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1 INTRODUCTION 
1.1 Natural products: secondary metabolites 

Natural products are defined as a large group of organic compounds that are 

produced by living systems. It can be divided into three major categories: The first 

category are the primary metabolites, which play critical roles in primary metabolism 

and are essential for growing, development and reproduction of the producers. The 

primary metabolites include nucleic acids, amino acids and sugars etc. The second 

category contain high molecular weight bio-polymers such as lignen and cellulose, 

which are important for maintaining physical structures of the living cells. The third 

category are the secondary metabolites, which have attracted great research interests 

due to their diverse biological activities towards other organisms. Mostly, the term 

“natural products” is regarded to mean secondary metabolites (Hanson, 2003).  

Unlike the primary metabolites, secondary metabolites are naturally synthesized 

organic compounds that are not directly involved in the growth and development of the 

producing organisms. Organisms impaired with secondary metabolite synthesis 

normally do not die immediately, but rather suffer from a long-term damage of their 

survivability and fecundity. Due to the immense diversity of their structures, functions 

and biosynthesis routes, it is therefore difficult to appoint natural products into just a few 

categories. However, in practice it is generally believed that there are five main classes 

of secondary metabolites: alkaloids, terpenoids and steroids, non-ribosomal 

polypeptides, fatty acids and polyketides, and enzyme cofactors.  

Throughout the development of modern organic chemistry and medicinal chemistry, 

the natural products have been regarded as the largest pool for novel biological active 

compounds. For example in the development of cancer treatment, around 50% of the 

drugs approved since the 1940s are either natural products or their direct derivatives; 

and a significant number of those drugs/leads are actually produced by microbes 

(Newman & Cragg, 2007). Therefore, the study of natural products, especially those 
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with microbial origins, is today one of the most rapidly growing areas and has attracted 

great research interests.  

1.2 Phenazines 

1.2.1 Phenazines and phenazine producers 

Phenazines are a class of nitrogen-containing heterocyclic compounds that was first 

discovered and isolated about 150 years ago (Fordos, 1859) and have been extensively 

studied ever since. To date, more than 6000 phenazine-containing compounds have 

been reported, and several hundred are known to possess biological activities of which 

only around 100 are naturally synthesized (Laursen & Nielsen 2004; Mavrodi et al., 

2006). Most of these naturally synthesized phenazines are pigmented and due to the 

modification of the core phenazine ring structure, these compounds show typical colors 

at a spectra ranging from deep-red to light-blue (Britton, 1983; Price-Whelan et al., 2006) 

(Figure 1.1).  

 

Figure 1.1: (A) Phenazine pigments produced by Pseudomonas species come in all the 
colors of the rainbow (Figure source: American Society for Microbiology). (B) Some of 
the phenazines produced by Pseudomonas strains in aqueous solution. 2-OHPCA: 2-
hydroxyl-PCA, PCA: phenazine-1-carboxylic acid, 1-OHPHZ: 1-hydroxyphenazine, PYO: 
pyocyanine. (Price-Whelan et al., 2006) 

Except for the archebacterium Methanosarcina (Abken et al., 1998), the natural 

origin of phenazine are almost exclusively limited to a number of bacterial genera 

including the Gram-negative fluorescent Pseudomonas, as well as Burkholderia, 

Pantoea and the Gram-positive Streptomyces etc. (Mavrodi et al., 2006). Of all natural 
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phenazine producers, the best studied are the fluorescent Pseudomonas spp., including 

P. aeruginosa, P. fluorescens, and P. chlororaphis (previously known as P. 

aureofaciens). Each of them is capable of synthesizing two or more phenazine 

compounds except for P. fluorescens, which produces only phenazine-1-carboxylic acid 

(PCA) (Figure 1.2). 

 

Figure 1.2: Some of the naturally produced phenazines. PCA and PDC (red) are 
precursors of other phenazines produced by bacteria (black). Methanophenazine (blue) is 
the only known archaeal phenazine that is produced through a different biosynthesis 
route. 

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen of animals, 

insects, nematodes and plants, and can also infect immune-compromised individuals, 

causing both acute and chronic lung disease, that results in a high mortality rate among 

the patients (Villavicencio, 1998). Pyocyanin (PYO), which is produced by over 90% of 

Pseudomonas aeruginosa isolates, is believed to act as a virulence factor and 
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contribute to the pathogenesity of its producer in the pulmonary tissue damage 

observed with chronic lung infections of cystic fabrosis patients (Wilson et al., 1988) 

(Finnan et al., 2004). This is also supported by the observation that PYO deficient P. 

aeruginosa strains are attenuated in both acute and chronic lung infections in a mouse 

model (Lau et al., 2004). Some strains of another phenazine producer Burkholderia 

cepacia, which produces 4,9-dihydroxyphenazine-1,6-dicarboxylic acid dimethylester 

(Figure 2.2), is also frequently observed colonizing lung tissues of cystic fibrosis 

patients, and is reported in many cases as responsible or involved in the mortality of 

these patients after lung transplantation (Chaparro et al., 2001).  

Other phenazine producers including non-human pathogenic pseudomonads such 

as P. fluorescens and P. chlororaphis have also been extensively studied. These 

bacteria are commonly isolated from the rhizosphere (the soil environment surrounding 

the roots of plants), and are believed to colonize the roots of the plants and contribute to 

microbial competitiveness. While P. fluorescens 2-79 was one of the first strains from 

which purified phenazine compounds were shown to have anti-fungal activity 

(Gurusiddaiah et al., 1986), phenazine-1-carboxamide (PCN) produced by P. 

aeruginosa as well as P. chlororaphis showed the hightest overall anti-fungal activity in 

vitro (Smirnov & Kiprianova, 1990). In vivo experiments were later performed which 

provide direct evidence in correlating phenazine products with the anti-microbial activity 

of its producers, where Thomashow & Weller showed that phenazine-1-carboxylic acid 

(PCA) is the major factor that determines the anti-fungal activity of P.fluorescens 2-79. 

They found out that the ability to inhibit pathogens was lost in the phenazine-deficient 

strains of P.fluorescens 2-79, but can be subsequently restored by completing PCA 

production with the wild-type DNA (Thomashow & Weller, 1988). The importance of 

phenazines to inhibit phytopathogens has also been documented for P. chlororaphis 

PCL1391, which produces PCA and PCN that contribute to the suppression of foot and 

root rot of tomato caused by its fungal pathogen F. oxysporum (Chin-A-Woeng et al., 

2000). 
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1.2.2 The redox-activity of phenazines 

Regardless of whether acting as virulence factor contributing to pathogenesis, or as 

antibiotics in the rhizosphere, studies on the biological function of phenazines have 

been focusing mainly on their redox properties, which are important characteristics of 

the phenazine derivatives. For example, PYO in its reduced form can be oxidized by 

molecular oxygen, resulting in the accumulation of toxic reactive oxygen species (ROS) 

such as superoxide or hydrogen peroxide (Hassan & Fridovich, 1980), and the oxidized 

phenazine can further be reduced by various reducing agent including NADH, NADPH 

or GSH to complete a redox-cycle (Figure 1.3). The antibiotic activity of phenazines is 

therefore mainly resulting from their ability to generate free radical species, which is 

potentially harmful to microbes competing with phenazine producers in the environment.  

 
Figure 1.3: The redox-cycling of pyocyanin. PPP: pentose phosphate pathway. PYOox: 
oxidized form of pyocyanin. PYOred: reduced form of pyocyanin. SOD: superoxide 
dismutase. GSH: glutathione. GSSG: glutathione disulfide. GR: glutathione reductase.  

In human alveolar epithelial cells, the action mode of PYO is consisting of several 

simultaneous processes, including the inhibition of catalase (O’Malley et al. 2004), the 

reducing of cAMP and ATP (Kanthakumar et al., 1993), and the depletion of the major 

cellular antioxidant GSH (Muller, 2002). These processes together produce not only 

ROS, but also pyocyanin free radicals, which further contribute to the virulence effect of 

PYO. The consequences of the depleting cellular GSH may also cause the activation of 

redox-sensitive transcription factors that mediate pro-inflammatory processes. During 
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this PYO stimulated process, neutrophils are attracted into airways, causing neutrophil-

mediated tissue damage and inflammation (Denning et al., 1998; Lauredo et al., 1998). 

Previous research has also focused on the role of phenazines in assisting iron 

acquisition of the producing organism. For example, PYO is able to reduce the 

transferrin-bound Fe3+ from the human host, hence making it more available for the 

infectious P. aeruginosa (Cox, 1986). Another example is P. chlororaphis, a strain of 

phenazine-producing pseudomonads isolated from soil, which produces phenazine-1-

carboxamide (PCN). P. chlororaphis is able to reductively dissolve insoluble iron and 

manganese oxides which could be further taken up by siderophores, whereas a strain 

carrying a mutation in one of the phenazine-biosynthetic genes (phzB) is not. In this 

case, PCN is believed to act as an electron shuttle, and the small amount of PCN 

produced relative to a larger amount of ferric iron reduced indicates that PCN is 

recycled several times (Hernandez et al., 2004). The role of phenazines as electron 

shuttle is also supported by the observation that the membrane bound 

methanophenazine produced by the methanogenic archaea Methanosarcina mazei Gö1 

acts as an electron carrier that mediates electron transfer between membrance bound 

targets (Abken et al., 1998; Beifuss et al., 2000). 

1.2.3 Physiological roles of phenazines 

Interestingly, Lau and coworkers have documented that the growth of P. aeruginosa 

in mouse infection models benefits from the production of phenazines regardless of the 

presence of other competing microorganisms (Lau et al., 2004). In addition, Bankhead 

et al. have observed that the composition of the rhizobacterial community did not 

change after P. aeruginosa colonized the root (Bankhead et al., 2004). These evidences 

suggesting that apart from acting as antibiotics, virulence factors or electron carriers, 

phenazines may also play important physiological and ecological roles that contribute to 

the overall biological control of their producers. 

Therefore, studies regarding the function of phenazines have been extended to 

discuss the relevance of phenazine metabolism in the producers themselves. Recently, 

novel results from Dietrich and coworkers suggest that in Pseudomonas aeruginosa, the 
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phenazine product PYO can function in redox homeostasis to re-oxidize NADH in order 

to support primary metabolitic pathways such as glycolysis under anaerobic conditions 

(Price-Whelan et al., 2007). It also has profound activities in controlling the structure 

and size of colony biofilms, where phenazine-deficient mutants showed over-growing of 

the colony size. They have also demonstrated that PYO directly activates the iron-

containing oxidative stress response regulator SoxR, which subsequently regulates a 

number of genes involved in transformation/transport of small molecules and the 

superoxide stress response (Dietrich et al., 2008). This suggests that, independent of 

introducing oxdidative stress directly, phenazines, which have previously been regarded 

as secondary metabolites without a direct role in primary cellular processes, play 

important roles also in the control of gene expression and colony growth of the 

producers. 

In addition, phenazines are also shown to possess abilities in polynucleotide 

intercalation and topoisomerase inhibition. A number of phenazine molecules produced 

by pseudomonads have been studied for their properties to bind double-stranded 

DNA/RNA, and a π–π interaction that leads to intercalation between the planar aromatic 

phenazine ring and the base pairs was observed (Hollstein & Van Gemert, 1971). 

Although none of the natural phenazines has been reported to inhibit topoisomerase, 

synthetic analogues of phenazines have been intensively studied for their capacity to 

act as topoisomerase inhibitors. For example, synthetic phenazine-1-carboxamide 

derivatives have been reported to have advantages in multi-receptor targeting, which 

addresses drug resistance issues in topoisomerase inhibition (Stewart et al., 2001). 

1.3 Biosynthesis of phenazines 

1.3.1 Precursors of phenazines 

While early studies regarding the origin of phenazines have been mainly focused on 

the common nutrients fed to the producers, no direct evidence has been provided on 

the identity of the immediate precursors of phenazines (Turner & Messenger, 1986; 

Mentel et al., 2009). The mass production of penicillin facilitate the research of modern 

microbiology by means of selective culturing in the 1940s, which led to the discovery of 
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shikimic acid by selectively growing of E.coli mutants as a precursor for many microbial 

aromatic metabolites (Davis, 1951). By using radioactively labeled substrates, Millican 

showed that shikimic acid, not anthranilate, was incorporated into pyocyanin; and since 

shikimic acid is the precursor of anthranilate, it indicated that the biosynthesis of 

pyocyanine branches off from the shikimate pathway before the step in which 

anthranilate is formed (Millican, 1962). Similar results have been observed for other 

phenazine derivatives as well, indicating that the group of naturally occurring 

phenazines possibly shares a common precursor (Levitch & Stadtman, 1964; Levitch & 

Rietz, 1966; Podojil & Gerber, 1967; Chang & Blackwood, 1968). Ingledw and Campbell 

showed quatitative relationship between shikimic acid and pyocyanine in 1969, which 

further proved the role of shikimic acid as carbon source in phenazine biosynthesis 

(Ingledew & Campbell, 1969). 

Since shikimic acid is a key intermediate in microbes and plants that is directed into 

a number of metabolite biosynthesis pathways, the exact branch point of phenazine 

biosynthesis from shikimate pathway remained veiled till chorismate was identified as a 

common precursor of pyocyanin and other phenazine derivatives (Calhoun et al., 1972; 

Longley et al., 1972). However, evidence provided by these researches was only 

indirect because radioactively labeled chorismic acid was not applicable in the 

experiments due to its poor cell permeability. Later in 1979, Byng and coworkers 

examined different mutants of P. aeruginosa for their capabilities of producing 

phenazines. They identified three classes of mutants that were pyocyanine deficient and 

proposed a biochemical scheme implying the precursor-product relationships that cover 

the terminal steps in pyocyanine biosynthesis, which also supported the argument that 

chorismic acid acts as phenazine precursor (Byng et al., 1979). 

1.3.2 Phenazine biosynthesis genes 

Although studies in the 1970s have already identified chorismic acid as the branch 

point to phenazine biosynthesis, very limited knowledge was provided towards 

understanding the key steps involved in the formation of the phenazine aromatic rings 

until genetic analysis of phenazine biosynthesis genes was performed. In the beginning 
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of 1990s, Essar and coworkers reported that the removal of a putative anthranilate 

synthase in the P. aeruginosa genome resulted in a dramatic decrease of pyocyanin 

production (Essar et al., 1990). Later in that decade, Pierson et al. cloned and 

sequenced part of the phenazine biosynthesis genes from P.aureofaciens 30-84 

(Pierson & Thomashow, 1992; Pierson et al., 1995), which for the first time shed light on 

the previously unknown molecular mechanisms of this pathway. The full set of 

phenazine biosynthesis genes was then identified by Mavrodi et al. via a complete 

sequencing of the gene cluster, showing that seven genes phzABCDEFG form a 

defined operon in the genome of P. fluorescens (Mavrodi et al., 1998). In 2000, the 

complete genome sequence of Pseudomonas aeruginosa strain PAO1 was published 

(Stover et al., 2000) and two seven-gene phenazine biosynthesis loci 

phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2 were cloned in 2001 (Mavrodi et al., 

2001). Each of The two gene cluster copies is homologous to the previously sequenced 

phenazine biosynthesis operon from P. fluorescens and is capable of PCA production. 

The duplication of phenazine genes in P. aeruginosa could possibly explain why it is 

one of the most active phenazine producers.  

In the meantime, studies of the phz operon have been extended to many other 

eubacterial phenazine producers (Mavrodi et al., 2001; Giddens et al., 2002; Haagen et 

al., 2006; Saleh et al., 2009). A collection of phenazine biosynthesis clusters are shown 

in Figure 1.4 (Mentel et al., 2009). By comparing the phenazine loci among its 

producers, it has been concluded that five proteins, encoded by five genes phzB, phzD, 

phzE, phzF and phzG, are absolutely required for the biosynthesis of phenazines 

(Mentel et al., 2009). Interestingly, all phenazine-making pseudomonads carry also an 

additional phzA gene which is approximately 80% identical to phzB, and a phzC gene 

which encodes a type-II 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) 

synthase is present in the phz operon of many phenazine producers, too. While DAHP 

synthases from bacteria normally belong to type-I subgroup, which catalyzes the first 

step in shikimate pathway and are feed-back inhibited by aromatic amino acids, PhzC 

probably bypasses the allosteric regulation due to the lack of a loop region (Webby et 

al., 2005). Therefore, it has been suggested that a non-regulated PhzC encoded in the 
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phz operon which targets at the upstream shikimate pathway is needed to ensure the 

sufficient production of phenazine precursors when other DAHP synthases are inhibited 

at the later stage of bacterial growth. Recent report showed that the phz operon has 

been distributed among their bacterial producers by either a conservative mechanism in 

Pseudomonas spp., or horizontal gene transfer in Burkholderia spp. and 

Pectobacterium spp. (Mavrodi et al., 2010; Fitzpatrick, 2009), which is a strong 

indication that the phenazine biosynthesis in bacteria shares the same core pathway 

and the large variety of phenazine compounds produced in nature is due to specific 

modifications of a limited number of precursor molecules. This conclusion is further 

supported by the identification of genes encoding phenazine-modifying enzymes in the 

phz operon of most phenazine producing bacterial strains. In addition, several other 

genes that locate closely up- or down-stream to the phenazine biosynthesis core operon 

were also found encoding phenazine regulatory, resistance or transporter proteins 

(Figure 1.4). 

Some early studies showed that phenazine-1-carboxylic acid (PCA) and phenazine-

1,6-dicarboxylic acid (PDC) are highly incorporated into other strain-specific phenazines 

(Turner & Messenger, 1986). PCA is the only phenazine product of P. fluorescens 2-79, 

the strain with simplest phz operon (Figure 1.4), and is not converted from the 

symmetric phenazine PDC (McDonald et al., 2001). It has been suggested that both 

PCA and PDC are the core precursor molecules for other natural phenazine derivatives. 

The phenazine production of P. aeruginosa has been shown controlled by a cell 

density-dependent, signal transduction mechanism called quorum sensing (QS) at the 

transcriptional level (Diggle et al., 2008; Girard & Bloemberg, 2008). QS relies on the 

production of small signaling molecules that can diffuse freely across bacterial cell-wall 

and activate downstream target proteins when certain concentration has been reached. 

For example, signaling system in P. aeruginosa that depends on 2-heptyl-3-hydroxy-4-

quinolone, also named “Pseudomonas quinolone signal” (PQS), is known to control the 

biosynthesis of phenazine pyocyanin and several other virulence factors (Pesci et al., 

1999; Calfee et al., 2001). 
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Figure 1.4: Phenazine biosynthesis gene clusters of bacteria. Colors indicate proposed 
function of the genes, including core phenazine biosynthesis (red), phenazine 
modification (green), phenazine regulation (yellow) and phenazine 
transporting/resistance (cyan). Note that although marked in red, PhzC is not distributed 
in all phz operons, and phzA/phzB gene duplication is only conserved in pseudomonads. 

 

1.3.3 Phenazine biosynthesis proteins 

The first systematic investigation of phenazine biosynthesis enzymes was 

performed in 2001, when McDonald et al. reexamined the point at which phenazine 

formation branches off from the shikimate pathway and used recombinant E.coli 

expressing all or different subsets of the phzA–G genes (McDonald et al., 2001). Their 

results showed that 2-amino-2-deoxyisochorismic acid (ADIC) is the phenazine 

precursor, which is converted from chorismate by an anthranilate synthase homologue 

PhzE. Nevertheless, unlike anthranilate synthases, PhzE lacks the lyase activity and 

releases the intermediate ADIC into the environment. PhzE catalyzes the first and 

critical step in phenazine biosynthesis and is responsible for incorporating nitrogen 

atoms from glutamine into the pathway. However, the direct evidence for ADIC 
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synthase activity of PhzE is missing at this point since chorismate is an important 

precursor for aromatic products in bacteria and the degradation of chorismate by other 

metabolitic enzymes from the cell extracts was almost inevitable.  

In the pathway, ADIC is subsequently hydrolyzed to trans-2,3-dihydro-3-

hydroxyanthranilic acid (DHHA) by PhzD, which is related to the isochorismate synthase 

family of EntB required for siderophore enterobactin biosynthesis. McDonald et al. 

proved that PhzD can also utilize isochorismate, 4-amino-4-deoxychorismate and 

chorismate as substrate (McDonald et al., 2001). The first crystal structure of PhzD from 

P. aeruginosa was determined by Parsons and coworkers in 2003, where they showed 

that PhzD is remarkably similar to enzymes from a family of α/β-hydrolases. Unlike most 

of the α/β-hydrolases, the catalytic mechanism of PhzD is distinct. While it lacks a 

catalytic cysteine that is always found important in other close structural relatives, vinyl 

ether hydrolysis is catalyzed by an aspartic acid residue (D38) in the active center 

(Parsons et al., 2003). However, a crystal structure reported recently indicated that a 

similar active site aspartic acid is conserved in EntB as well (Drake et al., 2006). 

Although intensive crystallographic studies have been done with respect to PhzD, 

neither the natural substrate ADIC nor the product DHHA has been observed in a 

complex crystal structure of this enzyme. 

McDonald et al. further demonstrated in their report that, apart from PhzE and PhzD, 

PhzF and PhzG are also absolutely required for phenazine biosynthesis. However, the 

mechanism of the dimerization of DHHA to the phenazine ring system remained a myth 

until year 2004, when Blankenfeldt et al. successfully determined the crystal structure of 

PhzF in complex with a substrate analogue and proposed a catalytic mechanism for the 

multiple step condensation of DHHA to PCA. They have found out that DHHA is the 

substrate of PhzF, an isomerase that catalyzes a pericyclic reaction converting DHHA to 

6-amino-5-oxocyclohex-2-ene-1-carboxylic acid (Blankenfeldt et al., 2004). Similar 

result was also presented by Parsons et al. independently in the same year (Parsons et 

al., 2004). 
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The ketone product (Figure 1.5, 1) of PhzF further undergoes a possibly 

simultaneous condensation reaction with a second molecule of itself, generating a 

tricyclic phenazine precursor (Figure 1.5, 2). Although this reaction does not absolutely 

require enzyme catalysis, recent studies indicated that the formation of the tricycle is 

catalyzed by PhzA/B heterodimer (Ahuja et al., 2008), which also explained the earlier 

observation by McDonald et al. that knock-out of phzAB genes decreases but not fully 

abolishes PCA production (McDonald et al., 2001). The PhzA/B reaction product 

analyzed by HPLC-coupled NMR spectroscopy indicated that the symmetrical tricyclic 

product was rearranged to contain four conjugated double bonds (Figure 1.5, 2a). This 

molecule undergoes a possibly enzyme-independent oxidative decarboxylation to form 

an intermediate (Figure 1.5, 3), that then needs to be oxidized to become fully 

aromatized. The terminal oxidation steps in phenazine biosynthesis do not require 

enzyme catalysis since evidence showed that PCA, PDC and also unsubstituted 

phenazine were produced by a reaction mixture containing only PhzF, PhzA/B and 

DHHA (Ahuja et al., 2008). Another principle towards the terminal aromatization of the 

tricyclic phenazine precursor involves PhzG, an FMN-dependent oxidase and the only 

oxidase in phenazine pathway (Pierson et al., 1995; Parsons et al., 2004). PhzG may 

be able to oxidize the intermediate 2a to generate 5,10-dihydrophenazine-1-carboxylic 

acid, which is the reduced form of the phenazine end product PCA. This is conceivable 

since it has been shown that one phenazine modifying enzyme dihydrophenazine-1-

carboxylate dimethylallyltransferase from Streptomyces anulatus possess higher activity 

towards reduced form of substrates (Saleh et al., 2009). moreover, PCA is further 

converted to pyocyanin in P. aeruginosa by the sequential actions of the putative S-

adenosylmethionine-dependent N-methyltransferease PhzM and the putative flavin-

dependent hydroxylase PhzS (Gohain et al., 2006b; Gohain et al., 2006a; Parsons et al., 

2007). The existence of PhzG is important also due to the fact that it acts directly on the 

intermediate 2a and prevents the oxidative decarboxylation of the substrate, which is 

suggested as the branch point between PDC and PCA biosynthesis, and also explains 

why PDC was not converted to PCA by the cell-free extract of E.coli expressing full phz 

operon (McDonald et al., 2001).  
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Figure 1.5: Curent understanding of phenazine biosynthesis pathway. Core phenazine 
products PCA and PDC are shown in blue. PEP: phosphoenol pyruvate, E4P: erythrose-
4-phosphate, DAHP: 3-deoxy-D-arabino-heptulosonate-7-phosphate, ADIC: 2-amino-2-
deoxyisochorismic acid, DHHA: trans-2,3-dihydro-3-hydroxyanthranilic acid, PCA: 
phenazine-1-carboxylic acid, PDC: phenazine-1,6-dicarboxylic acid. 

Although the terminal steps of the phenazine biosynthesis pathway have not been 

fully understood, it is widely believed that PCA and PDC are the core phenazine 

products of bacteria. Because of the spontaneous decarboxylation of the intermediate 

2a, the PDC-only producers have not been documented. Therefore, the phenazine 

producing bacteria are currently grouped as PCA-only or PCA/PDC producers (Mavrodi 

et al., 2006).  
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1.4 Chorismate utilizing enzymes 

In bacteria, fungi and plants, the shikimate pathway is a metabolic tree that branches 

carbohydrates into the biosynthesis of a broad range of products. It commits a seven-

step synthesis starting with erythrose-4-phosphate (E4P) and phosphoenolpyruvate 

(PEP) to generate chorismate, which is the precursor of a broad range of primary and 

secondary metabolites including aromatic amino acids, ubiquinone, folate, vitamin K 

and the siderophores enterobactin and pyochelin, etc (Herrmann & Weaver, 1999; 

Dosselaere & Vanderleyden, 2001). The important role of chorismate as a branch point 

for various metabolic pathways has therefore attracted intensive studies on enzymes 

that are acting on chorismate, and since the production and utilization of chorismate is 

exclusively limited to prokaryotic microorganisms and plants, enzymes involved in 

chorismate metabolism are attractive targets for the development of anti-microbial drugs 

and herbicides. For example, chorismate mutase (CM) inhibitors have been studied for 

their roles in the fight against antibiotic-resistant Tuberculosis (TB) (Agrawal et al., 2007) 

and the more famous glyphosate, which inhibits 5-enolpyruvylshikimate-3-phosphate 

synthase (EPSPS) in the shikimate pathway, has been extensively used globally as a 

safe and effective herbicide (Alibhai & Stallings, 2001). 

In the review article from Dosselaere & Vanderleyden, five classes of chorismate 

utilizing enzymes have been discussed regarding their structures and functions. They 

are chorismate mutase, anthranilate synthase, aminodeoxychorismate synthase, 

isochorismate synthase, and chorismate pyruvate-lyase (Dosselaere & Vanderleyden 

2001b). Of these enzymes, isochorismate synthase and anthranilate synthase catalyze 

the initial step in menaquinone, siderophore and tryptophan biosynthesis, and are two 

members of the MST enzyme family (Kolappan et al., 2007). In 2008, the first naturally 

occurring 2-amino-2-deoxyisochorismate (ADIC) synthase SgcD has been isolated and 

studied, which confirmed the branching point of chorismate metabolism and added a 

new member to the MST enzyme family (Van Lanen et al., 2008). Very recently, 

Andexer and coworkers reported four enzymes comprising two new enzyme classes 

that are acting on chorismate and have not been reported before. The first class 

contains chorismate hydrolase FkbO and RapK, and the second class includes 3-
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hydroxybenzoate (3HBA) synthase Hyg5 and Bra8 (Andexer et al., 2011). Taken 

together, there are eight classes of enzymes that have been identified to be chorismate 

utilizing (Figure 1.6). While focusing on the MST enzyme family, the current 

understanding of each enzyme class will be discussed separately in details.  

 
Figure 1.6: Biochemical conversion of chorismate. The PhzE reaction is highlighted with 
a black box. Enzymes that act directly on chorismate are marked in blue. CM: chorismate 
mutases of the AroH/AroQ type, CL: chorismate lyase, ICS: isochorismate synthase, SS: 
salicylate synthase, CH: chorismate hydrolase, HS: 3-hydroxybenzoate synthase, AS: 
anthranilate synthase, ADCS: 4-amino-4-deoxychorismate synthase, ADIC: 2-amino-2-
deoxyisochorismate, IC: isochorismate, DCDC: 4,5-dihydroxycyclohexa-1,5-
dienecarboxylic acid, 3HBA: 3-hydroxybenzoate.  
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1.4.1 Some chorismate utilizing enzymes 

1.4.1.1 ADC synthase (ADCS) 

4-Amino-4-deoxychorismate (ADC) is the precursor of para-aminobenzoate (PAB) 

and folate in microorganisms, and is produced from chorismate by ADC synthase 

(Figure 1.7). The production of ADC requires a nucleophilic addition of NH3 to the 

chorismate ring. Therefore, very similar to anthranilate synthase, ADC synthase is 

encoded by two genes: pabA and pabB. While pabA encodes a glutamine 

amidotransferase (GATase), pabB encodes a chorismate binding ADC synthase 

(Dosselaere & Vanderleyden, 2001). Similar to ADIC synthase, ADC synthase also 

lacks the pyruvate-lyase activity. Therefore, unlike AS which has both a synthase and a 

lyase activity, the cleavage of pyruvate from ADC to form PAB is performed by an ADC 

pyruvate-lyase encoded by a separate gene pabC in the operon (Ye et al., 1990; Green 

& Nichols, 1991). The crystal structure of PabB has been determined in 2002 (Figure 

1.10). As expected, it is shown that PabB has a complex α/β fold which is similar to the 

homologue TrpE subunit from AS. Surprisingly, a tryptophan ligand was oberserved in a 

binding pocket similar to the regulatory site of TrpE deeply buried in the structure of 

PabB, which cannot be dissociated without denaturing the enzyme (Parsons et al., 

2002). It suggested that tryptophan is required for the structural integrity of PabB and 

may play a role as a positive regulator of folate biosynthesis pathway. 

