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1. Introduction and Summary

In this paper we consider a panel regression model where the disturbances are correlated

both spatially and time-wise. To estimate the parameters of this correlation structure,

Kapoor et al. (2007) suggest a GMM estimator which is a generalization of the estimator

suggested by Kelejian and Prucha (1999) for the cross-sectional case. It has been used

in empirical applications by many authors. Applications include multinational enterprise

activity (Badinger and Egger, 2010b), export performance of Mexican states (Gamboa,

2010), effects of active labor market policies in Germany (Hujer et al., 2009) and the

impact of knowledge capital stocks on total factor productivity in Europe (Fischer et al.,

2009).

The statistical properties of the GMM estimator proposed by Kapoor et al. (2007) have

been investigated by Larch and Walde (2009), who run a simulation study to compare

the GMM estimator with a comparable ML estimator. Under normality, the GMM

estimator is competitive with respect to ML. For non-normally distributed errors, the

GMM estimator outperforms the quasi-ML estimator.

This paper follows up on the work on finite sample properties, i.e. we generalize an idea

of Arnold and Wied (2010) for cross-sectional data to the panel case in order to improve

the estimator in small and moderate samples. Our main point is the following: When

calculating the GMM estimator, the unobservable disturbances of the regression model

have to be replaced by the regression residuals. But then one should also calculate the

theoretical moment conditions in terms of the residuals, not in terms of the disturbances.

In doing so, the bias of the estimators can be essentially reduced. We point this out by

some Monte Carlo evidence as well as by an analytical illustration.

As a second contribution, we derive asymptotic normality of the GMM estimators,

an issue that several authors worked on in other contexts, see e.g. Lee (2004) for (quasi)

ML estimation of spatial autoregressive models, Lee and Yu (2010) for ML estimation

of spatial autoregressive panel data models with fixed effects and Kelejian and Prucha

(2010), Badinger and Egger (2010a) and Lee and Liu (2010) for GMM estimation of
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spatial autoregressive models with autoregressive and heteroscedastic disturbances. Due

to the nonlinear structure of the estimators, the exact finite sample distribution is un-

known so that inference on the parameters has to depend on asymptotic approximations.

However, the asymptotic distribution provides a good approximation to the finite sample

distribution even for small sample sizes.

The remainder of the paper is organized as follows: Section 2 presents the spatial

model, the estimation procedure and the analytic illustration, Section 3 provides the

asymptotic results, Section 4 gives some Monte Carlo evidence and Section 5 presents

an empirical application to Indonesian rice farming data which reveals the importance of

our approach. Proofs are deferred to the Appendix.

2. The Model and the estimator

This paper considers a panel regression model with spatially correlated disturbances as

follows:

yN = XNβ + uN ,

uN = ρ(IT ⊗Wn)uN + εN ,

εN = (eT ⊗ In)µn + νN ,

νN = [νn(1)
′
, . . . , νn(T )

′
]
′
,

yN = [yn(1)
′
, . . . , yn(T )

′
]
′
,

XN = [Xn(1)
′
, . . . , Xn(T )

′
]
′
,

uN = [un(1)
′
, . . . , un(T )

′
]
′
,

εN = [εn(1)
′
, . . . , εn(T )

′
]
′
,

where for each time period t = 1, . . . , T , yn(t) is the n× 1 vector of observations on the

dependent variable, Xn(t) is the n×k matrix of observations on the exogenous regressors

and un(t) is the n× 1 vector of spatially correlated disturbances. The serial dependence

3



is captured by an error component structure for the innovation vector εN , where eT is a

T × 1 vector of ones, IT is the T × T identity matrix, µn is the n× 1 vector of individual

effects and the N × 1 vector νN captures the remainder error terms which vary over both

the cross-sectional units and the time periods.

We impose the following assumptions:

Assumption 1. a) For all i ∈ {1, . . . , n}, n ≥ 1, the µi,n are independent identically

distributed with zero mean, variance σ2
µ, 0 < σ2

µ < bµ <∞ and finite fourth moments.

b) For all i ∈ {1, . . . , n}, n ≥ 1, t ∈ {1, . . . , T}, the νit,n are independent identically

distributed with zero mean, variance σ2
ν, 0 < σ2

ν < bν <∞ and finite fourth moments.

c) For all i ∈ {1, . . . , n}, n ≥ 1, t ∈ {1, . . . , T}, the νit,n and µi,n are independent.

Assumption 2. a) For all i ∈ {1, . . . , n}, n ≥ 1, wii,n = 0 and
∑n

j=1wij,n = 1.

b) |ρ| < 1.

