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1 INTRODUCTION 

Since Crooks first came up in 1879 with the idea that ionised media inside of a 

discharge in low pressure gases can be considered as a state of matter, different from the 

well-known solids, liquids and gases [1], the research in this field has evolved 

continuously. Later, Langmuir named this new form of matter plasma, considering the 

property of the gas discharges to fill-in the available space. It is considered that plasma 

represents 99 % of the matter in the Universe (the stars and the space between them). 

On Earth plasma is present in the form of lightning, fire flame and the auroras. The 

most common way to produce plasma artificially is represented by the discharges 

between two electrode plates in rare gases at low pressure. The investigations that have 

been done along the time on the plasma discharges lead the scientists to consider this 

media as one with new and very useful properties. The particles that are generated 

inside plasma like ions, electrons, excited atoms and photons, gain energy and are 

reactive. This property can be used by manipulating the plasma particles. Many 

applications have been developed and investigated using plasma discharges based on 

different geometries using various materials for the electrodes, different gases in a large 

range of pressures or even liquid solutions or powders, different ways to ignite and 

sustain the discharges using various power sources and sometimes additional features 

like heating or magnetic fields. This large flexibility in producing plasma leads to a 

large diversity of plasma sources with a wide range of applications in industry, energy, 

biomedicine, analytics and quality of life. In some areas plasma plays a crucial role and 

cannot be replaced. One of these fields is represented by the analytics where most of the 

devices are based on a plasma source to ionise the analytes so that they can be further 

determined. The demands of nowadays are to develop sensitive, reliable, inexpensive 

and easy to handle devices, but at the same time portable, so that “the lab” is brought to 

the sample. This implies also to provide small and low power consumption ionisation 

sources, as well as a good sensitivity for a wide range of analytes. Also operation at 

atmospheric pressure has to be considered because for most of the analytical devices the 

samples are in open air. 

Such an ionisation source was developed based on a capillary dielectric plasma jet 

discharge. It was implemented and tested on devices like ion mobility spectrometer 
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(IMS) and liquid chromatography coupled with mass spectrometry (LC/MS) and the 

results proved that it has successfully accomplished the specific requirements. 

In this work the plasma source and the results obtained in characterizing it are 

presented. The focus of the research was aimed to get more insights into the physical 

properties of the plasma jet concerning the processes involving the energy transfer 

between different species. 

The work is structured on two parts. The first part, containing only one chapter, is an 

introduction into the field of plasma physics. Basic aspects concerning plasma, 

atmospheric plasma, dielectric barrier discharges, microplasmas and plasma jets are 

presented. The reader is brought from the vast field of plasma discharges up to the 

plasma jet discharges and their applications, passing through specific aspects that have 

to be taken into consideration in order to describe and characterize the plasma jet 

subject of this thesis. 

The second part presents the results of the experiments conducted in order to 

characterize and implement a capillary dielectric plasma jet discharge as an ionisation 

source. It contains four chapters. The first chapter presents the implementation of 

dielectric barrier discharges in the field of analytical sciences. A chronological 

transition and the evolution in the development of the present plasma jet are presented. 

The first results in characterizing the plasma jet as well as the first implementations as 

ionisation source for analytical devices, like IMS and LC/MS are presented. 

It follows a chapter in which a more detailed investigation of the capillary dielectric 

plasma jet is done. The results obtained by means of optical spectroscopic investigation 

bring new features of the plasma jet. A comparison between He, Ar and Ne as working 

gases for the plasma discharge shows which of these gases give the best results when 

the plasma jet is implemented as soft ionisation source in the IMS. Based on the 

ionisation principle that takes place in an IMS device, mixtures of the He, Ne and Ar 

each with different concentration of N, are implemented as working gas for the plasma 

and analysed by means of optical spectroscopy. The results obtained lead to a possible 

energy transfer scheme between the plasma species based on Penning ionisation, and 

concluded that He is the best suited gas to be used. 
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The second chapter of this part describes the results obtained using He as working gas 

for the plasma jet based on the previous results. Spatially resolved spectroscopic 

measurements of the plasma jet resulted in a three dimensional mapping. This mapping 

shows a clear distribution of the reactive species in the plasma jet. A simplified model 

based on the energy transfer processes and the rate equations involving He, N2 and H2O 

is presented and is proven to be in accordance with the experimental results. The main 

role in the ionisation process of water is showed to be played by the He metastable 

atoms inside the plasma jet. 

The next chapter gives an estimation procedure of the density population of one of the 

excited He states which populates a metastable level by radiative transition. The 

evaluation was made based on spectroscopic measurements done for the plasma jet 

mapping. Considering the emission line broadening parameters presented in the case of 

the chosen optically thin line, a simulation of the curve of growth was done from which 

the density population could be estimated. 

The work that has been done so far in characterizing this plasma jet brought more 

insights on the processes that take place. A path describing the energy transfer when the 

plasma jet is implemented as ionisation source was presented and the behaviour of the 

important atomic and molecular species is described. 





 

2 MICROPLASMA DISCHARGES 

2.1 Plasma discharges 

The plasma physics appeared as modern continuity and development of the older 

physics chapter of gas discharges that started back in the middle of the XIX century. 

The term of plasma was lately brought out by Irving Langmuir (1928) to describe, in 

contrary with the thin charged sheets close to the electrodes, the electrically neutral part 

of a gas discharge [2] and was used like this in the classical paper of Tonks and 

Langmuir about electrical oscillations in gas discharges [3]. The etymology of the term 

leads to the greek word  that defines the action of “pouring“. This suggests 

the fundamental capacity of the plasma to “fill in” the shape of the discharge tube, but 

also the property to act as a fluid capable of collective response to the action of electric 

and magnetic fields. To nowadays acceptance, the term plasma defines a gaseous 

mixture of neutral particles (atoms in ground and excited states, photons) and 

electrically charged particles (positive and negative ions and electrons) where the 

percentage of the last ones is big enough so that the electromagnetic interactions lead to 

a collective behaviour of the whole particles assembly and also give the electrical 

conductivity. From a macroscopic point of view, plasma is electrically neutral. Plasma 

can be seen as the fourth aggregation state of the matter. This idea was first presented 

by Crooks in 1879. He considered the ionised media inside of a discharge in low 

pressure gases to be one state of the matter with different qualitative properties 

compared to those well-known for solids, liquids and gases [1]. Although it forms 99 % 

of the matter in the Universe (the stars and the space between them) the plasma does not 

exist under the normal thermodynamically conditions of the life on Earth
1
. That means 

that in order to be studied and used, plasma has to be created under artificial conditions. 

On the upper layer of the Earth’s atmosphere the plasma state is present due to 

photoionisation of atoms and molecules by cosmic ray giving raise to aurora borealis at 

                                                 

1 Normal thermodynamically conditions on Earth: pressure on the range of 105 N m-2 and temperature of 

3103 K. 
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the poles of the earth. Also, electrical discharges in atmosphere (lightning and 

thunderbolt) generate plasma for short periods of time. Artificial plasma can be found as 

different technical applications like arc discharge, fluorescence tubes, the gases 

exhausted by the jet engines, technical treatment devices, nuclear fusion reactors etc.[4]. 

To come up with an idea about the energy required to bring up a certain chemical 

element into the plasma state, one should have in mind that the specific energies of 

thermal agitation of the atoms and molecules of solids, liquids and gases are very small. 

They represent only a few tenths or hundredths of electron Volts
2
 (eV) compared to 

those required to excite and ionize atoms and molecules that are in the range of eV. 

These big values required for the dissociation of the molecules and the ionisation of the 

atoms explain why under normal temperature and pressure conditions on Earth, plasma 

cannot appear naturally or it requires high amounts of energy like in case of lightning. 

Considering a system formed by the neutral particles of a gas, positively charged 

particles (ions) and the corresponding negatively charged particles (electrons and 

negative ions), one can say that this system represents a plasma only if the ionisation 

ratio (charged/neutrals particles) is big enough, so that the movement of the charged 

particles is governed by collective interactions
3
. In plasma, the collective interactions 

are the statistical result of the electromagnetic forces produced by the charged particles 

in movement. Each charged particle of the plasma undergoes the external 

electromagnetic field but also the macroscopic field generated by all the other particles 

of the plasma. This characteristic of the particle interactions makes that plasma, as 

physical system, to be described by self-consistent models, in which the movement of 

the charged particles (positions and the corresponding speeds) determine the forces that 

afterwards will govern this movement. Compared to the charged particles, the 

movement of the neutral ones is governed by the local conditions represented by the 

binary collisions with the neighbouring particles. 

                                                 

2 To express the kinetic energy of different particles and to compare it with the respective bounding 

energy, the Joule (1J=1 N × 1m) is not an appropriate measure unit. This is the reason why in the 

plasma physics is used the electron-volt unit (eV), which represents the kinetic energy gained by an 

electron in an electrical field with a potential difference of 1 V (1 eV = 1.602176487(40) × 10−19 J). 

3 Collective interactions are those that involve a large statistical number of particles. 

http://en.wikipedia.org/wiki/Joule
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2.2 Laboratory plasma generation 

As presented above, in order to generate plasma one should provide the neutral gas 

system with a big amount of energy that leads to the production of excited species 

(atoms, molecules) and the formation of charge carriers (electrons and ions). This 

energy can be thermal or carried by either an electric field or electromagnetic radiation. 

Electrons and ions are produced in the gas phase when electrons or photons with 

sufficient energy collide with neutral atoms and molecules of the working gas (electron 

impact ionisation or photoionisation). There are various ways to supply the necessary 

energy for plasma generation to a neutral gas. One possibility is to supply thermal 

energy, for example in flames, where exothermic chemical reactions of the molecules 

are used as the prime energy source. Adiabatic compression is also capable of gas 

heating up to the point of plasma generation. Yet another way to supply energy to a gas 

reservoir is via energetic beams that moderate in a gas volume [5]. Beams of neutral 

particles have the additional advantage of being unperturbed by electric and magnetic 

fields. Neutral beams are primarily used for sustaining plasma or for plasma heating in 

fusion devices. The most used method of generating and sustaining a low-temperature 

plasma for technological application is by applying an electric field to a neutral gas. 

Any volume of neutral gas always contains a few electrons and ions that are formed, for 

example, as a result of interaction with cosmic rays or radioactive radiation with the 

gas. These free charges are accelerated by the electric field and new particles may be 

created when they collide with atoms and molecules in the gas or with the surface of the 

electrodes. This leads to an avalanche of charged particles that is eventually balanced by 

charge carrier losses, so that a steady-state plasma is developed. 

2.3 Basic plasma processes 

In order to get a better idea about what artificial plasma (produced in laboratory) means, 

one should consider the processes that take place in such a system. An easy way is to 

separate them in bulk processes and surface processes [4]. 

The last ones are those that take place at the interaction between the plasma particles 

and the surface, in most of the cases between charged particles and electrodes, as these 

are accelerated towards them: negative ions and electrons to the anode, and positive 
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ions to the cathode, respectively. As a result of these interactions, several phenomena 

can take place. The most important ones are those at the cathode surface where heavy 

charged particles with high kinetic energy strike the surface. Thus the cathode heats up 

and electrons can be extracted from the structure on the metal or even atoms, a principle 

that is used in plasma surface treatment. 

The bulk processes are represented by the collective motions of the charged particles 

under the action of external fields and collisions between different types of components 

with kinetic energy. The most common collisions are the so-called binary collisions that 

take place between pairs of particles. Useful details about binary collisions can be 

revealed by the laws of energy and momentum preservation that can be summarised as 

follows: 

Lighter particles (m) cannot lose too much energy through elastic collisions with 

heavier particles (M) - at best a fraction 2m/M; nevertheless, substantial changes of the 

smaller particle momentum occurs (like throwing a ball to a wall). 

A moving particle striking elastically a stationary one of equal mass head-on can 

transfer all of its kinetic energy (like billiards). 

Lighter particles can lose virtually all their kinetic energy through inelastic collisions 

with heavier objects (like sandblasting). 

Equal mass particles can lose no more than half their kinetic energy through inelastic 

collisions (ion impact ionisation). 

Binary collisions in which at least one particle is charged may be dominated by long-

range Coulomb forces. The electric field transmits energy to the gas electrons (which 

are the most mobile charged species). This electronic energy is then transmitted to the 

neutral species by collisions. These collisions follow probability laws and can be 

divided in elastic collisions when the internal structure and energy of the particles 

involved does not change and the laws of energy and momentum preservation are 

fulfilled, and inelastic collisions when the internal structures of the particles involved 

varies and kinetic energy is lost. When the energy of the electrons is high enough, these 

collisions modify the electronic structure of the neutral species. It results in the creation 

of excited atoms or ions if the collisions are energetic enough. Most of the excited 

species have a very short lifetime and they get to ground state by emitting a photon. The 
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so-called ”metastable species” are also excited states but with longer life-times because 

their decay by emission of radiation is hampered, as there are no allowed optical 

transitions departing from the respective state: decay can only take place by energy 

transfers through collisions. Now, a short overview of the collisions will be given 

presenting the type of the involved particles [4]. 

The elastic collisions that take place between neutral atoms A and the corresponding 

positive ions A
+
 determine an kinetic energy transfer leading to a random distribution of 

the motion with a mean thermal speed and thermodynamic equilibrium (the temperature 

of the ions and neutrals are equal Ti = Tn). 

   fast slow less fast less slowA A A A     

In the elastic collisions involving energetic electrons and neutrals, the energy transfer is 

only in the fraction of me/M from their initial kinetic energy due to their small mass 

compared to the neutral atoms. Though this fraction is small, in the case of high 

pressure of the neutral gas, the number of these collisions is very high and they 

represent the main mechanism through which the electrons lose their energy gained 

from the electrical field. 

( ) ( )fast slow less fast lesss lowe A e A     

The inelastic collisions represent the way that leads to the loss of kinetic energy of 

charged particles. This is the important way to produce plasma particles like excited 

atoms on different energetic states or on metastable
4
 states and positive ions from atoms 

on ground state respectively. The collisions between kinetic electrons and neutral atoms 

of the plasma resulting in excited A* and metastable A
m
 atoms or ions A

+
 can be 

expressed as follows: 

*

fast slowere A e A     

m

fast slowere A e A     

                                                 

4 The excited metastable states represent those atomic excited states that have a longer life time than other 

exited states which having a short lifetime in the order of 10-8 s are considered to be unstable. The long 

lifetime of the metastable states makes their populating density to be relatively high, fact that leads to an 

increase ionisation probability of them by collisions with electrons or other plasma ions. 
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fast slowere A e A      

In order to produce an ion from a neutral atom, the colliding electron should have a 

kinetic energy equal or greater than the ionizing threshold energy of the atom on ground 

state eVi (e is the elementary electric charge and Vi is ionizing potential). When the 

electrons collide with atoms on a metastable excited state, the kinetic energy required 

for ionisation is smaller
5
. 

m

fast slowere A e A e        

Ionisation of atoms can also be realized by collisions between energetic positive ions 

with neutral atoms in ground or different excited states including metastables. 

fast slowerA A A A e         

m

fast slowerA A A A e        

In this case, in order to fulfil the preservation law of momentum and taking into 

consideration that the mass of the involved particles are of the same order, the kinetic 

energy of the ions should be at least two times bigger that the ionisation energy of the 

atoms. 

Not only collisions between charged particles with kinetic energy and atoms can lead to 

the ionisation of the last ones, but also collisions between neutral atoms that posses 

inner energy, like atoms on metastable states, and atoms on ground state. This type of 

energy transfer through collisions is called Penning ionisation and can take place in 

plasmas that contain a mixture of two gases (A and B) with one of them having the 

metastable excitation energy (EM
B
) bigger than the ionisation energy of the other one 

(eVi)
6
: 

MB A B A e      

                                                 

5 To ionise a He atom from the ground state it requires an energy of 25 eV, while it requires only 5.2 eV 

to ionise the same He atom found on a metastable state (with an energy of 19.8 eV), representing the 

energy differences between these two states. 

6 Penning ionisation plays an important role in ionisation of the Hg atoms which are used in a gas mixture 

with Ar for industrial production of fluorescent lamps. The energy of the metastable excited state of the 

Ar is of 16 eV, while the ionisation energy of the Hg only of 4.9 eV. 
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The collisions of kinetic electrons with neutral atoms in ground state or in a metastable 

state can lead to the transition of the last ones on a higher excited state like it follows: 

*Afast slowere A e     

*m

fast slowere A e A     

In the case of molecules M the number of different excited states is much bigger due to 

many vibrational and rotational energy levels, so the number of different inelastic 

collisions multiplies. 

' '( , ) ( , )v r v r

fast slowere M e M     

The excitation of atoms through collisions with kinetic ions is also possible, but in this 

case the kinetic energy of the ions should be at least two times bigger than the energy 

required to bring the neutral atoms from the ground state to the excited one, 

Ekin = 2eVex: 

*

fast slowerA A A A     

In the case of the molecules M, besides the collisions of these with charged particles 

that lead to excitation of them on different states, they can also be dissociated as it 

follows: 

faste M A B     

fastA M A A B      

After the dissociation of molecules the ionisation of the components can follow: 

M 2faste A B e       

The resonant charge transfer that leads to production of energetic neutral atoms 

represents also an important process that can take place in plasma discharges, especially 

in the cathodic region of a glow discharge: 

fast fastA A A A     
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In some plasma containing molecules with a high electron affinity like those containing 

O2 and FS6 an important process to produce negative ions is represented by the charge 

attachment: 

slowe M M   . 

2.4 Plasma classification  

As already stated, to produce plasma on Earth (laboratory plasmas) one should provide 

specific conditions of temperature, pressure and energy transfer in order to obtain 

plasma particles (excited atoms, energetic electrons and ions, photons). In order to 

achieve these conditions, different technological conceptions can be used involving 

large pressure range from atmospheric pressure to a few milibars, different ways to 

couple the energy to produce plasma particles and different geometries in a large scale 

of dimensions, from microplasmas to huge fusion reactors. Despite this large production 

variety, all plasmas have a number of features in common. For example, they are 

composed of equal amounts of positive and negative charges carried by particles that 

are arranged without any local ordering, being free to move. As differences between 

plasmas the most visible and important ones are those which are determined by the used 

working gas, the density of the 

charged particles (m
-3

) and the 

thermal energy of these particles. 

Despite the large variety in 

plasma production only two most 

important parameters are taken 

into consideration in 

characterization of plasmas: the 

density of the charged carriers 

(number m
-3

) and the thermal 

energy of the electrons in 

particular. These consideration lead to a classification of plasmas, both naturally and 

artificially produced, as can be seen in Figure 2.1 [6]. 

Figure 2.1  Classification of plasmas [5]. 



Microplasma discharges 17 

Also an important aspect in describing plasmas is represented by the temperature 

(energy) of the plasma components: electrons, ions and neutral atoms. How the 

temperature of the plasma components vary with the gas pressure is presented in the 

Figure 2.2 [6]. Considering this aspect, the plasmas can be separated into two distinct 

categories depending on the 

amounts of energy transferred 

to their components. The 

properties of the heavy particles 

(ions and atoms), like density 

and kinetic energy or 

temperature, separates the 

plasmas into thermal and 

nonthermal. Thermal plasmas 

have Te ≡ Th (where Te 

represents the electron 

temperature and Th represents 

the temperature of the heavy 

particles like ions and neutral atoms). In the core of the plasma these temperatures can 

reach values up to 10000 K and the gas is significantly ionised. Atmospheric 

nonthermal plasmas have a very high electron temperature Te, while the temperature Th 

of heavy particles remains at the ambient value. They also have a low degree of 

ionisation and consequently a small density of charged particles. The electrons and ions 

never achieve local thermodynamic equilibrium, which is the reason why gas remains at 

room temperature or very slightly above it. However, nonthermal plasmas have a high 

density of active species like atoms in different excited states including metastables and 

free radicals, giving them a very reactive character. This is the reason why plasmas have 

a wide variety of potential industrial applications that will be further presented and 

discussed in the next section. 

 

Figure 2.2  Variation of the electron and heavy particles 

temperature with pressure [5]. 
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2.5  Atmospheric pressure plasma discharges 

As their name says, atmospheric plasmas are operated in the range of normal 

atmospheric pressure. The working gas is in the range of atmospheric pressure, or the 

device produces the plasma in open air. In order to ignite the plasma, a breakdown 

voltage Vb, specific for each working gas must be exceeded. Considering a classical 

discharge that can be produced between two powered electrodes, the ignition voltage 

that must be applied to the electrodes depends on the distance between them and the 

pressure of the gas according to the following equation [7, 8]: 

 

( )

1
ln ( ) ln (1 )

b

se

B p d
V

A p d





 
   

 

, 

where A and B are specific parameters which are experimentally determined. They are 

found to be roughly constant over a 

restricted range of E/p for any given 

gas. The corresponding units are cm
-

1
 Torr

-1  for A and V cm
-1

 Torr
-1

 for B 

respectively, while se is the 

secondary electron emission 

coefficient of the cathode. The 

breakdown voltage is a function of 

the product p∙d. For large values of 

this product, Vb increases essentially 

linearly with p∙d. For small pd there 

is a limiting value of 

1ln(1 1/ )sep d A    , below which 

breakdown cannot occur. The 

breakdown voltage has a minimum 

Vmin at an p∙d = (p∙d)min  
intermediate 

value. The curve Vb(pd) is called the 

Paschen curve, and is a function of 

the gas and weakly a function of the electrode material. In Figure 2.3 are shown some 

Figure 2.3 Breakdown voltage for plane-

parallel electrodes at 20° C: a) noble 

gases; b) moleculara gases [6]. 
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typical breakdown curves for different gases in a discharge with plane-parallel 

electrodes. It can be clearly observed, that for each gas there is a minimum in the curve 

that gives the required working conditions (pressure and distance between the 

electrodes) in order to apply the lowest breakdown voltage. From the Paschen law 

follows that if the working gas is at atmospheric pressure and the distance between the 

electrodes is in the microscale range, then the igniting voltage should have a 

considerably high value. This involves the use of expensive and large power supplies. 

Another way to produce plasma at atmospheric pressure with similar physical properties 

and at the same time to use lower voltages power supplies is to reduce the dimensions 

of the discharges, respectively the distances between the electrodes. This 

miniaturisation (down-scaling) of the discharges comes as a necessity to use plasma 

sources, which in some fields of applications cannot be replaced, capable to work in 

stable condition at atmospheric pressure. In this way lots of plasma discharges were 

down-scaled giving rise to a family of miniaturised discharges, like dark or Townsend 

discharge, the glow discharge, the corona discharge and the dielectric barrier 

discharges. Due to their small dimensions these discharges can be incorporated in other 

bigger devices like most of conventional analytical detection systems (e.g. inductive 

coupled plasma-optical spectrometry (ICP-OES) or inductive coupled plasma-mass 

spectrometry (ICP-MS)) as excitation and ionisation sources. They can also be used as 

excitation source for molecular mass spectrometry [9]. Having such a large area of 

application the condition of operation and specific characteristics are required to be 

known. The laws of similarity between two glow discharges in helium are given by 

Franzke [10]. Figure 2.4 illustrates that the product pd, the ratio E/p and all the 

quantities which are functions of pd or E/p are the same in the two systems. On the left 

side of the figure the cathode, the anode, and the negative glow between them are 

represented in case of a glow discharge. On the right side of the figure a micro-scale 

discharge is represented and in this case the negative glow is closer to the cathode. 

Between the cathode and the negative glow there is the cathode fall. The length of the 

cathode fall is given by the dimension d. When the pressure is p1 = 30 mbar and a 

voltage U = 240 V is applied, the cathode fall has the length d1 = 800 µm. An invariant 

term E/p can be calculated with these values. E/p is also valid for a discharge with 

smaller dimensions (microscale). When the discharge is maintained under atmospheric 
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pressure, the cathode fall will have a length of d2 = 24 µm, as schematically shown on 

the right side of Figure 2.4. Therefore, the distance between the electrodes should not be 

smaller than d2, otherwise the discharge cannot be ignited when operating under 

atmospheric pressure. This value is a limit for miniaturisation of an electrically driven 

discharge in He at atmospheric pressure. As shown in Figure 2.4 the smallest dimension 

in which a He discharge can be sustained under atmospheric pressure is 24 m; for Ar 

this is 6 m. 

 

Figure 2.4 Two similar glow discharges are shown, illustrating that the product  

pd = p1d1 = p2d2 = 2410-3 m mbar and the ratio E/p = E1/p1 = E2/p2 = 104 V m-1 

mbar-1 are invariant in the two systems. The proportionality factor is K=33.33. After 

Janasek [10]. 

For analytical purposes it makes no sense to work with higher pressures. Therefore the 

limit of miniaturisation is reached for plasma discharges at the dimensions given above. 

If two discharges operating with the same gas, having the same electrode material and 
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for which the corresponding linear dimension, for example the length of the cathode 

falls, is given by relation d1 = K∙d2, the properties of the gas, for example the mean 

distance between the molecules, differ by a factor K. It is assumed that the gas 

temperature is the same for both discharges, and the same voltage is applied. Such 

discharges are called similar. Table 2.1 gives a brief overview of the most important 

properties of two similar discharges. Note that the voltage and current remain constant. 

Therefore, the relationship between current and voltage is valid for characterizing 

miniaturised discharges also. 

Table 2.1 Similarity parameters for electrical discharges [9]. 

Most of the similarity principles 

have been described for the glow 

discharge although there are 

other discharges also. 