 
Figure 1.7: 4-Amino-4-deoxychorismate (ADC) synthase (ADCS) catalyzed the first 
reaction (black box) in folate biosynthesis pathway. PAB: para-aminobenzoate. 

 



INTRODUCTION 

 
 

18 

1.4.1.2 Chorismate mutase (CM) 

Chorismate mutase is the enzyme acting on the branch-point reaction of 

phenylalanine and tyrosine biosynthesis, catalyzing an intramolecular 3,3-sigmatropic 

rearrangement of the enolpyruvyl moiety of chorismate to produce prephenate (Figure 

1.8). Based on the structure, CMs can be divided into two groups: the AroH class and 

the AroQ class. The AroQ isoenzymes can be further divided into AroQp, AroQt, AroQd, 

AroQf, and AroQr sub-classes, depending if they are fused to other enzymes or mono-

functional and either allosterically regulated or unregulated, respectively. Although 

overall structures of CMs are fundamentally different, the two classes of CMs share 

similar catalytic setups at their active sites and possess comparable kinetic parameters 

(Mattei et al., 1999; Dosselaere & Vanderleyden, 2001). The first crystal structure 

determined for CM was the unregulated mono-functional CM from Bacillus subtilis 

(Chook et al., 1994, Chook et al., 1993). Interestingly, it was shown that the trimer 

structure displays a pseudo α/β barrel with the β-sheets from each monomer forming 

the core and the α-helices wrapping on the outside. The α/β structure of the trimer 

displays a certain level of similarity to that of the single chained MST (TrpE) domain 

(subunit) of chorismate utilizing enzymes from the MST family (Figure 1.10). 

 
Figure 1.8: Reaction catalyzed by chorismate mutase (CM). 

 

1.4.1.3 Chorismate lyase (CL) 

Chorismate lyase catalyzes the conversion of chorismate to para-hydroxybenzoate 

(PHB), which is the first step in the ubiquinone biosynthesis pathway (Figure 1.9). 

Unlike other chorismate utilizing enzymes from the MST family and ADCS, which share 

significant sequence/fold similarities, the sequence and structure of CL and CM are 
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largely diversed (Dosselaere & Vanderleyden, 2001). The first crystal structure of CL 

from E.coli was determined in 2001 and a high resolution (1.0 Å) crystal structure of CL 

in complex with its product PHB was reported in 2006 (Figure 1.10) (Stover et al., 2000; 

Smith et al., 2006). The ligand-binding properties and mechanism of action have been 

well characterized and the inhibitor-mutant CL complexes revealed that vanillic acid is 

an inhibitor of the enzyme. In addition, it should be mentioned that alternative PHB 

biosynthesis pathways also exist in some bacteria and plants. In contrast to E.coli, in 

which the CL reaction is the only source of PHB (Siebert et al., 1994), Corynebacterium 

cyclohexanicum produces PHB from para-oxocyclohexane carboxylate, and in higher 

plants, PHB is produced from chorismate via the phenylpropanoid pathway in 10 

successive enzymatic reaction steps (Kaneda et al., 1993; Loscher & Heide, 1994). 

 
Figure 1.9: Reaction catalyzed by chorismate lyase (CL). PHB: para-hydroxybenzoate. 
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Figure 1.10: Structures of ADC synthase (ADCS) from E.coli (chain A), chorismate 
mutase (CM) from B. subtilis (chain A, B and C) and chorismate lyase (CL) from E. coli. 
Cartoon presentations are colored by chain.  

 

1.4.1.4 Chorismate hydrolase (CH) and 3-hydroxybenzoate synthase (HS) 

The very recent studies from Andexer et al. have added four enzymes into two new 

classes of the chorismate utilizing enzymes: the chorismate hydrolase (CH) FkbO and 

RapK, and 3-hydroxybenzoate (3HBA) synthase (HS) Hyg5 and Bra8 (Figure 1.11). 

Sequence analysis indicates that these four enzymes are closely related and that they 

belong to a large group of bacterial proteins with undefined function (Andexer et al., 

2011). While FkbO and RapK are encoded respectively in the biosynthesis of 

macrocyclic polyketides FK506/FK520 and rapamycin, Bra8 was previously assigned an 

oxidative function and was encoded in the biosynthesis gene cluster for glycosylated 

diterpene natural product brasiliocardin (Hayashi et al., 2008), and Hyg5 is encoded in 

an uncharacterized biosynthesis gene cluster (hyg) of the rapamycin-producing strain 

(Ruan et al., 1997). The recognition of FkbO and RapK as CH strongly suggests that 

Bra8 and Hyg5 act directly on chorismate to generate 3HBA, which has indeed been 

confirmed by biochemical analysis (Andexer et al., 2011). Further studies are yet to be 

done regarding structure and function of members from these two enzyme classes. 
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Figure 1.11: Reactions catalyzed by chorismate hydrolase (CH) and 3-hydroxybenzoate 
synthase (HS). DCDC: 4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid. 3HBA: 3-
hydroxybenzoate. 

 

1.4.2 The MST enzyme family 

The menaquinone, siderophore and tryptophan (MST) biosynthesis enzyme family 

is currently comprised of isochorismate synthase (ICS), salicylate synthase (SS), 

anthranilate synthase (AS) and 2-amino-2-deoxyisochorismate (ADIC) synthase 

(ADICS), which utilize ammonia (AS and ADICS) or water (ICS) to perform nucleophilic 

substitution at the C2 position of the chorismate ring with or without concomitant 

rearrangement of the double bond system in an Mg2+-dependent reaction. Of these 

enzymes, ICS and ADICS release the isomerized product, whereas AS and SS initiate a 

subsequent sigmatropic rearrangement resulting in the elimination of pyvuvate and 

generate anthranilate and salicylate, respectively (Spraggon et al., 2001; Kerbarh et al., 

2006; DeClue et al., 2005). 
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1.4.2.1 Isochorismate synthase (ICS) and salicylate synthase (SS) 

Isochorismate is one of the precursors required for the biosynthesis of 

menaquinone/siderophores. The ICS PchA involved in pyochelin siderophore synthesis 

from P. aeruginosa was first reported in 2003 (Gaille et al., 2003). Later, crystal 

structures of two different ICS from E. coli have been reported in separate studies 

(Figure 1.13 A and B). Kolappan et al. determined the crystal structure of the first 

menaquinone-specific ICS MenF and extended the insight into its reaction mechanism, 

which had been proposed by He et al. in 2004. He and colleagues showed that MenF is 

a Mg2+ dependent chorismate binding enzyme which utilizes Lys190 as base to activate 

water for nucleophilic attack at the chorismate C2 carbon (He et al., 2004; Kolappan et 

al., 2007). More recently, the structure of MenF in complex with Mg2+ and sulfate bound 

in the active center was also reported (Parsons et al., 2008). Sridharan et al. published 

the structure of the enterobactin-specific ICS EntC in complex with Mg2+ and the 

product isochorismate, and performed mutagenesis studies in order to further 

understand the reaction mechanism of this enzyme (Sridharan et al., 2010). 

 
Figure 1.12: Reactions catalyzed by isochorismate synthase (ICS) and salicylate 
synthase (SS). Note that the function of MbtI is pH-dependent. 
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In some bacteria, salicylate is produced from chorismate either through a two-step 

process involving an isochorismate synthase and a pyruvate lyase as observed for P. 

aeruginosa (Gaille et al., 2003), or via a single-step reaction catalyzed by salicylate 

synthase as with Y. enterocolitica (Kerbarh et al., 2006) (Figure 1.12). Salicylate is 

utilized as one of the building blocks for the biosynthesis of siderophores, a group of low 

molecular mass iron-chelators, such as pyochelin in P. aeruginosa, mycobactin in M. 

tuberculosis and enterobactin in E. coli, just to name a few (Crosa & Walsh, 2002). 

Although isochorismate synthase and salicylate synthase share highly similar structures, 

SS, unlike ICS, catalyzes a sigmatropic elimination of pyruvate generating salicylate 

from isochorismate. The crystal structures of bacterial SS Irp9 from Y. enterocolitic and 

MbtI from M. tuberculosis have been reported (Figure 1.13 C and D). Irp9 is Mg2+-

dependent and has a complex α/β structure which is conserved in the MST enzyme 

family. The structure in complex with salicylate and pyruvate was obtained by soaking 

Irp9 with chorismate, indicating that the protein is still catalytically functional in the 

crystal (Kerbarh et al., 2006). The crystal structure of MbtI has been reported by two 

groups of researchers independently. Harrison et al. demonstrated that MbtI is a 

salicylate synthase which catalyzes the first reaction in the biosynthesis of the 

siderophore mycobactin (Harrison et al., 2006), while Zwahlen et al. showed that 

isochorismate is a kinetically competent intermediate in the conversion of salicylate from 

chorismate catalyzed by MbtI (Zwahlen et al., 2007). Interestingly, they showed that 

MbtI is a pH- and Mg2+-dependent promiscuous enzyme. In the presence of Mg2+ and at 

pH below 7.5, isochorismate is the dominant product and at pH above 7.5, MbtI 

converts chorismate almost completely to salicylate (Figure 1.12). In the absence of 

Mg2+, the protein possesses chorismate mutase activity similar to that of the 

isochorismate pyruvate lyase PchB from P. aeruginosa (Zwahlen et al., 2007).  

Despite the high similarities between ICS and SS, differences in residues at the 

active center of ICS that confers pyruvate lyase acitivity as SS have not been identified 

(Sridharan et al., 2010). Therefore the exact mechanism that underlines the catalytic 

diversity of these two enzyme classes still remains a myth. 
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Figure 1.13: Crystal structures of bacterial isochorismate synthase (ICS) and salicylate 
synthase (SS). (A) ICS MenF from E. coli. (B) ICS EntC from E.coli. (C) SS Irp9 from Y. 
enterocolitica. (D) SS MbtI from M. tuberculosis. Only chain A from each structure is 
shown and ligands are indicated in stick and sphere presentation and colored in forest 
when available. Structures are aligned and figure is prepared with PyMOL (Schrödinger 
LLC). 
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1.4.2.2 ADIC synthase (ADICS) and anthranilate synthase (AS) 

Anthranilate synthase (AS) from bacteria and yeast is a multi-functional enzyme 

catalyzing the initial reaction in tryptophan biosynthesis. It produces anthranilate 

through two steps: a reversible amination of chorismate at C2 position to 2-amino-2-

deoxyisochorismate (ADIC) and an irreversible sigmatropic elimination of pyruvate from 

ADIC to anthranilate (Figure 1.14). Mg2+ is required for both reactions and ADIC is not 

released into the solvent during the whole reaction process (Morollo & Bauerle, 1993). 

The enzyme is composed of two functional polypeptide chains TrpE and TrpG (Zalkin, 

1993). In some cases, for example the SvTrpEG from Streptomyces venezuelae, AS is 

translated as a single chained TrpE/TrpG fusion protein (Ashenafi et al., 2008). The 

TrpE subunit binds chorismate and catalyzes the formation of anthranilate from 

chorismate and ammonia and belongs to the MST enzyme family. Tryptophan feedback 

inhibits AS by binding to a distinct site of TrpE subunit, which triggers a conformational 

change in both subunits and stabilizes the enzyme in its inactive form (Caligiuri & 

Bauerle, 1991a, Caligiuri & Bauerle, 1991b; Knochel et al., 1999). The TrpG subunit 

belongs to the family of type 1 “triad” glutamine amidotransferases (GATase1), 

providing ammonia from L-glutamine for the amination at the TrpE active site. It is 

believed that the AS reaction is strictly ordered, while glutamine hydrolysis by GATase1 

only initiates once chorismate has bound to TrpE, and that NH3 is delievered through an 

intra-molecular path to the chorismate-binding site to avoid its loss to the solvent 

(Raushel et al., 2003; Huang et al., 2001). 
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Figure 1.14: Reactions catalyzed by anthranliate synthase (AS) and ADIC synthase 
(ADICS). Instead of converting ADIC to anthranilate, ADICS releases it to the solvent. 

The first crystal structure of anthranilate synthase was determined in its ligand-free 

form in 1999, when Knochel et al. showed that AS from Sulfolobus solfataricus is a 

TrpE2/TrpG2 heterotetramer, in which two functional TrpE/TrpG protomers associate 

mainly via the TrpG subunits (Knochel et al., 1999). In 2001, two AS structures in their 

ligand-bound from different bacterial origins have been reported. The structure of AS 

from Salmonella typhimurium in complex with its allosteric inhibitor L-tryptophan showed 

that binding of tryptophan stabilizes the inactive form of AS by restricting closure of the 

active site cleft of TrpE (Morollo & Eck, 2001); and the structure of AS from Serratia 

marcescens comfirmed a pyruvate and a putative anthranilate (with ambiguous amine 

group), as well as a covalently bound glutamyl thioester intermediate in the TrpG active 

site. It was also revealed that binding of tryptophan to only one of the two allosteric sites 

is sufficient to quench the catalytic acitivity of both TrpE subunits (Spraggon et al., 

2001). Interestingly, although all the three AS structures share the same TrpE2/TrpG2 

heterotetrameric setup and display similar TrpE/TrpG functional dimer pairs, they have 

completely different quaternary structures (Figure 1.15). In additions, neither the 

substrate chorismate nor the product anthranilate have ever been confirmed in these 

crystal structures, leaving the detailed reaction mechanism of TrpE still a question to 

answer. 
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Compared to the extensively studied anthranilate synthase, the current knowledge 

about ADIC synthase is rather limited. Unlike anthranilate synthase, which catalyzes a 

two-step converstion of chorismate to anthranilate, ADIC synthase releases the 

intermediate ADIC into the solvent without concomitant cleavage of the pyruvate group 

(Figure 1.14). As discussed above, previous studies on ICS, SS and AS have provided 

insights into the nucleophilic addition step of the reaction, however, the understanding 

of residues involved in the pyruvate elimination step is still lacking. Although Morollo et 

al. observed a transient accumulation of ADIC in the solvent by incubation chorismate 

with engineered AS mutant H398M from Salmonella typhimirium, the activity of the 

mutant was in fact very low (less than 1% of wild-type activity) and the efficiency of 

ADIC conversion was less than 15% of the substrate chorismate; and with an prolonged 

incubation, ADIC was completely converted to anthranilate in the same reaction mixture 

(Morollo & Bauerle, 1993). Later on, the first native ADIC synthase activity was 

proposed by genetic analysis for the enzyme PhzE, which catalyzes the initial step of 

phenazine biosynthesis (McDonald et al., 2001). However, biochemical and structural 

insight into this enzyme is still missing and contradictory evidence showing PhzE’s 

ability to complement an AS mutant strain of E.coli, which in turns recover tryptophan 

biosynthesis, was also reported, indicating PhzE is an AS instead of ADIC synthase 

(Pierson et al., 1995). In 2008, Van Lanen et al. reported the first biochemical 

characterization of an ADIC synthase SgcD, which catalyzed the first reaction in the 

biosynthesis of C-1027, an enediyne antitumor antibiotic. They also questioned the role 

of PhzE as an ADIC synthase while PhzE and SgcD have onle less than 12% sequence 

identity (Van Lanen et al., 2008). 
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Figure 1.15: Cartoon presentation of quaternary structures of anthranilate synthase from 
different bacteria, colored by chains. 
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2 AIMS OF THIS STUDY 
Phenazines are nitrogen-containing heterocyclic pigments produced by a number of 

bacterial genera, including fluorescent Pseudomonas, Burkholderia, Brevibacterium and 

Streptomyces. It is believed that phenazines are used as redox-active antibiotics in 

microbial competitiveness and may also have diverse physiological functions because 

they also act as signalling molecules and as respiratory pigments under anoxic 

conditions e.g. in the deeper anoxic layers of biofilm.  

PhzE catalyzes the first reaction in the phenazine biosynthesis pathway, producing 

2-amino-2-desoxyisochorimate (ADIC) from chorismate. The enzyme belongs to the 

menaquinone, siderophore, tryptophan biosynthesis (MST) family, using ammonia to 

substitute chorismic acid at C2 position without subsequent elimination of pyruvate. 

Since chorismate utilization is limited only bacteria and plants, PhzE may be an 

attractive target for pharmaceutical intervention. 

Crystallographic and biochemical studies have lead to considerable structural and 

mechanistic insight into members of the MST family in recent years, yet structures of a 

MST/GATase1 fusion protein and of an ADIC synthase are lacking. In addition, the 

existence of an ammonia transporting channel has never been demonstrated in these 

enzymes. This study aimed at filling these gaps by determining the crystal structure of 

ADIC synthase PhzE from Burkholderia lata 383, an enzyme that consists of an 

MST/GATase1-fusion in a single chain. In addition, experiments were designed to 

confirm the functional assignment of PhzE as an ADIC synthase using a broad 

spectrum of biochemical, biophysical and analytical methods. It is also of great interest 

to investigate if the enzyme is subject to feedback inhibition similar to some of the 

related anthranilate synthases and the potential regulatory mechanism.  

In order to assist the functional analysis of PhzE, crystallographic studies have been 

extended to PhzD from Pseudomonas fluorescens 2-79, which catalyzes the step 

following PhzE in phenazine biosynthesis.  
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3 MATERIALS AND METHODS 
3.1 Materials 

3.1.1 Chemicals 

Chemicals used in this study were purchased from the following companies: 

Applichem (Darmstadt, DE), Boehringer (Mannheim, DE), Fluka (Neu-Ulm, DE), Gerbu 

(Gaiberg, DE), JT Baker (Deventer, NL), Merck (Darmstadt, DE), Roth (Karlsruhe, DE), 

Serva (Heidelberg, DE) and Sigma-Alderich (Deisenhofen, DE). 

3.1.2 Kits, Markers and Enzymes 

Kits Supplier 

QIAprep Spin Miniprep Kit Qiagen (Hilden, DE) 

QIAquick PCR Purification Kit Qiagen (Hilden, DE) 

QIAquick Gel Extraction Kit Qiagen (Hilden, DE) 

JETquick Plasmid Miniprep spin Kit Genomed (St. Louis, USA) 

BigDye Terminator Cycle Sequencing Kit Fermentas (Langen, DE) 

Markers Supplier 

GeneRuler 1kb DNA ladder Fermentas (Langen, DE) 

Unstained Protein Molecular Weight Marker Fermentas (Langen, DE) 

Gel Filtration Standard Bio-Rad (München, DE) 

Enzymes Supplier (Source) 

FastDigest Restriction Enzymes Fermentas (St. Leon-Rot, DE) 

Phusion DNA Polymerase Finnzymes (Espoo, FI) 

T4 DNA Ligase Fermentas (St. Leon-Rot, DE) 

Tobacco Etch Virus Protease Lab prepared 

 

3.1.3 Microorganisms 

Strains Genotype 
Supplier 

(Source) 

E. coli KA12 F2 l2 D(pheA-tyrA) thi-1 endA1 hsdR17 D(argF- Collaborator 
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(chorismate 

accumulating strain) 

lac)205(U169) supE44 D(srlR-recA)306::Tn10 

E. coli XL1-blue endA1 gyrA96(nalR) thi-1 recA1 relA1 lac 

glnV44 F'[ ::Tn10 proAB+ lacIq Δ(lacZ)M15 Amy 

CmR] hsdR17(rK
- mK

+) 

Stratagene (Santa 

Clara, USA) 

E. coli Rosetta pLysS F- ompT hsdSB(rB
- mB

-) gal dcm (DE3) 

pLysSRARE (CamR) 

Novagen 

(Darmstadt, DE) 

E. coli Rosetta2 pLysS F- ompT hsdSB(rB
- mB

-) gal dcm (DE3) 

pLysSRARE2 (CamR) 

Novagen 

(Darmstadt, DE) 

 

3.1.4 Culture Media and Antibiotics 

Medium Composition 

Luria-Bertani (LB) 
10 g/L Bactotryptone, 10 g/L NaCl, 5 mM 

NaOH, 5 g/L yeast extract 

Terrific Broth (TB) 

12 g/L BactoTryptone, 24 g/L Bacto-yeast-

extract, 4 g/L glycerol, 17 mM KH2PO4, 72 mM 

K2HPO4 

GYT medium 
10% glycerol, 0.125% (w/v) yeast extract, 

0.25% (w/v) tryptone 

TSS medium 
LB medium containing 10% (w/v) PEG 8,000, 

30 mM MgCl2, 5% DMSO 

M9 

6 g/L Na2HPO4, 3 g/L KH2PO4, 0.5 g/L NaCl, 1 

g/L NH4Cl, 1 mg/L Thiamine, 1 mM MgSO4, 

0.1 mM CaCl2, 0.2% (w/v) glucose 

Antibiotics Concentration applied Supplier 

Ampicillin 100 mg/L Gerbu (Gaiberg, DE) 

Chloramphinicol 34 mg/L Gerbu (Gaiberg, DE) 

Tetracycline 50 mg/L Gerbu (Gaiberg, DE) 
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3.1.5 Buffers and Solutions 

Buffers and Solutions Composition 

Protein Purification 

Ni-NTA Buffer A 50 mM Na2HPO4, pH 8.0, 500 mM NaCl, 5 mM 

2-Mercaptoethanol. 

Ni-NTA Buffer B Ni-NTA Buffer A plus 500 mM Imidazol, pH 

8.0. 

Dialysis Buffer 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM 

2-Mercaptoethanol. 

Gel Filtration Buffer 20 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM 

2-Mercaptoethanol. 

SDS-PAGE 

4× Stacking Gel Buffer 0.5 M Tris-HCl pH 6.8, 0.4% (w/v) SDS. 

4× Separating Gel Buffer 1.5 M Tris-HCl pH 8.8, 0.4% (w/v) SDS. 

4× SDS Sample Buffer 130 mM Tris-HCl pH 6.8, 200 mM DTT, 4% 

(w/v) SDS, 0.025% (w/v) Bromophenol blue, 

20% Glycerine. 

10× SDS Running Buffer 250 mM Tris, 2 M Glycerine, 1% (w/v) SDS. 

SDS Staining Solution 0.15 % (w/v) Coomassie Brilliant Blue R 250, 

44 % 

Ethanol, 12 % Acetic acid 

SDS Destaining Solution 10% Acetic acid 

Agarose Gel Electrophoresis 

TAE buffer 40 mM Tris pH 8.0, 0.1% (v/v) Acetic acid, 1 

mM EDTA.  

Loading Buffer Orange 6% Sucrose, 4% Glycerin, 0.04% Orange.  

RP-HPLC 

Solvent A 0.1% Trifluoroacetic acid in water 

Solvent B 0.1% Trifluoroacetic acid in acetonitrile 

MALDI-TOF 

Matrix Solution Saturated sinapinic acid solution in 0.3 % 

TFA/acetonitrile (2:1) 
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3.1.6 Other Materials 

Materials Supplier 

Omnifix syringe (50 mL) B.Braun (Melsungen, DE) 

Filtropur S (0.2 µm) SARSTEDT (Nümbrecht, DE) 

Dialysis tubing (MWCO: 5-8 kDa) Spectrum Lab Inc. (Rancho Dominguez, USA) 

Electroporation cuvettes Bio-Rad (München,DE) 

HiTrap Ni-NTA column (1 mL, 5 mL) Pharmacia Biotech (Uppsala, SE) 

Superdex 75/200 Gel filtration columns Pharmacia Biotech (Uppsala, SE) 

ME 24 Membrane filter Whatman (Dassel, DE) 

Ultrafiltration Membranes (NMWL: 30,000) Millipore (Billerica, USA) 

Amicon Stirred Cells (50 mL, 100 mL) Millipore (Billerica, USA) 

Amicon Ultra-4 and -15 Centrifugal Filter Units Millipore (Billerica, USA) 

Eppendorf tubes (0.5 mL, 1.5 mL, 2.0 mL) Eppendorf (Hamburg,DE) 

Falcon Tubes (15 mL, 50 mL) Falcon GmbH (Gräfeling-Locham, DE) 

Illustra NAP-5 Columns GE Healthcare (Buckinghamshire, UK) 

Quartz cuvette (10 mm) Hellma Optik GmbH (Jena, DE) 

PRONTOSIL 120-5-C18-AQ 5 μm reverse 

phase column 

Bischoff-Chrom (Leor, DE) 

CrystalQuick 96-well low-profile plates Greiner Bio-One GmbH (Frickenhausen, DE) 

V-shaped 96-well plates Greiner Bio-One GmbH (Frickenhausen, DE) 

96-well COC protein crystallization micro 

plates (Product #3553) 

Corning GmbH (Kaiserslautern, DE) 

Linbro Plate Hampton Research (Aliso Viejo, USA) 

 

3.1.7 Instruments 

Instrument Supplier 

ÄKTAprime Automated Liquid 

Chromatography System 

Pharmacia Biotech (Uppsala, SE) 

Microfluidizer 110S Microfluidics (Newton, MA, USA) 

Excella® Benchtop Incubator Shakers New Brunswick Scientific (Edison, USA) 
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Minitron incubator Infors (Bottmingen, CH) 

Varioklave Steam Sterilizer H+P Labortechnik GmbH (Oberschleißheim, 

DE ) 

PCR Sprint Temperature Cycling System Thermo Scientific (Waltham, USA) 

Eppendorf benchtop Centrifuge 5415D/5804R Eppendorf (Hamburg, DE) 

Avanti J20-XP Centrifuge Beckman Coulter (Palo Alto, USA) 

Optima L-70K Ultracentrifuge Beckman Coulter (Palo Alto, USA) 

Gel Doc XR System Bio-Rad (München,DE) 

Thermomixer comfort Eppendorf (Hamburg, DE) 

NanoDrop ND-1000 Spectrophotometer PEQLAB (Erlangen, DE) 

650E Advanced Protein 

Purification System 

Waters (Eschborn, DE) 

High pressure liquid chromatography 

(HPLC) 

Waters (Eschborn, DE) 

HPLC-ESI-MS  Agilent and Finnigan 

MALDI-TOF-MS  Applied Biosystem (Darmstadt, DE) 

E. coli Pulser Electroporation device Bio-Rad (München,DE) 

SDS-PAGE Chamber Bio-Rad (München,DE) 

Agarose Gel Chamber Horizon 58 Biometra (Göttingen, DE) 

UV/Visible Spectrometer DU 640 Beckman Coulter (Palo Alto, USA) 

Milli-Q Water System Millipore (Eschborn, DE) 

Vacuum Pump Ilmvac (Ilmenau, DE) 

Stirring Device MR-3000 Heidolph Instruments (Schwabach, DE) 

pH-Meter 766 Calimatic Knick (Berlin, DE) 

Mosquito Crystallization Robot TTP LabTech (Melbourn, UK) 

Rock Imager 1000 Formulatrix (Waltham, USA) 

Nonius / Bruker AXS MICRO Star Bruker AXS (Karlsruhe, DE) 

Rigaku MicroMax-007 HF Rigaku Europe (Kent, UK) 
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3.2 Methods 

3.2.1 PCR and Plasmid Construction 

3.2.1.1 PCR amplification of phzE and phzD 

phzE and phzD genes were amplified by Polymerase Chain Reaction (Saiki et al., 

1985) using plasmids containing phenazine operons as templates (Table 3.1). Primers 

were designed manually and ordered from MWG biotech (Table 3.2). The reaction 

mixture was prepared (Table 3.3) and PCR program was carried out by a PCR Sprint 

Temperature Cycling System (Thermo Scientific) (Table 3.4). 

Target gene Name of Plasmid Description 

phzE B.lata 383 pKSII-phzAll-B.lata383 A pKSII plasmid containing phz 

operon from Burkholderia lata 

383 

phzD P.fl pT7-6-AG-P.fl. A pT7-6 plasmid containing 

phzA-G genes from 

Pseudomonas fluorescens 

Table 3.1: Target genes and template plasmids. 

 

Name Sequence (5’-3’) Restriction 

site 

Tm (ºC)

phzE_Blata_for AGGTGCTCATATGAATGCCGCTCC NdeI 66.3 

phzE_Blata_rev CGTGAAGGATCCTTAGGCGGTCAACG BamHI 68.0 

PhzD_NdeI_for GCAGCCATATGACCGGCATTCCATCGATCGT

CC 

NdeI 73.2 

PhzD_XhoI_rev CAGCCGGATCCTCGAGTCATAGCACCTCATC

GGT 

XhoI 74.3 

Table 3.2: List of PCR primers. 
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Composite (concentration) Volume (µL) 

Template DNA (50-100 ng/µL) 5 

Forward primer (25 pmol/µL) 1 

Reverse primer (25 pmol/µL) 1 

Phusion HF buffer (5x) 10 

dNTPs mix (10 mM) 1 

Phusion DNA Polymerase 0.5 

Milli-Q water 31.5 

Table 3.3: Composition of PCR reaction mixture. 

 

Step Cycle Temperature (ºC) Time (s) 

Denaturation 1 98 30 

Denaturation 

30 

98 10 

Annealing 60 20 

Extension 72 60 

Final step elongation 1 72 300 

Hold 1 4 Hold 

Table 3.4. PCR program for amplifying phzE and phzD. 

 

3.2.1.2 Purification of PCR products 

The PCR products of target genes were purified by agarose electrophoresis as 

described below:  

1) 2 g agarose was dissolved in 200 ml TAE buffer. 

2) 10 µL RedSafe Nucleic acid staining solution (20,000x) was then added. 

3) The gel solution was casted into an agarose gel chamber and allowed for 

polymerization. 