Assumption 2 ensures that the matrix In − ρWn is nonsingular so that

Cov(uN) = Ωu,N =
[
IT ⊗ (In − ρWn)−1

]
Ωε,N

[
IT ⊗ (In − ρW

′

n)−1
]
, (1)

with Ωε,N = σ2
µ(JT ⊗ In) + σ2

νIN , where JT = eT e
′
T is a T × T matrix with all elements

equal to one. Kapoor et al. (2007) decompose Ωε,N as

Ωε,N = σ2
νQ0,N + σ2

1Q1,N ,

where

Q0,N =

(
IT −

JT
T

)
⊗ In,

Q1,N =
JT
T
⊗ In,

and σ2
1 = σ2

ν + Tσ2
µ. They provide GMM estimators for ρ, σ2

ν and σ2
1. Basically, we build

on this approach, but with two modifications. First, we do not follow their reparameteri-
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zation but estimate ρ, σ2
ν and σ2

µ directly. Of course, our estimators for σ2
ν and σ2

µ provide

an estimator for σ2
1 just as well as the estimators of Kapoor et al. (2007) for σ2

ν and σ2
1

can be used to estimate σ2
µ. The second modification exploits the difference between un-

observable disturbances and observable regression residuals. For the cross-sectional case,

this idea was introduced by Arnold and Wied (2010), and it also applies to the panel case

considered here. The main idea is as follows: Since the disturbance vector uN is typically

not observable, estimation has to rely on the residual vector

ũN = yN −XN β̃N ,

where β̃N is an estimator of β. Typical examples for β̃N are the OLS estimator and the

feasible GLS estimator:

β̂OLS = (X
′

NXN)−1X
′

NyN

β̂FGLS = (X
′

N Ω̂−1u,NXN)−1X
′

N Ω̂−1u,NyN .

The corresponding regression residuals ũN are given by

ũN = MNuN ,

whereMN depends on β̃N . For example, OLS corresponds toMN = IN−XN(X
′
NXN)−1X

′
N

and FGLS corresponds to MN = IN −XN(X
′
N Ω̂−1u,NXN)−1X

′
N Ω̂−1u,N . Note that MN is al-

ways known in applications because it only depends on the choice of estimator for β.

Let

ε̃N = MNεN

¯̃εN = (IT ⊗WN)ε̃N = (IT ⊗WN)MNεN

Since the unobservable disturbances of the model have to be replaced by the regression
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residuals, we suggest to also calculate the theoretical moment conditions in terms of the

residuals.

Consequently, we use the following six moment conditions:

E

(
1

n(T − 1)
ε̃
′

NQ0,N ε̃N

)
=

σ2
µ

n(T − 1)
tr(M

′

NQ0,NMN(JT ⊗ In))

+
σ2
ν

n(T − 1)
tr(M

′

NQ0,NMN)

E

(
1

n(T − 1)
¯̃ε
′

NQ0,N
¯̃εN

)
=

σ2
µ

n(T − 1)
tr[M

′

N(IT ⊗W
′

n)Q0,N(IT ⊗Wn)MN(JT ⊗ In)]

+
σ2
ν

n(T − 1)
tr[M

′

N(IT ⊗W
′

n)Q0,N(IT ⊗Wn)MN ]

E

(
1

n(T − 1)
¯̃ε
′

NQ0,N ε̃N

)
=

σ2
µ

n(T − 1)
tr[M

′

N(IT ⊗W
′

n)Q0,NMN(JT ⊗ In)]

+
σ2
ν

n(T − 1)
tr[M

′

N(IT ⊗W
′

n)Q0,NMN ]

E

(
1

n
ε̃
′

NQ1,N ε̃N

)
=

σ2
µ

n
tr(M

′

NQ1,NMN(JT ⊗ In))

+
σ2
ν

n
tr(M

′

NQ1,NMN)

E

(
1

n
¯̃ε
′

NQ1,N
¯̃εN

)
=

σ2
µ

n
tr[M

′

N(IT ⊗W
′

n)Q1,N(IT ⊗Wn)MN(JT ⊗ In)]

+
σ2
ν

n
tr[M

′

N(IT ⊗W
′

n)Q1,N(IT ⊗Wn)MN ]

E

(
1

n
¯̃ε
′

NQ1,N ε̃N

)
=

σ2
µ

n
tr[M

′

N(IT ⊗W
′

n)Q1,NMN(JT ⊗ In)]

+
σ2
ν

n
tr[M

′

N(IT ⊗W
′

n)Q1,NMN ].

Let

ũN = MNuN ,

¯̃uN = (IT ⊗Wn)MNuN ,

˜̄uN = MN(IT ⊗Wn)uN ,

¯̄̃uN = (IT ⊗Wn)MN(IT ⊗Wn)uN .

