Moment functions and Central Limit Theorem for Jacobi hypergroups on $[0, \infty$ [

Waldemar Grundmann

Fakultät für Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44227 Dortmund

Moment functions and Central Limit Theorem for Jacobi hypergroups on $[0, \infty[$

Waldemar Grundmann
e-mail: waldemar.grundmann@math.tu-dortmund.de

November 7, 2011

Abstract

In this paper we derive sharp estimations and asymptotic results for moment functions on Jacobi-type hypergroups. Moreover, we use these estimations to prove a Central Limit Theorem for random walks on Jacobi hypergroups with growing parameters $\alpha, \beta \rightarrow \infty$. As a special case we obtain a CLT for random walks on the hyperbolic spaces $H_{d}(\mathbb{F})$ with growing dimensions d over the fields $\mathbb{F}=\mathbb{R}, \mathbb{C}$ or the quaternions \mathbb{H}.

1 Introduction

Let $(K, *)$ be a hypergroup in the sense of Jewett [7]. The convolution $*$ allows the notion of random walks on $(K, *)$ by saying that a (time-homogeneous) Markov chain $\left(S_{n}\right)_{n \geq 0}$ is a random walk on $(K, *)$ with law $\nu \in \mathcal{M}^{1}(K)$ if

$$
\begin{equation*}
\mathbb{P}\left(S_{n+1} \in A \mid S_{n}=x\right)=\left(\delta_{x} * \nu\right)(A) \tag{1.1}
\end{equation*}
$$

for all $n \geq 0, x \in X$ and Borel sets $A \subset K$. A lot of research was carried out in this setting, such as, for example, on recurrence, laws of large numbers, large deviation principle and central limit theorems. But there are also many issues where the presentation of S_{n} as sums of i.i.d. random variables would be useful. Typical examples are laws of large numbers, where truncature methods are used, see [22] and Section 7.3 of [3].

On a hypergroup, there is in general no deterministic operation corresponding to the convolution of measures. Consequently, sums of hypergroup-valued random variables cannot be defined directly. This obstacle was overcome in a particular case by Kingman [10] by applying the concept of randomized addition, in such a way that, as in the classical case, the distribution of the sum of two independent K-valued random variables equals the convolution of the distributions of the summands. Later, this construction was generalized by Zeuner [22] under the name of concretisation.

In studying of central limit theorems, the modified moments of a random variable, which are adapted to the hypergroup operation, were introduced to formulate the conditions under which a particular limit theorem holds, and to calculate the actual value of the limit. The notions of moments of the first and second order and of dispersion were introduced for special cases by Tutubalin [15]. Later, the idea of dispersion appeared in the work of Faraut [5] and Trimèche [14]. The modified moment functions on Sturm-Liouville hypergroups and polynomial hypergroups were studied by Zeuner [22] and Voit [16] respectively. A systematic study of this subject on an arbitrary hypergroup has been carried out by Zeuner [23].

Today, there are various CLT's for random walks on hypergroups available. For an overview on results we refer to the monograph [3] and references cited there. Random walks $\left(S_{n}\right)_{n \geq 1}$ on hypergroups $(K, *)$, where the convolution $*=*_{n}$ is in a certain way coupled with the number of steps n, were investigated by M. Voit (see [18], [19] and [20]) and is motivated by the following problem: For $\nu \in \mathcal{M}^{1}([0, \infty[)$ fix, and dimension $d \in \mathbb{N}$ there is a unique rotation-invariant probability measure $\nu_{d} \in \mathcal{M}^{1}\left(\mathbb{R}^{d}\right)$ with $\varphi_{d}\left(\nu_{d}\right)=\nu$, where $\varphi_{d}(x)=\|x\|_{2}$ is the norm mapping. For each $d \in \mathbb{N}$ consider i.i.d. \mathbb{R}^{d}-valued random variables $X_{k}^{d}, k \in \mathbb{N}$, with law ν_{d} as well as the associated radial random walks $\left(S_{n}^{d}:=\sum_{k=1}^{n} X_{k}^{d}\right)_{n \geq 0}$ on \mathbb{R}^{d}. The aim is to find limit theorems for the $\left[0, \infty\left[\right.\right.$-valued random variables $\left\|S_{n}^{d}\right\|_{2}$ for $n, d \rightarrow \infty$ coupled in a suitable way. Two associated CLT's under disjointed growth conditions for $d=d_{n}$ were presented in [18] and in a more general setting in [19]. The first CLT for $d_{n} \ll n$ was thereby a consequence of Berry-Esseen estimates of \mathbb{R}^{d} with explicit constants, depending on the dimension d, which are due to Bentkus [1]. A version of this result without the strong restriction $\frac{n}{d_{n}^{3}} \rightarrow \infty$ and $\frac{n^{2}}{d_{n}} \rightarrow 0$ but with the assumption of the existence of moments $\int x^{j} d \nu(x)<\infty$ for $j \in \mathbb{N}$ was recently derived in [6] using different methods, as in the references above.

The aim of this paper is to derive a CLT for random walks $\left(S_{n}\right)_{n \geq 0}$ on Jacobi-type hypergroup $\left(\left[0, \infty\left[, *_{\alpha, \beta}\right)\right.\right.$ for $\alpha, n \rightarrow \infty$ as in [19] without any restriction on the growth of the "dimension" $\alpha=\alpha(n)$. We shall prove this here by using algebraic transformation and inequalities for moment functions as well as relations between moment function of the first and second order. A part of these results seems to be interesting in general, therefore we study them in a general setting of an arbitrary non commutative hypergroup in Section 2. Furthermore, special results for the moment functions on Jacobi-type hypergroups ($\left[0, \infty\left[, *_{\alpha, \beta}\right.\right.$), in particular asymptotic behaviour of these as $\alpha \rightarrow \infty$, will be presented in the forth section.

The content of the paper is as follows. In the second section, after recalling some basic facts about hypergroups, concretisation and randomized sums, which are fundamental for the construction of random walks on hypergroups, we recapitulate the concept of moment functions for arbitrary hypergroups and derive relationships between them. These are essential for the proof of the central limit theorem 5.1. In the third section we collect the necessary background information on hyperbolic spaces and Jacobi hypergroups and indicate the connection between them. In the fourth section we derive estimations and asymptotic results for moment functions on Jacobi-type hypergroups. In the fifth section we use the results of the previous sections to prove the CLT for Jacobi hypergroups and its corollary. The last section is devoted to a weak law of large numbers for the sum of many "small" random variables on Jacobi hypergroups.

2 Random walks and moment functions on hypergroups

2.1 Hypergroups. The dual of a commutative hypergroup

Let $(K, *)$ be a hypergroup in the sense of Jewett [7]; this means that K is a locally compact space with an associative convolution $(x, y) \mapsto \delta_{x} * \delta_{y} \in \mathcal{M}^{1}(K)$ such that there exists a neutral element $e \in K$ and an inversion $x \mapsto \check{x}$ satisfying certain conditions. For a list of examples we refer to [3] and [23]. We call a hypergroup ($K, *$) Hermitian, if $\check{x}=x$ for all $x \in K$, in particular this implies the commutativity of $(K, *)$.

The dual \hat{K} of a Hermitian hypergroup $(K, *)$ is the space of all real-valued multiplicative functions φ on K with $\varphi(e)=\|\varphi\|_{\infty}=1[7,6.3]$. For every probability measure P on K the

Fourier transform $\mathcal{F} P$ is the continuous real-valued function $\varphi \mapsto \mathcal{F} P(\varphi):=\int_{K} \varphi(x) d P(x)$ on \hat{K}. It is a well known fact that the uniqueness theorem and the continuity theorem for the Fourier transform are valid for commutative hypergroups (see [2, 7]). In the following, let $(K, *)$ be a hypergroup (not necessarily Hermitian).

2.2 Concretization of hypergroups, randomized sums

The forming of sums of K-valued random variables is not directly possible, as there is no deterministic operation on K in general. It is clear, that the "sum" of two independent random variables X and Y should be $P_{X} * P_{Y}$. In this section we recapitulate the construction of the randomized sum of K-valued random variables using the concept of the concretization of hypergroups (see [3, Chapter 7]). For this, we need the following definition:

Definition 2.1. Let ($K, *$) be a hypergroup, μ a probability measure on a compact set M, and let $\Phi: K \times K \times M \rightarrow K$ be Borel-measurable. The triple (M, μ, Φ) is called a concretization of ($K, *$) if

$$
\mu\{\Phi(x, y, \cdot) \in A\}=\left(\delta_{x} * \delta_{y}\right)(A) \quad \text { for } \quad x, y \in K, A \in \mathcal{B}(K) .
$$

$\left(\mathcal{B}(K)\right.$ denotes the Borel σ-field of K.) Since $\delta_{x} * \delta_{e}=\delta_{e} * \delta_{x}=\delta_{x}$ for all $x \in K$, we obviously have

$$
\begin{equation*}
\Phi(e, x, \cdot)=\Phi(x, e, \cdot)=x \quad \mu-a . s \tag{2.1}
\end{equation*}
$$

For a list of examples of concretisation we refer to [22]. It has been proven by Zeuner [23], that for every countable hypergroup $(K, *)$ there exists a measurable mapping Φ from $K \times K \times[0,1]$ in K such that $\left([0,1], \lambda_{[0,1]}, \Phi\right)$ is a concretization of K.
Assumption 2.2. In the sequel let (M, μ, Φ) be a concretization of the hypergroup ($K, *$) and $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Moreover let $X, Y, X_{0}, X_{1}, X_{2} \ldots$ be a sequence of K-valued random variables with $X_{0}: \equiv e$, and $\Lambda, \Lambda_{0}, \Lambda_{1}, \Lambda_{2} \ldots$ be a sequence of M-valued random variables such that all random variables $X, \Lambda, Y, X_{0}, \Lambda_{0}, X_{1}, \Lambda_{1}, X_{2}, \Lambda_{2}, \ldots$ are independent. We set $\nu_{n}:=\mathbb{P}_{X_{n}}$ (so $\nu_{0}=\delta_{e}$) and $\mu_{n}:=\mathbb{P}_{\Lambda_{n}}(n \geq 0)$. For a set $B \subset K$ we will denote by χ_{B} the map

$$
\chi_{B}: K \rightarrow K, \quad \chi_{B}(x)= \begin{cases}x & \text { for } x \in B \\ e & \text { for } x \notin B .\end{cases}
$$

Construction of randomized sums: Let X, Y and Λ be random variables as in assumption 2.2. We define

$$
X \stackrel{\Lambda}{+} Y:=\Phi(X, Y, \Lambda) .
$$

This is a K-valued random variable.
More generally, let $\left(X_{n}\right)_{n \geq 0}$ and $\left(\Lambda_{n}\right)_{n \geq 0}$ be sequences as in 2.2. Then we define the randomized sum $S_{j, n}$ recursively by

$$
S_{j, n}:= \begin{cases}X_{j} & \text { for } n=j \\ \Phi\left(S_{j, n-1}, X_{n}, \Lambda_{n-1}\right) & \text { for } j<n\end{cases}
$$

for $j, n \in \mathbb{N}_{0}$ with $j \leq n$. We write S_{n} instead of $S_{0, n}$, i.e. we have

$$
S_{n}=S_{n-1} \stackrel{\Lambda_{n-1}}{+} X_{n}=\left(S_{n-1} \stackrel{\Lambda_{n-2}}{+} X_{n-1}\right) \stackrel{\Lambda_{n-1}}{+} X_{n}
$$