4) 5 µL of the PCR product was mixed with appropriate amount of loading buffer and 

the sample was loaded into the well. 10 µL of 1 kb DNA ladder was loaded as a 

molecular weight marker. 
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5) The gel was run in TAE buffer at 10 V/cm till band separation is complete. 

6) The result was checked under UV light and the band of interest was excised using a 

scalpel and transferred into a 2 mL eppendorf tube. 

7) The DNA fragment was then extracted from the gel by a gel extraction kit.  

3.2.1.3 Restriction digest and ligation 

The PCR products and vectors were multiply digested with FastDigest restriction 

enzymes at 37 ºC for 1 h and the reaction mixtures were prepared as described (Table 

3.5). The reactions were stopped by incubating at 80 ºC for 5 min. The resulting DNA 

products were identified and purified on agarose gel. 

 Vector (100 ng/µL) Digest PCR product (≈15 ng/µL) Digest 

DNA 10 µL 15 µL 

FastDigest buffer (10x) 2 µL 3 µL 

NdeI 1 µL 1 µL 

BamHI (XhoI) 1 µL 1 µL 

Milli-Q water 6 µL 10 µL 

Total  20 µL 30 µL 

Table 3.5: Reaction mixture for restriction digests. 

To construct the plasmid, the DNA insert was mixed with the vector at 5:1 ratio. 5 

unit of T4 DNA ligase was applied and the total volume of ligation mixture was adjusted 

to 20 µL (Table 3.6). The ligation mixture was left at room temperature overnight and 

was subsequently incubated at 65 ºC for 10 min in order to deactivate the ligase. 

Composite Volume (µL) 

Insert (≈ 5 ng/µL) 10 

Vector (≈ 50 ng/µL) 1 

Ligation buffer (5x)  4 

T4 DNA ligase 1 

Milli-Q water 4 

Total 20 

Table 3.6: Reaction mixture for ligation. 
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3.2.1.4 Preparation of competent cells 

100 mL LB culture were inoculated with overnight culture of the desired bacterial 

strain at a starting OD600 = 0.2 and then incubated at 37 ºC in a shaker till OD600 = 0.6. 

To stop cell growing, the culture was left on ice for 20 min. Ice-chilled cell culture was 

then transferred to sterile centrifuge tubes and was centrifuged for 15 min at 3000×g at 

4 ºC. The supernatant was discarded. 

Electro-competent cells (E. coli XL1-Blue) 

1) The pellet was resuspended with 500 mL 10% glycerol (sterile) and centrifuged for 

15 min at 3000g at 4 ºC. Supernatant was dicarded. 

2) Repeat step 1. 

3) The pellet was resuspended with 30 mL 10% glycerol (sterile) and centrifuged for 

15 min at 3000g at 4 ºC. Supernatant was dicarded. 

4) The cells were resuspended with 2.5 mL pre-chilled GYT medium, shock frozen 

with liquid nitrogen in 75 µL aliquots and stored at -80 ºC. 

Heat-shock competent cells (Rosetta pLysS and Rosetta2 pLysS) 

The cells were resuspended with 10 mL pre-chilled TSS medium, shock frozen with 

liquid nitrogen in 100 µL aliquots and stored at -80 ºC. 

3.2.1.5 Plasmid transformation 

Electroporation of E. coli XL1-blue 

Plasmids were transformed into E. coli XL1-blue cells by electroporation as 

described below: 

1) Approximatly 1 ng plasmid DNA was incubated with 75 µL of competent cells on ice 

in a pre-chilled electroporation cuvette. 

2) The electroporation (25 µF, 200 Ω, 2.5 kV) was carried out using an E.coli Pulser 

from Biorad. 

3) After electroporation the cells were diluted immediately with 1 mL LB medium and 

incubated at 37 ºC for 45 min in a shaker. 
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4) 200 µL of the culture was spread on an LB agar plate containing the appropriate 

antibiotics. 

5) The plate was incubated at 37 ºC for 16 hours. 

Heat-shock transformation of E. coli Rosetta pLysS and E. coli Rosetta2 pLysS 

The transformation of Plasmid into E. coli Rosetta pLysS and E. coli Rosetta2 

pLysS competent cells was carried out as described below: 

1) Approximatly 1 ng plasmid DNA was incubated with 100 µL of competent cells on 

ice for 30 min. 

2) The cells were heat-shocked at 42 ºC for 90 seconds and then immediately 

transferred on ice and let stand for 2 min. 

3) 1 mL LB medium was added to the cells and incubated at 37 ºC for 45 min in a 

shaker. 

4) 200 µL of the culture was spread on an LB agar plate containing the appropriate 

antibiotics. 

5) The plate was incubated at 37 ºC for 16 hours. 

3.2.1.6 Site-directed Mutagenesis 

Site-directed mutagenesis was performed according to the manual of the 

QuikChange II XL system (Stratagene). A plasmid containing wild-type phzE (phzD) 

was used as PCR template. All primers used were designed manually and ordered from 

MWG biotech (Table 3.7). The reaction mixture was prepared (Table 3.8) and PCR 

program was carried out by a PCR Sprint Temperature Cycling System as described 

(Table 3.9). 

 

Name Sequence (5’-3’) Tm (ºC) 

phzE variations  

E241A GCG ATCGCAAGGCATCCGACGAG 67.8 

E244A AAGGAATCCGACGCGCTGTACATGGTG 68.0 

E379A CGCGGTATCGGCAGT CATGGAGACG 69.5 
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E382A CATGCG TCGCCATGACTTCCGATACCG 66.3 

S217A GACGATGAACCCGATCGCAGGG ACTTATCGGTATC 73.0 

T369G GTCGGCTCAGGGCTCGTCCGGCATT 71.2 

S368AT369G CATCGGCGTCGGCGCAGGGCTCGTCC 75.0 

E201Q GCCACGCCGCAGCGCCACCTGACG 74.7 

W184G GAGGTCGGCGCGTACGGGATCTTCGTGATTC 73.5 

E251A GTACATGGTGCTCGACGCAGAACTCAAGATGATGGCG 73.9 

E251Q GTACATGGTGCTCGATCAAGAACTCAAGATGATGGCGCG 73.7 

phzD vatiations 

D38A CGTACTGTTGGTACATGCCATGCAGCGCTACTTC 70.2 

D38N CGTACTGTTGGTACATAACATGCAGCGCTACTTC 65.4 

Table 3.7: List of primers for site-directed mutagenesis (For each set of primers, only the 
primer for the sense strand is listed, the primer for the anti-sense strand is reverse-
complementary to the one for the sense strand). 

 

Composite Volume (µL) 

Template Plasmid (50-150 ng/µL) 1 

Forward primer (25 pmol/µL) 2 

Reverse primer (25 pmol/µL) 2 

dNTPs mix (10 mM) 2 

DMSO 1 

MgCl2 (50 mM) 1 

Phusion HF buffer (5x) 10 

Milli-Q water 30.5 

Phusion DNA Polymerase 0.5 

Total 50 

Table 3.8. PCR mixture for site-directed mutagenesis. 

 

Step Cycle Temperature (ºC) Time (s) 

Denaturation 1 98 45 

Denaturation 
16 

98 15 

Annealing 60* 20 
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Extension 72 30/kb 

Final step elongation 1 72 600 

Hold 1 4 Hold 

Table 3.9: Program setup for site-directed mutagenesis. (* The annealing temperature 
differs accordingly to primers used, it is generally 5 ºC lower than the Tm of the primer) 

After the program was finished, 1 µL DpnI enzyme was added into the 50 µL 

reaction mixture and incubated for 3 h at 37 ºC (To digest the methylated template 

plasmid). 1 µL PCR product was then transformed into E. coli XL1-blue by 

electroporation (see chapter 3.2.1.5). Single colony was picked from the plate to 

inoculate 5 mL LB culture and the Plasmid DNA was prepared from 4 mL of the culture 

using a Miniprep kit. Desired mutation was then confirmed by in house DNA sequencing 

(see chapter 3.2.1.7).   

3.2.1.7 DNA sequencing 

The BigDyeDesoxy terminator cycle sequencing kit was used to check the DNA 

sequence. The reaction mixture for sequencing was prepared as shown in Table 3.10. 

The PCR program was designed as shown in Table 3.11 and was carried out by a PCR 

Sprint Temperature Cycling System. 

 

composite Volume (µL) 

Plasmid DNA(100-200 ng/µL) 3 

Sequencing primer (10 pmol/µL) 1 

BigDye mix  4 

Milli-Q water 2 

Total 10 

Table 3.10: PCR Reaction mixture for sequencing. 

 

Step Cycle Temperature (ºC) Time (s) 

Denaturation 1 96 30 

Denaturation 
25 

96 10 

Annealing 50 5 
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Extension 60 240 

Hold 1 4 Hold 

Table 3.11: PCR program for sequencing. 

After PCR, the reaction mixture was transferred to a 0.5 mL Eppendorf tube and 

was processed by ethanol precipitation as described: 

1) 10 µL Milli-Q water, 2 µL EDTA (125 mM), 2 µL sodium acetate (3 M) and 50 µL 

ethanol were added to the reaction solution.  

2) The tube was gently inverted 4 times and incubated at room temperature for 15 min. 

3) The tube was then centrifuged at 13,000g for 20 min. 

4) Supernatant was discarded and 200 µL cold 70% ethanol was added to wash the 

pellet. 

5) The tube was centrifuged again at 13,000g for 10 min. 

6) Supernatant was discarded and the tube was kept to open-air for 30 min. 

The sequencing samples were analyzed by an in house sequencing facility. 

3.2.1.8 Plasmids constructed 

Plasmids constructed in this study are listed in Table 3.12. 

Name of Plasmids Insert* Antibiotic resistance 

PhzE_pET19mod phzE Ampicillin 

E241A_pET19mod phzE_E241A Ampicillin 

E244A_pET19mod phzE_E244A Ampicillin 

E379A_pET19mod phzE_E379A Ampicillin 

E382A_pET19mod phzE_E382A Ampicillin 

S217A_pET19mod phzE_S217A Ampicillin 

T369G_pET19mod phzE_T369G Ampicillin 

S368AT369G_pET19mod phzE_S368AT369G Ampicillin 

S217A S368AT369G 

_pET19mod 

phzE_S217AS368AT369G Ampicillin 

E201Q_pET19mod phzE_E201Q Ampicillin 

W184G_pET19mod phzE_W184G Ampicillin 



MATERIALS AND METHODS 

 
 

43 

E251A_pET19mod phzE_E251A Ampicillin 

PhzD_pET19mod phzD Ampicillin 

D38A_pET19mod phzD_D38A Ampicillin 

D38N_pET19mod phzD_D38N Ampicillin 

Table 3.12: List of plasmids (* unless otherwise indicated, phzE genes are originated 
from Burkholderia lata 383 and phzD genes from Pseudomonas fluorescens 2-73) 

 

3.3 Gene over-expression and protein purification 

3.3.1 Gene over-expression 

Escherichia coli strain Rosetta 2 pLysS transformed with recombinant plasmid was 

grown at 37 ºC in Terrific Broth media containing 100 µg/mL ampicillin and 34 µg/mL 

chloramphenicol with vigorous shaking until OD600 of 0.7 was reached and then induced 

by adding 0.5 mM isopropyl-ß-D-thiogalactopyranoside (IPTG). Cells were further 

incubated at 20 ºC for 16 hours then harvested by centrifugation (20 min, 6000×g, 4 ºC). 

The cell pellets were stored at -20 ºC if not immediately used. 

3.3.2 Protein purification 

The pellet was re-suspended in a lysis buffer (Buffer A + 2 mM PMSF) and then 

lysed by passing three times through a microfluidizer. The lysate was then 

ultracentrifuged (150000×g, 45 min, 4 ºC) and the resulting supernatant was filtered 

through a 0.2 µm filter to further remove precipitates, and then passed through a pre-

packed 5 ml Hitrap Chelating column that had been charged with 100 mM nickel 

chloride and pre-equilibrated with lysis buffer on an Äkta Prime FPLC system. The 

column was washed with Buffer A containing 2% Buffer B. The bound protein was then 

eluted with a gradient of 2% to 25% of Buffer B over a volume of 150 mL. Fractions 

containing pure PhzE were identified by SDS-PAGE, desired fractions were pooled and 

the concentration of the protein was determined with the Bradford assay (Bradford 

1976). The pooled solution was dialyzed two times each time for 3 hrs against 2 L 

Dialysis buffer at 4 ºC, then incubated at 4 ºC overnight with addition of 2 mg TEV 

protease per 40 mg PhzE to remove the N-terminal His6-tag. The protein was then 
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filtered through a 0.2 µm filter, concentrated to 8-10 mg/ml (18-20 mg/mL for PhzD) in 

an Amicon chamber using a 30 kDa (10 kDa for PhzD) cut off membrane. Size-

exclusion chromatography was then performed for buffer exchange and removal of 

aggregates with a Superdex 200 (Superdex 75 in case of PhzD) gel-filtration column 

using Gel filtration buffer (flow rate= 2 mL/min). The purified protein was concentrated to 

8-10 mg/mL (18-20 mg/mL for PhzD), aliquoted and stored at -80 ºC.  

3.3.3 Production of seleno-L-methionine labeled PhzE 

Seleno-L-methionine was incorporated into PhzE protein by the methionine 

biosynthesis suppression method (Doublié 1997). Escherichia coli Rosetta 2 pLysS 

cells transformed with a pET-19mod plasmid containing N-terminal His6-tagged PhzE 

were grown at 37 ºC overnight in 30 mL Terrific Broth media containing 100 µg/mL 

ampicillin and 34 µg/mL chloramphenicol with vigorous shaking. The culture was then 

centrifuged at 6000g, 4 ºC for 20 min. Cell pellet was then immediately re-suspended 

with 2 L M9 media containing 50 µg/mL ampicillin and 17 µg/mL chloramphenicol. The 

culture was grown at 37 ºC in a shaker till OD600 reached 0.6. Additional amino acids 

(100 mg/L L-lysine, 100 mg/L L-phenylalanine, 100 mg/L L-threonine, 50 mg/L L-

isoleucine, 50 mg/L L-leucine, 50 mg/L L-valine and 60 mg/L seleno-L-methionine) were 

supplemented and the culture was then induced with 0.5 mM IPTG. Cells were further 

incubated at 20 ºC for 16 hours then harvested by centrifugation (20 min, 6000×g, 4 ºC). 

The seleno-L-methionine labeled PhzE was purified following the same protocol for 

native protein purification. 

3.4 Analytical Methods 

3.4.1 Agarose gel electrophoresis 

1% agarose gel was used throughout this study. The gel was prepared by adding 2 

g agarose into 200 mL TAE buffer. The mixture was then heated in a microwave to 

allow complete dissolving of agarose. 10 µL RedSafe Nucleic acid staining solution 

(20,000x) was added to the solution subsequently. The gel was cast into an agarose gel 

chamber and was cooled down and polymerized after 1 h.   
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After the gel polymerized, an appropriate amount of DNA sample mixed with loading 

buffer was loaded into the wells. A 1kb DNA ladder was loaded as standard. The 

sample was then run at 10 V/cm till band separation was complete and the result was 

examined by a Gel Doc XR System equipped with a camera. 

3.4.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) 

Ten pieces of SDS-PAGE gel plates were prepared at a time using a casting 

chamber. The separating gel solution was poured into the chamber and was covered by 

a 50% isopropanol solution immediately. After the gel polymerized, the covering solution 

was carefully replaced by the stacking gel solution (See Table 3.13). SDS gel combs 

were inserted before the stacking gel polymerized in order to generate sample wells.  

The protein sample was mixed with appropriate amount of sample buffer and was 

incubated at 95 ºC for 10 min prior to loading. A low molecular weight protein marker 

(phosphorlylase b: 97 kDa, albumin: 67 kDa, ovalbumin: 43 kDa, carboanhydrase: 30 

kDa, trypsin inhibitor: 20.1 kDa and lysozyme: 14.4 kDa) was loaded as standard. The 

gel electrophoresis was carried out at 70 mA in SDS running buffer till the marker 

reached the lower edge of the gel. The gel was then stained with SDS staining solution 

followed by destaining with SDS destaining solution overnight. 

 

 Stacking gel solution Separating gel solution 

4× Stacking Gel Buffer (mL) 7.5 - 

4× Separating Gel Buffer (mL) - 15 

30% acrylamide  (37.5:1) (mL) 4.5 30 

Milli-Q water (mL) 17.7 14.5 

10% APS (µL) 300 500 

TEMED (µL) 30 50 

Total (mL) 30 60 

Table 3.13: Composition of SDS gel solutions. 
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3.4.3 Determination of protein concentration 

Protein concentration was determined using a NanoDrop ND-1000 

spectrophotometer. The extinction coefficient ε values of proteins were calculated by 

Protparam from the ExPASy online server (Gasteiger et al., 2005). For PhzE, ε was 

determined as 40715 M-1·cm-1 (Absorption value 583 at 1 g/L protein concentration), 

and for PhzD, ε was determined at 43555 M-1cm-1 (Absorption value 1888 at 1 g/L 

protein concentration). 

3.4.4 Analytical GF-HPLC and RP-HPLC 

Analytical gel filtration (GF) and reverse phase (RP) High-performance liquid 

chromatography (HPLC) experiments were carried out on a Waters 600 system 

equipped with a Waters 600S controller, a 717 plus autosampler and a 2487 Dual λ 

Absorbance Detector. For GF-HPLC, a Superdex 200 HR 10/30 column (separation 

range 10-600 kDa) was used.  GF buffer was used as running buffer and the flow rate 

was set to 1 mL/min. 

For RP-HPLC, a PRONTOSIL 120-5-C18-AQ 5 μm reverse column was used. 

Unless otherwise indicated, solvent A was 0.1% TFA in H2O and solvent B was 0.1 TFA 

in Acetonirile. The flow rate was set to 1mL/min and the chromatography was recorded 

under a typical gradient program as shown in Table 3.14. The integrated software 

package from Waters was used to process experimental data.  

Time (min) Solvent A% Solvent B% 

0-2 100 0 

2-17 100-50 0-50 

17-27 50-0 50-100 

27-29 0 100 

29-37 100 0 

Table 3.14: Gradient program for RP-HPLC experiements. 
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3.4.5 MALDI-TOF-MS 

Matrix Assisted Laser Desorbtion Ionization - Time of Flight (MALDI-TOF) 

experiments were performed with a Voyager-DE Pro Biospectrometry workstation 

(Applied Biosystems, Weiterstadt, Germany) to measure the mass of PhzE. Protein 

sample was first diluted with H2O to a final concentration of 0.1 mg/mL and then mixed 

with equal volume of matrix solution (Table 3.15). 2 µL sample mixture were then 

spotted on a 100-well MALDI sample plate and dried on the bench for 10 min. MALDI-

TOF spectra were measured with the following instrument settings: acceleration voltage 

= 25000 V, grid voltage = 91 %, guide wire = 0.3 % and extraction delay time = 1000 ns. 

To record and process the spectrum, the program Data Explorer TM (Voyager software 

package 5.1) was used. 

Composite Volume (µL) 

1% (v/v) TFA 70 

Milli-Q H2O 630 

Acetonitrile 300 

Saturated with sinapinic acid, vortexed and the undissolved materials were spinned 

down  

Table 3.15: Preparation of matrix solution for MALDI-TOF-MS.  

 

3.4.6 ESI-MS 

Electrospray Ionisation Mass Spectrometry (ESI-MS) was applied to measure the 

mass of ADIC. The measurement was carried out with an LCQ ESI mass spectrometer 

(Finnigan, SanJose, USA). Mass spectrometry was carried out in positive ion detection 

mode and data were collected in the m/z range between 0 and 600. Data processing 

and mass calculation were performed using the Xcalibur software package.  
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3.5 X-ray crystallography methods 

3.5.1 Crystallization 

3.5.1.1 Crystallization of ligand-free PhzE 

Crystallization trials for PhzE were performed using the NeXtal JCSG PACT 

screening suite. The sitting drop method was applied with a Mosquito Crystallization 

Robot, where 0.1 µL protein (8.7 mg/mL and 4.3 mg/mL) was mixed with 0.1 µL 

reservoir. The plates were then incubated at 20 ºC. Initial crystals were observed in the 

drops with the higher protein concentration (8.7 mg/mL) and the reservoir composition 

of 0.1 M 1,3-bis[tris(hydroxymethyl)methylamino]propane (BTP) pH 7.5, 0.2 M 

potassium thiocyanate and 20% (w/v) PEG 3350. 

To optimize the size and shape of ligand-free PhzE crystals, the hanging drop vapor 

diffusion method was applied with drops consisting of 2 l protein and 1 l precipitant 

solution at 20 ºC. Diffraction-quality crystals were obtained with a protein solution 

containing 8.7 mg/mL PhzE, 1 mM MgCl2, 10 mM glutamine, and a reservoir consisting 

of 0.1 M BTP pH 7.0, 0.2 M potassium thiocyanate and 22% (w/v) PEG 3350. The 

colorless crystals possess a hexagonal shape and grew to a size of 0.5 × 0.3 × 0.3 mm 

in about one week. Seleno-L-methionine labeled ligand-free PhzE crystals were 

obtained at similar conditions (with additional 5 mM 2-mercaptoethanol in the protein 

solution). Crystals of ligand-free PhzE (Se-Met PhzE) were briefly washed in a cryo 

solution consisting of 0.1 M BTP pH 7.0, 0.2 M potassium thiocyanate, 25% (w/v) PEG 

3350 and 5% (w/v) PEG 400 prior to plunging into liquid nitrogen. 

3.5.1.2 Crystallization of ligand-bound PhzE  

To produce ligand-bound PhzE crystals, the protein was first incubated with 50 mM 

MgCl2, 20 mM chorismate and 25 mM L-Glutamine for 30 min on ice. 1 l of reservoir 

was applied to 1 l protein solution and the mixture was subsequently equilibrated 

against the reservoir containing 0.1 M HEPES buffer pH 7.1, 0.2 M MgCl2, and 15% 

isopropanol at 4 ºC. Small crystals were then transferred to a freshly prepared drop by 

the macro-seeding technique, and the cube-shaped crystals grew to a full size of 0.4 
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mm3 in about 3 days. Zinc-free crystals were obtained by first incubating PhzE with 10 

mM EDTA on ice for 30 min. EDTA was then removed by a buffer exchange against 

normal GF buffer using illustraTM NAP-5 column (GE Healthcare). Afterwards, the 

protein was re-concentrated to 9.5 mg/ml using a Vivaspin 500 column (Sartorius 

Stedim Biotech). The crystallization conditions of Zinc-free PhzE were the same as that 

of ligand-bound PhzE. The cryo solution for ligand-bound crystals contains 0.1 M 

HEPES buffer pH 7.1, 0.2 M MgCl2, 15% isopropanol and 20% glycerol. 

3.5.1.3 Crystallization of PhzD and PhzD-D38A 

Crystals of PhzD and the PhzD-D38A mutant were obtained from 1 µL + 1 µL 

hanging drops equilibrated against a reservoir containing 0.1 M sodium cacodylate 

buffer pH 6.5, 0.2 M sodium acetate and 25% (w/v) PEG 4000 at 20 ºC. In order to 

remove bound buffer/precipitant molecules at the active center, crystals were incubated 

in a solution containing 0.1 M Bis-Tris pH 6.5, 20% (w/v) PEG 4000, 0.1 M NaCl for 60 

min. Soaking experiments were carried out by adding 1 mM ADIC into the drop. The 

crystals were further incubated for 60 min and were briefly washed in a cryoprotecting 

solution consisting of 0.1 M Bis-Tris buffer pH 6.5, 40% (w/v) PEG 4000 and 0.1 M NaCl 

prior to data collection at 100 K. 

3.5.2 Data Collection 

Data were collected at 100 K either in house on an Rigaku Micro-MAX-007 HF 

generator with a MAR345 image plate detector, or at the Swiss Light Source (SLS, 

Villigen, Switzerland) on beam line X10SA equipped with a MAR225 CCD detector 

(PILATUS 6M pixel detector). Data collection strategies are summarized in Table 3.16.  

3.5.3 Data preparation 

Apart from native PhzD dataset, which was integrated using imosflm from the CCP4 

Program Suite, all datasets were integrated using XDS (Kabsch 2010) and scaled using 

XSCALE (XDS Package). The final data in mtz-format were generated by XDSCONV 

(XDS package). 
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3.5.4 Structure determination 

3.5.4.1 MAD phasing of ligand-free PhzE 

Phases of PhzE in the apo form were determined from a Multiple-wavelength 

Anomalous Dispersion (MAD) dataset of Se-Met labeled PhzE collected at 3.6 Å. 

SHELXC (Sheldrick, 2010) was used to extract anomalous signals from the dataset and 

25 Se atoms, each belonging to one of the two chains in the asymmetric unit, were 

located with SHELXD (Sheldrick, 2010). Initial phases were then generated with 

SHARP (delaFortelle & Bricogne, 1997) and improved by solvent flattening, using the 

program SOLOMON (Abrahams & Leslie, 1996) and DM (Cowtan, 1994) of the CCP4 

suite. The final resulting phase information was then transferred to the native dataset 

and extended to full resolution with DM (Cowtan, 1994). 

 

Project Dataset λ(Å) 
Space 

group 
Images 

Oscillation 

(º/image) 

Beamline 

and 

Detector 

Note 

PhzE 

Open  1.0000 P6222 80 0.5 

X10SA 

+MAR225 

 

SeMet_in 0.9796 P6222 150 0.75 

MAD 
dataset 

SeMet_pe 0.9790 P6222 280 0.75 

SeMet_re 0.9780 P6222 150 0.75 

Closed_Zn 0.9999 P21212 258 0.4 Closed 
form 
with 
Zn2+ 

Closed 0.9790 P21212 200 0.5  

PhzD 

native 1.5418 P43212 433 0.25 Rigaku+ 

MAR345 

 

native+ADIC 

inhouse 

1.5418 C2221 300 0.5 Rigaku+ 

MAR345 

 

native+ADIC 

 

1.0000 C2221 1000 0.25 X10SA 

+PILATUS 

 

native_emp 

inhouse 

1.5418 C2221 369 0.5 Rigaku+ 

MAR345 
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native_emp 1.0000 C2221 1000 0.25 X10SA 

+PILATUS 

 

D38A+ADIC 

inhouse 

1.5418 P212121 202 0.5 Rigaku+ 

MAR345 

 

D38A+ADIC  1.0400 P212121 480 0.25 X10SA 

+PILATUS 

 

D38N+ADIC 

inhouse 

1.5418 P212121 204 0.5 Rigaku+ 

MAR345 

 

D38N+ADIC 1.0400 P212121 480 0.25 X10SA 

+PILATUS 

 

Table 3.16:  Data collection statistics.  

3.5.4.2 Structure determination of ligand-bound PhzE by molecular replacement 

The structure ligand-bound form of PhzE was solved by molecular replacement 

method with PHASER (McCoy et al. 2007b) and MOLREP (A. Vagin & Teplyakov 1997). 

Coordinates of one MST domain and GATaseI domain from ligand-free PhzE were used 

as separate search models. Solution was successfully identified by searching for two 

copies of MST domain and GATaseI domain, respectively, in one asymmetric unit.  

3.5.4.3 Structure determination of PhzD by molecular replacement 

The native PhzD structure was determined by molecular replacement method using 

program PHASER (Airlie J McCoy et al. 2007b) and MOLREP (A. Vagin & Teplyakov 

1997). Coordinates from one chain of the published PhzD structure from Pseudomonas 

aeruginosa was used as search model (Parsons et al., 2003a). One copy of the protein 

molecule was found in one asymmetric unit for space group type P43212 and C2221, 

while two copies were found in P212121 crystal form. 

3.5.5 Model building and refinement 

5% of total reflections from all datasets used for refinement were choosen at 

random for calculation on Rfree and remained the same for the same crystal forms 

throughout this study. 
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3.5.5.1 Model building of ligand-free PhzE 

In case for ligand-free PhzE, the initial Cα positions were traced in the program O 

(Jones et al., 1991). After cycles of refinement against experimental data using 

REFMAC5 (Murshudov et al. 1997), the improved model was further corrected manually 

in COOT (Emsley et al. 2010). At the later stage of refinement, water molecules were 

located by COOT and TLS-refinement was introduced using each MST, GATaseI 

domain and the linker region as a separate TLS body. The final model of ligand-free 

PhzE was generated after one round of refinement in phenix.refine (Adams et al., 2010). 

3.5.5.2 Model building of ligand-bound PhzE 

After molecular replacement, the resulting coordinates were put in REFMAC5 for 

one round of rigid body refinement. The output model was then used as initial model for 

ligand-bound PhzE and was corrected manually in COOT. Coordinates for benzoate 

and pyruvate were retrieved from the COOT monomer library. The restraint library for 

glutamyl-cysteine was generated with PRODRG (Schüttelkopf & van Aalten, 2004) and 

was introduced to the model as a non-native amino acid residue. REFMAC5 was used 

for refinement throughout the model building process. 

3.5.5.3 Model building of PhzD 

After molecular replacement, the model was manually corrected in COOT and 

refined with REFMAC5. To better interpret the experimental data regarding the ligands 

(DHHA or ADIC) before incorporating ligand into the structure, the |Fo-Fc| density map of 

the ligand was generated. The restraint libraries for DHHA and ADIC were generated 

using the Dundee PRODRG server.  

3.5.6 Search for an ammonia channel 

The software Caver (Petrek et al., 2006) was used to search for the ammonia 

channel that connects the two active sites of PhzE. In this study, the Caver 2.0 PyMOL 

plugin was employed. Before the calculation was performed, the model of ligand-bound 

PhzE was modified in COOT. In order to visualize the full channel, the side chain of the 

gatekeeper residue E251 was shifted to its second conformation adopted in the ligand-
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free structure. The model was then displayed with PyMOL and the sulfur atom of the 

glytamyl-cysteine moiety from chain A was given as the starting point of the channel.  

