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Abstract

Online (also ’real-time’ or ’sequential’) signal extraction from noisy and outlier-
interfered data streams is a basic but challenging goal. Fitting a robust Repeated
Median (Siegel, 1982) regression line in a moving time window has turned out to be
a promising approach (Davies et al., 2004; Gather et al., 2006; Schettlinger et al.,
2006). The level of the regression line at the rightmost window position, which
equates to the current time point in an online application, is then used as signal
extraction. However, the choice of the window width has large impact on the signal
extraction, and it is impossible to predetermine an optimal fixed window width for
data streams which exhibit signal changes like level shifts and sudden trend changes.
We therefore propose a robust test procedure for the online detection of such signal
changes. An algorithm including the test allows for online window width adaption,
meaning that the window width is chosen w.r.t. the current data situation at each
time point. Comparison studies show that our new procedure outperforms an ex-
isting Repeated Median filter with automatic window width selection (Schettlinger
et al., 2010).

1 Introduction

In many fields, such as intensive care online-monitoring, industrial process control or fi-
nancial markets, data are measured at high sampling rates of e.g. one observation per
second. The resulting time series are typically non-stationary and often exhibit a large
amount of noise and outliers. The separation of the unknown underlying signal (which
carries the relevant information) from noise and outliers online, i.e. for every new incom-
ing observation, is a basic but challenging goal. However, standard methods for signal
extraction or filtering like running means or medians are not appropriate due to the dif-
ficult data situation. A running mean is not robust against outliers and blurs level shifts
(also called step changes, edges or jumps), whereas a running median improperly depicts
linear trends by steps and with a delay of half a window width. For the difficult data that
we are concerned with, Davies et al. (2004) and Gather et al. (2006) recommend signal
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Figure 1: Principle of signal extraction by moving window RM regression: the right-end
level of the regression line is used as signal estimation for the corresponding time point;
here the time window contains n = 20 observation
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Figure 2: Trade-off for the choice of the window width: data (grey) and RM signal
extraction with n = 15 (black, dashed) and n = 50 (black, solid)

filtering by robust Repeated Median (RM) regression (Siegel, 1982) in a moving time win-
dow, taking the regression level either at the central or at the rightmost window position
as signal estimation. Taking the rightmost position yields signal extractions without time
delay, which is preferable in most online applications, and also allows for choosing even
window widths. This approach is outlined in Figure 1. The choice of the window width
n has large impact on the resulting signal extraction. A large value of n extracts a smooth
signal with little variability whereas a small n gives a signal close to the observations, cf.
Figure 2. A predetermined fixed window width n cannot be suitable at all time points t.
As long as the data show a stable trend (that can also be zero), a large n is required to
obtain smooth signal estimation time series. In contrast, since level shifts and suddenly
changing trends yield crucial information, the signal extraction should trace such signal
changes as exactly as possible – meaning that a small n is required in these situations.
Following the idea of the adaptive online RM filter (aoRM, Schettlinger et al., 2010),
we propose an online signal extraction procedure which adapts the window width to the
current data situation at each time point t. The procedure is based on a test for detect-
ing level shifts and sudden trend changes. Since the test compares RM slopes which are
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estimated in separate time windows, we term our filtering procedure Slope Comparing
Adaptive Repeated Median.
In the next Section we introduce the RM regression and its statistical properties and give
a short outline of existent modifications and extensions of the RM, including the aoRM.
In Section 3 the SCARM filter is explained in detail. The test for the detection of signal
changes, an approach for the online estimation of the variance of RM slope differences,
and the final filtering algorithm are presented. In Section 4 we compare the tests used by
the SCARM and the aoRM w.r.t. the detection of level shifts and trend changes. Appli-
cations to simulated and real data are given in Section 5. Section 6 gives a summary and
an outlook.

2 Repeated median regression for online signal ex-

traction

We formalize the extraction of a signal (µt) from time series (xt) using the components
model

Xt = µt + ξt,

ξt = σt εt + ηt, t = 1, 2, . . . .
(1)

The data xt are realizations of the real-valued random variables Xt, and µt is the under-
lying signal which is assumed to be smoothly varying most of the time but can exhibit
sudden trend changes and level shifts. The outlier process ηt generates impulsive spiky
noise which is zero most of the time but occasionally takes large absolute values. The
noise process σt εt has zero mean and variance σ2

t . The noise variance σ2
t may change

slowly over time, so that we can treat it locally as (almost) constant.

Following Schettlinger et al. (2010), we assume that the underlying signal µt can be lo-
cally well approximated by a regression line within a short time window {t−n+1, . . . , t},
t ≥ n:

µt−n+i ≈ µt + βt · (i− n), i = 1, . . . , n, (2)

where µt−n+i is the level (of the regression line) at the window position (i.e. to the time
point) t−n+i and βt the slope of the regression line. Davies et al. (2004) and Gather et al.
(2006) compare several regression estimators w.r.t. robustness, efficiency, and computing
time, and find RM regression to provide best compromise results. Given a window sample
xt = (xt−n+1, . . . , xt) of size n, the RM estimate of the slope βt and the level µt in (2) is

β̂t :=β̂(xt) = med
i∈{1,...,n}

{
med

i′ 6=i, i′ ∈{1,...,n}
xt−n+i − xt−n+i′

i− i′

}
,

µ̂t :=µ̂(xt) = med
i∈{1,...,n}

{
xt−n+i − β̂t · (i− n)

}
.

