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Abstract

In this paper we investigate the problem of testing the assumption of stationarity in locally

stationary processes. The test is based on an estimate of a Kolmogorov-Smirnov-type distance

between the true time-varying spectral density and its best approximation through a stationary

spectral density. Convergence of a time-varying empirical spectral process indexed by a class of

certain functions is proved and furthermore the consistency of a bootstrap procedure is shown,

which is used to approximate the limiting distribution of the test statistic. Compared to other

methods proposed in the literature for the problem of testing for stationarity the new approach has

at least two advantages. On the one hand the test can detect local alternatives converging to the

null hypothesis at a rate 1/
√
T (where T denotes the sample size). On the other hand the method

only requires the specification of one regularization parameter. The finite sample properties of the

method are investigated by means of a simulation study and a comparison with two other tests is

provided which have been proposed in the literature for testing stationarity.

AMS subject classification: 62M10, 62M15, 62G10

Keywords and phrases: spectral density, non stationary processes, goodness-of-fit tests, empirical spec-

tral measure, integrated periodogram, locally stationary process, bootstrap

1



1 Introduction

Most literature in time series analysis assumes that the underlying process is second-order stationary.

This assumption allows for an elegant development of powerful statistical methodology like parameter

estimation or forecasting techniques, but is often not justified in practice. In reality most processes

change their second-order characteristics over time and numerous models have been proposed to ad-

dress this feature. Out of the large literature we mention exemplarily the early work on this subject by

Priestley (1965), who considered oscillating processes. More recently the concept of locally stationary

processes has found considerable attention, because in contrast to other proposals it allows for a mean-

ingful asymptotic theory, which is essential for statistical inference in such models. The class of locally

stationary processes was introduced by Dahlhaus (1996) and particular important examples are time

varying ARMA models.

While many estimation techniques for locally stationary processes were developed [see Neumann and

von Sachs (1997), Dahlhaus et al. (1999), Chang and Morettin (1999), Dahlhaus and Polonik (2006),

Dahlhaus and Subba Rao (2006), Van Bellegem and von Sachs (2008) or Palma and Olea (2010) among

others], semiparametric testing has found much less attention although its importance was pointed out

by many authors. von Sachs and Neumann (2000) proposed a method to test the assumption of station-

arity, which is based on the estimation of wavelet coefficients by a localised version of the periodogram.

Paparoditis (2009) and Paparoditis (2010) used an L2-distance between the true spectral density and

its best approximation through a stationary spectral density to measure deviations from stationarity,

and most recently Dwivedi and Subba Rao (2010) developed a Portmanteau-type test statistic to detect

non-stationarity. However, besides the choice of a window width for the localised periodogram which is

inherent in essentially any statistical inference for locally stationary processes, all these methods require

the choice of at least one additional regularization parameter. It was pointed out in Sergides and Pa-

paroditis (2009) that it is the choice of this particular tuning parameter that can influence the results

of the statistical analysis substantially (the procedure proposed by these authors uses an additional

smoothing bandwidth for the estimation of the local spectral density).

Recently Dette et al. (2011) proposed a test for stationarity which is based on an L2-distance between

the true spectral density and its best stationary approximation and which does not require the choice

of that additional regularization parameter. Roughly speaking these authors proposed to estimate the

L2-distance considered by Paparoditis (2009) by calculating integrals of powers of the spectral density

directly via Riemann sums of the periodogram. By this idea, Dette et al. (2011) avoided the integra-

tion of the smoothed periodogram [as it was done in Paparoditis (2009) or Paparoditis (2010)]. In a

comprehensive simulation study it was shown that this method is superior compared to the other tests,

no matter how the additional smoothing bandwidths in these procedures are chosen.

Although the test proposed by Dette et al. (2011) has attractive features it can only detect local alter-

natives converging to the null hypothesis at a rate T−1/4 (here and throughout this paper T denotes the

sample size). It is the purpose of the present paper to develop a test for stationarity in locally stationary

processes which can on the one hand detect alternatives converging to the null hypothesis at the rate

T−1/2 and on the other hand requires only the specification of one regularization parameter. For this
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purpose we employ a Kolmogorov-Smirnov-type test statistic to estimate a measure of deviation from

stationarity, which is defined by

D := sup
(v,ω)∈[0,1]2

|D(v, ω)|,

where for all (v, ω) ∈ [0, 1]2

D(v, ω) :=
1

2π

(∫ v

0

∫ πω

0

f(u, λ)dλdu− v
∫ πω

0

∫ 1

0

f(u, λ)dudλ
)
,(1.1)

and f(u, λ) denotes the time-varying spectral density. Note that the quantity D is obviously zero if

the process is stationary (i.e. f(u, λ) is does not depend on u). The consideration of functionals of the

form (1.1) for the construction of a test for stationarity is very natural and was already suggested by

Dahlhaus (2009). In particular, Dahlhaus and Polonik (2009) proposed an estimator of this quantity

which is based on the integrated pre-periodogram (with respect to the Lebesgue measure). However, in

applications Riemann sums are used to approximate the integral and therefore the approach proposed

by these authors is not directly implementable. In particular, it is pointed out in Example 2.7 of

Dahlhaus (2009) that the asymptotic properties of an estimator based on Riemann approximation are

an open problem so far (see the discussion at the end of Section 2 for more details).

In Section 2 we introduce an alternative stochastic process, say {D̂T (v, w)}(v,w)∈[0,1]2 , which is based on

a summation of powers of the localised periodogram and serves as an estimate of {D(v, w)}(v,w)∈[0,1]2 .
The proposed statistic does neither require integration of the localised periodogram with respect to an

absolute continuous measure nor the problematic choice of a second regularization parameter. Weak

convergence of a properly standardized version of D̂T to a Gaussian process is established under the

null hypothesis, local and fixed alternatives, giving a consistent estimate of D. The distribution of the

limiting process depends on certain features of the data generating process, which are difficult estimate.

Therefore the second purpose of this paper is the development of an AR(∞) bootstrap method and a

proof of its consistency (see Section 3 for details). We also provide a solution of the problem mentioned

in the previous paragraph and prove weak convergence of an Riemann approximation for the integrated

pre-periodogram proposed by Dahlhaus (2009) (see Theorem 2.2 in the following section). As a result

we obtain two empirical processes estimating the function D defined in (1.1) which differ by the use

of localised periodogram and the pre-periodogram in the Riemann approximations. In Section 4 we

investigate the finite sample properties by means of a simulation study. Although the use of the pre-

periodogram does not require the specification of any regularization parameter, it is demonstrated

that it yields substantially less power compared to the statistic based on the localised periodogram.

Additionally, it is also shown that the latter method is extremely robust with respect to different choices

of the window width, which is used for the calcualtion of the localised periodogram. Moreover we also

provide a comparison with the test proposed in Dette et al. (2011) and show that their proposal is

outperformed by the new method in most cases. Finally, for the sake of a transparent presentation of

the results all technical details are deferred to an appendix in Section 5.

3



2 The test statistic

Following Dahlhaus and Polonik (2009), we define a locally stationary process via a sequence of stochas-

tic processes {Xt,T}t=1,...,T which exhibit a time-varying MA(∞) representation, namely

Xt,T =
∞∑

l=−∞

ψt,T,lZt−l, t = 1, . . . , T,(2.1)

where the random variables Zt are independent identically standard normal distributed random vari-

ables. Since the coefficients ψt,T,l are in general time dependent, each process {Xt,T}t=1,...,T is typically

not stationary. To ensure that the process shows approximately stationary behaviour on a small time

interval, we impose that there exist twice continuously differentiable functions ψl : [0, 1] → R (l ∈ Z)

such that
∞∑

l=−∞

sup
t=1,...,T

|ψt,T,l − ψl(t/T )| = O(1/T )(2.2)

as T →∞. Furthermore, we assume that the following technical conditions

∞∑
l=−∞

sup
u∈[0,1]

|ψl(u)||l| <∞,(2.3)

∞∑
l=−∞

sup
u∈[0,1]

|ψ′l(u)| <∞,(2.4)

∞∑
l=−∞

sup
u∈[0,1]

|ψ′′l (u)| <∞(2.5)

are satisfied, which are in general rather mild [see Dette et al. (2011) for more details]. Note that

variables Zt with time varying variance σ2(t/T ) can be included in the model by choosing the coefficients

ψt,T,l in (2.1) appropriately.