Furthermore most of the 

discharges developed as 

miniaturised ionisation or 

excitation sources for analytical 

chemistry can be compared with 

the glow discharge and are 

applied for element 

spectrometry. A general 

presentation of the functional aspects concerning different kinds of microplasma 

discharges depending on the way to produce them and the field of application will be 

given in the following section. 

2.6  Microplasmas 

As presented in the previous sections, decreasing the dimension of the discharge by 

reducing the distance between the electrodes gives the possibility to operate at 

atmospheric pressure. In order to achieve this condition, the dimensions should be in the 

range of micrometers as it was demonstrated before. A short overview on this kind of 

discharges will be given in the following part. 

Parameters Relation Similarity 

parameters 

Linear dimension 
1 2d K d    

Voltage 
1 2U U  U,I,T 

Current 
1 2I I   

Gas temperature 
1 2T T   

Mean free path 
1 2K    E/p, pd 

Gas density 
1 2 /N N K   

Gas pressure 
1 2 /p p K   

Electric field 
1 2 /E E K   
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The term of microplasma is used to define discharges that have dimension in the range 

of a few micrometers up to few millimeters, so they are at least one order of magnitude 

smaller than the common low-pressure and low-temperature plasma discharges used in 

laboratories or for different industrial applications [11]. The potential of low-

temperature plasmas and the advantage of being micro are brought together by these 

reduced discharges. They can create a highly reactive environment containing charged 

particles, excited species, radicals and photons, while at the same time requiring low 

power sources. This and the small footprints make them suitable for integration in 

microsystems and portable devices. These properties increase their technological impact 

in many scientific domains and give them an economical potential. This fact makes the 

microplasma discharges to receive increasing attention and to represent a new area of 

interest in the field of plasma physics. Mentions on microplasmas can be found back in 

the late 1950’s [12]. But only in the last decades the research on microplasma started to 

attract interest determined by the microfabrication techniques of the integrated circuits. 

The aim was to develop other plasma sources that could be afterwards implemented in 

new and complex devices designed for different purposes. Starting with this, the 

microplasma research began to develop very rapidly as it can be seen from the 

increasing number of publications and reviews [11, 13-15] and dedicated section at the 

major international plasma conferences and workshops. This increasing interest on 

microplasma has broadened their application area including bio-medical applications, 

displays, radiation sources, micro-medical analysis systems, gas analysers, 

photodetectors, microlasers, dynamic millimetre-wave and microwave devices, 

microreactors, propulsions systems, aerodynamic flow control, material processing and 

environmental applications. 

Some practical considerations concerning the construction of microplasma discharges, 

as well as their functional parameters will briefly be presented in the following part 

[11]. For particular applications where integrability and portability are required, it is 

necessary that not only the plasma sources are subject of miniaturisation but also the 

adjacent components like power sources, gas supply and vacuum systems. In order to 

eliminate micro pumping systems which are anyway not efficient and increase the total 

costs, mostly atmospheric pressure discharges are in focus of research. Low-power 

operation is preferred especially for portable systems powered by batteries. In order to 
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avoid energy losses due to gas heating, mostly low-temperature plasmas close to room 

temperature are preferred. For construction of the microplasmas the most suitable 

materials have to be found depending on the application in use. They have to fulfil 

requirements like the right electrical properties, to be easy to manipulate during 

fabrication, to have a long life time and to be inexpensive. Most microplasma sources 

use for electrodes metals like copper, gold, platinum and nickel. Also refractory metals 

like molybdenum and tungsten have been used, typically for direct current sources that 

operate at high temperatures. For applications where transparent electrodes are required, 

like plasma display panels, indium-tin oxide (ITO) is used. Doped silicon can also be 

used as electrode material giving the possibility of straight integration with 

semiconductor circuits. The most common dielectric materials in use are glass, mica, 

kapton and ceramics. DC and DBDs discharges that rely on secondary electron emission 

often use films of materials with large secondary electron emission coefficients such as 

MgO. The most used gases for microplasma and depending on the application are the 

noble gases like He, Ne, Ar and Xe. These gases offer simplier chemistry and also low 

temperature plasmas that are required for some applications. Typically, He is used for 

applications at atmospheric pressure because it is easier to obtain diffuse glow-like 

discharges compared to any other gases and thermal instability is avoided. For 

discharges open to the atmosphere there is always a mixture of the working gas with air 

resulting in production of reactive species. When production of reactive species is 

desired, molecular mixtures of gases are used. The ratio of the added gas (“the 

impurity”) is limited to few percents of the total gas amount because most microplasma 

sources are not capable to sustain discharges with higher impurity concentrations. The 

reactive gas can be fed before the electrode region (upstream) or in the afterglow region 

(downstream), which prevents contamination of the plasma source. This contributes 

also to transport the reactive species (metastable and excited atoms species) and energy 

produced in the active region of the plasma downstream where the desired reaction can 

occur. Portable devices are restricted to low gas flows, and in the case of discharges 

opened to atmospheric air, back-diffusion of air can occur resulting in an unstable 

operation or can even extinguish the discharge. To produce microplasmas, mostly low-

frequency operation in direct current (DC) or alternative current (AC) is used as it 

requires low-cost electronics. For better performance, operation at high frequencies is 
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preferred because it requires lower breakdown voltages than DC. As a result, high 

frequency operation leads to less energy transfer to the ions, more efficient plasma 

generation and longer lifetime of the devices. Pulsed operation systems are also used for 

a large variety of applications due to their advantages like extracting the reactive 

negative ions (otherwise trapped in the plasma) and reducing the average power 

consumption (critical for portable devices running on batteries). But probably the most 

important advantage is represented by the possibility to generate plasmas with electrons 

high energy while the background gas remains close to room temperature. These high 

electron temperatures offer new chemical equilibrium which is not achievable with 

other continually operating sources [7, 16]. Diffuse glow discharges are preferred for 

practical consideration due to uniformity and controlling. But some phenomena like 

constricted discharges, striations and patterns which are often observed in microplasmas 

[17-19] are still under research being not yet completely understood. 

There are many of the macro-scale plasma discharges that have been taken to 

microdischarges. Several reviews give some detailed presentation of them and their 

applications [11,15,20-22]. The most investigated microdischarges are: DC 

microplasma discharges with different geometrical configurations, micro hollow 

cathode discharges, corona discharge, microwave microplasmas, inductively coupled 

microplasmas (mICP) and capacitively coupled microplasmas (mCCP). Among the 

microplasmas listed above two more microdischarges have been developed and 

intensively investigated: the micro dielectric barrier discharge (mDBD) and the 

microplasma jet (mPJ), respectively. A detailed description of these two will be given in 

the following sections. 

2.7 The operation principle and applications of the dielectric 

barrier discharge 

As mentioned in the previous section, one of the types of atmospheric pressure 

discharges is represented by the dielectric barrier discharge (DBD). And like many 

other plasma discharges, this has been also brought to micro scale and a lot of 

applications were developed [22]. A short description of DBD construction, principle of 
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operation as well as some of the most important application will be given in the 

following section. 

The DBD, also called barrier discharge or silent discharge, was first reported for more 

than a century ago in 1857 by Werner von Siemens (Figure 2.5). At that time the 

research was focused on using it as an ozone generator and this remained the main 

application for a long period of time. The production of ozone was accomplished by 

sending a flow of oxygen or air through the narrow annular gap between two coaxial 

glass tubes subjected to the influence of an alternating electrical field of sufficient 

amplitude. The new feature brought by this discharge apparatus was that the electrodes 

were positioned outside the discharge chamber and were not in contact with the plasma 

as presented in Siemens’ first experimental arrangement (Figure 2.5). In this set-up the 

gas in- and outlet are on the left and on the lower side of the cylinder respectively, and 

the electrodes are attached as silver sheets on the inside and outside of the cylinder. 

 

Figure 2.5 Siemens initial ozone discharge tube 7 and Werner von Siemens in 18728. 

Basically, a DBD consists of two plane-parallel metal electrodes, whereas at least one of 

them is covered by a dielectric layer. To ensure stable plasma operation, the gap which 

separates the electrodes is limited to a width of few millimetres [23]. The working gas 

flows through the gap. The discharge is ignited by means of a sinusoidal or pulsed 

power source. Depending on the working gas composition, the voltage and the 

frequency of excitation, the discharge can be either filamentary or glow. A filamentary 

discharge is formed by micro-discharges or streamers that develop statistically on the 

dielectric layer surface. The use of He as plasma gas seems to favour a glow discharge 

                                                 

7 http://www.lateralscience.co.uk/marum/index.html 

8 http://www.siemens.com/history/de/persoenlichkeiten/gruendergeneration.htm 

http://www.lateralscience.co.uk/marum/index.html
http://www.siemens.com/history/de/persoenlichkeiten/gruendergeneration.htm
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by the presence of high energetic He metastables species [24] determining the Penning 

effect [25, 26]. 

The dielectric layer plays an important role in operating the discharge as it follows: 

It limits the discharge current avoiding the arc transition that enables to work a 

continuous or pulsed mode. 

It randomly distributes streamers on the electrode surface ensuring a homogenous 

treatment. The streamer creation is due to the electrons accumulation on the dielectric 

barrier layer. 

Typical materials used as dielectric barrier for these discharges are glass, quartz and 

ceramics. Some other materials like plastic foils, Teflon plates or insulating materials 

can be used too. As already mentioned, these discharges were also brought to 

microscale. Some geometrical configurations of mDBD are presented in the Figure 2.6 

[11]. 

 

As it can be observed from Figure 2.6, a variety of configurations can be used [11]. In 

the coplanar geometry, where both electrodes are on the same plane, the discharge is 

ignited like an arc on the surface (a). In planar configurations the two electrodes are 

parallel to each other and the dielectric is on both or only on one of the electrodes 

surfaces, or in the middle between them (b). Coaxial and capillary configurations can be 

also implemented (c, d) as well as unusual ones like pyramidal (e). Capillary discharges 

Figure 2.6  Schematics of dielectric barrier microdischarges: a) coplanar DBD b) parallel plate 

DBD, c) coaxial DBD, d) capillary plasma electrode discharge, e) pyramidal DBD, 

and f) capillary discharge/plasma pencil/plasma jet. The solid colour represents 

metal electrodes and hatched objects represent dielectric material [10]. 
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where the electrodes are in shape of rings around a dielectric capillary and the plasma 

burns inside or is pushed outside are also in use (f). Discharges with cylindrical 

arrangement can be obtained using electrodes like concentrically cylinders one inside 

the other and the dielectric material in-between them [27] like ozone generators. 

As a consequence of the presence of the dielectric barrier, these discharges require 

alternating voltages for their operation. The dielectric, being an insulator, cannot pass a 

DC current. Its dielectric constant and thickness, in combination with the time derivate 

of the applied voltage dU/dt determines the amount of displacement current that can be 

passed through the dielectric(s). To transport current (other than capacitive) in the 

discharge gap, the electric field has to be high enough to cause breakdown in the gas. In 

most applications the dielectric barrier limits the average current density in the gas 

space. Thus it acts as ballast which, in the ideal case, does not consume energy. In some 

applications except the dielectric material between the electrodes, additional protective 

or functional coatings are applied. At very high frequencies the current limitation by the 

dielectric barrier becomes less effective. For this reason DBDs are normally operated 

with alternating voltages (sinusoidal or square-wave pulses) at frequencies between a 

few Hz and hundreds of kHz and at amplitudes from several hundreds of V up to a few 

kV. Also the dielectric helps on distributing randomly streamers on the electrode 

surface and ensuring a homogenous treatment. The streamer creation is due to the 

accumulation of electrons on the dielectric barrier layer. The preferred operating 

pressure is of the order of 10
5
 Pa. This is the preferred pressure range for ozone 

generation, excimer formation, as well as for flue gas treatment and pollution control. 

When the electric field in the discharge gap is high enough to cause breakdown, in most 

gases a large number of microdischarges are observed, the so called filamentary 

discharge regime. 

The principle of igniting (breakdown) and sustaining mechanism of the DBD can be 

summarized as follows [27, 28] and is schematically presented in Figure 2.7. As the 

alternating potential is applied to the electrodes, the dielectric material polarizes and 

induces the electrical field in the gap between the electrodes. This high ignition 

potential produces ionisation of the gas and the electrons and ions travel towards the 

electrodes charging them negatively and positively respectively, producing a decrease 

of the applied electrical potential that conducts to extinguish the plasma. 
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Figure 2.7 Principle of igniting and operating the DBD discharge  

When the polarity of the potential is reversed, the applied potential and the memory 

potential due to polarization of the dielectric are added and the discharge starts again. 

Therefore the potential required to sustain the plasma is lower than that for ignition. 

Furthermore, the plasma ignites again automatically as a result of the charged dielectric. 

This memory potential formation by charge accumulation on the dielectric material 

represents an advantage of DBD in comparison with other electrodeless discharges. 

This memory potential decreases the breakdown potential and increases the potential 

applied to the discharge gas respectively. For some other types of plasma discharges 

using alternating potentials at higher frequencies like ICP, CCP and MIP this memory 

effect disappears and they require potential with much higher amplitudes. Some typical 

operation conditions for DBDs are summarized in Table 2.2 [29]. 

Table 2.2. Common operating parameters of DBDs. 

Electric field strength for the first breakdown 150 ( 1 bar,  300 K)Td p T    

Voltage Vpp 3 20 kV  

Repetition frequency f 50 Hz 10 kHz  

Pressure p 1 3 bar  

Gap distance 0.2 5 mm  

Dielectric material  Glass, Al2O3 

Thickness d 0.5 2 mm  

Relative dielectric permittivity r 5-10(glass)…7000(ferroelectrics) 

The operating conditions of the DBD make them suitable for applications at pressure 

around atmospheric pressure or even in open air. Reviews dealing with atmospheric 

pressure discharges in general [23] and with DBD in particular [27, 29] make a 

classification of them and their applications. The most important applications of the 
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DBD are represented by the ozone generation (the first and still one of the most used 

applications), surface treatment for covering polymer foils or for changing the surface 

properties (wettability, receptivity, printability and adhesion) of different materials, 

reduction of pollutants in gas streams (volatile organic compounds, chlorofluorocarbons 

or diesel exhaust) and excimer lamps. The micro-DBD that received the most interest in 

the last time is the plasma display panel (PDP). This is an example of how 

microdischarges can be put in parallel in order to create large surface devices. PDPs 

larger than 100 inches having more than two millions of pixels are already on the 

market. 

Also the atmospheric pressure DBDs are used in analytical domain [9, 30-32]. Mostly, 

in DBD using He as working gas, different elements like F, Cl, Br and I are determined 

after volatile compounds are decomposed, where characteristic emission wavelengths 

that are registered by a spectrometer. Another application of the DBD in analytical 

sciences is represented by the use of this as ionisation source incorporated in other 

devices as will be further presented. One of these sources is represented by the 

microplasma jet, also named as “plasma pencil” and “capillary discharge”. There are 

several research groups, as will be presented in the following, investigating this micro-

DBD plasma jet and developing it for different other applications like in the fields of 

biomedical, material processing and analytics. A short overview on the plasma jet 

research field will be given in the next section. 

The DBDs are capable to produce highly non-equilibrium plasma in a controllable way 

at atmospheric pressure and at moderate gas temperature. They provide high-energetic 

electrons which are able to generate excited atoms, ions and radicals. The common 

operational mode is the filamentary one, but under special conditions a diffuse one can 

be obtained too. They require no vacuum technique and no high voltages to maintain the 

discharge. Applications like surface treatment, ozone generation, cleaning of polluted 

gases, light sources have been largely industrialized based on DBDs. They have a great 

flexibility with respect to their geometrical shape, working gas mixtures and operational 

parameters. Taking into consideration the particularities of the DBDs, as presented 

above, it can be concluded that they represent a versatile alternative to other discharges 

and are suitable for a large area of industrial processes and improvement of life quality. 
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2.8 Atmospheric pressure plasma jets 

One category of plasma discharges, incorporating at least two or even all the features 

that characterize the atmospheric plasmas, microplasmas and DBDs, described in the 

previous sections, is represented by the atmospheric pressure plasma jets (APPJ). There 

are several review articles summarizing the different approaches in developing such a 

plasma discharge jets, as well as their possible application [33-35]. This proves a real 

interest in such plasma sources. The possibility to produce non-thermal atmospheric 

pressure plasma capable to achieve enhanced gas chemistry without the need to increase 

the gas temperature represents an attractive feature of the plasma jets. This attractive 

characteristic led to an extensive use in applications that require low plasma 

temperatures, like those in material processing, biomedical or analytical applications 

[22, 36]. Also compared with some other atmospheric plasma sources where the plasma 

is mostly confined in the space between the electrodes or in some sort of containment 

enclosure, the plasma jet gives the possibility to launch the reactive species outside to 

an area not bound by anything. 

Different research groups developed several plasma jets using DC or pulsed DC power 

sources in the kV range with signal frequencies in kHz domain and pulse widths in the 

range from nanoseconds to microseconds. As working gases mostly, Ar, He, N or 

mixtures of these with O are used. The construction of these plasma jets mostly consists 

of dielectric capillary tubes (fused silica, quartz) having one of the electrodes wrapped 

around it while the second, one in the shape of a rod is inside the tube [37, 38]. The 

polarization of the electrodes may vary: the inner electrode can be connected to high 

voltage while the outer ring is grounded [37], or the other way around [38]. Also 

construction with both electrodes inside a hollow Teflon tube [39], or one ring electrode 

around the capillary while the second one in shape of plate can be situated outside the 

capillary, a few centimetres away and grounded [16]. The gas flows are in the range of 

L min
-1

 and gas temperature of the plasma jet was reported to be up to 100° C and 

capable to be touched by bare hands [38]. The authors reported that such plasma jets 

could be used for treatment of surfaces. 

Another type of AC driven hand-held plasma jet was developed by Laroussi and Lu 

[40]. As the construction of this device called “plasma pencil” was one of the starting 
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points in the development of the plasma jet, which is the subject of this thesis, it will be 

presented in more detail in the following. The device is different than those presented 

above. It consists of two thin copper ring electrodes attached to the surface of two 

centrally perforated alumina (Al2O3) discs of 2.5 cm diameter and the central hole of 

3 mm diameter, respectively. The copper ring electrodes have a bigger diameter as the 

alumina discs central orifice, but smaller than that of the discs. The electrodes are 

inserted in a dielectric cylindrical tube and the distance between them varies in the 

range of 0.3 to 1 cm. A schematic of the construction is presented in Figure 2.8. 

 

 

Figure 2.8 Schematic of the plasma jet developed by Laroussi and Lu [33]. 

The power supply consists of a high voltage pulse generator that can produce pulses 

with amplitudes up to 10 kV and widths between 200 ns to DC regime, at frequencies 

up to 10 kHz. The rise and the fall times of the voltage pulses are about 60 ns. When He 

or Ar are injected at the opposite end of the dielectric tube and the operating voltage is 

applied to the disc electrodes, a discharge is ignited in the space between the electrodes 

and a plasma plume/jet is launched through the hole of the outer electrode into the 

surrounding room air. Lengths of the jet up to 5 cm long and 3 mm diameter with gas 

temperature of 290 K were reported [40]. The current-voltage characteristics of the 

device presents three current pulses that occur per single voltage pulse and the authors 

sustain that the appearance of the second one after 100 ns is related to the launching of 

the plasma plume through the aperture of the device. Later the authors reported that the 

plasma jet was actually a train of small plasma bullets travelling at much higher speed 

than the gas flow (up to 100 km s
-1 

compared to the gas flow velocity of only 8 m s
-
 
1
). 
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This plasma pencil was used to prove its potential biomedical applications by killing 

different types of bacteria. Since the diameter of the plasma jet is small, the treatment of 

samples is localized permitting good selectivity [41]. 

Another category of plasma jets are the AC-driven ones. Also in this case a dielectric 

material is used in the shape of a capillary tube on which two tubular electrodes are 

mounted [42], or one rod electrode is placed inside and the other is represented by a 

liquid solution in a tank surrounding the capillary [43], or even two concentric metal 

tubes with one of them covered in a dielectric material [44]. A so-called „corona DBD 

hybrid type discharge“ was also reported in this category [45] and consists of a needle 

inside a Pyrex tube and a dielectric plan electrode. In these cases, the applied voltages 

are in the range of few kV up to 80 kV [44] with frequencies from a few kHz up to 

70 kHz [45]. The used gases are He and Ar with a flow from a few L min
-1

 up to around 

50 L min
-1

 and plasma jets with lengths of several millimeters were reported, having 

temperatures between 300 and 500 K [43-45]. Plasma bullets with a speed of 15 km s-1
 

were observed using an ICCD camera [42]. The authors reported that such plasma jets 

could be used for surface treatment, especially for changing the wettability of polymers 

[44, 45] and for degradation of organic compounds [43]. 

There are also many radio frequency (RF) driven plasma jets that have been developed 

in recent years. A short presentation of the most original ones, to which a large amount 

of work was dedicated, will be given. Most of them use RF sources of 13.56 MHz [34, 

46-49], 13.05 and 7.17 MHz [48] and even 27.12 and 40.78 MHz [49]. The construction 

of these plasma jets has a cylindrical symmetry having an electrode like a needle (1 mm 

diameter) or a rod placed inside of a metal cylinder [34, 48] or a cylinder of dielectric 

material [46, 47, 49] which has wrapped around the second electrode. Also the inner 

electrode can have a pipe-like structure with 1-2 mm inner diameter [47], or it can be 

insulated by a glass sleeve and has a protruding tip of 0.3 mm diameter [48]. In all these 

configurations, the RF signal is applied to the inner electrode, while the second one is 

grounded. Also geometries with two ring electrodes wrapped around a quartz capillary 

tube (1 mm inner diameter) can be used [49] where one of the electrodes is powered, 

while the second one is grounded. As working gas for plasma production, mostly noble 

gases are used like He [34, 46, 48], Ar and molecular gases [49] at flows that can vary 

between several mL min
-1

 [46] and several L min
-1

 [34, 47-49]. Also liquids and 
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powders can be used [47]. Depending on the gas flow, plasma jets acquire lengths in the 

range of several millimeters. When He is used as working gas, the temperature of the 

plasma jet is close to room temperature [46, 48] up to few hundred grad Celsius [34] 

depending on the input power. When Ar is used with reactive gases, the temperature can 

reach up to 450 °C [46] or even 7 × 10
3 

°C [47]. The RF driven plasma jets are used for 

several applications like film deposition, material applications [34, 46, 49], biological 

applications [34, 46], decontamination of gases of chemical warfare [34], cleaning of 

archaeological artefacts [47], killing of bacteria and manipulation of cells [48]. 

Plasma jets produced using microwave powers (2.45 GHz) were also developed [50, 

51]. These constructions are based on other macro-scale microwave plasma torches 

(MPT) [50] where the working gas flows through a capillary coaxially with the 

waveguide tube, or the gas flows between an inner conductor and an outer conductor 

that have a cylindrical configuration [51]. As gases, mostly Ar and N2 are used at 

atmospheric pressure and flows from a several mL min
-1

 [50] up to few L min
-1

 [51]. 

The input power varies from low levels (2 W) [50] up to several hundred Watts [51]. 

The length of the obtained plasma jet varies from a few mm [50] up to several mm 

(aprox. 25 mm) depending on the gas flow [51]. The authors reported that these 

microwave microplasma jets can be applied in detection of gaseous species and as an 

element specific detector in gas chromatography [50], or for medical use as well as for 

surface processing, chemical vapour deposition and sprayer [51]. 

Rather small, mobile and easy to handle, APPJ units have to be considered for their 

capabilities. In recent years, a variety of applications has been realized using APPJs, 

and others may be still envisaged. The strength of vacuum-less plasma sources can be 

fully exploited, when the exhaust gas, which remains after the application, is harmless, 

and can be released to the environment without any further processing. This is valid 

when only steam or carbon dioxide is produced in addition to feedstock gases (like rare 

gases, oxygen, and hydrogen). Otherwise the exhaust gas has to be collected and 

processed, which will make the application more complicated and expensive. As long as 

the suction system does not require a full enclosure of the process, many advantages in 

respect to vacuum processes still remain. However many advantages are lost, when the 

application has to be performed in a closed chamber. As pointed out, APPJs are capable 

of producing charged particles, neutral metastable species, radicals and (V)UV 
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radiation, which can be used for example for biomedical applications. However, the 

charged particles are rapidly lost by recombination.  

An overview of plasma sterilization using atmospheric pressure glow discharges 

(APGDs) was given by Laroussi [52]. In respect to the germicidal effect, the APPJ has 

very much in common with other sources of high-pressure non-equilibrium plasmas. It 

has been proved that APGDs can be efficiently used to inactivate bacteria. Hence, 

disinfection and sterilization of reusable, heat-sensitive medical instruments and 

implants is possible. Further possible biomedical applications would be the treatment of 

wounds and skin. The inactivation of biofilm-forming bacteria opens applications in the 

area of food safety [53]. Even the decontamination of chemical and biological warfare 

(CBW) agents using an APPJ has been proven [54]. 

Like other plasma based techniques, the APPJ can be used for the activation of surfaces, 

for example to make Teflon and synthetics wettable by improving the hydrophilicity. 

Also, a surface modification of biocompatible materials can be envisaged. An APPJ can 

also be used for the cleaning of surfaces by using air or oxygen highly diluted in a noble 

gas. The reactive oxygen species are capable to burn many organic materials with the 

release of H2O and CO2. The removal of spray paint from brick, the removal of ink 

from paper and removal of photoresist from silicon wafer has been also demonstrated 

by the group of Selwyn. Kapton and polyamide have been successfully etched [55, 56]. 