(3)

The RM has a finite sample replacement breakdown point of bn/2c /n ≈ 50% (Rousseeuw
and Leroy, 1987) which is the maximum possible value for a regression equivariant regres-
sion estimator (Davies and Gather, 2005). It yields good efficiency at non-contaminated
Gaussian samples (Gather et al., 2006) and is fast to compute with an update algorithm
for moving time windows that only needs linear time (Bernholt and Fried, 2003). More-
over, for data being drawn from

Xt−n+i = µt + βt · (i− n) + ξt−n+i, i = 1, . . . , n,
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with symmetric errors (ξt−n+1, . . . , ξt) that have the same distribution as (−ξt−n+1, . . . ,−ξt),
the RM slope β̂t is an unbiased estimate of the true slope βt (Siegel, 1982).
Like for any other localized signal extraction technique, there is the trade-off problem for
the choice of the window width when using the RM. This trade-off problem is mainly
based on the fact that signal changes, e.g. level shifts, may occur at unknown time points.
Several extensions of the RM have been proposed to overcome the problem of tracing level
shifts (Fried, 2004; Gather and Fried, 2004; Fried et al., 2006; Bernholt et al., 2006; Fried
et al., 2007), but all apply a fixed predetermined window width n. Schettlinger et al.
(2010) tackle the trade-off problem by the adaptive online RM (aoRM) filter which uses
a residual-sign-test to adapt the window width to the current data situation at each time
t. The test used by the aoRM is based on the fact that an RM regression results in an
equal number of positive and negative residuals. The aoRM first fits an RM line in a time
window {t− n+ 1, . . . , t}. Then the null hypothesis, that the median of the distribution
of the r ≤ bn/2c rightmost RM residual signs is zero, is tested against the alternative,
that the median is not zero.
Let the residuals of an RM fit in a time window {t− n+ 1, . . . , t} be denoted as

Rt,i = Xt−n+i −
(
µ̂(Xt)− β̂(Xt) · (i− n)

)
, i = 1, . . . , n,

where Xt = (Xt−n+1, . . . , Xt). The aoRM test statistic is the absolute sum of the r ≤
bn/2c rightmost RM residual signs:

TaoRM =

∣∣∣∣∣
∑
i∈I

sign(Rt,i)

∣∣∣∣∣ , I = {n− r + 1, . . . , n}, sign(ω) =





−1, if ω < 0

0, if ω = 0

1, if ω > 0

.

The test rejects the null hypothesis if TaoRM > cα(n, r) where the critical value cα(n, r)
depends on n, r and the level of significance α. For small n and r, the critical values are
obtained by Monte Carlo simulations; for large n and r, Schettlinger et al. use quantiles
of a hypergeometric distribution.
At each time t, the test is used to find an adequate window width n: If H0 is rejected,
n is set to n − 1 by removing the leftmost/oldest observation from the sample, and it
is tested again. This loop ends as soon as H0 is no longer rejected. The RM regression
is then performed on the window sample of the adapted width n. Our proposed Slope
Comparing Adaptive Repeated Median procedure adopts the idea of the aoRM, however
yielding a more powerful and faster detection of level shifts and trend changes, cf. Section
4.

3 The Slope Comparing Adaptive Repeated Median

Firstly we introduce the test used by the Slope Comparing Adaptive Repeated Median
(SCARM) for the detection of level shifts and trend changes, simply speaking of signal
changes in the following. The test statistic is the difference of RM slopes relative to the
variance of this difference. Hence, we also propose an approach for the online estimation
of the variance of RM slope differences. The entire SCARM algorithm is presented at the
end of this Section.
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Figure 3: Separation of a window sample into a left-hand and a right-hand sample with
left-hand (black dashed) and right-hand (black dotted) RM line

3.1 A test for the online-detection of signal changes

The test used by the SCARM is based on the assumption (1) that the data come from
Xt = µt+ξt where µt is the underlying relevant signal and ξt = σt εt+ηt the error process.
In the theoretical development of our test we assume that σt εt ∼ N(0, σ2

t ) and ηt = 0. In
Appendix B we inspect the SCARM test statistic distribution given skewed, heavy-tailed
and contaminated errors by means of Monte Carlo simulations.
Following the change-point regression approach of Chen et al. (2011), we test the null
hypothesis that the signal in a time window {t−n+1, . . . , t} is linear against the alternative
that a signal change in the form of a level shift and/or trend change is present after some
time point t0:

H0 : µt−n+i = µ+ β · (i− n), i = 1, . . . , n,

H1 : µt−n+i =

{
µold + βold · (i− n), i = 1, . . . , t0

µnew + βnew · (i− n), i = t0 + 1, . . . , n
,

where t0 ∈ {1, . . . , n− 1} and µold 6= µnew and/or βold 6= βnew. Due to (1), H0 can also be
written as

Xt−n+i = µt + βt · (i− n) + σt εt−n+i. (4)

We divide the whole window {t − n + 1, . . . , t} of length n into two separate parts, a
right-hand window {t− r+1, . . . , t} of width r and a left-hand window {t∗− `+1, . . . , t∗}
of width ` where t∗ = t− r, t∗− `+1 = t−n+1, and n = `+ r (cf. Figure 3). Denote by

xt = (xt−n+1, . . . , xt) ∈ Rn, xright
t = (xt−r+1, . . . , xt) ∈ Rr,

xleft
t∗ = (xt∗−`+1, . . . , xt∗) = (xt−n+1, . . . , xt−n+`) = (xt−n+1, . . . , xt−r) ∈ R`

the whole, right-hand, and left-hand window sample, and let Xt, X
right
t , and Xleft

t∗ be the
corresponding random vectors. Furthermore, µ̂(xleft

t∗ ) and β̂(xleft
t∗ ) are the RM level and

slope which are estimated from the left-hand sample and which specify the left-hand RM
line (the black dashed line in Figure 3):