Define

ψ(u, exp(−iλ)) :=
∞∑

l=−∞

ψl(u) exp(−iλl),

then the function

f(u, λ) =
1

2π
|ψ(u, exp(−iλ))|2

is well defined and called the time varying spectral density of {Xt,T}t=1,...,T [see Dahlhaus (1996)]. It

is continuous by assumption and can roughly be estimated by a local periodogram. To be precise we

assume without loss of generality that the total sample size T can be decomposed as T = NM , where

N and M are integers and N is even. We then define the local periodogram at time u by

IXN (u, λ) :=
1

2πN

∣∣∣N−1∑
s=0

XbuT c−N/2+1+s,T exp(−iλs)
∣∣∣2
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[see Dahlhaus (1997)], where we have set Xj,T = 0, if j 6∈ {1, . . . , T}. This is the usual periodogram

computed from the observations XbuT c−N/2+1,T , . . . , XbuT c+N/2,T . It can be shown that

E(IXN (u, λ)) = f(u, λ) +O(1/N) +O(N/T )

and therefore the statistic IXN (u, λ) is an asymptotically unbiased estimator for the spectral density if

N → 0 and N = o(T ). However, IXN (u, λ) is not consistent just as the usual periodogram.

We now consider an empirical version of the function D(v, ω) defined in (1.1), that is

D̂T (v, ω) :=
1

T

bvMc∑
j=1

bωN
2
c∑

k=1

IXN (uj, λk)−
bvMc
M

1

T

M∑
j=1

bωN
2
c∑

k=1

IXN (uj, λk),(2.6)

where the points

uj :=
tj
T

:=
N(j − 1) +N/2

T
, j = 1, ...,M

define an equidistant grid of the interval [0, 1] and

λk :=
2πk

N
, k = 1, ...,

N

2

denote the Fourier frequencies. It follows from the proof of Theorem 2.1 in the Appendix that for every

v ∈ [0, 1] and ω ∈ [0, 1] we have

E(D̂T (v, ω)) =
1

T

bvMc∑
j=1

bωN
2
c∑

k=1

f(uj, λk)−
bvMc
M

1

T

M∑
j=1

bωN
2
c∑

k=1

f(uj, λk) +O(1/N) +O(N2/T 2)

= D(v, ω) +O(1/N) +O(N/T )

due to the approximation error of the Riemann sum. This error can be improved, if we replace D(v, ω)

by its discrete time approximation, that is

DN,M(v, ω) := D
(bvMc

M
,
bωN

2
c

N
2

)
,

for which the representation

E(D̂T (v, ω)) = DN,M(v, ω) +O(1/N) +O(N2/T 2)(2.7)

holds. The approximation error of the Riemann sum in (2.7) becomes smaller due to the choice of

the midpoints uj. The rate of convergence will be T−1/2 later on, so we need the O(·)-terms to vanish

asymptotically after multiplication with
√
T . Therefore we define an empirical spectral process by

ĜT (v, ω) :=
√
T
( 1

T

bvMc∑
j=1

bωN
2
c∑

k=1

IXN (uj, λk)−
bvMc
M

1

T

M∑
j=1

bωN
2
c∑

k=1

IXN (uj, λk)−DN,M(v, ω)
)
,
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and assume

N →∞, M →∞, T 1/2

N
→ 0,

N

T 3/4
→ 0.(2.8)

Our first result specifies the asymptotic properties of the empirical process (ĜT (v, ω))(v,ω)∈[0,1]2 both

under the null hypothesis

H0 : f(u, λ) is independent of u(2.9)

corresponding to the stationary case and the alternative. The proof is complicated and therefore deferred

to the Appendix. Throughout this paper the symbol ⇒ denotes weak convergence in [0, 1]2.

Theorem 2.1 If the assumptions (2.2)–(2.5) and (2.8) are satisfied, then as T →∞ we have

(ĜT (v, ω))(v,ω)∈[0,1]2 ⇒ (G(v, ω))(v,ω)∈[0,1]2 ,(2.10)

where (G(v, ω))(v,ω)∈[0,1]2 is a Gaussian process with mean zero and covariance structure

Cov(G(v1, ω1), G(v2, ω2)) =
1

2π

∫ 1

0

∫ πmin(ω1,ω2)

0

(1[0,v1](u)− v1)(1[0,v2](u)− v2)f 2(u, λ)dλdu.

Under the null hypothesis we have DN,M(v, ω) = 0 for all N,M ∈ IN and for all v, ω ∈ [0, 1]. Therefore

we obtain

(
√
TD̂T (v, ω))(v,ω)∈[0,1]2 ⇒ (G(v, ω))(v,ω)∈[0,1]2 ,

which yields

√
T sup

(v,ω)∈[0,1]2
|D̂T (v, ω)| D−−→ sup

(v,ω)∈[0,1]2
|G(v, ω)|(2.11)

under the null hypothesis (2.9). An asymptotic level α test is then obtained by rejecting the null

hypothesis of stationarity whenever
√
T sup(v,ω)∈[0,1]2 |D̂T (v, ω)| exceeds the (1 − α)% quantile of the

distribution of the random variable sup(v,ω)∈[0,1]2 |G(v, ω)|. The asymptotic properties under the alter-

native will imply consistency of this test. Note also that under the null hypothesis H0 the covariance

structure of the limiting process in Theorem 2.1 simplifies to

(2.12) Cov(G(v1, ω1), G(v2, ω2)) =
min(v1, v2)− v1v2

2π

∫ πmin(ω1,ω2)

0

f 2(λ)dλ

and depends on the unknown spectral density f . In order to avoid the estimation of the integral of

the squared spectral density we propose to approximate the quantiles of the limiting distribution by an

AR(∞) bootstrap, which will be described in the following section.
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An alternative [asymptotically unbiased, but again not consistent] estimator for the time-varying spec-

tral density is given by

JT (u, λ) :=
1

2π

∑
k:1≤buT+1/2±k/2c≤T

XbuT+1/2+k/2cXbuT+1/2−k/2c exp(−iλk),

which is called the pre-periodogram [see Neumann and von Sachs (1997)]. Based on this statistic we

define an alternative process by

Ĥ1
T (v, ω) :=

√
T
( 1

T 2

bvT c∑
j=1

bω T
2
c∑

k=1

JT (j/T, λk,T )− bvT c
T 3

T∑
j=1

bω T
2
c∑

k=1

JT (j/T, λk,T )−D(v, ω)
)
,(2.13)

where λk,T = 2πk
T

. The convergence of the finite dimensional distributions of the process (H1
T (v, ω))(v,ω)∈[0,1]2

has already been shown in Dahlhaus (2009). Tightness can be shown using similar arguments as given

in the Appendix for the proof of Theorem 2.1, which are not given here for the sake of brevity. As a

consequence we obtain the following result.

Theorem 2.2 If the assumptions (2.2)–(2.5) and (2.8) are satisfied, then as T →∞ we have

(Ĥ1
T (v, ω))(v,ω)∈[0,1]2 ⇒ (G(v, ω))(v,ω)∈[0,1]2 ,

where (G(v, ω))(v,ω)∈[0,1]2 is the Gaussian process defined in Theorem 2.1.

Because the use of Ĥ1
T (v, ω) instead of ĜT (v, ω) does not require the choice of the quantity N , which

specifies the number of observations used for the calculation of the local periodogram, it might be

appealing to construct a Kolmogorov-Smirnov-type test for stationarity on the basis of this process.

However, we will demonstrate in Section 4 by means of a simulation study that for realistic sample sizes

the method which employs the pre-periodogram is clearly outperformed by the approach based on the

local periodogram. Moreover, our numerical results also show that the use of the local periodogram is

not very sensitive with respect to the choice of the regularization parameter N either, and therefore we

strictly recommend to use the latter approach when constructing a Kolmogorov-Smirnov test.

Remark 2.3 The convergence of a modified version of the process (2.13) to the limiting Gaussian pro-

cess (G(v, ω)(v,ω))∈[0,1]2 of Theorem 2.1 was shown in Dahlhaus and Polonik (2009), where the Riemann

sum over the Fourier frequencies was replaced by the integral with respect to the Lebesgue measure.