The etching of a variety of non-organic materials has been demonstrated as well [55, 

57-59]. However, in this case, carbon tetrafluoride (CF4) was admixed to O containing 

noble gas, which makes the exhaust gas harmful. Etching of oxides like silicon dioxide 

(SiO2) and uranium dioxide (UO2), and of metals like tantalum (Ta), tungsten (W) and 

plutonium (Pu) was demonstrated. 

APPJs were also used for plasma-enhanced chemical vapour deposition (PECVD) of a 

variety of coatings, as reported by review paper from Moravej and Hicks [60]. Glass 

and silicon dioxide (SiO2) have been successfully deposited by operating the APPJ with 

oxygen highly diluted in helium. 

Considering the capacity of atmospheric pressure plasma jet to produce charged 

particles, neutral metastable species, radicals and UV radiation that are pushed outside 

due gas flow, rather than being bound to a confined volume, also the application in the 
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field of analytics can be envisaged. Such a research was conducted using a capillary 

dielectric barrier discharge (CDBD) capable to produce an atmospheric plasma jet using 

helium. Investigations to characterize the plasma as well as the use of this jet as an 

ionisation source were conducted and will be presented in the following chapters. 





 

3 THE DIELECTRIC BARRIER DISCHARGES AS 

ANALYTICAL DETECTORS 

3.1 The dielectric barrier discharge as detector for laser 

absorption spectrometry 

As already stated in the previous part, one of the applications of the DBD is represented 

by its analytical applications. It can be used as a detector for absorption atomic 

spectroscopy for different molecular compounds or as an ionisation source for other 

analytical devices as will be further described. 

Such a micro-detector based on DBD was presented by Miclea et al [61-65] and it 

proved that it is a powerful microchip source for analytical spectrometry. The micro-

detector consisted of two glass plates, each with a 50 mm-long aluminium electrode. 

The electrodes are produced by Al vapour deposition with a thickness of 0.1 mm, width 

of 1 mm and 50 mm length [66] and are covered by 20 m-thick glass layers, i.e. the 

dielectric layers. These are produced from glass powder melted on the electrodes. The 

distance between the electrodes, including the dielectric layers, is 1 mm. A 1 mm-wide 

discharge channel is formed by two glass spacers. The channel is 60 mm long and has 

windows at each end. Additionally 

there are two connections for the gas 

input and output. A photograph of 

the discharge is presented in Figure 

3.1. The discharge is characterized 

by small size, low electric power 

(less than 0.1 W), low gas 

temperature (approx. 600 K), and 

excellent dissociation capability for 

molecular species, for example 

CCl2F2, CClF3, and CHClF2. It has 

been used as excitation source for plasma modulation diode laser absorption 

spectrometry of excited chlorine and fluorine in noble gases and in air-noble gas 

Figure 3.1  Linear dielectric barrier discharge for 

diode laser absorption spectroscopy 

operated at 5-20 kHz [65]. 
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mixtures. The analytical figures of merit of the diode laser absorption spectrometry 

obtained with DBD are comparable with the results found earlier with DC and 

microwave induced plasmas of large size with much higher plasma powers. Detections 

limits of 400 ppt and 2 ppb for CCl2F2 in He were found using the Cl 837 nm and F 

685 nm lines, respectively. The DBD has provided excellent analytical results in diode 

laser atomic absorption spectroscopy (DLAAS) of halogenated hydrocarbons. This is 

because of the complete dissociation and efficient excitation of metastable atoms. 

Practical advantages of the DBD are the very low electrical power consumption and the 

simple power supply compared with other microchip plasmas. The gas temperature is 

low and the microchip is not thermally stressed. There is also negligible sputtering, 

which might be a problem in DC discharges. Therefore, long microchip lifetimes are 

expected, similar to those of DBDs in plasma displays. The distribution and diffusion of 

the excited atoms was measured with high spatial and temporal resolution. High-spatial-

resolution plasma diagnostics of low-pressure DBD diode-laser absorption spectroscopy 

gave clear evidence of a thin, short-lived plasma layer approximately 40 mm thick and 

1 mm wide near the temporary cathode. In this thin layer plasma atoms are high 

efficiently excited, the gas temperature reaches approximately 1000 K, and electron 

density of greater than 10
15

 cm
-3

 can be found. In all other areas, the excitation is much 

less efficient, the gas temperature is near room temperature, and the electron density is 

below 10
14

 cm
-3

. This means that most of the electrical power is used to heat a very 

small plasma volume. Although, the average power of the DBD is small (less than 

0.1 W), in this volume the plasma should have an efficient dissociation capability not 

only for halogenated hydrocarbons, as shown in [65], but also for large molecules, at 

least for the main discharge period of approximately 10 ms. Diode-laser absorption 

measurements of excited chlorine in the low-pressure DBD filled with Ar and small 

concentrations of chlorinated hydrocarbons revealed the same spatial distribution as 

found for excited Ar. As a consequence, the measurements of halogenated hydrocarbons 

by diode-laser absorption spectroscopy of excited Cl or F as reported in [65] (the diode 

laser beam filled the whole space between the electrodes) can be significantly improved. 

The main absorption, however, was obviously caused by the small layers near the 

temporary cathodes. Approximate estimates give an improvement in the detection limit 

of at least one order of magnitude in comparison with the former experiment, if the 
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absorption measurements are only used for characterization, restricted to the small area 

of the plasma layer near the cathodes. This detector based on DBD absorption 

spectroscopy showed good limits of detection of molecular compounds containing Cl 

and F. Cl could be determined in the range of 400 ppt v/v and F in the range of 

2 ppb v/v respectively. This micro-chip detector is limited in use only for those 

molecular compounds containing species that emit radiation corresponding to the laser 

diode wavelength, through radiative decay. 

3.2 Atmospheric pressure microplasma cell as emission 

detector for organic compounds in gas chromatography 

An atmospheric pressure microplasma cell was developed by Guchardi et al [67, 68]. 

The nature of this plasma source developed by this group is related to the microchip 

plasma based on a low frequency pulsed AC-source, using isolated electrodes as the one 

presented above by Miclea et al [65]. The arrangement of this micro cell consists of two 

cylindrical electrodes placed side by side on the fused silica capillary of 250 m inner 

diameter and 350 m outer diameter respectively. None of the electrodes is in contact 

with the plasma which prevents 

deterioration of the electrodes and 

contamination of the plasma with 

electrode metal. The distance between 

the electrodes is 1 cm. The device 

was designed to work at 20 kV and 

20 kHz by capacitive coupling of the 

energy into the capillary. A schematic 

of this device after Miclea et al [14, 

69] is presented in Figure 3.2. Due to 

the low frequency applied, this discharge can be considered as a DBD where the 

charges accumulated on the glass play a relevant role in switching of the discharge. The 

excitation temperature of the plasma determined from He emission lines is about 

4000 K. Even though the authors did not present any temporally resolved emission of 

the plasma, it is expected that the excited species are pulsing with the frequency of the 

Figure 3.2  Capacitively coupled capillary 

plasma as optical emission detector 

for gas chromatography [13,68]. 
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field. This behaviour reduces the sensitivity of the detection. The microplasma can be 

supported at a flow rate range corresponding to most of common capillary 

chromatographic methods at atmospheric pressure, namely 5 mL min
-1

 and the applied 

power is 8 W. The microplasma was implemented as an on-column optical emission 

detector. The capillary column was placed directly in front of the plasma. The optical 

fibre was coupled directly above the capillary directing the emitted light to 

spectrometer. The plasma was self-ignited after the passage of the solvent through the 

capillary. The detection of Hg introduced as vapour has been demonstrated as well as 

that of Sb and As introduced in the form of volatile hydrides. It was also possible to 

detect molecular emission on the introduction of methane or carbon dioxide which 

could be used for quantitation. It was found possible to detect oxygen from its emission 

at 777 nm and 845 nm, hydrogen at 656 nm and sulphur containing species from 

emission at 923 nm [14]. The carbon-containing species CH4, CO, and CO2 could be 

determined from an emission band at 385 nm due to CN. Detection limits in the range 

between about 1 and 10 ng were obtained using a miniature diode array spectrometer. 

The detection of organic compounds by monitoring the emission signals of C, Br, Cl, F, 

I, P, Se, and S separated in a He carrier gas was possible. In the case of halogens (F, Br, 

Cl, I) and S, these elements were measured by monitoring the emission lines at 685.60, 

837.59, 827.24, 804.37 and 921.28 nm, respectively. The authors reported the 

determination of environmentally relevant halogenated volatile organic compounds and 

pesticides. The system showed the following detection limits: F 20, Br 0.3, Cl 0.1, I 

158, and S 6.6 pg s
-1

, respectively. These reported detection limits seem a little bit low 

for chromatographic peaks [69]. 

3.3 The first approach on the capillary dielectric barrier 

plasma jet discharge as ionisation source 

The capillary dielectric barrier plasma jet (CDBPJ) , subject of this thesis, was first 

presented by Michels et al [70]. The construction is similar to the plasma discharges 

developed by Laroussi and Lu [40] and by Guchardi et al [67, 68] described in sections 

2.8 and 3.2, respectively. 
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In this case one end of the capillary is left open to air and a plasma jet is established at 

the end of the capillary. He and Ar were used as working gasses. It is known that 

ionisation and fragmentation in the plasmas it is mainly caused by fast electrons and 

metastables atoms [71]. Based on this fact, the present plasma source was tested as an 

ionisation source for an IMS device. It was supposed that the excited He atoms on 

metastable states, getting out of the capillary due to gas flow, transport out energy 

which can further be used to ionize other atomic or molecular species. In this way such 

a plasma source can be suitable as ionisation source for other analytical devices like 

mass spectrometers (MS) designed to 

operate at atmospheric pressure. A 

picture of the first dielectric capillary 

barrier discharge, tested as ionisation 

source, is presented in the Figure 3.3 

[70]. The plasma jet outside the 

electrode region can be observed. 

Also the optical arrangement used for 

emission spectroscopy is presented. 

The discharge consisted of 3 cm long 

glass capillary with an inner diameter 

of 500 m and an outer diameter of 

1.2 mm. Silver cables of 500 m diameter were wrapped around the capillary forming 

electrodes with a separation distance of 12 mm. The distance of the electrode to the end 

of the capillary was 2 mm. One electrode cable is isolated in order to prevent any 

discharge outside the capillary. He 5.0 which has a purity of 99.999% and an impurity 

of 3 ppm N2, is used as plasma gas at atmospheric pressure. Three different flow rates 

of He (70, 350 and 750 mL min
-1

) were established in the capillary. Unlike the DBDs 

used for diode laser atomic absorption spectroscopy, where the terminals of the power 

supply were ground free (the electrode voltage is changed between positive and 

negative voltage), here a periodic positive voltage pulse (5.5 kV with a frequency of 

33 kHz and a pulse width of 2 s) was applied. The discharge was initiated between the 

electrodes and a plasma jet outside the capillary, depending on the gas flow was 

obtained. The discharge capillary was mounted onto a movable stage of a microscope in 

Figure 3.3 Photograph of the plasma source and 

the experimental arrangement for 

optical measurements [70]. 
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order to photograph the plasma light at certain positions. Side-on optical emission 

spectra at different positions along the capillary and plasma jet were taken with an 

Ocean Optics spectrometer (USB 2000) and a glass fibre (Ocean Optics QP 200-2-VIS-

BX, 200 μm).  

The first investigations on the capillary plasma jet were focused on the geometrical 

extension of the plasma jet in dependence on different electrode polarities and gas flow 

rates. He flow rates of 350 mL min
-1

 and 750 mL min
-1

 respectively, and with 

alternating polarities of the electrodes were used. In all the cases the plasma propagates 

outside the capillary as a plasma jet. For both He flow rates the plasma length outside 

the discharge is longer when the anode is at the outlet side. As the discharge is 

evaluated as an atmospheric pressure chemical ionisation (APCI) source for molecules 

at atmospheric pressure outside the capillary, the configuration with the anode at the 

outlet end was chosen for further 

investigations. The length and the 

brightness of the plasma jet 

increases with higher flow rates. 

The processes occurring in the 

plasma, inside and outside the 

capillary were investigated by 

analysis of the optical emission 

spectra taken along the plasma 

propagation length in-between the 

electrodes and behind the anode 

outside the capillary. A representative emission spectrum acquired between the 

electrodes and close to the cathode region for a He gas flow of 70 mL min
-1

 is given in 

Figure 3.4. The most intense lines were reported belonging to molecular ion lines of 

N2
+
at 358, 391, 427 nm originated from the impurity in the He 5.0, excited atoms of He 

at 587, 667, 706 nm and excited O atoms at 777 nm [72, 73]. 

It was found that the intensities of the observed lines strongly depend on the on the gas 

flow rate and the position of observation. As the electrodes were made of platinum 

wires of 100 μm diameter wrapped around the capillary, this gave the possibility to 

acquire spectra also in the electrode region. The results obtained showed a spatial 
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Figure 3.4 Characteristic emission spectra obtained in 

the vicinity of the electrode [70]. 
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dependence of He excited and O metastable states as well as the N2
+
 emission lines. 

This can be observed from the graphs shown Figure 3.5. The associated photographs of 

the plasma discharge taken with a CCD colour video camera show the length of the 

electrodes, marked by a rectangle, and the outlet of the capillary, indicated by a line. 

Two maxima could be observed in the region of the cathode and of the anode, 

respectively. 
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Figure 3.5 Normalized intensities of the O 

777 nm, He 667 nm and N2
+ 

391 nm emission lines along the 

plasma discharge inside and 

outside the capillary for different 

He flows rates: a) 70 mL min-1, b) 

350 mL min-1, c) 750 mL min-1 

[70]. 

 

This characteristic resembles with the one presented by the DBD discharge applied for 

DLAAS [61, 63, 64, 74, 75], described in the beginning of this chapter. Such behaviour 

occurs in a glow discharge, where the negative glow is shifted towards the cathode 

when the pressure is increased. In that case the terminals of the power supply were 

ground-free (one electrode is negative while the other electrode is positive and vice 

versa), and consequently, the location of the absorption maximum switches from the 

vicinity of one electrode to the other, like in a glow discharge with changing polarities. 

In the present case of dielectric capillary barrier discharges, a periodic pulsed voltage 
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with a positive polarity is applied, and therefore, this discharge resembles a glow 

discharge periodically starting from the cathode side, like the above mentioned one. 

Despite the dominant opinion that DBDs are Townsend discharges [76] and normally 

involve streamer breakdown like corona discharges, the question regarding the ignition 

of the breakdown is still open especially for the very beginning of the discharge [77]. 

This discharge has similarities to a glow discharge, with the left maximum correlating 

with the negative glow. The length of the cathode fall, dc, covers the distance from the 

cathode surface up to the cathodic limit of the negative glow. It has to be underlined that 

the cathode zones are critical for sustaining the discharge because the ionisation and 

excitation takes place mostly in this region. If the distance between the electrodes is 

smaller than the length of the cathode fall, the discharge extinguishes because the 

electrons do not gain enough energy to produce ionisation even if the electric field is 

high [7]. Similar with the example presented in section 2.6 on microdischarges, for He 

the normal cathode fall should be between 60 and 180 V, while the pd (pressure 

dimension) product of the pressure and cathode fall thickness is about 1.3 Torr cm. 

Using this value, at 10 mbar the cathode fall thickness should be about 1.7 mm, at 

100 mbar about 170 m, and at 1 bar about 17 m. 

As the electrodes consist of wires with several coils wrapped around the capillary and 

have a spatial elongation of about 2 mm, they can be considered as hollow cathodes. 

Due to this aspect and the fact that the discharge was maintained under atmospheric 

pressure, the distance between the cathode and the negative glow is in the micrometer 

range, so the maximum emission intensity is located between the inner diameter and the 

center of the capillary in the radial direction inside the cathode. The distances calculated 

above (17 m) and also observed (at the position of the cathode) are comparable with 

the conditions to be expected in DBDs. GD and DBD can be distinguished by the 

specific processes of electron production as explained in the following. In the case of a 

glow discharge, the secondary electrons are emitted from the surface of the metal 

cathode. In the case of the DBD, the secondary emission coefficient of glass is smaller 

than that of a metal surface so that the electrons cannot be emitted only from the glass 

surface of the dielectric layer, but they can be produced by ion-neutral collisions near 

the dielectric surface. It is obvious from the photos as well as from the intensities 

measured, inside and outside the electrodes, that the emission maximum shown in 
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Figure 3.5 a) is shifted towards the anode in Figure 3.5 b) and out of the region in 

between the electrodes in Figure 3.5 c). 

In discharge tubes with diameters in the range of 5-20 mm this effect could not be 

observed. When the flow is about 750 mL min
-1

 and the diameter of the capillary is 

500 m, the velocity of an atom is about 60 m s
-1

. Generally, the first maximum 

indicates the position of the negative glow. When the negative glow is transported away 

from the cathode, the electric field between the cathode and the negative glow (a 

positive space charge) would diminish drastically and the discharge should extinguish. 

But the discharge is not extinguished even when the negative glow has a distance from 

the cathode of a few millimetres (usually expected to be in the micrometer range). 

Therefore, the whole system, which is determined by the position where the electrons 

are created and the position of the negative glow, will be shifted in the direction of the 

anode and beyond. Since a discharge will not be extinguished when the positive column 

is eliminated the shifted system will support the discharge as long as the negative glow 

will not extend the position of the anode. This supports the assumption that the electrons 

are produced by ion-neutral collisions. In order to ionize the atoms of the buffer gas and 

therefore to produce electrons, the velocity of the ions calculated by the kinetic energy 

of an He
+
 ion, which is sufficient to ionize a He atom (24.56 eV), needs to be nearly 3 

orders of magnitude higher than the velocity initiated by the flow of 750 mL min
-1 

(60 m s
-1

). With a Paschen voltage of about 240 V and a “cathode fall thickness” of 

about 20 m, which is the gap between the position where electrons are produced and 

the start of the negative glow, the velocity is given by: 

( / 2 )u e mv E                                                                                                             (3.1) 

where λ is mean free path, m the mass,  the mean velocity and E the electric field of the 

He
+
-ions which is sufficiently high to produce electrons. 

When the ring anode with its radius R is regarded as a line charge, a field distribution 

along the electrode ring-axis of the capillary given by: 

2 2 3/2

0/ 4 ( )xE Qx R x                                                                                                (3,2) 

is induced beyond both sides of the anode (Ex electric field along the axis, Q charge, R 

radius of the electrode ring, x position along the axis). Beyond the anode, the field 
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increases in the direction of the outlet and reaches its maximum at a distance L of  

 1/2/ 2 0.9 R mm  and decreases for L  R like the field of a point charge

2

0/ 4xE Q x . Due to this field distribution, ions react differently than neutral species 

and atoms in excited states. In any case, all excited and ionised atoms and molecules 

will be de-excitated by collisions outside the discharge region between the electrodes. 

As it can be seen from Figure 3.5 b), N2
+
 reaches more out of the capillary than excited 

O due to the fact that N2
+
 will be accelerated in the field behind the electrode. 

Therefore, N2
+
 de-excitation to N2 might be shifted in the direction of the outlet 

compared with the de-excitation of excited O* or He* atoms (position: 20 mm). In case 

of He, which is the buffer gas, the measurement identifies not only excited He* atoms 

but also He2
+
 ions, which are 

accelerated as well a N2
+
 ions by the 

electric field. Due to the lower mass 

of He
+
, the de-excitation to excited 

He* states and the following de-

excitation to metastable low level 

excited atoms may take place at a 

position even more shifted than the 

position where the de-excitation of 

N2
+
 occurs (position: 21 mm). It can 

be seen that the slope of the He
+
 

recombination is less steep than that 

of O
+
 and N2

+
. Moving away 2 mm further the slope of N2

+
 recombination is changed. 

This might be due to the fact that N2 molecules will be excited or re-excited by He 

excited atoms. This can clearly be seen in Figure 3.6, which reproduces a part of Figure 

3.5 c) with the signal intensity on a logarithmic scale. 

This graph shows a change of the slope at the position of 24 mm. For positions lower 

than 25 mm, the slope of N2
+
 is parallel to the slope of O* and the slope for positions 

higher than 25 mm has the same slope as the slope of He*. This supports the assumption 

that the N2
+
 recombination is definitely influenced by excited He* atoms line outside 

the electrodes and the capillary. He
+
, He*, and N2

+
 extend from the capillary and are 
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directly or indirectly responsible for the production of protonated analyte ions as 

described above with the reactions proceeding in the corona discharge region during 

APCI or reactions initiated by a radioactive 
63

Ni foil in the IMS. 

In order to test the possibility to use this plasma jet as a soft ionisation source, it was 

implemented on an IMS. The first results obtained using 2-heptatone as analyte at low 

concentration (ppb range) were presented. All the experiments were repeated 5 times 

with good reproducibility. In comparison with the conventional ionisation source that is 

used in IMS devices, i.e. the radioactive 
63

Ni foil, it was found that the IMS signal is 

1.3 times higher when the plasma jet is used. The relative standard deviation of the 

reactive ion peak (RIP) signal height was less than 2% for the 
63

Ni-IMS and less than 

4 % for the plasma-IMS. Considering that the same amplifier and electronics were used 

for the operation of both IMS, this can only be explained by a higher ionisation yield of 

the plasma ionisation source. Consequently, for a concentration of 55 ppb, dimer ions 

are still formed in the plasma-IMS, but no longer in the 
63

Ni-IMS for a similar 

concentration (50 ppb). Therefore, the plasma-IMS seems to be more sensitive than the 

radioactive 
63

Ni-IMS, a fact that is proven by the detection limits which were found in 

the range of 5 ppb for the plasma-IMS and of 20 ppb for the 
63

Ni-IMS, respectively. 

3.4 The capillary dielectric barrier plasma jet discharge 

implemented as ionisation source for LC/MS 

As it was presented in the previous section, the capillary dielectric plasma jet proved to 

be a suitable ionisation source for the IMS. In order to test its ionisation sensitivity in 

comparison with other ionisation techniques, the plasma jet was also implemented for 

liquid chromatography/mass spectrometry (LC/MS) [78]. 

Coupling the liquid chromatography (LC) and the mass spectrometry (MS) represents 

one of the most powerful tools in analytical chemistry and gives important advances 

especially in biomedical and biochemical research. This was possible due to the intense 

basic research on developing new atmospheric pressure ionisation (API) techniques, 

which today offer a robust way to couple LC to MS. The main API techniques are 

electrospray ionisation (ESI) [79, 80], APCI [81, 82] and, less frequently applied, 

atmospheric pressure photoionisation (APPI) [83, 84]. 
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These atmospheric pressure techniques differ in their ionisation process and their 

applicability [85]. Based on their working principle, these ionisation techniques are 

suited for different category of analytes. Also their selectivity and sensitivity differ. ESI 

for example, which is a highly sensitive method for analysis of large biomolecules [86] 

and has been also used for smaller organic molecules, being the most widely used API 

technique today. This is considered primarily a liquid-phase ionisation technique: 

preformed ions in solution are desorbed or evaporated to the gas phase and subsequently 

their mass can analysed. The ionisation efficiency for more nonpolar compounds tends 

to be poor. For these compounds APCI and APPI are more suitable. In the case of 

APCI, which is considered to have some “harder” ionisation conditions that those in the 

ESI, the ionisation mechanism is primarily based on ion-molecule reactions in the gas-

phase occurring between analyte molecules and a solvent-based reagent gas, generated 

by a series of ion-molecule reactions initiated by electrons from the corona discharge 

needle. Due to the short free pathway of ions at atmospheric pressure, ion-molecule 

reactions in the gas phase play an important role during the ionisation process. The ions 

undergo several collisions before reaching the mass analyzer. The high pressure liquid 

chromatography (HPLC) solvent is used as reactant gas and serves for the chemical 

ionisation of the analyte molecule. As an alternative to APCI-MS ionisation technique 

for nonpolar compounds, the APPI was introduced [83, 84]. This can be considered as a 

modified APCI source, where the corona discharge is replaced by a gas discharge lamp 

and other ionisation mechanisms are involved. In this case, the analytes will be ionised 

by resonant light excitation which in most cases is produced by a Kr discharge lamp. 

The analytes to be determined must have ionisation energies below 10.03 eV or 

10.64 eV, corresponding to the wavelengths of the radiation emitted by Kr of 

123.590 nm and 116.486 nm, respectively. Selective ionisation of the analytes may 

occur for common LC solvents [83]. The APCI and APPI ionisation techniques 

described above also have some disadvantages. In the case of APCI, the ionisation 

process takes place in a small volume around the needle of the corona discharge. The 

photoionisation process involved in the APPI technique mostly uses Kr as working gas. 

The two wavelengths of 116.486 nm and 123.590 nm, respectively, are in the vacuum 

UV range. This fact determines the absorption of the radiation in air yielding a low 

ionisation rate and also reactants with higher energy levels cannot be excited. Even 
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though a large concentration of easily ionising substance (dopant) can be used to 

produce the charge transfer to the analyte [83], there is no dopant capable to be used for 

all application, requiring always an individual optimisation for the involved working 

conditions. 

An alternative to most ionisations techniques involved in the LC/MS can be seen in by 

the DBD, which can generate low temperature plasma at atmospheric pressure. Also the 

active region of the discharge is not confined in a small volume like in APCI and the 

ionisation mechanism involves highly excited states and not just a given radiation like 

in the APPI. Based on these facts, the dielectric barrier plasma jet discharge was 

implemented as ionisation technique on a LC/MS and tested on compounds possessing 

wide range of polarities. The latter is of particular importance for the application in 

metabolomics, where a broad range of metabolites (amino acids vs. lipids) have to be 

analyzed. 