µ̂t∗−`+j(x
left
t∗ ) = µ̂(xleft

t∗ ) + β̂(xleft
t∗ )(j − `), (5)

where j = 1, . . . , `. The RM level and slope in the right-hand window are denoted by
µ̂(xright

t ) and β̂(xright
t ). They specify the right-hand RM line (the black dotted line in
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Figure 3):
µ̂t−r+k(x

right
t ) = µ̂(xright

t ) + β̂(xright
t )(k − r), (6)

where k = 1, . . . , r.
The RM slope is unbiased for symmetric error distributions (Siegel, 1982). Hence, the
RM slopes within the whole, left-hand and right-hand window are unbiased under this
assumption if H0 is true:

E(β̂(Xt)) = E(β̂(Xleft
t∗ )) = E(β̂(Xright

t )) = βt,

implying that the expectation of Dt := β̂(Xleft
t∗ ) − β̂(Xright

t ) is zero. Our proposed test
statistic is

Tt :=
Dt√

V̂ar(Dt)
, (7)

where V̂ar(Dt) is an estimate of Var(Dt). If |Tt| is ’too large’, the whole window sample
xt := (xt−n+1, . . . , xt) is assumed not to come from (4), and H0 is rejected. Since the RM
reacts to trend changes and level shifts, the test is sensitive to both kinds of signal changes.

An intuitive approach to estimate Var(Dt) would be to apply a robust scale estimator
like the Median Absolute Deviation (MAD) to the latest m realizations of RM slope dif-
ferences dt−m+1, . . . , dt. However, this approach is problematic since signal changes induce
large absolute values dt, as can be seen in Figure 4. The top graph shows a time series
(xt) with several level shifts; the central graph shows the RM slope differences (dt) with
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`, r = 25; and the lower graph shows the MAD at time t, computed on the m slope
differences dt−m+1, . . . , dt where m = 25 (solid line), m = 50 (dashed line) and m = 100
(dotted line). As can be seen, shortly after an upward (downward) shift in the time series
(xt), the time series (dt) of RM slope differences show a downward (upward) peak. Thus,
when several level shifts in the data occur close to each other, there are several peaks in
the time series (dt), meaning a large amount of variability. Hence, even a robust scale
estimator like the MAD yields large estimates of Var(Dt), see graph (c) of Figure 4. That
is, since level shifts induce large estimates of Var(Dt), they can ’mask’ subsequent level
shifts, meaning reduced power of the test. We therefore propose an alternative approach
to estimate Var(Dt) in the following subsection. Using this approach we obtain V̂ar(Dt)
and reject H0 if

Tt =
Dt√

V̂ar(Dt)

< qlow or Tt =
Dt√

V̂ar(Dt)

> qup,

where the critical values qlow and qup are the α/2 and 1−α/2 quantiles of the distribution
of Tt. Monte Carlo simulations in Appendix B indicate that the distribution of Tt under
H0 can be well approximated by a tf -distribution – even for skewed, heavy-tailed, and
contaminated errors. Hence, we reject H0 if |Tt| > tf, 1−α/2. The degrees of freedom
f = f(`, r) depend on ` and r. Appendix B describes how we determine f(`, r).

3.2 The estimation of Var(Dt)

We propose a method to estimate Var(Dt) under H0 with ξt−n+i = σt εt−n+i ∼ N(0, σ2
t )

i.i.d. within the whole window {t − n + 1, . . . , t}. The effects of violations of these as-
sumptions because of outliers, for instance, are discussed below. If H0 is true, we have

Var(Dt) = Var
(
β̂t∗(X

left
t∗ )− β̂t(X

right
t )

)

= Var
(
β̂t∗(X

left
t∗ )

)
+Var

(
β̂t(X

right
t )

)
,

(8)

since (i) we assume (εt) to form independent Gaussian noise, (ii) the left-hand and the

right-hand samples are separate and (iii) Var
(
β̂t∗(X

left
t∗ )

)
and Var

(
β̂t(X

right
t )

)
do not

depend on the true βt:

Theorem 1. If H0 is true, the variance of β̂(Xt) does not depend on the true βt. It is
equivariant to the noise variance σ2

t and depends on the window width n.

Proof. The RM slope estimate β̂(Xt) can be written as

β̂(Xt) = med
i∈{1,...,n}

{
med

i′ 6=i, i′ ∈{1,...,n}
Xt−n+i −Xt−n+i′

i− i′

}

= βt + med
i∈{1,...,n}

{
med

i′ 6=i, i′ ∈{1,...,n}
σt εt−n+i − σt εt−n+i′

i− i′

}

since

Xt−n+i = µt + βt(i− n) + ξt−n+i and Xt−n+i′ = µt + βt(i
′ − n) + ξt−n+i′ .
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Hence, it is

Var(β̂(Xt)) = σ2
t · Var

(
med

i∈{1,...,n}

{
med

i′ 6=i, i′ ∈{1,...,n}
εt−n+i − εt−n+i′

i− i′

})
, (9)

where Var(εt−n+i) = 1.

Furthermore, the data within the left-hand and the right-hand window have the same
linear structure if H0 is true. From this it follows:

Corollary 1. If H0 is true, Var(β̂(Xleft
t∗ )) and Var(β̂(Xright

t )) do not depend on the true
slope βt. They are equivariant to the noise variance σ2

t and depend on the respective win-
dow width ` and r.