More precisely, these authors considered the process

(Ĥ2
T (v, ω))(v,ω)∈[0,1]2 :=

1

2π
√
T

(bvT c∑
j=1

∫ πω

0

JT (j/T, λ)dλ− v
T∑
j=1

∫ πω

0

JT (j/T, λ)dλ−D(v, ω)
)
(v,ω)∈[0,1]2
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instead of (H1
T (v, ω))(v,ω)∈[0,1]2 and proved its weak convergence. Note also that asymptotic tightness

has neither been studied for an integrated nor for a summarized local periodogram in the literature so

far. Moreover, many other asymptotic results are only shown for the integral of the local periodogram

or pre-periodogram instead of the sum over the Fourier coefficients [see for example Dahlhaus (1997)

or Paparoditis (2010)]. The transition from these results to analogue statements for the corresponding

Riemann approximations is by no means obvious. For example, although it is appealing to assume that

∫ π

0

IXN (u, λ)dλ =
2π

N

N
2∑

k=1

IXN (u, λk) +O(1/N)

because of the Riemann approximation error, this fact is in general not true, as the derivative
∂IXN (u,λ)

∂λ
is

not uniformly bounded in N [a demonstrative explanation of this fact is that IXN (u, λk1) and IXN (u, λk2)

are asymptotically independent whenever k1 6= k2]. Thus in general asymptotic results for the inte-

grated local periodogram or pre-periodogram can not be directly transferred to corresponding Riemann

approxiamtions. These difficulties were also explicitly pointed out in Example 2.7 of Dahlhaus (2009).

Remark 2.4 A careful inspection of the proofs in the Appendix shows that (2.10) also holds in the

case where

(2.14) f(u, λ) = f(λ) + gTk(u, λ)

if gT = o(1/
√
T ). Here k is an appropriate function such that (2.14) defines a time-varying spectral

density. Moreover, if gT = 1√
T

, an analogue of Theorem 2.1 can be obtained where the centering term

DN,M(v, ω) in the definition of ĜT (v, ω) is replaced by

DN,M,k(v, ω) =
1

2π
√
T

(∫ bvMc
M

0

∫ 2πbωN2 c
N

0

k(u, λ)dλdu− bvMc
M

∫ 2πbωN2 c
N

0

∫ 1

0

k(u, λ)dudλ
)

(note that f(u, λ) is replaced by 1√
T
k(u, λ) in the definition of DN,M). In this case the appropriately

centered process converges weakly to a Gaussian process {G(v, ω)}(v,ω)∈[0,1]2 with covariance structure

given by (2.12). A similar comment applies to the process Ĥ1
T defined in (2.13). This means that the

tests based on the processes ĜT and Ĥ1
T can detect alternatives converging to the null hypothesis at a

rate T−1/2. In contrast, the proposal of Dette et al. (2011) is based on an L2-distance between f(u, λ)

and
∫ 1

0
f(v, λ)dv and is therefore only able to detect alternatives converging to the null hypothesis at a

rate T−1/4.

3 Bootstrapping the test statistic

To approximate the limiting distribution of sup(v,ω)∈[0,1]2 |G(v, ω)|, we employ an AR(∞)-bootstrap

approximation, which was introduced by Kreiß (1988). The bootstrap works by fitting an AR(p)-model
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(p ∈ IN) to the data X1,T , ..., XT,T , where the parameter p = p(T ) increases with the sample size T . To

be precise we first calculate an estimator (â1,p, ..., âp,p) for

(a1,p, ..., ap,p) = argmin
b1,p,...,bp,p

E

(
Xt,T −

p∑
j=1

bj,pXt−j,T

)2
(3.1)

and then simulate a pseudo-series X∗1,T , ..., X
∗
T,T according to the model

X∗t,T = Xt,T ; t = 1, ..., p,

X∗t,T =

p∑
j=1

âj,pX
∗
t−j,T + Z∗j ; p < t ≤ T.

Here the quantities Z∗j denote normal distributed random variables with mean zero and variance

σ̂2
p :=

1

T − p

T∑
t=p+1

(ẑt − zT )2,(3.2)

where zT := 1
T−p

∑T
t=p+1 ẑt and

ẑt := Xt,T −
p∑
j=1

âj,pXt−j,T for t = p+ 1, ..., T

[in other words σ̂2
p is the standard variance estimator of the error process ẑt]. We now define the statistic

Ĝ∗T (v, ω) in the same way as ĜT (v, ω) where the original observations X1,T , ..., XT,T are replaced by the

bootstrap replicates X∗1,T , ..., X
∗
T,T . To assure that this procedure approximates the limiting distribution

corresponding to the null hypothesis both under the null hypothesis and the alternative, we define the

stationary process XAR
t (p) as the process which is defined through

XAR
t (p) =

p∑
j=1

aj,pX
AR
t−j(p) + ZAR

t (p),

where ZAR
t (p) is a Gaussian white noise process with mean zero and variance

σ2
p = E

(
Xt −

p∑
j=1

aj,pXt−j

)2

,

whereXt denotes the stationary process with spectral density
∫ 1

0
f(u, λ)du. We now impose the following

technical conditions:

Assumption 3.1

(i) p = p(T ) ∈ [pmin(T ), pmax(T )], where pmax(T ) ≥ pmin(T )
T→∞−−−−→∞ and

p3max(T )
√

log(T )√
T

= O(1)(3.3)
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(ii) The stationary process Xt with strictly positive spectral density
∫ 1

0
f(u, λ)du has an AR(∞)-

representation, i.e.

Xt =
∞∑
j=1

ajXt−j + ZAR
t(3.4)

where (ZAR
j )j∈Z denotes a Gaussian white noise process with variance σ2 > 0,

∑∞
j=1 |aj| <∞ and

1−
∞∑
j=1

ajz
j 6= 0 for |z| ≤ 1.

(iii) The estimators for the AR parameters defined by (3.1) satisfy

max
1≤j≤p

|âj,p − aj,p| = O(
√

log(T )/T )(3.5)

uniformly with respect to p ≤ p(T ).

(iv) The estimate σ̂2
p defined in (3.2) converges in probability to σ2 > 0 .

All assumptions are rather standard in the framework of an AR(∞)-bootstrap [see for example Kreiß

(1997) or Berg et al. (2010)] and it follows from Lemma 2.3 in Kreiß et al. (2011) that there exists a

p0 ∈ IN such that for all p ≥ p0 the AR(p)-process defined through (3.1) has an MA(∞)-representation

XAR
t (p) =

∞∑
l=0

ψARl (p)ZAR
t−l (p).(3.6)

Furthermore assumption (3.5) and Lemma 2.3 in Kreiß et al. (2011) imply that there exist a p′0 ∈ IN ,

such that for all p ≥ p′0 the fitted AR(p)-process has an MA(∞)-representation

X∗t,T =
∞∑
l=0

ψ̂ARl (p)Z∗t−l.

Because of (2.8) and (3.3), assumption (3.5) is for example satisfied for the least squares or the Yule-

Walker estimators [see Hannan and Kavalieris (1986)]. These estimates have also the desired property

that the fitted AR(p)-process has an MA(∞)-representation for every p, if at least two observations

are different which is typically the case. Note that (2.3) together with Lemma 2.1 of Kreiß et al. (2011)

imply

∞∑
j=1

j|aj| <∞,(3.7)

which will be used in the proof of the following theorem.
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Theorem 3.2 If the assumptions (2.2)–(2.5), (2.8) and Assumption 3.1 are satisfied, then as T →∞
we have conditionally on X1,T , ..., XT,T

(Ĝ∗T (v, ω))(v,ω)∈[0,1]2 ⇒ (G̃(v, ω))v∈[0,1],ω∈[0,1],

where (G̃(v, ω))(v,ω)∈[0,1]2 denotes a centered Gaussian process with covariance structure

Cov(G̃(v1, ω1), G̃(v2, ω2)) =
min(v1, v2)− v1v2

2π

∫ πmin(ω1,ω2)

0

(∫ 1

0

f(u, λ)du
)2
dλ.

We now obtain empirical quantiles of sup(v,ω)∈[0,1]2 |G(v, ω)| by calculating D̂∗T,i := sup(v,ω)∈[0,1]2 |Ĝ∗T,i(v, ω)|
for i = 1, ..., B where Ĝ∗T,1(v, ω), ..., Ĝ∗T,B(v, ω) are the B bootstrap replicates of ĜT (v, ω). We then reject

the null hypothesis, whenever

√
T sup

(v,ω)∈[0,1]2
|D̂T (v, ω)| > (D̂∗T )T,b(1−α)Bc,(3.8)

where (D̂∗T )T,1, ..., (D̂
∗
T )T,B denotes the order statistic of D̂∗T,1, ..., D̂

∗
T,B. This test has asymptotic level α

because of Theorem 3.2 and is consistent, since conditionally on X1,T , ..., XT,T each bootstrap statistic

sup(v,ω)∈[0,1]2 |Ĝ∗T (v, ω)| converges to a non generate random variable, while
√
T sup(v,ω)∈[0,1]2 |D̂T (v, ω)|

converges to infinity by Theorem 2.1. We finally point out that similar results can be shown for the

statistic which is obtained by replacing in D̂T the localised periodogram by the pre-periodogram. The

technical details are omitted for the sake of brevity, but the finite sample performance of this alternative

approach will be investigated in the following section.