6



Substituting ε̃N and ¯̃εN by

ε̃N = MNεN = MNuN − ρMN(IT ⊗Wn)uN ,

= ũN − ρ˜̄uN ,

¯̃εN = (IT ⊗Wn)MNεN = (IT ⊗Wn)MNuN − ρ(IT ⊗Wn)MN(IT ⊗Wn)uN ,

= ¯̃uN − ρ ¯̄̃uN ,

expanding and collecting terms, our residual based theoretical system of equations is

given by

ΓN(ρ, ρ2, σ2
µ, σ

2
ν)

′ − γN = 0, (2)

where

ΓN =



γ011,N γ012,N γ013,N γ014,N

γ021,N γ022,N γ023,N γ024,N

γ031,N γ032,N γ033,N γ034,N

γ111,N γ112,N γ113,N γ114,N

γ121,N γ122,N γ123,N γ124,N

γ131,N γ132,N γ133,N γ134,N


, γN =



γ01,N

γ02,N

γ03,N

γ11,N

γ12,N

γ13,N


.
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For i = 0, 1, the elements of ΓN and γN are

γi11,N =
2

n(T − 1)1−i
E
[
ũ

′

NQi,N ˜̄uN

]
, γi21,N =

2

n(T − 1)1−i
E
[
¯̃u
′

NQi,N
¯̄̃uN

]
,

γi31,N =
2

n(T − 1)1−i
E
[
¯̃u
′

NQi,N ˜̄uN + ¯̄̃u
′

NQi,N ũN

]
,

γi12,N =
−1

n(T − 1)1−i
E
[
˜̄u
′

NQi,N ˜̄uN

]
,

γi22,N =
−1

n(T − 1)1−i
E
[
¯̄̃u
′

NQi,N
¯̄̃uN

]
, γi32,N =

−1

n(T − 1)1−i
E
[
¯̄̃u
′

NQi,N ˜̄uN

]
,

γi13,N =
1

n(T − 1)1−i
tr
[
M

′

NQi,NMN(JT ⊗ In)
]
, γi14,N =

1

n(T − 1)1−i
tr
[
M

′

NQi,NMN

]
,

γi23,N =
1

n(T − 1)1−i
tr
[
M

′

N(IT ⊗W
′

n)Qi,N(IT ⊗Wn)MN(JT ⊗ In)
]
,

γi24,N =
1

n(T − 1)1−i
tr
[
M

′

N(IT ⊗W
′

n)Qi,N(IT ⊗Wn)MN

]
,

γi33,N =
1

n(T − 1)1−i
tr
[
M

′

N(IT ⊗W
′

n)Qi,NMN(JT ⊗ In)
]
,

γi34,N =
1

n(T − 1)1−i
tr
[
M

′

N(IT ⊗W
′

n)Qi,NMN

]
, γi1,N =

1

n(T − 1)1−i
E
[
ũ

′

NQi,N ũN

]
,

γi2,N =
1

n(T − 1)1−i
E
[
¯̃u
′

NQi,N
¯̃uN

]
, γi3,N =

1

n(T − 1)1−i
E
[
¯̃u
′

NQi,N ũN

]
.

The true parameter values provide the unique solution of the theoretical system of equa-

tions (2). Since ΓN and γN are not observable, (2) is replaced by an empirical counterpart.

To that purpose, we leave out the expectation operator and replace ˜̄uN and ¯̄̃uN , which

are not observable, by

˜̃̄uN = MN(IT ⊗Wn)MNuN ,

¯̄̃
ũN = (IT ⊗Wn)MN(IT ⊗Wn)MNuN ,

respectively. The corresponding empirical system of equations can then be written as

GN(ρ, ρ2, σ2
µ, σ

2
ν)

′ − gN = δN(ρ, σ2
µ, σ

2
ν), (3)
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where

GN =



g011,N g012,N g013,N g014,N

g021,N g022,N g023,N g024,N

g031,N g032,N g033,N g034,N

g111,N g112,N g113,N g114,N

g121,N g122,N g123,N g124,N

g131,N g132,N g133,N g134,N


, gN =



g01,N

g02,N

g03,N

g11,N

g12,N

g13,N


,

gi11,N =
2

n(T − 1)1−i

[
ũ

′

NQi,N
˜̃̄uN

]
, gi21,N =

2

n(T − 1)1−i

[
¯̃u
′

NQi,N
¯̄̃
ũN

]
,

gi31,N =
1

n(T − 1)1−i

[
¯̃u
′

NQi,N
˜̃̄uN +

¯̄̃
ũ

′

NQi,N ũN

]
,

gi12,N =
−1

n(T − 1)1−i

[
˜̃̄u
′

NQi,N
˜̃̄uN

]
, gi22,N =

−1

n(T − 1)1−i

[
¯̄̃
ũ

′

NQi,N
¯̄̃
ũN

]
,

gi32,N =
−1

n(T − 1)1−i

[
¯̄̃
ũ

′

NQi,N
˜̃̄uN

]
, gi1,N =

1

n(T − 1)1−i

[
ũ

′

NQi,N ũN

]
,

gi2,N =
1

n(T − 1)1−i

[
¯̃u
′

NQi,N
¯̃uN

]
, gi3,N =

1

n(T − 1)1−i

[
¯̃u
′

NQi,N ũN

]
.