If the random variables X_{1}, X_{2}, \ldots are identically distributed with $P_{X_{i}}=\nu(i \in \mathbb{N})$ then we will call $\left(S_{n}\right)_{n \in \mathbb{N}}$ a random walk on $(K, *)$ with law ν. In fact, direct computation shows that the sequence $\left(S_{n}\right)_{n \in \mathbb{N}}$ is a (non-homogeneous) Markov chain, with the transition kernel

$$
\mathbb{P}\left(S_{n} \in B \mid S_{n-1}=x\right)=\left(\nu_{n} * \delta_{x}\right)(B) \quad \mathbb{P}-\text { a.s. }
$$

for all $x \in K, B \in \mathcal{B}(K)$. We will denote by $S_{n}(j, Z)(j, n \in \mathbb{N}, j \leq n)$ the randomized sum S_{n}, where the j-th term X_{j} is replaced by a K-valued random variable Z, i.e. $S_{n}(j, Z)$ can be recursively defined as follows

$$
S_{n}(j, Z):= \begin{cases}\Phi\left(S_{n-1}(j, Z), X_{n}, \Lambda_{n-1}\right) & \text { for } j<n \\ \Phi\left(S_{j-1}, Z, \Lambda_{j-1}\right) & \text { for } j=n\end{cases}
$$

For instance, if $n=5, j=3$ then

$$
S_{5}(3, Z)=S_{4}(3, Z) \stackrel{\Lambda_{4}}{+} X_{5}=\ldots=\left(\left(\left(X_{1} \stackrel{\Lambda_{1}}{+} X_{2}\right) \stackrel{\Lambda_{2}}{+} Z\right) \stackrel{\Lambda_{3}}{+} X_{4}\right)^{\Lambda_{4}} X_{5} .
$$

Clearly $S_{n}(j, e)$ coincides \mathbb{P}-a.s. with the randomized sum S_{n}, where the j-th term is omitted.
Remark 2.3. Forming randomized sums is generally non an associative operation although convolution of distributions obviously is. Indeed, it is easy to check that

$$
\begin{aligned}
P_{S_{j, n}} & =\nu_{j} * \nu_{j+1} * \ldots * \nu_{n} \\
P_{S_{n}(j, Z)} & =\nu_{1} * \ldots * \nu_{j-1} * \mathbb{P}_{Z} * \nu_{j+1} * \ldots * \nu_{n}
\end{aligned}
$$

For $\nu \in M^{1}(K)$ and $n \in \mathbb{N}$ we denote the n-fold convolution power of ν w.r.t. the convolution $*$ by ν^{n}. If X_{1}, X_{2}, \ldots are identically distributed, say $\mathbb{P}_{X_{n}}=\nu$ for $n \geq 1$ then

$$
\mathbb{P}_{S_{j, n}}=\nu^{n-j+1} \quad \text { and } \quad \mathbb{P}_{S_{n}(j, Z)}=\nu^{j-1} * \mathbb{P}_{Z} * \nu^{n-j} \quad(j, n \in \mathbb{N}, j \leq n) .
$$

2.3 Moments on hypergroups

We recapitulate the concept of moment function introduced by Zeuner; see [22, 23] and [3, Section 7.2].
Definition 2.4. Define the function $m_{0}(x)=1$ for $x \in K$. A finite sequence $\left(m_{i}\right)_{i=1, \ldots, n}$ of measurable and locally-bounded functions $m_{j}: K \rightarrow \mathbb{C}(j=1, \ldots, n)$ is called a sequence of moment functions of length $n \in \mathbb{N}$ if

$$
\begin{equation*}
\int_{K} m_{i}(z) d \delta_{x} * \delta_{y}(z)=\sum_{j=0}^{i}\binom{i}{j} m_{j}(x) m_{i-j}(y) \quad(i=1, \ldots, n ; \quad x, y \in K) . \tag{2.2}
\end{equation*}
$$

Moreover, the function $m_{j}(j=1, \ldots, n)$ is called a moment function of j-th order (associated with the sequence $\left.\left(m_{i}\right)_{i=1, \ldots, n}\right)$. By induction, we conclude from (2.2) that $m_{j}(e)=0$ for a moment function of j-th order.

Here and subsequently, let $\left(m_{i}\right)_{i=1, \ldots, n}$ be a sequence of moment functions of length $n \in \mathbb{N}$. For every K-valued random variable X and $k \in\{1, \ldots, n\}$ such that $m_{k}(X)$ is integrable,

$$
\mathbb{E}_{k}^{*}(X):=\mathbb{E}\left(m_{k}(X)\right)=\int m_{k}(X) d \mathbb{P}
$$

will be called the k-th modified moment of X (with respect to the moment function m_{k}). We write $\mathbb{E}_{*}(X)$ for a modified moment of first order and refer to a modified expectation. The modified $*$-variance $\mathbb{V}_{*}(X)$ of X is defined as

$$
\mathbb{V}_{*}(X):=\int m_{2}(X) d \mathbb{P}-\mathbb{E}_{*}(X)^{2}
$$

if $\int m_{2}(X) d \mathbb{P}$ is finite and $\mathbb{V}_{*}(X):=\infty$ if not (c.f. [22, Sections 5-6]).
Let X, Y and Λ be random variables as in 2.2 such that $m_{k}(X)$ and $m_{k}(Y)$ are integrable for all $k \leq n$. Then, we recapitulate from [22] that $m_{n}(X \stackrel{\Lambda}{+} Y)$ is integrable and

$$
\begin{equation*}
\mathbb{E}_{n}^{*}(X+Y)=\sum_{k=0}^{n}\binom{n}{k} \mathbb{E}_{k}^{*}(X) \mathbb{E}_{n-k}^{*}(Y)=\mathbb{E}_{n}^{*}(Y \stackrel{\Lambda}{+} X) \tag{2.3}
\end{equation*}
$$

In particular, for $\mu_{i} \in \mathcal{M}^{1}(K),(i=1,2,3)$ we obtain following commutativity property

$$
\begin{equation*}
\int_{K} m_{k}(x) d\left(\mu_{1} * \mu_{2} * \mu_{3}\right)(x)=\int_{K} m_{k}(x) d\left(\mu_{\sigma(1)} * d \mu_{\sigma(2)} * d \mu_{\sigma(3)}\right)(x) \tag{2.4}
\end{equation*}
$$

where σ is a permutation of $\{1,2,3\}$.
Lemma. 2.5. Let X_{1}, \ldots, X_{n} be K-valued and $\Lambda_{1}, \ldots, \Lambda_{n-1}$ be M-valued independent random variables, such that $\mathbb{P}_{X_{i}}=\nu$ and $\mathbb{P}_{\Lambda_{i}}=\mu$ for $i=1, \ldots, n$ with corresponding random walk $\left(S_{n}\right)_{n \geq 1}$ (with law ν). Then

$$
\mathbb{E}\left(m_{k}\left(S_{n}\right) \mid X_{j}\right)=\sum_{l=0}^{k}\binom{k}{l} m_{l}\left(X_{j}\right) \mathbb{E}_{k-l}^{*}\left(S_{n}(j, e)\right) \quad \mathbb{P}-\text { a.s. }
$$

for all $k \in \mathbb{N}_{0}, j \in\{1, \ldots, n\}$. In particular, for $k=1$ we have

$$
\mathbb{E}\left(m_{1}\left(S_{n}\right) \mid X_{j}\right)=m_{1}\left(X_{j}\right)+\mathbb{E}_{*}\left(S_{n}(j, e)\right) \quad \mathbb{P}-\text { a.s. }
$$

Proof. Let $B \in \mathcal{B}(K), k \in \mathbb{N}_{0}$ and $j \in\{1, \ldots, n\}$. Consider the random variable $S_{n}\left(j, \chi_{B}\left(X_{j}\right)\right)$. Obviously, by the definition of χ_{B} we have

$$
S_{n}\left(j, \chi_{B}\left(X_{j}\right)\right)(\omega)= \begin{cases}S_{n}(\omega) & \text { for } \omega \in\left\{X_{j} \in B\right\} \\ S_{n}(j, e)(\omega) & \text { for } \omega \notin\left\{X_{j} \in B\right\}\end{cases}
$$

This and the independence of X_{j} and $S_{n}(j, e)$ clearly forces

$$
\begin{align*}
\mathbb{E}\left(1_{\left\{X_{j} \in B\right\}} m_{k}\left(S_{n}\right)\right) & =\mathbb{E}_{k}^{*}\left(S_{n}\left(j, \chi_{B}\left(X_{j}\right)\right)\right)-\mathbb{E}\left(1_{\left\{X_{j} \notin B\right\}} \cdot m_{k}\left(S_{n}(j, e)\right)\right) \tag{2.5}\\
& =E_{k}^{*}\left(S_{n}\left(j, \chi_{B}\left(X_{j}\right)\right)\right)-\mathbb{P}\left(X_{j} \notin B\right) \mathbb{E}_{k}^{*}\left(S_{n}(j, e)\right)
\end{align*}
$$

On the other side, by Remark 2.3, Eq. (2.3) and (2.4) it follows that

$$
\begin{align*}
\mathbb{E}_{k}^{*}\left(S_{n}\left(j, \chi_{B}\left(X_{j}\right)\right)\right) & =\int_{\Omega} m_{k}(x) d\left(\mathbb{P}_{\chi_{B}\left(X_{j}\right)} * \nu^{n-1}\right)(x) \tag{2.6}\\
& =\sum_{\alpha=0}^{k}\binom{k}{\alpha} \mathbb{E}_{\alpha}^{*}\left(\chi_{B}\left(X_{j}\right)\right) \mathbb{E}_{k-\alpha}^{*}\left(S_{n}(j, e)\right)
\end{align*}
$$

Since $1_{\left\{X_{j} \in B\right\}} m_{l}\left(X_{j}\right)=m_{l}\left(\chi_{B}\left(X_{j}\right)\right)(l \in \mathbb{N})$, taking (2.5) and (2.6) in account we obtain

$$
\begin{aligned}
\mathbb{E}_{k}^{*}\left(\chi_{B}\left(S_{n}\right)\right) & =\sum_{\alpha=0}^{k}\binom{k}{\alpha} \mathbb{E}\left(1_{\left\{X_{j} \in B\right\}} m_{\alpha}\left(X_{j}\right)\right) \mathbb{E}_{k-\alpha}^{*}\left(S_{n}(j, e)\right)-\mathbb{P}\left(X_{j} \notin B\right) \mathbb{E}_{k}^{*}\left(S_{n}(j, e)\right) \\
& =\sum_{\alpha=1}^{k}\binom{k}{\alpha} \mathbb{E}\left(1_{\left\{X_{j} \in B\right\}} m_{\alpha}\left(X_{j}\right)\right) \mathbb{E}_{k-\alpha}^{*}\left(S_{n}(j, e)\right)+\mathbb{P}\left(X_{j} \in B\right) \mathbb{E}_{k}^{*}\left(S_{n}(j, e)\right) \\
& =\sum_{\alpha=0}^{k}\binom{k}{\alpha} \mathbb{E}\left(1_{\left\{X_{j} \in B\right\}} m_{\alpha}\left(X_{j}\right)\right) \mathbb{E}_{k-\alpha}^{*}\left(S_{n}(j, e)\right) .
\end{aligned}
$$