4 Finite sample properties

4.1 Choosing the parameter

We first comment on how to choose the parameters N and p in concrete applications. Although the

proposed method does not show much sensitivity with respect to different choices of both parameters,

we select p throughout this section as the minimizer of the AIC criterion [see Akaike (1973)], which is

defined by

p̂ = argminp
1

T

T
2∑

k=1

(
log(fθ̂(p)(λk,T ) +

IXT (λk,T )

fθ̂(p)(λk,T )

)
+ p/T

in the context of stationary processes [see Whittle (1951) or Whittle (1952)]. Here fθ̂(p) is the spectral

density of a stationary AR(p) process with the fitted coefficients and IXT is the usual stationary peri-

odogram. Therefore we focus in the following discussion on the sensitivity analysis of the test (3.8)

with respect to different choices of the parameter N . In particular it will be demonstrated in several

examples that the test is very robust with respect to different choices of N .
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Figure 1: Estimated densities of the distribution of the statistic
√
T sup(v,ω)∈[0,1]2 |D̂T (v, ω)| under the

null hypothesis. The dotted line is the estimated exact density while the solid lines corresponds to the

estimated densities of the bootstrap approximations. Left panel: N = 8; right panel: N = 16.

4.2 Bootstrap approximation

We now illustrate how the proposed bootstrap method approximates the distribution of the statistic√
T sup(v,ω)∈[0,1]2 |D̂T (v, ω)| under the null hypothesis. For this purpose we generated observations of

the stationary AR(1) model

Xt,T = 0.5Xt−1,T + Zt t = 1, ..., T

for T = 128 and calculated the bootstrap test statistic
√
T sup(v,ω)∈[0,1]2 |D̂T (v, ω)| both for N = 16 and

N = 8. For both cases we generate 1000 replicates to estimate the exact distribution and chose randomly

10 series from the 1000 replications for which we calculate 1000 bootstrap approximations. Based on

the 1000 bootstrap replications we estimate the density of the corresponding bootstrap approximation.

The plots are given in Figure 1 where the dotted line corresponds to the estimated exact density while

the dashed lines show the 10 estimated densities of the bootstrap approximations.

4.3 Size and power of the test

In this section we investigate the size and power of the test (3.8) and the analogue based on the

pre-periodogram. We also compare these methods with a test, which has recently been proposed by

Dette et al. (2011). All reported results are based on 200 bootstrap replications and 1000 simulation

12



φ = −0.5 φ = 0 φ = 0.5

T N M 5% 10% 5% 10% 5% 10%

64 8 8 0.025 0.06 0.035 0.086 0.05 0.099

128 16 8 0.031 0.077 0.042 0.081 0.034 0.092

128 8 16 0.03 0.076 0.038 0.083 0.055 0.102

256 32 8 0.04 0.086 0.051 0.106 0.053 0.111

256 16 16 0.038 0.089 0.044 0.085 0.045 0.08

256 8 32 0.036 0.083 0.051 0.098 0.05 0.102

512 64 8 0.054 0.103 0.052 0.084 0.042 0.09

512 32 16 0.046 0.083 0.044 0.09 0.049 0.092

512 16 32 0.038 0.079 0.056 0.098 0.052 0.099

512 8 64 0.05 0.102 0.047 0.101 0.051 0.112

Table 1: Rejection probabilities of the test (3.8) under the null hypothesis. The data was generated

according to model (4.1).

runs under the null hypothesis while we used 500 simulation runs under the alternative. To study the

approximation of the nominal level we simulate AR(1) processes

Xt = φXt−1 + Zt, t ∈ Z(4.1)

and MA(1) processes

Xt = Zt + θZt−1, t ∈ Z(4.2)

for different values of the parameters φ and θ. The corresponding results are depicted in Table 1 and

2 and we observe a precise approximation of the nominal level for φ ∈ {−0.5, 0, 0.5} and θ = 0.5 even

for very small samples sizes. Furthermore, if T gets larger, the results are basically not affected by

the choice of N in these cases. For θ = −0.5 the nominal level is underestimated for smaller T but

for T = 512 the approximation of the nominal level becomes much more precise and is robust with

respect to different choices of the window width N if it is chosen according to the assumptions (2.8) (so

basically N should be larger than M).

To study the power of the test (3.8) we simulated data from the following four models which corresponds

13



θ = −0.5 θ = 0.5

T N M 5% 10% 5% 10%

64 8 8 0.012 0.041 0.045 0.091

128 16 8 0.023 0.05 0.043 0.087

128 8 16 0.025 0.043 0.05 0.102

256 32 8 0.033 0.081 0.04 0.074

256 16 16 0.025 0.061 0.043 0.083

256 8 16 0.025 0.057 0.059 0.112

512 64 8 0.038 0.075 0.052 0.106

512 32 16 0.035 0.075 0.047 0.094

512 16 32 0.029 0.058 0.05 0.093

512 8 64 0.025 0.053 0.07 0.116

Table 2: Rejection probabilities of the test (3.8) under the null hypothesis. The data was generated

according to model (4.2).

to the alternative of a non-stationary process

Xt,T = (1 + t/T )Zt(4.3)

Xt,T = −0.9

√
t

T
Xt−1,T + Zt(4.4)

Xt,T =

{
0.5Xt−1 + Zt if 1 ≤ t ≤ T

2
,

−0.5Xt−1 + Zt if T
2

+ 1 ≤ t ≤ T .
(4.5)

Xt,T =


0.5Xt−1 + Zt if 1 ≤ t ≤ T

2
,

10Zt if T
2

+ 1 ≤ t ≤ T
2

+ T
64

,

0.5Xt−1 + Zt if T
2

+ T
64

+ 1 ≤ t ≤ T .

(4.6)

The corresponding rejection probabilities are reported in Table 3 and we observe a reasonable behavior

of the procedure in all considered cases. Under the alternative the bootstrap test (3.8) is also robust

with respect to different choices of N . Note that even for the choice M = 32, N = 8, which clearly

contradicts (2.8), the results are satisfying.

It might be of interest to compare these results with other tests for the hypothesis of stationarity which

have been suggested in the literature. Because we are interested in procedures, which require as less as

possible regularization we restrict ourselves to a comparison with two procedures. In Table 5 we present

the rejection frequencies if we use the pre-periodogram [which was defined in (2.13)] instead of the local

periodogram in our approach [see Theorem 2.2 and the discussion at the end of Section 2]. Recall that

the use of the pre-periodogram does not require the specification of the value N , which specifies the

14



(4.3) (4.4) (4.5) (4.6)

T N M 5% 10% 5% 10% 5% 10% 5% 10%

64 8 8 0.286 0.444 0.186 0.328 0.168 0.27 0.368 0.456

128 16 8 0.686 0.772 0.396 0.546 0.308 0.466 0.656 0.732

128 8 16 0.624 0.758 0.382 0.578 0.410 0.548 0.648 0.744

256 32 8 0.958 0.974 0.672 0.814 0.742 0.912 0.908 0.938

256 16 16 0.942 0.978 0.698 0.814 0.640 0.806 0.926 0.950

256 8 32 0.944 0.970 0.760 0.868 0.672 0.808 0.910 0.930

Table 3: Rejection probabilities of the test (3.8) for several alternatives.

number of observations for the calculation of the local periodogram. This makes its use attractive for

practitioners. However, the results of the simulation study show that compared to the local periodogram

the use of the pre-periodogram yields to a substantial loss of power for all four alternatives, in particular

under alternative (4.5). Based on these observations the Kolmogorov-Smirnov test based on the pre-

periodogram can not be recommended.