The microplasma discharge, which is the subject of this research, was implemented into 

a commercial API interface for LC/MS applications. A heterogeneous compound library 

was investigated by DBDI to illustrate the potential use of the miniaturised plasma as an 

alternative ionisation technique to ESI, APCI, and APPI. 

The chemical compounds as well as the commercial LC/MS instrumentation are not 

described here as they do not represent the subject of this work, a detailed description of 

them can be found in the references [78]. 

The implementation of the dielectric capillary plasma jet discharge as ionisation source 

for LC/MS was realized by modification of a commercial API source (Ion Max source, 

Thermo Fisher Scientific), because it was anticipated that for efficient DBD 

microplasma ionisation, the HPLC eluent would require nebulisation and vaporization 

in the same manner as for APCI and APPI. Furthermore, this approach has the 

advantage that the new source could directly be connected to the mass analyzer without 

requiring a modification of the vacuum interface. Comparisons between the new source 

and the standard APCI and APPI source were also facilitated, because their housings 

were identical. Additionally, the ESI probe head fits into the same housing, which 

guarantees a similar geometry and hence comparability to DBDI, APCI and APPI, 

respectively. 
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Helium with a purity of 99.999 % at a flow 150 mL min
-1

 of was used as working gas to 

obtain the plasma jet at atmospheric pressure outside the capillary. Periodic positive 

high-voltage pulses of 5 kV in amplitude and 2 s pulse widths were applied on the 

electrodes at a frequency of 35 kHz. Details of the DBDI source used in this research 

are depicted in Figure 3.7. 

 

Figure 3.7 Photographs of the microplasma jet discharge implemented into the Ion Max source 

[78]. 

Figure 3.7 shows a photograph of the DBD with a plasma cone outside the electrode 

region. In order to show the inner arrangement of this discharge, a photomontage of the 

discharge and the housing is presented in Figure 3.7 A. The discharge consists of a 3 cm 

long glass capillary with an inner diameter of 500 m and an outer diameter of 1.2 mm. 

Rings with an inner diameter of 500 m are located around the capillary, forming 

electrodes with a separation distance of 12 mm. The distance of the electrode to the end 

of the capillary is 2 mm. The plasma electrodes are enclosed in a Teflon tube (see 

Figure 3.7 A) not only for safety precautions but also to prevent a discharge between the 

electrodes outside the capillary. For this Teflon tube, a probe head of polyether ether 

ketone (PEEK) was manufactured at the machine shop of ISAS for direct installation 

into the original API source housing. Therefore, only the window on the front side of 

the Ion Max source is replaced by the PEEK probe head. An installed O-ring within the 

PEEK body ensured proper fitting of the Teflon tube and easy adjustment of the 

distance to the mass spectrometer inlet. The position of the tube was on the same axis 

with the mass spectrometer inlet. 

This ion source, like the unmodified APCI and APPI source, is working with a heated 

nebulizer (see Figure 3.7 B), which was maintained at 450° C for all experiments 

(except ESI). N2 (5.0, 99.999 %) was used to nebulize the liquid eluent (nebulizer gas) 

and also to transport the final dispersed sample droplets through the heated ceramic tube 
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in which they were vaporized (auxiliary gas). The ion current for the APCI and APPI 

experiments was set to 5 A. For ESI the capillary voltage was set to 4 kV. 

Based on the assumption that the reactive species in the plasma jet are responsible for 

the ionisation process and the results on the microplasma jet discharge [70] described in 

the previous section, it was expected that it would serve as an efficient ionisation source 

for LC/MS. In order to prove this and to get more insight into the ionisation efficiency, 

a heterogeneous set of model compounds was investigated to evaluate the performance 

of DBDI in comparison to APCI, APPI, and ESI. 

The displayed mass spectra showed that DBDI resulted in both protonated analyte 

molecules [M+H]
+
 and, for polycyclic aromatic compounds, analyte molecular ions 

[M]
+
. With respect to different polarities, and, which is even more importantly, different 

ionisation energies and proton affinities, polycyclic aromatic hydrocarbons (PAHs) and 

functionalized anthracene derivatives were selected as model compounds. Therefore, a 

reversed-phase HPLC separation was carried out with subsequent ionisation and mass 

spectrometric detection. The instrumental limits of detection (LOD, signal-to-noise ratio

  3 ) were determined by a dilution series. As expected, ESI is characterized by low 

ionisation efficiency for nonpolar compounds like the investigated PAHs. Even at the 

highest concentration level (of 510
-5

 mol L
-1

), only six out of 13 model compounds 

could be detected. The pure hydrocarbons anthracenes were only barely detectable. The 

functionalized PAHs are more polarized and their ionisation efficiency is about 2 orders 

of magnitude higher compared to those of the pure hydrocarbons. The signal to noise 

ratios is even 4 times higher compared to those of DBDI and APCI. 

By the use of APPI, almost all model compounds were detectable, except azulene and 

fluoranthene. In general, the signals for [M]
+
 are much more abundant compared to 

[M+H]
+
. Interestingly, the [M]

+
 of 9,10-anthraquinone is not detectable, whereas the 

protonated molecule [M+H]
+
 gave intensities like in DBDI and APCI. In the present 

study, for all other model compounds, APPI gives less favourable LODs compared to 

APCI and DBDI. However, it is noteworthy that no dopant was used to assist the 

ionisation in APPI. Better LODs are expected by careful optimization of dopant usage 

(compound, concentration, flow-rate, etc.), but this was out of the scope of this work. 
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The detection of [M]
+
 was possible for all model compounds using APCI and DBDI. 

The ionisation efficiency of DBDI seems to be higher for compounds of small 

molecular weight (azulene, biphenylene, and acenaphthene) compared to APCI. The 

protonated molecules [M+H]
+
 of azulene, biphenylene, and fluorene were not observed 

by APCI and DBDI. In contrast to the PAHs of smaller molecular weight, the remaining 

compounds gave rise to intense protonated molecules [M+H]
+
. In general, compounds 

covering a wider range of polarities can be ionised by DBDI better than by ESI. 

Ionisation efficiencies of DBDI for selected model compounds are quite similar to those 

of APCI, whereas dopant free APPI produced inferior results. 

The dilution series of model compounds was measured three times by a LC/MS 

applying DBDI, APCI, APPI, and ESI. The relative standard deviations (RSDs) for 

multiple analysis (n = 3) of identical solutions were determined and no significant 

differences between the used ionisation techniques were observed. Close to the LOD, 

the RSD is less than 15 % RSD, whereas at higher concentrations RSDs are less than 

10%. This demonstrates that the new DBDI setup serves as stable ionisation technique 

for LC/MS (at least for 24 h). 

The research conducted in this study demonstrates that the dielectric barrier plasma jet 

discharge can be used as a soft ionisation source for coupling HPLC to MS for several 

model compounds covering a wide range of polarities. The increased plasma volume in 

DBDI compared to APCI was expected to result in a larger fraction of ionised analytes, 

leading to improved sensitivity. However, the ionisation efficiencies seem to be very 

similar, as LODs for selected model compounds show only minor differences. This is 

due to the fact that only signals for [M]
+
 and [M+H]

+
 were considered. Signals obtained 

by DBDI of polycyclic aromatic hydrocarbons were distributed among several others 

mainly based on oxygen addition. Therefore, an increase of sensitivity is expected for a 

reducing of the amount of residual oxygen in the source and by optimization of the 

source geometry. In the DBD microplasma used in this study, He
M

, which extends from 

the capillary, excites N2
+
 by Penning ionisation and is directly or indirectly responsible 

for the ionisation of analyte molecules. In general, polar compounds are ionised 

preferentially by proton transfer in the DBDI source. These mechanisms are well-

established for APCI using nitrogen (or air) as nebulising gas. However, ionisation of 

nonpolar compounds yields intense signals of molecular ions [M]
+
 in addition to the 
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protonated molecule [M+H]
+
. Formation of molecular ions [M]

+
 can occur by direct 

ionisation in the DBD plasma, by charge exchange with other radical ions or 

conceivably by interactions with metastable species. The similarity of the obtained mass 

spectra by APCI and DBDI indicates an analogue basic principle of ionisation. 

Nevertheless, the DBD plasma is more reactive compared to corona discharge in APCI, 

because addition of several oxygen atoms and a nitrogen atom was observed for 

aromatic compounds. Furthermore, the degree of adduct formation with solvent 

molecules is more pronounced. Therefore, further studies are needed for deeper 

understanding of DBDI. 





 

4 THE CAPILLARY DIELECTRIC BARRIER PLASMA JET 

CHARACTERIZED BY OPTICAL EMISSION AND ION 

MOBILITY SPECTROMETRY
9 

Parallel to the experiments using the dielectric barrier capillary plasma jet as ionisation 

source for the LC/MS, as presented in the previous section, further investigations were 

carried out. In order to get more insight into the physical processes that take place in the 

plasma jet discharge as well as in the region surrounding the jet, three experimental 

arrangements have been used for the presented research. These together with the 

obtained results will be described in this chapter. 

4.1 Experimental arrangements for the characterisation of 

the capillary dielectric barrier plasma jet 

First, an IMS was applied as a detector for the protonation by measuring the reactant ion 

signal. Second, an optical emission spectrometer was used to obtain information about 

the energetic levels which are involved in the ionisation mechanism. Third, both devices 

were combined in the ionisation chamber of the IMS. 

The plasma jet tested as a soft ionisation source for IMS is based on a capillary 

dielectric barrier discharge (CDBD). It was realized using a 30 mm long glass capillary 

with an inner diameter of 500 m and an outer diameter of 1.2 mm from Hirschmann 

Laborgeräte. Two copper electrodes of 1 mm length surrounded the capillary at a 

distance of 10 mm from each other. A picture of the capillary and the electrodes 

together with the plasma jet established at the end of the capillary is presented in Figure 

4.1. The electrodes are encapsulated in Teflon plates (1 mm thick), and also a Teflon 

spacer is mounted between these plates in order to prevent direct arching between the 

electrodes outside the capillary. 

                                                 

9 Parts of this chapter have been published with some modifications in Characterization of a capillary 

dielectric barrier plasma jet for use as a soft ionisation source by optical emission and ion mobility 

spectrometry , Spectrochimica Acta Part B 64 (2009) 1253-1258 
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Figure 4.1 Plasma discharge established in the glass capillary between the electrodes and outside in 

open air. 

The distance from the electrode (anode) to the end of the capillary was 2 mm. the 

working gas was provided at one end of the capillary, passing first the cathode and then 

the anode region with a defined flow, which is controllable between 70 mL min
-1

 and 

500 mL min
-1

. The gas leaves the other end of the capillary into the atmospheric 

environment. The electrodes were connected via isolated cables to a high voltage 

generator designed and built at ISAS [87]. A signal with a frequency of 20-35 kHz, a 

pulse width of 2 s and with an amplitude between 4 and 6 kV has been applied to the 

electrodes. As the discharge tube has a radial symmetry, the electrodes regions can also 

be considered as hollow cathodes. This fact leads to an increase of the collision rate 

between electrodes and atomic species, as electrons have a pendulum motion (hollow 

cathode effect) [88]. Due to the shortness of the microdischarge current pulses, the 

electron density is very high. This high electron density is responsible for the efficient 

dissociation of molecular species and for the excitation of metastable atoms [65]. A 

plasma jet was established at the end of the capillary as it can be seen in Figure 4.1. The 

length of the plasma jet depends on the gas flow and was observed in the range of 5 to 

20 mm. For flows smaller than 70 mL min
-1

, the plasma extinguished. For the spectral 

analysis of the plasma jet discharge a USB 2000 spectrometer (Ocean Optics) and an 

optical fibre 600 m UV/SR-VIS 190 mm-800 nm were used as shown in 

Figure 4.3. As the portable Ocean Optics spectrometer has a limited resolution (1.5 nm 

FWHM), a certain overlap of the emission lines occurs. The spectra of the plasma jet 

were acquired end on outside the capillary with the optical fibre at a distance of 30 mm. 

He 5.0 (4 vpm N2), Ne 5.0 (2 vpm N2) and Ar 5.0 (5 vpm N2), as provided by the 
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supplier, were used as working gases. Different additional concentrations of N2, in the 

range from 3 ppm up to 690 ppm were added. 

4.2  Ion mobility spectrometry 

The IMS technique is a rapid and sensitive method for detection of gas phase 

compounds [89]. The method was first applied for the detection of chemical warfare 

analytes, drugs and explosives. In recent years, the IMS is increasingly in demand for 

process control, food quality and safety [90, 91] and for medical applications [92]. 

The IMS was operated with an electric field of 330 V cm
-1

 applied on a drift distance of 

120 mm and a shutter grid with an opening time of 100 s. Nitrogen was used as drift 

gas with a flow of 200 mL min
-1

. The signal of the Faraday plate detector was amplified 

by a factor of 11 nA V
-1

. The drift time spectra were detected with a length of 100 ms 

and a resolution of 50 kHz using a USB data-acquisition board developed at the ISAS. 

The plasma ionisation source was mounted radially to the drift flow in the ionisation 

chamber as it can be seen in Figure 4.2 [93]. 

 

Figure 4.2 Picture and schematic of the IMS device with plasma jet implemented as ionisation 

source. 

The ionisation mechanism called atmospheric pressure chemical ionisation (APCI) of 

the analyte molecules is done by charge transfer from the so-called reactant ions N2
+
, 

which generate protonated water clusters that finally ionise the molecules. The chemical 

reaction path is the following: 
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2 2 2N e N e                                                                                                            (4.1) 

2 2 4 22N N N N                                                                                                     (4.2) 

4 2 2 22N H O H O N                                                                                                 (4.3) 

2 2 3H O H O H O OH                                                                                            (4.4) 

3 2 2 2 2 2( )H O H O N H H O N                                                                               (4.5) 

2 1 2 2 2 2( ) ( )n nH H O H O N H H O N 

                                                                   (4.6) 

2 2( ) ( )M H H O MH H O                                                                                         (4.7) 

The protonated water clusters (H2O)nH
+
 are stable reactant ions and n depends on the 

humidity of the present gas. Then, ions of the protonated analyte are formed by gas-

phase ion-molecule reactions of these charged cluster ions with the analyte molecules. 

This results in the abundant formation of MH
+
 ions, where M represents the analyte ion. 

Once the ions are formed, they enter the pumping and focusing stage of a mass 

spectrometer in a similar way as the other API sources (for example ESI). They are 

moved by an electrical field towards the detector, represented by a Faraday plate. 

During their drift they collide with the drift gas molecules moving in the opposite 

direction, thus being decelerated. The collision frequency depends on their mass, charge 

and shape and therefore their drift time is a measure for their mobility, which is 

characteristic for the ion. The ion current is related to the concentration of the analyte in 

the ionisation region. The drift time of the ions in the present drift gas can be corrected 

to the pressure and the temperature of the drift gas, thus obtaining the so-called reduced 

ion mobility: 

     0 0 0/ / /K L E t p p T T                                                                                      (4.8) 

where K0 is the reduced ion mobility (ion mobility  /K L E t  , L is the length of the 

drift distance (cm), E the strength of the electric field (V cm
-1

), t the drift time (s), p the 

pressure of the drift gas in (hPa), p0 is the atmospheric pressure: p0 = 1013.2 hPa, T (K) 

the temperature of the drift gas and T0 = 273.3 K. 
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The most commonly used ionisation source for IMS is the radioactive 
63

Ni foil. In this 

case, the radiation ionises the available drift gas and the so-called reactant ions, the 

protonated water cluster like (H2O)nH
+
 respectively which are obtained as presented in 

the chain reaction before [89] can be detected in the IMS. When the analyte is 

introduced into the ionisation region, the reactant ions transfer their charge to the 

molecules of the analyte, resulting in a decrease of the reactant ion peak (RIP) and an 

increase of the analyte peak. The IMS, on which the plasma jet was implemented and 

tested as ionisation source, was designed at ISAS [90]. The operational parameters of 

the IMS are given in the following table. 

Table 4.1 Experimental parameters of the IMS designed at ISAS using the plasma jet as ionisation 

source. 

Drift tube 12 cm length, 1.5 cm diameter 

Electric field 330 V m
-1

 

Grid opening time 300 s 

Drift gas N2 

Drift gas flow  100 mL min
-1

 

Sample gas N2 

Sample gas flow 150 mL min
-1

 

4.3 Optical emission spectroscopy 

OES is a popular technique to investigate plasma discharges since it has no influences 

on the plasma parameters and information about the unperturbed plasma is obtained. 

The basic premise of this technique is that the intensity of the light emitted at particular 

wavelengths from an excited state is proportional to the density of the atomic specie in 

that excited state. Therefore, the measurement of the intensity provides a quantitative 

indicator of the concentration of the species involved in optical emission. The intensity 

can be converted into a quantitative relative or absolute number density of the species. 

For this, the electron energy distribution function and energy dependent cross section 

for the impact excitation (electrons, excited species and metastable states with the 

emitting species) are required to be known. In the gas discharge, the plasma species are 

subject to collisions with electrons and with other plasma species, like those described 

in the previous part. The excitation collisions and the subsequent radiative decay emit 

characteristic photons of the plasma species, which can be detected and analysed by 
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recording of the spectra. Experimentally, the spectral line of an element in a spectrum 

represents monochromatic images of the entering slit of a spectrometer when this is 

illuminated with the optical radiation. A spectral line is characterized by its integral 

intensity, I as well as by its profile I(), the first measure being the integral of the 

second: 

( )I I d

 







 




   .                                                                                                        (4.9) 

Due to the fact that the excited atomic states have defined lifetimes , the energetic 

levels corresponding to this states have a finite broadening given by the Heisenberg 

uncertainty relation: 

2

h
E


  .                                                                                                                  (4.10) 

The only level with no broadening (E = 0) is the ground level of fundamental state, 

because the life time of this state is very long. The broadening of the excited levels 

induces a corresponding broadening of the emitted optical spectral radiation. In the case 

of a transition from an excited level, having the corresponding broadening E, to the 

ground level the corresponding broadening of the emitted optical radiation is: 

2

2E

hc
 


  .                                                                                                           (4.11) 

This is called the natural broadening of a spectral line. Except this, there are also 

broadenings determined by collisions, Stark and Doppler effects. 

According to classical electrodynamics, the natural broadening of a spectral line can be 

explained as follows: an excited atom emits electromagnetic dipole radiation for a 

specific time period , and due to the damping of the oscillations, the light emitted in 

this way is not a strictly harmonic wave. Thus, the natural profile of the emitted 

radiation by such an oscillator with linear harmonic damping is given by the equation: 

 
 

   
2

0 0

1

4 1

I
P

I 




 
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   

                                                                               (4.12) 
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where I(0) represents the spectral intensity corresponding to the resonance frequency 

0, I() represents the spectral intensity corresponding to the frequency , and  is the 

mean lifetime of the excited state (the mean deexcitation time). As the period of the 

optical oscillations, which corresponds to the spontaneous atom deexcitation much 

smaller (
-1

~210
-15

 s) than the mean lifetime of these excited states (t~10
-7

-10
-8

 s), the 

natural broadening of the spectral lines is mostly negligible small (the quality factor of 

these oscillators is very high (Q~107)). 

The total intensity of a spectral line I, is proportional to the energy density (W), 

emitted from the plasma in one unit of time as optical radiation, having the wavelength 

. Considering that the optical radiation having the wavelength  is the statistical result 

of spontaneous emission processes of the plasma atoms from an excited energetic level i 

to an lower level j, one could express the corresponding emitted density energy as 

follows: 

/i ij ij i ijW n A h n A hc   ,                                                                                       (4.13) 

Where the values have the following meaning: Aij is the Einstein coefficient for 

spontaneous transitions (represents the number of emitted photons by one atom through 

spontaneous emission in one second), ni is the density of the atoms on the excited i 

level, h is the Planck’s constant, and νij is the frequency corresponding to the transition 

from level i to level j. The Aij coefficients have the dimension of a frequency, being 

equal with the inverse of the mean deexcitation times of the atoms on level i to a lower 

energy level j. The signal I acquired by the detector can be expressed as following: 

    ( )I W   ,                                                                                                      (4.14) 

Where () represents the transmission function of the system that takes into 

consideration the losses of optical radiation due to reflection and absorption in the 

system, the sensitivity of the detector, and the fact that only the radiation emitted in a 

certain solid angle is acquired. Thus, the integral intensity of a spectral line, given as the 

signal by the optical detector (spectrometer), can be expressed by the equation: 

    /i ijI n A hc   .                                                                                              (4.15) 
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Absolute measurements of the emitted optical power density can only be performed if 

the transmission function () of the system is known. This can be done by calibration 

of the optical system using a radiation source with known emission intensity. The 

emission intensity of these emitted photons of characteristic wavelengths provides 

information about the concentration of the plasma species. 

4.4 Experimental arrangement for optical emission 

spectroscopy 

Since nitrogen plays an important role in the soft ionisation mechanism, the influence of 

nitrogen concentration in the discharge working gas was investigated by OES 

measurements. The experimental set-up for optical emission spectroscopy investigation 

is presented in 

Figure 4.3. Also the electrical connection of the discharge electrodes to the plasma 

generator can be seen in the figure. An oscilloscope was used in order to permit the 

adjustment of the amplitude of the applied signal on the electrodes. 

 

Figure 4.3 Experimental arrangement for spectroscopic analysis of the capillary dielectric barrier 

discharge using He, Ar and Ne as pure gases as well as mixtures of these with N2. 

The mixture of working gases was done by combining two gas flows supplied from two 

gas bottles (pure gas and gas mixture) in order to obtain different concentrations of N2 

in He or Ar. One of the flows was the pure gas, He, Ne or Ar, while the other was He 
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with N2, Ar with N2 or Ne with N2, respectively, with a maximum concentration of 

690 ppm. The pressures in the gas bottles were the same and the flows were controlled 

by two flow controllers (FC1, FC2), adjusted in such a way, that the total amount of gas 

flow after mixing them is kept constant by measuring it with a flow-meter. Adjusting 

the two flow controllers, the concentration of N2 in the working gas could be modified 

as described in the following. When FC2 was completely closed and FC1 was open, so 

that the flow-meter measured the required value (i.e. 500 mL min
-1

) there was only the 

N2 concentration found in the supplied gases (He 5.0~4 vpm N2, Ne 5.0~2 vpm N2 and 

Ar 5.0~5 vpm N2). When FC1 was completely closed and FC2 was open to have the 

same amount of gas flow as required, there was the working gas with the highest N2 

concentration (i.e. 690 ppm). So, by adjusting the two flow controllers different 

concentrations could be achieved. 

4.5 Results and discussions 

Since N2 plays an important role in soft ionisation mechanisms produced by the CDBD 

according to the reaction chain presented above, the question arises, if the N2 amount 

representing the impurity of the noble gas or if the N2 molecules in air to which the 

plasma jet collides is relevant for soft ionisation. Therefore, besides He as buffer gas, 

Ne and Ar, as well as mixtures of these gases with different concentrations of nitrogen 

were applied. The ions formed under these conditions were detected by an IMS, 

furthermore OES measurements were performed. 

The IMS measurements were carried out to detect differences in ion formation (reactant 

ion peak), when different gases were used as working gas in the plasma ionisation 

source. Ar, Ne and He were used with a flow of 300 mL min
-1

, at discharge voltage of 

2 kV for He and Ne, and at a discharge voltage of 4 kV for Ar with a frequency of 

30 kHz. The related drift time spectra of the IMS are presented in Figure 4.4. They 

show the so-called reactant ion peak (RIP), which is caused by the protonated water 

clustered (H2O)nH
+
. The small peak before the main-RIP might be ammonia or a small 

water cluster [94]. It was observed that the sharpest and highest peak is obtained in the 

case of He and a smaller one when Ne is used. In the case of Ar, no clear reactant ion 

signal could be measured under the given parameters, just a broad one with no distinct 
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peak. This is due to different energy levels and also different energy transfer paths from 

metastable states of He and Ne or from Ar ions that lead to protonation of water. 
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Figure 4.4 The IMS drift time spectra of the reactant ion peak when He and Ne are applied as 

working gases for the dielectric capillary plasma jet discharge. 

Certain amounts of N2 were added to He 5.0, Ne 5.0 and Ar 5.0 in order to vary the 

concentration from low values, comparable with the impurity (present in the gas as 

provided by supplier) up to 690 ppm as mentioned before. The spectra of the plasma jet 

were acquired end on outside the capillary with the optical fibre at a distance of 30 mm. 

Characteristic spectra of He, Ne and Ar with nitrogen concentrations of 7 ppm and 

140 ppm are presented in Figure 4.5. The spectra are divided into a left part from 

300 nm to 500 nm and right part from 580 nm to 850 nm. The part in between these 

regions contains no lines which are significant for this research. On the left side, 

accentuated by a blue frame in the range from 380 nm to 500 nm, characteristic spectra 

of the N2
+
 first negative system with lines at 391 nm (0,0) 427 nm (0,1) and 470 nm 

(0,2), are shown. They can only be measured when He is applied as buffer gas. In the 

wavelength range between 300 nm to 380 nm, the N2 second positive system with lines 

at 337 nm (0,0), 357 nm (0,1) and 380 nm (0,2) are given. On the right side of the 

spectra the characteristic lines of the noble gases are presented. The slight deviations of 

the emission lines in the spectra are within the uncertainty of the spectrometer. 
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Figure 4.5 Optical emission spectra of He, Ne and Ar as working gases in the dielectric capillary 

plasma jet discharge. The blue frame indicates the characteristic spectra of the N2
+ first 

negative system. The intensities of the specific Ne and Ar spectra are divided by 4 in 

order to be represented in the same scale as N2
+ lines. 