Theorem 2.6. Let $\left(m_{1}, m_{2}\right)$ be a sequence of moment functions such that

$$
\begin{equation*}
m_{2}(x) \geq m_{1}(x)^{2} \quad \text { for all } x \in K \tag{2.7}
\end{equation*}
$$

Suppose that assumptions of Lemma 2.5 hold. Then

$$
\begin{equation*}
\mathbb{E}\left(\left\{m_{1}\left(S_{n}\right)-\sum_{j=1}^{n} m_{1}\left(X_{j}\right)\right\}^{2}\right) \leq n\left(\mathbb{E}\left(m_{2}\left(X_{1}\right)\right)-\mathbb{E}\left(m_{1}\left(X_{1}\right)^{2}\right)\right) \tag{2.8}
\end{equation*}
$$

Proof. We define $Z_{n}:=m_{1}\left(S_{n}\right)-\sum_{j=1}^{n} m_{1}\left(X_{j}\right)$ and calculate

$$
Z_{n}^{2}=m_{1}\left(S_{n}\right)^{2}-2 m_{1}\left(S_{n}\right) \cdot \sum_{j=1}^{n} m_{1}\left(X_{j}\right)+\left\{\sum_{j=1}^{n} m_{1}\left(X_{j}\right)\right\}^{2}
$$

Since the random variables X_{1}, \ldots, X_{n} are i.i.d., Assumption (2.7) yields

$$
\begin{equation*}
\mathbb{E}\left(Z_{n}^{2}\right) \leq \mathbb{E}\left(m_{2}\left(S_{n}\right)\right)-2 \sum_{j=1}^{n} \mathbb{E}\left(m_{1}\left(S_{n}\right) m_{1}\left(X_{j}\right)\right)+n(n-1) \mathbb{E}\left(m_{1}\left(X_{1}\right)\right)^{2}+n \mathbb{E}\left(m_{1}\left(X_{1}\right)^{2}\right) . \tag{2.9}
\end{equation*}
$$

For $j \in\{1, \ldots, n\}$, using Lemma 2.5 and Eq. (2.3) we obtain

$$
\begin{aligned}
\mathbb{E}\left(m_{1}\left(S_{n}\right) m_{1}\left(X_{j}\right)\right) & =\mathbb{E}\left(m_{1}\left(X_{j}\right) \mathbb{E}\left(m_{1}\left(S_{n}\right) \mid X_{j}\right)\right)=\mathbb{E}\left(m_{1}\left(X_{j}\right)\left\{m_{1}\left(X_{j}\right)+\mathbb{E}_{*}\left(S_{n}(j, e)\right)\right\}\right) \\
& =\mathbb{E}\left(m_{1}\left(X_{1}\right)^{2}\right)+(n-1) \mathbb{E}\left(m_{1}\left(X_{1}\right)\right)^{2}
\end{aligned}
$$

Iterative application of (2.3) to $\mathbb{E}\left(m_{2}\left(S_{j}\right) \stackrel{\Lambda}{+} X_{j+1}\right)(j=1, \ldots, n-1)$ leads to

$$
\begin{aligned}
\mathbb{E}_{2}^{*}\left(S_{n}\right) & =\mathbb{E}_{2}^{*}\left(S_{n-1} \stackrel{\Lambda_{n-1}}{+} X_{n}\right)=\mathbb{E}_{2}^{*}\left(S_{n-1}\right)+2(n-1) \mathbb{E}_{*}\left(X_{1}\right)^{2}+\mathbb{E}_{2}^{*}\left(X_{1}\right) \\
& =\mathbb{E}_{2}^{*}\left(S_{n-2}\right)+2(n-2) \mathbb{E}_{*}\left(X_{1}\right)^{2}+\mathbb{E}_{2}^{*}\left(X_{1}\right)+2(n-1) \mathbb{E}_{*}\left(X_{1}\right)^{2}+\mathbb{E}_{2}^{*}\left(X_{1}\right) \\
& =\ldots=n(n-1) \mathbb{E}\left(m_{1}\left(X_{1}\right)\right)^{2}+n \mathbb{E}_{2}^{*}\left(X_{1}\right)
\end{aligned}
$$

Therefore, we obtain from (2.9)

$$
\mathbb{E}\left(Z_{n}^{2}\right) \leq n\left(\mathbb{E}\left(m_{2}\left(X_{1}\right)\right)-\mathbb{E}\left(m_{1}\left(X_{1}\right)^{2}\right)\right)
$$

Remark 2.7. While the randomized sum S_{n} clearly depends on the particular choice of the underlying concretization on K the estimation in (2.8) does not.

3 Hyperbolic spaces and Jacobi hypergroups

3.1 Hyperbolic spaces

Let $d \geq 2$, and $\mathbb{F}=\mathbb{R}, \mathbb{C}$, or the skew field of the quaternions \mathbb{H}. We denote with $U(d, \mathbb{F})$ the orthogonal, unitary or symplectic group respectively. Moreover, we consider

$$
U(d, 1, \mathbb{F}):=\left\{A \in G L(d+1, \mathbb{F}): A^{*} I_{1, d} A=I_{1, d}\right\}
$$

where $I_{1, d}$ is the diagonal matrix of the form $\operatorname{diag}(-1,1, \ldots, 1)$. The hyperbolic space $H_{d}(\mathbb{F})$ of dimension d over \mathbb{F} may be regarded as the symmetric space

$$
H_{d}(\mathbb{F}):=G_{d} / V_{d}
$$

where $G_{d}:=U(d, 1, \mathbb{F})$ and $V_{d}:=U(1, \mathbb{F}) \times U(d, \mathbb{F})$. In all cases, the double coset $G_{d} / / V_{d}$ can be regarded as the interval $[0, \infty[$ by identifying $t \geq 0$ with the double coset

$$
V_{d} a_{t} V_{d} \quad \text { with } \quad a_{t}=\left(\begin{array}{ccc}
\operatorname{ch}(t) 0 & \ldots & 0 \operatorname{sh}(t) \\
0 & & 0 \\
\vdots & I_{d-1} & \vdots \\
0 & & 0 \\
\operatorname{sh}(t) 0 & \ldots & 0 \operatorname{ch}(t)
\end{array}\right)
$$

(see [5] and [11, Ch. 3]). We define the hyperbolic distance on $H_{d}(\mathbb{F})$ by

$$
\operatorname{dist}\left(x V_{d}, y V_{d}\right):=\varphi_{d}\left(V_{d} y^{-1} x V_{d}\right), \quad \text { for } x, y \in G_{d}
$$

where $\varphi_{d}: V_{d} a_{t} V_{d} \mapsto t$ is the homeomorphism between $G_{d} / / V_{d}$ and $[0, \infty[$. For a fixed probability measure $\nu \in \mathcal{M}^{1}\left(\left[0, \infty[)\right.\right.$ there exists a unique radial (i.e. V_{d}-invariant) measure $\nu_{d} \in \mathcal{M}^{1}\left(H_{d}(\mathbb{F})\right)$ with $\varphi_{d}\left(\nu_{d}\right)=\nu$ (see in a more general context [19] and references cited there). In this way, we introduce the time-homogeneous radial (i.e. V_{d}-invariant) random walks $\left(S_{n}^{d}\right)_{n \geq 0}$ associated with the ν_{d} by $S_{0}^{d}:=V_{d} \in H_{d}(\mathbb{F})$ and

$$
\mathbb{P}\left(S_{n+1}^{d} \in A \cdot V_{d} \mid S_{n}^{d}=x \cdot V_{d}\right)=\nu_{d}\left(x^{-1} A V_{d}\right)=\nu\left(V_{d} x^{-1} A V_{d}\right)
$$

for $n \geq 0, x \in G_{d}$, and $A \subset G_{d}$ a Borel set (see [7, 19] for details). Among other results, we shall derive the following central limit theorem for the random walk $\left(S_{n}^{d}\right)_{n>0}$ on $H_{d}(\mathbb{F})$ where for a fixed field \mathbb{F}, the dimension d and the number of steps n tends to infinity.
Theorem 3.1. Let $\left(d_{n}\right)_{n \geq 1} \subset \mathbb{N}$ be an increasing sequence of dimensions with $\lim _{n \rightarrow \infty} d_{n}=0$ and fix \mathbb{F} as above. Let $\nu \in \mathcal{M}^{1}([0, \infty[)$ with a finite second moment. For each dimension $d \geq 2$ consider the V_{d}-invariant time-homogeneous random walk $\left(S_{n}^{d}\right)$ on $H_{d}(\mathbb{F})$ such that for all n, d, the random variables $\operatorname{dist}\left(S_{n}^{d+1}, S_{n}^{d}\right)$ have distribution ν. Then, $r_{j}:=$ $\int_{0}^{\infty}(\ln (\operatorname{ch} x))^{j} d \nu(x)<\infty$ exist for $j=1,2$, and

$$
\frac{1}{\sqrt{n}}\left(\operatorname{dist}\left(S_{n}^{d_{n}}, S_{0}^{d_{n}}\right)-n r_{1}\right)
$$

tends in distribution for $n \rightarrow \infty$ to the normal distribution $\mathcal{N}\left(0, r_{2}-r_{1}^{2}\right)$.

The above theorem will be proved by considering the moments of the distributions of $\left(\operatorname{dist}\left(S_{n}^{d}, S_{0}^{d}\right)\right)_{n>0}$ on the spaces $G / / H \simeq[0, \infty[$ equipped with the associated double coset convolutions. These convolutions may be regarded as special cases of the so-called Jacobiconvolution on $[0, \infty[$ (c.f. Section 3.2). The same result, but with some restrictions on the growth of $d=d(n)$ in dependence of n was derived by M. Voit in [19, 20] by using different methods.