In Table 4 we show the corresponding rejection probabilities for the test proposed in Dette et al. (2011),

which is–to our best knowledge–the only available method with only one regularization parameter

(namely N). All other methods require at least the specification of two parameters (usually the choice

of a smoothing bandwidth and N). Moreover, in a detailed simulation study Dette et al. (2011)

demonstrated that their method is superior to other proposals no matter how the additional smoothing

bandwidths are chosen. These authors proposed to estimate the L2-distance∫ 1

0

∫ π

0

(
f(u, λ)−

∫ 1

0

f(v, λ)dv
)2
dλdu

using sums of the (squared) periodogram. In order to provide a fair comparison between the two

methods we also employed the AR(∞)-bootstrap to the corresponding test to generate critical values

[note that without bootstrap the method of Dette et al. (2011) is much more sensitive with respect to

different choices of N ]. We observe that the new method also outperforms the test proposed by Dette

et al. (2011) in the alternatives (4.3), (4.4) and (4.6). In most cases the differences are substantial. On

the other hand for example (4.5) the procedure of Dette et al. (2011) has larger power if T = 64 and

T = 128, but for T = 256 the new method performs better in this case as well. A comparison of the

test proposed by Dette et al. (2011) with the Kolmogorov-Smirnov test based on the pre-periodogram

shows no clear picture. For smaller sample sizes the test based on the estimation of the L2 distance

usually has larger power (except for model (4.3)), while the opposite can be observed for the sample

size T = 256 (with an exception for the process (4.5), where the pre-periodogram test has nearly no

power).
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(4.3) (4.4) (4.5) (4.6)

T N M 5% 10% 5% 10% 5% 10% 5% 10%

64 8 8 0.116 0.196 0.188 0.232 0.250 0.344 0.352 0.456

128 16 8 0.106 0.16 0.256 0.33 0.370 0.552 0.520 0.610

128 8 16 0.168 0.268 0.220 0.286 0.432 0.566 0.528 0.606

256 32 8 0.378 0.498 0.282 0.412 0.746 0.922 0.772 0.844

256 16 16 0.208 0.368 0.276 0.41 0.618 0.794 0.834 0.898

256 8 32 0.224 0.338 0.300 0.418 0.582 0.744 0.890 0.932

Table 4: Rejection probabilities of the test proposed Dette et al. (2011) for several alternatives (quantiles

obtained by AR(∞)-bootstrap).

(4.3) (4.4) (4.5) (4.6)

T 5% 10% 5% 10% 5% 10% 5% 10%

64 0.188 0.340 0.080 0.202 0.022 0.056 0.288 0.438

128 0.552 0.702 0.216 0.392 0.036 0.116 0.680 0.752

256 0.938 0.968 0.580 0.734 0.080 0.176 0.912 0.938

Table 5: Rejection probabilities of the test based on the pre-periodogram for several alternatives.
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Figure 2: Left panel: Weekly egg prices at a German agriculture market between April 1967 and March

1972. Right panel: First-order difference of the weekly egg prices.

4.4 Data example

As an illustration we consider T = 249 observations of weekly egg prices at a German agriculture market

between April 1967 and March 1972. A plot of the data is given in Figure 2, and following Paparoditis

(2010) the first-order difference ∆t = Xt − Xt−1 of the observed time series are analyzed. Although

in the literature several stationary models were proposed to fit this data [see Paparoditis (2010) for

more details], the new test rejects the null hypothesis with the p-value 0.006 if we choose N = 32 or

N = 16, and with the p-value 0.001 if we choose N = 8. These results are in line with the findings of

Paparoditis (2010), and again the choice of N does not change the result much [note that the choice

N = 8 contradicts to the assumption (2.8) and therefore one should use N = 32 or N = 16 which yields

the same p-value].

Acknowledgements This work has been supported in part by the Collaborative Research Center

“Statistical modeling of nonlinear dynamic processes” (SFB 823, Teilprojekt A1, C1) of the German

Research Foundation (DFG).
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5 Appendix: Proofs

5.1 Proof of Theorem 2.1

To show weak convergence we will prove the following two claims [see van der Vaart and Wellner (1996),

Theorem 1.5.4 and 1.5.7]:

(1) Convergence of the finite dimensional distributions

(ĜT (yj))j=1,...,K
D−−→ (G(yj))j=1,...,K(5.1)

where yj = (vj, ωj) ∈ [0, 1]2 (j = 1, ..., K) and K ∈ IN .

(2) Stochastic equicontinuity, i.e.

∀η, ε > 0 ∃δ > 0 : lim
T→∞

P
(

sup
y1,y2∈[0,1]2:d2(y1,y2)<δ

|GT (y1)−GT (y2)| > η
)
< ε.(5.2)

Proof of (5.1): The proof follows by similar arguments as given in the proof of Theorem 3.1 in Dette

et al. (2011). For the sake of brevity and because we will use similar arguments in the proof of (5.2)

we will sketch how the assertions

E(ĜT (v, ω))
T→∞−−−−→ 0(5.3)

Cov(ĜT (y1), ĜT (y2)
T→∞−−−−→ 1

2π

∫ 1

0

∫ πmin(ω1,ω2)

0

(1[0,v1](u)− v1)(1[0,v2](u)− v2)f 2(u, λ)dλdu(5.4)

with yj = (vj, ωj) (j = 1, 2) can be shown. Note that we have

ĜT (v, ω) =
1√
T

M∑
j=1

N
2∑

k=1

φv,ω,M,N(uj, λk)I
X
N (uj, λk)−

√
TDN,M(φv,ω,M,N) =: GT (φv,ω,M,N)

with

φv,ω,M,N(u, λ) : = (I
[0,
bvMc
M

]
(u)− bvMc

M
)I

[0,
2πbωN2 c

N
]
(λ)

for u, λ ≥ 0 and

DN,M(φ) :=
1

2π

∫ 1

0

∫ π

0

φ(u, λ)f(u, λ)dλdu.

In order to simplify some technical arguments we also define

φv,ω,M,N(u, λ) : = φv,ω,M,N(u,−λ)
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for u ≥ 0, λ < 0, and obtain

E

( 1

T

M∑
j=1

N
2∑

k=1

φv,ω,M,N(uj, λk)I
X
N (uj, λk)

)

=
1

T

M∑
j=1

N
2∑

k=1

φv,ω,M,N(uj, λk)
1

2πN

N−1∑
p,q=0

∞∑
l,m=−∞

ψl

(tj −N/2 + 1 + p

T

)
ψm

(tj −N/2 + 1 + q

T

)
E(Ztj−N/2+1+p−mZtj−N/2+1+q−l) exp(−iλk(p− q)) (1 +O(1/T )) ,

A Taylor expansion now yields that this is equal to

1

T

M∑
j=1

N
2∑

k=1

φv,ω,M,N(uj, λk)
1

2πN

N−1∑
p,q=0

∞∑
l,m=−∞

ψl(uj)ψm(uj)

×E(Ztj−N/2+1+p−mZtj−N/2+1+q−l) exp(−iλk(p− q))(1 +O(1/T ) +O(N2/T 2))

[for details see Dette et al. (2011)]. Since E(ZiZj) = 0 for i 6= j we obtain the equation p = q + m− l
which shows that the above expression equals

1

2πNT

M∑
j=1

N
2∑

k=1

φv,ω,M,N(uj, λk)
∞∑

l,m=−∞

N−1∑
q=0

0≤q+m−l≤N−1

ψl(uj)ψm(uj) exp(−iλk(m− l)) +O(1/T ) +O(N2/T 2)

=
1

2πNT

M∑
j=1

N
2∑

k=1

φv,ω,M,N(uj, λk)
∞∑

l,m=−∞
|l−m|≤N−1

N−1∑
q=0

0≤q+m−l≤N−1

ψl(uj)ψm(uj) exp(−iλk(m− l))

+
1

2πNT

M∑
j=1

N
2∑

k=1

φv,ω,M,N(uj, λk)
∞∑

l,m=−∞
|l−m|≥N

N−1∑
q=0

0≤q+m−l≤N−1

ψl(uj)ψm(uj) exp(−iλk(m− l))

+O(1/T ) +O(N2/T 2).

Dropping the extra condition 0 ≤ q +m− l ≤ N − 1, the second term is bounded by

C
∞∑

l,m=−∞
|l−m|≥N

sup
u
|ψl(u)| sup

u
|ψm(u)| ≤ 2C

∞∑
m=−∞

sup
u
|ψm(u)|

∞∑
l=−∞
|l|≥N/2

sup
u
|ψl(u)|(5.5)

≤
4C
∑∞

m=−∞ supu |ψm(u)|
∑∞

l=−∞ |l| supu |ψl(u)|
N

= O(1/N),
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for some C ∈ IR and the order follows from (2.3). Using (2.3) and (5.5) in the same way again, the first

quantity above is equal to

1

2πT

M∑
j=1

N
2∑

k=1

φv,ω,M,N(uj, λk)
∞∑

l,m=−∞

ψl(uj)ψm(uj) exp(−iλk(m− l)) +O(1/N),

and therefore we obtain

E

( 1

T

M∑
j=1

N
2∑

k=1

φv,ω,M,N(uj, λk)I
X
N (uj, λk)

)

=
1

T

M∑
j=1

N
2∑

k=1

φv,ω,M,N(uj, λk)f(uj, λk) +O(1/N) +O(N2/T 2) +O(1/T )

=DN,M(φv,ω,M,N) +O(1/N) +O(N2/T 2) +O(1/T ),

where the order of the Riemann approximation follows from the specific choice of the midpoints uj.