For the third and fourth columns of GN , we simply take the corresponding elements of

ΓN because they are observable.

It is well known that GMM estimators can be improved by a suitable weighting of the

moment conditions. The optimal weighting matrix is given by the inverse of the covariance

matrix of the moment conditions. Therefore, we proceed by calculating the covariance

matrix of our empirical moment conditions. Since ε̃N = MNεN , ¯̃εN = (IT ⊗WN)MNεN ,

the random variates on the left hand side of our moment conditions can be written as

quadratic forms in εN ,

ε
′

NCN,iε
′

N ,
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where

CN,1 =
1

n(T − 1)
M

′

NQ0,NMN ,

CN,2 =
1

n(T − 1)
M

′

N(IT ⊗W
′

N)Q0,N(IT ⊗WN)MN ,

CN,3 =
1

n(T − 1)
M

′

N(IT ⊗W
′

N)Q0,NMN ,

CN,4 =
1

n
M

′

NQ1,NMN ,

CN,5 =
1

n
M

′

N(IT ⊗W
′

N)Q1,N(IT ⊗WN)MN ,

CN,6 =
1

n
M

′

N(IT ⊗W
′

N)Q1,NMN .

Let C̃j,N = Ω
1
2
ε,NCj,NΩ

1
2
ε,N . Using a spectral decomposition of C̃j,N , we have

ε
′

NCj,NεN = ε̃
′

N C̃j,N ε̃N =
n∑
i=1

λji,Nζ
2
i,N , (4)

where ε̃N = Ω
− 1

2
ε,NεN , the λji,N are the eigenvalues of C̃j,N and the ζ2i,N are independent

χ2
1-distributed random variables, see e.g. Rotar (1973), de Jong (1987) or Mikosch (1991)

and the references therein.

Let SN be the corresponding covariance matrix of our empirical moment conditions.

Assuming normality, for i, j = 1, . . . , 6 the covariances between the moment conditions

are given by

SN,ij = Cov(ε
′

NCN,iεN , ε
′

NCN,jεN) = 2tr(CN,iΩε,NCN,jΩε,N).

We define our weighted GMM estimator for θ := (ρ, σ2
µ, σ

2
ν) as

(ρ̂, σ̂2
µ, σ̂

2
ν) = argmin

{
RN(θ̃) : ρ̃ ∈ [−1, 1], σ̃2

µ ∈ [0, bµ], σ̃2
ν ∈ [0, bν ]

}
(5)

with θ̃ = (ρ̃, σ̃2
µ, σ̃

2
ν) and RN(θ̃) := δN

(
ρ̃, σ̃2

µ, σ̃
2
ν

)′
1
n
S−1N δN

(
ρ̃, σ̃2

µ, σ̃
2
ν

)
.

As we will prove in Section 3, our GMM approach provides consistent estimates, a
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feature it shares with the approach by Kapoor et al. (2007). The main advantage of the

residual based approach presented here is a bias reduction for finite samples. To shed light

on this, we give a small analytical illustration. To this purpose, we replace the elements

of GN and gN in our empirical moment conditions by their respective expectations and

calculate the minimizing values for ρ, σ2
µ and σ2

ν in this “expected” empirical system of

equations. Although explicit formulas for these minimizing values could in principle be

derived, these formulas are more or less useless because they are very intricate. We can

nonetheless get some insight by considering the special case of ρ = 0. The jth row of the

empirical system of equations (j = 1, 2, 3) is then given by

σ2
µG

0
j3 + σ2

νG
0
j4 = g0j ⇔ σ2

µ =
g0j − σ2

νG
0
j4

G0
j3

,

so e.g. the first row yields

E
(
σ̂2
µ

)
≈

E(g0j )− σ2
νG

0
j4

G0
j3

=
tr
(
M

′
NQ0,NMN [σ2

µ(JT ⊗ In) + σ2
νIN ]

)
− σ2

νtr(M
′
NQ0,NMN)

tr(M
′
NQ0,NMN(JT ⊗ In))

= σ2
µ. (6)

Similar calculations for the other five rows yield the same result so that we can expect

the bias of the estimator to be small. For the purpose of comparison, we perform the

corresponding calculations for the first and fourth moment conditions of Kapoor et al.

(2007). Here, we find that

E
(
σ̂2
µ

)
≈

σ2
µ

n(T − 1)
tr [(T − 1)MNQ1,NMNQ1,N −MNQ0,NMNQ1,N ] (7)

+
σ2
ν

nT (T − 1)
tr [(T − 1)MNQ1,NMN −MNQ0,NMN ]

so that we can expect this estimator to be biased in finite samples.
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3. Asymptotic results

This section proves the consistency and asymptotic normality of the GMM estimators as

the number of observation units tends to infinity. For this, some additional assumptions

will be imposed. First, we consider consistency.