The He lines observed in the discharge correspond to the following electron transitions 

(Paschen notation): 3d
3
D3,2,1-2p

3
P

0
2,1,0 for 587 nm, 3d

1
D2-2p

1
P

0
1 for 667 nm, and 3s

3
S1-

2p
3
P

0
 for 706 nm and have the energy in the range between 20.96 eV-21.22 eV 

(169086 cm
-1

-171135 cm
-1

) for the lower level and 22.71 eV-23.07 eV (183236 cm
-1

-

186101 cm
-1

) for the upper level, respectively, as shown in Figure 4.6. 
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Figure 4.6 Energy transition levels of He, Ne, Ar and N2 and the water protonation level [94]. 

The neon lines that appear in the discharge are in the range of 580 nm – 800 nm and 

correspond to the transitions between 2p1-10 to 1s2-5 electron configuration (Paschen 

notation) and energy differences between 18.38 eV-18.96 eV to 16.62 eV-16.85 eV 

respectively. Ar exhibits a spectrum pattern with many intense emission lines in the 

wavelength range of 700 nm – 950 nm that are assigned to the transitions between 2p1-10 

(12.09 eV-13.48 eV) and 1s2-5 (11.55 eV-11.83 eV). 

In the case of He, the N2
+
 first negative system lines (391 nm and 427 nm) are initiated 

by transfer of the energy from the metastable states. This can be proven by the fact that 

the emission lines of He decrease when the concentration of nitrogen is increased 

(Figure 4.5). Meanwhile, the lines of the N2 second positive system (337 nm and 

357 nm) increase. In the case of Ne and Ar this cannot be observed. In contrast, the 

lines of the N2 second positive system are increased. The emission lines (391 nm and 

427 nm) of the N2
+
 first negative system correspond to the transition between 

N2
+
(B

2
u

+
)N2

+
(X

2
g

+
). These transitions cannot be initiated in plasmas at atmospheric 

pressure in pure N2 [95], but it is however, a strong transition in He/air or He/N2 

mixtures due to Penning ionisation: 

   1 2

2 2

M

g uHe N X N B He e       .                                                               (4.16) 

This reaction is almost resonant. The He metastable states He
M

 are created by direct 

electron–atom collisions that produce excited atoms followed by cascade transitions 

from higher states to Elowest metastable = 19.81 eV. The N2
+
(B

2
u

+
) = 0,…,5 energy levels are 

between 18.73 eV and 20.11 eV (Figure 4.6). 
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Direct electron excitation of N2
+
(B

2
u

+
) is possible from the ground state of N2

+
(X

1
g

+
) 

and N2
+
(X

2
g

+
) with Ethreshold = 18.7 eV  and 3.2 eV, respectively in two different ways:  

a one step process: 

 1 2

2 0 2 0( ) 18.7  ( ) 2g v u vN X e E eV N B e    

                                                  (4.17) 

or in a two step process:  

 1 2

2 0 2 0( ) 15.5  ( ) 2g v g vN X e E eV N X e    

                                                  (4.18) 

and then: 

 2 2

2 0 2 0( ) 3.2  ( )g v u vN X e E eV N B e    

                                                       (4.19) 

This probably takes place during the initial increase and the early decay of the current 

pulse; while in later phases N2
+
(B

2
u

+
) is populated only by Penning ionisation as 

described above. The subsequent radiative decays emit characteristic photons of the first 

negative band head at a wavelength of 391.4 nm with an intensity proportional to the 

population of the N2
+
(B

2
u

+
) = 0 state [95]. 

Optical emission measurements using different ratios of nitrogen in pure He gas were 

accomplished in order to study the influence of the He metastables on the emission lines 

of the N2
+
 first negative system and the N2 second positive system. Figure 4.7 shows the 

normalized emission intensity variations of some prominent He emission lines (667 nm, 

586 nm and 706 nm), representing transitions from different excited states ending on 

metastable states. Also the 656 nm H line and the normalized emission intensities of the 

two strongest lines of the N2
+
 first negative system (391 nm and 427 nm), as well as the 

N2 second positive system (337 nm and 357 nm) are presented in dependence on the 

concentration of nitrogen in helium. 

The N2
+
 first negative system lines increase whereas the He lines decrease with 

increasing N2 concentration up to a value of 140 ppm. Several measurements with N2 

concentrations between 140 and 600 ppm were accomplished and the maximum was 

always between 140 ppm and 450 ppm. When the maxima of the emission intensity of 

the N2
+
 first negative system lines are reached, the intensities of the He lines decrease. 

The maximum of the N2
+
 first negative system lines at 140 ppm nitrogen in He indicates 
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that the population of N2
+
 is comparable with the population of He metastables. With 

concentrations higher than 450 ppm, the intensity of the N2
+
 first negative system lines 

and the He lines should be constant beyond the maximum. The amount of N2
+
 cannot be 

higher than the amount of He metastables, which deliver the energy for the Penning 

ionisation. 
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Figure 4.7  Normalized intensities of He, N2, N2
+ and H  emission line variation with respect to the 

N2/He ratio. 

However, Figure 4.7 shows a decrease of these lines with slopes which are nearly 

parallel. This is due to the fact that the plasma conditions are changed with higher 

concentration of nitrogen and therefore the amount of metastables is decreasing. The 

change of the plasma conditions can be explained by the quenching of the electron 

temperature with the introduction of N2 due to its lower ionisation potential relative to 

He. 

The 337 nm and 357 nm emission lines of the second positive system of molecular 

nitrogen correspond to the following transition N2(C
3
u)N2(B

3
g) [95]. The upper 

level population of the N2(C
2
u) state is mainly populated through direct electron 

impact excitation from the ground state with threshold energy of 11.1 eV. Therefore, the 

production rate of the upper level of the transition is a function of the N2 population: 

   1 3

2 0 2 0,1
( ) 11.1 g v u v

N X e E eV N C e  

 
     .                                               (4.20) 

Another population mechanism is the decay from the N2
+
(X

2
g

+
) to the N2(C

2
u) state. 
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The subsequent radiative decays emit characteristic photons of second positive band 

head, having wavelengths of 337 nm and 357 nm: 

3 3

2 0 2 0,1( ) ( )u v g vN C N B h    .                                                                         (4.21) 

The slope of the lines belonging to the N2 second positive system changes at a N2 

concentration of 140 ppm when the radiative decay from the N2
+
(X

2
g

+
) state to the 

N2(C
2
u) state ends due to the limited energy transfer from He metastables to the  

N2
+
(B

2
u

+
) state. Optical emission measurements were also accomplished perpendicular 

to the axis of the plasma jet. Similar results were found concerning the maximum OES 

signal in dependence on the concentration. 

He with an increasing concentration of N2 impurities in the discharge gas lead to 

smaller IMS signals. Therefore, the most sensitive IMS signal can be obtained with pure 

He. In the following, the experimental arrangement for the optical emission 

measurements was accomplished in the ionisation chamber of the IMS. The plasma jet 

is integrated radial to the IMS tube as shown in Figure 4.2. On the opposite side, the 

optical fibre was integrated into the ionisation chamber in order to measure emission 

spectra end on the plasma jet. The diameter of the ionisation chamber is 10 mm, the 

plasma jet inside has a length of about 9 mm and the distance between the fibre probe 

and the end of the plasma is 1 mm. The drift gas is perpendicular to the plasma jet and 

the optical fibre. Figure 4.8 shows the IMS signals when plasma jets with different 

efficiencies are used. The plasma was operated in different modes initiated by different 

applied voltages and frequencies. Surprisingly, the mode generated with a lower voltage 

of 5 kV and frequency of 33 kHz is more efficient for IMS than the mode generated by 

voltage of 7 kV and 42 kHz. The red line presents the lower and the black line the 

higher efficiency as it can be seen in Figure 4.8 a. The corresponding spectra, which are 

given below, are divided into two regions: Figure 4.8 b from 280 nm to 500 nm for the 

N2 second positive system and the N2
+
 first negative system emission lines, and Figure 

4.8 c from 550 nm to 800 nm for He lines. The intensities of the He lines decrease, and 

the lines of the N2 second positive system increase, when the IMS signal increases or 

the plasma jet works in a low efficiency mode. 



70  Results and discussions  

18 20 22 24

-2

-1

0

 

IM
S

 s
ig

n
a

l 
[a

.u
.]

time [ms]

a

 

300 350 400 450 500
0

2

4
b

N
+ 2
 4

7
0

 (
0

,2
)

N
+ 2
 4

2
7

 (
0

,1
)

N
+ 2
 3

9
1

 (
0

,0
)

N
2
3

8
0

 (
0

,2
)

N
2
3

5
7

 (
0

,1
)

N
2
3

3
7

 (
0

,0
)

 

 

E
m

is
s
io

n
 i
n

te
n

s
it
y
 [
a

.u
.]

wavelength [nm]  

600 700 800
0

2

4

E
m

is
s
io

n
 i
n

te
n

s
it
y
 [
a

.u
.]

c

H
e

 5
8

7

H
 6

5
6 H
e

 6
6

7

H
e

 7
0

6

O
 7

7
7

 

 

wavelength [nm]  

Figure 4.8  IMS drift time spectra (a) and emission spectra (b, c) when He capillary dielectric 

plasma jet is used with different ionisation efficiencies due to different generator 

operating parameters (black line: high ionisation efficiency with 5 kV and 33 kHz; red 

line: low ionisation efficiency with 7 kV and 42 kHz). 

On the other hand, the N2
+
 lines decrease even below the level of the lines measured 

with the plasma jet with a low efficiency. The emission from N2
+
 bandhead at 391 nm 

and N2 bandhead at 337 nm should be proportional to the excited state population. 

Usually the ratio of the signals at 391 nm and 380 nm is >1, which is the case of 

spectrum plotted in red with lower ionisation efficiency. In the case of the higher 

ionisation efficiency, the ratio is smaller than 1. Therefore, the main part of the energy 

of the lower state of the first negative system is used for the protonation of water 
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molecules [94] and correspondingly the IMS RIP signal increases. When the energy is 

transferred from the lower level of the N2
+
 first negative system, to the water molecules 

to protonates them and the RIP signal increases. In the same the emission intensity of 

the N2 lines decreases. With the recombination of N2
+
 ions the population of the upper 

second positive state and therewith the optical emission of the second positive system 

will be increased. Considering the results obtained from IMS measurements as well as 

those from OES it can be concluded that the water protonation process is initiated by 

energy transfer from He metastable states to N2
+
 excited state and then to water. 

4.6 Conclusion 

Nitrogen plays an important role for soft ionisation mechanisms using the capillary 

dielectric barrier discharge. Nitrogen can be excited to the upper level of the N2
+
 first 

negative system (B
2
u

+
) by Penning ionisation due to the He metastables. Therefore, the 

population of the excited upper level of N2
+
 first negative system (B

2
u

+
) cannot exceed 

the population density of the metastables. This density is between 140 ppm and 

450 ppm of the ground state He atoms. In order to optimize the IMS sensitivity, pure He 

should be used. The reaction of Penning ionisation should occur in the vicinity of the 

protonation process. This means that the Penning ionisation between He metastables 

and nitrogen should happen in the ionisation chamber outside the plasma capillary in the 

vicinity of the plasma jet. The small RIP observed with the Ne gas discharge can only 

be explained by Penning ionisation, but the energy difference between Ne metastable 

state and the protonation level is bigger than the difference between N2
+
(X

2
g

+
) and the 

water protonation level. In the case of Ar, the metastable state is lower than the 

protonation level and therefore the RIP could not be measured.  

The measurements performed and the results obtained shown that the best results were 

achieved when He was used as working gas for the microplasma jet ionisation source, 

and that N2 plays an important role in the energy transfer to protonate water. In the 

following chapter, a detailed investigation of these two gases and their species 

distribution along the plasma jet will be presented. 





 

5 SPATIALLY RESOLVED SPECTROSCOPIC 

MEASUREMENTS OF THE CAPILLARY DIELECTRIC 

BARRIER PLASMA JET
10 

Based on the previous results that showed a connection between the working gas of the 

plasma jet and the presences of N2
+
 specific emission lines in the observed spectra, 

further investigations were necessary. He showed to be the best-suited gas to be used for 

the implementation of the plasma jet as ionisation source for the IMS device, where the 

mechanism of the reaction chain involves the presence of N2
+
. These facts directed the 

research focus to the connection between the reactive species of these two gases. For 

this purpose an optical emission mapping of the plasma jet was accomplished and a 

spatial resolved distribution of the reactive species was provided. 

5.1 Experimental arrangement for plasma jet mapping 

For the jet mapping measurements, the plasma discharge was produced using the CDBD 

construction presented in the previous section with some improvements. The electrodes 

are encapsulated in Teflon plates to prevent direct arc discharges between them. The 

distance from the open end of the capillary to the first electrode (the anode) is 

approximately 2 mm. The whole construction, consisting of capillary, electrodes and 

connecting cables, is encapsulated in a Teflon cage. A schematic of the capillary, the 

electrodes connections and Teflon cage is presented in the top part of Figure 5.1. The 

plasma jet is obtained using He as working gas which is provided with two different gas 

flow rates FA = 300 and FB = 1000 mL min
-1

. The electrodes are connected through 

isolated cables to a high voltage generator constructed at ISAS [87]. A function 

generator providing rectangular pulses of 2 µs width modulates the signal applied to the 

electrodes. The corresponding values for stable plasma are 6 kV at 20 kHz. Depending 

                                                 

10 Parts of this chapter have been published as they are here presented or slightly modified in Spatially 

resolved spectroscopic measurements of a dielectric barrier discharge plasma jet applicable for soft 

ionisation, Spectrochimica Acta Part B 66 (2011), doi:10.1016/j.sab.2011.03.005. 

http://dx.doi.org/10.1016/j.sab.2011.03.005
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on the gas flow rate, the lengths of the plasma jet are of 10 and 20 mm for the 300 and 

1000 mL min
-1

, respectively. 

The plasma jet mapping was performed by optical emission spectroscopy. The principle 

of this technique was presented in the previous chapter. For this purpose an USB4000 

spectrometer in the visible range (300 - 956 nm) and an optical fibre 600 µm UV/VIS 

300 - 1100 nm from Ocean Optics were used together with OOIBase32 software. The 

optical arrangement applied for plasma jet mapping is presented schematically in Figure 

5.1. The top view of the plasma jet, the focusing lens (f = 10 mm) and the entrance of 

the optical fibre are depicted in the upper part. The lower part shows a vertical section 

of the arrangement. Both the Teflon cage encapsulating the glass capillary and the 

acquiring end of the optical fibre are mounted on micrometric stages that allow three-

dimensional adjustments. These parts are adjusted by means of a He-Ne laser to be on 

the same optical axis (the y-axis, not shown in the Figure). The distances between the 

plasma jet and the lens and between the lens and the optical fibre determine an object to 

image ratio of 1:2. Since the aperture of the optical fibre was about 0.5 mm, only the 

light from a thin column along the optical axis of the investigated plasma jet was 

detected. 

 

Figure 5.1  Optical arrangement for plasma jet mapping: a) top view, b) section view (end-on) 

The effective jet mapping was performed by translating the capillary along the x-axis in 

1 mm steps. For each x position the optical fibre was shifted along the vertical axis (z) 

in 0.1 mm steps symmetrically with respect to the x-axis. Thus, the different parts of the 

jet were imaged on the optical fibre with spatial discrimination in z-direction of 0.5 mm 
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(diameter of the optical fibre). At each (x, z) position, spectra were acquired with 

500 ms integration time. The spectra were taken at five and nine x-positions, for lower 

and higher gas flow rates, respectively. The spectra were stored by a laboratory PC for 

further analysis. 

5.2 Measurements and results 

Some results of the plasma jet mapping obtained at lower flow rate of He 

( FA = 300 mL min
-1

) are illustrated in Figure 5.2. The intensities of two spectral lines 

belonging to He, N2
+
, and N2 excited species are shown starting at the x1 position, which 

is at a distance of 1 mm away from the orifice of the capillary. The peak intensities of 

the spectral lines measured at particular (x, z) positions are represented by contours of 

constant intensity. Areas between the contours are filled with shades of gray in the 

range between white (intensity maxima) and black. There is a clear difference between 

the spatial intensity distributions of each type of the emitting species. The He lines 

exhibit an intensity maximum close to the capillary orifice, where the intensities of the 

N2
+
, and N2 lines are very weak. At a distance of about 2 mm from the capillary orifice 

both the N2
+
 and the N2 line groups reach their maxima. With further increase of 

distance x, intensities of the N2
+
 lines decrease faster than the intensities of the N2 lines. 

-1

0

N
2

N
2

+
He

x(mm)

z
(m

m
)

706 nm 427 nm

Glass capillary

0.5 mm

380 nm

1 2 3 4 5
-1

0

587 nm

1 2 3 4 5

391 nm

1 2 3 4 5

357 nm

1 2 3 4 5

-1

0

1

 

 

 

Figure 5.2  Spatial intensity distributions of two He, N2
+, and N2 lines represented in two-

dimensional contour plot. White areas indicate the regions of maximum intensity in the 

z-x plane. The measurements were performed at flow rate of FA=300 mL min-1through 

the capillary. 
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When the flow rate He through the capillary barrier discharge is increased to 

1000 mL min
-1

 (FB), the general picture remains the same as given in Figure 5.2. 

However, the maxima regions of the N2
+
, and the N2 line intensity are shifted further 

away from the end of the capillary. In addition, the intensity distributions are broader 

than in the case of the lower He flow-rate. This effect is illustrated in Figure 5.3. 
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Figure 5.3  Two-dimensional contour plot of intensity distributions in z-x plane for He 706 nm line 

(upper part), N2
+ 427 nm line (middle part) and N2 380 nm (lower part). White areas 

indicate the regions of intensity maxima. The measurements were performed at a He 

flow rate of FB = 1000 mL min-1. 

A quantitative description of the investigated spatial line intensity distributions is given 

in Figure 5.4, where a part of the data set from Figure 5.3 is extracted. The plasma jet is 

nearly radially symmetric with respect to the x-axis. Due to the fact that the glass 

capillary could not be arranged perfectly horizontally, the plasma jet had a small 

inclination, which could be the reason for a slight asymmetry. However, as one can see 

in Figure 5.4 (left), the radial intensity distributions of the He, N2
+
, and N2 lines, i.e. the 

intensities measured along the z-axis cannot be distinguished within the error bars. 

These distributions are governed by diffusion of excited He atoms into surrounding 

atmosphere in radial direction. However, as already shown in Figure 5.2 and Figure 5.3, 

the distributions of the species mentioned above are strongly separated in x-direction, 

which is governed by the He flow rate. The data in Figure 5.4 (right) are presented in a 

semi-logarithmic plot, where the linear fits for the largest distances indicate that all 
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three distributions exhibit an exponential decrease. In contrast to the He and N2
+
 lines, 

the N2 line intensities decrease much slower. 
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Figure 5.4 Intensity distributions of the He 706 nm, the N2
+ 427 nm and the N2 380 nm lines 

extracted from the data presented in Figure 5.3 Left: distributions of the normalized 

radial line intensity represented by measurements along the z-axis at the position 

x = 4 mm. Full width at half-maximum of radial intensity distributions amounts to about 

0.9 mm. Right: Normalized intensity distributions along the x-axis (z = 0) presented in 

semi-logarithmic plot. The size of the symbols used approximately represents the 

experimental error bars. Full straight lines are linear fits through data at the four largest 

values of x. 

The intensity of an optically thin spectral line is proportional to the product of the 

number density in the relevant upper state and the corresponding radiative transition 

probability. Thus, spatial intensity distributions of the emitted optically thin lines 

belonging to different excited species yield information about position-dependent 

relationships between number densities in relevant upper states. In the following 

section, a simplified semi-quantitative model will be applied to describe the obtained 

line intensity distributions. 

5.3 Description of line intensity distributions 

5.3.1 Spatial density distributions in the jet 

In the present case, we have a free burning helium plasma jet which penetrates from the 

capillary into the air. Initially, at x = 0, the He number density nHe has a maximum 

value nHe(0) which is defined by the atmospheric pressure and the temperature of the 

plasma gas. Similarly to that, the electron density distribution along the plasma jet is 
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expected to decrease monotonously, too. On the other hand, the density of the air should 

increase monotonously, starting from the capillary orifice. It is reasonable to assume 

that the x-dependence of the helium number density can be described by an exponential 

function: 

     0 (0)exp( )He He He Hen x n f x n ax                        for 0a  .                             (5.1) 

Then, since the pressure is constant, the number density distribution of the air along the 

x-axis is determined by: 

       ( ) 1air air air airn x n f x n exp ax        ,                                                     (5.2) 

where nair() is given by the atmospheric pressure and room temperature. It is plausible 

that the components of the air (N2, O2, H2O) obey the same normalized distribution: 

     1 exp( )comp airf x f x ax                      (comp: N2, O2, H2O).                          (5.3) 

Regarding the high-frequency pulses of the plasma generator, the plasma jet is in a 

quasi-stationary regime. Therefore, the spatial distribution fel(x) of the electrons 

produced in the discharge as well as the spatial distributions of excited particles can be 

regarded as independent of time. Furthermore, it is justified (see section 5.4 and the 

distribution of helium lines in semi-logarithmic plot) to assume that, in the present case, 

fel(x) exhibits also an exponential decrease with increasing distance from the capillary 

orifice and here we postulate that: 

  exp( )elf x bx                                             0b  .                                                  (5.4) 

It should be emphasized that, primarily due to temperature difference between plasma 

and air, the coefficients a and b are functions of position x, too. However, as already 

mentioned in the introduction, the DBD plasma jet is a cold source for soft ionisation, 

i.e. its gas temperature is slightly higher than the room temperature. Thus, one can 

approximately take both coefficients a and b to be constant. 

5.3.2 Excitation energy transfer processes involving He, N2, and H2O 

Following the predictions made by experimental findings presented in the previous 

chapter and reported in [96], one can sketch the most important excitation and de-
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excitation processes in the present investigation by using a strongly simplified term 

scheme presented in Figure 5.5. Here, the relevant states of the involved particles (He, 

N2
+
, N2, (H2O)

+
, H2O) are represented as a single state. 
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Figure 5.5 Simplified term scheme of He, N2 and H2O with relevant radiative (full black arrows, 

rates labelled with As) and collisional transitions (gray arrows, rates labelled with Rs) 
in the cascade de-excitation from excited helium. Dashed lines designated with ip(He), 

ip(N2), and ip(H2O) indicate the ionisation potentials. For the sake of picture clarity, the 

level designations are substituted by numbers. See further explanations in the text. 

In the first step, He atoms are excited due to collisions with fast electrons produced in 

the discharge (electron impact excitation process): 

   *0 2
PR

fast slowHe e He e    ,                                                                                     (5.5) 

which occurs inside and partially outside of the capillary. The process (5.5) is 

characterized by a rate, i.e. collisional transition probability Rp (units: s
-1

). In general, 

the cross sections for electron impact excitation (EIE) are proportional to the relevant 

electric dipole moment of the particle in transition, i.e. to the corresponding dipole 

radiative transition probability, which is very small for metastable states. In particular, 

the cross sections for EIE of He metastables are about one order of magnitude smaller 

than the cross section for EIE of higher excited states [97]. For that reason, the strong 
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radiative relaxation of the higher excited states can be taken as the main path for 

population of metastables and the direct EIE of metastables can be neglected. In the 

next step, the metastable helium atoms are populated radiatively in the transition from 

the higher excited state: 

   *

212 1
nA

MHe He h  .                                                                                            (5.6) 

Among other collisional de-excitations of He metastable atoms, Penning ionisation of 

N2 molecules is an important process in the present case. This has been presented in the 

previous chapter [96], where a comparison of DBD in He, Ne and Ar clearly shows the 

strong influence of He metastables on the production of N2
+
 (i.e. the key role of Penning 

ionisation in formation of N2
+
): 

       2 21 0 0 4
AR

MHe N He N e      .                                                                 (5.7) 

In addition, He metastables are de-excited due to collisions with slow electrons: 

   1 0
DR

M

slow fastHe e He e    ,                                                                                     (5.8) 

where RD is the corresponding de-excitation rate. Radiative depopulation rates for 

helium metastables are very small, i.e. their radiative lifetimes are very long (order of 

magnitude: seconds). Nevertheless, it is well known that their effective lifetimes in 

plasma are significantly shorter due to collisions with electrons [98]. The collisional 

excitation processes always are followed by reverse de-excitations. The EIE of 

metastables, neglected above, are followed by electron impact de-excitations (EID). In 

contrast to EIE transition probabilities (which are small in comparison with those for 

higher excited states and therefore negligible in the present model), the EID rates are 

much larger than radiative relaxation rates of metastables. This leads to the 

establishment of shorter effective lifetimes of metastables. Therefore, the process (5.8) 

has to be taken into account. 