3.2 Jacobi-functions and Jacobi-hypergroups

For fixed parameters $\alpha \geq \beta \geq-\frac{1}{2}$ let

$$
a_{\alpha, \beta}(x):=\operatorname{sh}(x)^{2 \alpha+1} \operatorname{ch}(x)^{2 \beta+1} \quad \text { and } \quad \rho:=\frac{1}{2} \lim _{x \rightarrow \infty} \frac{a_{\alpha, \beta}^{\prime}(x)}{a_{\alpha, \beta}(x)} .
$$

This gives $\frac{a_{\alpha, \beta}^{\prime}(x)}{a_{\alpha, \beta}(x)}=(2 \alpha+1) \operatorname{coth}(x)+(2 \beta+1) \tanh (x)$ and $\rho=\alpha+\beta+1$. Moreover, let $\mathcal{L}:=\mathcal{L}_{(\alpha, \beta)}$ be the differential operator on $[0, \infty[$, defined by

$$
\begin{equation*}
\mathcal{L} f(x)=-f^{\prime \prime}(x)-\frac{a_{\alpha, \beta}^{\prime}(x)}{a_{\alpha, \beta}(x)} f^{\prime}(x) \tag{3.1}
\end{equation*}
$$

for $x>0$ and $f \in \mathcal{C}^{2}\left(\left[0, \infty[)\right.\right.$ with $f^{\prime}(0)=0$. The Jacobi-functions $\varphi_{\lambda}:=\varphi_{\lambda}^{(\alpha, \beta)}$ may be introduced as the unique solutions to the Sturm-Liouville problem

$$
\begin{equation*}
\mathcal{L} \varphi_{\lambda}(x)=\left(\rho^{2}+\lambda^{2}\right) \varphi_{\lambda}, \quad \varphi_{\lambda}(0)=1, \quad \varphi_{\lambda}^{\prime}(0)=0 . \tag{3.2}
\end{equation*}
$$

It is well-known (see e.g. $[4,14,22]$) that there is a unique hypergroup operation $*:=*_{\alpha, \beta}$ on $K:=[0, \infty[$ such that

$$
\begin{equation*}
\int_{K} \varphi_{\lambda}(t) d\left(\delta_{x} * \delta_{y}\right)(t)=\varphi_{\lambda}(x) \varphi_{\lambda}(y) \quad \text { for all } \quad x, y \in \mathbb{R}_{+}, \quad \lambda \in \mathbb{C} . \tag{3.3}
\end{equation*}
$$

We denote $\left(\left[0, \infty\left[, *_{\alpha, \beta}\right)\right.\right.$ and $*_{\alpha, \beta}$ as a Jacobi-hypergroup and a Jacobi-convolution on $[0, \infty[$ with parameters (α, β) respectively. The neutral element of this hypergroup is 0 and the inversion is the identity mapping. According to (3.3), the Jacobi functions are multiplicative functions w.r.t. the operation $*:=*_{\alpha, \beta}$ on K. Furthermore, the dual \hat{K} of K satisfies

$$
\hat{K}=\left\{\varphi_{\lambda}: \quad \lambda \in \mathbb{R}_{+} \cup i[0, \rho]\right\} .
$$

The Plancherel measure π_{K} of $K:=\left(\mathbb{R}_{+}, *\right)$ associated with the Haar measure $\omega_{K}:=a_{\alpha, \beta} \lambda_{\mathbb{R}_{+}}^{1}$ ($\lambda_{\mathbb{R}_{+}}^{1}$ is Lebesgue measure on \mathbb{R}_{+}) and is given by

$$
d \pi_{K}(\lambda):=\frac{1}{|c(\lambda)|^{2}} d \lambda_{\mathbb{R}_{+}}^{1} \text { with } c(\lambda):=\frac{\sqrt{2 \pi} 2^{-i \lambda} \Gamma(i \lambda) \Gamma(\alpha+1)}{\Gamma((\rho+i \lambda) / 2) \Gamma((\rho+i \lambda) / 2-\beta)}
$$

for all $\lambda \in \mathbb{R}_{+}$. The proof of the preceding results can be found in $[3,4]$.
The (Fourier-) Jacobi transform $f \mapsto \mathcal{F} f$ or $\mu \mapsto \mathcal{F} \mu$ is defined by

$$
\mathcal{F} f(\lambda):=\int_{0}^{\infty} f(t) \varphi_{\lambda}(t) d \omega_{K}(t), \quad \mathcal{F} \mu(\lambda):=\int_{0}^{\infty} \varphi_{\lambda}(t) d \mu(t)
$$

for all functions f and Borel measures μ on \mathbb{R}_{+}respectively, and $\lambda \in \mathbb{C}$, for which the righthand side is well-defined. With the notations above, the hyperbolic spaces $H_{d}(\mathbb{F})$ and their associated double coset convolutions are related to the Jacobi-convolution $*_{\alpha, \beta}$ by

$$
\alpha=\frac{\operatorname{dim}_{\mathbb{R}}(\mathbb{F}) \cdot d}{2}-1, \quad \beta=\frac{\operatorname{dim}_{\mathbb{R}}(\mathbb{F})}{2}-1 .
$$

An important technical tool will be the Laplace representation for the multiplicative functions $\varphi_{\lambda}(\lambda \in \mathbb{C})$ proved in [4, Proposition I-IV]: For every $x \in \mathbb{R}_{+}$there exists a probability measure ν_{x} on $[-x, x]$ such that

$$
\begin{equation*}
\varphi_{\lambda}(x)=\int e^{-t(\rho+i \lambda)} d \nu_{x}(t) \quad \text { for } x \in \mathbb{R}_{+}, \lambda \in \mathbb{C} \tag{3.4}
\end{equation*}
$$

Furthermore, the measure $\tau_{x}(t):=e^{-\rho t} d \nu_{x}(t)$ is a symmetric subprobability measure on \mathbb{R} which depends continuously on x in the weak topology on $\mathcal{M}^{1}(\mathbb{R})$.

4 Moment functions on Jacobi hypergroups on [0, ∞ [

From now on let $(K, *)$ be a Jacobi-hypergroup on \mathbb{R}_{+}and φ_{λ} a Jacobi-function for parameters $\alpha \geq \beta \geq-1 / 2$. It is well known that $\varphi_{\lambda}(x)$ is an analytic function of λ for all $x \in \mathbb{R}_{+}$(see [11]). The derivations of $\varphi_{\lambda}(x)$ with respect to λ were established as the most important tool for defining (modified) moments for each probability measure on \mathbb{R}_{+}in a way, which is consistent with the convolution structure (c.f. in a general context of Sturm-Liouville hypergroup [3, Section 7.2]).

Definition 4.1. For every $x \in \mathbb{R}_{+}$and $k \in \mathbb{N}_{0}$ let

$$
m_{k}(x):=m_{k}^{(\alpha, \beta)}(x):=\left.\left(\frac{\partial}{\partial \mu}\right)^{k} \varphi_{i(\rho+\mu)}(x)\right|_{\mu=0}
$$

We recapitulate from [3, Section 7.2] some facts about m_{k}. For $k=0$ we have $\varphi_{i \rho} \equiv 1$ and thus $m_{0} \equiv 1$. It is easily verified that for any $n \in \mathbb{N}$ the tuple $\left(m_{k}\right)_{k=1, \ldots, n}$ is a sequence of moment functions of the length n in the sense of Definition 2.4. The cases $n=1$ and $n=2$ are proven in [23, Section 5 and 6]. By differentiating the equation (3.2) with respect to λ we obtain

$$
\begin{equation*}
\mathcal{L} m_{k}=-2 k \rho m_{k-1}-k(k-1) m_{k-2}, \quad m_{k}(0)=m_{k}^{\prime}(0)=0 \quad \text { for } \quad k \geq 1 \tag{4.1}
\end{equation*}
$$

It follows from the Laplace representation (3.4) that

$$
\begin{equation*}
m_{k}(x)=\int_{-x}^{x} t^{k} d \nu_{x}(t)=\int_{0}^{x} t^{k}\left(e^{t \rho}+(-1)^{k} e^{-t \rho}\right) d \nu_{x}(t) \tag{4.2}
\end{equation*}
$$

for $x \in \mathbb{R}_{+}, \lambda \in \mathbb{C}$ and $k \geq 1$. In particular, m_{k} is non-negative and in the case $\rho=0$ (i.e. $\left.\alpha=\beta=-\frac{1}{2}\right)$ it is clear that $m_{k}=0$ if k is odd.
Next we prove a series of statements about the moments m_{k}, which are needed in the next section.
Lemma. 4.2. For all $k \in \mathbb{N}$ the functions $m_{k}=m_{k}^{(\alpha, \beta)}$ are recursively given by

$$
\begin{equation*}
m_{k}(x)=\int_{0}^{x} \int_{0}^{y} \frac{a_{\alpha, \beta}(z)}{a_{\alpha, \beta}(y)}\left(2 k \rho m_{k-1}(z)+k(k-1) m_{k-2}(z)\right) d z d y \tag{4.3}
\end{equation*}
$$

Proof. Let $w:=m_{k}^{\prime}$. The initial value problem (4.1) is equivalent to

$$
w^{\prime}=-\frac{a_{\alpha, \beta}^{\prime}}{a_{\alpha, \beta}} w+b, \quad w(0)=0,
$$

where $b(x):=2 k \rho m_{k-1}(x)+k(k-1) m_{k-2}(x)$. With variation of constants we obtain

$$
w(x)=\exp (F(x)) \int_{0}^{x} b(t) \exp (-F(t)) d t,
$$

where $F(x):=-\int_{0}^{x} \frac{a_{\alpha, \beta}^{\prime}(t)}{a_{\alpha, \beta}(t)} d t$. By integrating the equation above, one obtains the asserted recursion formula for m_{k}.
Remark 4.3. By using the Recursion formula (4.3) we obtain for the moment function $m_{1}^{(\alpha, \beta)}$

$$
\begin{equation*}
m_{1}^{(\alpha, \beta)}(x)=2 \rho \int_{0}^{x} \int_{0}^{y} \frac{a_{\alpha, \beta}(z)}{a_{\alpha, \beta}(y)} d z d y \quad(-1 / 2 \leq \beta \leq \alpha, \quad x \in[0, \infty[) . \tag{4.4}
\end{equation*}
$$

We set

$$
\begin{equation*}
A_{\alpha, \beta}(y):=\int_{0}^{y} a_{\alpha, \beta}(z) d z, \quad(-1 / 2 \leq \beta \leq \alpha, \quad y \in[0, \infty[) \tag{4.5}
\end{equation*}
$$

For $\beta=0$ we obtain $A_{\alpha, 0}(y)=\frac{1}{2(\alpha+1)} \operatorname{sh}(y)^{2(\alpha+1)}$ and therefore

$$
\begin{equation*}
m_{1}^{(\alpha, 0)}(x)=2 \rho \int_{0}^{x} \frac{A_{\alpha, 0}(y)}{a_{\alpha, 0}(y)} d y=\ln (\operatorname{ch} x), \quad(x \in[0, \infty[) . \tag{4.6}
\end{equation*}
$$

Lemma. 4.4. For all $k, l \in \mathbb{N}$ with $l>1$ we have

$$
m_{k}(x)^{l} \leq m_{k l}(x) \leq x^{k l} \quad \text { for every } \quad x \geq 0 .
$$

In particular, m_{1} and m_{2} satisfy the growth condition (2.7) of Theorem 2.6.
Proof. Since the function $t \mapsto t^{l}$ is convex on \mathbb{R}_{+}, the first inequality follows from Jensen's inequality and (4.2). The second inequality is a consequence of the fact that the measure ν_{x} in (4.2) is supported by $[-x, x]$.
Lemma. 4.5. Let $\alpha \geq \beta \geq-\frac{1}{2}$ with $(\alpha, \beta) \neq\left(-\frac{1}{2},-\frac{1}{2}\right)$. Then

$$
\left(1-\frac{|\beta|}{\alpha+1}\right) \ln (\operatorname{ch} x) \leq m_{1}^{(\alpha, \beta)}(x) \leq \begin{cases}\left(1+\frac{\beta}{\alpha+1}\right) \ln (\operatorname{ch} x) & \text { for } \beta \geq 0 \\ \left(1+\frac{1}{2 \alpha+1}\right) \ln (\operatorname{ch} x) & \text { for } \beta \in\left[-\frac{1}{2}, 0\right]\end{cases}
$$

Proof. Let $x \in[0, \infty[$. Firstly, we consider the case $0 \leq \beta \leq \alpha$. By the monotonicity of ch and Formula (4.6) we obtain

$$
m_{1}^{(\alpha, \beta)}(x) \leq\left(1+\frac{\beta}{\alpha+1}\right) m_{1}^{(\alpha, 0)}(x)=\left(1+\frac{\beta}{\alpha+1}\right) \ln (\operatorname{ch} x) .
$$