This together with (2.8) yields (5.3).

To prove (5.4) we use symmetry arguments and obtain

T cum(
1

T

M∑
j1=1

N
2∑

k1=1

φv1,ω1,M,N(uj1 , λk1)I
X
N (uj1 , λk1),

1

T

M∑
j2=1

N
2∑

k2=1

φv2,ω2,M,N(uj2 , λk2)I
X
N (uj2 , λk2))

=
1

4T

1

(2πN)2

M∑
j1,j2=1

N
2∑

k1,k2=−bN−1
2
c

φv1,ω1,M,N(uj1 , λk1)φv2,ω2,M,N(uj2 , λk2)

×
N−1∑

p1,p2,q1,q2=0

∞∑
m1,m2,l1,l2=−∞

ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2) exp(−iλk1(p1 − q1)) exp(−iλk2(p2 − q2))

× cum(Ztj1−N/2+1+p1−m1Ztj1−N/2+1+q1−l1 , Ztj2−N/2+1+p2−m2Ztj2−N/2+1+q2−l2)(1 +O(N2/T 2) +O(1/T ))

in the same way as above. Because of

cum(Ztj1−N/2+1+p1−m1Ztj1−N/2+1+q1−l1 , Ztj2−N/2+1+p2−m2Ztj2−N/2+1+q2−l2)

=cum(Ztj1−N/2+1+p1−m1Ztj2−N/2+1+q2−l2)cum(Ztj2−N/2+1+p2−m2Ztj1−N/2+1+q1−l1)

+ cum(Ztj1−N/2+1+p1−m1Ztj2−N/2+1+p2−m2)cum(Ztj1−N/2+1+q1−l1Ztj2−N/2+1+q2−l2),
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the calculation of the highest order term in the variance splits into two sums and we only consider the

first one (the second sum is treated completely analogously), which equals

1

4T

M∑
j1,j2=1

N
2∑

k1,k2=−bN−1
2
c

φv1,ω1,M,N(uj1 , λk1)φv2,ω2,M,N(uj2 , λk2)

× 1

(2πN)2

∞∑
m1,m2,l1,l2=−∞

N−1∑
q1,q2=0

0≤q2+m1−l2+tj2−tj1≤N−1
0≤q1+m2−l1+tj1−tj2≤N−1

ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2)

× exp(−i(λk1 − λk2)(q2 − q1 + tj2 − tj1)) exp(−iλk1(m1 − l2)− iλk2(m2 − l1))

=
1

4T

M∑
j1,j2=1

N
2∑

k1,k2=−bN−1
2
c

φv1,ω1,M,N(uj1 , λk1)φv2,ω2,M,N(uj2 , λk2)

× 1

(2πN)2

∞∑
m1,m2,l1,l2=−∞

(+)

N−1∑
q1,q2=0

0≤q2+m1−l2+tj2−tj1≤N−1
0≤q1+m2−l1+tj1−tj2≤N−1

ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2)

× exp(−i(λk1 − λk2)(q2 − q1 + tj2 − tj1)) exp(−iλk1(m1 − l2)− iλk2(m2 − l1))(1 +O(1/N))

where
∑
(+)

means that summation is only performed over those indices x, y ∈ {m1,m2, l1, l2} such that

|x− y| < N , and the O(1/N)-term follows with (5.5). Assume that j1 has been chosen. Then j2 must

be equal to j1, j1 − 1 or j1 + 1, as all other combination of j1 and j2 vanish, because of the condition

0 ≤ q2 +m1− l2 + tj2 − tj1 ≤ N − 1 and the fact that the summation is only performed with respect to

the indices satisfying |x− y| < N . If j2 equals j1− 1 or j1 + 1, it follows from (2.3) and the well known

identity

1

N

N
2∑

k=−bN−1
2
c

exp(−iλkt) =

{
1, t = lN with l ∈ Z
0, else

(5.6)

that the corresponding terms are of order O(1/N). The idea is that when all variables but q1 and q2
are fixed, then first there is for a given q2 at most one choice for q1 for which (5.6) becomes non-zero,

and second the number of q2 satisfying 0 ≤ q2 +m1 − l2 + tj2 − tj1 ≤ N − 1 is bounded by |m1 − l2| (if

j1 6= j2), so (2.3) can be applied.
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Therefore we only have to consider the case j1 = j2, and the above expression is

1

4T

M∑
j1=1

N
2∑

k1,k2=−bN−1
2
c

φv1,ω1,M,N(uj1 , λk1)φv2,ω2,M,N(uj1 , λk2)(5.7)

× 1

(2πN)2

∞∑
m1,m2,l1,l2=−∞

(+)

N−1∑
q1,q2=0

0≤q2+m1−l2≤N−1
0≤q1+m2−l1≤N−1

ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2)

× exp(−i(λk1 − λk2)(q2 − q1)) exp(−iλk1(m1 − l2)− iλk2(m2 − l1))(1 +O(1/N))

Observing

1

N

N−1∑
q=0

exp(−i(λk1 − λk2)q) =

{
1, k1 − k2 = lN with l ∈ Z
0, else

,

it follows that for fixed m1, l2 and k1 6= k2 we have

∣∣∣ N−1∑
q2=0

0≤q2+m1−l2≤N−1

exp(−i(λk1 − λk2)q2)
∣∣∣ =

∣∣∣ N−1∑
q2=0

q2+m1−l2<0
or

q2+m1−l2>N−1

exp(−i(λk1 − λk2)q2)
∣∣∣ ≤ |m1 − l2|,

which implies

∣∣∣ 1

(2πN)2

N−1∑
q1,q2=0

0≤q2+m1−l2≤N−1
0≤q1+m2−l1≤N−1

exp(−i(λk1 − λk2)(q2 − q1))
∣∣∣ ≤ |m1 − l2||m2 − l1|/(2πN)2.(5.8)

By using (2.3) and (5.8) it can now be seen that all terms with k1 6= k2 are of the order O(1/N), and

similar arguments as used in the calculation of the expectation yield that (5.7) equals

1

4π

∫ 1

0

∫ πmin(ω1,ω2)

0

(1[0,v1](u)− v1)(1[0,v2](u)− v2)f 2(u, λ)dλdu+O(1/N) +O(N2/T 2).

2

Proof of (5.2): Note that

FT : =
{
φv,ω,M,N ; v, ω ∈ [0, 1]

}
=
{
φv,ω,M,N ; (v, ω) ∈ PT

}
.

where

PT :=
{

0,
1

M
,

2

M
, ...,

M − 1

M
, 1
}
×
{

0,
2

N
,

4

N
, ..., 1− 2

N
, 1
}
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(recall that N is assumed to be even throughout this paper). We define

ρ2(φ) :=
(∫ 1

0

∫ π

0

φ2(u, λ)dλdu
)1/2

,

and F2
T is the set of functions, which can be expressed as a sum or a difference of two elements in FT .

The main task is to prove the following theorem.

Theorem 5.1 There exists a constant C ∈ IR such that for all φ ∈ F2
T :

E(|ĜT (φ)|k) ≤ (2k)!Ckρ2(φ)k ∀k ∈ IN even.

Stochastic equicontinuity follows then by similar arguments as given in Dahlhaus (1988). To be precise,

note that Theorem 5.1 implies the existence of a constant C1 ∈ IR such that for all g, h ∈ FT and η > 0:

P (|ĜT (g)− ĜT (h)| > ηρ2(g − h)) ≤ 96 exp(−
√

η

C1

)

A straightforward modification of the chaining lemma in chapter VII.2 of Pollard (1984) yields that for

a stochastic process (Z(v))v∈V , whose index set V has a finite covering-integral

J(δ) =

∫ δ

0

[
log
(48N(u)2

u

)]2
du(5.9)

for all δ and which satisfies

P
(
|Z(v)− Z(w)| > νd(v, w)

)
≤ 96 exp(−

√
ν

C1

)

for a semi-metric d on V and a constant C1 ∈ IR, there exist a dense subset V ∗ ⊂ V such that

P
(
∃v, w ∈ V ∗ with d(v, w) < ε and |Z(v)− Z(w)| > 26C1J(d(v, w))

)
≤ 2ε.