Therefore, we regard the variance of the left-hand and the right-hand RM slope as a
function V : N× R+ 7−→ R+ with

V(`, σt) := Var
(
β̂t∗(X

left
t∗ )

)
and V(r, σt) := Var

(
β̂t(X

right
t )

)
. (10)

In order to approximate V(`, σt) and V(r, σt) for any `, r ≥ 5 and any noise variance
σ2
t > 0, we use the fact that

V(`, σt) = V(`, 1) · σ2
t and V(r, σt) = V(r, 1) · σ2

t , (11)

cf. (9). Combining (8) – (11) yields, under H0,

Var(Dt) = σ2
t · (V(`, 1) + V(r, 1)). (12)

By means of Monte Carlo simulations we obtain approximations V̂(`, 1) =: v` and V̂(r, 1) =:
vr for `, r ≥ 5, see Appendix A. The estimation of σ2

t could be carried out on the resid-
uals of an RM regression on the whole window sample. However, violations of the null
hypothesis due to signal changes lead to large absolute residuals. Hence, even robust
scale estimators could deliver inadequately large estimations of σ2

t , meaning that signal
changes can ’mask’ themselves or subsequent signal changes, as explained above.
In order to prevent such masking effects, we estimate σt directly on the data using a
scale estimator proposed by Rousseeuw and Hubert (1996) and Gelper et al. (2009). It
estimates σt by the heights of adjacent triangles, formed by triples of consecutive obser-
vations. Thus, it does not depend on any previous estimate of the regression parameters
µt and βt, is invariant to linear trends, and performs well for level shifts, time varying
scale and outliers. Given a sample vector x := (x1, . . . , xn), this scale estimator is

Qδ(x) = cn · h(bδ(n−2)c),

where h(bδ(n−2)c) is the δ-quantile of the n− 2 adjacent triangle heights

hw =

∣∣∣∣xw+1 − xw + xw+2

2

∣∣∣∣ , w = 1, . . . , n− 2,

which are formed by all triples of successive observations xw, xw+1, xw+2. The constant
cn denotes a factor to achieve unbiasedness for samples of size n drawn from a normal
distribution. The choice of δ is complicated by a trade-off problem between robustness
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and efficiency. We act on the suggestion of Gelper et al. (2009) and set δ = 0.5 to
achieve reasonable robustness and efficiency. Using the Q0.5 scale estimator and the
approximations v` and vr, we estimate Var(Dt) according to (12), i.e. V̂ar(dt) = Q0.5(xt)

2 ·
(v`+vr). Note that even though the assumption of an outlier-free error process (ηt−n+i = 0)
is made in the theoretical development of our approach for the estimation of Var(Dt), the
robustness of the Qδ scale estimator ensures adequate estimates when outliers are present.
Furthermore, the Qδ – and thus our proposed approach for the estimation of Var(Dt)
– is robust against signal changes in the time window (i.e. H1 is true). We therefore
prevent signal changes from masking themselves or following breaks. However, the Q
scale estimator may become zero if ties are present in the data. We therefore propose to
set a positive lower bound for the Q scale estimation to prevent that the realization of
the SCARM test statistic is infinite due to ties in the data:

V̂ar(dt) = max{b, Q0.5(xt)
2 · (v` + vr)}. (13)

The choice of the bound b depends on the application and can have large influence on the
resulting SCARM signal extraction, cf. Section 5.

3.3 The filtering algorithm

Next, we propose a moving window algorithm that uses the proposed test to find an
adequate window width at each time point t. Hence, we denote the time-dependent
window width as nt instead of n in the following. We modify the algorithm of Schettlinger
et al. (2010), particularly by replacing the test with our proposed test procedure. Our
algorithm requires the following input arguments which must be chosen by the analyst in
consideration of the given data:

• the level of significance α of the test,

• the fixed width of the right-hand window r,

• a minimum bound `min for the left-hand window width `t which ensures that `t ≥
`min (the left-hand window width is not fixed but varies over time since `t := nt−r),
and

• a minimum and maximum window width nmin and nmax, so that nt ∈ {nmin, . . . , nmax}
and nmin ≤ `min + r.

The choice of the input arguments is discussed at the end of this Section.
The flow chart in Figure 5 illustrates the SCARM algorithm. The core of the algorithm
is the test of whether nt is adequate for an RM regression. If H0 cannot be rejected,
the signal is estimated on the window sample of size nt. However, if the test rejects H0,
nt is set to its minimum value nmin, since we assume a signal change within the time
window. (This adaption principle is different from that of the aoRM. If the aoRM rejects
the null hypothesis, nt is set to nt − 1 and it is tested again. This is repeated until nt

is adequate.) Ideally, nmin is such that the time window {t − nmin + 1, . . . , t} solely in-
cludes observations after the signal change; sensible choices for nmin are discussed below.
After the signal is estimated on the sample (xt−nt+1, . . . , xt), the window is updated for
the next time point t + 1 by incorporating the new incoming observation xt+1 into the
window sample. Provided that H0 is not rejected, the window grows gradually with each
incoming new observation, until nt equals the maximum possible value nmax. In this case
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Figure 5: A flow chart of the SCARM algorithm.

the window does not grow anymore, but moves instead to the right.
It is important to understand that (i) the window width can increase only ’bit by bit’ but
decreases at once to nmin when the test detects a signal change, (ii) the window width
can only reach its maximum value nmax if the test does not reject H0 for an accordant
period of time, and (iii) when the algorithm sets the window width nt to nmin and nmin

is chosen smaller than `min + r, the window width nt cannot be decreased before it has
grown again up to nt = `min + r. This rule ensures that there are enough observations for
a meaningful testing.