On the other hand, by means of partial integration, using $\frac{e^{z}}{e^{y}} \leq \frac{\operatorname{ch} z}{\operatorname{ch} y}(0 \leq z \leq y)$ we have

$$
\begin{aligned}
m_{1}^{(\alpha, \beta)}(x) & \geq 2(\alpha+\beta+1) \int_{0}^{x} \int_{0}^{y} \frac{a_{\alpha, 0}(z) e^{2 \beta z}}{a_{\alpha, 0}(y) e^{2 \beta y}} d z d y \\
& =2(\alpha+\beta+1) \int_{0}^{x} \frac{A_{\alpha, 0}(y)}{a_{\alpha, 0}(y)} d y-2(\alpha+\beta+1) \int_{0}^{x} \int_{0}^{y} \frac{A_{\alpha, 0}(z) 2 \beta e^{2 \beta z}}{a_{\alpha, 0}(y) e^{2 \beta y}} d z d y \\
& \geq \frac{\alpha+\beta+1}{\alpha+1} \ln (\operatorname{ch} x)-\frac{(\alpha+\beta+1) \beta}{(\alpha+1)^{2}} \ln (\operatorname{ch} x) \geq\left(1-\frac{\beta}{\alpha+1}\right) \ln (\operatorname{ch} x) .
\end{aligned}
$$

We now turn to the case $\beta \geq-1 / 2$. Since $\frac{\operatorname{sh} z}{\operatorname{sh} y} \leq \frac{\operatorname{ch} z}{\operatorname{ch} y}$ for $0 \leq z \leq y$, we conclude

$$
m_{1}^{(\alpha, \beta)}(x) \leq \frac{\alpha+\beta+1}{\alpha+1 / 2} m_{1}^{(\alpha-1 / 2,0)}(x) \leq\left(1+\frac{1}{2 \alpha+1}\right) \ln (\operatorname{ch} x) .
$$

For $0 \leq z \leq y$ we get $\left(\frac{\operatorname{ch} z}{\operatorname{ch} y}\right)^{2 \beta} \geq 1$, hence that

$$
m_{1}^{(\alpha, \beta)}(x) \geq \frac{\alpha+\beta+1}{\alpha+1} m_{1}^{(\alpha, 0)}(x)=\left(1-\frac{|\beta|}{\alpha+1}\right) \ln (\operatorname{ch} x) .
$$

It is clear that for $\alpha=\beta=-\frac{1}{2}$ the first moment $m_{1}^{(\alpha, \beta)}$ vanishes.
Lemma. 4.6. There is a constant C, such that for all $\alpha \geq \beta \geq-\frac{1}{2}, x \in[0, \infty[$,

$$
\begin{equation*}
\left|x-m_{1}^{(\alpha, \beta)}(x)\right| \leq C+\frac{|\beta|}{\alpha+1} x \quad \text { and } \quad\left|\left(m_{1}^{(\alpha, \beta)}\right)^{-1}(x)-x\right| \leq C+\frac{|\beta|}{\alpha+1} x . \tag{4.7}
\end{equation*}
$$

Proof. By Lemmas 4.4 and 4.5 using the inequality

$$
0 \leq x-\ln (\operatorname{ch} x) \leq \ln (2),
$$

we obtain

$$
\left|x-m_{1}^{(\alpha, \beta)}(x)\right| \leq x-\ln (\operatorname{ch} x)+\frac{|\beta|}{\alpha+1} \ln (\operatorname{ch} x) \leq \ln (2)+\frac{|\beta|}{\alpha+1} x .
$$

Since the graph of $\left(m_{1}^{(\alpha, \beta)}\right)^{-1}$ is obtained by reflecting the graph of $m_{1}^{(\alpha, \beta)}$ across the line $y=x$, the second inequality follows immediately from the first one.
Lemma. 4.7. Let $\alpha \geq \beta \geq-\frac{1}{2}$ and $(\alpha, \beta) \neq\left(-\frac{1}{2},-\frac{1}{2}\right)$ then

$$
\begin{equation*}
m_{1}(x)^{2} \leq m_{2}(x) \leq m_{1}(x)^{2}+\frac{1}{\rho} m_{1}(x), \quad\left(x \in \mathbb{R}_{+}\right) . \tag{4.8}
\end{equation*}
$$

Proof. Because of Lemma 4.4 we have only to verify the second inequality. From (4.4) and (4.5) we obtain $m_{1}^{\prime}(x)=2 \rho \frac{A_{\alpha, \beta}(x)}{a_{\alpha, \beta}(x)}$. Hence, by Lemma 4.2 and partial integration we observe

$$
\begin{aligned}
m_{2}(x) & =4 \rho \int_{0}^{x} \int_{0}^{y} \frac{a_{\alpha, \beta}(z)}{a_{\alpha, \beta}(y)} m_{1}(z) d z d y+\frac{1}{\rho} m_{1}(x) \\
& =4 \rho \int_{0}^{x} \frac{A_{\alpha, \beta}(y)}{a_{\alpha, \beta}(y)} m_{1}(y) d y-4 \rho \int_{0}^{x} \int_{0}^{y} \frac{A_{\alpha, \beta}(z)}{a_{\alpha, \beta}(y)} m_{1}^{\prime}(z) d z d y+\frac{1}{\rho} m_{1}(x) \\
& \leq 2 \int_{0}^{x} m_{1}^{\prime}(y) m_{1}(y) d y+\frac{1}{\rho} m_{1}(x)=m_{1}(x)^{2}+\frac{1}{\rho} m_{1}(x) .
\end{aligned}
$$

For $\alpha=\beta=-\frac{1}{2}$ we conclude from (4.3) that $m_{2}(x)=x^{2}$.
For $j \in \mathbb{N}_{0},-1 / 2 \leq \beta \leq \alpha$ and $\nu \in \mathcal{M}^{1}([0, \infty[)$ we define

$$
\begin{array}{ll}
r_{j}:=\int_{0}^{\infty} \ln (\operatorname{ch} x)^{j} d \nu(x), & \hat{r}_{j}(\alpha):=\int_{0}^{\infty} m_{j}^{(\alpha, \beta)}(x) d \nu(x), \\
\tilde{r}_{j}:=\int_{0}^{\infty} x^{j} d \nu(x), & \check{r}_{j}(\alpha):=\int_{0}^{\infty} m_{1}^{(\alpha, \beta)}(x)^{j} d \nu(x) .
\end{array}
$$

Remark 4.8. From Lemmas 4.5 and 4.7 we have

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty} \hat{r}_{k}(\alpha)=r_{k}=\lim _{\alpha \rightarrow \infty} \check{r}_{k}(\alpha) \quad(k=1,2) . \tag{4.9}
\end{equation*}
$$

Lemma. 4.9. Let $k \in \mathbb{N}_{0}$ and $\alpha \geq-\frac{1}{2}$. Then

$$
\begin{equation*}
m_{k}^{(\alpha, \alpha)}(x)=2^{-k} m_{k}^{\left(\alpha,-\frac{1}{2}\right)}(2 x) \quad\left(x \in \mathbb{R}_{+}\right) \tag{4.10}
\end{equation*}
$$

Proof. The idea of the following proof goes back to Koornwinder (see Section 5.3 of [11]). For $\alpha \geq \beta \geq-\frac{1}{2}$ let $\mathcal{L}_{(\alpha, \beta)}$ be the differential operator as in (3.1). For a function $g \in \mathcal{C}^{2}\left(\mathbb{R}_{+}\right)$with $g^{\prime}(0)=0$ we define a function \tilde{g} by $\tilde{g}(t):=g(2 t),\left(t \in \mathbb{R}_{+}\right)$. By a straightforward calculation one obtains

$$
\begin{equation*}
\left(\mathcal{L}_{(\alpha, \alpha)} \tilde{g}\right)(t)=4\left(\mathcal{L}_{\left(\alpha,-\frac{1}{2}\right)} g\right)(2 t) \tag{4.11}
\end{equation*}
$$

For $k=0$ the Formula (4.10) is obviously true. Let $k>0$; we set $f(t):=m_{k}^{(\alpha, \alpha)}(t)$ and $h(t):=2^{-k} m_{k}^{\left(\alpha,-\frac{1}{2}\right)}(2 t)$. Since (4.1) we have

$$
\left(\mathcal{L}_{(\alpha, \alpha)} f\right)(t)=-2 k(2 \alpha+1) m_{k-1}^{(\alpha, \alpha)}(t)-k(k-1) m_{k-2}^{(\alpha, \alpha)}(t)
$$

On the other side we calculate

$$
\begin{aligned}
\left(\mathcal{L}_{(\alpha, \alpha)} h\right)(t) & =4\left(\mathcal{L}_{\left(\alpha,-\frac{1}{2}\right)} \tilde{h}\right)(2 t)=4 \cdot 2^{-k}\left(\mathcal{L}_{\left(\alpha,-\frac{1}{2}\right)} m_{k}^{\left(\alpha,-\frac{1}{2}\right)}\right)(2 t) \\
& =4 \cdot 2^{-k}\left(-2 k\left(\alpha+\frac{1}{2}\right) m_{k-1}^{\left(\alpha,-\frac{1}{2}\right)}(2 t)-k(k-1) m_{k-2}^{\left(\alpha,-\frac{1}{2}\right)}(2 t)\right) \\
& =4 \cdot 2^{-k}\left(-2 k\left(\alpha+\frac{1}{2}\right) 2^{k-1} m_{k-1}^{(\alpha, \alpha)}(t)-k(k-1) 2^{k-2} m_{k-2}^{(\alpha, \alpha)}(t)\right) \\
& =-2 k(2 \alpha+1) m_{k-1}^{(\alpha, \alpha)}(t)-k(k-1) m_{k-2}^{(\alpha, \alpha)}(t)
\end{aligned}
$$

By the uniqueness of the solution of the underlying initial value problem we finally conclude that $f \equiv h$.