3.5.7 X-ray Fluorescence scan 

To identify the metal bound to the ligand-bound PhzE, an X-ray fluorescence scan 

experiment was carried out. The crystal of untreated ligand-bound PhzE (protein has 

not been treated with EDTA prior to crystallization) was mounted on the beamline 

X10SA of the SLS equipped with a Ketek Si-drift fluorescence detector. The X-ray 

fluorescence spectrum of the crystal at Zinc and Nickel absorption K-edge was recorded 

(Figure 4.23 B). 

3.5.8 Small Angel X-ray Scattering (SAXS) measurement of PhzE 

SAXS experiments were performed at beamline X33 of the DORIS III storage ring 

(DESY and EMBL Hamburg, Germany) (Roessle et al., 2007). The scattering data were 

recorded by means of an image plate with online readout (MAR345, MarResearch, 

Norderstedt, Germany). The automated sample handling robot was used for loading 

protein solution in the X-ray beam (Round et al., 2008). The scattering patterns were 

measured using a sample - detector distances of 2.4 m, covering the range of 

momentum transfer 0.1 < s < 4.5 nm-1 (s = 4π sin(θ)/λ, where θ is the scattering angle 

and λ = 0.15 nm is the X-ray wavelength). In order to check for inter protein interactions 

PhzE was measured at 3 and 6 mg/ml concentration. Repetitive measurements of 

120sec of the same protein solution were performed in order to check for radiation 

damage. No aggregation was found during the initial 120 sec exposure. This initial 

exposure frame was taken for further analysis. The data were normalized to the 

intensity of the incident beam; the scattering of the buffer was subtracted and the 

difference curves were scaled for concentration. Corresponding datasets were merged 

according to the data quality. All data processing steps were performed using the 

program package PRIMUS (Konarev et al., 2003). The forward scattering I(0) and the 

radius of gyration Rg were evaluated using the Guinier approximation (Guiner & Fournet 

1955) assuming that at very small angles (s <1.3/Rg) the intensity is represented by I(s) 

= I(0) exp(-(sRg)2/3). These parameters were also computed from the entire scattering 
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patterns using the indirect transform package GNOM (Svergun, 1993), which also 

provides the distance distribution function p(r) of the particle as defined: 

 dssrsrsIrp  sin)(2)(   

The molecular mass of PhzE was calculated by comparison with the forward 

scattering from the reference solution of bovine serum albumin (BSA). From this 

procedure a relative calibration factor for the molecular mass (MM) can be calculated 

using the known molecular mass of BSA (66.4 kDa) and the concentration of the 

reference solution by applying 

stst

st
ppp cI

MM
cIMM

/)0(
/)0(   

where I(0)p, I(0)st are the scattering intensities at zero angle of the studied and the 

BSA standard protein, respectively, MMp, MMst are the corresponding molecular 

masses and cp, cst are the concentrations. Errors have been calculated from the upper 

and the lower I(0) error  limit estimated by the Guinier approximation.  

Low-resolution models of PhzE were built by the program DAMMIN (Svergun, 1999), 

which represents the protein as an assembly of dummy atoms inside a search volume 

defined by a sphere of the diameter Dmax. Starting from a random model, DAMMIN 

employs simulated annealing to build a scattering equivalent model fitting the 

experimental data Iexp(s) to minimize discrepancy: 
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where N is the number of experimental points, c a scaling factor and Icalc(sj) and σ(sj) 

are the calculated intensity and the experimental error at the momentum transfer sj, 

respectively. Final ab initio shape models for PhzE were obtained applying a two-fold 

symmetry as constrain to the DAMMIN program. The values of the fitting procedure are 

in the range of 1.50 ± 0.02. Ten independent DAMMIN reconstructions are 
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superimposed using the program package SUBCOMP and DAMAVER (Svergun 1999) 

and a most probable PhzE model derived after filtering to the molecular mass of the 

PhzE dimer. 

See chapter 7.3 and 7.4 for more detailed introduction to the principles of protein 

crystallography and SAXS.  

3.6 Biochemical methods 

Unless otherwise stated, prior to use in the biochemical measurements, all PhzE 

samples were treated with EDTA to remove bound metals as described below.  

Concentrated PhzE (8-10 mg/mL) was first incubated with 10 mM EDTA on ice for 

30 min, EDTA was then removed by a buffer exchange against normal GF buffer using 

illustraTM NAP-5 column (GE Healthcare). Afterwards, the protein was re-concentrated 

using a Vivaspin 500 column (Sartorius Stedim Biotech).  

3.6.1 pH optimum of PhzE 

PhzE’s activity as a function of pH was analyzed in order to identify the optimum 

condition for biochemical assays. The reaction mixture contained 50 mM buffer 

substance (citric acid for pH 6.0 and 6.5, Tris for pH 7.0, 7.5, 8.0, 8.5 and 9.0), 1 mM 

MgCl2, 10 mM L-glutamine and 40 µM chorismate. The reaction was initiated by adding 

1 µL PhzE (8.7 mg/mL) and monitored by continuous spectrophotometric assay in a 1 

mL quartz cuvette (Hellma Optik GmbH) at the wavelength of 280 nm with a Beckman 

DU640 spectrophotometer at 25 °C. The reaction curves at different pH were prepared 

and compared using GraFit data analysis software (Erithacus Software, UK). 

3.6.2 Analysis the Mg2+ dependence of PhzE 

The reaction solution was prepared in a 1 mL quartz cuvette (Hellma Optik GmbH) 

to contain 100 mM HEPES-Na pH 7.0, 25 mM L-glutamine, 50 µM chorismate and 

various amounts of MgCl2 (from 0 to 50 mM). The reaction was initiated by adding 1 µL 

EDTA-treated PhzE (9.0 mg/mL) to a final concentration of 129 nM, and was followed 

spectrophotometrically for 5 min at 280 nm with a Beckman DU640 spectrophotometer 
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at 25 °C. The optimum Mg2+ concentration for PhzE was determined by comparing the 

reaction curves using GraFit data analysis software (Erithacus Software, UK). 

3.6.3 UV spectra of the PhzE reaction 

To monitor the accumulation of ADIC, a spectrophotometric scan of the PhzE 

reaction was performed in the middle to near UV range (from 230 nm to 360 nm). In this 

experiment, the reaction mixture containing 100 mM HEPES-Na pH 7.0, 20 mM L-

glutamine, 1 mM MgCl2 and 100 µM chorismate was prepared in a 1 mL quartz cuvette 

(Hellma Optik GmbH). 1 µL PhzE (8.7 mg/mL) was then added to the mixture to a final 

PhzE concentration of 124 nM. After brief mixing with a plastic stirrer, the quartz cuvette 

was put into a Beckman DU640 spectrophotometer and UV spectra were recorded after 

0, 5, 10, 20, 30 and 60 min. 

3.6.4 Determination of the extinction coefficient of ADIC 

1 mL reaction mixture containing 100 mM HEPES-Na at pH 7.0, 25 mM L-glutamine, 

1 mM MgCl2 and 200 µM chorismate was prepared. Reaction was initiated by adding 1 

µL PhzE (8.7 mg/mL) to a final concentration of 124 nM. After each 40 and 80 min, 50 

µL of reaction mixture was injected and analyzed on RP-HPLC (see description in 

analytical methods). The area under the peak of chorismate and ADIC on the spectra 

was calculated by the integrated software. Due to the fact that the decrease in amount 

of chorismate is equivalent to the increase in amount of ADIC (Formula 3.1), given the 

ε280 = 2,750 M-1·cm-1 for chorismate (Gould & Eisenberg, 1991), it was possible to 

calculate the ε280 of ADIC using the formula below: 

εADIC = εchr × (AADIC80 – AADIC40) / (Achr40 – Achr80) 

Formula 3.1: Calculation of the extinction coefficient value of ADIC. A: Calculated area 
under respective peak. 

 

3.6.5 Michaelis-Menten kinetics of PhzE  

Activity assays of native PhzE and the mutants were performed by a modification of 

a method described previously (Morollo & Bauerle, 1993). Reaction mixtures containing 
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100 mM HEPES-Na (pH 7.0), 1 mM MgCl2, 20 mM glutamine, the enzyme, and variable 

amounts of chorismate were prepared in a 1 mL quartz cuvette (Hellma Optik GmbH). 

For kinetic experiments, the enzyme was used at 14.3 pM (final concentration) and 

chorismate varied within the range of 1 μM and 50 μM. The initial rate of ADIC formation 

was monitored by a continuous spectrophotometric assay at the wavelength of 280 nm 

with a Beckman DU640 spectrophotometer at 25 °C. The extinction coefficient for 

chorismate at 280 nm ε280 = 2,750 M-1·cm-1 was taken from the literature (Morollo & 

Bauerle, 1993) and the value for ADIC at 280 nm ε280 = 11,490 M-1·cm-1 was measured 

in this study (see chapter 3.6.4). KM and kcat values were determined by fitting the data 

to the Michaelis-Menten equation using GraFit data analysis software (Erithacus 

Software, UK). Experiments were repeated at least three times. 

3.6.6 Inhibition analysis of PhzE 

Inhibition of PhzE by transition metals Zn2+, Ni2+ and Mn2+ were tested. The reaction 

solution was prepared in1 mL quartz cuvette (Hellma Optik GmbH) containing 100 mM 

HEPES-Na pH 7.0, 10 mM L-glutamine, 1 mM MgCl2 and 50 µM chorismate. 

Additionally, 1 mM ZnCl2, NiSO4 or MnSO4 (1 mM MgCl2 for native reaction) was 

supplemented respectively to each of the reaction set-ups. The reaction was then 

initiated by adding 1 µL PhzE (4.8 mg/mL) to a final concentration of 69 nM, and was 

followed with a continuous spectrophotometric assay at 280 nm with a Beckman DU640 

spectrophotometer at 25 ºC. 

3.6.7 Inhibition of PhzE by L-tryptophan, DHHA and PCA 

To test the potential inhibitors of PhzE, control reactions were carried out in 1 mL 

quartz cuvette (Hellma Optik GmbH) containing 100 mM HEPES-Na pH 7.0, 20 mM 

glutamine, 1 mM MgCl2 and 50 μM chorismate. In addition, L-tryptophan (20, 50 and 

100 µM), DHHA (100 and 200 µM) or PCA (200 µM and 2 mM) were added to the 

reaction solution respectively. 1 µL PhzE (8.5 mg/mL) was then added and the reaction 

was monitored spectrophotometrically at 280 nm with a Beckman DU640 

spectrophotometer at 25 °C. 
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3.6.8 PhzE and PhzD coupled enzymatic assay 

A PhzE/D coupled assay was designed to show that PhzD could convert the PhzE 

product into DHHA. The reaction solution was prepared to contain 100 mM HEPES-Na 

pH 7.0, 25 mM glutamine, 1 mM MgCl2 and 100 μM chorismate. 1 µL PhzE (8.3 mg/mL) 

was then added to the solution and mixed gently with a plastic stirrer. The reaction 

mixture was subsequently kept under room temperature for 10 min. 1 µL PhzD (2.7 

mg/mL) was then supplemented and after 10 more min, the reaction was quenched by 

adding TFA to a final concentration of 0.5% (v/v). 30 µL of the resulting solution was 

injected and to RP-HPLC (see analytical methods). The chromatogram of PhzE/D 

coupled reaction was recorded and analyzed with HPLC integrated program and GraFit 

data analysis software (Erithacus Software, UK). 

3.6.9 Isothermal titration calorimetry 

Isothermal Titration Calorimetry (ITC) measurements were employed to determine 

the dissociation constants of chorismate to PhzE with and without Mg2+. Measurements 

were performed at 25 °C with a VP-ITC system (MicroCal LLC). For measurement 

without Mg2+, PhzE was diluted to 100 µM with a buffer containing 50 mM Tris (pH 7.5) 

and 150 mM NaCl. For measurement with Mg2+, the buffer contained an additional 1 

mM MgCl2.  Chorismate was dissolved in the same buffer as used for the protein to a 

final concentration of 1 mM. All buffers and solutions were degassed prior to use. The 

system was equilibrated for at least 30 min before the measurement started, and then 2 

µl substrate solution was injected initially, followed by injections of 8 µL at 4 min 

intervals. Raw data containing enthalpy changes corresponding to the association of 

chorismate to PhzE were recorded and analyzed with Origin version 7 (OriginLab 

Corporation). 

A more detailed introduction of ITC is given in chapter 7.5. 

3.6.10 Production and purification of ADIC 

ADIC was produced enzymatically in a 2 mL reaction solution containing 5 mM 

chorismate, 120 mM Glutamine, 10 mM MgCl2 and 50 mM HEPES pH 7.1. The reaction 

was initiated by adding PhzE into the mixture to a final concentration of 5 µM. After one 
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hour, the reaction mixture was shock-frozen with liquid nitrogen in 200 µL aliquots and 

stored at -80 ºC. 

The purification of ADIC was performed by RP-HPLC and identified by ESI-MS as 

described (see chapter 3.4). 200 µL of the reaction mixture were injected at each run. 

The peak according to the retention time of ADIC was collected manually in 2 mL 

eppendorf tubes and was shock-frozen immediately in liquid nitrogen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESULTS AND DISCUSSION 

 
 

60 

4 RESULTS AND DISCUSSION 
This section has been arranged into two parts to present the results of two proteins: 

the ADIC-synthase PhzE and the isochorismatase PhzD, respectively. In part one, the 

crystal structures of the ligand-free PhzE and the ligand-bound PhzE are presented and 

the conformational movement upon ligand binding was analyzed, followed by the data 

of biochemical and biophysical studies of the protein function. In part two, the crystal 

structures of PhzD are presented and discussed. 

 

Part I: Structures and function of PhzE 

4.1 Determination of PhzE crystal structures 

Crystallographic studies were originally conducted on PhzE from the Pseudomonas 

strains. However, it was impossible to obtain diffraction quality crystals of PhzE from P. 

aeruginosa and P. chlororaphis. Therefore, the crystallization trials were extended to 

PhzE from Burkholderia lata 383. 

4.1.1 Sequence analysis 

The sequence of PhzE was retrieved from the complete genome sequence of 

Burkholderia lata 383 (US DOE Joint Genome Institute) and was submitted and 

analyzed by different bioinformatic tools. Results from the Protparam online proteomics 

server (Gasteiger et al., 2005) revealed that PhzE has a molecular mass of 69882.1 Da 

and theoritical pI of 5.34. PSORT prediction indicated that PhzE probably locates in 

bacterial cytoplasm (Nakai & Kanehisa, 1991). 

A Blast (National Center for Biotechnology Information web tool) search against 

Non-redundant protein sequence database indicated that PhzE is conserved among 

phenazine producers and it contains two putative conserved domains. The N-terminal 

part of the protein resembles a chorismate binding domain and the C-terminal part has 

a GATaseI domain. Among the top hits from blast results, anthranilate synthases with 
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fused MST/GATaseI domains were also identified to possess high similarity to PhzE. 

PhzE from three other bacterial origins, as well as anthranilate synthase with fused 

domains from two bacterial strains are listed in Table 4.1 and a complete sequence 

alignment of all six proteins (including PhzE from B. lata 383) was performed with 

Clustal X (Larkin et al., 2007) (Figure 4.1). 

Protein Origin 
Query 

coverage 
(%) 

Sequence identity 
(%) 

E value 

PhzE P. aeruginosa 98 57 0 

PhzE P. chlororaphis 97 55 0 

PhzE P. fluorescens 97 55 0 

Anthranilate synthase 
(fused MST/GATaseI 

domains) 
S. venezuelae 95 49 3e-149 

Anthranilate synthase 
(fused MST/GATaseI 

domains) 
S. coelicolor 95 48 2e-136 

Table 4.1: Results from Blast search. 5 hits are listed according to their max score (not 
shown). The E value describes the quality of the alignment; the lower the E value, the 
more significant is the match. 

A Blast search of PhzE sequence against Protein Data Bank (PDB) was launched 

to search for structures that are potentially related to PhzE. Five proteins from different 

MST enzyme classes in the top hits are listed in Table 4.2. A complete sequence 

alignment was performed with Clustal X (Larkin et al., 2007) and is shown in Figure 4.2. 

All these five proteins are synthases (bacterial anthranilate synthase, isochorismate 

synthase, salicylate synthase, para-aminobenzoate synthase and 

aminodeoxychorismate synthase) and belong to MST enzyme family. Interestingly, all of 

them contain either only the MST domain or separated MST and GATaseI domains. 

This fact, together with the relatively high E value, low percentage of query coverage 

and low sequence identities, suggested that PhzE might have a distinct quaternary 

structure.
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Protein Origin PDB ID 
Query 

coverage (%) 
Sequence 

identity (%) 
E value 

Anthranilate Synthase S. solfataricus 1QDL 33 26 9e-12 

Isochorismate 
Synthase 

E. coli 3HWO 34 24 8e-5 

Salicylate Synthase 
Y. 

enterocolitica 
2FN0 50 24 4e-4 

Para-aminobenzoate 
Synthase 

C. 
hutchinsonii 

3H9M 41 23 6e-4 

Aminodeoxychorismate 
(ADC) Synthase 

E. coli 1K0E 33 25 0.041 

Table 4.2: Results from a Blast search against PhzE. 5 hits are listed according to their 
max score (not shown). The E value describes the quality of the alignment, the lower the 
E value, the more significant the match is. 

 

4.1.2 Cloning, over-expression of phzE and protein purification 

phzE gene was amplified from a pSKII plasmid containing phz operon, and was 

subcloned into a pET19mod vector (Figure 4.3). 

 
Figure 4.3: Cloning of phzE. (A) PCR amplification of phzE, checked on agarose gel. (B) 
Plasmid bearing phzE shown in lane 1 and 3, empty vector is shown in lane 2. M: 1 kb 
DNA ladder. 
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The 643-amino-acid protein PhzE was expressed as a TEV-cleavable N-terminal 

6×His-tag fusion protein. The protein was purified with Ni2+ affinity chromatography 

(Figure. 4.4).  

 
Figure 4.4: Purification of PhzE by Ni2+ affinity chromatography. (A) Chromatogram of the 
purification. FT: Flow through from the column. UB: Elution of unspecifically bound 
proteins. Percentage of Buffer B in the elution buffer is indicated in red. (B) SDS-PAGE 
gel analysis. M: LMW marker. S: Supernatant after fluidizer. 10 and 23: the 10th and 23rd 
fractions of the elution, as marked in the chromatogram. 

After affinity chromatography, TEV cleavage was performed at 4 °C in dialysis 

buffer for 16 hours, TEV enzyme was applied at a fixed molar radio to PhzE (1:20). After 

concentrated in an Amicon chamber (Millipore) using a 30 kDa cut off membrane, gel 

filtration chromatography was performed for removing TEV enzyme and the final buffer 

exchange. PhzE was eluted from a Superdex 200 HR (26/60) column (GE Healthcare) 

as a single peak with a retention time (RT) of 80 min (Figure 4.5). According to the 

calibration curve of the column (flowrate = 2 mL/min), the molecular weight of the 

molecule should be in the range between 120 and 180 kDa, indicating that PhzE (Mw ≈ 

70 kDa) is a dimer in solution. In the end, at least 50 mg ≥95% pure PhzE was obtained 

from 1 L culture. The protein was then concentrated to 8-10 mg/mL in an Amicon 

chamber using a 30 kDa cut off membrane.  
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Figure 4.5: Gel filtration chromatography of PhzE. (A) The gel filtration chromatogram of 
PhzE. PhzE was eluted as a single peak with a retention time of 80 min. (B) SDS-PAGE 
gel result from gel filtration. M: LMW marker. The numbers indicate fractions according 
to the chromatogram. The impurities in fraction 38-46 might be TEV enzyme. 

 

4.1.3 Analytical gel filtration and MALDI-TOF 

4.1.3.1 Analytical gel filtration 

In order to determine the oligomeric state of PhzE in solution more precisely, 

analytical HPLC experiment was performed. A gel filtration standard (Bio-Rad) was 

used as reference (Figure 4.6). 

 

.Figure 4.6: Analytical Gel filtration of PhzE. Flowrate was set to 1 mL/min. 
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The elution statistics of the standard are shown in Table 4.3. The equation used for 

calculating PhzE molecular weight in solution was derived by single exponential fitting of 

the standard curve (Fomula 4.1). PhzE has a retention time of 13.23 min and the 

calculated molecular weight of PhzE is 167 kDa. As the single PhzE chain has 643 

amino acids and has a calculated molecular weight of 70 kDa and taking account of the 

N-terminal 6-His tag, PhzE in solution presents as dimer. 

Component Molecular weight (Da) Retention time (min) 

Thyroglobulin (bovine) 670,000 10,11 

γ-globulin (bovine) 158,000 13,45 

Ovalbumin (chicken) 44,000 15,90 

Myoglobin (horse) 17,000 17,82 

Vitamin B12 1,350 21,05 

Table 4.3: Elution statistics of the gel filtration standard. 

ݓܯ ൌ 60767 ൈ ݁ି଴.ସହ௧ 

Fomula 4.1: The fomula used to calculate molecular weight of PhzE. Mw: molecular 
weight in Dalton. t: retention time of PhzE. 

 

4.1.3.2 MALDI-TOF of PhzE 

Matrix Assisted Laser Desorption Ionization – Time of Flight (MALDI–TOF) mass 

spectrometry experiments were performed to examine the quality of purified PhzE and 

the efficiency of His6-tag cleavage by TEV. 

For His6-tagged PhzE, two major peaks were observed from the spectrum (Figure 

4.7 A), the higher one has a calculated mass of 72058 Da regarding the mono-

protonated PhzE [PhzE+H]+ and the lower one has a calculated mass of 36022 Da, 

representing the double-protonated protein [PhzE+2H]2+. Apart from these two peaks, 

there were only minor peaks with relative intensity below 20% observed in the mass 

range between 10 kDa and 200 KDa. 
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After being treated with TEV enzyme, the mass of PhzE was examined again with 

MALDI–TOF. Two major peaks were detected in the mass range between 10 kDa and 

200 KDa, the higher peak [PhzE+H]+ has a mass of 70114 Da and lower one 

[PhzE+2H]2+ has 36022 Da (Figure 4.7 B). From the results of the spectra, a 1944 Da 

mass difference between the His6-tagged PhzE and TEV treated one could be observed. 

According to the map of pET19m vector, the amino acid sequence of N-terminal 

cleavable His6-tag is N’–MGHHHHHHAENLYFQG–C’ with a calculated mass of 1950 

Da. Residues glycine, serine and histidine were left at the N-terminus of PhzE after TEV 

cleavage, the calculated molecular mass of N’-GSH-PhzE is 70125 Da. These results 

together indicate that the TEV cleavage was efficient. 

 
Figure 4.7: MALDI-TOF spectra of PhzE. A) PhzE with His6-tag uncleaved. B) PhzE after 
TEV cleavage of His6-tag. 
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4.1.4 Crystallization of PhzE 

4.1.4.1 Crystallization of ligand-free PhzE 

From the initial crystallization screen using the NeXtal PACT suite, hexagonal-

shaped crystals (Figure 4.8 A) were obtained in wells containing PEG 3350 and 

potassium thiocyanate as precipitants (BTP buffer pH 8.5, 20% PEG 3350, 2.0 M 

potassium thiocyanate). The size and shape of these crystals was improved by 

optimizing these conditions (Figure 4.8 B and C). Crystals with best quality were 

obtained with mother-liquor containing BTP buffer pH 7.0, 22% PEG 3350 and 2.0 M 

potassium thiocyanate. These crystals were flash-cooled in a cryo-solution (BTP buffer 

pH 7.0, 25% v/v PEG 3350, 2.0 M potassium thiocyanate and 5% v/v PEG 400) and 

exposed to an X-ray beam at 100 K to test diffraction. They diffracted to approximately 

3.5 Å on a home-source rotating anode and to 2.9 Å at beam X10SA of the Swiss Light 

Source (SLS, Villigen, Switzerland). 

 
Figure 4.8: Ligand-free PhzE crystals. (A) Crystals obtained from initial screen conditions 
(B) and (C) Optimized crystals of native PhzE. (D) Selenomethionine labeled PhzE crystal. 
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Selenomethionine substituted protein was prepared for structure solution by the 

Multi-wavelength Anomalous Dispersion (MAD) method and crystallized using similar 

conditions (with additional 5 mM 2-Mercaptoethanol in the protein solution) as the native 

protein. These crystals diffract to 3.7 Å at SLS X10SA (Figure 4.8 D). 

4.1.4.2 Crystallization of PhzE in the presence of ligands 

Since the ligand-free PhzE crystals cracks immediately after soaking with 

chorismate, in order to obtain liganded PhzE structure, co-crystallization trials were 

carried out. Very small crystallines were observed from initial screen of PhzE in 

presence of ligands (Figure 4.9 A) and were re-produced in 2 µL hanging drops (1 l of 

reservoir + 1 l protein) (Figure 4.9 B).  

 
Figure 4.9: Ligand-bound PhzE crystals. (A) Crystallines obtained from initial screening 
plate. (B) Crystallines reproduced in 2 µL hanging drops. (C) Zn2+ containing ligand-
bound PhzE crystals after seeding. (D) Zn2+-free ligand-bound PhzE crystals after 
seeding. 
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Small crystals were then transferred to a freshly prepared drop by macro-seeding 

technique, and the cubic crystals grew to a full size of 0.4 mm3 in 3 days (Figure 4.9 C). 

EDTA-treated PhzE crystals were obtained in the same way (Figure 4.9 D). Cryo-

solution for these PhzE crystals contains 0.1 M HEPES buffer pH 7.1, 0.2 M MgCl2, 15% 

isopropanol and 20% glycerol. All crystallization experiments were performed at 4°C. 

The best crystal of ligand-bound PhzE diffracted to approximately 2.7 Å on a home-

source rotating anode and to 2.1 Å at beamline X10SA of the Swiss Light Source (SLS, 

Villigen, Switzerland). 

4.1.5 Data collection statistics 

Diffraction data of ligand-free PhzE were collected at 100 K from 80 non-

overlapping 1 s 0.5º oscillation images. The crystal diffracted to 2.9 Å and belongs to 

space group P6222 with unit cell dimensions a = b = 172.4 Å, and c = 216.4 Å, α = β= 

90º, γ = 120º.  

Diffraction data of Zinc-containing ligand-bound PhzE were collected at 100 K from 

258 non-overlapping 1 s 0.4º oscillation images. The crystal diffracted to 2.1 Å and 

belongs to space group P21212 with unit cell dimensions a = 259.7 Å, b = 94.5 Å and c = 

53.5 Å, α = β = γ = 90º. 

Diffraction data of Zinc-free ligand-bound PhzE crystal were collected at 100 K from 

200 non-overlapping 1 s 0.5º oscillation images. The crystal diffracted to 2.6 Å and 

belongs to space group P21212 with unit cell dimensions a = 258.2 Å, b = 97.8 Å and c = 

54.0 Å, α = β = γ = 90º.  

MAD data from a Se-methionine-labelled ligand-free PhzE crystal were collected at 

100 K at the Se-K-edge from 280 non-overlapping 0.75º oscillations at λ=0.97895Å 

(Peak), 150 non-overlapping 0.75º oscillations at λ=0.97957Å (Inflection) and 150 non-

overlapping 0.75º oscillations at λ=0.97703Å (Remote). All data were collected on beam 

line X10SA of the Swiss Light Source (SLS, Villigen, Switzerland), using a MAR225 

CCD detector.  

Data collection statistics for all PhzE crystals are summarized in Table 4.4 
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4.1.6 Phasing statistics 

A MAD dataset collected from a single Se-Met PhzE crystal was integrated and 

scaled with the XDS package and 25 out of 36 expected selenium atoms were 

successfully located with SHELXD. The coordinates of the Se atoms were then 

extracted and initial structural phases were calculated with the program SHARP, using 

experimentally determined f’ and f’’ values (Figure 4.10). MAD data was used at the 

resolution range between 20 – 4.0 Å. The initial phase set with an overall FOM of 0.463 

was subsequently improved by solvent flattening with the programs SOLOMON and DM. 

The solvent content was 62% as calculated with Mattews_coef from the CCP4 suite. 

Statistics of the first cycle of solvent flattening showed a high correlation value (0.3340) 

indicating good quality of the initial map. Phasing statistics are summarized in Table 4.5. 

 
Figure 4.10: Determination of f’ and f’’ values by X-ray fluorescence scan.  
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Fluorescence Scan 

 E (eV) f' f'' 

Peak 12663.81 -7.5 10.8 

Inflection 12657.10 -13.2 5.1 

Remote 126798.44 -2.6 5.0 

Phasing statistics from the last sharp cycle 

FOM 0.4631 

Highest resolution shell (4.10-4.00Å) 0.1957 

Phasing power (acentrics) anomalous 1.432 

Highest resolution shell (4.10-4.00Å) 0.513 

Cullis R-factor (acentrics) anomalous 0.720 

Highest resolution shell (4.10-4.00Å) 0.958 

Statistics after first cycle of solvent flattening  

Contrast 0.5660 

Overall R-factor 0.4935 

R-factor 0.4720 

Overall Correlation 0.3340 

Table 4.5: Phasing statistics of PhzE 

4.1.7 Model building and Refinement statistics 

The electron density map of apo PhzE after solvent flattening showed well defined 

and connected structural elements for protein molecules. An initial model of apo PhzE 

was generated by tracing Cα positions in program O (Jones et al., 1991). After cycles of 

refinement using REFMAC5 (Murshudov et al., 1997), clear electron density could be 

observed for a homo-dimer of PhzE with exception of the termini and two flexible 
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regions (missing residues in the model: chain A: M1 – P5, G429 – L439, R634 – A643; 

chain B: M1 – N6, T28 – E33, E433 – L439, K637 – A643).  