The higher excited state 4 of the ionised nitrogen molecule, populated in reaction (5.7), 

is de-excited in the radiative process 43: 

 
43

2 2 43(4 ) 3
A

N N h


     .                                                                                              (5.9) 
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The radiatively populated ground state 3  of the ionised nitrogen molecule is 

depopulated in a series of recombination processes determined by rates 3 jR : 

 
3

2 23 ( )
jR

N e N j h


      ,                               ( 2 ,1,0j    )                                  (5.10) 

In addition, ionised nitrogen molecules in the state 3 can be depopulated in collisions 

with H2O molecules: 

   2 2 2 23 0 ( )
BR

N H O N H O E       ,                                                                 (5.11) 

where the energy difference E between ionisation energy of N2 and H2O is transferred 

to the kinetic energy of collision products. 

In the present experiment, the production of ionised water is detected by the appearance 

of strong N2 lines. Namely, there is a probability for the process: 

     2 2 2 20 2
CR

H O N H O N E


                                                                        (5.12) 

in which the ionised water molecule transfers its potential energy to the relatively close 

lower lying excited state 2 of the neutral nitrogen molecule. Then, in the final de-

excitation step considered here, the second excited state 2 of N2 is depopulated in 

2 i   radiative transitions: 

   2 2 22 jN N j h    ,                                        ( 1,0j   ).                                  (5.13) 

Certainly, excited N2 molecules can be produced due to electron impact. However, 

under the present experimental conditions, this mechanism is negligible in comparison 

to the process described by Eq. (5.13). This is indicated by the fact that in the region 

close to the capillary orifice the N2 lines are very weak (see Figure 5.2 and Figure 5.3). 

Regarding the depopulation of (H2O)
+
, besides the transfer (5.12) there are a number of 

collision processes involving electrons and air components. First, one should take into 

account radiative recombination with electrons: 

 2 2

SR

H O e H O h


     ,                                                                                         (5.14) 
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where the rate RS" represents a sum of all recombination rates. We summarise all other 

collision processes leading to the depopulation of ionised water by the general 

expression: 

1( )

2 1 2 3( )
PR M

H O M M M


    .                                                                                     (5.15) 

Here, the M1 symbolizes either electrons or a particular air component, while M2 and M3 

label the corresponding collision products. M1 could be an organic molecule acting as a 

reaction partner and the protonation can be initiated. 

In the presented cascade one should consider the direct excitation by energy transfer 

 2 2(3 ) 2N N    done through collisions with H2O, where water either remains ionised 

or releases its energy in the transition (H2O)
+H2O. However, looking at the energy 

balance before and after such collisions (either strongly endothermic or strongly 

exothermic), it becomes clear that under the present physical conditions both processes 

can be neglected. 

5.3.3 Rate equations 

Following the predicted excitation and de-excitation paths described above, a set of 

corresponding rate equations can be defined. 

As mentioned before, the plasma jet burns in a quasi-stationary regime. Therefore, the 

steady-state rate equations for relevant number densities appearing in the above 

reactions can be applied. The collisional transition probabilities, i.e. the collisional rates 

R introduced above, are usually defined as the products of corresponding rate 

coefficients k (unit: s
-1

 cm
3
) and the collision partner number density n (cm

-3
). In 

general, each of the described collisional excitation energy processes between a 

particular initial state i and a final state f (characterized by rate coefficient kif) is 

followed by the reverse reaction (rate coefficient: kfi). The principle of the detailed 

balancing predicts that (kif/kfi) exp(-Efi/kT), where Efi is the energy difference 

between the final and the initial state. Under the present experimental conditions and 

with proper estimates for the excited state number densities, the processes reverse to the 

collisional excitation energy transfers listed above can be neglected. This approximation 
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leads to a simple set of six linear steady-state rate equations related to the six most 

important number densities n0, n1 and n2 of He, He
M

, He*, respectively, as well as to the 

relevant number densities of nitrogen ( 2 3 4
, ,n n n   ) and water ( 1n ) that are involved in the 

de-excitation path *

2 2

MHe He N N    or H2O: 

2 0 21 2/ 0 Pdn dt R n A n                                                                                                  (5.16) 

1 21 2 1/ 0 ( )A Ddn dt A n R R n                                                                                        (5.17) 

4 1 43 4/ 0  Adn dt R n A n                                                                                                 (5.18) 

2

3 43 4 3 3

0

/ 0 ( )B j

j

dn dt A n R R n


                                                                                  (5.19) 

1 3 1/ 0 ( )B C S Pdn dt R n R R R n                                                                                       (5.20) 

 2 1 32 3 21 20 2/ 0 Cdn dt R n R n A A n           .                                                                      (5.21) 

This set of equations involves all mentioned number densities and the rate equation 

representative for this calculation. All other ground states or excited species are not 

relevant for this path. The collisional pump rate RP for the electron impact excitation 

process (5.5) is defined as the product of the corresponding rate coefficient kp and the 

number density nel (cm
-3

) of electrons. In the present weakly ionised plasma, the ground 

state number density of He (n0) equals with the total helium atom number density nHe. 

Thus, the positive contribution in Eq. (5.16) can be written as: Rpn0 = kpnelnHe. The 

electron-induced de-excitation rate for the metastable state is defined as: PD = kDnel, 

while the rate is RA = kAn0' = kAnN2. Here, for the same reason as in case of He, the 

ground state number density n0' is replaced by the total density nN2. Furthermore, we 

have RB = kBn0" = kBnH2O, R3j' = k3j'nel and RS" = kS"nel. The sum in Eq. (5.19) 

represents the rate of possible depopulation processes given by Eq. (5.10), as well as the 

rate RP" in Eq. (5.20) symbolizes the sum of all rates related to additional depopulation 

processes (5.15). Depending on the kind of collision partners M1 (either electrons or air 

components) these rates can be either in the form RP"(e
-
) = kP

el
nel or 

RP'(comp) = kP
comp

ncomp. 
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The investigated plasma jet is strongly inhomogeneous. It is obvious that the solutions 

to the set of rate equations (5.16 - 5.21) exhibit complex dependences on the position in 

the jet. Nevertheless, well-defined and very different x -dependencies of He and air 

components become a helpful tool in further analysis. Of course, one could question 

what is happening on the radial direction of the plasma jet, especially if there are any 

diffusion terms that have to be taken into consideration. This question can be answered 

taking into account the He gas velocity in the plasma jet of 10
4
 cm s

-1
 and the narrow 

shape of this jet. They indicate that the diffusion velocity in radial direction is much 

lower than the axial velocity. The normalized distribution of intensities, as presented in 

Figure 5.4 (left part) for different species, is of the same bell shape which implies that 

the diffusion effects are negligible. Furthermore, the widths of these distributions are 

approximately independent of the x-position as it can be observed experimentally. Even 

if this diffusion effect would not be negligible, and the diffusion rates Rdiff would be 

formally added to the radiative rates, the one-dimensional analysis considered in the 

following would not be affected in any way. 

5.3.4 Discussion of the shapes of line intensity distributions 

We consider the He, N2
+
, and N2 lines emitted at the frequencies 21, ’43 and ’21. In 

the case of optically thin lines, their intensities are 21 21 2( )HeI A n  ,
2

43 43 4( )
N

I A n
    

and 
2 21 21 2( )NI A n    , respectively. Taking into account the present physical situation 

with the plasma jet penetrating in the atmosphere, it is plausible that the intensities of 

He lines should decrease monotonously with increasing the distance from the capillary 

orifice, while the intensities of the lines belonging to the air components will be initially 

zero and, after reaching a maximum, would decrease monotonously, too. It is also 

plausible that, in particular, the N2
+
, and N2 lines should exhibit the same distributions if 

only the direct electron excitation and radiative de-excitation processes (independent of 

the position) would occur. However, as shown below, the position-dependent excitation 

energy processes in the investigated system lead to different spatial distributions of the 

excited N2
+
 and N2. 
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Distribution of the He lines:  

Rate equation (5.16) with the substitution RP = kPnel yields the following simple spatial 

dependence of He line intensities along the x-axis: 

21( , ) ( ) ( )He el HeI x n x n x  .                                                                           (5.22) 

Then, with exponential decrease of electron and helium density adopted above, the 

expected position-dependent intensities of optically thin He lines are of the following 

simple form: 

 21( , )HeI x exp a b x      .                                                                                   (5.23) 

Distribution of the N2
+
 lines: 

The combination of Eqs. (5.17) and (5.18) and the expression (5.22) yields the 

following relation between the position-dependent intensities of N2
+
 and He lines: 

2
43 21( , ) ( ) ( , )HeN

I x x I x 
  ,                                                                                   (5.24) 

where the function (x) is given by: 

 
 

( )

( )

A

A D

R x
x

R x R x
 


.                                                                                            (5.25) 

As one can see from Figure 5.2 and Figure 5.3, the spatial distributions of N2
+
 lines 

strongly differ from the distributions of He lines. This means that the function (x) 

strongly depends on x. Up to our knowledge, the values for collisional rate coefficients 

needed for calculation of distribution (5.24) cannot be found in the literature. In 

addition, the electron number density has not been measured in the framework of the 

present investigation and a detailed modelling of line intensity distributions cannot be 

performed here. However, following the predicted de-excitation paths starting with He 

metastables and N2
+
 ions, one can define the conditions which should be fulfilled for the 

branching ratios of relevant collisional transition probabilities. As for the function (x), 

the value of the branching ratio  RA(x)/RD(x) = kAnN2(x)/kDnel(x) is crucial for describing 

its x-dependence, i.e. for describing the formation of N2
+
 (Figure 5.5). Therefore, we 

consider two extreme cases regarding this parameter. 

Case 1: ( ) ( )A DR x R x . 
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In this case, the function (x) is nearly 1, which means that, according to expression 

(5.24), 
2

43( , )
N

I x
  should acquire the exact shape of the distribution of He lines. 

This is in contradiction with the present experimental findings therefore, Case 1 can be 

excluded. 

Case 2: ( )  ( )A DR x R x . 

In this case, the term 
2
( )A Nk n x  in the denominator of expression (5.25) can be neglected 

and (x) ≈ RA(x)/RD(x), which corresponds to the case when (x) becomes strongly 

dependent on the x-position. According to the expressions (5.22), (5.24) and (5.25), the 

shape of N2
+
 line intensity distributions becomes: 

22
43( , ) ( ) ( )N HeN

I x n x n x
                                  ( ) ( )A DR x R x .                            (5.26) 

Thus, with the normalized spatial density distributions for He, as previously defined, 

(Eq. (5.1)) and nitrogen molecules (Eq. (5.3)), the approximate relation (5.26) becomes: 

 
2

43( , ) 1 exp exp( )
N

I x ax ax
                               ( ) ( )A DR x R x .                   (5.27) 

Distribution of the N2 lines: 

By combining Eqs. (5.18-5.21) is obtained the following relationship between the 

intensities distribution of the N2 and N2
+
 lines (

2 21( , )NI x   and 
2

43( , )
N

I x
 ): 

2 2
21 43( , ) ,) ( ( )N N

I x x I x 
  ,                                                                                     (5.28) 

where the function (x) reads: 

 
     

32

2

30

( ) ( )( )

( ) ( )( )

CB

B C S PB jj

R x R xR x
x

R x R x R x R xR x R x


 
    

    
.                        (5.29) 

As shown in Section 5.2, these distributions are also very different in the investigated 

plasma jet. In order to determine the conditions which yield the most pronounced x-

dependence of (x), we examine extreme cases in the same straightforward manner as 

above. These extreme cases are defined by the relationships between the rate RB(x) and 

the sum of recombination rates  
2

3

0

( )j

j

S x R x


  as well as between RC and S PR R  . 
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For the sake of clarity, four possible extreme combinations and corresponding 

approximate forms of (x) are listed in Table 5.1. As it can be seen in this table, only in 

the case 6 the function (x) takes a form which strongly depends on position x. In all 

other cases (x) becomes constant, which would imply equal distributions of the lines 

of neutral and ionised N2. Therefore, we continue our consideration for Case 6. Looking 

at the denominator of the approximate expression for (x) in Case 6, once again two 

extreme solutions are possible. First, if ( ) ( ) ( )el comp

S P el P compk k n x k n x  , (x) would be 

independent of position and consequently, the spatial distribution of N2 lines would not 

differ from the N2
+
 line distribution. Therefore, this case (called 6a) can be excluded 

and we continue our consideration for the case 6b, implying 

( ) ( ) ( )el comp

S P el P compk k n x k n x  . In this case, with the assumption of the distributions 

nH2O(x) [1-exp(-ax)] and nel(x) = exp(-bx), the spatial distributions of neutral nitrogen 

molecule lines are in this case: 

   
2

2

21( , ) 1 exp( ) ( )NI x ax exp a b x                               (Cases 2 and 6b).          (5.30) 

Referring to case 6b, an introduction of organic molecules should be performed at the 

position where the maximum of N2
+
 is located in order to get an efficient protonation. 

First results are given in [78] and will be investigated in detail in further experiments. 

Table 5.1 Approximate expressions for (x). 

Case 3: ( ) ( )BR x S x , ( )C S PR R R        
2

32 32 3

0

/ / j

j

x R x S x k k


       

Case 4: ( ) ( )BR x S x , ( )C S PR R R    
2

32 3

0

/ 1j

j

x k k


 
    

 
  

Case 5: ( ) ( )BR x S x , ( )C S PR R R     1x   

Case 6: ( ) ( )BR x S x , ( )C S PR R R    
 

     
2

''

C N

el comp

S P el P comp

k n x
x

k k n x k n x
 

 
 

5.4 Comparison of experimental data with model data 

Representative optically thin lines for He, N2
+
 and N2, with the wavelengths of 706 nm, 

427 nm and 380 nm, respectively are considered. They are plotted in Figure 5.6 and 

Figure 5.7. The intensities are given in arbitrary units along the x-axis for lower (FA) 
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and higher (FB) helium flow through the capillary. The intensities presented in Figure 

5.6 and Figure 5.7 are extracted from the data presented in Figure 5.2 and Figure 5.3, 

respectively, representing the values along the x-axis at z = 0. 
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Figure 5.6 Comparison of experimental (symbols) and modelled (lines) intensity distributions for 

the He 706 nm (left), N2
+ 427 nm and N2 380 nm lines (right) at lower helium flow FA. 

The error of the experimental data is given of the size of the symbols. 
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Figure 5.7 Comparison of experimental (symbols) and modelled (lines) intensity distributions for 

the He 706 nm (left), N2
+ 427 nm and N2 380 nm lines (right) at higher He flow FB. The 

error of the experimental data is given of the size of the symbols. 
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The experimental distributions are plotted together with fitted theoretical distributions. 

Following the previous considerations used up to now and the notation, the x-dependent 

intensity distributions for the He 706 nm, N2
+
 427 nm, and N2 380 nm line intensities 

can be described by: 

   706706I C exp a b x                                                                                        (5.31) 

   427427 1 ax ( )I C exp exp ax                                        (Case 2)                     (5.32) 

     
2

380380 1 ( ) ( )I C exp ax exp a b x                         (Cases 2 and 6b).           (5.33) 

The values of scaling factors C are expressed in arbitrary units. The data for the He 

706 nm line are presented in semi-logarithmic plots together with the corresponding 

fitting functions. With the exception of the data obtained at the flow FB for the x-values 

closest to the capillary orifice, there is a good agreement with the predicted exponential 

behaviour of the He lines, i.e. with the postulated exponential decrease of He as well as 

the electron number density along the x-axis described by the coefficients a and b, 

respectively. The deviation of the first two points from the exponential decrease can be 

explained by optical thickness of the He 706 nm line in this region at higher flow rate. 

By comparing analogous distributions of various He lines, it becomes evident that such 

deviations close to the capillary orifice indeed are correlated with their increased optical 

thickness. The fitted values (a+b) for the lower FA and the higher flow FB are 0.8 cm
-1

 

and 0.33 cm
-1

, respectively, with statistical errors less than 5 %. Here, in the case of FB, 

the first two points were not included in the fitting procedure. 

As shown in Section 5.2, the distributions for various N2
+
 lines are very similar and 

within the error bars. Therefore, one can conclude that these lines are optically thin in 

the whole examined jet region and their intensity distributions can directly be connected 

with n4'. An analogous conclusion is valid for the N2 lines and their connection with n2'. 

In Figure 5.6 (right) and Figure 5.7 (right) the approximate expressions (5.32) and 

(5.33) are fitted to the intensity distributions of the lines of N2
+
 427 nm (full gray lines) 

and N2 380 nm (full black lines). 

Eqs. (5.32) and (5.33) are coupled with fitting parameters a and (a-b) which, combined 

with the values of the fitting parameter (a+b) for the given helium flow rate, yield 
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unambiguous values for the coefficients a and b. The values for the parameters a and 

(a+b) were determined by fitting the maximum positions of the distributions (5.32) and 

(5.33) to the positions of the intensity maxima of the 427 nm and 380 nm lines 

distributions, respectively. Taking into account the previously obtained values for 

(a+b), the best fitting for both distributions can be obtained for aA = (0.550.05) cm
-1

 at 

lower and aB = (0.250.03) cm
-1

 at the higher helium flow rate. The corresponding 

values for the coefficients governing exponential decrease of electron densities are 

bA = (0.80-aA) and bB = (0.33-aB) cm
-1

. The factors C were obtained by fitting to the 

values of experimental distributions maxima. 

As one can see in Figure 5.6 and Figure 5.7, the experimental intensity distribution of 

the N2
+
 427 nm line are narrower than the theoretical ones. As for the condition given 

by Case 1 ( ( ) ( )A DR x R x ), a more detailed numerical analysis shows that the 

calculated distribution (5.32) slightly changes even if the branching ratio ( ) / ( )A DR x R x  

takes values up to 0.5. On the other hand, the N2-line distributions are well described by 

the functional shape given by Eq. (5.33). It should be noted that, according to the 

conditions defined by the Case 6b, the major de-excitation of nitrogen ions is due to the 

energy transfer to the water molecules ( ( ) ( )BR x S x ) and only a small portion of 

(H2O)
+
 is depopulated due to collisions with N2 ( ( )C S PR x R R  ). 

The general agreement between measurements and the simulation confirms two facts. 

First, both theoretical and experimental distributions are broader at higher helium flow 

rate, and second, both simulated curves at higher flow rate are shifted towards larger 

distances from the capillary orifice. 

5.5 Conclusion 

The spatially resolved spectroscopic measurements performed on the dielectric barrier 

plasma jet confirm the results of previous investigations while providing additional 

insight into the relevant excitation energy processes which lead to the pronounced 

ionisation of water in air and the subsequent protonation of organic molecules for soft 

ionisation. 
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The Intensity distributions in the plasma jet of some relevant emission lines of the 

species involved in the energy transfer process (He 706 nm, N2 380 nm and N2
+
 

427 nm) for two different helium flows (300 and 1000 mL min
-1

) have been discussed. 

The plasma jet, which penetrates from the zone of the capillary barrier discharge into 

the atmosphere, has a strongly non-homogeneous distribution of the ground-state 

particles. However, the jet is axially symmetric and its non-homogeneity along the axis 

of penetration is well defined. This constitutes an important starting point in the 

presented modelling involving He and N2 reactive states. 

A simplified semi-quantitative analysis of the position-dependent energy transfer 

processes involving He, N2 and H2O in their ground, excited and ionised states is 

presented. In this approach, the number density distributions of excited He, N2
+
 and N2 

along the plasma jet were simulated and compared with the intensity distributions of the 

corresponding optically thin spectral lines observed in the experiment. 

There is a general agreement of the shapes of the simulated line intensity with the 

experiment, which is confirmed by the reproduced position of the maxima of line 

intensity as well as their shifting towards larger distances from the capillary orifice. 

In turn, one can conclude that the main excitation path leading to the protonation of 

water in a helium plasma jet penetrating into the atmospheric air starts with the collision 

of He metastables and nitrogen molecules in air. Penning ionisation of nitrogen and 

subsequent energy transfer to the water molecules leads to an efficient ionisation and 

protonation of water. Approximate values were determined for several important 

branching ratios in the described cascade de-excitation model. In addition, the region in 

the plasma jet featuring the most efficient subsequent protonation of sample molecules 

was identified and will be the subject of further investigations. 

By combining the present experimental findings with time-resolved measurements on a 

helium DBD plasma jet reported by Xiong et al [99], it can be argued that the main 

excitation path leading to protonation of water in helium plasma jet penetrating in the 

air atmosphere starts with the collisions of helium metastables and nitrogen molecules 

in air. From this, it can be concluded that Penning ionisation of nitrogen molecules and 

subsequent energy transfer to the water molecules are the processes leading to an 

efficient water ionisation and protonation. 
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As pointed out by Xiong et al [99], another reaction that can lead to production of 

2

2 ( )uN B  is represented by the charge transfer reaction as follows: 

2

2 2 22 ( )uHe N He N B     . However, In the opinion of the authors, in DBD plasmas 

which are generated in mixtures of helium and nitrogen, this reaction may not be 

important in the decay phase, during which the positive ions mostly are represented by 

N2
+
 or N4

+
 but not by He2

+
. 

The simplified distribution model along the plasma jet of the helium and nitrogen 

species based on the energy transfer processes is in good accordance with the performed 

spatially resolved mapping of the plasma jet. Distinct regions occupied by the atomic 

and molecular species of interest can be identified along the jet. It has been shown that 

there is a direct connection between population density of the He metastable and the N2
+
 

first negative system, so in the following chapter an estimation of one of the He excited 

levels involved in the production of metastables will be given. 



 

6 ESTIMATION OF THE NUMBER DENSITY OF HE 

METASTABLE ATOMS IN THE PLASMA JET 

6.1 Optical absorption measurements for evaluating the He 

metastable density in the plasma jet 

As the results obtained so far show that there is a close relation between the He 

metastable excited state and the N2
+
 first negative system, an important challenge rises: 

to determine the density of the He metastable atoms present in the plasma jet. One way 

to solve this problem would be the absorption spectroscopy technique. This technique 

measures the absorption of an incident beam of light passing a plasma layer. The 

wavelength of this beam of light has to be identical with the wavelength emitted by the 

plasma excited atoms through radiative decay between two well defined energetic 

levels. This technique was implemented by Kunze et al. [64] for a DBD applied to 

element spectroscopy using a diode laser. As for the specific He wavelengths 

observable in the plasma jet no diode laser or tuneable laser was available, the only 

possibility to perform absorption spectroscopy measurements was self absorption. 

An attempt to perform optical self absorption measurements was done using a reflected 

beam from the capillary region in between the electrodes, passing through the plasma 

jet. A schematic of the experimental arrangement is presented in Figure 6.1. 

The measurements were performed as follows: the light coming from the capillary 

region was collimated using the lens L1 positioned on the left side at a distance 

corresponding to 1 f away of the capillary, where f represents the lens focal length. The 

collimated beam is reflected back by the prisms and passes through the plasma jet. The 

second lens L2 positioned on the right side at a distance of 1.5 f from the plasma jet was 

installed to focus the light on the entrance of the optical fibre which was situated at 3 f 

distance. The position of L2 determined an object to image ratio of 1:2, fact providing a 

good optical resolution. Since the aperture of the optical fibre was about 0.5 mm, only 

the light from a thin column along the optical axis of the investigated plasma jet was 

detected. 
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Figure 6.1 Experimental set-up for absorption measurements. IC intensify of the light coming from 

the capillary region before passing through the plasma jet; IJ intensity of the light 

coming from the plasma jet region; IC
A the intensity of the light coming from the 

capillary after passing through the plasma jet region. 

Considering that the plasma jet is produced using a pulsed signal, in order to perform 

the self absorption measurements, the light emitted in the capillary (IC) and the light of 

the plasma jet (IJ) have to be time synchronised. To ensure if the two plasma regions 

emit synchronized light, measurements using a photomultiplier (Hamamatsu R268) and 

an oscilloscope were carried out. 

The following procedure was performed: first the emission signal from the plasma 

between the electrodes (IC) was measured on one channel of the oscilloscope while on 

the second channel the applied discharge voltage (“voltage signal in”) was used as 

reference. On the second step, the emission signal from the plasma jet (IJ) was measured 

on the first channel while on the second channel the same signal (“voltage signal out”) 

was used as the reference. The data were stored and analysed afterwards. For one 

period, the applied discharge voltages and the corresponding plasma emission signals 

are plotted in Figure 6.2. Obviously, the signals of the two plasma regions are 

synchronised. 

Based on these results, the absorption measurements were performed as follows: the 

Teflon cage encapsulating the glass capillary together with the copper electrodes was 

shifted in steps of 1 mm on the x-axis as it can be seen in Figure 6.1. The light from a 

certain point in between the electrodes (IC) was focused by the lens having a 



Estimation of the number density of He metastable atoms in the plasma jet 95 

correspondent point on the plasma jet (IJ). The distance between IC and IC’ reflected by 

the prism being always the same,(~1 cm), the first x position was approximately 1 mm 

apart from the end of the capillary and the last one was at 5 mm. For each x position 

three different spectra were acquired as follows: first the light coming from the plasma 

jet as well as from in between the electrodes (IJ and IC
A
) was recorded, second, only the 

light coming from the plasma jet (IJ) by blocking the collimated beam (IC), and third 

only the light coming from the plasma inside the capillary (IC) by blocking the light 

from the jet. This procedure was performed for two different flows of gas 300 mL min
-1

 

and 1000 mL min
-1

, respectively. The spectra were stored by a laboratory PC for further 

evaluations. 
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Figure 6.2 The applied voltage signal (dashed lines) and the corresponding plasma emission signal 

(continuous lines) from the region between the electrodes IC (blue line) and from the 

plasma jet IJ (red line) 

Although the effects of absorption of the reflected beam were registered, these results 

cannot be used for evaluation of He metastable atom density. This conclusion was based 

on the findings presented by Kunze et al [100] and Xiong et al. [99] on absorption 

measurements on a DBD discharge and a dielectric plasma jet, respectively. According 

to the results given by the authors above mentioned, one can conclude that in the plasma 

jet, which is subject of this research, the plasma burns in a relatively short time interval 

(about 10 s). Only in this period, fast electrons are present and the gas temperature is 

significantly higher than room temperature. In a relatively long time interval between 
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two pulses (about 100 s) the jet is cold (nearly at room temperature) and the population 

of metastables is high. In this period, the cascade de-excitation of metastables by 

collisions with air components begins, starting with the Penning ionisation

-

2 2

M

slowHe N He N e    . Taking into account the conclusion given above, one should 

first of all have in mind the fact that the line emission emerges from the plasma 

“bullets” described in the previous chapter, which travel through the gas flow. Second, 

the Ocean Optic spectrometer used integrates the emission line within a spatial window 

defined by the spatial resolution (z, x). However, the reflected light, most probably, 

hits cold gas somewhere between two pulses. A simulation of the "time-frozen" jet is 

shown in Figure 6.3. 
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Figure 6.3 "Frozen" jet simulated for the He flow of 1000 mL min-1. 

