (ΩT ) we can calculate with the Lebesgue
convergence theorem∫

Ãε

ρφ←
∫
Ãε

ρδφ =

∫
Ãε

ϕδ(s
δ)φ→

∫
Ãε

ϕ̃(s)φ.

Since the measure of Aε \ Ãε is arbitrarily small there holds ρ = ϕ̃(s) almost every-
where on Aε. Since ε > 0 was arbitrary, we conclude ρ = ϕ̃(s) almost everywhere on
{(x, t)|s(x, t) ∈ (a, b)}.

We next consider points B := {(x, t) ∈ ΩT |s(x, t) = b}. We consider a subset
B̃ ⊂ B such that uniform convergence sδ(x, t) → s(x, t) holds on B̃. The set B \ B̃
can be chosen arbitrarily small. For arbitrary ε > 0, we find ϕδ(s

δ) ≥ ϕ̃(b) − ε on
the set B̃ for every sufficiently small δ. This provides, in the limit δ → 0, the relation
ρ ≥ ϕ̃(b) − ε on B̃. Since ε > 0 was arbitrary and the subset B̃ can be chosen large,
we conclude ρ ≥ ϕ̃(b) on B, hence ρ ∈ ϕ(s) on B. Since the point s = a can be treated
in the same way, we conclude ρ ∈ ϕ(s) on ΩT . This concludes the property of item 3.

Item 4. It remains to derive the variational inequality (2.12). Since (sδ, pδ) is a
weak solution of the regularized problem, by Lemma 2.4, the pair is also a variational
weak solution. In particular, denoting the primitive of ϕδ by Φδ and the primitive of
ψδ by Fδ, there holds, with ρδ = ϕδ(s

δ), the variational inequality

0 ≥
∫

Ω

Φδ(s
δ(x, t)) dx

∣∣∣∣t=T
t=0

−
∫ T

0

∫
Ω

pδ0(x, t) ∂ts
δ(x, t) dx dt

+

∫ T

0

∫
Ω

{
Fδ(p

δ − ρδ) + F ∗δ (∂ts
δ(x, t))

}
dx dt

+

∫ T

0

∫
Ω

kδ(x, s
δ(x, t))

(
∇pδ(x, t) + g

)
∇(pδ(x, t)− pδ0(x, t)) dx dt.

(4.3)

In some of the integrals of (4.3), the limit can be performed directly by the weak
convergences of ∂ts

δ and ∇pδ and the strong convergence of sδ and, hence, of kδ(s
δ).

This concerns the second integral and all terms of the last integral, except for the
quadratic term in the pressure.
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In other integrals, we have to exploit weak lower semi-continuity. We claim that

lim inf
δ

∫
ΩT

Fδ(p
δ − ρδ) + F ∗δ (∂ts

δ) + kδ(s
δ)|∇pδ|2

≥
∫

ΩT

F (p− ρ) + F ∗(∂ts) + k(s)|∇p|2 .
(4.4)

Inequality (4.4) is a consequence of the weak convergences of ∂ts
δ, pδ, ∇pδ, and ρδ in

L2(ΩT ), and of the convexity of the functions F, F ∗ : R → R and |.|2 : Rn → R. Con-
cerning the δ-dependence of the coefficients we can exploit the uniform convergences
Fδ → F and F ∗δ → F ∗. Concerning the permeability, we use the pointwise conver-
gence of sδ, which implies the pointwise convergence 0 ≤ kδ(s

δ) → k(s). Using once
more Egorov’s theorem, we conclude the lower semi-continuity of the pressure-term
and obtain (4.4).

It remains to verify, for fixed t ∈ [0, T ] and as δ → 0,

lim inf
δ

∫
Ω

Φδ(s
δ(x, t)) dx ≥

∫
Ω

Φ̃(s(x, t)) dx, (4.5)

with equality for t = 0. Due to the L2(ΩT ) estimates for ∂ts
δ and the weak convergence

in this space, the functions sδ(., t) and s(., t) are well-defined in the space L2(Ω) in the
sense of traces, and we have sδ(., t) → s(., t) weakly in L2(Ω). In the special point
t = 0, the convergence is strong, sδ(., 0) = sδ0 → s0 = s(., 0) strongly in L2(Ω).

Relation (4.5) will be a consequence of the following claim for arbitrary numbers
M0 > 0 and ε > 0:

∃δ0 > 0 ∀δ ∈ (0, δ0), ξ ∈ R : |ϕδ(ξ)| ≤M0 ⇒ |Φδ(ξ)− Φ̃(ξ)| ≤ ε. (4.6)

Let us first show that property (4.6) implies (4.5). We choose M0 > 0 from the
maximum principle such that |ϕδ(sδ)| ≤ M0 holds for all solutions of the regularized
equation. The error ε > 0 is fixed arbitrarily small. We observe that the condition
of (4.6) is always satisfied for ξ = sδ(x, t), hence we can replace the function Φδ by
the function Φ̃, introducing only a small error of order ε on the left hand side of (4.5).
The function Φ̃ is convex, hence the lower semi-continuity is immediate. In the case
t = 0, we exploit again that Φδ can be replaced by Φ̃ with a small error and the strong
convergence of sδ(., 0) in L2(Ω). This provides equality in (4.5) for t = 0.

It remains to prove property (4.6). With ε > 0 and M0 > 0 given, we set η :=
min{ε/(4M0), ε/(4‖ϕ̃‖∞)}. We choose δ0 > 0 such that |Φδ(ξ) − Φ̃(ξ)| ≤ ε/2 for all
ξ ∈ [a + η, b − η], which is possible by uniform convergence ϕδ → ϕ on compact
subintervals of (a, b), compare (3.5). We can now check the assertion of (4.6) by
distinguishing two cases for the argument ξ ∈ R. For ξ ∈ [a + η, b − η], the smallness
holds by our choice of δ0. For ξ > b − η we calculate, using ϕδ(s) ≤ ϕδ(ξ) ≤ M0 for
every s ∈ [b− η, ξ],

|Φδ(ξ)− Φ̃(ξ)| ≤ |Φδ(ξ)− Φδ(b− η)|+ |Φδ(b− η)− Φ̃(b− η)|+ |Φ̃(b− η)− Φ̃(ξ)|

≤M0η +
ε

2
+ ‖ϕ̃‖∞η ≤

ε

4
+
ε

2
+
ε

4
= ε.

Arguments ξ < a+ η are treated in an analogous way. This shows (4.6) and hence the
variational inequality for the limit functions.
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The maximum principle implies the boundedness of ϕδ(s
δ). On the other hand, the

regularization was chosen in such a way that |ϕδ(ξ)| → ∞ for ξ 6∈ [a, b], compare (3.6).
This shows that the limit function s takes only values in [a, b]. The proof of Theorem
2.5 is complete.

Concluding remarks

We have shown an existence result for the hysteresis system in two settings, one allows
degeneracy of k in one point, the other allows to use the physically relevant multi-
valued capillary pressure functions. For the second setting, a weak solution concept
was introduced with the help of a variational inequality. The solution property for limit
functions is verified with a compactness property of approximate saturation values sδ.

We do not have a solution concept that can be used without a strong convergence
property of the saturations in L2(ΩT ). This is one of the reasons why we cannot treat
the case k(a) = 0 in the multi-valued setting.
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Turing instabilities in a mathematical model for signaling networks
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