In (5.9), N(u) is the covering number which is defined as the smallest number m ∈ IN for which there

exist z1, ..., zm ∈ V with mini d(z, zi) ≤ u for all z ∈ V . By using yi = (vi, ωi) we obtain

P
(

sup
y1,y2∈PT :d2(y1,y2)<δ

|ĜT (v2, w2)− ĜT (v1, w1)| > η
)
≤ P

(
sup

f,g∈FT :ρ2(f,g)<ε(δ)
|ĜT (f)− ĜT (g)| > η

)
for d2(y1, y2) =

√
(w2 − w1)2 + (v2 − v1)2 and a certain sequence ε(δ)

δ→0−−→ 0 by continuity. The right

hand side of this inequality equals

P
(

sup
f,g∈FT :ρ2(f,g)<ε(δ)

|ĜT (f)− ĜT (g)| > η, η ≥ 26C1JT (ε(δ))
)

+ P
(

sup
f,g∈FT :ρ2(f,g)<ε(δ)

|ĜT (f)− ĜT (g)| > η, η < 26C1JT (ε(δ))
)

≤2ε(δ) + P (η < 26C1JT (ε(δ))),
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where JT (δ) is the corresponding covering integral of FT . Note that η < 26C1JT (ε(δ)) is not random

and that JT (δ) can be bounded by J(δ), which is the covering integral of
⋃∞
i=1Fi (which is finite for

every δ). Because of J(ε(δ))
δ→0−−→ 0, we have η > 26C1J(δ) whenever δ is sufficiently small and obtain

P
(

sup
f,g∈FT :ρ2(f,g)<ε(δ)

|ĜT (f)− ĜT (g)| > η
)
< 2ε(δ),

which implies the stochastic equicontinuity.

Proof of Theorem 5.1: We show

|cuml(
√
TD̂T (φ))| ≤ (2l)!C̃ lρ2(φ)l ∀l ∈ IN(5.10)

where

D̂T (φ) :=
1√
T
ĜT (φ) +DN,M(φ).

Since DN,M(φ) is constant, this implies

|cuml(ĜT )| ≤ (2l)!C lρ2(φ)l ∀l ∈ IN

for some C, and then it follows that (note that we consider only the case when k is even)

E(|ĜT (φ)|k) =
∣∣∣ ∑
{P1,...,Pm}
Partition of
{1,...,k}

{
m∏
j=1

cum|Pj |(ĜT (φ))}
∣∣∣ ≤ ρ2(φ)kCk

∑
{P1,...,Pm}
Partition of
{1,...,k}

m∏
j=1

(2|Pj|)! ≤ (2k)!Ck2kρ2(φ)k,

[the last inequality follows from Dahlhaus (1988)] which yields the assertion.

In order to prove (5.10) we assume without loss of generality that l is even (the case for odd l is proved

in the same way). The l-th cumulant of
√
TD̂T (φ) is given by

1

2lT l/2

M∑
j1,...,jl=1

N
2∑

k1,...,kl=−bN−1
2
c

φ(uj1 , λk1) · · ·φ(ujl , λkl)

× 1

(2πN)l

N−1∑
p1,q1,p2,...,pl,ql=0

∞∑
m1,n1,m2,...,ml,nl=−∞

ψm1(uj1) · · ·ψnl(ujl)

× cum(Ztj1−N/2+1+p1−m1Ztj1−N/2+1+q1−n1 , ..., Ztjl−N/2+1+pl−mlZtjl−N/2+1+ql−nl)

× exp(−iλk1(p1 − q1)) · · · exp(−iλkl(pl − ql))(1 +O(N2/T 2) +O(1/T ))

where both O(·)-terms follow as in the proof of (5.3). We define Yi,1 := Ztji−N/2+1+pi−mi and Yi,2 :=

Ztji−N/2+1+qi−ni for i ∈ {1, ..., l}. Theorem 2.3.2 in Brillinger (1981) yields

cuml(
√
TD̂T (φ)) =

∑
ν

VT (ν)(1 +O(N2/T 2) +O(1/T )),
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where the sum runs over all indecomposable partitions ν = ν1 ∪ ... ∪ νl with |νi| = 2 (1 ≤ i ≤ l, due to

Gaussianity) of the matrix

Y1,1 Y1,2
...

...

Yl,1 Yl,2

(5.11)

and

VT (ν) :=
1

2lT l/2

M∑
j1,...,jl=1

N
2∑

k1,...,kl=−bN−1
2
c

φ(uj1 , λk1) · · ·φ(ujl , λkl)

× 1

(2πN)l

N−1∑
p1,...,ql=0

∞∑
m1,...,nl=−∞

ψm1(uj1) · · ·ψnl(ujl)

× cum(Yi,k; (i, k) ∈ ν1) · · · cum(Yi,k; (i, k) ∈ νl) exp(−iλk1(p1 − q1)) · · · exp(−iλkl(pl − ql)).

We now fix one indecomposable partition ν̃ and assume without loss of generality that

ν̃ =
l−1⋃
i=1

(Yi,1, Yi+1,2) ∪ (Yl,1, Y1,2).

Because of cum(Zi, Zj) 6= 0 for i 6= j we obtain the following l equations:

q1 = pl + n1 −ml + tjl − tj1(5.12)

qi+1 = pi + ni+1 −mi + tji − tji+1
for i ∈ {1, ..., l − 1}(5.13)

and therefore only l variables (namely pi for i ∈ {1, ..., l}) of the 2l variables p1, q1, p2, ..., ql are free to

choose and must satisfy the following conditions:

0 ≤pi + ni+1 −mi + tji − tji+1
≤ N − 1 for i ∈ {1, ..., l − 1}(5.14)

0 ≤pl + n1 −ml + tjl − tj1 ≤ N − 1(5.15)

Using the identities (5.12) and (5.13), we obtain

VT (ν̃) =
1

2lT l/2

M∑
j1,...,jl=1

N
2∑

k1,...,kl=−bN−1
2
c

φ(uj1 , λk1) · · ·φ(ujl , λkl)
1

(2πN)l

N−1∑
p1,p2,...,pl=0

∞∑
m1,n1,...,ml,nl=−∞

(5.14),(5.15)

× ψm1(uj1) · · ·ψnl(ujl) exp(−iλk1(p1 − pl))
l−1∏
i=1

exp(−iλki+1
(pi+1 − pi))

× exp(−iλk1(ml − n1 + tj1 − tjl))
l−1∏
i=1

exp(−iλki+1
(mi − ni+1 + tji+1

− tji)).
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We rename the mi, ni (mi is replaced by ni and ni is replaced with mi−1 where we identify l+ 1 with 1

and 0 with l). Then (5.14) and (5.15) become

0 ≤ pi +mi − ni + tji − tji+1
≤ N − 1 for i ∈ {1, ..., l − 1}(5.16)

0 ≤ pl +ml − nl + tjl − tj1 ≤ N − 1(5.17)

and after a factorisation in the arguments of the exp-functions we obtain that VT (ν̃) is equal to

1

2lT l/2

M∑
j1,...,jl=1

N
2∑

k1,...,kl=−bN−1
2
c

φ(uj1 , λk1) · · ·φ(ujl , λkl)
1

(2πN)l

N−1∑
p1,p2,...,pl=0

∞∑
m1,n1,...,ml,nl=−∞

(5.16),(5.17)

ψm1(uj2) · · ·ψnl(ujl)

l−1∏
i=1

exp(−i(λki − λki+1
)pi) exp(−i(λkl − λk1)pl)

exp(−iλk1(nl −ml + tj1 − tjl))
l−1∏
i=1

exp(−iλki+1
(ni −mi + tji+1

− tji))

We see that one can divide the sum over the pi,mi, ni into a product of two sums, namely one sum over

all pi,mi, ni with even i and the same sum with odd i. Analogously we divide (5.16) and (5.17) into

0 ≤ pi +mi − ni + tji − tji+1
≤ N − 1 for i ∈ {1, 3, 5, ..., l − 3, l − 1}(5.18)

and

0 ≤ pi +mi − ni + tji − tji+1
≤ N − 1 for i ∈ {2, 4, 6, ..., l − 4, l − 2}(5.19)

0 ≤ pl +ml − nl + tjl − tj1 ≤ N − 1.(5.20)

After applying the Cauchy-Schwarz inequality we obtain that VT (ν̃) is bounded by

{ 1

2lT l/2

M∑
j1,...,jl=1

N
2∑

k1,...,kl=−bN−1
2
c

φ(uj1 , λk1)
2φ(uj3 , λk3)