For the gas flow of 1000 mL min
-1

 the velocity is about 10
4
 cm s

-1
 and a fast camera 

would record narrow discharge bullets at certain positions along the x-axis. The duration 

of the discharges (10 s) and the gas velocity yield the corresponding bullet length of 

about 1 mm. The distance between the bullets (about 1 cm) is determinate by the time 

interval between two pulses (100 s). The possibility of mismatching between the light 

emitted of one plasma bullet inside the capillary (IC) and a plasma bullet outside the 

capillary, based on the unknown parameters, forced to abandon this evaluation method 

of the density of He metastable atoms. For the same purpose, another technique was 
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implemented based on the emission measurements performed for the plasma jet 

mapping (see chapter 5). This evaluation will be presented in the following. 

6.2 Observed spectral intensities 

Based on the experiential arrangement used in the previous chapter for the plasma jet 

mapping, one can apply the expression for the spectral intensities as follows: 

 

2

2

8

exp / 1

hv
I c

c h kT

  



 


,                                                                                (6.1) 

where 
 

2

3

8

exp / 1

hv

c h kT

 






 represents the spectral density of radiation emitted at 

a frequency (Hz) per unit volume and per unit frequency interval d, it has the unit 

erg cm
-3

 Hz. Here, the temperature is given in Kelvin and the values for c, h, and k are 

310
10

 cm s
-1

, 6.62510
-27

 erg s, and 1.3810
-16

 erg K
-1

, respectively (according to A.P. 

Thorne [101]). The emission spectra were observed along the y-axis and they were 

measured in the x-z plane with a spatial resolution defined by z = x = 0.25 mm as it 

can be seen in Figure 5.1 in the previous chapter. The lower part of this figure is 

repeated in Figure 6.4 for clearness of the explanations. 

 

Figure 6.4 Optical arrangement for plasma jet mapping performed as described in chapter 5. 

6.2.1 Number density distributions 

In the case of the plasma jet studied here, the number density distributions for different 

species of interest are radially symmetric with respect to the x-axis (along the plasma 

jet):   ( , )n r n x r . They can be derived by the Abel inversion method (see Appendix) 
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from the intensities of optically thin lines measured along the z-axis as those shown in 

Figure 6.5. 
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Figure 6.5 Normalized line intensity distributions of optically thin lines measured at flow FB at 

position x = 4 mm. 

The density distributions n(x,y) obtained by Abel inversion from normalized intensities, 

plotted in Figure 6.5, are of a bell-shape form, too. Their full widths at half maximum 

are slightly higher (about 10 %) than those of measured intensity shapes. Consequently, 

in the present case the emission intensity I0 given by the expression: 

2 1
0 21 12 3

12 1 2

8
( ) / ( ) ~

n ghc
I k

n g


  


                                                                                  (6.2) 

at a given position in x-z plane strongly depends on the variable y. In the following 

evaluation only the maximum intensities will be considered, i.e. the intensities 

measured along the x-axis at z = 0 (Figure 6.4). In order to simplify the present 

problem, and consequently to obtain an analytical expression for the relevant position-

dependent spectral intensity I21

(x,z = 0), two approximations have to be done. 

First approximation: the normalized density distributions in the upper and lower states 

corresponding to a certain radiative transition are equal. In practice, this is not always 

true, but in the present experiments it can be taken as valid. 
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Second approximation: the supposed bell-shape density distribution n(x,y) is replaced 

by a square function which is equal to n
0
(x) within the interval y[-Leff/2,+Leff/2] and 

otherwise equal to 0, as it is shown in Figure 6.6. 
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Figure 6.6 Square approximation for the number density distributions. 

The second approximation means that the observed plasma column at z = 0 is treated as 

homogeneous. The density is regarded to be equal to the maximum value n
0
(x) at the 

axis of the jet. The effective length of the observed column is defined as 

Leff =  n(y)dy/n
0
, so the integrals of the considered bell-shaped and square function are 

equal. 

6.2.2 The spectral intensity of the measured He lines 

According to the experimental findings, the widths of radial intensity distributions are 

nearly equal at different x-positions, i.e. the corresponding effective lengths are constant 

and their value is Leff   0.1 cm. Using the approximations introduced above, the spectral 

intensity I21

, which is observed along the y-axis at a certain position x along the plasma 

jet and at z = 0, can be written according to expressions (A.3) and (A.12) in the 

appendix as follows: 
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 
0 2

02 1 12 2
21 21 1 213 0

12 1 2 1

( )8
( , ) ~ 1 ( )

( ) 8
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n x g ghc
I x exp A n x L P

n x g g
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 

   
   

   

                              (6.3) 

For clearness of explanation, the radiative transitions corresponding to the emission line 

analysed in the present studies are depicted in Figure 6.7. Also the first He resonance 

line at 58.4 nm as well as the 388.8 nm and 1083.0 nm lines are indicated. 
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Figure 6.7 Partial term diagram of He and the relevant transitions. The transitions corresponding to 

the measured lines are symbolized by red arrows. The attributed numbers are the 

wavelengths in nanometers [102]. 

The basic data for the transitions plotted in Figure 6.7 are given in the following table. 

Table 6.1 Basic data for the lines emerging in transitions between the lowest He states [102]. 

(nm) Transition Ei (cm
-1

) Ek (cm
-1

) gi gk Aki (10
8
 s

-1
) 

58.4 1s
2
 
1
S  2p 

1
P

o
 0 171135 1 3 18 

388.8 2s 
3
SJ  3p 

3
P

o
J 159856 185565 3 5 0.095 

501.5 2s 
1
S  3p 

1
P

o
 166278 186210 1 3 0.13 

587.6 2p 
3
P

o
J  3p 

3
DJ 169087 186102 5 7 0.71 

667.8 2p 
1
P

o
  3d 

1
D 171135 186105 3 5 0.638 

706.5 2p 
3
P

o
J  3s 

3
S 169087 183237 5 3 0.278 

728.1 2p 
1
P

o
  3s 

1
S 171135 184865 3 1 0.18 

1083.0 2s 
3
S  2p 

3
P

o
J 159856 169087 3 5 0.10 
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6.3 Broadening of the He lines 

One important aspect of the spectroscopy in general and of optical spectroscopy in 

particular is the broadening of the measured line, i.e. the lines recorded in a spectrum 

exhibit a broadening (a physical width) centred on the actual emission line. In the 

analysis of the recorded spectra several parameters have to be taken into consideration 

in order to get the real profile of the line and also to determine the physical properties of 

the system emitting that wavelength. In the following section the broadening aspects 

will be taken into consideration in determining the profile of He 728 nm line. A detailed 

presentation of the broadening components can be found in the Appendix. 

6.3.1 General aspects 

In the present experiment the measured He lines are emitted from hot plasma "bullets" 

(or "pockets"), where in principle they are absorbed, too. The plasma is weakly ionised 

and the line kernels are broadened mainly due to collisions (impact broadening) with 

neutral perturbers (He and air components) and fast electrons. These mechanisms 

contribute to the Lorentz components of the line profiles. In addition, the observed lines 

are broadened by the Doppler effect. For the modelling of the resulting line profiles 

P() one should know the gas temperature, the number densities of the perturbing 

particles and the corresponding impact broadening parameters P

. The impact self-

broadening parameters of the He lines, which are of interest, are taken from literature 

[103-106] and are listed in the following table: 

Table 6.2 Self-broadening (Lorentz) parameters at T = 300 K of the considered He lines taken from 

the references [103-106]. 

Emission line (nm) He (10
-9

 cm
3
 s

-1
) 

He 501 1.47 

He 587 1.30 

He 667 2.45 

He 706 1.4 

He 728 2.35 
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The impact parameters given above are due to van der Waals interactions and, 

according to the theory of line broadening, their values are temperature dependent 

(  T
0.3

). 

6.3.2 Lorentz and Doppler broadening of the He 728.1 nm line 

In the following section, the broadening of the He 728.1 nm line in pure helium at 

atmospheric pressure is simulated for two values of gas temperature: T = 1000 K  and 

T = 2000 K This yields the He number densities of nHe

 = 7.210

18
 cm

-3
 and 

nHe

 = 3.610

18
 cm

-3
, respectively, and the corresponding FWHM’s of the components 

of the Lorentz profile are L

 = 24.3 GHz and L


 = 15 GHz according to the formula 

(A.25) in the appendix. The corresponding Doppler (Gauss) widths are D

 = 4.6 GHz 

and D

 = 6.5 GHz, according to the formula (A.23) in the appendix. The normalized 

( P()d = 1) Doppler and Lorentz profiles for the present examples are given in 

Figure 6.8. The profiles were calculated and plotted in Origin using the formulas in 

appendix. Here, the profiles are centred to the line frequency 21, i.e. the conversion 

-21 was made. 
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Figure 6.8 Calculated Lorentz and Doppler components for the present example: He 728.1 nm line 

at atmospheric pressure and two different temperatures: 1000 K and 2000 K. Lorentz 

components: L1000 and L2000, Doppler components: D1000 and D2000. 
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6.3.3 Voigt profiles and Pearson-7 function 

In general, both Doppler and Lorentz broadening mechanisms are present and the 

resulting profile of a spectral line represents their convolution: 

   12 12 12 ( )V D LP P x P x dx                                                                                         (6.4) 

which is well known as the Voigt profile. There is no exact analytical solution to Eq. 6.4 

representing the convolution of the Doppler and Lorentz profiles, and for each particular 

case numerical calculations are needed. Nevertheless, for given values of the FWHM of 

the Doppler and Lorentz profiles, in the literature one can find approximate analytical 

expressions for corresponding Voigt profiles.  

However, there are empirical formulas as those given by Kunze et al [64] for the full 

width at half-maximum Δν and the peak value P21
V
(21)P0

V
 of the Voigt profile. In 

terms of Doppler and Lorentz FWHM’s, these quantities can be written as: 

2 2/ 2 ( / 2)V L L D                                                                                           (6.5) 

0 2

1

1.065 0.447( / ) 0.058( / )

V

V L V L V

P 
        

                                                 (6.6) 

The relations discussed above are accurate to 1% for all values of the ratio L/D in the 

range from 0 to . The calculation of Voigt profiles is time consuming and it is very 

convenient to use appropriate analytical approximations. One of them is the function 

known in algebra as Pearson-7 function [107] defined as: 

   7 0
12

2

21

2

4( )
1

( )

V

p

V

P
P 

 

 
 

 

.                                                                                       (6.7) 

By variation of the parameter p, the best fit for the calculated Voigt profile is obtained. 

For ratios L/G higher than 2, this parameter amounts 1. Otherwise, p is higher than 1, 

and for instance, for L/G = 0.1, the best match is obtained with p  2.5. In Figure 6.9, 

the Pearson-7 function is plotted for the example described above at T = 2000 K. 
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Figure 6.9 Pearson-7 profile (black line) calculated via Eqs. (6.5), (6.6) and (6.7) for the example 

described above at T = 2000 K. L2000 (blue line): Lorentz component, D2000 (red 

line): Doppler component. 

In the present example, the ratio L/G amounts to 2.34 and the value of the parameter p 

was taken to be 1. Parallel with that, the corresponding Voigt profile was calculated via 

Eq. (A.26) in the appendix. An excellent agreement between the profile represented by 

the Pearson-7 function and the numerically obtained convolution was found in the line 

kernel as well in the far line wings.  

6.3.4 Measured line intensities 

To measure the real shape of an observed spectral line intensity, one needs a 

spectrometer whose band pass is at least 10 times narrower than the FWHM of the line. 

For the example given for the He 728 nm line in section 6.3.2, the required band pass 

would be about δ = 2 GHz (δ = 3.510
-3

 nm). As mentioned before, for the 

measurements that have been performed, the spectrometer band pass is much larger than 

the FWHM of the measured lines, so that the registered signals correspond to the 

integrals of spectral intensities discussed in case a in the appendix. Therefore, in the 

present case, the measured line intensities are given by Eq. (A.16) in the appendix: 

21 21 21 21( ) ~ ( ) ( ) ( )M

SI r P I d     




  .                                                                          (6.8) 
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Indeed, all measured intensities exhibit the same wavelength-dependent shape, i.e. a 

shape equal to the instrumental profile as it can be seen in the lower right graph of 

Figure 6.10. However, their peak intensities depend on the integral of the corresponding 

spectral intensities over the frequencies. 
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Figure 6.10 Upper plot: The sequence of the mapping measurement at a He flow rate of 

1000 mL min-1. The r() is the spectral response (supposed to be constant in the 

considered relatively narrow wavelength range). Lower plot left: Centred line intensities 

with reduced background. Lower plot right: The line intensities normalized with respect 

to the peak intensity values. 

In the present case, the expression for the measured peak intensities I21 can be written 

as: 

21 21 21~ ( ) ( )I r I d  




 .                                                                                                (6.9) 

Taking into account Eq. (6.3) from above, the intensities of the measured peak at certain 

x position along the plasma jet axis and z = 0 are given by: 

 
0 2

02 1 12 2
21 21 21 1 213 0

12 1 2 1

( )8
( ) ~ ( ) 1 ( )

( ) 8
eff

n x g ghc
I x r exp A n x L P d

n x g g


  

 

   
   

   
 .             (6.10) 

In the case of optically thin lines, the integral in previous equation becomes: 
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    21 211 ( ) 1 1 ( )exp KP d KP d K                                                          (6.11) 

and the measured peak intensities at the position given above are of the simple form: 

0

21 2 21

12

( ) ~ ( ) effthin

hc
I x n x L A


.                                                                                       (6.12) 

6.3.5 Curve of growth 

The integral in Eq. (6.10) discussed in the previous section is the so-called curve of 

growth. Generally, for a homogeneous layer the curve of growth FCG is given by the 

following formula: 

2

12 2
21 1 21

1

1 ( )
8

CG

g
F exp A n LP d

g


 



   
    

   
 .                                                            (6.13) 

The curve of growth describes the growth of the intensity of a spectral line with the 

increase of the product n1L. For optically thin lines, this growth is linear with n1L. The 

FCG depends not only on the variable n1L, but also on basic line parameters and line 

profile, which is governed by actual physical conditions. 

A practical example for calculation the curve of growth of He 728 nm line will be given 

in the appendix. 

6.3.6 Simulated curves of growth for He 728 nm line  

Using the procedure presented in the appendix, three curves of growth for He 728 nm 

line were calculated using the input parameters given in table 6.3. 

Table 6.3 Input broadening parameters (pHe = 1 Atm). 

 A B C 

T(K) 1000 2000 1000 

D (GHz) 4.6 6.5 4.6 

L (GHz) 24.3 15 72.9 

 

The chosen input parameters correspond to the range of the predicted physical 

conditions at the capillary orifice. The results obtained are tabulated below and plotted 

in Figure 6.11. 
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It has to be noted that in the optically thin region, the curves of growth do not depend on 

the line profiles and exhibit a linear dependency on the product n1L. 

Table 6.4 Calculated curves of growth for the He 728 nm using the parameters defined in Table 6.3. 

n1L (cm-2) Fcg
A (Hz) Fcg

B (Hz) Fcg
C
 (Hz) 

11011 

2.11011 

4.61011 

11012 

2.11012 

4.61012 
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4.61013 
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4.61014 
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2.291010 

4.301010 

7.271010 

1.111011 

1.671011 

2.481011 

3.581011 

5.261011 

7.631011 

1.26108 

2.65108 

5.79108 

1.25109 

2.59109 

5.50109 

1.121010 

2.101010 

3.721010 

5.911010 

8.701010 

1.271011 

1.851011 

2.621011 

3.781011 

5.411011 

1.25108 

2.63108 

5.77108 

1.25109 

2.62109 

5.70109 

1.221010 

2.491010 

5.121010 

9.841010 

1.681011 

2.701011 

4.091011 

5.921011 

8.651011 

1.241012 

10
11

10
12

10
13

10
14

10
15

10
16

10
8

10
9

10
10

10
11

10
12

optically

thin region

He 728 nm 

F
c
g
 (

H
z
)

n
1
L (cm

-2
)

 F
cg

C

 F
cg

B

 F
cg

A

 

Figure 6.11 Some curves of growth for the He 728 nm line. 
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6.4 Estimation of the number density of He 

6.4.1 He emission lines measurements 

For the estimation of the number density of He atoms in the resonance 2p
1
P

0
 state, the 

emission spectra acquired for the plasma jet mapping will be evaluated in the following. 

The maxima of the emitted lines intensities for two different gas flows 

(FA = 300 mL min
-1

, FB = mL min
-1

) along the jet axis (z = 0) will be considered. A 

sequence of the spectra acquired between 690 and 740 nm for the bigger gas flow is 

given in Figure 6.12. The plots correspond to different positions along the x-axis (from 

1 to 9 mm away from the capillary orifice) and for the maximum position along the z-

axis (z = 0), according to Figure 5.1 in the previous chapter. 
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Figure 6.12 Section of some typical spectra measured along the plasma jet for different x positions 

(distance from capillary orifice: 1, 3,5,7,9 mm) at z = 0 (the position for the maximum 

of the measurable intensity along the z-axis). 

The measured relative intensities of some He lines along the plasma jet for the two 

different gas flows are presented in Figure 6.13. 
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Figure 6.13 Peak intensities of He lines measured at z = 0 in dependence on position x along the 

plasma jet. 

In the following, evaluation only the 706 and 728 nm He lines will be considered. The 

ratio of their intensities against the x-position is given in Figure 6.14. 
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Figure 6.14 The variation of the peak intensities ratios I728/I706 in dependence on x position along the 

plasma jet. 
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At the end of the jet, i.e. at positions where the intensities are still measurable, the ratio 

I728/I706 takes the value of about 0.15 for both applied He flows as it can be observed 

from Figure 6.14. However, in both cases this ratio converges to the value of about 0.07 

for x = 0, i.e. at the capillary orifice. 

6.4.2 The optical thickness of considered lines 

In the present case, a free burning He plasma jet which penetrates from the capillary 

into the air is considered. Initially, at x = 0, the He number density nHe has a maximum 

value nHe(0) which is defined by the atmospheric pressure and the temperature of the 

plasma gas. Generally, the x-dependence of the He number density can be described by 

nHe(x) = nHe(0)fHe(x), where the function fHe(x) decreases with x. Since the pressure is 

constant, the air number density distribution along the x-axis is determined by 

nair(x) = nair()(1-fHe(x)). It cannot be determined whether the measured He lines are 

optically thin or not. However, since the measured intensity ratios are saturated at the 

end of the jet, one can assume that in this region (between 4 and 5 mm for lower gas 

flow, and between 7 and 9 mm at higher flow respectively) the He number density is 

small and the lines are optically thin. Thus, at the end of the jet the ratio of intensities of 

the considered lines can be written as: 

706 728 728728

728 21 2 21

706 728 706 706

706 21 2 21

( )
0.15 0.02

( )
end

I n end Ar

I r n end A




   ,                                                        (6.14) 

where n2

(end) labels the number densities of relevant upper levels at the end of the jet 

on its axis (z = 0). Even though the exact spectral response of the used optical 

spectrometer is not known, in the following procedure the value r
728

/r
706

 = 1 will be 

assumed, taking into consideration that the lines in present evaluation are very close in 

spectrum. Then, from Eq. (6.14) one obtains the population ratio: 

 
728

2

706

2

( ) 728 0.278
0.15 0.02 0.225 0.03

( ) 706 0.18

n end

n end
    .                                                 (6.15) 
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6.4.3 The excitation temperatures 

By introducing the Boltzmann density distribution into the expression of the density 

population, the following expression for the density ratio is obtained: 

728 728

2 2

706 706

2 2

( )
exp( )

( ) end

exc

n end g E

n end g kT


                                                                                     (6.16) 

and one can calculate the excitation temperature 
end

excT  at the end of the jet as it follows: 

 
 

1

3
exp (0.225 0.03)

1end

exc

E cmhc

k T K

 
   
 
 

.                                                                  (6.17) 

This yields the mean value 1.44 1628 / ln(0.675) 6000 K
end

excT    . When approaching 

the capillary orifice, this calculation yields lower excitation temperatures, which is quite 

opposite to the expected result. According to findings of Kunze et al. [100], the 

excitation temperatures in plasma bullets at x = 0 are expected to be in the range of 

several thousand Kelvin (320000 K). This means that the expected number density ratio 

at the capillary orifice is: 

 

728 728 728

2 2 2

706 706 0 706

2 2 2

( 0) 1628 1
exp 1.44

( 0) 3x

exc

n x g g

n x g T K g

 
       

.                                                 (6.18) 

Consequently, the decrease of the I728 to I706 ratio for the approach to the capillary 

orifice can only be explained by an increase of the optical depth of the He 728 nm line. 

6.4.4 The procedure to estimate the number density of He metastable 

The basic assumption that has to be made for the following procedure is that the He 

706 nm line remains optically thin in the vicinity of the capillary orifice, x  0. 

Considering this fact, the intensity ratio I728/I706 at a given x position can be written 

according to the Eqs. (6.10) and (6.12) in section 6.3.4 as: 

 

728 728
728 7282 1

13 728 728728
1 221728

706 706706
2 21706

21

( )8
    ( )

( )

1
  ( )

CG eff

x
eff

n x g
F n x L

n x g
I

I
n x A L







  

                                                          (6.19) 
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and simplified as follows: 

 

728 728706 728 728
1728 21 2 1

3 706 728 706 728728
706 2 2 21 121

( )( ) 1
8        

( ) ( )

CG eff

effx

F n x LI n x g

I n x g A n x L






   .                                            (6.20) 

Considering Eq. (6.18) from above, the expression (6.20) for x = 0 yields: 

728 728 728 3 706
1 706 72812 2

21728 706 728 

1 12 1 706 0

( 0) ( )1

( 0) 8

CG eff

eff x

F n x L Ig
A

n x L g I



 


   


,                                                 (6.21) 

and introducing the corresponding numerical values yields: 

728 728 5 3
1 7 4 2

728 5

1

( 0) 1 (7.28 10 ) 3
2.78 10 0.07 4.2 10 z cm

( 0) 8 7.06 1
H

0 3

CG eff

eff

F n x L

n x L 






        
 

    (6.22) 

With known profile of the He 728 nm line, one can calculate the function on the left 

side of Eq. (6.22) above, which yields ambiguous values for n1
728

(x = 0)Leff, i.e. for the 

number density n1
728

(x = 0) in the resonance state at the capillary orifice. 

6.4.5 Density estimations 

The parameters of the actual profile are not yet known. Nevertheless, using the 

calculated curves of growth in the previous section, one can estimate at least the lowest 

value for the number density of interest in present the experiment. First, one has to 

consider that at the capillary orifice the DBD burns in pure He. Second, according to the 

results found by Kunze et al [64, 100] and Xiong et al [99], the He lines are emitted 

only from hot plasma bullets, where the gas temperature is at least 1000 K. At that 

temperature, neglecting the impact broadening due to collisions with electrons, the line 

broadening parameters are as given by case A in Table 6.3 (section 6.3.6). In contrast to 

the physical situation in [64] (pAr = 20 mbar), in the present case we have He at 

atmospheric pressure and the gas temperature in plasma bullets is expected to be higher 

than 1000 K. To study the influence of the increasing gas temperature, the value 

T = 2000 K was arbitrarily chosen and the corresponding curve of growth was 

calculated (case B in Table 6.3). Here, the contribution to the Lorentz broadening due to 

electrons collisions still was neglected. In the third case (case C), the influence of an 

additional pressure broadening (due to electrons) was simulated for T = 1000 K where 
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the total Lorentz FWHM was taken to be three times larger than in the case A. The 

values obtained for the quantity FCG
728

(n1L)/n1L were calculated from the Table 6.4 and 

plotted in Figure 6.15. 
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Figure 6.15 The number density estimation of the lower He state belonging to 728 nm transition 

When no broadening due to electrons is included, the values for the curve of growth 

FCG
728

(n1L)/n1L obtained using Eq. (6.22) are plotted in Figure 6.15. It can be seen that 

the n1
728

(x = 0)Leff takes the values between 210
14

 cm
-2

 and 510
14

 cm
-2

 for gas 

temperatures ranging between 2000 K and 1000 K, respectively. Since Leff  0.1 cm, the 

corresponding number density n1
728

  n(2p
1
P

0
) in the resonance state at the capillary 

orifice is approximately in the range from 210
15

 cm
-3

 to 510
15

 cm
-3

 (about 1000 times 

smaller than the He ground-state atom density). This value is in accordance with the 

results obtained in chapter 4, when the maximum of N2
+
 was obtained for a 

concentration of 140 ppm representing a density in the range of 10
15

 cm
-3

 from the total 

amount of gas at atmospheric pressure. Including electron broadening, this value 

becomes even higher. 
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6.4.6 Discussion, conclusion and outlook 

Reviewing the initial assumptions made for the present evaluation procedure, the first 

one is included by the Eq. (6.19) given above where the He 706 nm was considered to 

be optically thin. However, if this assumption would not be correct, the value of the 

right side of Eq. (6.21) would be lower and the number density n1
728

  n(2p
1
P

0
) would 

be higher than estimated above, respectively. Furthermore, if the condition given by Eq. 