Assumption 3. a) For n→∞, GN
p→ G0 where G0 is a constant (6× 4)-matrix.

b) For n→∞, GN − ΓN = oP(1).

c) For n→∞, gN
p→ g0 where g0 is a constant (6× 1)-vector.

d) For n→∞, gN − γN = oP(1).

e) For n→∞, nSN
p→ S0 where G0 is a constant (6× 6)-matrix.

Assumption 4. For the true parameter vector (ρ, σ2
µ, σ

2
ν) the matrix G′0S

−1
0 G0 is posi-

tively definite.

If we denote R0(θ
∗) = (G0θ

∗ − g0)
′S−10 (G0θ

∗ − g0), then Assumption 4 yields, for

arbitrary ε > 0, the inequality

inf
{θ̃:|θ̃−θ|≥ε}

∣∣∣R0(θ̃)−R0(θ)
∣∣∣ > 0

and thus guarantees the identifiability of θ, see also Kelejian and Prucha (1999).

Theorem 1. Under Assumption 1 - 4, for n→∞,

(ρ̂, σ̂2
µ, σ̂

2
ν)

P→ (ρ, σ2
µ, σ

2
ν).

Whereas consistency requires the existence of certain limits and some identifiability

condition, we additionally need some eigenvalue conditions for the proof of asymptotic

normality.

Assumption 5. (a) For j = 1, . . . , 6, the eigenvalues λji,N of C̃j,N fulfill the Ljapunov
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condition, i.e., for some δ > 0 it holds

lim
n→∞

∑n
i=1 λ

2+δ
ji,N(∑n

i=1 λ
2
ji,N

)1+δ = 0.

(b) The Ljapunov condition is fulfilled for the eigenvalues of any linear combination∑6
j=1 cjC̃j,N with

∑6
j=1 c

2
j = 1.

Lemma 1. Under Assumption 5,
√
n(GNθ − gN)→ N(0, S0) as n→∞.

Theorem 2. Under Assumption 1-5, the asymptotic distribution of (ρ̂, σ̂2
µ, σ̂

2
ν) as n→∞

is given by

√
n


ρ̂− ρ

σ̂2
µ − σ2

µ

σ̂2
ν − σ2

ν

→ N(0, (DG
′
G

′

0S
−1
0 G0DG)−1),

where

(DG)[(ρ, σ2
µ, σ

2
ν)] := DG :=



1 0 0

2ρ 0 0

0 1 0

0 0 1


.

In applications, G0 can be replaced by GN , whereas DG and S−10 can be estimated by a

plug-in method in which the true parameter values are replaced by the GMM estimators

for ρ, σ2
µ and σ2

ν . This provides a consistent estimator for the asymptotic covariance

matrix.

4. Finite sample Monte Carlo evidence

This section compares the finite sample properties of the GMM estimators for N = 50,

100, 200, T = 5, ρ = −0.5, 0, 0.5 and σ2
µ = σ2

ν = 1. We consider two different weighting

matrices WN . The first one is specified such that each element of un is directly related

to the elements immediately after and immediately before it. For the first and the last

elements of un, we imply a circular setting such that for example u1 is directly related to
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the second and last element of un. This weighting matrix is marked by J = 2 since there

are two nonzero elements in each row of WN . The second weighting matrix is labeled by

J = 6. Here, each element of un is directly related to the three elements immediately

after and the three elements immediately before it. For both weighting matrices, the row

sums are standardized to one. We use two regressors x1 and x2 which are the same as

in Kapoor et al. (2007): x1 is the intercept and x2 is per capita income in contiguous

counties in Virginia in the years 1996-2000. For each of the 18 corresponding settings

(three different values of ρ, two different weighting matrices and three different sample

sizes), we generate 1000 realizations of our regression model and calculate parameter

estimates in two different ways, first as in Kapoor et al. (2007) and second as in (5).

In both cases, we first use the known optimal weighting matrix (denoted as S0 in our

model) and second, we use the iterative procedure in which the optimal weighting matrix

is estimated. Tables 1 and 2 give the resulting biases and mean square errors of the

estimators.

- Table 1 here -

- Table 2 here -

Table 1 reveals that the biases of the estimators for ρ and σ2
ν are virtually zero, whereas

the estimators for σ2
µ are both downwards biased. Our modified residual based estimator

reduces the bias by up to 95%. Calculating the analytical expressions in (6) and (7) for

the true parameter values essentially yields the same result.

Table 2 shows that the mean square errors of the estimators for ρ and σ2
ν are very close

to each other. With respect to the estimators for σ2
µ, the MSE of our modified version is

slightly larger than the MSE of the estimator of Kapoor et al. (2007). We conclude that

the effect of reduced bias comes at the expense of a larger MSE.