 
Figure 4.11: Ramachandran plot showing torsion angels of peptide bonds in all three 
forms of PhzE structures. (A) Ligand-free PhzE. (B) Ligand-bound PhzE with Zn2+. (C) 
Ligand-bound PhzE metal-free. Plots are generated by program RAMPAGE from CCP4 
suite. 

The improved model was further corrected manually in COOT (Emsley et al., 2010), 

followed by several rounds of REFMAC refinement. TLS (Translation, Libration and 
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Screw-rotation displacement) refinement was introduced during REFMAC cycles using 

the MST domain, the GATase1 domain and the linker region as separate TLS bodies. 

Water molecules and possible alternative conformations of protein residues were then 

added manually to the model according to the Fo-Fc map of the electron density. One 

round of refinement was carried out by phenix refine (Afonine et al., 2005), giving the 

final model of ligand-free PhzE with Rwork = 18.7% and Rfree = 23.1%. The 

Ramachandran plot (Figure 4.11) showed that 92.6% of all residues lie in the favorite 

region (5.4% in allowed region). 

The structure of liganded PhzE+Zn2+ was solved by PHASER (Airlie J McCoy et al. 

2007b) using a modified ligand-free PhzE structure (without water, and with separated 

MST and GATase1 domains) as search model. The structure was refined to Rwork = 

14.6% and Rfree = 20.0%. The Ramachandran plot (Figure 4.11) showed that 97.0% of 

all residues lie in favorite region (2.5% in allowed region). Since the structure of 

liganded PhzE metal-free form was almost identical to the Zn2+-bound form except for 

the Zn2+ ion, it was therefore solved by putting the structure of ligand-bound PhzE+Zn2+ 

directly in REFMAC5 with one round of rigid body refinement. It was finally refined to 

Rwork = 16.8% and Rfree = 23.5%. The Ramachandran plot (Figure 4.10) showed that 

96.5% of all residues lie in favorite region (23.2% in allowed region). Refinement 

statistics of PhzE are shown in Table 4.6. 

 Ligand-free PhzE Ligand-bound PhzE + 
Zn2+ 

Ligand-bound PhzE metal-
free 

Resolution (Å) 

(highest shell) 

20 – 2.9 

(3.0 – 2.9) 

20 – 2.1 

(2.15 – 2.1) 

20 – 2.6 

(2.65 – 2.6) 

No. reflections 204850 (42476) 324405 (146170) 173817 (43071) 

Rwork 18.7 (25.5) 14.6 (17.4) 16.8 (22.0) 

Rfree 23.1 (32.4) 20.0 (22.4) 23.5 (34.3) 

No. atoms    

Protein 9088 10439 9119 

Ligand/ion 0 45 42 

Water 80 812 332 



RESULTS AND DISCUSSION 

 
 

77 

B-factors    

Protein 31 30 30 

Ligand/ion – 33 34 

Water 56 53 28 

R.m.s deviations    

Bond lengths (Å) 0.017 0.023 0.016 

Bond angles () 1.693 1.901 1.576 

Table 4.6: Refinement statistics of PhzE structures. 

 

4.2 Structural analysis of PhzE 

Unless otherwise specified, the ligand-bound PhzE is discussed here using the 

structure of that partially contaminated with Zn2+ bound to the GATase1 active site. 

Numbering of the secondary structural elements is according to Figure 4.1. 

4.2.1 Overall structure of ligand-free and ligand-bound PhzE 

The first crystal structure of PhzE determinded in this study was in the absence of 

ligands, which will be referred as the open form. The structure of PhzE in the presence 

of chorismate, L-glutamine and Mg2+ was also determined, which will be referred as the 

closed form. The “open” and “closed” nomenclature is due to the fact that ligand binding 

of PhzE induces a structure movement of the protein that leads to an open to close 

motion of the MST active site. Details will be shown and discussed later in this chapter.  

As indicated by size-exclusion chromatography, PhzE forms homodimers in solution. 

Indeed, a 140 kDa PhzE homodimer in the asymmetric unit of both crystal forms was 

found. In the open form structure, PhzE dimer has a dimension of 120×70×35 Å, and 

adopts a butterfly-shaped quaternary arrangement in which the two N-terminal 

chorismate-binding MST domains (residues 1 – 395) interact with each other and lie 

near the dimer’s two fold symmetry axis. The linker regions of both protomers are 

partially disordered (missing part in chain A: G429 – L439 and chain B: E433 – L439). 

However, considering the crystal packing and tracing of the linkers, it is only possible 

that the GATase1 domain (residues 442 – 643) from chain A is in intimate contact with 

the MST domain from chain B and vice versa, forming two inter-chained MST/GATase1 
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functional dimer (Figure 4.12 A and B). The unusual domain intertwinement is retained 

in the closed form structures (Figure 4.12 C), in which the dimer has a dimension of 

145×50×35 Å. If the MST domains from chain A of both structures are superposed, a 

positional change of approx. 60 Å at the outer edge of GATase1 domain from the same 

chain could be observed (Figure 4.12 D). Comparing to the open structure, in the closed 

form the dimer is more outstretched. 

 
Figure 4.12: Overall structure of PhzE. (A) Ligand-free open form. One chain has been 
colored in magenta, the other chain is colored according to domains (MST: yellow, 
GATase1: red, Linker: cyan). (B) Same as in A, top view. (C) Ligand-bound closed form. 
Chains are colored the same way as in A and B. Circles indicate the position of active 
sites in the MST and GATase1 domain. Ligands are shown in ball-and-stick 
representation. (D) Comparison of the open (black lines) and closed structure (cartoons) 
by superimposition of MST domain from chain A of each crystal form. This figure was 
prepared with PyMOL (Schrödinger LLC). 
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4.2.2 SAXS measurement of the PhzE envelope 

The crystal structures of PhzE revealed an unprecedented quaternary structure 

showing domain intertwinement between MST and GATase1. In order to exclude the 

possibility that this unusual domain arrangement is a crystallography artifact, therefore, 

Small Angle X-ray Scattering (SAXS) experiments were performed to obtain the 

structural information of PhzE in solution. SAXS is capable of measuring the shape and 

size of macromolecules and can usually provide structural information at a resolution 

range between 50 – 250 Å. Due to the fact that PhzE is a marcro-molecule (140 kDa 

homodimer) which can be presented homogenously in solution, it was possible to obtain 

enough information from the scattering curve and generated the SAXS-envelope of 

PhzE dimer. The crystal structures of PhzE were then aligned with the SAXS-envelope 

with the program Situs 2.5 (Wriggers, 2010) (Fig 4.13). The experimental data was also 

fit with calculated scattering curve of both crystal structures and χ2 values were 

calculated (Formula 4.2). Even though the scattering was recorded in the absence of 

ligands, the χ2 = 1.5 for the closed form is much lower comparing to χ2 = 3.2 for the 

open form, indicating that the ligand-bound structure of PhzE fits the SAXS envelope 

much better than the crystal structure obtained in the absence of substrates. 

χଶ ൌ
1
ܯ

෎ ቆ
௜ሻݍ௘௫௣ሺܫ െ ௜ሻݍሺܫܿ
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ଶ
ெ
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Formula 4.2: Fomula to calculate χ2 value of the SAXS measurement. Iexp(q) is the 
experimental data and I(q) is the computed model, σ(q) is the experimental error, M is the 
number of points in the measurement and c is the scale factor. 
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Figure 4.13: Small-angle x-ray scattering of PhzE. The SAXS envelope is shown in grey. 
(A) Fit of the ligand-free open PhzE. (B) Fit of the ligand-bound closed PhzE. The graphs 
show experimental and calculated scattering curves. The closed form fits the SAXS data 
better, even if the scattering was recorded in the absence of ligands. 

 

4.2.3 Structural comparison of PhzE to AS 

Among all PhzE homologues which contain both an MST (TrpE) and a GATase1 

(TrpG) domain, the heterotetrameric AS is the only enzyme class that has been 

structurally characterized. Therefore, the overall structure of PhzE (closed form) has 

been compared with three different AS whose structure has been reported.  
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Figure 4.14: Quaternary structure comparison of PhzE with heterotetrameric TrpE/G 
anthranilate synthases (AS). (A) PhzE from Burkholderia lata 383. (B) AS from Serratia 
marcescens. (C) AS from Sulfolobus solfataricus. (D) AS from Salmonella typhimurium. 
All structures were superposed with the “yellow” MST domain of PhzE.  

The MST (TrpE) domains (subunits) from chain A of all four structures are 

superposed (Figure 4.14). This shows that the relative position of the MST/GATase1 

functional pair in PhzE is similar to that of heterotetrameric TrpE/G AS. In the case of 

AS from Serratia marcescens (PDB ID: 1I7Q) (Spraggon et al., 2001) and from 

Salmonella typhimurium (PDB ID: 1I1Q) (Morollo & Eck, 2001), the two functional 

dimers are held together through interactions of residues from both TrpE and TrpG 
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subunits, for AS from Sulfolobus solfataricus (PDB ID: 1QDL) (Knochel et al., 1999), the 

interaction exists only between TrpG subunits. Interestingly, PhzE clearly adopts a 

different quaternary structure to all three AS, where the functional MST/GATase1 pairs 

are held together only through the two MST domain interfaces. However, this finding 

itself doesn’t explain the functional diversity between PhzE and AS because the 

quaternary structures among AS are also different.  

4.2.4 The MST domain of PhzE 

4.2.4.1 Overall structure of the MST domain 

One hallmark of the MST domain is its distinguished tertiary fold where a large 

orthogonal β-sandwich structure is formed in the center of the domain, covered by α-

helices on the surface (Figure 4.15 A and B). Secondary structure elements (α1 – α9, 

β1 – β22) have been numbered starting from N-terminal of the protein (Figure 4.1). In 

both the open (Figure 4.15 A) and closed (Figure 4.15 B) conformation, the secondary 

structural elements of the MST domain are well conserved. However, in the open form, 

B-Factor value of residues located on α5, α9, β14, β15, β16, as well as in loop regions 

extended from both termini of α5, are significantly higher than those in the closed form 

(Figure 4.15 C and D), indicating that these residues may be involved in the open-form 

to closed-form movement of PhzE. Indeed, such a movement is confirmed when the 

open-form and the closed-form structures are compared. It is also proved that the 

movement is induced by ligand binding of the MST domain (see chapter 4.2.7).  
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Figure 4.15: Structure of the MST domain of PhzE. (A) Cartoon representation of open 
MST, colored by secondary structural elements. Helices are colored in red, strands are in 
yellow. (B) Cartoon representation of closed MST. Bound ligands were colored by 
elements. Secondary structures are colored in the same way as in A. (C) Cartoon 
representation of open MST showing Cα B-Factor. (D) Cartoon representation of closed 
MST showing Cα B-Factor. Bound ligands were colored by elements.  

 

4.2.4.2 Structural comparison of the MST to its homolgues 

A search with the DALI server (Holm & Rosenstrom, 2010) identifies proteins 

(subunits) that share similar fold with the MST domain of PhzE. One protein from each 
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sub-family of MST enzymes is listed in Table 4.7. Comparison of the overall structure 

between the MST domain of PhzE and other MST enzymes is shown in Figure 4.16. 

PDB ID/Chain ID RMSD Sequence identity (%) Description 

1QDL/A 2.8 19 Anthranilate Synthase (AS) 

3HWO/A 2.9 19 
Isochorismate Synthase 

(ICS) 

2FN0/A 2.5 19 Salicylate Synthase (SS) 

3H9M/A 2.5 15 
Para-aminobenzoate (PAB) 

Synthase 

1K0E/B 2.7 18 
Aminodeoxychorismate 

(ADC) Synthase 

Table 4.7: Structural comparison of MST enzymes to MST domain of PhzE. Only one 
protein from each sub-family is listed here. 

Although the MST domain has a low overall sequence identity to its homologues (< 

20%), the tertiary structure of related enzymes is well conserved. Interestingly, it is 

found that PAB synthase and ADC synthase, two enzymes from the folate biosynthesis 

pathway, possess similar sequence identity and tertiary structure to those of the MST 

enzymes. These two enzymes are both two component enzymes that utilize one subunit 

to generate NH3 and perform nucleophilic attack at C4 position of the chorismate ring at 

the other subunit (MST subunit), with or without concominant cleavage of the pyruvate. 

Since the functional and structural relationships between these two enzymes are 

surprisingly similar to that of the other two pairs of enzymes in the family (AS/ADICS 

and SS/ICS), it is suggested that the previously described MST enzyme family should 

be extended to include PAB synthase and ADC synthase.  
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Figure 4.16: Structural comparison of MST domain from PhzE and other MST enzymes. 
Ligands are colored by element and shown as sphere and stick. Model alignment and 
figure preparation were both done with Pymol. The enzymes are described in Table 4.7. 

 

4.2.4.3 Active center of MST domain 

Although the ligand-bound closed conformation of PhzE was crystallized in the 

presence of chorismic acid, neither the substrate chorismic acid nor the product ADIC 

were observed in the structure. Instead, benzoate and pyruvic acid were found in the 

active center of MST domain (Figure 4.17 A and B). The omit electron density shows 

clearly that the carbonyl oxygen atom of pyruvate is 3 Å away from C3 of benzoate, 

indicating that the C-C bond is broken (Figure 4.17 B). The same phenomenon was 

reported also in the ligand-bound crystal structure of AS from Serratia marcescens 
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(PDB entry 1I7Q) (Spraggon et al., 2001), in which benzoate and pyruvic acid sit in 

almost the same position as in the closed PhzE structure.  

 
Figure 4.17: Details of the active site of MST domain. (A) Active site of the MST domain. 
Residues that make hydrogen bonds with pyruvate (PYR) or benzoate (BEZ) are shown in 
ball-and-stick representation. Mg2+ is shown in cyan. The position of important moving 
residues in the open form is shown in black.  (B) Superposition of benzoate and pyruvate 
to isochorismate (IC, black) at the active center of MST domain. The omit electron density 
of benzoate and pyruvate is displayed at 3.5 σ. Isochorismate-coordinates are extracted 
from PDB entry 3WHO. (C) Residues and molecules involved in Mg2+ coordination. 
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Although benzoate and pyruvate trapped at the active center are not natural ligands 

of the enzyme, structural alignment of PhzE to a recently published structure of 

isochorismate synthase EntC (PDB entry 3HWO) showed that the position and 

interaction of benzoate and pyruvic acid are very similar to those of isochorismate in the 

EntC structure (Sridharan et al., 2010) (Figure 4.17 B), indicating that the benzoate and 

pyruvate ligands can serve as a good template for investigating enzyme/substrate 

interaction. 

In the closed-form structure, R352 adopts a different rotamer conformation 

compared to that in the open-form structure in order to bind pyruvate. H279 also moves 

nearly 4 Å with respect to the open form to interact with and stabilize the new rotamer of 

R352. Pyruvate also makes hydrogen bonds with Y328 as well as with a water molecule 

close by (Figure 4.17 A). The carboxylate group of benzoate is involved in hydrogen 

bonds with a number of residues near by, including the amide bonds between S217 and 

G218, S368 and T369 and the side chains of S217, T219 and K386. It also occupies 

two of the octahedral coordination positions of the Mg2+ cation which was found at the 

active center. Other residues/molecules involved in coordination of Mg2+ including E244, 

E382 and two water molecules, which are held in position through hydrogen bonds with 

E241 and E379, respectively (Figure 4.17 C). Protonation of the leaving hydroxyl group 

at C4 of chorismic acid is achieved by the side chain of E201, the importance of this 

residue is indicated by the fact that E201Q was inactive (Table 4.10). The nucleophilic 

attack by ammonia at C2 is possibly base assisted. The carbonyl groups of I216 and 

T304, together with side chains of S217 and T369, are well positioned to act as 

hydrogen bond acceptors aiding the deprotonation of NH3. Given the information 

provided, the mechanism of ADIC generation in the MST active center is proposed 

(Figure 4.18).  
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Figure 4.18: Proposed mechanism for the generation of ADIC in the active site of the MST 
domain. The identity of the base B required for deprotonation of the NH3 nucleophile is 
unclear. 

The structures of PhzE alone do not provide enough information why benzoate and 

pyruvate but not chorismate or ADIC were observed in the active site of closed MST. 

However, since neither benzoate nor pyruvate were present in the buffer used for 

purification or crystallization, and because the closed form PhzE crystals only grows if 

the enzyme was incubated with all its substrates (chorismate, L-glutamine and Mg2+) for 

at least 1 hour prior to the crystallization trials, it is believed that the presence of 

benzoate and pyruvate is the result of the breakdown of its product ADIC. This 

speculation is also backed up by the fact that it was impossible to crystallize either the 

native enzyme with exogenous benzoate and pyruvate or any of the inactive mutants in 

the closed conformation. ADIC is a relatively unstable compound with a half-life of 34 

hours in Tris buffer at pH 8.0 and 22 ºC (Morollo & Bauerle, 1993), which is similar to 

the time scale of crystallization. It is therefore likely that the breakdown of ADIC occurs 

in the active site. This hypothesis is also supported by observations of the breakdown of 

IC via a sigmatropic rearrangements resulting in the elimination of pyruvate (DeClue et 

al., 2005) (Zwahlen et al., 2007). In this reaction, the enzyme is believed to play a role in 

orienting the methylene group of the enolpyruvyl moiety towards the C2 hydrogen atom 

of IC, facilitating the transfer of the C2 hydrogen to C9 of the pyruvyl moeity and the 

simultaneous cleavage of the C–O bond. Based on this, a pericyclic pyruvate 
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elimination mechanism for ADIC was proposed (DeClue et al., 2005) (Figure 4.19). The 

generation of benzoate in this case requires reduction. It is unknown if the reducing 

agent (β-mercaptoethanol) in the crystallization condition is the cause of the reduction. 

In addition, X-ray radiation damage might be another possible explanation for ADIC 

breakdown. 

 
Figure 4.19: pericyclic pyvuvate elimination mechanism in AS. 

 

4.2.5 GATase1 domain of PhzE 

4.2.5.1 Overall structure of GATase1 domain 

The GATase1 domain of PhzE belongs to the family of class I GATases, one of the 

two classes of typical glutamine amidotransferases which use histidine and glutamate 

residues for the activation of the cysteine thiol group. Due to the catalytic triad (H, E and 

C), the class I GATases are also called triad GATases (Mouilleron & Golinelli-

Pimpaneau, 2007). Similar to other class I GATases, the GATase1 domain of PhzE 

shares a common open α/β structure fold (Figure 4.20 A and B). Superimposition of the 

PhzE GATase1 domain in its open and closed forms reveals that only small structural 

changes (backbone RMSD = 0.595 Å) accompany ligand binding. The active site is 

located close to the surface and is solvent accessible in the open structure, but it 

becomes covered through interactions with the MST domain upon a ligand-induced rigid 

body movement (Figure 4.27).  

4.2.5.2 Structural comparison of the GATase1 domains (subunits/enzymes) 

The coordinates of the GATase1 domain from chain B of the ligand-bound closed 

PhzE (residue A440 – K636) were submitted to the DALI server (Holm & Rosenstrom, 

2010) and the search results indicated that it is most similar to the TrpG subunit of AS, 
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which is one of the best studied type 1 glutamine amidotransferase (also known as 

TrpG-type). The GATase1 domain of PhzE and TrpG subunits of AS share exactly the 

same glutamine hydrolyzing residues despite their poor sequence identity (Table 4.8). A 

comparison of the structures of GATase1 and TrpGs is shown in Figure 4.21. 

PDB ID/Chain ID RMSD Sequence identity (%) Description 

1I7Q/D 2.0 26 Anthranilate Synthase 

1QDL/B 2.4 25 Anthranilate Synthase 

1I1Q/B 2.2 29 Anthranilate Synthase 

Table 4.8: Structural comparison of TrpG subunit from AS to the GATase1 domain of 
PhzE.  
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Figure 4.20: Overall structure of the GATase1 domain. (A) Cartoon representation of 
GATase1 in the open form, colored by secondary structural elements. Helices are 
colored in red, strands are in yellow. (B) Cartoon representation of closed GATase1. 
Bound ligands were colored by elements. Secondary structures are colored in the same 
way as in A.  (C) Cartoon representation of open GATase1 showing Cα B-Factor. (D) 
Cartoon representation of closed GATase1 showing Cα B-Factor. Bound ligands were 
colored by elements.  
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Figure 4.21: Structural comparison of GATase1 domain from PhzE and TrpG. Ligands are 
colored by element and are shown as balle and stick. Model alignment and figure 
preparation were both done with Pymol. 

 

4.2.5.3 Active center of the GATase1 domain 

In the active center of closed form GATase1, the catalytic C526 is covalently 

modified by a glutamyl moiety, which is in polar contacts with the side chain of Q530 

and Q548, as well as with the backbone amides of G493, T568 and Y569 and the 
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backbone carbonyl group of G495 (Figure 4.22 A). It is believed that the liganded active 

center observed represents an intermediate state of the glutaminase catalytic cycle, 

while the ammonia has already been released from glutamine and the C526 is still 

covalently modified (Figure 4.22 B).  

 
Figure 4.22: Details of active center of the GATase1 domain of PhzE. (A) Covalent 
modification of C526 and coordinations of the glutamyl moiety. (B) |FOFC| difference 
electron density of covalently bound glutamyl moiety at 2 σ. 

Interestingly, in the data set with highest resolution (2.1 Å) collected for the closed 

form crystal in this study, additional electron density including anomalous diffraction in 

the vicinity near C526, H611 and the backbone carbonyl group of W566 was observed. 

The electron density could be removed by treating PhzE with EDTA prior to 

crystallization. According to its tetrahedral coordination and evidence revealed by x-ray 

fluorescence experiment, the anomalous density was identified as Zn2+ cations (Figure 

4.23 A). However, Zn2+ has not been intentionally introduced during the entire 

experiments from protein preparation to crystallization. One of the conceivable sources 

of Zn2+ could be the NiSO4 used during the first step of protein purification, however, 

this chemical contains only less than 0.002% zinc as impurity, giving an overall Zn2+ 

concentration less than 2 µM in the solution used to charge the Ni-NTA column. This 

concentration is much lower than the cytosolic concentration of Zn2+ in E. coli, which is 

in the millimolar range, but cytosolic zinc almost all bind to zinc-binding proteins. 
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Therefore, the origin of the bound Zn2+ remains unveiled in this study. Therefore, it is 

conceivable that PhzE may have to compete with other zinc binders in the cells in order 

to acquire Zn2+ as observed in the crystal structure here. It is indeed confirmed that 

PhzE is inhibited by divalent cations including Zn2+, Mn2+ and Ni2+ (Figure 4.33), which 

contributes to the argument that on top of transcriptional regulation by quorum sensing, 

divalent transitional cations may add a second layer in the overall control of phenazine 

biosynthesis.  

 
Figure 4.23: Zn2+ at the active center of GATase1 domain. (A) Tetrahedrally coordinated 
Zn2+ (grey sphere) at the GATase1 active center. Anomalous difference electron density 
of data collected at 12.4 keV at 5σ is displayed as a grey mesh. (B) X-ray fluorescence 
spectrum of a PhzE crystal in the closed conformation at the zinc K-edge. The protein 
has not been treated with EDTA prior to crystallization. 

Because the zinc-free and zinc-bound structures of closed PhzE are identical 

except for the Zn2+, the discussion in this study is based on the higher resolution Zn2+ 

containing data.  

4.2.6 The linker region 

The linker comprises 46 amino acids between P396 and E441, part of which is 

glycine and proline-rich but contains also helical secondary structures. Due to the high 

flexibility, the linker was not completely traceable. In the open form, G429 – L439 in 

chain A and E433 – L439 in chain B are missing, whereas in the closed form, Q432 – 

L439 are missing in both chains. The linker spans over a distance of 60 Å in order to 

connect the MST and GATase1 domains. Structure comparison of open and closed 



RESULTS AND DISCUSSION 

 
 

95 

linker shows that the backbone conformation from P396 to R414 differs most strongly 

(Figure 4.24). It is believed that the flexible linker plays important roles in assisting the 

large structural changes between the two crystal forms of PhzE, which will be discussed 

below (see chapter 4.2.7). 

 
Figure 4.24: The linker region. The cartoon colored in magenta is the linker from open 
PhzE chain A, in cyan is from closed PhzE chain A. Dashed lines indicate the flexible part 
of the linker that is untraceable (G429 – L439 in case for open conformation and Q432 – 
L439 for closed form). Note that the loop region starting with P396 near N-terminal part 
shows the largest structural difference between two structure forms. The numbering of 
α-helix is according to figure 4.1.  

 

4.2.7 Ligand-induced structural changes of PhzE 

The two crystal structures of PhzE in its ligand-free open form and its ligand-bound 

closed form provide insight into the ligand-induced conformational changes that 

accompany the enzyme’s catalytic cycle. 

Concerning substrate binding, it is believed that Mg2+ and chorismic acid bind first, 

enabling the GATase1 domain to capture glutamine since neither glutamine nor Mg2+ 

was observed in the open form structure despite being present in the crystallization 

solution and chorismic acid alone did not show any affinity towards PhzE in ITC 
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experiments unless Mg2+ was present (see chapter 4.3.1). This is an indication that the 

large structure changes are mainly induced by Mg2+ and chorismic acid binding. 

In open form PhzE, the repulsion between negatively charged helix α9 (E379 and 

E382) and highly acidic stretch D238 to E244 stabilizes the domain structure as shown 

by electrostatic surface around the entry of the active site calculated with APBS (Figure 

4.25 A) (Baker et al., 2001). Binding of Mg2+ and chorismic acid is believed to trigger the 

structural changes, and the octahedral coordination sphere of Mg2+ involves a bidentate 

interaction with the carboxylate group of benzoate, as well as the side chains of E244 

and E382, and two water molecules that are held in position by E241 and E379. With 

respect to the open structure, these acidic residues approach each other, leading to a 

clamp-closing like movement of α9 on one side and a large structural element from 

P215 to L249 on the other side (Figure 4.25 B). Of these amino acids, D238 – E241 

also change their backbone conformation from coil to α-helical, which is the most 

significant structural rearrangement within MST domain. This movement is likely to 

further stabilize the closed form conformation and is also observed in AS (PDB entries 

1I7S and 1I7Q) (Spraggon et al., 2001) and IS (PDB entries 3BZM and 3HWO) 

(Parsons et al., 2008) (Sridharan et al. 2010) to a lesser extent. It is thus conceivable 

that neutralization of the negative charges in the active site by binding of Mg2+ partially 

explains the requirement for Mg2+ of MST enzymes. In addition, the conserved K240, 

which is pointing outward in the open structure, reorients towards the active center in 

corresponding to the glutamic acids and interacts with the side chains of E241, E244 

and E379, assisting in stabilizing the clamp in the closed conformation (Figure 4.25). 



RESULTS AND DISCUSSION 

 
 

97 

 
Figure 4.25: Positioning of acid residues near the active center of MST domain. (A) Acidic 
residues and electrostatic surface around the entry to the active site of MST domain in 
the open form. (B) Interaction between ligands and surrounding acidic residues in the 
active center of closed MST domain. 

As one jaw of the clamp, P215 – L249 contains a strand β14 from one of the β-

sheets and therefore pulls the two strands (V266 – I284) β15 and β16 and residues 

A393 – G419 from the linker together with it. Anchoring of P215 – L249 also involves 

polar interactions between the carboxylate group of benzoate and the backbone amide 

between S217 and G218, leading to a peptide flip in comparing to the open 

conformation (Figure 4.26). The arrangement of these structural elements (P215 – L249 

and V266 – I284) in the closed form is incompatible with the open form. In the open 

form the more compressed MST/MST interface would lead to a steric conflict to the 

R211 – P227 from the second chain. When the open and closed structures are 

superposed by one MST domain from the same chain, there is an approx. 50º rotation 

between the two MST/GATase1 functional units (Figure 4.27 A). However, these large 

structural rearrangements are almost completely compensated though backbone 

changes of linker residues D395 – R414 within the functional units, allowing much less 

changes in the functional MST/GATase1 dimer interface with respect to the MST/MST 

reorientation. 
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Figure 4.26: Ligand binding induces structural changes in PhzE. (A) Stereo-plot of the 
clamp-like closing of the MST active site upon ligand binding. Closed form structural 
elements are shown in yellow, their position in the open form is shown as black ribbons. 
Residues from the linker of the other monomer are colored in magenta. Black arrows 
indicate the directions of structural movements. (B) Stereo-plot showing the formation of 
new hydrogen bonds in the MST/GATase1 interfaces of the ligand-bound structure. 
Secondary structural elements are numbered according to Figure 4.1. 

The GATase1 domain seems to undergo a rigid body respositioning that is triggered 

by the refolding within D238 – E241, where the side chain of D243 shifts from its 

position in the open form outwards to form hydrogen bonds with R372 and H373. As a 
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consequence, R372 and H373 reorient to interact with the backbone carbonyl group of 

Q548 and G549 (Figure 4.26 B), which might be sufficient to rotate the GATase1 for 8º 

to generate a 8 Å movement of positions at outer edge of the domain. Furthermore, as 

comparison to the solvent exposed GATase1 active site in the open form, a 5 Å shift of 

the loop G491 – D501 is believed to shield the active center from the solvent in the 

closed form (Figure 4.27 B). 