5 A central limit theorem with growing dimensions

Let $\left(S_{n}^{(\alpha, \beta)}\right)_{n \geq 0}$ be the time-homogeneous random walk on $\left(\left[0, \infty\left[, *_{\alpha, \beta}\right)\right.\right.$ with law ν as defined in Section 2.2. In this section we study of the asymptotic behaviour of $\left(S_{n}^{(\alpha, \beta)}\right)_{n \geq 0}$ for increasing parameters α and β. From now on we will suppose that the variables X_{1}, X_{2}, \ldots are i.i.d. with finite usual second moment $\tilde{r}_{2}=\tilde{r}(\nu)<\infty$. We already know [21, 4.2] that

$$
\frac{1}{\sqrt{n}}\left\{S_{n}^{(\alpha, \beta)}-\left(m_{1}^{(\alpha, \beta)}\right)^{-1}\left(n \hat{r}_{1}(\alpha)\right)\right\}
$$

converges in distribution for every fixed index $(\alpha, \beta)\left(-\frac{1}{2} \leq \beta \leq \alpha\right)$. It is an interesting fact that the limit distribution is some normal law on \mathbb{R}, independent of which hypergroup $\left(\mathbb{R}_{+}, *_{\alpha, \beta}\right)$ has been considered. It is also known that for a fixed parameter $\beta \geq-\frac{1}{2}$ in the case of the finite second moment $\tilde{r}_{2}<\infty$ under strong requirements on the growth of the sequence $\left(\alpha_{n}\right)_{n \in \mathbb{N}} \subset\left[\beta, \infty\left[\right.\right.$, namely $\frac{n}{\sqrt{\alpha_{n}}} \rightarrow 0$,

$$
\frac{1}{\sqrt{n}}\left\{S_{n}^{\left(\alpha_{n}, \beta\right)}-n r_{1}\right\}
$$

tends in distribution for $n \rightarrow \infty$ to the normal distribution $\mathcal{N}\left(0, r_{2}-r_{1}^{2}\right)$ (see [19, Theorem 4.2]). In analogy with the radial limit theorems on $\mathbb{R}^{\alpha_{n}}$ for $\alpha_{n} \rightarrow \infty$ (see [18, 19]) one might suspect that, also in our situation, the case $n \gg \alpha_{n}$ would establish another limit distribution as in the case $n \ll \alpha_{n}$. However, we shall prove:
Theorem 5.1. Let $\beta \geq-\frac{1}{2}$ and let $\left(\alpha_{n}\right)_{n \in \mathbb{N}} \subset[\beta, \infty[$ be an arbitrary increasing sequence with $\lim _{n \rightarrow \infty} \alpha_{n}=\infty$. Let $\nu \in \mathcal{M}^{1}\left(\left[0, \infty[)\right.\right.$ with a finite second moment $\tilde{r_{2}}<\infty$. Then, r_{1} and r_{2} exist and for the random walks $\left(S_{n}^{\left(\alpha_{n}, \beta\right)}\right)_{n \geq 0}$ on $[0, \infty[$ with law ν,

$$
Y_{n}:=\frac{1}{\sqrt{n}}\left(m_{1}^{\left(\alpha_{n}, \beta\right)}\left(S_{n}^{\left(\alpha_{n}, \beta\right)}\right)-n \hat{r}_{1}\left(\alpha_{n}\right)\right)
$$

tends in distribution for $n \rightarrow \infty$ to $\mathcal{N}\left(0, r_{2}-r_{1}^{2}\right)$.
The proof is essentially based on the asymptotic behaviour of modified moments $m_{k}^{(\alpha, \beta)}$, $k \in \mathbb{N}$ for $\alpha \rightarrow \infty$.

Proof. In the first step we show that the random variables

$$
\frac{1}{\sqrt{n}} m_{1}^{\left(\alpha_{n}, \beta\right)}\left(S_{n}^{\left(\alpha_{n}, \beta\right)}\right) \quad \text { and } \quad \frac{1}{\sqrt{n}} \sum_{j=1}^{n} m_{1}^{\left(\alpha_{n}, \beta\right)}\left(X_{j}\right)
$$

are "asymptotically uncorrelated". More precisely, we check that the random variables

$$
Z_{n}:=\frac{1}{\sqrt{n}}\left(m_{1}^{\left(\alpha_{n}, \beta\right)}\left(S_{n}^{\left(\alpha_{n}, \beta\right)}\right)-\sum_{j=1}^{n} m_{1}^{\left(\alpha_{n}, \beta\right)}\left(X_{j}\right)\right)
$$

converge to zero in the L^{2}-sence. For this, we conclude from Theorem 2.6 that

$$
\mathbb{E}\left(Z_{n}^{2}\right) \leq \mathbb{E}\left(m_{2}\left(X_{1}\right)\right)-\mathbb{E}\left(m_{1}\left(X_{1}\right)^{2}\right)=\hat{r}_{2}\left(\alpha_{n}\right)-\check{r}_{2}\left(\alpha_{n}\right)
$$

As by Remark 4.8,

$$
\hat{r}_{2}\left(\alpha_{n}\right)-\check{r}_{2}\left(\alpha_{n}\right) \longrightarrow 0 \quad(n \rightarrow \infty)
$$

the claimed convergence follows. We define

$$
U_{n, \alpha}:=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} V_{j}^{(n, \alpha)} \quad \text { with } \quad V_{j}^{(n, \alpha)}:=m_{1}^{\alpha, \beta}\left(X_{j}\right)-\hat{r}_{1}(\alpha)
$$

and denote the distribution of $U_{n, \alpha}$ by $\mu_{n, \alpha}$. Now we will prove that $U_{n, \alpha_{n}}$ tends in distribution for $n \rightarrow \infty$ to $\mathcal{N}\left(0, r_{2}-r_{1}^{2}\right)$. Let $f \in \mathcal{C}_{b}(\mathbb{R})$ be a bounded continuous function on $\mathbb{R}, \alpha \geq-\frac{1}{2}$ and $n \in \mathbb{N}$. We have

$$
\begin{aligned}
& \left|\int f d \mu_{n, \alpha_{n}}-\int f d \mathcal{N}\left(0, r_{2}-r_{1}^{2}\right)\right| \leq\left|\int f d \mu_{n, \alpha_{n}}-\int f d \mu_{n, \alpha}\right|+ \\
+ & \left|\int f d \mu_{n, \alpha}-\int f d \mathcal{N}\left(0, \check{r}_{2}(\alpha)-\hat{r}_{1}(\alpha)^{2}\right)\right|+\left|\int f d \mathcal{N}\left(0, \check{r}_{2}(\alpha)-\hat{r}_{1}(\alpha)^{2}\right)-\int f d \mathcal{N}\left(0, r_{2}-r_{1}^{2}\right)\right|
\end{aligned}
$$

Since the random variables $V_{j}^{(n, \alpha)}, j=1, \ldots, n$ are i.i.d. and

$$
\mathbb{E}\left(V_{j}^{(n, \alpha)}\right)=0, \quad \mathbb{V}\left(V_{j}^{(n, \alpha)}\right)=\check{r}_{2}(\alpha)-\hat{r}_{1}(\alpha)^{2}
$$

we conclude with Markov's inequality and the estimation of m_{1} in Lemma 4.5 that

$$
\begin{aligned}
0 & \leq \mathbb{E}\left(\left(U_{n, \alpha_{n}}-U_{n, \alpha_{0}}\right)^{2}\right)=\mathbb{E}\left(U_{n, \alpha_{n}}^{2}-2 U_{n, \alpha_{n}} U_{n, \alpha_{0}}+U_{n, \alpha_{0}}^{2}\right) \\
& =\frac{1}{n}\left\{n \mathbb{E}\left(\left(V_{1}^{\left(n, \alpha_{n}\right)}\right)^{2}\right)-2 n \mathbb{E}\left(V_{1}^{\left(n, \alpha_{n}\right)} V_{1}^{\left(n, \alpha_{0}\right)}\right)+n \mathbb{E}\left(\left(V_{1}^{\left(n, \alpha_{0}\right)}\right)^{2}\right)\right\} \\
& =\check{r}_{2}\left(\alpha_{n}\right)-\hat{r}_{1}\left(\alpha_{n}\right)^{2}-2 \mathbb{E}\left(m_{1}^{\left(\alpha_{n}, \beta\right)}\left(X_{1}\right) m_{1}^{\left(\alpha_{0}, \beta\right)}\left(X_{1}\right)\right)+2 \hat{r}_{1}\left(\alpha_{n}\right) \hat{r}_{1}\left(\alpha_{0}\right)+\check{r}_{2}\left(\alpha_{0}\right)-\hat{r}_{1}\left(\alpha_{0}\right)^{2} \\
& \leq \check{r}_{2}\left(\alpha_{n}\right)-\hat{r}_{1}\left(\alpha_{n}\right)^{2}-2 r_{2}+\frac{c_{\beta} r_{2}}{\min \left(\alpha_{n}, \alpha_{0}\right)}+2 \hat{r}_{1}\left(\alpha_{n}\right) \hat{r}_{1}\left(\alpha_{0}\right)+\check{r}_{2}\left(\alpha_{0}\right)-\hat{r}_{1}\left(\alpha_{0}\right)^{2},
\end{aligned}
$$

where c_{β} is a positive constant dependent only on β.
Let $\varepsilon>0, A_{\delta}:=\left\{\left|U_{n, \alpha_{n}}-U_{n, \alpha}\right| \leq \delta\right\}(\delta>0)$ and $f \in \mathcal{C}_{b}^{u}(\mathbb{R})$ be a bounded uniformly continuous function on \mathbb{R} satisfying $f \not \equiv 0$. It follows that

$$
\exists \delta>0: \quad \int_{A_{\delta}}\left|f\left(U_{n, \alpha_{n}}\right)-f\left(U_{n, \alpha}\right)\right| d \mathbb{P} \leq \frac{\varepsilon}{6}
$$

By (4.9) we observe that for $\tilde{\varepsilon}:=\min \left(\frac{\varepsilon}{6}, \frac{\delta^{2} \varepsilon}{12\|f\|_{\infty}}\right)$

$$
\exists n_{0}, \alpha_{0}: \quad \mathbb{E}\left(\left(U_{n, \alpha_{n}}-U_{n, \alpha}\right)^{2}\right) \leq \tilde{\varepsilon} \quad \forall n \geq n_{0}, \alpha \geq \alpha_{0}
$$

By Chebyshev's inequality follows for α and n large enough

$$
\begin{aligned}
\left|\int f\left(U_{n, \alpha_{n}}\right)-f\left(U_{n, \alpha}\right) d \mathbb{P}\right| & \leq \int_{A_{\delta}}\left|f\left(U_{n, \alpha_{n}}\right)-f\left(U_{n, \alpha}\right)\right| d \mathbb{P}+\int_{\Omega \backslash A_{\delta}}\left|f\left(U_{n, \alpha_{n}}\right)-f\left(U_{n, \alpha}\right)\right| d \mathbb{P} \\
& \leq \frac{\varepsilon}{6}+2\|f\|_{\infty} \mathbb{P}\left(\left|U_{n, \alpha_{n}}-U_{n, \alpha}\right|>\delta\right) \leq \frac{\varepsilon}{6}+2\|f\|_{\infty} \frac{\tilde{\varepsilon}}{\delta^{2}} \leq \frac{\varepsilon}{3} .
\end{aligned}
$$

In summary, we get

$$
\exists n_{0}, \alpha_{0}: \quad\left|\int f d \mu_{n, \alpha_{n}}-\int f d \mu_{n, \alpha}\right| \leq \frac{\varepsilon}{3} \quad \forall n \geq n_{0}, \alpha \geq \alpha_{0}
$$

From the classical central limit theorem we deduce

$$
\forall \alpha \exists n_{1}: \quad\left|\int f d \mu_{n, \alpha}-\int f d \mathcal{N}\left(0, \check{r}_{2}(\alpha)-\hat{r}_{1}^{2}(\alpha)\right)\right| \leq \frac{\varepsilon}{3} \quad \forall n \geq n_{1} .
$$

As the sequence of measures $\left(\mathcal{N}\left(0, \check{r}_{2}(\alpha)-\hat{r}_{1}^{2}(\alpha)\right)\right)_{\alpha}$ converges weakly to $\mathcal{N}\left(0, r_{2}-r_{1}^{2}\right)$, we have

$$
\exists \alpha_{1}: \quad\left|\int f d \mathcal{N}\left(0, \check{r}_{2}(\alpha)-\hat{r}_{1}^{2}(\alpha)\right)-\int f d \mathcal{N}\left(0, r_{2}-r_{1}^{2}\right)\right| \leq \frac{\varepsilon}{3} \quad \forall \alpha \geq \alpha_{1}
$$

Hence, $U_{n, \alpha_{n}}$ and therefore, finally Y_{n}, converges to the normal distribution $\mathcal{N}\left(0, r_{2}-r_{1}^{2}\right)$.
Corollary. 5.2. In the situation as in the theorem above,

$$
L_{n}:=\frac{1}{\sqrt{n}}\left\{S_{n}^{\left(\alpha_{n}, \beta\right)}-\left(m_{1}^{\left(\alpha_{n}, \beta\right)}\right)^{-1}\left(n \hat{r}_{1}\left(\alpha_{n}\right)\right)\right\}
$$

tends in distribution for $n \rightarrow \infty$ to $\mathcal{N}\left(0, r_{2}-r_{1}^{2}\right)$.