There may be situations in which the parameters ρ, σ2
µ and σ2

ν are of interest in

their own right. However, in most applications one is interested in these parameters only

because they are needed for significance tests for the regression coefficients contained
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in β. This is done by plugging the parameter estimates into (1). Consequently, Table

3 compares the performance of the two different estimation approaches with respect to

empirical rejection probabilities where the nominal level is α = 0.05. Again, we compare

the case of known and unknown optimal weighting matrix.

- Table 3 here -

We can see that the empirical rejection probabilities exceed the nominal level of 0.05. For

our modified estimator, these overrejection probabilities are smaller by up to 40 − 50%,

whereby the improvement of our procedure is larger if the optimal weighting matrix is

known.

5. Application to Indonesian rice farming

We illustrate our results with an empirical analysis of Indonesian rice farming data. We

have data of 171 rice farms over six growing seasons. The farms are located in six different

villages. We use a standard random effects model for the data related to the wet growing

seasons to regress the output (ln(rice)) on the covariates seed, urea, phosphate (TSP),

labor and land as well as dummies for pesticides (DP), high yield varieties (DV1) and

mixed varieties (DV2). For a detailed description of the data see Erwidodo (1990). The

disturbances are assumed to be spatially correlated across cross-sectional units where the

typical element wij of the spatial weighting matrix W is positive if observations i and j

belong to (a) farms located in the same village and (b) the same growing season. The

row sums of W are standardized to one.

We estimate ρ, σ2
µ and σ2

ν in two ways, once following Kapoor et al. (2007) and once by

our residual based approach. As to the regression coefficients, the results of the random

effects specification mostly agree with the results of a fixed effects model like in Druska and

Horrace (2004) or Arnold and Wied (2010). However, there is a considerable discrepancy

in the estimates for ρ. Whereas the residual based approach produces an estimate of 0.78,

which is very much in line with previous studies of these data, the approach of Kapoor

15



et al. (2007) yields an estimate of 1.23, which is not only far away from previous results

but also outside the parameter space. To illustrate this, Figure 1 presents “profile” target

functions RN for both estimators for different values of ρ, where the variance parameters

are replaced by their respective estimates (σ̂2
ν = 0.066 and σ̂2

1 = 0.102 for Kapoor et al.

(2007), σ̂2
µ = 0.012 and σ̂2

ν = 0.065 for the residual based approach).

- Figure 1 here -

For Kapoor et al. (2007), the minimizing value (ρ = 1.23) is not included in the

parameter space. If the search is restricted on the parameter space, the optimum would

be the boundary (ρ = 1) which is not a good choice either because Ω̂u,N would then be

singular. For the residual based approach, such problems do not occur. Although there

is a local minimum about 1.23, the global minimum is ρ = 0.78. We conclude that the

residual based modification of the GMM estimators can also circumvent optimization

problems.
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6. Appendix section

Proof of Theorem 1

This follows by standard arguments as e.g. presented in Poetscher and Prucha (1991),

Amemiya (1973) or Jennrich (1969), using the uniform convergence of RN(θ̃) to R0(θ̃)

and the identificability condition. �

Proof of Lemma 1

Equation (4) in combination with Assumption 5(a) implies asymptotic normality for each

moment condition by Theorems 23.6 and 23.11 of Davidson (1994). Since every linear

combination of the moment conditions can be written as

6∑
j=1

cj ε̃
′

NCji,N ε̃N = ε̃
′

N

(
6∑
j=1

cjCji,N

)
ε̃N ,

these linear combinations are also asymptotically normal by Assumption 5(b) so that

multivariate normality follows by the Cramér-Wold device which proves the Lemma. �

Proof of Theorem 2

Due to the smoothness of the target function the estimators are the zeros of the derivative

Ψ(ρ̃, σ̃2
µ, σ̃

2
ν) := 2DGG

′

NS
−1
N (GNθ − gN).
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With the multivariate mean value theorem it holds that

Ψ


ρ̂

σ̂2
µ

σ̂2
ν

 = 0 = Ψ


ρ

σ2
µ

σ2
ν

+

DΨ


ρ̄

σ̄2
µ

σ̄2
ν





ρ̂− ρ

σ̂2
µ − σ2

µ

σ̂2
ν − σ2

ν



⇔


ρ̂− ρ

σ̂2
µ − σ2

µ

σ̂2
ν − σ2

ν

 =

DΨ


ρ̄

σ̄2
µ

σ̄2
ν



−1

Ψ


ρ

σ2
µ

σ2
ν

 ,

for some (ρ̄, σ̄2
µ, σ̄

2
ν) between (ρ, σ2

µ, σ
2
ν) and (ρ̂, σ̂2

µ, σ̂
2
µ). DΨ is given by

DΨ


ρ̄

σ̄2
µ

σ̄2
ν

 = 2(DG)[(ρ̄, σ̄2
µ, σ̄ν)]G

′

NS
−1
N GN(DG)′[(ρ̄, σ̄2

µ, σ̄ν)]

+2


(
GN [(ρ̄, σ̄2

µ, σ̄ν)]− gN
)′
S−1N GN



0 0 0

2 0 0

0 0 0

0 0 0




⊗


1

0

0

 .