 
Figure 4.27: Comparison of the open (black lines) and closed structure (cartoons). 
Structures are superposed by the MST domain from chain A. (A) Overall structure 
comparison, showing the 8 Å movement of outer edge of GATase1 domain from chain A 
and the 50º rotation between two MST/GATase1 functional units. (B) Sheltering of the 
GATase1 active site. A 5 Å movement of the loop G491 – D501 is indicated by black arrow. 
Covalently modified C526 is shown in ball and stick presentation and colored by element. 
The open PhzE structure is shown in black lines and the closed PhzE is colored in red 
(GATase1 domain) and magenta (MST domain). 

Another observation concerns the change of MST/MST interface when the ligand-

free and ligand-bound structures are compared. Interestingly, the SAXS measurements 

confirmed that the ligand-bound crystal structure fits the SAXS envelope much better 

than the ligand-free structure does, even if the measurements were performed in the 

absence of ligands (Figure 4.13). Therefore, the relatively larger area buried by 

MST/MST interface in the ligand-free open structure (471 Å2 per monomer) seems to be 

an artefact caused by crystal packing forces. It is conceivable since in the ligand-bound 

closed structure, only 219 Å2 of solvent-accessible surface area is buried by the 

MST/MST interface per monomer, and given the very weak interaction between the two 
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MST domains, it seems not surprising that the relative position of the two 

MST/GATase1 functional units in the open structure is possibly a distortion induced by 

crystal packing. In addition, the MST/MST interactions in the open-form structure 

involve residues R221 – P227, which undergo ligand-induced movements such that the 

larger interface area in the ligand-free structure can not be retained in the ligand-bound 

structure.  

4.2.8 The ammonia transporting channel 

Since the ammonia required for ADIC formation at MST active center is generated 

at the GATase1 active site, an ammonia transporting mechanism is required to 

establish an internal pathway for two important reasons. Firstly, it makes sure that the 

toxic free ammonia can be directly passed through without being released to the 

environment. Secondly, since the local concentration of free ammonia in the solvent 

would be too low for the ADIC synthase reaction, an internal ammonia channel 

guarantees that enough ammonia is transported to the MST active center. Indeed, 

analysis with CAVER (Petrek et al., 2006) reveals two parts of an internal ammonia 

channel that connect the active centers of the MST and GATase1 domain in the closed 

structure of PhzE. This channel is interrupted by the side chain of E251, which forms 

two hydrogen bonds with N149 (Figure 4.28 A). In open PhzE, E251 adopts a different 

rotamer to interact with the side chain of K254, and the required space for this rotamer 

is still available in the closed conformation (Figure 4.28 B). This implies that E251 acts 

as a gatekeeper of the ammonia channel between the two active centers. Therefore, the 

closed conformation likely represents a late state of the catalytic cycle in which NH3 has 

already been transported through the channel to the chorismate binding site. The 

ammonia channel is approx. 25 Å long, starting from sulfur of the glutamylcysteine and 

ends at C2 of the si-face of the chorismate, establishing a stereoselective modification 

to generate ADIC. The nucleophilic attack at C2 is probably assisted by the back bone 

carbonyl group of I216 and T304 as well as the side chain of S217 and T369, which are 

all in position acting as hydrogen bond acceptors, facilitating the deprotonation of NH3. 

Protonation of the leaving hydroxyl group at C4 of chorismate is achieved by E201. It is 



RESULTS AND DISCUSSION 

 
 

101 

proved by biochemical studies that mutation of either E201 or the gate residue E251 

leads to an inactive enzyme (Table 4.10). 

 
Figure 4.28: The ammonia transporting channel. (A) Two parts of the ammonia channel 
between the active centers of MST domain and GATase1 of the second chain, which is 
blocked by E251 in the closed form. (B) The full ammonia channel. Note that E251 likely 
acts as a gatekeeper and adopts its rotamer in the open structure, interacting with K254. 
The arrow indicates the trajectory of NH3 to the si-face of C2 of chorismate.  

 

4.3 Functional analysis of PhzE 

4.3.1 ITC measurement of chorismate-PhzE binding 

ITC experiments were performed to investigate the binding of chorismate to PhzE. 

The results show that in the absence of Mg2+, the binding between chorismate and 

PhzE was almost undetectable (Figure 4.29 A). However, when Mg2+ was supplied to 

protein and ligand solution prior to the measurement, it was possible to measure the 

binding affinity between chorismate and PhzE (K = 2.0 × 105 M-1 and Kd = 5 µM) (Figure 

4.28 B), indicating that binding of chorismate to PhzE requires the presence of Mg2+. 

Interestingly, the binding process is endothermic (entropy-driven), which means that the 

binding process needs to absorb heat from the environment. It is also an indication for 
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the structural changes that accompany the binding process. The stoichiometry shows 

that one PhzE homo dimer binds to two chorismate (N = 0.915). 

 
Figure 4.29: ITC titration experiment of chorismate (A) without Mg2+ and (B) with Mg2+.  

 

4.3.2 Analysis of PhzE activity 

The activity of PhzE was first assayed by a UV wavelength scan. Dynamic changes 

in the UV absorption spectra of the reaction mixture were recorded, indicating the 

accumulation of a new molecular species with an extinction coefficient greater than that 

of chorismate, this product has been proposed as ADIC in previous report (Morollo & 

Bauerle, 1993) (Figure 4.30 A). The absorbance of the reaction solution reached a 

maximum level after 20-30 minutes, indicating the accumulation of the new molecules 

reached a steady-state level. It also shows that both chorismate and the new molecule 

have a significant absorbance at 280 nm. Control experiments show that chorismate, 

glutamine, Mg2+ and PhzE are all necessary for the appearance of the new compound. 
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Figure 4.30: Characterization of PhzE reaction and product. (A) UV spectra of PhzE 
catalyzed reaction. Buildup of product was monitored by increasing of absorption at 280 
nm. (B) HPLC chromatogram of of reaction mixture prior to the addition of PhzE (―) and 
10 min after addition of PhzE (- -). (C) HPLC chromatogram of PhzE/D reaction. PhzD was 
added to PhzE reaction solution 10 min after reaction started. Conversion of ADIC to 
DHHA was observed. (D) ESI-MS spectrum of purified ADIC. 

HPLC fractionation of the reaction mixture revealed that the product of PhzE 

reaction was eluted earlier than chorismate. The retention time of the product was 

around 12.4 minutes comparing to 13.5 minutes for the substrate chorismate (Figure 

4.30 B). In addition, a coupled enzymatic assay showed that the product can be further 

converted to DHHA by PhzD, an isochorismatase that catalyzes the step following PhzE 

in the phenazine biosynthesis pathway (Figure 4.30 C). The molecular mass of PhzE’s 

product was confirmed to be 226.13 Da (M+H+), indicating the product is ADIC (Mw = 
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225 Da) (Figure 4.30 D). Furthermore, it was possible to visualize ADIC at 1.9 Å 

resolution in the crystal structure of an inactive D38A mutant of PhzD (Figure 4.43). 

These evidences together prove that PhzE is an ADIC synthase. 

To further investigate the reaction condition for PhzE, the pH and Mg2+ dependency 

of the enzyme were tested (Figure 4.31). Results indicated that under the condition of 

the activity assay (final concentration of PhzE ≈ 100 nM), PhzE is most active at pH 7.0 

and with Mg2+ concentration of 1 mM. At the pH below neutral, PhzE is almost 

completely inactive. 

 
Figure 4.31: pH and Mg2+ dependence of the PhzE reaction. (A). pH optimization of PhzE 
reaction. (B) Optimization of mg2+ concentration in PhzE reaction.  
 

4.3.3 Determination of the extinction coefficient value of ADIC 

Due to the instability of ADIC in solution (half-life ≈34 hr at 22 ºC), the reported 

extinction coefficient values of ADIC vary from ε = 11,500 M-1.cm-1 for enzymatically 

produced ADIC (Morollo & Bauerle, 1993) to ε = 5,900 M-1.cm-1 for chemical synthetic 

products (Policastro et al., 1984). Therefore, in order to obtain a more accurate ε value 

of ADIC for the kinetic measurement, a quatitative HPLC experiment to determine ε280 

of ADIC was designed. The calculated extinction coefficient value of ADIC is ε = 11,490 

M-1·cm-1. This value was used for kinetic experiments and quantitative analysis of ADIC 

throughout this study. Experimental details are described in chapter 3.6.4. 
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4.3.4 Kinetic characterization of PhzE 

Kinetic parameters of PhzE were determined and compared with the values 

reported for other MST enzymes. Since it was indicated by the crystal structures that 

PhzE was partially contaminated with Zn2+ during the purification steps, kinetic 

measurements for both Zn2+ -bound and Zn2+ -free PhzE were therefore performed 

(Figure 4.32).  

 
Figure 4.32: Michaelis-Menten kinetic curve of PhzE. Red curve corresponds to Zn2+-free 
PhzE, while black curve indicates Zn2+-bound PhzE. 

After treatment with EDTA to remove bound Zn2+, kinetic parameters for chorismate 

were Km = 2.5 ± 0.5 µM and kcat = 0.3 ± 0.01 s-1. The Km value was similar to that of Zn2+ 

contaminated PhzE, while the kcat value was almost 3 times larger than that of Zn2+-

bound enzyme, indicating that the contaminating Zn2+ reduced the enzyme activity. The 

Michaelis-Menten constant Km and the catalytic efficiency of PhzE is similar to most of 

the related enzymes, however it has a relatively slow turnover comparing to AS 

(TrpE/G). Kinetic parameters of PhzE and related enzymes are summarized in Table 

4.9.  
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Enzyme Km (µM) kcat (s
-1) kcat /Km (M

-1s-1) Description 

PhzE 
2.4 ± 
0.51 

0.3 ± 
0.01 

1.0 × 105 Metal-free 

PhzE 
(untreated) 

3.0 ± 
0.48 

0.1 ± 
0.01 

4.3 × 104 Zn2+ -bound 

TrpE/G 4.0 9.3 2.3 × 106 AS from S.typhimurium 

Irp9 4.2 0.13 3.2 × 104 SS from Y.enterocolitica 

EntC 7 ± 0.8 0.62 8.8 × 104 
IS from E.coli involved in enterobactin 

biosynthesis 

MenF 192 ± 7 
3.6 ± 
0.08 

1.9 × 104 
IS from E.coli involved in menaquinone 

biosynthesis 

Table 4.9: Kinetic parameters of PhzE and related enzymes with respect to chorismate. 
Values for related enzymes (TrpE/G, Irp9, entC & MenF) have been taken from the 
literature. 

 

4.3.5 Regulation of PhzE activity 

Since the Zn2+-bound PhzE showed reduced activity comparing to Zn2+-free protein, 

the influence of divalent transition metal cations to PhzE was therefore examined. 

Indeed, Zn2+, Mn2+ and Ni2+ were confirmed to be able to inhibit PhzE (Figure 4.33). 

This result is an indication that on top of the transcriptional regulation by quorum 

sensing, divalent transition cations might add another layer to the overall control of 

phenazine biosynthesis. 
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Figure 4.33: Preliminary Inhibition test of divalent transition cations to PhzE. 

In AS from S. marcescens, the enzyme is feedback inhibited by L-tryptophan, the 

major downstream product of anthranilate in primary metabolism (Spraggon et al., 

2001). Whether PhzE is also feeback inhibited by L-tryptophan or by the intermediate 

(DHHA) / product (PCA) of the phz-operon was investigated. However, in case of L-

tryptophan and DHHA, no inhibition was observed (Figure 4.34 A and B), while only 

very high concentration (2 mM) of PCA showed partial inhibition to PhzE (Figure 4.34 C). 

This might be a consequence of the structural difference between PhzE and AS, where 

the allosteric L-tryptophan binding site in AS is blocked in PhzE by the side chains of 

R26 and W184, due to variations at the N-terminus and an insertion near β10 (Figure 

4.34 D) 
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Figure 4.34: Allosteric inhibition of PhzE. (A) Inhibition test of PhzE by L-tryptophan. (B) 
Inhibition test of PhzE by DHHA. (C) Inhibition test of PhzE by PCA. (D) The allosteric 
tryptophan binding pocket of AS from S. marcescens (PDB entry 1I7Q/1I7S) is blocked by 
R26 and W184 in PhzE. Surface and tryptophan coordinates (black) are from PDB entry 
1I7S. 

 

4.3.6 Mutagenesis studies of PhzE 

AS synthesizes ADIC from chorismate and subsequently lyses it to anthranilate and 

pyruvate in the active center of the enzyme, while PhzE releases ADIC as its end 

product. The reason for this catalytical difference of these two enzymes remains unclear. 

Structural comparison between PhzE and AS indentifies residues that could possibly 

convert PhzE into an AS. Three residues S217, S368 and T369 in the first coordination 

sphere of chorismic acid in which PhzE differs from AS were mutated to alanine, alanine 

and glycine, respectively. While S368A was expressed in inclusion bodies from E.coli, 
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S217A and T369G retained lower levels of ADIC synthase activity and S368A/T369G 

double mutant together with S217A/S368A/T369G triple mutant were completely 

inactive. However, these mutations have not converted PhzE into AS since neither the 

consumption of substrate chorismate nor production of anthranilate was observed, 

indicating the fate of ADIC in these enzymes are possibly determined by more subtle 

mechanisms. Interestingly, previous studies on AS from S. enterica showed that the 

mutation of H398 to methionine almost completely abolished the ADIC lyase activity of 

the enzyme, resulting in the conversion of AS to ADIC synthase (Morollo & Bauerle, 

1993). However, the histidine is also conserved in PhzE as H279 (Figure 4.17 A), 

showing that this residue alone cannot be the determining factor for the catalytic 

difference between PhzE and AS. 

Other residues, including the catalytic residue E201, the gate keeper residue for the 

ammonia channel E251 and the four glutamic acid that are involved in Mg2+ 

coordination E241, E244, E379 and E382, were also mutated separately to investigate 

their roles in PhzE activity. Since E201 is crucial for the protonation of C4 hydroxyl 

group of chorismate, E201Q was inactive as expected. Mutants E251Q and E251A 

were also both inactive, due to the fact that the disruption of hydrogen bonds of E251 

with N149 and K254 probably destroyed the integrity of the ammonia transporting 

channel. Of the four glutamic acids involved in Mg2+ coordination, E244 and E379 are 

absolutely required for enzyme activity, while E241A and E382A retained lower activity 

comparing to native PhzE. 

Experimental statistics of PhzE and PhzE mutants are summarized in Table 4.10. 
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Enzyme Km (µM) kcat (s
-1) kcat /Km (M

-1s-1) Description 

PhzE 2.4 ± 0.51 0.3 ± 0.01 1.0 × 105 Metal-free 

PhzE (untreated) 3.0 ± 0.48 0.1 ± 0.01 4.3 × 104 Zn2+ -bound 

E201Q n.d. n.d. n.d. Catalytic residue 

S217A 4.0 ± 1.0 0.11 ± 0.008 2.8 × 104 mutation 
according to AS 

E241A 2.3 ± 0.5 0.03 ± 0.002 1.5 × 104 Involved in Mg2+ 
coordination 

E244A n.d. n.d. n.d. Involved in Mg2+ 
coordination 

E251Q n.d. n.d. n.d. Gate-keeping 
residue of the 
ammonia channel E251A n.d. n.d. n.d. 

S368A n.d. n.d. n.d. Insoluble protein 

S368A/T369G n.d. n.d. n.d. Double-mutation 
according to AS 

S217A/S368A/T369G n.d. n.d. n.d. Triple-mutation 
according to AS 

T369G 3.5 ± 1.9 0.01 ± 0.002 3.7 × 103 mutation 
according to AS 

E379A n.d. n.d. n.d. Involved in Mg2+ 
coordination 

E382A 1.7 ± 0.6 0.02 ± 0.002 1.3 × 104 Involved in Mg2+ 
coordination 

Table 4.10: Kinetic parameters of PhzE and Phze mutants with respect to chorismate.  
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Part II: Structural studies of PhzD 
In this part, the crystal structure of PhzD and PhzD mutant D38A from P. 

fluorescens are discussed. Since no ADIC was observed in the crystal structure of PhzE 

and because PhzD catalyzes the step next to PhzE in phenazine biosynthesis pathway, 

converting ADIC to DHHA, the main purpose of studying PhzD was to prove that ADIC 

is indeed the product of PhzE by crystallographic soaking experiments.  

According to a previous report, the aspartic acid D38 of PhzD from P. aeruginosa 

acts as a general acid to protonate the substrate ADIC (Figure 4.35), and the mutation 

of aspartic acid to alanine results in completely lost enzyme activity (Parsons et al., 

2003). Therefore, the D38A mutant of PhzD from P. fluorescens 2-79 was prepared and 

crystallized as an inactive form of the enzyme and soaked with purified PhzE reaction 

product, in order to examine if ADIC could be observed in the active center of PhzD. 

 
Figure 4.35: Reaction mechanism of PhzD proposed by Parsons et al. (Parsons et al., 
2003). 
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4.4 Structural analysis of PhzD, PhzD-D38A and PhzD-D38N 

4.4.1 Sequence alignment of PhzD from different species 

Results from the Protparam online proteomics server (Gasteiger et al., 2005) 

revealed that PhzD P.fluorescens 2-79 has a molecular mass of 23074.3 Da and 

theoritical pI of 5.25. A Blast (National Center for Biotechnology Information web tool) 

search against the non-redundant protein sequence database indicated that the protein 

is highly conserved among phenazine producing bacterial species (Table 4.11), and a 

complete sequence alignment was performed between PhzD from P.fluorescens 2-79 

(this study) and PhzD from P. aeruginosa PAO1 (Parsons et al., 2003) with Clustal X 

(Larkin et al., 2007).  

Protein Origin 
Query 

coverage 
(%) 

Sequence identity 
(%) 

E value 

PhzD P. chlororaphis 100 93 3e-110 

PhzD P. aeruginosa 99 78 2e-93 

PhzD B. lata 383 99 61 4e-76 

Putative  DHHA synthase S. cinnamonensis 97 67 2e-75 

Table 4.11: Results from Blast search of PhzD from P.fluorescens 2-79 against the non-
redundant protein sequence database. 4 hits are listed according to their max scores 
(not shown). The E value describes the quality of the alignment, the lower the E value, 
the more significant the match is. 
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Figure 4.36: Structure-based sequence alignment between PhzD from P. fluorescens 2-79 
and PhzD from P. aeruginosa PAO1 (PDB entry 1NF9). Secondary structural elements are 
shown (on top and botton of the alignment). The figure was prepared using ESPript 2.2 
(Gouet et al., 2003). 

 

4.4.2 Crystallization and soaking experiments 

4.4.2.1 Crystallization of PhzD, PhzD-D38A and PhzD-D38N 

Crystals of native PhzD and the mutants were obtained from the condition 

indentified preciously, in which 1 µL + 1 µL hanging drops were equilibrated against a 

reservoir containing 0.1 M sodium cacodylate buffer pH 6.5, 0.2 M sodium acetate and 

25% (w/v) PEG 4000 at 20 ºC. Interestingly, Diffraction quality crystals were obtained in 

three different forms, with space group P43212, C2221 or P212121, respectively, under 

the same crystallization condition. 

Crystals with space group of P43212 have a tetragonal shape and grew to a full size 

of 0.4 × 0.2 × 0.2 mm in 1 day, whereas the cubic crystals with orthorhombic space 

groups C2221 or P212121 grew to a full size of 0.4 × 0.4 × 0.1 mm in about 3 days 

(Figure 4.37). The best crystal of native PhzD diffracted to approx. 1.9 Å while dataset 

was collected at 100 K in house on a Rigaku Micro-MAX-007 HF generator with a 

MAR345 image plate detector. 
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Figure 4.37: Crystals of PhzD and mutants. (A) Tetragonal crystal of PhzD (space group 
P43212). (B) Cubic crystals of PhzD (space group C2221 or P212121). (C) Crystals of PhzD-
D38A. (D) Crystals of PhzD-D38N. 

 

4.4.2.2 Production of ligand-free PhzD crystals 

The ligand-free crystals were obtained by a ‘kick-out’ experiment, where crystals 

from the original crystallization condition were transferred to a new drop containing 0.1 

M Bis-Tris pH 6.5, 20% (w/v) PEG 4000, 0.1 M NaCl and were incubated for 60 min. 

Data for apo-PhzD were collected to a resolution of 1.8 Å on an Rigaku Micro-MAX-007 

HF generator with a MAR345 image plate detector in house, and to 1.3 Å at the Swiss 

Light Source (SLS, Villigen, Switzerland) on beam line X10SA equipped with a MAR225 

CCD detector (PILATUS 6M pixel detector). 
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4.4.2.3 Soaking of PhzD and the mutants with ADIC 

To perform the soaking experiments, crystals were first prepared as apo-form as 

described above (see chapter 4.4.2.2). 1 mM ADIC was subsequently added into the 

drop and crystals were further incubated for 60 min.  Data for were collected in house 

on an Rigaku Micro-MAX-007 HF generator with a MAR345 image plate detector or at 

the Swiss Light Source (SLS, Villigen, Switzerland) on beam line X10SA equipped with 

a MAR225 CCD detector (PILATUS 6M pixel detector). 

4.4.3 Data collection statistics 

Except for the native PhzD data, which was collected in house, data for all other 

crystals were collected both in house and at the SLS. Full data collection statistics are 

summarized in Table 4.12. 

4.4.4 Structure determination and refinement statistics 

The structures of PhzD P. fluorescens and mutants were solved with PHASER 

(McCoy et al., 2007) using PhzD from P.aeruginosa (PDB entry 1NF9) as search model. 

The structure of native PhzD was refined to Rwork = 14.8% and Rfree = 18.7% with a 

Ramachandran plot (Figure 4.38 A) showing that 97.6% of all residues lie in the favorite 

region (2.4% in the allowed region). For native PhzD soaked with ADIC, the structure 

was refined to Rwork = 18.9% and Rfree = 22.2% with a Ramachandran plot (Figure 4.38 

B) showing that 96.0% of all residues lie in favorite region (2.0% in the allowed region). 

For ligand-free PhzD, the structure was refined to Rwork = 19.0% and Rfree = 21.0%. 

Ramachandran plot (Figure 4.38 C) indicated that 96.9% of all residues lie in the 

favorite region (3.1% in the allowed region). 

The model of PhzD-D38A soaked with ADIC was refined to Rwork = 15.1% and Rfree 

= 17.5% with a Ramachandran plot (Figure 4.38 D) showing that 96.0% of all residues 

lie in the favorite region (2.0% in the allowed region) and the structure of PhzD-D38N 

soaked with ADIC was finally refined to Rwork = 18.8% and Rfree = 23.3%. The 

Ramachandran plot (Figure 4.38 E) showed that 96.5% of all residues lie in the favorite 

region (1.5% in the allowed region). Complete refinement statistics are summarized in 

table 4.13. 
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Figure 4.38: Ramachandran plot showing torsion angels of peptide bonds of PhzD and 
mutant structures. (A) Native PhzD. (B) Native phzD soaked with ADIC. (C) Ligand-free 
native PhzD. (D) PhzD-D38A soaked with ADIC. (E) PhzD-D38N soaked with ADIC. All 
models except that of native PhzD were refined against datasets collected at SLS. Plots 
were generated by RAMPAGE from the CCP4 suite. 

 

4.4.5 Overall structure of PhzD 

The 23 kDa PhzD folds into a α/β single domain, with a six-strand parallel β-sheet 

lying in the central part of the structure, which is covered by four helices on both sides, 

a single long one (α2) on one side and three shorter ones (α6, α7 and α8) on the other. 

As identified by size-exclusion chromatography, PhzD is a dimer in solution. Except for 

the crystal form P212121, which contains a PhzD dimer formed by crystallographic 

symmetry operator in one asymmetric unit, in both of the crystal form P43212 and C2221 

only one molecule of PhzD was observed in the asymmetric unit. The two-fold dimer 

interface buries 1467 Å2 surface area of each of the monomers (16% of the overall 

surface area, calculated with the P212121 structure). 
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Figure 4.39: Overall structure of PhzD and mutants. (A) Native PhzD in complex with 
cacodylate (CAC) and acetate (ACT). (B) Ligand-free native PhzD. The flexible loop (P79 – 
R87) is shown as dashed line. (C) Native PhzD in complex with DHHA. (D) D38A in 
complex with ADIC. Black ribbon indicates the two-fold crystallographic symmetry mate 
that resembles the physiological dimer.  

All structures of PhzD and the mutants were superposed and compared to the 

native PhzD structure. The results showed that the overall structures of all PhzD and 

mutants are almost identical except for the ligand-free structure (table 4.14). Indeed, 

comparing to ligand-bound structures, electron density is missing for the loop region 

between P79 – R87 in the ligand-free model, indicating high flexibility of this region 

(Figure 4.39 B). Since the side chain of R87 is acting as a hydrogen bond donor and is 

absolutely required for ligand binding (see chapter 4.4.6.4), it is therefore believed that 

the loop P79 – R87 is acting as a gate sitting between the active center and solvent 

environment to control the entrance/exit of the ligand. 
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Structure Chain ID Overall RMSD (Å) 

Ligand-free PhzD A 0.872 

PhzD/ADIC A 0.318 

D38A/ADIC 
A 0.478 

B 0.473 

D38N/ADIC 
A 0.454 

B 0.452 

Table 4.14: RMSD of PhzD and mutants. Native PhzD was used as fixed model. Values 
were generated using SUPERPOSE in the CCP4 suite. 

 

4.4.6 Active center of PhzD 

In this section, the crystal structures of PhzD are discussed especially focusing on 

the details of its active site. Except for the structure of PhzD in complex with cacodylate 

and acetate, which was refined against in-house data, models for both the PhzD ligand-

free and the PhzD soaked with ADIC structures were refined against synchrotron data. 

4.4.6.1 PhzD in complex with cacodylate and acetate 

The crystallization conditions from which PhzD crystals were obtained contains 

cacodylate buffer and sodium acetate. Indeed, additional electron density was observed 

at the active center of native PhzD, which could be refined as cacodylate and acetate 

(Figure 4.40 A).  

At the active site, the carboxylate of acetate forms hydrogen bonds with the side 

chains of R87 and Q78, as well as with two water molecules, which are held in position 

by the side chain of Y42 and Q78. Cacodylate is in hydrogen bonding distance to the 

main chain amide of Y151 and the side chain of D38. In addition, a cis peptide bond is 

found between residues Y151 and A152, which has also been observed in related 

structures of pyrazinamidase from Pyrococcus horikoshii and PhzD from Pseudomonas 

aeruginosa (Du et al. 2001) (Parsons et al. 2003) (Figure 4.40 B). 
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Figure 4.40: Acetate and cacodylate bound to the active site of PhzD. (A) |FOFC| difference 
electron density of acetate and cacodylate is displayed at 2.0 σ. (B) Details of the active 
site. Residues that are making hydrogen bonds with acetate and cacodylate are shown in 
ball-and-strick presentation. 

 

4.4.6.2 Ligand-free PhzD 

The main purpose of crystallizing PhzD in this study focuses on the investigation of 

protein/substrate binding. Since PhzD catalyzes the step after PhzE in the phenazine 

biosynthesis pathway, converting ADIC to DHHA, experiments were designed to 

visualize ADIC/DHHA in the active center of PhzD by soaking the crystals with purified 

PhzE product (ADIC). However, since PhzD was crystallized with non-native substrates 

bound to its active site (see chapter 4.4.6.1), a direct soaking experiment of PhzD 

crystals with ADIC was unsuccessful and resulted in ambiguous electron densities at 

the active site. Therefore, in order to remove acetate and cacodylate from the crystals, a 

“kick-out” experiment was designed, in which PhzD crystals were transferred to a new 

drop containing different buffer and precipitant substances (0.1 M Bis-Tris pH 6.5, 20% 

(w/v) PEG 4000, 0.1 M NaCl) and incubated for 60 min before soaking with ADIC.  

To prove that acetate and cacodylate were successfully removed from the active 

center, the crystal structure of ligand-free PhzD was determined. Superimposition of 
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ligand-free and ligand-bound PhzD showed that the major difference between these two 

structures locates at the loop region P79 – R87, which becomes untraceable in the 

ligand-free structure. Apart from R87, which is sitting right on the loop region, Y42 and 

Q78, two residues involved in acetate coordination also adopt different rotamers in the 

ligand-free structure. However, the position of residues involved in cacodylate 

coordination, namely D38 and Y151, remains almost the same in both structures 

(Figure 4.41). 

 
Figure 4.41: Comparison of ligand-free and ligand-bound PhzD. Ligand-bound PhzD is 
shown as black ribbon and residues involved in ligand binding are presented in black 
ball-and-stick. Acetate and cacodylate coordinates are from the ligand-bound PhzD 
structure. Ligand-free PhzD is shown in light-blue ribbon. Residues are colored by 
element in comparison to those from the ligand-bound structure. The loop region P79 – 
R87 from the ligand-bound form is colored in dark-orange, and is invisible in the ligand-
free structure. 

No additional electron density was observed at the active site of ligand-free PhzD, 

indicating that acetate and cacodylate have been successfully removed. The flexible 

loop P79 – R87 is believed to play important roles in increasing solvent exposure of the 

active center which in turns facilitates ligand entry/exit. 

Since it was possible to prepare diffraction quality crystals in a ligand-free form, all 

the soaking experiments of PhzD/D38A/D38N with ADIC were performed using the 

ligand-free crystals. 



RESULTS AND DISCUSSION 

 
 

123 

4.4.6.3 PhzD in complex with DHHA 

Ligand-free PhzD crystals were soaked with purified PhzE product for 60 min. The 

crystals were then flash frozen in liquid nitrogen and immediately used for data 

collection. Interestingly, no ADIC was observed, but clear density suggested that the 

product DHHA was trapped at the active center (Figure 4.42 A). This is an indication 

that although crystallized, PhzD sustained its acitivity and was able to catalyze the 

conversion of ADIC to DHHA. 

