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ABSTRACT 
 

PyBact is a software written in Python for bacterial identification. The code simulates the pre-
defined behavior of bacterial species by generating a simulated data set based on the fre-
quency table of biochemical tests from diagnostic microbiology textbook. The generated data 
was used for predictive model construction by machine learning approaches and results indi-
cated that the classifiers could accurately predict its respective bacterial class with accuracy in 
excess of 99 %. 
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INTRODUCTION 
 

The span of characteristics that can be 
used for bacterial identification includes the 
following properties: cultural, morphologi-
cal, physiological, biochemical, nutritional, 
chemotaxonomic, serological, inhibitory 
tests, genotypic properties, chromatogra-
phic properties and electrophoretic proper-
ties (Logan, 1994; Giacomini et al., 2000). 
Among these sets, biochemical tests have 
remained the typical first step for bacterial 
identification. Biochemical test measures 
the ability of an unknown microorganism in 
metabolizing substrates (e.g. sugar, amino 
acids, etc.). Such catalysis gives rise to de-
tectable color change that is the basis for 
bacterial identification. Bacterial identifica-
tion through the use of biochemical tests 
can be performed by either manual or 
automated approaches. The former requires 
analytical skills of technologists in reading 
and interpreting the biochemical results 
while the latter makes use of computers for 

bacterial identification (Sneath, 1964). Such 
task is typically based on the calculation of 
probabilities via Bayes’ theorem (Lapage et 
al., 1973; Willcox et al., 1973). This ap-
proach essentially generates a quantitative 
value, known as Willcox’s identification 
scores (Willcox et al., 1980), which meas-
ures the similarity of an unknown isolate 
with those in the data matrix. 

Although great advancement has been 
made for bacterial identification methods, 
there still exist unforseeable factors that 
may potentially hinder accurate and defini-
tive bacterial identification (Frederiksen 
and Tønning, 2001). Suggestions for pre-
venting and resolving such potential mis-
identification have been proposed (Janda 
and Abbott, 2002). Therefore, there is still 
ample room for improving upon the meth-
odologies for bacterial identification.  

This study describes a simple algorithm 
implemented using the Python program-
ming language for bacterial identification. 
Python is potentially suited for such appli-
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cation as it is an open source, multiplat-
form, easy to learn and implement, has ex-
tensive modules and libraries as well as 
having a collaborative online community 
(Biopython Project, 2008). Furthermore, the 
Python programming language has been 
extensively demonstrated to be useful for 
many endeavors especially those in the life 
sciences (Bassi, 2007; Python, 2008).  

 

MATERIAL AND METHODS 

Compilation of data set 
The data sets used in this study is com-

prised of 12 species from Vibrio genus and 
134 species from Enterobacteriaceae fam-
ily. The positive percentage of biochemical 
profile of these bacteria was obtained from 
diagnostic microbiology textbook (Murray 
et al., 2007) and used as input data for fur-
ther processing by PyBact. (Note: the origi-
nal data set of these biochemical profiles of 
Vibrio and Enterobacteriaceae is provided 
as a supplementary information). 

 
Algorithm for biochemical data generation 

PyBact is freely available under the 
Open Software License (OSL) Version 3.0 
at http://pybact.sourceforge.net/. Up until 
now, there has been more than 350  
 
 

downloads worldwide. The principle behind 
the software is based on the generation of 
simulated binary data, which is essentially a 
table of strains versus biochemical tests. 
The generated data matrix serves as proc-
essable input data for machine learning al-
gorithms, which could be applied for im-
proved and robust bacterial identification 
purposes. Aside from this, the software 
holds great benefit as an educational aid for 
diagnostic microbiology courses. 

The algorithm of PyBact’s data genera-
tion procedures is summarized as a pseu-
docode in Table 1 and the generated data 
matrix is represented in Figure 1. Briefly, 
each biochemical test is represented by a 
binary value of either 1 or 0, which corre-
sponds to positive or negative results of the 
biochemical property of interest.  

The algorithm initially constructs N 
number of strains for a given bacterial spe-
cies of interest. For each strain, the bio-
chemical tests of interest were then ran-
domly assigned a value of either 1 or 0; the 
value of 1 is assigned until the cumulative 
count of 1 equals the predefined positive 
percentage. For example, if the positive 
percentage is 95 %, the value of 1 will be 
randomly assigned until the cumulative 
count of 1 equals 95.  
 

 
Table 1: PyBact’s data generation algorithm 

import modules: random, os, sys, and psyco 
read data from input file 
construct an array and import input data as array members 
for each bacteria (from a list of bacterial species): 
      generate class label for N number of strains 
      for each biochemical test (from a list of biochemical tests):  
            populate the value as 0 (representing negative results): 
            if the biochemical test has a predefined positive percentage of 0  
            then populate all value as 0 
            else 
                 for each biochemical test (from a list of biochemical tests): 
                       assign a value of 1 (representing positive results) to a random position 
                       until the cumulative count of 1 equals the predefined positive percentage 
                 append biochemical test to the list 
write results to output file in the form of a tab delimited data matrix 
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The input data matrix is depicted as follows 
(showing only the first 5 biochemical test 
and the first 2 bacterial species): 
 
Indole  MR  VP Citrate H2S  
  99    99  75   97     0   V.cholerae 
  98    99   9   99     0    V.mimicus 
 
After the algorithm’s procedures have been 
performed, the generated output yields the 
following data matrix (this example shows 
only the first 5 biochemical test and 5 
strains of the first 2 bacterial species): 
 
Indole  MR  VP Citrate H2S 
   1   1   0    1     0   V.cholerae 
   0   1   0    1     0   V.cholerae 
   1   0   1    1     0   V.cholerae 
   1   1   1    0     0   V.cholerae 
   1   1   1    1     0   V.cholerae 
   1   1   0    1     0    V.mimicus 
   1   1   0    0     0    V.mimicus 
   1   1   0    1     0    V.mimicus 
   0   0   0    1     0    V.mimicus 
   1   1   0    1     0    V.mimicus 

 
The dynamic nature of the algorithm 

makes certain that the generated data matrix 
is unique with each run. This feature re-
sembles the dynamic nature of how each 
bacterial strain of a certain genus and spe-
cies could possess slight variations in the 
biochemical profiles. 
 