The level of significance α of the test defines the expected number of falsely detected
signal changes. For example, α = 0.1% means that one expects one false detection in
1000 time points.
The choice of the right-hand width r is crucial. It defines the cutoff between a patch of
outliers and a signal change. For instance, if less than 10 subsequent aberrant observa-
tions are treated as a patch of outliers, r should be greater than 20 because of the 50%
breakdown point of the RM. However, actually the RM estimation is already considerably
biased if the outlier proportion is around 1/3. This can be seen in Figure 1, where the RM
line (window width n = 20) is affected by the level shift when the time window contains
around six or seven level-shifted observations. Hence, we recommend to choose r three
times larger than the length of the largest expected outlier patch.
On the one hand r determines the maximum length of outlier-patches the filtering proce-
dure can resist, on the other hand r determines the time needed to detect a signal change,
which is approximately r/3. That is, if the test detects a signal change, it is justifiable to
assume that this break happened around time t − r/3. Hence, we recommend to choose
nmin = r/3.
The minimum bound `min for the left-hand window width `t ensures that the test is only
performed if the left-hand and right-hand window contain ’enough’ observations: After
nt has been decreased to the value nmin, it must grow again for the following time points
until nt = `min + r. Similar to the choice of r, `min must be chosen w.r.t. the requested
amount of robustness: in order that the left-hand window can resist as many outliers as
the right-hand window, we recommend to choose `min = r. Finally, the maximum width
nmax ensures that nt ≤ nmax. It limits the time needed for the computation of the RM.
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4 A comparison of the aoRM and SCARM test

We compare the tests used by the aoRM and SCARM w.r.t. their power to detect level
shifts and trend changes as well as the mean time needed for the detection of such signal
changes.

4.1 Detection of level shifts and trend changes

The comparison is done by simulations using several different input values, in particular
(n, r) = (40, 20), (60, 20), (80, 40), (120, 40) and the significance levels α = 0.001, 0.005,
0.01 and 0.1. The critical values for the SCARM and aoRM test statistics are obtained
by simulations, applying the tests to Gaussian noise.
For each (n, r)-combination we generate time series (xt) and (yt), t = 1, . . . , n+ r, where
a level shift and trend change, respectively, is present at time t = n+ 1. The time series
(xt) are given by

xt =

{
εt, t = 1, . . . , n

a+ εt, t = n+ 1, . . . , n+ r
,

where εt ∼ N(0, 1) and a is the height of the level shift. The time series (yt) are given by

yt =

{
εt, t = 1, . . . , n

b · (t− n) + εt, t = n+ 1, . . . , n+ r
,

where b is the slope of the trend. We generate 1000 time series (xt) and (yt) for each
(n, r)-combination and for each a = 1, . . . , 4 and b = 0.1, . . . , 0.4. We then apply the
aoRM and SCARM test with fixed n and r in a moving time window of width n. Thus,
both tests deliver test decisions for the time points t = n, . . . , n + r. If at least one of
these r + 1 tests decides to reject H0, the signal change is considered as detected by the
test procedure. Figure 6 shows the resulting rates of detected level shifts (top) and trend
changes (bottom) for (n, r) = (40, 20); the results for (n, r) = (120, 40) are shown in Figure
7. In Figure 6, the SCARM test offers distinctly higher detection rates than the aoRM
test. For small levels of significance α, the aoRM test has small power to detect signal
changes, in particular trend changes. Although the performance of the aoRM becomes
better for higher levels of significance, it is worse than the SCARM test for each α-value.
However, in an online application, a high significance level induces a high rate of false
detections, meaning that the window width is often decreased unnecessarily. These results
are obtained using (n, r) = (40, 20), i.e. ` = r = 20 since ` = n − r. Further simulations
using other (n, r)-values show that the SCARM offers a considerably higher power than
the aoRM when r is small and/or when the difference between ` and r is small. For larger
(`, r)-values, as in Figure 7, the difference between the detection rates of the SCARM and
aoRM becomes less distinct. However, the SCARM still yields higher power when the
significance level and the signal change are small.
In contrast to the aoRM test, the test of the SCARM offers high detection rates for small
`- and r-values. This is a crucial advantage of the SCARM over the aoRM, because a
smaller r induces that signal changes are detected earlier. Since detection time is crucial,
we have also allocated the time spans from the signal change at time point t = n + 1 to
the time points when the changes have been detected.
Figure 8 shows the mean detection times, i.e. the mean of the allocated time spans, of
the aoRM and SCARM test for level shifts (top) and trend changes (bottom). Since the
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Figure 6: Rate of detected level shifts (top) and trend changes (bottom) with (n, r) =
(40, 20) or (`, r) = (20, 20), respectively
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Figure 7: Rate of detected level shifts (top) and trend changes (bottom) with (n, r) =
(120, 40) or (`, r) = (80, 40), respectively
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Figure 8: Mean detection times of the aoRM and SCARM for level shifts (top) and trend
changes (bottom) with (n, r) = (120, 40) or (`, r) = (80, 40), respectively

results are similar for all considered (n, r)-values, we only show the detection times for
(n, r) = (120, 40) or (`, r) = (80, 40), respectively. Both procedures tend to react faster
when the level of significance and the magnitude of the signal change are large. However,
the SCARM yields faster reaction times than the aoRM in any of the situations considered
here. Roughly spoken, the SCARM offers a mean detection time of approximately 1

4
r to

1
2
r, whereas the aoRM needs approximately 1

2
r to 2

3
r time points on average to detect

signal changes.