The carboxylate group of DHHA is involved in hydrogen bonding with side chain as 

Q78, R87 and a water molecule which is coordinated by Y42. Due to the position of 

K122, it is possible that K122 could act as a general base which activates a water 

molecule to perform the cleavage of pyruvate from ADIC. However, previous report 

stated that the mutation of D38 to alanine, not K122 to alanine renders the enzyme 

inactive (Parsons et al. 2003). Beside these interactions, the ring structure of DHHA is 

also involved in stacking interaction between the side chain of W94 and F43 (Figure 

4.42 B). 

 
Figure 4.42: DHHA bound to the active site of PhzD. (A) |FOFC| difference electron density 
of DHHA is displayed at 2.0 σ. (B) Details of the active site. Residues that are involved in 
coordination of DHHA are shown in call-and-stick presentation. 
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Because the crystals were soaked with purified PhzE product, the observation of a 

possibly DHHA at the active site of PhzD may provide indirect evidence supporting that 

ADIC is indeed produced by PhzE and serves as substrate for PhzD. However, since 

the 2-amino group of DHHA is ambiguous on the electron density map (Figure 4.42 A), 

this needs to be further proved by more substantial evidence, which would be the direct 

observation of the substrate ADIC. In order to obtain a crystal of PhzD in complex with 

ADIC, two inactive PhzD mutants PhzD-D38A and PhzD-D38N were prepared for the 

soaking experiments. 

4.4.6.4 PhzD-D38A in complex with ADIC 

Since soaking experiments with PhzD-D38A and PhzD-D38N gave similar results 

and because the data quality from the PhzD-D38A crystal was better than the one from 

PhzD-D38N, the discussion here is therefore based on the PhzD-D38A structure. 

The |FOFC| electron density shows clearly that ADIC is bound to the active center of 

PhzD. Coordinates of acetate and cacodylate from the native PhzD structure were 

superposed with ADIC, showing that they are sitting in the position of the C1 

carboxylate group and the carboxylate group of the C3 pyruvyl moiety, respectively 

(Figure 4.43. A). Residues involved in ADIC coordination are similar to those that 

coordinate DHHA. The ring structure of ADIC is held between side chain of W94 and 

F43, and is hydrogen bonding to Q78 and R87, as well as to three water molecules 

coordinated by Y42, Q78 and K122. Moreover, the C3 pyruvyl is forming hydrogen 

bonds with the back bone amide of Y151, G155 and the side chain of K122 (Figure 4.43 

B).  

Interestingly, the |FOFC| electron density of the dataset collected at the synchrotron 

from the same crystal shows that the pyruvyl moiety of ADIC is separated from the ring 

due to a break of the vinyl ether bond (Figure 4.44). This is an indication that the PhzD-

D38A crystal might have suffered from remarkable radiation damage that causes the 

vinyl ether bond to break. Radiation damage might also be responsible for the fact that 

only benzoate and pyruvate were observed from the ligand-bound structure of PhzE, 

but neither the substrate chorismate nor the product ADIC. 
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This is the first time that ADIC has been observed in a crystal structure and the 

result has provided critical evidence regarding the activity of PhzE. Together with 

biochemical and analytical analysis results, PhzE has been confirmed as an ADIC 

synthase.  

 
Figure 4.43 ADIC bound to the active site of D38A. (A) |FOFC| difference electron density 
of ADIC is displayed at 2.5 σ. Coordinates of acetate and cacodylate (black) are taken 
from the native PhzD structure and superposed with ADIC. (B) Stereo-plot showing 
details of residues involved in ADIC coordination. 
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Figure 4.44: |FOFC| difference electron density of ADIC from (A) in-house data and (B) 
synchrotron data, displayed at 2.5 σ. Both datasets were collected from one same crystal. 
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5 OUTLOOK 
The data presented here include two crystal structures of PhzE and provide insight 

into structural changes that accompany its catalytic cycle. They also give an opportunity 

to discuss differences that may lead to the evolution of pyruvate-eliminating and non-

eliminating MST enzymes.  

5.1.1 The cause of ligand breakdown in the closed-form PhzE 

structure 

It is unclear why benzoate and pyruvate but not chorismate or ADIC were found in 

the MST active site of the closed crystal form. The breakdown of ADIC seems to be 

linked to the crystallization conditions since no breakdown products were observed in 

HPLC analysis of enzyme activity assays. X-ray radiation damage could also be a 

reason for the breakdown, which is supported by the observation that the vinyl ether 

bond of ADIC trapped at active center of PhzD-D38A was broken after the crystal has 

been exposed to synchrotron radiation. 

Therefore, further studies concerning the cause of ligand breakdown observed in 

the crystal structure may focus on two aspects. The first aspect regards the 

crystallization conditions for growing ligand-bound PhzE crystals. In order to test if the 

chorismate/ADIC breakdown is caused by reagents in the crystallization conditions, 

crystallization trials could be carried out under the same condition but in the absence of 

reducing agent (in this case, 5 mM β-mercaptoethanol), as well as search for new 

possible crystallization conditions for ligand-bound PhzE. The second aspect is the X-

ray radiation damage. Since all data of ligand-bound PhzE were collected at the 

synchrontron beamline, and because the radiation damage to the crystal at the 

synchrontron beamline is much higher than that from an in-house beamline, it would be 

necessary to examine if ligand breakdown retains in the data collected from an in-house 

beamline. However, since most of the PhzE crystals gave relatively weak diffractions in-

house, difficulties remains regarding the production of high-quality ligand-bound PhzE 

crystals that could be used for in-house data collection. It also has to be mentioned that 
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due to the quality of the crystals and a relatively large cell axis in length (a = 259.7 Å, b 

= 94.5 Å and c = 53.5 Å, α = β = γ = 90º), data collection in-house would require longer 

exposure time of the cystal to the X-ray beam, from which the accumulative radiation 

damage to the crystal may also be distinct. 

5.1.2 Understanding the differences between PhzE and AS 

Although extensive mutagenetic experiments on PhzE have been performed in this 

study, identification of the exact residues that determine the catalytic difference between 

ADIC synthase and AS failed. Therefore, differences of the key residues are probably 

not the key factors that determine their functions. PhzE might employ a different 

substrate release mechanism, which avoids pyruvate elimination of ADIC by providing a 

different release path or shortening the ADIC residence time in the active center. In 

order to answer these questions, it may be necessary to extend mutagenetic approach 

to study residues beyond the first coordination sphere of ADIC. In addition, it would be 

interesting to compare the binding affinity of ADIC to AS and PhzE, which might be able 

to provide hints explaining their catalytic difference. 

To obtain AS for the binding assay, three well-studied enzymes AS from Serratia 

marcescens (PDB ID: 1I7Q, 1I7S) (Spraggon et al., 2001), Salmonella typhimurium 

(PDB ID: 1I1Q) (Morollo & Eck, 2001), and Sulfolobus solfataricus (PDB ID: 1QDL) 

(Knochel et al. 1999) could be used for recombinant protein production. Enzymatically 

synthesized ADIC could be purified as described in this study (see chapter 3.6.10). 

Interaction between ADIC and the proteins will be measured first with ITC, and will be 

further extended to crystallographic experiments according to the crystallization 

conditions reported for all three anthranilate synthases to be used. 

Apart from ADIC itself, analogues of chorismate/ADIC can be investigated for their 

interactions with PhzE and AS in order to reveal more details regarding ligand-binding 

mechanisms. Three synthetic analogues of chorismate/ADIC are proposed (Figure 5.1). 

Both A1 and A2 are analogues of chorismate and are supposed to be inert to the 

amination at C2 position. A1 reflects the very early stage of the reaction and A2 reflects 

the later on stage where the cleavage of C4 hydroxyl group has not been processed 
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(see Figure 4.18). A3 is an analogue of ADIC that has a stable C3 moiety against 

cleavage. Studying the binding properties of these analogues is expected to provide 

detais in understanding the reaction mechanisms of the MST enzyme family.  

 
Figure 5.1: Synthetic analogues of chorismate (A1 and A2) and ADIC (A3). 

 

5.1.3 Ligand binding of the MST: sequential or simultaneous? 

Another interesting observation was the entropy-driven binding of chorismate to 

PhzE in the presence of Mg2+ by ITC measurement. Since chorismate alone doesn’t 

show affinity to PhzE when Mg2+ is excluded, and because no Mg2+ was observed in the 

open PhzE structure although it has been included in the crystallization condition, it is 

therefore suggested that chorismate  and Mg2+ bind simultaneously to the MST domain 

of PhzE. However, Mg2+ alone has not been tested for its binding affinity to PhzE by 

ITC. To further elucidate the sequential binding, in which chorismate/Mg2+ bind first to 

the MST domain that enables glutamine binding to the GATase1 domain, it would be 

necessary to conduct ITC measurements to confirm the binding of Mg2+ and glutamine 

to PhzE in the absence of chorismate, respectively. 

5.1.4 Inhibition of PhzE by divalent transition-metal ions 

Apart from the novel quaternary structure of PhzE, another intriguing result 

presented in this study was the inhibition of PhzE by Zn2+, Mn2+ and Ni2+. The 

observation of a member of the MST enzyme family being inhibited by transition metal 

cations is unprecedented. Together with crystallographic evidence that Zn2+ was 

trapped at the active center of the GATase1 domain, it is suggested that the reduced 

overall activity of PhzE by di-valent metal cations is due to the inhibition of GATase1. 

Clearly, this aspect will have to be further investigated since the concentration of the 
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metal cation applied in the preliminary inhibition assay (1 mM) was much higher than 

that found under in vivo conditions. In this case, a full inhibition assay with various 

amounts of divalent metal would be necessary and whether other metal ions could 

affect PhzE activity is also a question to be answered. 

5.1.5 Further investigations regarding PhzD 

The reaction product DHHA observed at the active site of PhzD was a result from 

soaking the crystals with the substrate ADIC, indicating that PhzD is still catalytically 

active in the crystal. However, the C2 amine group is ambiguous on the electron density 

map (Figure 4.42 A). To improve this, further soaking experiments should be carried out 

with respect to different soaking conditions (the concentration of ADIC and the length of 

incubation). Data with better quality to display the C2 amine of DHHA is expected.  

The vinyl ether bond of ADIC was broken as observed in the synchrotron dataset 

but not the in-house one from the same crystal indicates that synchrotron radiation 

damage are very likely responsible for the observation of only break down product of 

ADIC (benzoate and pyruvate) in the closed PhzE structure. This emphasized the 

importance of analyzing in-house data of ligand-bound PhzE crystals. 
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6 SUMMARY (ZUSAMMENFASSUNG) 
Summary 

A relatively large number of bacteria strains produce and secrete a group of 

nitrogen-containing aromatic metabolites named phenazines. In early studies, it was 

believed that due to its redox-activity, phenazines are solely used by their producers as 

redox-active antibiotics in microbial competitiveness. However, it has been recently 

recognized that these compounds have diverse physiological functions. They can act as 

signalling molecules and respiratory pigments under anoxic conditions e.g. in the 

deeper anoxic layers of biofilms, controlling size and shape of bacteria colonies. For 

example, in the phenazine deficient Pseudomonas colonies, bacteria tend to spread out 

to get more direct contact with oxygen. Since the biosynthsis of phenazines is almost 

exlusively limited to eubacteria, enzymes involved in this process are potentially 

attractive targets for pharmaceutical intervention. 

Chorismate is the precursor for a large number of primary and secondary 

metabolites in bacteria and plants including e.g. the aromatic amino acids, ubiquinone, 

folate (vitamin B9), menaquinone (vitamin K), the siderophores enterobactin, pyochelin 

and phenazines. PhzE utilizes chorismate and glutamine to synthesize 2-amino-2-

deoxyisochorismate (ADIC) in the first step of phenazine biosynthesis, followed by the 

step in which ADIC is converted to trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) 

by an isochorismate pyruvate hydrolase PhzD.  

In this work, the crystal structure of both PhzE and PhzD in their ligand-free and 

ligands/substrates-bound form were determined. While focused on investigating the 

biological function and potential regulation mechanism of PhzE by a combination of 

biochemical and biophysical techniques, novel results regarding structure and 

substrate-binding mechanism of PhzD are also presented. The new data on PhzE have 

extended the spectrum of structurally characterized chorismate utilizing enzymes to 

ADIC synthase. Furthermore, the structural and functional study of these two proteins 



SUMMARY 

 
 

132 

provides new insight into the initial steps of phenazine biosynthesis which may guide 

future investigation in searching for potential regulatory mechanisms of this pathway. 

Structure and function of PhzE 

PhzE utilizes chorismate and glutamine to synthesize 2-amino-2-

desoxyisochorismate (ADIC) in the first step of phenazine biosynthesis. PhzE’s 

monomer contains both a chorismate-converting menaquinone, siderophore, tryptophan 

biosynthesis (MST) and a type 1 glutamine amidotransferase (GATase1) domain 

connected by a 45-residue linker. In this study, the crystal structure of PhzE from 

Burkholderia lata 383 in a ligand-free open and ligand-bound closed conformation at 2.9 

and 2.1 Å resolution are presented respectively.  

PhzE arranges in an intertwined dimer such that the GATase1 domain of one chain 

provides NH3 to the MST domain of the other. This quaternary structure was confirmed 

by small angle x-ray scattering. Binding of chorismic acid, which was found converted to 

benzoate and pyruvate in the MST active centers of the closed form, leads to structural 

rearrangements that establish an ammonia transport channel approx. 25 Å in length 

within each of the two MST/GATase1 functional units of the dimer. The assignment of 

PhzE as an ADIC synthase was confirmed by mass-spectrometric analysis of the 

product, which was also visualized at 1.9 Å resolution by trapping in crystals of inactive 

mutants (D38A/D38N) of PhzD, an isochorismatase that catalyzes the subsequent step 

in phenazine biosynthesis.  

Michaelis–Menten kinetic parameters of PhzE regarding chorismate have been 

determined, indicating comparable activity of PhzE to other members of the MST 

enzyme family. Mutagenesis experiments were performed to investigate residues either 

involved in maintaining the structural/functional integrity of PhzE, or those that differ 

between PhzE and anthranilate synthase (AS) within the first coordination sphere of the 

substrate chorismate. Unlike in some of the related anthranilate synthases, no allosteric 

inhibition was observed in PhzE. This can be attributed to a tryptophan residue of the 

protein blocking the potential regulatory site. Additional electron density in the GATase1 
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active center was identified as zinc and it was demonstrated that Zn2+, Mn2+ and Ni2+ 

reduce the activity of PhzE. 

Crystal structures of PhzD and implications of substrate-binding mechanism 

PhzD is an isochorismatase which catalyzes the second step in phenazine 

biosynthesis, hydrolyzing the vinyl ether group of ADIC to produce trans-2,3-dihydro-3-

hydroxyanthranilic acid (DHHA) and pyruvate. It is composed of a single, 209 amino-

acid peptide chain which folds into an α/β structure that resemble members of the α/β-

hydrolase family. 

In this study, a thourough crystallographic study has been conducted. Crystal 

structures of native PhzD in its ligand-free form and in complex with cacodylate and 

acetate have been determined, as well as of PhzD in complex with its reaction product 

DHHA. Both of the inactive mutants PhzD-D38A and PhzD-D38N in complex with ADIC 

were crystallized too. This is the first time that both the native substrate and product of 

PhzD have been observed in crystal structures. The results not only confirmed the ADIC 

synthase function of PhzE, but also provided insight into substrate binding mechanism 

of PhzD. A number of residues involved in substrate coordination and reaction catalysis 

have been identified. More interestingly, the loop region P79 – R87 in the ligand-free 

structure is of high flexibility and completely invisible on the electron density map. 

Structural comparison between ligand-bound and ligand-free structures suggests that 

this loop may act as a gatekeeper of the active site, controlling the entrance/exit of the 

substrate. 
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Zusammenfassung  

Eine relativ große Zahl von Bakterienstämmen produziert und sezerniert Derivate 

von stickstoffhaltigen aromatischen Metaboliten der Phenazingruppe. Nach den 

Ergebnissen früherer Untersuchungen wurde angenommen, dass Phenazin-

produzenten diese Verbindungen lediglich als redoxaktive Antibiotika zur Steigerung 

ihrer Kompetitionsfähigkeit einsetzen. Neuere Studien zeigen jedoch, dass Phenazine 

noch andere physiologische Funktionen besitzen. So können sie als Signalmoleküle 

wirken und unter anoxischen Bedingungen, z.B. in den tieferen Schichten von Biofilmen, 

als respiratorische Pigmente eingesetzt werden, wodurch die Größe und Form von 

Bakterienkolonien beeinflusst wird. So tendieren die Bakterien in phenazindefizienten 

Pseudomonas-Kolonien dazu, sich stärker auszubreiten, um direkten Kontakt mit 

Luftsauerstoff zu erhalten. Weil die Phenazinbiosynthese fast ausschließlich auf 

Eubakterien beschränkt ist, sind die in diesen Prozess involvierten Enzyme potentiell 

attraktive Angriffspunkte für die pharmakologische Intervention.  

Chorismat ist das Vorläufermolekül für eine große Zahl von primären und 

sekundären Metaboliten in Bakterien und Pflanzen, z.B. für die aromatischen 

Aminosäuren, für Ubichinon, Folat (Vitamin B9), Menachinon (Vitamin K), die 

Siderophore Enterobactin und Pyochelin sowie für die Phenazine. PhzE verwendet 

Chorismat und Glutamin zur Erzeugung von 2-Amino-2-desoxyisochorismat (ADIC) im 

ersten Schritt der Phenazinbiosynthese. Im folgenden Schritt wird ADIC dann von der 

Isochorismat-Pyruvat-Lyase PhzD in trans-2,3-Dihydro-3-hydroxyanthranilat (DHHA) 

umgewandelt. 

In dieser Arbeit wurden die Kristallstrukturen von PhzE und PhzD sowohl in der 

freien als auch in der liganden- bzw. subtratgebundenen Form bestimmt. Während der 

Fokus in der Untersuchung der biologischen Funktion und von potentiellen 

regulatorischen Mechanismen von PhzE mittels einer Kombination aus biochemischen 

und biophysikalischen Methoden bestand, wurden auch neue Einblicke in den 

Substratbindungsmechanismus von PhzD gewonnen. Die erhaltenen Daten erweitern 

das Spektrum der strukturell charakterisierten chorismat-verwendenden Enzyme um 
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ADIC-Synthasen. Außerdem vermitteln die strukturellen und funktionellen 

Untersuchungen an diesen beiden Proteinen neue Einblicke in die ersten Schritte der 

Phenazinbiosynthese und könnten so zukünftige Untersuchungen an möglichen 

Regulationsmechanismen dieses Weges leiten.  

Struktur und Funktion von PhzE 

PhzE verwendet Chorismat und Glutamin, um im ersten Schritt der Phenazin-

biosynthese 2-Amino-2-desoxyisochorismat (ADIC) zu erzeugen. Das Monomer von 

PhzE enthält sowohl eine chorismat-umwandelnde Menachinon-Siderophor-

Tryptophan-Biosynthese- (MST) als auch eine Typ-1-Glutamin-Amidotransferase-

Domäne (GATase 1), welche durch einen 45 Aminosäure langen Linker miteinander 

verbunden sind. In dieser Arbeit werden die Kristallstrukturen von PhzE aus 

Burkholderia lata 383 in einer ligandenfreien offenen und in einer ligandengebundenen 

geschlossenen Konformation bei 2.9 bzw. 2.1 Å Auflösung vorgestellt.  

PhzE formt ein überkreuztes Dimer, in dem die GATase-1-Domäne der einen Kette 

NH3 für die MST-Domäne der anderen Kette erzeugt. Diese Quartärstruktur wurde auch 

durch Kleinwinkel-Röntgenstreuungsexperimente bestätigt. Die Bindung von Chorismat, 

das in der Kristallstruktur in Benzoat und Pyruvat umgewandelt vorgefunden wurde, 

führt zu strukturellen Umlagerungen unter Ausbildung eines Ammoniak-Transportkanals 

von 25 Å Länge innerhalb jedes der beiden funktionalen MST/GATase1-Paare des 

Dimers. Die funktionelle Einordnung von PhzE als ADIC-Synthase wurde durch 

massenspektrometrische Analyse des Produkts bestätigt. Dieses konnte auch durch 

Abfangen in Kristallen von inaktiven Mutanten (D38A/D38N) von PhzD, einer 

Isochorismatase, die den nachgelagerten Schritt in der Phenazinbiosynthese katalysiert, 

bei 1.9 Å sichtbar gemacht werden.  

Enzymkinetische Michaelis-Menten-Parameter für den Umsatz von Chorismat durch 

PhzE wurden bestimmt und zeigen, dass PhzE ein ähnliches Aktivitätsniveau wie 

andere Mitglieder der MST-Familie besitzt. Mutageneseexperimente wurden 

durchgeführt, um einerseits Aminosäuren, die an der Aufrechterhaltung der Stabilität 

bzw. Funktion von PhzE beteiligt sind, zu identifizieren und um anderseits Unterschiede 
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in der ersten Substratkoordinationssphäre von Chorismat zwischen PhzE und 

Anthanilatsynthasen (AS) zu untersuchen. Im Gegensatz zu den verwandten 

Anthranilatsynthasen wurde bei PhzE keine allosterische Inhibition festgestellt. Dies ist 

darauf zurückzuführen, dass ein Tryptophan die potentielle regulatorische Bindungs-

stelle blockiert. Zusätzliche Elektronendichte im aktiven Zentrum der GATase1 wurde 

als Zink identifiziert und es wurde gezeigt, dass Zn2+, Mn2+ und Ni2+ die Aktivität von 

PhzE verringern. 

Kristallstrukturen von PhzD und Implikationen für den Substratbindungs-

mechanismus 

PhzD ist eine Isochorismatase, die den zweiten Schritt der Phenazinbiosynthese 

katalysiert, indem sie die Vinylethergruppe von ADIC unter Erzeugung von trans-2,3-

Dihydro-3-hydroxyanthranilat (DHHA) und Pyruvat hydrolysiert. Das Enzym besteht aus 

einer einzigen Kette mit 209 Aminosäuren, die zu einer α/β-Struktur mit Ähnlichkeit zu 

Mitgliedern der α/β-Hydrolasefamilie faltet.  

Im Rahmen dieser Arbeit wurde eine umfassende kristallografische Untersuchung 

durchgeführt. Kristallstrukturen von nativem PhzD in seiner ligandenfreien Form und im 

Komplex mit Cacodylat und Acetat sowie mit seinem Produkt DHHA wurden bestimmt. 

Die beiden inaktiven Mutanten PhzD-D38A und PhzD-D38N im Komplex mit ADIC 

wurden ebenfalls kristallisiert. Dies ist das erste Mal, dass sowohl das natürliche 

Substrat und Produkt von PhzD in Kristallstrukturen beobachtet wurden. Die Ergebnisse 

bestätigen nicht nur die ADIC-Synthasefunktion von PhzE, sondern liefern auch Einblick 

in die Substratbindemechanismen von PhzD. Eine Gruppe von Aminosäuren, die in die 

Koordination des Substrats und in die Reaktionskatalyse verwickelt sind, wurde 

identifiziert. Interessanterweise ist die Schleifenregion P79 – R87 in der ligandenfreien 

Struktur sehr flexibel und in der Elektronendichtekarte vollständig unsichtbar. Der 

Strukturvergleich zwischen ligandenbesetzter und freier Struktur zeigt an, dass diese 

Schleife als ein Torwächter fungiert, der den Zu- und Abgang des Substrats kontrolliert.  
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7 APPENDICES 
7.1 Symbols and abbreviations 

7.1.1 Symbols 

Amino acids 

Amino acids One letter code 

Alanine A 

Cysteine C 

Aspartic acid D 

Glutamic acid E 

Phenylalanine F 

glycine G 

Histidine H 

Isoleucine I 

Lysine K 

Leucine L 

Methionine M 

Asparagine N 

Proline P 

Glutamine Q 

Arginine R 

Serine S 

Threonine T 

Valine V 

Tryptophan W 

Tyrosine Y 
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Units and scales 

Symbol  Symbol  

Å angstrom Da dalton 

ε molar extinction coefficient kDa kilodalton 

Ω Standard unit of electrical resistance h hour 

º degree (angle) min minute 

ºC degree centigrade s second 

g gravitational constant m Meter (length) 

rpm rounds per minute cm centimeter 

L liter µm micrometer 

mL milliliter nm nanometer 

µL microliter V voltage 

M molar kV kilovolt 

mM millimolar µF microfarad (capacitance) 

µM micromolar   

7.1.2 Abbreviations 

3HBA 3-hydroxybenzoate 

β-me beta-mercaptoethanol 

ACT acetate 

ADC 4-amino-4-deoxychorismate 

ADCS 4-amino-4-deoxychorismate synthase 

ADIC 2-amino-2-deoxyisochorismate, 

ADICS 2-amino-2-deoxyisochorismate synthase 

AS anthranilate synthase 

ATP adenosine-5'-triphosphate 

BSA bovine serum albumin 

CAC cacodylate 
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cAMP cyclic adenosine monophosphate 

CH chorismate hydrolase 

CL chorismate lyase 

CM chorismate mutase 

DAHP 3-deoxy-D-arabino-heptulosonate-7-phosphate 

DCDC 4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid 

DHHA trans-2,3-dihydro-3-hydroxyanthranilic acid 

DNA deoxyribonucleic acid 

E4P erythrose-4-phosphate 

EDTA ethylenediaminetetraacetic acid 

EPSPS 5-enolpyruvylshikimate-3-phosphate synthase 

ESI-MS Electrospray Ionisation Mass Spectrometry 

GATase1 glutamine amidotransferase type 1 

GSH glutathione 

GSSG glutathione disulfide 

GR glutathione reductase 

HPLC high-performance liquid chromatography 

HS 3-hydroxybenzoate synthase 

IC isochorismate 

ICS isochorismate synthase 

IPTG isopropyl β-D-1-thiogalactopyranoside 

LB Luria Broth 

MAD Multi-wavelength Anomalous Dispersion 

MALDI-TOF Matrix Assisted Laser Desorption Ionization – Time of Flight 

MM Molecular Mass 

MST Menaquinone, Siderophore and Tryptophan 

Mw Molecular weight 

NADH nicotinamide adenine dinucleotide 
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NADPH nicotinamide adenine dinucleotide phosphate 

Ni-NTA nickel-nitrilotriacetic acid 

OD600 optical density at 600 nm 

PAB para-aminobenzoate 

PCA phenazine-1-carboxylic acid 

PCN phenazine-1-carboxamide 

PCR Polymerase Chain Reaction 

PDB Protein Data Bank 

PDC phenazine-1,6-dicarboxylic acid 

PEP phosphoenolpyruvate 

PHB para-hydroxybenzoate 

PPP pentose phosphate pathway 

PYO pyocyanin 

RMSD root mean square deviation 

RNA ribonucleic acid 

ROS reactive oxygen species 

RP-HPLC reverse phase high-performance liquid chromatography 

RT retention time 

SAXS Small Angel X-ray Scattering 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Se-Met selenomethionine 

SOD superoxide dismutase 

SS salicylate synthase 

TB Terrific Broth 

TEV tobacco etch virus 

TFA trifluoroacetic acid 

TLC thin layer chromatography 
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7.2 In-vivo production and purification of chorismate 

Large amounts of chorismate have been used throughout this study. Since the 

commercially available chorismate is typically impure and rather expensive, chorsimate 

used here was obtained via in vivo synthesis and a rapid purification method in lab 

based on previous report (Grisostomi et al., 1997).  

7.2.1 In vivo synthesis of chorismate 

1 L growth medium A (Table 7.1) comtaining 0.16% (w/v) glucose was inoculated with 

10 mL overnight culture of E.coli KA12 strain (chorismate accumulating, see chapter 

3.1.3).  

 Composite Amount 

Growth medium A (1 L)   

 Casamino acids 2 g 

 Yeast extract 2 g 

 L- tryptophan 41 mg 

 50× Vogel & Bonner salts 20 mL 

50× Vogel & Bonner salts (1 L) H2O (at 45 ºC) 670 mL 

 Mg2SO4 • 7H2O 10 g 

 Citric acid monohydrate 100 g 

 K2HPO4 500 g 

 NaH(NH4)PO4 • 4H2O 175 g 

Table 7.1: Composition of growth medium A and Vogel & Bonner salts. 

The culture was then incubated at 30 ºC (220 rpm) till OD600 reached 1.9 to 2.1. The 

cells were centrifuged for 20 min at 2000g (4 ºC), and resuspended in 1 L nonsterile 
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accumulation medium B (Table 7.2). The suspention was incubated at 30 ºC overnight (> 

15 h, 220 rpm) to allow chorismate accumulation. 

Composite Amount 

Na2HPO4 12.8 g 

KH2PO4 1.36 g 

Glucose monohydrate 19.8 g 

NH4Cl 2.7 g 

MgCl2 • 6H2O 20.3 mg 

L-trypotophan 2 mg 

Table 7.2: Composition of accumulation medium B. 

The supernatant was then collected by centrifuging the cells for 20 min at 2000g (4 

ºC), adjusted to pH 9.0 using 10 M NaOH, flash-frozen with liquid nitrogen and stored at 

-80 ºC for further purification. 