Proof. Let $x_{n}:=m_{1}^{\left(\alpha_{n}, \beta\right)}\left(S_{n}^{\left(\alpha_{n}, \beta\right)}\right)$ and $y_{n}:=n \hat{r}_{1}\left(\alpha_{n}\right)$. Adapted from the mean value theorem there is a ξ between x_{n} and y_{n} such that

$$
\left|\left(x_{n}-y_{n}\right)-\left(m_{1}^{-1}\left(x_{n}\right)-m_{1}^{-1}\left(y_{n}\right)\right)\right|=\left|x_{n}-y_{n}\right| \cdot\left|1-\left(m_{1}^{-1}\right)^{\prime}(\xi)\right| .
$$

Since $\left(m_{1}^{-1}\right)^{\prime}(x) \searrow 1$ as $x \rightarrow \infty$ (see [22, proof of Lemma 5.7]) we obtain

$$
\left|\left(x_{n}-y_{n}\right)-\left(m_{1}^{-1}\left(x_{n}\right)-m_{1}^{-1}\left(y_{n}\right)\right)\right| \leq\left(\left(m_{1}^{-1}\right)^{\prime}\left(\min \left\{x_{n}, y_{n}\right\}\right)-1\right) \cdot\left|x_{n}-y_{n}\right|
$$

Therefore, by the preceding theorem, L_{n} tends in distribution for $n \rightarrow \infty$ to the normal distribution $\mathcal{N}\left(0, r_{2}-r_{1}^{2}\right)$.
Corollary. 5.3. Let $\left(\alpha_{n}\right)_{n \geq 1} \subset\left[0, \infty\left[\right.\right.$ be an increasing sequence with $\lim _{n \rightarrow \infty} \frac{n}{\alpha_{n}^{2}}=0$. In the situation as in Corollary 5.2,

$$
\begin{equation*}
\frac{1}{\sqrt{n}}\left(S_{n}^{\left(\alpha_{n}, \beta\right)}-n \hat{r}_{1}^{\left(\alpha_{n}, \beta\right)}\right) \tag{5.1}
\end{equation*}
$$

tends in distribution for $n \rightarrow \infty$ to the normal distribution $\mathcal{N}\left(0, r_{2}-r_{1}^{2}\right)$.
Proof. We have

$$
L_{n}=\frac{1}{\sqrt{n}}\left(S_{n}^{\left(\alpha_{n}, \beta\right)}-n \hat{r}_{1}^{\left(\alpha_{n}, \beta\right)}\right)+\frac{1}{\sqrt{n}}\left(n \hat{r}_{1}^{\left(\alpha_{n}, \beta\right)}-\left(m_{1}^{\left(\alpha_{n}, \beta\right)}\right)^{-1}\left(n \hat{r}_{1}\left(\alpha_{n}\right)\right)\right) .
$$

In particular, the growth condition on α_{n} and the second inequality in (4.7) implies the corollary.
In the central limit theorem above β is fixed and α_{n} tends to infty. It is natural to think of variants of theorem 5.1 for α_{n} and $\beta_{n} \rightarrow \infty$ in certain coupled ways (see [19]). Usually, such kinds of CLT no longer have a geometric interpretation. Nevertheless, we present here a CLT for the case $\beta_{n} \rightarrow \infty$ and $\alpha_{n}=\beta_{n}+c$ for some constant $c \geq 0$:
Theorem 5.4. Let $c \geq 0$ be a constant, and let $\left(\beta_{n}\right)_{n \in \mathbb{N}} \subset\left[-\frac{1}{2}, \infty[\right.$ be an arbitrary, increasing sequence of indices. Let ν be a probability measure on $[0, \infty[$ with second moment $\int_{\mathbb{R}_{+}} x^{2} d \nu(x)<\infty$. Then, $\rho:=\int_{\mathbb{R}_{+}} \ln (\operatorname{ch}(2 x)) d \nu(x)<\infty$ and $\sigma^{2}:=\int_{\mathbb{R}_{+}}(\ln (\operatorname{ch}(2 x)))^{2} d \nu(x)<$ ∞ exist, and

$$
\frac{1}{\sqrt{n}}\left(m_{1}^{\left(\beta_{n}+c, \beta_{n}\right)}\left(S_{n}^{\left(\beta_{n}+c, \beta_{n}\right)}\right)-n \rho\right)
$$

tends in distribution for $n \rightarrow \infty$ to $\mathcal{N}\left(0, \sigma^{2}-\rho^{2}\right)$.
Proof. By (4.4), monotonicity of sh and Lemma 4.9 we obtain

$$
m_{1}^{\left(\beta_{n}+c, \beta_{n}\right)}(x) \leq \frac{2 \beta_{n}+c+1}{2 \beta_{n}+1} m_{1}^{\left(\beta_{n}, \beta_{n}\right)}(x)=\frac{2 \beta_{n}+c+1}{2\left(2 \beta_{n}+1\right)} m_{1}^{\left(\beta_{n},-\frac{1}{2}\right)}(2 x)
$$

and

$$
m_{1}^{\left(\beta_{n}+c, \beta_{n}\right)}(x) \geq \frac{2 \beta_{n}+c+1}{2 \beta_{n}+1} \frac{\beta_{n}+1}{\beta_{n}+c+1} m_{1}^{\left(\beta_{n}, \beta_{n}\right)}(x)=\frac{2 \beta_{n}+c+1}{2\left(2 \beta_{n}+1\right)} \frac{\beta_{n}+1}{\beta_{n}+1+c} m_{1}^{\left(\beta_{n},-\frac{1}{2}\right)}(2 x)
$$

respectively. From Lemmas 4.5 and 4.7 it follows that

$$
\lim _{n \rightarrow \infty} m_{j}^{\left(\beta_{n}+c, \beta_{n}\right)}(x)=\left(\frac{\ln (\operatorname{ch}((2 x))}{2}\right)^{j} \quad \text { for } j=1,2 \text { and } x \in \mathbb{R}_{+} .
$$

The proof of Theorem 5.1 can now be transferred word by word to the setting above, which then leads to the proof of the assertion.

6 The addition of small random variables with growing dimensions

Let $(K, *)$ be a hypergroup with $K:=[0, \infty[$ and (M, μ, Φ) a fixed concretization of K (c.f. [3, Section 7.1]). Moreover, let $\left(X_{n}\right)_{n>0}$ and $\left(\Lambda_{n}\right)_{n>0}$ be sequences of random variables as in the Assumption 2.2, such that $\nu=\bar{P}_{X_{i}}$ and $\mu=\bar{P}_{\Lambda_{i}}$ for all $i \in \mathbb{N}$. It is well known that in contrast to the situation on $(\mathbb{R},+)$ with the ordinary addition + , the distributive law on $\left(\mathbb{R}_{+}, *\right)$ does not hold for the addition $\hat{+}$, i.e.

$$
a \cdot(X \hat{+} Y) \neq a \cdot X \hat{+} a \cdot Y
$$

This important difference is also reflected in central limit theorems on $\left(\mathbb{R}_{+}, *\right)$. To describe this, we consider for an $r \geq 0$ the randomized $\operatorname{sum} S_{n}^{(r)}$ with initial compression n^{-r}, recursively defined by

$$
S_{n}^{(r)}:= \begin{cases}n^{-r} X_{1} & \text { for } n=1 \\ \Phi\left(S_{n-1}^{(r)}, n^{-r} X_{n}, \Lambda_{n-1}\right) & \text { for } n>1\end{cases}
$$

as well as the associated compressed random walk $\left(S_{n}^{(r)}\right)_{n \geq 1}$ with law ν on $[0, \infty[$. The most classical case appears for $r=1 / 2$, which states that the sum of many small random variables $S_{n}^{(1 / 2)}$ has approximately a so called Gaussian distribution, has been proved for the hyperbolic plane and space in [9], [15]; (see also Section 3.2 of [13]) and in a more general setting by Trimèche in [14]. On Chébli- Trimèche hypergroups, Zeuner [21] has shown that $\frac{1}{\sqrt{n}}\left(S_{n}^{(0)}-\mathbb{E}\left(S_{n}^{(0)}\right)\right)$ is asymptotically normal and $\frac{1}{\sqrt{n}} S_{n}^{(0)}$ approaches $+\infty$.

On Jacobi hypergroup ($\left[0, \infty\left[, *_{\alpha, \beta}\right.\right.$) it has been proven by M. Voit (see [17]) that for $r>\frac{1}{2}$ the random variables $n^{r-1 / 2} S_{n}^{(r)}$ after an suitable normalization tend in distribution to the Rayleigh distribution ρ_{α}.

6.1 The Gaussian distributions on Jacobi-hypergroup ([0, $\infty\left[,{ }_{(\alpha, \beta)}\right.$)

Definition 6.1. The Gaussian distribution on Jacobi-hypergroup ($[0, \infty[, *(\alpha, \beta)$) with parameter t is the unique probability measure μ_{t} on $[0, \infty[$ with

$$
\mathcal{F} \mu_{t}(\lambda)=e^{-\frac{t}{2}\left(\rho^{2}+\lambda^{2}\right)} \quad \text { for } \quad \lambda \in \mathbb{R}_{+} \cup i[0, \rho] .
$$

The existence of μ_{t} is a consequence of [21, Theorem 5.5.]. Although μ_{t} is uniquely determined for every given hypergroup $\left(\mathbb{R}_{+}, *_{\alpha, \beta}\right)$, a different hypergroup will in general have different Gaussian measures. The family of Gaussian measures ($\mu_{t}: t \geq 0$) forms a convolution semigroup. By forward calculation we obtain for μ_{t}-distributed random variable X_{t} and for fixed indices (α, β)

$$
\mathbb{E}_{*}\left(X_{t}\right)=\rho \cdot t \quad \text { and } \quad \mathbb{V}_{*}\left(X_{t}\right)=t
$$

By the inversion formula for (Fourier-) Jacobi transform (see [11, Section 2] and [8]), the density h_{t} of a Gaussian distribution μ_{t} with respect to the Haar measure $\omega_{K}:=a_{\alpha, \beta} \lambda_{\mathbb{R}_{+}}^{1}$ is given by

$$
h_{t}(x):=\int_{0}^{\infty} e^{-\frac{t}{2}\left(\rho^{2}+\lambda^{2}\right)} \varphi_{\lambda}(x) d \pi_{K}(\lambda)
$$