It follows

√
n


ρ̂− ρ

σ̂2
µ − σ2

µ

σ̂2
ν − σ2

ν

 =

(
(DG)[(ρ̄, σ̄2

µ, σ̄ν)]G
′

N

1

n
S−1N GN(DG)′[(ρ̄, σ̄2

µ, σ̄ν)] + oP(1)

)−1
·

DG
′
G

′

N

1

n
S−1N
√
n(GNθ − gN).

With Lemma 1,
√
n(GNθ − gN) converges to N(0, S0) whereas the preceding term con-

verges by the consistency of Theorem 1, the Continuous Mapping Theorem and Slutzky’s

Theorem to

(DG
′
G

′

0S
−1
0 G0DG)−1DG

′
G

′

0S
−1
0
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with Assumption 3. The theorem then follows by Slutzky’s Theorem. �
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Figure 1: Profile target functions for ρ
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Table 1: Bias of the estimators for known optimal weighting matrix (upper line) and for the
iterative procedure (lower line)

ρ̂ σ̂2
µ σ̂2

ν

N J ρ KKP AW KKP AW KKP AW
50 2 0.5 -0.0097 0.0020 -0.2443 -0.0533 -0.0219 -0.0252

-0.0195 -0.0050 -0.2097 -0.0364 -0.0263 -0.0236
50 2 0 -0.0205 0.0015 -0.2473 -0.0479 -0.0394 -0.0331

-0.0255 -0.0104 -0.1967 -0.0205 -0.0480 -0.0387
50 2 -0.5 -0.0343 -0.0108 -0.2656 -0.0822 -0.0474 -0.0299

-0.0154 -0.0061 -0.2537 -0.0827 -0.0274 -0.0126
50 6 0.5 0.0062 0.0124 -0.2327 -0.0184 -0.0225 -0.0204

0.0047 0.0297 -0.2125 -0.0323 -0.0244 -0.0132
50 6 0 -0.0376 -0.0057 -0.2308 -0.0216 -0.0320 -0.0251

-0.0229 -0.0014 -0.2162 -0.0426 -0.0363 -0.0260
50 6 -0.5 -0.0378 0.0067 -0.2662 -0.0831 -0.0384 -0.0224

-0.0169 0.0052 -0.2120 -0.0399 -0.0315 -0.0166
100 2 0.5 -0.0061 0.0001 -0.1289 -0.0340 -0.0077 -0.0102

-0.0048 0.0030 -0.1135 -0.0250 -0.0101 -0.0121
100 2 0 -0.0103 0.0031 -0.1182 -0.0204 -0.0158 -0.0117

-0.0105 0.0022 -0.1344 -0.0432 -0.0130 -0.0090
100 2 -0.5 -0.0104 0.0004 -0.1153 -0.0225 -0.0198 -0.0084

-0.0121 -0.0025 -0.1289 -0.0386 -0.0229 -0.0119
100 6 0.5 -0.0225 -0.0018 -0.0997 0.0025 -0.0103 -0.0120

-0.0159 -0.0021 -0.0847 -0.0018 -0.0121 -0.0127
100 6 0 -0.0243 0.0123 -0.1016 -0.0020 -0.0230 -0.0178

-0.0268 0.0121 -0.1180 -0.0284 -0.0181 -0.0120
100 6 -0.5 -0.0248 0.0204 -0.1134 -0.0197 -0.0218 -0.0088

-0.0141 0.0251 -0.1125 -0.0241 -0.0290 -0.0173
200 2 0.5 0.0000 0.0031 -0.0537 -0.0037 -0.0123 -0.0138

-0.0002 0.0028 -0.0525 -0.0041 -0.0124 -0.0134
200 2 0 -0.0085 -0.0021 -0.0594 -0.0101 -0.0137 -0.0116

-0.0007 0.0061 -0.0590 -0.0116 -0.0103 -0.0082
200 2 -0.5 -0.0019 0.0034 -0.0553 -0.0101 -0.0122 -0.0063

-0.0080 -0.0022 -0.0560 -0.0107 -0.0132 -0.0069
200 6 0.5 -0.0012 0.0086 -0.0624 -0.0123 -0.0084 -0.0096

-0.0099 0.0028 -0.0539 -0.0087 -0.0061 -0.0068
200 6 0 -0.0076 0.0093 -0.0662 -0.0177 -0.0101 -0.0077