5 Application

The SCARM and aoRM are provided in the R package robfilter 3.0 (Fried et al., 2011),
which offers several time series filtering methods based on robust concepts. The func-
tions are termed scarm.filter and adore.filter (adaptive online repeated median). The
input arguments right.width, min.left.width, min.width, and max.width of the scarm.filter
function match the input values r, `min, nmin, and nmax. The main input arguments of
the adore.filter are the number of RM residuals for the test statistic, cf. Section 2, and a
minimum and maximum window width, matching the input arguments p.test, min.width
and max.width. We apply the scarm.filter and adore.filter function retrospectively to
simulated data and to real data from intensive care online-monitoring.
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Figure 9: Simulated time series (grey, dashed) with underlying signal (black, dashed) and
signal extraction by SCARM (black, solid) and aoRM (grey, solid)

5.1 Simulated data

We create a signal which exhibits several level shifts and trend changes and add normal
noise and 5% outliers of value 5 at randomly chosen positions. For both the scarm.filter
and adore.filter we choose the input argumentsmin.width = 11 andmax.width = 120. Fur-
thermore, we choose p.test = right.width = 22, so that the scarm.filter and the adore.filter
use an equal number of observations for the test decisions. Since the adore.filter function
uses the fixed significance level α = 0.1, we also choose this relatively high α-value for the
scarm.filter function. Figure 9 shows the simulated data with the underlying signal and
the signal extraction time series.
The SCARM signal extractions are apparently closer to the underlying signal. Both filters
trace the signal changes with a certain time delay, since the signal is estimated robustly at
the right end of each time window. However, the SCARM delivers signal extractions that
react faster to changes. These impressions support the findings as to the mean detection
times from Section 4. However, the SCARM and aoRM window width adaption principles
are different. The aoRM searches for a window width nt which is suitable and as large as
possible, whereas the SCARM sets the window width down to its minimum value when it
detects a signal change. Hence, the SCARM traces signal changes more accurately than
the aoRM.

5.2 Online-monitoring data from intensive care

The time series from intensive care online-monitoring are systolic blood pressure mea-
surements of a patient, measured at a frequency of one observation per second. After
consulting an experienced intensive care physician, aberrant data patches that are shorter
than 10 observations can be regarded as clinically irrelevant outlier patches. Hence, for
the scarm.filter we choose the input arguments right.width = min.left.width = 30 and
min.width = right.width/3 = 10, and we set max.width = 180. Furthermore, we choose
the significance level sign.level = 0.001. Since the blood pressure measurements are in-
teger valued, ties occur frequently. Therefore, H0 would be often rejected due to zero
noise scale estimations and thus infinite values of the test statistic. The input argument
bound.noise.sd of the scarm.filter function matches the input argument b, the lower bound
for the noise scale estimation in (13). This bound avoids rejections of H0 due to ties in
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Figure 10: Top: time series of systolic artery blood pressure and SCARM signal extraction;
bottom: adapted window widths

the data. Moreover, the blood pressure time series are strongly positively autocorrelated.
Hence, ordinary fluctuations very often cause falsely detected signal changes. If a smooth
signal extraction is requested, the user can simply choose a large value of bound.noise.sd
to prevent false detections. We applied the scarm.filter to the real data using several
different values of bound.noise.sd, aiming at a signal extraction which is as smooth as
possible without missing any signal change, and obtained good results for bound.noise.sd
= 10, cf. Figure 10 (a). The signal extraction is smooth in phases of a stable trend,
whereas level shifts and changing trends are traced fast and exactly. Although we choose
a large value of bound.noise.sd here, the SCARM test has still enough power to detect the
conspicuous signal changes. This example shows that the input argument bound.noise.sd
can also be used as a tuning parameter that has large influence on the signal extraction.
It is also visible how the scarm.filter handles the missing values around time t = 2000.
In order to obtain reliable signal estimations, the scarm.filter function requires at least
dright.width/2e non-missing observations in the right-hand and dmin.left.width/2e in the
left-hand window. Otherwise, the signal estimation output is a missing value. That is,
when subsequent observations are missing, the scarm.filter first continues the signal ex-
traction, but stops when too many values are missing. The signal estimation outputs are
then missing values. When enough new non-missing observations are given again, the
scarm.filter re-starts the signal extraction.
The time series of adapted widths nt in Figure 10 (b) give information about the test
decisions taken by the SCARM test for any time point t. When H0 is rejected, i.e. when
the SCARM detects a signal change, the width nt is set to its minimum. Hence, we can
evaluate whether the test decisions are correct or not by comparing the time series (nt)
with the data and signal extraction time series. In our opinion all rejections excepting
the second rejection of H0 (around time t = 550) are necessary and therefore correct.
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6 Summary and outlook

Robust RM regression in a moving time window is a promising approach for online signal
extraction from noisy and outlier-contaminated non-stationary data stream time series.
However, it is impossible to predetermine an optimal window width as the data structure
changes over time. The SCARM tackles this problem by following the idea of the aoRM
(Schettlinger et al., 2010) of choosing the window width automatically at each time point
t w.r.t. the current data situation. Both procedures use a test to decide whether or not
the width must be adapted. The test statistic of the SCARM is the absolute difference
of RM slopes, computed in separate time windows, divided by the variance of the slope
difference. In order to avoid masking effects, we propose a sophisticated approach to
estimate the variance. The test procedure including the variance estimation is the core of
the SCARM signal extraction algorithm.
Since the signal extractions strongly depend on the chosen window width, the performance
of the test is crucial. In a simulation study, we find that the SCARM outperforms the
aoRM w.r.t. the power and the mean time needed for detecting level shifts and sudden
trend changes. Applications to simulated data, using the R-functions in the package rob-
filter, further illustrate the advantages of the SCARM over the aoRM, and applications
to real data from intensive care demonstrate the capability of the SCARM in practice.
However, these applications also show that the test of the SCARM has a distinctly in-
creased type I error rate in the case of positive autocorrelations. Choosing a bound for the
noise variance estimation (13) may fix this problem, but at the cost of decreased power
for detecting signal changes. There is apparently still some need for research as to the
effect of autocorrelations on the SCARM test.
The SCARM and aoRM can also be used to extract signals from multivariate time se-
ries, simply by applying the filters to each univariate component of the multivariate time
series. However, the dependence structure of the data is not regarded then. Borowski
et al. (2009) develop a multivariate extension of the aoRM that takes cross-correlations
into account in order to improve the efficiency of the signal estimation and the robust-
ness against multivariate outliers. A similar multivariate extension of the SCARM would
probably be beneficial.