Let $\mathbb{E}\left(\mu_{t}\right), \mathbb{V}\left(\mu_{t}\right)$ be the usual expectation and variance of μ_{t} respectively. We conjecture that the density \tilde{h}_{t} of $T\left(\mu_{t}\right)$, where T is the linear transformation

$$
T(x):=\frac{1}{\mathbb{V}\left(\mu_{t}\right)}\left(x-\mathbb{E}\left(\mu_{t}\right)\right),
$$

converges to the density $n_{0,1}$ of the normal distribution on \mathbb{R}. This would imply a CLT for $S_{n}^{(1 / 2)}$ as $n, \alpha \rightarrow \infty$. For this, one needs a "good" short-time asymptotic of h_{t} for $t \rightarrow 0$. Nevertheless, we present here a weak LLN for the sum of many small random variables as $\alpha \rightarrow \infty$.
Theorem 6.2. Let $\beta \geq-\frac{1}{2}$ and let $\left(\alpha_{n}\right)_{n \in \mathbb{N}} \subset[\beta, \infty[$ be an arbitrary increasing sequence with $\lim _{n \rightarrow \infty} \alpha_{n}=\infty$. Let $\nu \in \mathcal{M}^{1}\left(\left[0, \infty[)\right.\right.$ with a finite second moment $\tilde{r_{2}}<\infty$ and

$$
\left(Y_{n}:=S_{n}^{\left(\alpha_{n}, \beta\right),(1 / 2)}\right)_{n \geq 1}
$$

the associated random walk on $\left(\left[0, \infty\left[, *_{\alpha_{n}, \beta}\right)\right.\right.$. Then Y_{n} converges in L^{2}-norm to $\frac{1}{2} \mathbb{E}\left(X_{1}^{2}\right)$.
Proof. By Lemma 4.4 we have

$$
\mathbb{E}\left(\left(m_{1}^{\left(\alpha_{n}, \beta\right)}\left(S_{n}^{(1 / 2)}\right)-\mathbb{E} m_{1}^{\left(\alpha_{n}, \beta\right)}\left(S_{n}^{(1 / 2)}\right)\right)^{2}\right) \leq \mathbb{E}\left(m_{2}^{\left(\alpha_{n}, \beta\right)}\left(S_{n}^{(1 / 2)}\right)\right)-\mathbb{E}\left(m_{1}^{\left(\alpha_{n}, \beta\right)}\left(S_{n}^{(1 / 2)}\right)\right)^{2}
$$

For all $x \in \mathbb{R}_{+}$we obtain by a straightforward calculation

$$
\lim _{n \rightarrow \infty} n \ln \left(\operatorname{ch} \frac{x}{\sqrt{n}}\right)=\frac{1}{2} x^{2} .
$$

Therefore, by dominated convergence, Eq. (2.3) and Lemma 4.5, follows

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(m_{1}^{\left(\alpha_{n}, \beta\right)}\left(S_{n}^{(1 / 2)}\right)\right)=\frac{1}{2} \mathbb{E}\left(X_{1}^{2}\right)
$$

Hence, by means of the Identity (2.3) (see also the proof of Theorem 5.1)

$$
\mathbb{E}\left(m_{2}^{\left(\alpha_{n}, \beta\right)}\left(S_{n}^{(1 / 2)}\right)\right)=n(n-1) \mathbb{E}\left(m_{1}^{\left(\alpha_{n}, \beta\right)}\left(X_{1} / \sqrt{n}\right)\right)^{2}+n \mathbb{E}\left(m_{2}^{\left(\alpha_{n}, \beta\right)}\left(X_{1} / \sqrt{n}\right)\right)
$$

and 4.7 we conclude

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(m_{2}^{\left(\alpha_{n}, \beta\right)}\left(S_{n}^{(1 / 2)}\right)\right)=\frac{1}{4} \mathbb{E}\left(X_{1}^{2}\right)^{2}
$$

References

[1] V. Bentkus, Dependence of the Berry-Esseen estimate on the dimension. Lithuanian Math. J. 26, 110-113 (1986).
[2] W.R. Bloom, H. Heyer, The Fourier transform for probability measures on hypergroups. Rend. Mat. Appl., VII Ser. 2, 315-334 (1982).
[3] W.R. Bloom, H. Heyer, Harmonic analysis of probability measures on hypergroups. De Gruyter Studies in Mathematics 20, de Gruyter-Verlag Berlin, New-York 1995.
[4] H. Chébli, Positivité des opérateurs de "translation généralisée" associées à un opérateur de Sturm-Liouville et quelques applications á l'analyse harmonique. Thèse, Université Louis Pasteur, Strasbourg I, (1974).
[5] J. Faraut, Analyse harmonique sur les pairs de Gelfand et les espaces hyperboliques. In: J.-L. Clerc et al.. Analyse Harmonique, C.I.M.P.A., Nice 1982, Ch. IV.
[6] W. Grundmann, Method of moments and limit theorems on $p \times q$ matrices for $p \rightarrow \infty$. Preprint, TU Dortmund, 2011.
[7] R.I. Jewett, Spaces with an abstract convolution of measures. Adv. Math. 18, 1-101 (1975).
[8] Huang Jizheng, Liu Heping, Liu Jianming, An Analogue of Beurling's theorem for the Jacobi Transform. Acta Mathematica Sinica, English Series, Vol. 25, 85-94 (2009).
[9] F.I. Karpelevich, V.N. Tutubalin, M.G. Shur, Limit theorems for the compositions of distributions in the Lobachevski plane and space. Theory Probab. Appl. 4, 399-402 (1959).
[10] J.F.C. Kingman, Random walks with spherical symmetry. Acta Math. 109, 11-53 (1963).
[11] T. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups. In: Special Functions: Group Theoretical Aspects and Applications, Eds. Richard Askey et al., D. Reidel, Dordrecht-Boston-Lancaster, 1984.
[12] M. Rösler, M. Voit, Limit theorems for radial random walks on $p \times q$ matrices as p tends to infty. Math. Nachr. 284, 87-104 (2011).
[13] A. Terras, Harmonic Analysis on Symmetric Spaces and Applications. Springer-Verlag 1985.
[14] K. Trimèche, Probabilités indéfiniment divisibles et théorème de la limite centrale pour une convolution généralisée sur la demi-droite, Seminaire d'Analyse Harmonique, Faculte des Sciences de Tunis, Dep. Math., 1976.
[15] V.N. Tutubalin, On the limit behaviour of compositions of measures in the plane and space of Lobachevski. Theory Probab. Appl. 7, 189-196 (1962).
[16] M. Voit, Laws of large numbers for polynomial hypergroups and some applications. J. Theor. Probab. 3 (No. 2), 245-266 (1990).
[17] M. Voit, Central Limit Theorems for Jacobi Hypergroups. Contemporary Mathematics 183, 395-411 (1995).
[18] M. Voit, Central limit theorem for radial random walks on $p \times q$ matrices for $p \rightarrow \infty$. Preprint, TU Dortmund, 2008.
[19] M. Voit, Limit theorems for radial random walks on homogeneous spaces with growing dimensions. In: J. Hilgert, Joachim (ed.) et al., Proc. symp. on infinite dimensional harmonic analysis IV. On the interplay between representation theory, random matrices, special functions, and probability, Tokyo, World Scientific. 308-326 (2009).
[20] M. Voit, Limit results for Jacobi functions and central limit theorems for Jacobi random walks on $[0, \infty[$, Preprint, TU Dortmund, 2011.
[21] H. Zeuner, The central limit theorem for Chébli-Trimèche hypergroups. J. Theor. Probab. 2, 51-63 (1989).
[22] H. Zeuner, Laws of Large Numbers of Hypergroups on \mathbb{R}_{+}. Math. Ann. 283, 657-678 (1989).
[23] H. Zeuner, Moment functions and laws of large numbers on hypergroups. Math. Z. 211, 369-407 (1992).

Preprints ab 2009/13

2011-13	Waldemar Grundmann Moment functions and Central Limit Theorem for Jacobi hypergroups on $[0, \infty[$
2011-12	J. Koch, A. Rätz, and B. Schweizer Two-phase flow equations with a dynamic capillary pressure
2011-11	Michael Voit Central limit theorems for hyperbolic spaces and Jacobi processes on $[0, \infty[$
2011-10	Ben Schweizer The Richards equation with hysteresis and degenerate capillary pressure
2011-09	Andreas Rätz and Matthias Röger Turing instabilities in a mathematical model for signaling networks
2011-08	Matthias Röger and Reiner Schätzle Control of the isoperimetric deficit by the Willmore deficit
2011-07	Frank Klinker Generalized duality for k -forms
2011-06	Sebastian Aland, Andreas Rätz, Matthias Röger, and Axel Voigt Buckling instability of viral capsides - a continuum approach
2011-05	Wilfried Hazod The concentration function problem for locally compact groups revisited: Non-dissipating space-time random walks, τ-decomposable laws and their continuous time analogues
2011-04	Wilfried Hazod, Katrin Kosfeld Multiple decomposability of probabilities on contractible locally compact groups
2011-03	Alexandra Monzner* and Frol Zapolsky \dagger A comparison of symplectic homogenization and Calabi quasi-states
2011-02	Stefan Jäschke, Karl Friedrich Siburg and Pavel A. Stoimenov Modeling dependence of extreme events in energy markets using tail copulas
2011-01	Ben Schweizer and Marco Veneroni The needle problem approach to non-periodic homogenization
2010-16	Sebastian Engelke and Jeannette H.C. Woerner A unifying approach to fractional Lévy processes
2010-15	Alexander Schnurr and Jeannette H.C. Woerner Well-balanced Lévy Driven Ornstein-Uhlenbeck Processes
2010-14	Lorenz J. Schwachhöfer On the Solvability of the Transvection group of Extrinsic Symplectic Symmetric Spaces
2010-13	Marco Veneroni Stochastic homogenization of subdifferential inclusions via scale integration

2010-12	Agnes Lamacz, Andreas Rätz, and Ben Schweizer A well-posed hysteresis model for flows in porous media and applications to fingering effects
2010-11	Luca Lussardi and Annibale Magni Γ-limits of convolution functionals
2010-10	Patrick W. Dondl, Luca Mugnai, and Matthias Röger Confined elastic curves
2010-09	Matthias Röger and Hendrik Weber Tightness for a stochastic Allen-Cahn equation
2010-08	Michael Voit Multidimensional Heisenberg convolutions and product formulas for multivariate Laguerre polynomials
2010-07	Ben Schweizer Instability of gravity wetting fronts for Richards equations with hysteresis
2010-06	Lorenz J. Schwachhöfer Holonomy Groups and Algebras
2010-05	Agnes Lamacz Dispersive effective models for waves in heterogeneous media
2010-04	Ben Schweizer and Marco Veneroni Periodic homogenization of Prandtl-Reuss plasticity equations in arbitrary dimension
2010-03	Holger Dette and Karl Friedrich Siburg and Pavel A. Stoimenov A copula-based nonparametric measure of regression dependence
2010-02	René L. Schilling and Alexander Schnurr The Symbol Associated with the Solution of a Stochastic Differential Equation
2010-01	Henryk Zähle Rates of almost sure convergence of plug-in estimates for distortion risk measures
2009-16	Lorenz J. Schwachhöfer Nonnegative curvature on disk bundles
2009-15	Iuliu Pop and Ben Schweizer Regularization schemes for degenerate Richards equations and outflow conditions
2009-14	Guy Bouchitté and Ben Schweizer Cloaking of small objects by anomalous localized resonance
2009-13	Tom Krantz, Lorenz J. Schwachhöfer Extrinsically Immersed Symplectic Symmetric Spaces