2 · · ·φ(ujl−1
, λkl−1

)2
1

(2πN)l
(5.21)

∣∣∣N−1∑
p1=0

exp(−i(λk1 − λk2)p1)
N−1∑
p3=0

exp(−i(λk3 − λk4)p3) · · ·
N−1∑
pl−1=0

exp(−i(λkl−1
− λkl)pl−1)

∞∑
m1,n1,m3,n3,...,ml−1,nl−1=−∞

(5.18)

ψm1(uj2)ψn1(uj1)ψm3(uj4)ψn3(uj3) · · ·ψml−1
(ujl)ψnl(ujl−1

)

∏
a∈{1,3,...,l−1}

exp(−iλka+1(na −ma + tja+1 − tja))
∣∣∣2}1/2

×
{

the same term with even pi,mi, ni

}1/2
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We only consider the first term in (5.21), which is equal to

JT :=
1

2lT l/2

M∑
j1,...,jl=1

N
2∑

k1,...,kl=−bN−1
2
c

φ(uj1 , λk1)
2φ(uj3 , λk3)

2 · · ·φ(ujl−1
, λkl−1

)2
1

(2πN)l
|KT (u1, ..., ul, λk1 , ..., λkl)|2

(5.22)

with KT (u1, ..., ul, λk1 , ..., λkl) being defined implicitly. We have

1

(2πN)l

N
2∑

k2,k4,...,kl=−bN−1
2
c

|KT (u1, ..., ul, λk1 , ..., λkl)|2

=
1

(2πN)l

N−1∑
p1,p3,...,pl−1=0

N−1∑
p̃1,p̃3,...,p̃l−1=0

∞∑
m1,n1,m3,n3,...,ml−1,nl−1=−∞

(5.18)

∞∑
m̃1,ñ1,m̃3,ñ3,...,m̃l−1,ñl−1=−∞

˜(5.18)

exp(−iλk1(p1 − p̃1)) exp(−iλk3(p3 − p̃3)) · · · exp(−iλkl−1
(pl−1 − p̃l−1))

ψm1(uj2)ψn1(uj1) · · ·ψml−1
(ujl)ψnl−1

(ujl−1
)ψm̃1(uj2)ψñ1(uj1) · · ·ψm̃l−1

(ujl)ψñl−1
(ujl−1

)
N
2∑

k2,k4,...,kl=−bN−1
2
c

exp(−iλk2(p̃1 − p1 + n1 −m1 + m̃1 − ñ1)) exp(−iλk4(p̃3 − p3 + n3 −m3 + m̃3 − ñ3))

· · · exp(−iλkl(p̃l−1 − pl−1 + nl−1 −ml−1 + m̃l−1 − ñl−1))

and because of (5.6) it follows that for every i only one of the pi and p̃i can be chosen freely if the mi, ni
are fixed. Furthermore we can show with the same arguments as in the proof of (5.4) that because of

(5.18) and (2.3) we only have to consider the cases with ji = ji+1 for every odd i and that all other

terms are of order O(1/N). This implies

1

(2πN)l

N
2∑

k2,k4,...,kl=−bN−1
2
c

|KT (u1, ..., ul, λk1 , ..., λkl)|2 ≤
1

(2π)l
(
∞∑

m=−∞

|ψm|)2l

with |ψ| := supu |ψ(u)|, and since we only need to sum over ji with odd i in (5.22), it follows

JT ≤
1

T l/2(4π)l
(
∞∑

m=−∞

|ψm|)2l
( M∑
j=1

N
2∑

k=1

φ(uj, λk)
2
)l/2

+O(1/N).
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We obtain the same upper bound for the second factor in (5.21) and this implies

cuml(
√
TD̂T (φ)) ≤

∑
ν

1

(4π)l(2π)l/2
(
∞∑

m=−∞

|ψm|)2l
(∫ 1

0

∫ π

0

φ2(u, λ)dλdu
)l/2

+O(N2/T 2) +O(1/N)

≤ (2l)!2l
1

(4π)l(2π)l/2
(
∞∑

m=−∞

|ψm|)2l
(∫ 1

0

∫ π

0

φ2(u, λ)dλdu
)l/2

+O(N2/T 2) +O(1/N)

≤ (2l)!C̃ lρ2(φ)l,

where the last inequality follows because of N/T → 0 and 1/N → 0 and since (2l)!2l is an upper bound

for the number of indecomposable partitions of (5.11) [see Dahlhaus (1988)]. 2

5.2 Proof of Theorem 3.2

Let

X∗t,T =
∞∑
l=0

ψ̂ARl (p)Z∗t−l(5.23)

be the MA(∞) representation of the fitted AR(p)-model [its existence was shown in the discussion

after Assumption 3.1 whenever T and thus p(T ) is sufficiently large]. If the process is stationary [i.e.

ψt,T,l = ψl(u) = ψl], all the terms of order O(N2/T 2) and O(1/T ) vanish in the proof of Theorem 2.1.

For a fixed p and T , the process (5.23) is stationary, and therefore the proof of Theorem 3.2 works in

the same way as the previous one, if the (now random) terms of order OP (1/N) are a oP (T−1/2) for the

bootstrap process as well [in fact we only need that the terms of order OP (1/N) are of order oP (T−1/2)

in the calculation of the expectation while it would suffice that they are a oP (1) in the calculation of

higher order cumulants]. Note that these terms in the proof of Theorem 2.1 are up to a constant of the

form

(
∑∞

m=0 |ψm|)q1(
∑∞

l=0 l|ψl|)q2
N

with q1, q2 ∈ IN . For example we obtain from (5.5) [if the process is stationary] an upper bound for

|E(D̂T (u, λ))| [where D̂T (u, λ) was defined in (2.6)] via

C

∑∞
m=0 |ψm|

∑∞
l=0 l|ψl|

N
= O(1/N)

for some C ∈ IR, so an upper bound for the expectation of the bootstrap analogue D̂∗T (u, λ) of D̂T (u, λ)

is given by

C

∑∞
m=0 |ψ̂ARm (p)|

∑∞
l=0 l|ψ̂ARl (p)|

N
.
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Therefore it needs to be shown that

√
T

∑∞
m=0 |ψ̂ARm (p)|

∑∞
l=0 l|ψ̂ARl (p)|

N
= oP (1)

to obtain

√
TE(D̂∗T (u, λ)) = oP (1).

Because of (3.5) we can use the following bound from the proof of Theorem 3.1. in Berg et al. (2010)

for the difference between ψ̂ARl (p) and ψARl (p) (where ψARl (p) was defined in (3.6)) which is uniform in

p(T ) and uniform in l ∈ IN :

|ψ̂ARl (p)− ψARl (p)| ≤ p(1 + 1/p)−lOP (
√

log T/T )(5.24)

With (5.24) we obtain

∞∑
l=0

|ψ̂ARl (p)− ψARl (p)| = OP (p2max(T )
√

log T/T )

and

∞∑
l=0

l|ψ̂ARl (p)− ψARl (p)| = OP (p3max(T )
√

log T/T )

using properties of the geometric series, which yields

∞∑
l=0

|ψ̂ARl (p)| ≤ OP (p2max(T )
√

log T/T ) +
∞∑
l=0

|ψARl (p)|

and

∞∑
l=0

l|ψ̂ARl (p)| ≤ OP (p3max(T )
√

log T/T ) +
∞∑
l=0

l|ψARl (p)|.

Lemma 2.4 of Kreiß et al. (2011) now implies that

∞∑
l=1

(1 + l)|ψARl (p)− ψl| ≤ C̃
∞∑

l=p+1

(1 + l)|al|(5.25)

for another constant C̃ ∈ IR, where the al are the coefficients of the AR(∞)-representation [see (3.4)].

Note that in (5.25) we implicitly assumed that the ψl are the coefficents of the Wold-representation

of the process Xt defined in (3.4), since this is bound is only true for this special MA-representation.

However, since the proof of Theorem 2.1 does not depend on the special type of MA-representation,

29



we can assume without loss of generality that the ψl are the coefficents of the Wold-representation and

then (5.25) together with (2.3) and (3.7) yields

∞∑
l=0

l|ψARl (p)| ≤ C̄

for C̄ ∈ IR. Therefore we obtain with (3.3)( ∞∑
m=0

|ψ̂ARm (p)|
)p1( ∞∑

l=0

l|ψ̂ARl (p)|
)p2

= OP (1)

for p1, p2 ∈ IN , which yields the assertion.

2
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