7.2.2 Purification of chorismate 

7.2.2.1 Ion-exchange chromatography 

The supernatant from the accumulation culture of E.coli was loaded on an ion-

exchange column (BioRad Dowex 1×8, 200 – 400 mesh) coupled to a Waters 

purification system (see chapter 6.1.7). After loading, the column was first washed with 

100 mL H2O (flowrate 10 mL/min). Chorismate was then eluted with 120 mL (flowrate 2 

mL/min) 1 M NH4Cl (pH 8.5), and was collected in 60× 2 mL fractions. The 

chromatogram of elution was recorded at 274 nm and 225 nm (Figure 7.1) and the 

absorption at 274 nm of selected fractions at 1:200 dilutions in H2O was measured with 

a spectrophotometer (Table 7.3).  

According to the spectrum and measured absorption, chorismate-containing 

fractions (5 to 27) were pooled and acidified with 25% HCl to a final pH of 1.5, and 

extracted with dichloromethane (3 × 75 mL) to remove phenylpyruvate. The aqueous 

phase containing chorismate was then extracted with ethylacetate (4 × 50 mL) and the 



APPENDICES 

 
 

143 

combined ethylacetate extracts were washed with saturated NaCl (Brine) solution 

(Ethylacetate extracts:Brine = 1:1 – 1:2) and then dried over Na2SO4. Removal of the 

solvent using a rotary evaporator at room temperature yield a oily yellow product, which 

was stored at -80 ºC for further purification. 

 
Figure 7.1: Chromatogram of the ion-exchange purification of chorismate. Fraction 
numbers are marked. Absorptions were measured at 274 nm and 225 nm and are shown 
in red and blue curves, respectively. 

 

Fraction A274 (1:200 dilutions) 

1 0.0036 

3 0.0010 

4 0.0080 

5 0.1583 

25 0.0139 

27 0.0111 
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30 0.0099 

35 0.0081 

40 0.0091 

45 0.0061 

50 0.0098 

55 0.0020 

Table 7.3: A274 of fractions eluted from ion-exchange column. 

 

7.2.2.2 Reverse phase flash chromatography 

Crude chorismate product was further purified by a single step reverse phase flash 

chromatography. The crude material was dissolved with 5 mL buffer (10 mM ammonium 

acetate, pH 6.8), loaded on a C18 reverse phase column (4.5 × 25 cm bed size) packed 

with Dowex(R) 1×8 octadecyl-functionalized silica gel (Sigma-Alderich, Deisenhofen 

DE), and was eluted with the same buffer under pressure. 60× 10 mL fraction were 

collected by hand and incubated on ice. Fractions were checked by thin layer 

chromatography on C18 reverse phase silica gel plates and those containing 

chorismate (20 to 52) were pooled (Figure 7.2). 
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Figure 7.2: TLC of fractions from flash chromatography. 10 µL products from each 
fraction were spotted on the plate. Fractions containing chorismate were measured for 
their Rf values. (Rf = 0.88 – 0.93, reference Rf = 0.83 for chorismate in 1 M ammonium 
acetate). 

The pooled solution was then lyophilized to remove ammonium acetate and the 

resulting product of chorismate in powder (161 mg) was collected and stored at -80 ºC.  

7.2.3 Quality control of self-produced chorismate by RP-HPLC 

The quality of self-prepared chorismate was checked by comparing the HPLC-

spectrum to that of commercially available product. Both self-prepared and commercial 

chorismate were dissolved with 50 mM Tris-HCl buffer (pH 7.5) to a final chorismate 

concentration of 1 mM. 10 µL of each samples was injected and checked by RP-HPLC 

as described in chapter 3.4.4 (Figure 7.3). 
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Figure 7.3: RP-HPLC of chorismate from different sources. (A) Self-prepared. (B) 
Commercial product. 

The spectra show that while the self-prepared chorismate has exactly the same 

retention time (15.1 min) as that of the commercial product, the purity is even higher. 

Therefore, the self-prepared chorismate was used throughout this study instead of the 

commercially available product. 

7.3 Introduction to Protein crystallography 

7.3.1 Viewing microscopic objects 

When viewing an object, a lens is used to collect light diffracted by the object placed 

just beyond the focus of the lens. A reverse-image is reconstructed beyond the focus of 

the lens on the opposite side (Figure 7.4). In case of a simply lens, the relationship 

between the image position and the object position can be difined using equation (1): 

ሺܱܨሻሺܨܫԢሻ ൌ ሺܮܨሻሺܨԢܮሻ                                                          ሺ1ሻ 

Because FL and F’L are constants for a fixed lens (although not necessarily), there 

is an inverse proportion between distances OF and IF’. This could be explained as if an 

object is put closely beyond the focus F of a lens, an inversed magnified image would 
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be generated at a considerable distance beyond F’, enabling a convenient viewing for 

observers. 

 
Figure 7.4: Viewing object by a simple lens. L: the lens, F and F’: position of the focus, O: 
position of the object, I: position of the image. 

However, the size of the object that can be examined from a lens (termed as 

resolution) is limited by two indispensable factors: the wavelength of the light and the 

property of the lens. As Ernst Abbe first described in 1873, the resolution of a 

microscope is defined by the wavelength of the light (λ), refractive index of the lens 

medium (n), and the aperture half angle (α), as shown in equation (2): 

ܴ ൌ
ߣ

2݊ sin ߙ
                                                                                        ሺ2ሻ 

As determined by equation (2), the wavelength of the light used for observation 

must not be larger than two times the scale of the object. In protein crystallography, 

researchers are expecting to examine individual atoms in protein molecules, in which 

bond atoms are only about 1.5 Å (0.15 nm) apart. Therefore, visible light that has 

wavelengths of 400-700 nm cannot be used to observed details of a protein structure. 

The fact that bond-length of 1.5 Å falls typically in the range of X-rays (0.1-100 Å) 

makes X-rays an ideal light source to reveal details of bio-macromolecular structures. 

The most commonly used source of X-rays for protein crystallography is 1.54 Å Kα-Cu 
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X-ray, which is emitted when an L-shell electron of a Copper atom replaces a displaced 

K-shell electron. Besides, modern synchrotron radiation generated by particle 

acceleration provides fine-tunable X-rays at the wavelength around 1 Å with much 

greater magnitude and collimation than those generated with X-ray tubes, making it 

possible to examine sub-angstrom details of objects. 

Although the problem with wavelength could be solved using X-ray instead of visible 

light, other key factors of viewing molecular structures, which are decided by the 

property of the lens and the objects, remain unsolved. First, it is impossible to focus X-

rays with a physical lens. Therefore, computer has to be introduced to simulate the lens 

and calculate the image of the object using measured intensities and directions of the 

diffracted X-rays. Second, a single molecule is not strong enough in diffracting X-rays. 

In order to solve this problem, a protein crystal that is composed of well-ordered, 

identically-oriented arrays of protein molecules is used. Since the diffracted beams from 

those identical molecules in the crystal interfere, the intensity of diffractions is enhanced 

and become detectable. 

Therefore, to conduct protein crystallography experiments, it is important for 

researchers to generate good-quality protein crystals and to collect and interpret 

diffraction data of the crystals. The basic concepts will be discussed briefly in the 

following chapters. 

7.3.2 Growing protein crystals 

The most commonly used method for growing protein crystals is called vapor 

diffusion method. This is done by mixing the purified protein solution with prepared 

reservoir solution containing appropriate amount of buffer and precipitants in a drop, this 

drop of mixture is then equilibrated against the reservoir solution in an air-tight system, 

usually a 24-well plate sealed with silicon gel and cover slips. For example, in the 

hanging drop method, protein droplets are spotted and hanging on a covers slip when 

sealed (Figure 7.5 B). Due to the vapor diffusion, water is transferred gradually from the 

drops that contain lower concentration of precipitants, to the reservoir solution that 

contain higher concentration of precipitants. During this process, the concentration of 
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the protein and the precipitants in the drop will increase, and hopefully to the 

supersaturated phase that nucleation (small crystals) may form. Because of nucleation, 

the concentration of protein will drop slightly to reach a metastable zone, in which 

nucleation will stop but the protein crystals are able to stay growing (Figure 7.5 A). 

 
Figure 7.5: (A) Phase diagram of crystallization controlled by precipitant and vapor 
diffusion. (B) Sketch of crystallization set-up by the hanging-drop vapor diffusion method. 

Because the exact mechanism of crystal formation is not yet clear, 

crystallographers usually need to test a number of precipitants under various conditions 

(concentration, pH, temperature, etc.) in order to obtain high-quality crystals. Therefore, 

at the initial stage of crystallization trials, robot-assissted high-throughput screenings 

are usually applied to identify the proper condition for crystallizing a protein. 

7.3.3 Collecting diffraction data and generating electron density 

7.3.3.1 The real space and the reciprocal space 

If the shape of the protein molecules was reduced into a spot in the space, the 

crystal of a protein can be reduced to sets of equivalent, parallel planes of spots. X-rays 

shinned on the crystal are scattered and the scattering waves can interfere 

constructively when certain prerequisite of the crystal lattice is satisfied (Figure 7.6). 

The relationship between the constructive interference of scattering waves and the 

lattice plane of the crystal is defined as the Bragg’s law (equation 4). 
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Figure 7.6: Scattering of X-rays by real space crystal lattice. 

According to figure 7.6, the difference of traveling distance between R2 and R1 

equals two times the length of BC, and can be calculated as follows: 

ܥܤ2 ൌ ܤܣ2 sin ߠ ൌ 2݀௛௞௟ sin ߠ                                                    ሺ3ሻ 

If the additional distance traveled by R2 is equal to an intergral number of 

wavelengths (nλ), the interference of the diffracted waves is constructive. 

2݀௛௞௟ sin ߠ ൌ  ሺ4ሻ                                                                  ߣ݊

Parameters of the real space lattice (unit cells) have to be derived from the 

interferred reflections that can be detected. In this case, in order to simplify calculations, 

a system called reciprocal space is introduced. In the lattice of reciprocal space, the 

points are actually locations of all the Bragg reflections from the real space scattering. It 

is named reciprocal space because the distances between the new lattice points are 

reciprocal to that of the real space lattice points. Bragg’s law is also applied in this case 

and can be extended to the three-dimensional situation, and with the knowledge of unit 

cell type and the reciprocal lattice, the real space lattice parameters can be calculated. 

7.3.3.2 Reflections and electron density 

The mathematical relationship between an object (in this case the electron 

distribution in the crystal) and its diffraction pattern (reflections recorded) can be 

precisely described by Fourier transform. Crystals are three-dimensional repetition of 
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small unit cells, therefore a reflection is described by a sum of structure factors, 

crystallography uses the Fourier transform to convert the structure factors to the desired 

electron density equation ρ(x, y, z). 

Any complicate wave can be described as the sum of a series of simple waves. The 

sum is called a Fourier sum and each wave in the sum is named a Fourier term, as 

shown in equation (5): 

݂ሺݔሻ ൌ ෍ ௛ܨ cos ߨ2 ሺ݄ݔ ൅ ௛ሻߙ
௡

௛ୀ଴

                                                ሺ5ሻ 

Given a basic waveform ሾcos ߨ2 ሺ݄ݔሻ ൅ ݅ sin  ሻሿ, the general Fourier sum could beݔሺ݄ߨ2

transformed as: 

݂ሺݔሻ ൌ ෍ ௛ܨ

௡

௛ୀ଴

ሾcos ߨ2 ሺ݄ݔሻ ൅ ݅ sin  ሻሿ                                       ሺ6ሻݔሺ݄ߨ2

Because cos ߠ ൅ ݅ sin ߠ ൌ ݁௜ఏ, and since in this case ߠ ൌ  ሻ, the Fourier sum ofݔሺ݄ߨ2

equation (6) becomes: 

݂ሺݔሻ ൌ ෍ ௛݁ଶగ௜ሺ௛௫ሻܨ

௛

                                                             ሺ7ሻ 

In the case of three-dimensional waves, three variables h, k, and l are needed to 

specify frequencies in each of the x-, y- and z-axes. A Fourier sum for the wave 

݂ሺݔ, ,ݕ  :ሻ can therefore be written as followsݖ

݂ሺݔ, ,ݕ ሻݖ ൌ ෍ ෍ ෍ ௛௞௟݁ଶగ௜ሺ௛௫ା௞௬ା௟௭ሻܨ

௟௞௛

                                        ሺ8ሻ 

Fourier transform can then be applied (to periodic functions of any dimensions), and 

for any function ݂ሺݔ, ,ݕ ,ሺ݄ ܨ ሻ, a functionݖ ݇, ݈ሻ exists, called the Fourier transform of 

݂ሺݔ, ,ݕ ,ݔሻ. ݂ሺݖ ,ݕ ,ሺ݄ ܨ ሻ andݖ ݇, ݈ሻ can be therefore described as: 
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݂ሺݔ, ,ݕ ሻݖ ൌ න න න ,ሺ݄ܨ ݇, ݈ሻ݁ିଶగ௜ሺ௛௫ା௞௬ା௟௭ሻ

௟௞௛
݄݈݀݀݇݀                             ሺ9ሻ 

,ሺ݄ܨ ݇, ݈ሻ ൌ න න න ݂ሺݔ, ,ݕ ሻ݁ଶగ௜ሺ௛௫ା௞௬ା௟௭ሻݖ

௭௬௫
 ሺ10ሻ                            ݖ݀ݕ݀ݔ݀

h, k, and l have reciprocal units to that of x, y and z, and are exactly the variables 

represented by the reciprocal lattice indices. ܨ௛௞௟ is the Fourier transform of the electron 

density equation ρ(x, y, z) on the set of real-space lattice planes (hkl), and since ܨ௛௞௟ 

represent a set of discrete reflections of the diffraction pattern, the Fourier transform of it 

is a triple sum rather than a triple integral: 

,ݔሺߩ ,ݕ ሻݖ ൌ
1
ܸ

෍ ෍ ෍  ௛௞௟݁ିଶగ௜ሺ௛௫ା௞௬ା௟௭ሻܨ
௟௞௛

                                  ሺ11ሻ 

where V is the volume of the unit cell. 

7.3.4 Obtaining phases 

By constructing a Fourier sum using the structure factors ܨ௛௞௟ , it is possible to 

calculate ρ(x, y, z) with equation (11). However, since each structure factor ܨ௛௞௟ is a 

recorded reflection of diffracted ray, and being a wave function, all three factors 

frequency, amplitude and phase have to be specified for each ܨ௛௞௟ . Since the 

frequencies are the indices of the lattice planes that produce reflection hkl, and the 

amplitude is proportional to the square root of the measured intensity of reflection hkl, 

the only information needed to compute ρ(x, y, z) is the phase. 

There are three commonly applied methods to obtain phases: Isomorphous 

replacement, anomalous scattering and molecular replacement. Isomorphous 

replacement allows addition of atoms to identical sites of the proteins in all unit cells of a 

crystal. And the added atoms (usually heave metal atoms) contribute to a slight 

perturbation in the diffraction pattern, which can be used to obtain phases. The most 

commonly used technique is to soak the protein crystals in heavy metal solutions, for 

example ionic complexes of Hg, Pt, Au, etc. Since certain amino acid residues interact 
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readily with the heavy metal complexes, a specific modification of the protein in a crystal 

could be expected. 

Anomalous scattering takes advantage of the heavy atom’s property to absorb X-

rays at specific wavelength. As a result, in a protein crystal containing heavy-atom 

derivatives, the diffractions do not obey the Friedel’s law and the reflections ݄݈݇ and ݄݈݇തതതത 

are not equal in intensity. This inequality is termed anomalous dispersion. Introducing 

seleno-labeled methionine as a substitution of methionine in the protein is the most 

applied technique in anomalous scattering experiments, which allows addition of Se 

atoms without altering the protein structure.  

In both of the methods described above, a powerful tool is used to determine the 

coordinates of heavy atoms, named the Patterson function (equation 12).  

ܲሺݑ, ,ݒ ሻݓ ൌ
1
ܸ

෍ ෍ ෍ ௛௞௟|ଶ݁ିଶగ௜ሺ௛௨ା௞௩ା௟௪ሻܨ|

௟௞௛

                             ሺ12ሻ 

Equation (12) shows that the Patterson function is propotional to the square of ܨ௛௞௟, 

it can be calculated directly from reflection datasets without any information of phases. 

To obtain the Patterson function only for the heavy atoms, a difference Patterson 

function is applied. The amplitude differences are ሺΔܨሻଶ ൌ  ሺ|ܨ௉ு| െ  ௉|ሻଶ, resulting inܨ|

the difference Patterson map as: 

Δܲሺݑ, ,ݒ ሻݓ ൌ
1
ܸ

෍ ෍ ෍ሺ|ܨ௉ு| െ ௉|ሻଶ݁ିଶగ௜ሺ௛௨ା௞௩ା௟௪ሻܨ|

௟௞௛

                   ሺ13ሻ 

where ܨ௉ு and ܨ௉ are intensities from derivative data sets and native datasets, 

repectively. Given the difference Patterson function, computer softwares can determine 

vectors between heavy atoms, shown as peaks in the Patterson map. From the peaks, 

positions of heavy atoms can be calculated. 

Another method to solve phase problem is by molecular replacement. In molecular 

replacement, phases are taken from structure factors of a related protein whose 

structure is known, to estimate the initial phases of the desired structure. When the 
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phasing model and the target structure are isomophous (only small differences, such as 

a new ligand, etc.), the phases from the model can be directly used to compute ρ(x, y, z) 

together with the intensities from the desired protein, shown in equation (14): 

,ݔሺߩ ,ݕ ሻݖ ൌ
1
ܸ

෍ ෍ ෍หܨ௛௞௟
௧௔௥௚௘௧ห݁ିଶగ௜ቀ௛௫ା௞௬ା௟௭ିఈ೓ೖ೗

ᇲ೘೚೏೐೗ቁ                        
௟௞௛

ሺ14ሻ 

where |ܨ௛௞௟
௧௔௥௚௘௧|  are native intensity amplitudes of the new protein, and ߙ௛௞௟

ᇱ௠௢ௗ௘௟  are 

phases from the model. 

In case the phasing model is nonisomorphous to the new protein, equation (10) is 

used by computer softwares, trying to put the model into the target unit cell. A 

theoretical set of structure factors and intensities is calculated and compared with that 

of the experimental set. At this stage, the proper orientation and positions of the model 

to be placed in the target unit cell have to be tested. A successful solution should lead 

to significant better correlations between the experimental intensities and the calculated 

ones, in which one particular orientation and position of the model shoud be determined. 

Then the election densities can be calculated with the experimental intensities and the 

theoretical phases, assuming that the target protein lies in the same manner in the unit 

cell as the search model does. 

7.3.5 Building and refining models 

After the electron density is calculated from the structure factor amplitudes and the 

phases, it can be displayed by computer softwares (O, Coot, etc.). Based on the 

electron density and the knowledge of primary & secondary building blocks of proteins, 

a model containing specific atom positions and tempareture factors (B-factors) can be 

built to interpret the density map.  

However, the initial electron density map often contains many errors due to the 

errors of initial phases. Rounds of structural refinement are therefore carried out in order 

to correct these errors. The refinement can be divided into two parts: the real space 

refinement and the reciprocal space refinement. 
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In the real space refinement, the model is corrected according to the electron 

density map as well as the common rules in the protein structure. For example, all 

naturally occurring amino acids are L-amino acids, and normally the main-chain peptide 

bonds of a folded protein are trans-peptide bonds (trans:cis ≈ 1000:1).  

In the reciprocal space, a set of structure factor amplitudes |Fc| is calculated from 

the refined real space model and the phases using the Fourier transform in equation 

(10), and are compared with the experimental structure factor amplitudes |Fo| by 

computer softwares. These softwares update the parameters of the atoms in the model 

in order to minimize the difference between the model and the experimental data. After 

calculation in reciprocal space is done, two maps are usually generated for the next 

round of real space refinement, the Fo-Fc map (15) and the 2Fo-Fc map (16). 

,ݔሺߩ ,ݕ ሻݖ ൌ
1
ܸ

෍ ෍ ෍ሺ|F୭| െ |Fୡ|ሻ݁ିଶగ௜൫௛௫ା௞௬ା௟௭ିఈ೎ೌ೗೎
ᇲ ൯

௟௞௛

                         ሺ15ሻ 

,ݔሺߩ ,ݕ ሻݖ ൌ
1
ܸ

෍ ෍ ෍ሺ2|F୭| െ |Fୡ|ሻ݁ିଶగ௜൫௛௫ା௞௬ା௟௭ିఈ೎ೌ೗೎
ᇲ ൯

௟௞௛

                      ሺ16ሻ 

The Fo-Fc map excludes the influence of current model and emphasizes the errors 

by comparing current model with original data. The 2Fo-Fc map, on the other hand, 

contains information from both the model and the experimental data. Usually, building of 

most parts of the model in real space is guided by 2Fo-Fc map, and errors are checked 

according to Fo-Fc map. 

It usually requires several rounds of refinement in real space and reciprocal space. 

One key indicator of the model quality is R-factor. R-factor describes the discrepancy 

between the model and the experimental data. To avoid introducing bias by over-

manipulating phases during the refinement, 5% of the data is usually left out and kept 

the same through out the refinement process. The R-factor of this 5% data is called Rfree, 

which is the one of the most important indicators of model quality. Other indicators of 

model quality include bond length/angel deviations from the ideal value, the 

Ramachandran plot, etc.  
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7.4 Principle of Small Angle X-ray Scattering (SAXS) 

Small Angle X-ray Scattering (SAXS) is a foundamental method for structure 

analysis of both organic and inorganic materials. In biological research, SAXS provides 

possibility to study structure of macromolecules in solution. During the experiments, X-

rays (with typical wavelength at around 0.15 nm) are scattered elastically by 

monodisperse non-interacting particles in the solution, and recorded at very low angles 

(0.1–10º). The scattered intensity I(s) is a function of magnitudes of scattering vector q. 

It is known that ݍ ൌ ߨ4 sin ߠ ⁄ߣ , where ߠ is half of the angle between the incident and 

scattered X-ray beam, and ߣ is the wavelength of the incident X-ray (Figure 7.7). 

 
Figure 7.7: Sketch of protein SAXS measurements. 

In the solution of monodisperse particles (for example homogeneous protein 

solution), one strategie to obtain the structural information is to measure the scattering 

pattern of solutions containing different concentrations of particles, from which the 

intensity pattern for a single particle can be estimated. This procedure is essential for 

eliminating concentration effect, which is indicated as a small shoulder in the intensity 

patterns. The isotropic intensity distribution recorded is propotional to the average 
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scattering from single particles in random orientations. The scattering intensity is 

described as: 

ሻݍሺܫ ൌ ܲሺݍሻܵሺݍሻ                                                              ሺ17ሻ 

 ሻ are the formݍሻ and ܵሺݍሺܲ ,ݍ ሻ is the intensity magnitude of scattering factorݍሺܫ

factor and the structure factor, respectively. Guinier law applies at small ݍ values in the 

beginning part of the scattering curve, and when the particle concentration is 

extrapolated from low to infinite dilution, the structure factor ܵሺݍሻ  equals to 1. The 

intensity at small ݍ values is then depending on the gyradius of the particle. 

The first step in processing SAXS curves usually is to perform a Fourier transform, 

and the transformed curves can be interpreted by the distance distribution function, as 

shown below: 

ܲሺݎሻ ൌ
ଶݎ

ଶߨ2 න ሻݍሺܫ
ஶ

଴

sin ݎݍ
ݎݍ

 ሺ18ሻ                                                ݍଶ݀ݍ

The distance distribution function starts from 0 when when ݎ ൌ 0, and is related to 

the certain distances ݎ within the particle. 

Since SAXS experiments derive three-dimensional structural information from one-

dimensional scattering curves, it usually does not imply a single solution, which means 

different proteins may give identical scattering curve. Reconstitution of three-

dimensional structure from SAXS measurements is often conducted with the help of 

high-resolution X-ray crystal structures or solution NMR structures. Models are taken 

and different approaches are applied to search for optimum fitting of the experimental 

data. The quality of the SAXS model could be examined by different metholds. One of 

the commonly used indicators is the Χ-value test, as calculated in equation (19): 

Χଶ ൌ
1

ܰ െ 1
෍ ቈ

௝൯ݏ௘௫௣൫ܫ െ ௝൯ݏ൫ܫߟ

௝൯ݏ൫ߪ
቉

ଶே

௝ୀଵ

                                          ሺ19ሻ 

where ߟ is a scaling factor. A typical good fitting usually have a Χ value between 1 and 5. 
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7.5 Principle of Isothermal Titration Calorimetry (ITC) 

Isothermal Titration Calorimetry (ITC) is a thermodynamic technique that could be 

used to measure the heat released or absorbed during a protein ligand binding process. 

The measurement allows accurate determination of the binding constant (Ka), enthalpy 

(ΔH), and the binding stoichiometry (n). The change of entropy could be calculated from 

ΔH and Ka, given that: 

Δܩ ൌ െܴܶ ln ௔ܭ ൌ Δܪ െ ܶΔܵ                                                  ሺ20ሻ 

Since it provides a complete thermodynamic characterization of the molecular 

interaction with only one measurement, and because the measurement does not require 

the presence of fluorophores or chromophores, the ITC technique has become one of 

the most important methods for characterizing biomolecular interactions. 

A sketch of the instrumental setup is shown in Figure 7.8.  

 
Figure 7.8: Instrumental setup of an ITC for protein-ligand interaction measurement. 
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At the beginning of the measurement, the sample cell is filled with protein solution 

(at volume V0). When an injection of the ligand solution is made (at volumne Vinj) to the 

sample cell, an equal volume of protein solution is driven out. The concentration of the 

protein remains in the cell after injection i would be: 

௧௢௧,௜ܯ ൌ ௧௢௧,଴ܯ݊ ൬1 െ ௜ܸ௡௝

଴ܸ
൰

௜

                                                   ሺ21ሻ 

Where ܯ௧௢௧,௜  is the concentration of protein in the cell after injection i, ܯ௧௢௧,଴  is the 

original concentration of protein, n is the number of lingand binds to one protein 

molecule, ଴ܸ is the volume of the cell and ௜ܸ௡௝ is the injection volume. 

If ܮ௧௢௧,௜ is defined as the total concentratin of ligand in the sample cell after injection i, 

then:  

௧௢௧,௜ܮ ൌ ௧௢௧,଴ܮ ൬ ௜ܸ௡௝

଴ܸ
൰

௜

                                                          ሺ22ሻ 

where ܮ௧௢௧,଴ is the concentration of ligand in the syringe. 

After injection i, the total concentration of protein and ligand in the sample cell is the 

sum of the concentration of the two molecules in their bound-form and unbound-form, 

respectively. 

௧௢௧,௜ܯ ൌ ௜ܯ ൅ ௜ܮܯ ൌ ௜ሺ1ܯ ൅  ௜ሻ                                             ሺ23ሻܮ௔ܭ

௧௢௧,௜ܮ ൌ ௜ܮ ൅ ௜ܮܯ ൌ ௜ሺ1ܮ ൅  ௜ሻ                                              ሺ24ሻܯ௔ܭ

where ܯ௜, ܮ௜  and ܮܯ௜  are the concentration of unbound protein, unbound ligand, and 

protein-ligand complex after injection i, respectively. Rearranging equation (23) and (24) 

gives an quadratic expression (25): 

௜ܮ௔ܭ
ଶ ൅ ൣ1 ൅ ௧௢௧,௜ܯ௔൫ܭ െ ௜ܮ௧௢௧,௜൯൧ܮ െ ௧௢௧,௜ܮ ൌ 0                                  ሺ25ሻ 

The meaningful solution of (25) results in the concentration of unbound ligand in the 

sample cell after injection i: 
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௜ܮ ൌ
െൣ1 ൅ ௧௢௧,௜ܯ௔൫ܭ െ ௧௢௧,௜൯൧ܮ ൅ ටൣ1 ൅ ௧௢௧,௜ܯ௔൫ܭ െ ௧௢௧,௜൯൧ܮ

ଶ
൅ ௧௢௧,௜ܮ௔ܭ4

௔ܭ2
          ሺ26ሻ 

The difference in heat content in the sample cell before and after injection i is the 

heat absorbed or produced during the injection, defined as ܳ௜: 

ܳ௜ ൌ ௧௢௧,௜ܯ௜ۄܪΔۃ ଴ܸ െ ௧௢௧,௜ିଵ൫ܯ௜ିଵۄܪΔۃ ଴ܸ െ ௜ܸ௡௝൯                                 ሺ27ሻ 

where ۃΔۄܪ௜ is the cumulative change of enthalpy per mole of the protein. If the binding 

is a one to one binding of ligand to protein, then: 

௜ۄܪΔۃ ൌ Δܪ
௜ܮܯ

௧௢௧,௜ܯ
ൌ Δܪ

௜ܮܯ

ܯ ൅ ௜ܮܯ
ൌ Δܪ

௜ܮ௔ܭ

1 ൅ ௜ܮ௔ܭ
                                ሺ28ሻ 

where Δܪ is the change of enthalpy when one mole of ligand binds to one mole of 

protein. After combining equation (27) and (28), ܳ௜ could be expressed as:  

ܳ௜ ൌ
Δܭܪ௔ܮ௜ܯ௧௢௧,௜ ଴ܸ

1 ൅ ௜ܮ௔ܭ
െ
Δܭܪ௔ܮ௜ିଵܯ௧௢௧,௜ିଵ൫ ଴ܸ െ ௜ܸ௡௝൯

1 ൅ ௜ିଵܮ௔ܭ
                           ሺ29ሻ 

Since ܯ௧௢௧,௜ and ܮ௜ can be calculated from equation (23) and (26), respectively, and 

because ܳ௜  is the parameter measured with the ITC instrument, (29) is a quadratic 

equation of ܭ௔. Therefore, Δܪ, n and ܭ௔ can be derived by fitting the ITC data to this 

equation. 
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