Acknowledgement

This work has been supported by the Collaborative Research Center ’Statistical mod-
elling of nonlinear dynamic processes’ (SFB 823, Projects C1 and C3) of the German
Research Foundation (DFG).

References

Bernholt, T. and Fried, R. (2003). Computing the update of the repeated median regres-
sion line in linear time. Information Processing Letters, 88(3):111–117.

Bernholt, T., Fried, R., Gather, U., and Wegener, I. (2006). Modified repeated median
filters. Statistics and Computing, 16:177–192.

Borowski, M., Schettlinger, K., and Gather, U. (2009). Multivariate real time signal pro-

16



SCARM – Slope Comparing Adaptive Repeated Median Borowski, Fried

cessing by a robust adaptive regression filter. Communications in Statistics – Simulation
and Computation, 38(2):426–440.

Chen, C., Chan, J., Gerlach, R., and Hsieh, W. (2011). A comparison of estimators for
regression models with change points. Statistics and Computing, 21(3):395–414.

Davies, P., Fried, R., and Gather, U. (2004). Robust signal extraction for on-line moni-
toring data. Journal of Statistical Planning and Inference, Special Issue: Contemporary
Data Analysis: Theory and Methods in Honor of John W. Tukey, 122:65–78.

Davies, P. and Gather, U. (2005). Breakdown and groups. The Annals of Statistics,
33(3):977–1035.

Fried, R. (2004). Robust filtering of time series with trends. Nonparametric Statistics,
16(3-4):313–328.

Fried, R., Bernholt, T., and Gather, U. (2006). Repeated median and hybrid filters.
Computational Statistics & Data Analysis, 50(9):2313 – 2338.

Fried, R., Einbeck, J., and Gather, U. (2007). Weighted repeated median smoothing and
filtering. Journal of the American Statistical Association, 102:1300–1308.

Fried, R., Schettlinger, K., and Borowski, M. (2011). robfilter: Robust Time Series Filters.
R package version 3.0.

Gather, U. and Fried, R. (2004). Methods and algorithms for robust filtering. In Proceed-
ings in Computational Statistics (COMPSTAT 2004), pages 159–170. Physica, Heidel-
berg.

Gather, U., Schettlinger, K., and Fried, R. (2006). Online signal extraction by robust
linear regression. Computational Statistics, (21):33–51.

Gelper, S., Schettlinger, K., Croux, C., and Gather, U. (2009). Robust online scale
estimation in time series: A model-free approach. Journal of Statistical Planning and
Inference, 139(2):335 – 349.

Rousseeuw, P. and Hubert, M. (1996). Regression-free and robust estimation of scale for
bivariate data. Computational Statistics & Data Analysis, 21(1):67–85.

Rousseeuw, P. and Leroy, A. (1987). Robust Regression and Outlier Detection. Wiley,
New York.

Schettlinger, K., Fried, R., and Gather, U. (2006). Robust filters for intensive care moni-
toring: beyond the running median. Biomedical Engineering, 51:49–56.

Schettlinger, K., Fried, R., and Gather, U. (2010). Real time signal processing by adaptive
repeated median filters. International Journal of Adaptive Control and Signal Process-
ing, 24:346–362.

Siegel, A. (1982). Robust regression using repeated medians. Biometrika, 69:242–244.

17



SCARM – Slope Comparing Adaptive Repeated Median Borowski, Fried

Window width n

R
M

 s
lo

pe
 v

ar
ia

nc
e

5 10 15 20 25 30 35 40 45 50

0

0.05

0.1

0.15
Estimated RM slope variance
Modelled RM slope variance
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of size n = 5, . . . , 50

A Monte Carlo approximations of V̂ (`, 1) and V̂ (r, 1)

We approximate vn := V̂ (n, 1) for n = 5, . . . , 300 by the empirical variance of RM slopes
which are estimated on samples coming from

Xt−n+i = µt + βt · (i− n) + εt−n+i, i = 1, . . . , n,

with standard normal i.i.d. errors εt−n+i ∼ N(0, 1). W.l.o.g. we set µt = βt = 0 because of
the regression equivariance of the RM slope (Rousseeuw and Leroy, 1987), i.e. Xt−n+i =
εt−n+i.
We generate time series (xt) consisting of 100000 + 300− 1 = 100299 observations. Then
for each n = 5, . . . , 300 we move a time window {t − n + 1 . . . , t} over the time series,
starting at time point t = 300. Hence, for each n we obtain 100000 RM slopes, and vn
is the empirical variance computed on these 100000 RM slopes. Due to this time series
design the RM slopes are autocorrelated, as they are in practice. However, in another
simulation study we also approximated the RM slope variance for independent samples.
These estimates are comparable to those obtained by the time series design. As was to be
expected, the variance of the RM slope decreases monotonically with increasing window
size n, see Figure 11. In order to obtain approximations vn for n > 300, we model the
relationship between n and vn and find that the function

v(n) = 4.77 · 10−7 + 17.71 · n−3

is an appropriate model with standard error 0.0004 and coefficient of determination 0.9983.