-0.0073 0.0107 -0.0522 -0.0062 -0.0051 -0.0023
200 6 -0.5 -0.0149 0.0061 -0.0491 -0.0035 -0.0110 -0.0048

-0.0073 0.0134 -0.0421 0.0016 -0.0055 0.0008
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Table 2: MSE of the estimators for known optimal weighting matrix (upper line) and for the
iterative procedure (lower line)

ρ̂ σ̂2
µ σ̂2

ν

N J ρ KKP AW KKP AW KKP AW
50 2 0.5 0.019 0.021 0.259 0.297 0.051 0.052

0.024 0.031 0.281 0.337 0.052 0.056
50 2 0 0.025 0.027 0.251 0.294 0.051 0.051

0.026 0.032 0.280 0.341 0.051 0.051
50 2 -0.5 0.022 0.017 0.286 0.355 0.060 0.060

0.018 0.023 0.270 0.316 0.053 0.053
50 6 0.5 0.110 0.112 0.269 0.325 0.050 0.051

0.104 0.136 0.283 0.334 0.048 0.050
50 6 0 0.116 0.126 0.256 0.320 0.052 0.052

0.106 0.148 0.264 0.310 0.054 0.055
50 6 -0.5 0.101 0.114 0.252 0.293 0.050 0.051

0.098 0.143 0.291 0.366 0.053 0.055
100 2 0.5 0.007 0.007 0.139 0.149 0.027 0.027

0.006 0.007 0.134 0.145 0.027 0.028
100 2 0 0.011 0.012 0.138 0.152 0.025 0.025

0.011 0.012 0.138 0.147 0.026 0.026
100 2 -0.5 0.006 0.006 0.131 0.148 0.029 0.029

0.007 0.007 0.131 0.144 0.030 0.031
100 6 0.5 0.022 0.021 0.141 0.159 0.025 0.025

0.032 0.026 0.148 0.164 0.028 0.028
100 6 0 0.036 0.038 0.140 0.158 0.025 0.025

0.037 0.040 0.133 0.145 0.026 0.026
100 6 -0.5 0.049 0.053 0.137 0.155 0.024 0.025

0.046 0.053 0.139 0.155 0.025 0.025
200 2 0.5 0.003 0.003 0.074 0.078 0.014 0.014

0.003 0.003 0.074 0.078 0.014 0.014
200 2 0 0.006 0.006 0.068 0.071 0.012 0.012

0.006 0.006 0.073 0.076 0.012 0.012
200 2 -0.5 0.003 0.004 0.073 0.078 0.013 0.013

0.003 0.004 0.071 0.076 0.013 0.013
200 6 0.5 0.007 0.007 0.070 0.073 0.013 0.013

0.008 0.009 0.070 0.074 0.012 0.012
200 6 0 0.017 0.018 0.069 0.071 0.012 0.012

0.016 0.017 0.075 0.079 0.013 0.013
200 6 -0.5 0.021 0.022 0.069 0.075 0.014 0.014

0.020 0.022 0.073 0.080 0.012 0.012
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Table 3: Empirical rejection probabilities of significance tests for the regression coefficients
for known optimal weighting matrix (upper line) and for the iterative procedure (lower line);
nominal level α = 0.05

J = 2 J = 6
β1 β2 β1 β2

N ρ KKP AW KKP AW KKP AW KKP AW
50 0.5 0.115 0.083 0.110 0.085 0.116 0.096 0.120 0.092

0.155 0.126 0.222 0.194 0.134 0.109 0.178 0.145
50 0 0.117 0.089 0.107 0.083 0.113 0.087 0.111 0.090

0.105 0.080 0.100 0.080 0.111 0.088 0.110 0.094
50 -0.5 0.113 0.090 0.099 0.081 0.093 0.076 0.102 0.081

0.149 0.121 0.166 0.138 0.107 0.091 0.107 0.097
100 0.5 0.067 0.059 0.068 0.056 0.070 0.052 0.073 0.060

0.151 0.139 0.178 0.168 0.111 0.091 0.143 0.131
100 0 0.080 0.064 0.086 0.079 0.064 0.058 0.069 0.055

0.079 0.065 0.081 0.072 0.067 0.061 0.077 0.071
100 -0.5 0.084 0.077 0.072 0.063 0.077 0.068 0.073 0.066

0.129 0.115 0.133 0.119 0.098 0.081 0.083 0.077
200 0.5 0.056 0.047 0.076 0.072 0.058 0.053 0.072 0.066

0.119 0.113 0.138 0.132 0.114 0.111 0.145 0.135
200 0 0.052 0.045 0.052 0.050 0.060 0.057 0.063 0.055

0.055 0.052 0.049 0.044 0.077 0.070 0.064 0.061
200 -0.5 0.056 0.054 0.048 0.047 0.056 0.054 0.059 0.055

0.136 0.128 0.140 0.138 0.089 0.083 0.093 0.088
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