(6.18) is not fulfilled, the value of the right side of Eq. (6.21) would be higher, which 

yields a lower value of the estimated number density. However, assuming an excitation 

temperature at the capillary orifice equal to that at the end of the jet (6000 K), the 

obtained values for n1
728

  n(2p
1
P

0
) would be about 1.5 times lower than estimated 

above. Also, if the gas temperature would be different, for instance about 4000 K, then 

the estimated values would be two times lower. As conclusion, one could say that the 

present evaluation procedure indicates that the considered density amounts at least 

110
15

 cm
-3

. 

The behaviour of other measured He line intensities indicates that when approaching the 

capillary orifice, the decrease of their intensities becomes significant as it can be seen in 

Figure 6.13. This is obviously due to the increase of their optical thickness. 

Time and space-resolved laser absorption as well as laser fluorescence measurements of 

one of the He lines of interest can give information about the gas temperature and the 

actual line broadening, as well as accurate date regarding the number density in the 

corresponding metastable state. Then, by combining these results with the data obtained 

by emission spectroscopy for other lines, one can get a full picture about the metastable 

density in the dielectric barrier capillary plasma jet discharge. 
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A soft ionisation source that can be implemented to analytical devices like IMS and 

LC/MS was presented. This source is based on a dielectric capillary plasma jet 

discharge. Investigations to characterize the plasma by means of optical spectroscopy 

were performed and information about the processes that take place inside the plasma 

jet was obtained. 

The plasma jet was implemented in an IMS device and tested using He, Ne and Ar as 

working gases. As nitrogen plays an important role for soft ionisation mechanism using 

the capillary dielectric barrier discharge investigations using mixtures of the rare gases 

with nitrogen in different concentration were used to produce the plasma jet. By 

acquiring the emission spectra of the plasma jet, it was found that only in the case of He 

the upper excited levels of the N2
+
 first negative system 

2( )uB   can be excited. This is 

based on the He metastables Penning ionisation. Increasing the concentration of 

nitrogen in the gas mixture, it was found that the population of the excited upper level 

of N2
+
 first negative system 

2( )uB   cannot exceed the population density of the 

metastables and this density is between 140 and 450 ppm of the He atoms in ground 

state. Pure He should be used and the reaction of Penning ionisation should take place 

in the vicinity of the water protonation process, to obtain the most sensitive IMS signal. 

This means that the Penning ionisation between He metastables and nitrogen should 

happen in the ionisation chamber outside the plasma capillary in the vicinity of the 

plasma jet. When Ne is used as working gas in the plasma jet, a small RIP is observed. 

This can only be explained by Penning ionisation, but the energy difference between Ne 

metastable state and the protonation level is bigger than the difference between 

2

2 ( )gN X   and the water protonation level. In the case of Ar, the metastable state is 

lower than the protonation level and therefore a RIP could not be measured. 

The following investigation on the plasma jet was intended to get a mapping of the 

important species along the plasma jet. This was a good way to prove that there exists 

an optimal position where the upper excited levels of the N2
+
 first negative system 
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2( )uB   can be excited due to Penning ionisation by He metastables. The distribution of 

intensities in the plasma jet of some relevant emission lines of the species involved in 

the energy transfer process (He 706 nm, N2 380 nm and N2
+
 427 nm) have been 

presented for two different He flows. It was found that the plasma jet, which penetrates 

from the zone of the capillary barrier discharge into the atmosphere, has strongly non-

homogeneous distribution of the ground-state particles along its axis while it is axially 

symmetric. Based on these experimental findings, a simplified model involving He and 

N2 reactive states was developed. It represents a semi-quantitative analysis of position-

dependent energy transfer processes involving He, N2 and H2O in their ground, excited 

and ionised states. The number density distributions of excited He, N2
+
 and N2 along the 

plasma jet were simulated and compared with the intensity distributions of the 

corresponding optically thin spectral lines observed in the experiment. A general 

agreement between modelled and experimental results was found and confirmed by the 

reproduced position of maxima of the line intensity as well as by their shift towards 

larger distances from capillary orifice. It can be concluded that the main excitation path 

leading to the protonation of water in the He plasma jet penetrating in the air 

atmosphere starts with the collisions of He metastables and N2 molecules in air. Penning 

ionisation of nitrogen and subsequent energy transfer to the water molecules lead to an 

efficient water ionisation and protonation. Even though other energy transfers paths, 

like charge transfer might be considered, this is the most important one. In the described 

cascade de-excitation, several important branching ratios were determined 

approximately. In addition, a region in the plasma jet characterized by the most efficient 

subsequent protonation of sample molecules was identified. 

In the previous investigations it was shown that the density of 
2

2 ( )uN B   excited state 

of the first negative system plays an important role in the process of water protonation 

and depends on the density of the He metastable density population. Thus, a new task 

arose, which is determination of the population density of the excited He state which 

populates through radiative decay the metastable level. This task was accomplished by 

the evaluation of the variation of the He emission lines along the plasma jet as they 

were measured for the plasma jet mapping. 
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Considering the broadening parameters of the emission lines for the case of the 

considered thin line, a simulation of the curve of growth was done from which the 

density population could be estimated. The He 706 nm was considered to be optically 

thin, and based on this assumption, the evaluation procedure indicates that the 

considered density population for n1
728

  n(2p
1
P

0
) amounts at least to 110

15
 cm

-3
. 

Time and space resolved laser absorption spectroscopy as well as laser fluorescence 

measurements for one of the interest He lines would be necessary. These could give 

information about the gas temperature and the actual line broadening, as well as 

accurate results in evaluating the population density in the corresponding metastable 

state. Then, by combining these results with the emission-spectroscopic date for other 

lines, one can get a full picture about the metastable density in the dielectric barrier 

capillary plasma jet discharge. 





 

8 APPENDIX 

8.1 Conversion of energy units 

The following conversion of units is given according to Spectrophysics by A. P. Thorne 

[101]. 

 7 18 22 11  10 6.242 10  5.034 10J rg ee cV m     

19 11  1.602 10  8065 JeV cm     

1 23 41    1.986 10 1.240 10J ecm V       

23 1 4 1 1 11.380 10 0.861 10   0.695 J ek K V K cm K              

23 1 6 11.98648 10 1.23985 10hc J cm eV cm          

8.2 Basic aspects of optical spectroscopy 

A short presentation of the basic aspects regarding optical spectroscopy will briefly be 

presented and defined in the following part. For practical reasons, the cgs-units will be 

used here: in this specific area of atomic spectroscopy, which is the subject of this work, 

formulas and calculations are simpler in the cgs-system than in the MKS-system. The 

final results are always presented in MKS units. The notions used here are according to 

A.P. Thorne [101] and W. Demtröder [108] 

Spectral density of radiation  (erg cm
-3

 Hz
-1

) and spectral intensity of radiation  

I
 

(erg cm
-2

 s
-1

 Hz
-1

) 

The spectral density of radiation is the energy emitted at a given frequency ν(Hz) per 

unit volume and per unit frequency interval dν. For example, in the case of blackbody 

radiation this is defined as: 

2
3 1

3

8
( )

exp( / ) 1

h
erg cm Hz

c h kT

  




  


                                                                 (A.1) 



120  Basic aspects of optical spectroscopy  

Here, the temperature is given in K and the values for c, h, and k are: 310
10

 cm s
-1

, 

6.62510
-27

 erg s, and 1.3810
-16

 erg K
-1

, respectively. 

The spectral intensity is related to spectral density via I

 = c, it is defined as the 

energy emitted per unit area, time and frequency. 

The absorption coefficient k() (cm
-1

) and its frequency dependence 

When a beam of light is passing in y-direction through a thin layer containing atoms 

which are characterized by an absorption line produced by the 1 2  transition, the 

change of the spectral intensity dI
ν
(ν,y) at the position y is proportional to the incident 

spectral intensity I
ν
(ν,y) and the layer thickness dx (cm) as follows: 

12( , ) ( ) ( , )dI y k I y dy     .                                                                                    (A.2) 

The frequency-dependent factor k12(ν) (cm
-1

), i.e. the absorption coefficient for the 

21  transition, is usually defined by: 

2

12 2
12 1 21 12

1

( ) ( )
8

g
k n A P

g


 


 .                                                                                       (A.3) 

The significance and the corresponding units in the above equation to obtain the 

absorption coefficient k12(ν) in cm
-1

 are: λ12 is the wavelength line in cm, n1 is the 

number density of absorbing atoms in the lower state in cm
-3

, g1 and g2 are the statistical 

weights of the lower and upper state, A21 is the radiative transition probability in s
-1

, and 

P12(ν) is the normalized line profile in Hz
-1

. 

The normalized line profile (normalized absorption distribution over frequencies  in 

Eq. (A.3) fulfills the following condition: 

12 ( ) 1P d   .                                                                                                            (A.4) 

According to Eq. (A.2), the transmitted spectral intensity after passing a finite 

absorption column (length: L) is given by: 

 12( , ) ( ,0)exp ( )I L I k L     ,                                                                               (A.5) 

which is the well known Beer’s absorption law. One should keep in mind that Eq. (A.2) 

is valid for weak incident spectral density, so that the energy, which is absorbed and 
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spontaneously re-emitted energy in x-direction, is negligible. Otherwise, the induced 

emission should also be taken into account, which is done by an additional term on the 

right side of Eq. (A.2). This leads to the non-linear absorption and saturation. 

Simultaneous emission and absorption of a spectral line 

Considering a plasma column, i.e. an emitting and simultaneously absorbing medium 

with relevant number densities n1 and n2, the spontaneous emission done by transition 

2→1 is followed by absorption 1→2, respectively. Spontaneous emission is distributed 

spatially isotropic and an exact radiometric calculation would require the introduction of 

the plasma cross section and the corresponding space angles. In the present case the 

one-dimensional geometry is assumed, i.e. the diameter of the plasma column is small 

in comparison with the column length L. Furthermore, it is assumed that the plasma 

column is homogeneous, which means that n1 and n2 do not depend on the position y. In 

this case (see Figure 8.1), the difference dI


21(,x)
 
between the incident and out coming 

intensity of the spectral line related to a thin layer (thickness: dy) at position y is: 

21 21 12 21( , ) ( ) ( ) ( , )dI y dy k I y dy       .                                                                   (A.6) 

 

Figure 8.1 Geometry for the calculation the intensity of a spectral line emitted from a plasma. 

The linear spectral emissivity of an emission line emerging by the corresponding 2→1 

transition is labeled by ε21(ν) in Eq. (A.6). It is proportional to the energy of emitted 

photons, the radiative transition probability A21, the number density n2 of the atoms in 

the upper state and to the emission line profile P21(ν): 

21 12 21 2 21( ) ( )h A n P    .                                                                                          (A.7) 

In the next step, the expression (A.6) is re-written in the following form: 
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21
21 12 21

12

( )
( , ) ( ) ( , )

( )

d
I y k I y

dy k

  
  



 
  

 
.                                                                    (A.8) 

The line emission profile P21(ν) equals to the absorption profile P12(ν), which follows 

from the relationship between the Einstein coefficients for emission and absorption. 

This means that the ratio I0 = 21()/k12() does not depend on frequency: 

2 1
0 21 12 3

12 1 2

8
( ) / ( )

n ghc
I k

n g


  


  .                                                                            (A.9) 

Since the medium is supposed to be homogeneous (number densities do not depend on 

y), it is convenient to introduce the quantity J


21(,y) = I0-I


21(,y). With this substitute, 

the equation (A.8) becomes: 

21 21 21( , ) ( ) ( , )
d

J y k J y
dy

     .                                                                               (A.10) 

After integration from y = 0 to y = L, Eq. (A.10) yields: 

 21 21 21( , ) ( ,0) exp ( )J L J k L     .                                                                          (A.11) 

Then, the expression for the emitted spectral line intensity related to the whole plasma 

column is given by: 

     Lk
g

g

n

nhc
Lk

k
LI )(exp1

8
)(exp1

)(

)(
),( 21

2

1

1
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3

12

21

21

21
21 









                  (A.12) 

The registered line intensities 

The spectra are acquired with a spectrometer, which is characterized by its (normalized) 

instrumental profile PS(ν) and its spectral response r(ν). The measured intensities are 

displayed in arbitrary units. The registered line intensity is a convolution of the 

instrumental profile and the observed spectral line intensity as follows: 






   dLIPrLI S
M ),()()(),( 2121

.                                                              (A.13) 

Usually, the spectral response varies slowly within the profile of the particular line as 

well as within the instrumental profile, i.e. it can be taken as constant in the actual 

integration frequency range: 
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21 21 21( , ) ( ) ( ) ( , )M

SI L r P I L d     




  .                                                                (A.14) 

Here, two extreme cases regarding the widths of PS() and P21() can be considered. In 

the case that the width of the line profile is much narrower than the width of the 

spectrometer profile (case a), the subintegral function I


21(-,L) in Eq. (A.14) is a sharp 

peak at the frequency 21 and can be formally treated as the δ-function: 

  dLIvLI 




 ),()(),( 212121
.                                                          (A.15) 

Then, the formula (A.14) yields: 

  dLIPrLI Sa
M ),()()(),( 21212121 





 .                                                     (A.16) 

In case a, the shape of the measured line reflects the exact form of the instrumental 

profile and the signal is proportional to the integral of the intensity of the spectral line. 

This integral (integration of Eq. (A.12) depends on the line parameters, the line profile, 

the relevant number densities and the length of the observed emitting column. 

If the instrumental profile is much narrower than the line profile (case b) the 

instrumental profile can be represented by the  -function: 






  dPP SS )()()( 21
.                                                                               (A.17) 

In this case, the Eq. (A.14) yields the following expression: 






   dPLIrLI Sb
M )(),()(),( 21212121

.                                                      (A.18) 

In case b), the measured intensity follows the shape of the emitted spectral intensity as 

defined by Eq. (A.12). The integral of the instrumental profile is a constant. For 

instance, if PS() is defined in the normalized form as mentioned above, then the 

integral in the expression (A.18) is equal to 1. 
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Optical depth and optical thickness of spectral lines 

The dimensionless quantity k21()L is the so-called “optical depth” of the considered 

spectral line. As one can take from Eq. (A.12), only in the optically thin case, i.e. when 

k21L << 1 applies, the spectral intensity of the line follows the shape of the actual line 

profile: 

)(),( 122211221  PLnAhLI
thin

                                                                            (A.19) 

In practice, the lines can be considered as optically thin when the optical depths take 

values less than 0.05. Otherwise, the lines are treated to be optically thick and the 

general form of the emitted spectral intensity is defined by Eq. (A.12). In case a defined 

above, the spectrometer integrates the spectral intensity and the measured line intensity 

of an optically thin line, according to Eqs. (A.4), (A.16) and (A.19) is given by: 

)()(),( 212211221,21   Sthina
M PLnAhrLI .                                                     (A.20) 

Normalized line profiles 

The broadening of the kernels of spectral lines usually is governed by the Doppler effect 

and the collisions between the emitting particles and surrounding perturbers. The 

resulting line profiles are both analytical functions as given below. 

The Doppler (Gauss) broadening: 
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 ,                                                            (A.21) 

where D is the Doppler FWHM given by: 

MkTHzD /2
2ln2

)(
12

 .                                                                                    (A.22) 

In the case of He, D amounts to: 

)(

)(
1007.1)(

12

4

cm

KT
HzD


 .                                                                                  (A.23) 
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The Lorentz (pressure) broadening: 

14

12
)(

2

21

21













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L

L

LP


 ,                                                                               (A.24) 

where L(Hz) is the Lorentz FWHM, which is given as the product of perturber number 

density of the atoms np and the impact broadening parameter P (cm
3
 s

-1
): 

PPL n .                                                                                                              (A.25) 

The Voigt profile 

In general, both Doppler and Lorentz broadening mechanisms occur and the resulting 

profile is their convolution: 

  dxxPxPP LDV )()()( 121212  ,                                                                                  (A.26) 

which is well known as the Voigt profile. There is no analytical solution for Eq. (A.26) 

and for each particular case, numerical calculations are needed. Nevertheless, for given 

Doppler and Lorentz full widths at half-maximum, in literature one can find 

approximate analytical expressions for the corresponding Voigt profiles. 

Multiple Lorentz broadening 

Lorentz broadening occurs due to collisions between the emitting atoms and 

surrounding perturbers in a medium (pressure broadening). If we have a monoatomic 

medium, then the Lorentz broadening is caused by collisions with atoms of the same 

kind (homonuclear collisions, self-broadening). If additional other perturbers (atoms, 

molecules, electrons) are present, the resulting broadening is a convolution of the 

particular Lorentz profiles. The resulting line shape is again of the Lorentz form, where 

the resulting L equals to the sum of the particular contributions. 

8.3 The curve of growth for He 728 nm determined using 

Origin software 

Using the Origin8 software from OrginLab Corporation, the curve of growth for the 

population density of the He excited state on the upper level corresponding to the 
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728 nm emission line was calculated. Atmospheric pressure and a temperature of 

T = 2000 K were assumed. The basic parameters corresponding to this transition are: 

the wavelength 12 = 7.2810
-5

 cm, the statistical weights of the corresponding levels 

transitions g2 = 1, g1 = 3 and the Einstein coefficient for spontaneous emission 

A21 = 0.1810
8
 s

-1
. The Origin project file contains a worksheet with nine columns that 

are named and defined as described in the following. 

According to the previous section, the acquired spectral lines are broadened. The 

corresponding broadening parameters are given as constants in two separate columns: 

Lorentz broadening: 

  10

L 1.5 10 (Hz)   col L  and Doppler broadening: 

  9

D 6.5 10  (Hz)   col D . The parameters of the corresponding Voigt profile are 

calculated in columns col(V) and col(Po) by setting the column values as follows: 

       
2 2 0.5

V

2 2 10

L L D

col L / 2 ( col L / 2 (col(D)) )

/ 2 ( / 2) 1.74247 10  (Hz)

     

     

col V
 

11 1

0 3.84449 10 ( )VP Hz   0col(P )  according to Eq. (6.6) in Sec. 6.3.3. 

The normalized line profile represented in col(P7) is a normalized Pearson-7 function 

which is calculated as defined by Eq. (6.7) in Sec. 6.3.3. Here, for the parameter p, a 

value of 1 was chosen: 

  2 2 1

07 col(P ) / ((1 4*(col(A)) / (1*(col(V)) ) ) col P . 

The column A (col(A)) represents the frequency scale in Hz. For practical reasons, the 

line profile is centered to the line frequency (   21  col A ). The col(A) was defined 

in three steps in the following manner: 

i)   i for i 1 to  4000 col A (i the number of steps) 

ii)     2000 col A col A  (centering), 

iii)     5E8 col A col A  (setting the A-scale to the absolute frequency-scale (Hz)). 
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To get the correct values for the relevant integral over the frequencies, numerical 

calculations require a sufficiently wide (finite) range of summation and sufficiently 

small summation steps. To reproduce the line kernel correctly, the summation steps 

should be at least ten times smaller than the FWHM of the line. In the present case (see 

the broadening section) the frequency steps (510
8
 s

-1
) are arbitrarily chosen to be 

around 3.5 times below this requirement. 

A check of the integral (summation) of the column values for col(P7) shows if the 

chosen number of frequency steps (yielding the finite integration range) is sufficient. 

The product of this sum with the step width 510
8
 should be near to 1. However, the 

number of steps (4000) was chosen by testing the shape of the subintegral function in 

Eq.(A.4) which is defined in col(F) as it follows below. 

The column col(n1L) represents the variable n1L (cm
-2

). To make the evaluation steps 

more clear, the value of this variable is defined as follows: 

col(n1L)set column values col(n1L)= chosen value in cm
-2

. 

After setting the data in col(L), col(D), col(V), col(Po) and col(P7), the exponent in the 

subintegral function (optical depth), given by Eq. (6.13) in section 6.3.5 is calculated in 

col(OD) for a chosen particular value in col(n1L) as follows: 

  2((7.28E 5) / (8 3.14)) (1/ 3) (0.18E8) ( 7) ( 1 )      col OD col P col n L  

After setting the column values in col(OD), the subintegral function given in Eq. (6.13) 

in section 6.3.5 is calculated in the col(F) as follows: 

  1 exp( ( ))  col F col OD  

The validity of the integration procedure should be tested on col(P7) and col(F). 

Test 1. The normalization of the P7 profile 

The integral of P7 over the frequency range should be equal to 1. When setting the data 

in col(P7), one can calculate the sum of column values as follows: Analysis  

Statistics on columns  Data1. In the resulting window Data1 the sum amounts to 

2.099810
-9

 Hz
-1

. This value multiplied by the frequency step 510
8
 Hz yields the 

integral of P7 over the frequencies equal to 1.0499. The deviation from 1 is a matter of 
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the chosen parameter p = 1 (see 6.1.3. above). It should be slightly adjusted (p = 1.061) 

to obtain the integral of P7 over the frequencies closer to 1. This correction was 

introduced in the windows Test2 and Test3. 

Test 2: the frequency steps. 

When plotting the P7, one can see that the chosen frequency steps are sufficiently small 

for correct reproduction of the profile in the line kernel as can be seen from Figure 8.2. 
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Figure 8.2 Frequency steps. 

Test3: the frequency range. 

With the chosen value n1L = 110
17

cm
-2

 in col(n1L), the subintegral function F17 was 

calculated and plotted in Figure 8.3 together with F16 (n1L = 110
16

cm
-2

) against the 

frequency. The latter is calculated in the window Test3b. As one can see from Figure 

8.3, the chosen integration frequency range (from -310
12

 Hz to +310
12

 Hz) is not 

large enough for the integration over the entire range of F17, i.e. when n1L= 110
17

cm
-2

. 

In that case, one should enlarge the number of steps (now: 4000). However, the 

calculation presented in the following section will be performed for the values n1L up to 

110
16

 cm
-2

 so that the chosen frequency range can be taken as appropriate. 
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Figure 8.3 Testing the frequency integration range. 

In the present example, the evaluation was performed for the values of the variable n1L 

(cm
-2

) equal to a  10
b
 (cm

-2
), where a = 1, 2.1 and 4.6 while n = 11, 12…16. The 

chosen steps are nearly equidistant on a logarithmic scale. For each value defined in 

col(n1L), the column col(OD) and subsequently col(F) were calculated. When by 

multiplying the sum of calculated values in the col(F) with the value of the frequency 

steps, one obtains the corresponding value of the curve of growth Fcg(n1L). 

8.4  Abel transformation  

The following procedure applied in case of cylindrical symmetry of light sources called 

Abel’s inversion is according to Lochte-Holtgreven [109]. In the case of a non-

homogenous optically thin plasma, different plasma layers, each having an individual 

emissivity and an individual thickness contribute to the observed intensity. In return, in 

plasma analysis from the observed integrated intensity the individual plasma layers of 

different emissivity have to be found. The solution of this problem is not unambiguous 

and no general solution can be given. If, however, the symmetry of the light source is 

known, a solution is possible. 
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In the case of a cylindrical or spherical symmetry of the light source the observed 

projected intensities can be transformed into the radial intensity distribution within the 

plasma. 

 

Figure 8.4 Subdivision of a plasma column into cylinders. X axis is the direction of observation. 

After W. Lochte-Holtgreven [109]. 

Let the axis of symmetry be denoted as z-axis (see Figure 8.4 ). We observe a circular 

plasma disc edge on, the x coordinate pointing from the axis towards the observer, the y-

axis perpendicular to x. I(y) denotes the intensity of the radiation integrated over the x 

direction at a distance y from the xz plane. The local emissivity of the plasma at a 

distance r from the axis is (r), then I(y) is related to (r) by: 

   

2 2( )

2 2
0

( )
2 2

( )

R y R

y

r rdr
I y r dx

r y






 


  ,                                                                   (A.27) 

where R is the radius for which (r) becomes zero. An inversion yields the desired 

quantity (r): 

 
 

 2 2

1
R

r

dI y dy
r

dy y r



 


 .                                                                               (A.28) 

As Eq. (A.27) is of the Abel type, Eq. (A.28) is the corresponding Abel inversion. A 

large number of papers have appeared to handle the solution of these equations. Four 

different methods have been used: 
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a) graphical integration, 

b) 1: expansion of the integral Eq. (A.27) into a set of linear equations given by: 

  ( )
N

k ik i

i k

I y a r


  

    2: a method similar to the one discussed above, but using an inverse matrix: 

  ( )
N

i ik k

i k

r b I y


  

c) expansion of the integral Eq. (A.28) into a set of linear equations 

  ( )
N

i ik k

i k

r I y 


  

d) approximation of I(y) by polynomials. The solution of Eq. (A.27) of (A.28) is done 

by use of computer. 
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