B The empirical distribution of the SCARM test statis-

tic

This Monte Carlo study analyzes the distribution of the SCARM test statistic Tt under
the null hypothesis. That is, we compute Tt on samples xt that come from model (4):

Xt−n+i = µt + βt · (i− n) + ξt−n+i,

ξt−n+i = σt εt−n+i + ηt−n+i, i = 1, . . . , n,
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right-hand width r
5 10 15 20 25 30 35 40 45 50

le
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`
5 3.3 – – – – – – – – –
10 4.7 6.2 – – – – – – – –
15 6.9 7.7 10.9 – – – – – – –
20 8.0 9.1 12.3 14.8 – – – – – –
25 10.2 14.2 15.8 16.5 19.1 – – – – –
30 11.8 12.6 16.1 20.1 20.5 20.7 – – – –
35 12.0 18.2 18.7 18.1 29.4 27.3 24.8 – – –
40 14.8 15.6 16.4 23.7 22.3 24.9 31.9 21.7 – –
45 14.7 16.7 23.6 25.8 21.2 38.1 26.9 25.1 38.2 –
50 20.5 26.7 19.9 20.0 31.9 28.5 24.8 51.1 30.6 41.9

Table 1: Approximation of the SCARM test statistic distribution by a t-distribution:
suitable degrees of freedom f(`, r)

where we set µt = βt = 0 w.l.o.g. due to the regression equivariance of the RM slope.
First of all we consider standard normal errors, as assumed in the theoretical development
of the SCARM test, i.e. ηt−n+i = 0 and σt εt−n+i ∼ N(0, σ2

t ), and w.l.o.g. we set σt = 1.
We generated 10000 samples of length n = ` + r for r ∈ {5, 10, . . . , 100} and ` ∈ {r, r +
5, . . . , 100}. Thus, for any combination `, r we obtained 10000 realizations of the SCARM
test statistic Tt.
We find that the distribution of the SCARM test statistic can be well approximated by a t-
distribution with f degrees of freedom, where f depends on ` and r. For each combination
(`, r), we compare the empirical α- and (1− α)-quantiles, α = 0.01, 0.02, . . . , 0.05, of the
SCARM test statistic to the corresponding theoretical quantiles of a t-distribution with
degrees of freedom f = 0.1, 0.2, . . . , 100, in order to find a suitable f for each combination
(`, r). For each (`, r)-combination, we choose that f that minimizes the mean absolute
difference between the empirical and the theoretical quantiles. Table 1 lists the suitable
degrees of freedom f(`, r) for r ∈ {5, 10, . . . , 50} and ` ∈ {r, r + 5, . . . , 50}. The degrees
of freedom f , and thus the quantiles tf,α/2 and tf,1−α/2, are expected to be monotonically
increasing in ` and r. However, this is not true for the approximations of f(`, r) in Table
1. Therefore, for r ∈ {5, . . . , 100} and ` ∈ {r, . . . , 100} we set

f(`, r) = min
`′≥`

min
r′≥r

{f(`′, r′)} , (14)

with r′ ∈ {5, 10, . . . , 50} and `′ ∈ {r′, r′ + 5, . . . , 50} to achieve monotonic degrees of
freedom f and thus monotonic critical values tf,α/2 and tf,1−α/2. By taking the minimum
in (14) we decide for larger absolute critical values in order that the test keeps the chosen
level of significance α. If ` or r is larger than 100, we use standard normal quantiles as
critical values.

B.1 Other error types

We further investigate the distribution of Tt for heavy-tailed, skewed, and contaminated
errors ξt−n+i, in particular:

• Noise type 1: heavy-tailed errors from a standardized t-distribution with three de-
grees of freedom;
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` r 0.995- 0.9975- 0.9995- quantile type
quantile

10 10

3.66 4.25 5.83 tf(10,10)=6.2

3.12 3.21 3.29 empirical, noise type 1
3.91 4.88 6.36 empirical, noise type 2
2.81 3.00 3.99 empirical, noise type 3
3.03 3.13 5.10 empirical, noise type 4

50 50

2.84 3.14 3.83 tf(50,50)=20.7

2.43 2.63 3.28 empirical, noise type 1
2.68 2.78 3.31 empirical, noise type 2
2.17 2.22 2.85 empirical, noise type 3
2.52 2.75 3.17 empirical, noise type 4

100 20

2.75 3.02 3.64 tf(100,20)=30.7

2.43 2.74 3.28 empirical, noise type 1
2.80 2.92 3.05 empirical, noise type 2
2.36 2.69 3.53 empirical, noise type 3
2.32 2.42 2.81 empirical, noise type 4

Table 2: Quantiles of a tf(`,r) distribution and empirical quantiles of the SCARM test
statistic computed on different types of noise

• Noise type 2: skewed errors from a standardized Weibull distribution with scale and
shape parameter two and one;

• Noise type 3: standard normal errors with 10% contamination from N(10, 1);

• Noise type 4: standard normal errors with 10% contamination from N(0, σ2
t = 100).

Table 2 gives the empirical (1 − α/2)-quantiles, α = 0.01, 0.005, 0.001, of the computed
SCARM test statistics for the four noise types and for different combinations (`, r). Fur-
thermore, the table lists the quantiles of the tf(`,r)-distribution which are used as critical
values for test decision. The empirical quantiles are generally lower than the tf -quantiles
that are used for test decision, except for (`, r) = (10, 10) and given the skewed noise type
2. That is, the test keeps the chosen level of significance, even if the noise is heavy-tailed
or contaminated. However, if the noise is skewed, ` and r should both not be too small.
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