Generating the biochemical data 
As previously mentioned, PyBact is 

available at http://pybact.sourceforge.net/ as 
a zip file named PyBact_1.0.1.zip, the con-
tents of which contains the source code, the 
compiled program, the input files for Vibrio 
and Enterobacteriaceae data set and a re-
adme text file. The input file is essentially a 
frequency table of positive occurrence of 
biochemical test for bacterial species as ob-
tained from the Manual of Clinical Micro-
biology (Murray et al., 2007). To generate 
the simulated biochemical data with Py-
Bact, the following command is entered 
into the command prompt of Windows: 
 
pybact input.txt output.txt 100 
 
where input.txt and output.txt are, as the 
name implies, the input and output files. 
100 is the number of isolates to be gener-
ated per species. The output file is tab de-
limited and can readily be used as data set 
for machine learning analysis. The program 
is flexible in which the number of bio-
chemical tests it can handle are automati-
cally determined from the input file. In ad-
dition, the number of isolates can be ad-
justed to produce small or large data sets as 
desired. 
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Figure 1: Schematic representation of biochemical test data generation by PyBact
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Data mining for bacterial identification 
Data mining is a technique that seeks to 

find correlation between a set of independ-
ent variables (e.g. the biochemical test pro-
files) with the observed dependent variable 
(e.g. the bacterial species). The principles 
of using data mining techniques on biologi-
cal and chemical data sets have previously 
been reviewed (Nantasenamat et. al., 2009, 
2010). Successful utilization of data mining 
techniques for modeling problems in biol-
ogy and chemistry have previously been 
demonstrated (Nantasenamat et al., 2005, 
2007a, b, 2008a, b; Thippakorn et al., 2009; 
Worachartcheewan et al., 2009, 2010a, b, 
2011). 

Bacterial identification was performed 
using Weka (Witten and Frank, 2005) and 
employing the generated data matrix of bio-
chemical test data, which was obtained 
from PyBact, as the input data. The classi-
fier used for bacterial identification in-
cluded decision tree, naïve Bayes and sup-
port vector machine. The classification was 
performed using default parameter and 10-
fold cross-validation. A schematic represen-
tation of the methodology used in this study 
is depicted in Figure 2. 
 

RESULTS AND DISCUSSION 
To demonstrate the applicability of the 

generated binary data matrix for bacterial 
identification, the generated output was 
then used as input data for bacterial identi-
fication by machine learning classifiers of 
Weka. The data set was tested with the fol-
lowing classifiers using 10-fold cross-
validation: decision tree, naïve Bayes and 
support vector machine.  

The data set used for this analysis is 
made up of 12 species from Vibrio genus. 
The number of strains to generate for each 
of the species was set to 100. Therefore, the 
data set is comprised of a total of 1,200 Vi-
brio strains (12 species from Vibrio genus × 
100 strains). 

Bacterial identification was performed 
using the aforementioned classifers with 
default parameter. Results indicated that the 
classifiers could accurately identify the
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Biochemical Data Generation

Generated Data Matrix of 
Biochemical Test Data 

PyBact

Predicted Bacterial Species
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(DT, NM and SVM)

Data Mining  for 
Bacterial Identification

Weka

 
 
Figure 2: Schematic representation of bacterial 
identification methodology 
 
correct bacterial species by using the bio-
chemical test data for pattern recognition. It 
was observed that the decision tree imple-
menting the J48 algorithm could accurately 
identify 1,189 out of 1,200 strains which 
equates to 99.0833 %. Furthermore, naïve 
Bayes and support vector machine could 
correctly identify all of the 1,200 strains to 
give 100 % accuracy. 

The aforementioned results indicated 
that the generated data set in combination 
with machine learning algorithms is appli-
cable for differentiating the various species 
of Vibrio. Question arises as to whether the 
approach described herein is also applicable 
for bacterial identification of mixed popula-
tions, particularly, the ability in differentiat-
ing various genus and species. To answer 
such question, our program was applied to 
the largest and most heterogeneous family 
of medically important bacteria, the En-
terobacteriaceae. The data set used for this 
analysis was comprised of 134 species. As 
stated earlier, the number of strains to gen-
erate for each of the species was set to 100. 
Therefore, the data set is comprised of a 
total of 13,400 strains (134 species from 
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Enterobacteriaceae family × 100 strains). 
The data set was also tested with decision 
tree, naïve Bayes and support vector ma-
chine which could accurately identify 
12,297 (91.7687 %), 12,701 (94.7836 %) 
and 12,691 (94.7090 %) species, respec-
tively. 
 

CONCLUSION 
We have proposed a novel approach for 

employing Python in generating simulated 
data set for constructing a predictive model 
useful in bacterial identification. The flexi-
bility of the algorithm lies in its ability to 
mimic the dynamic nature of positive/nega-
tive occurrence probability of the bio-
chemical test results. Moreover, the gener-
ated binary data matrix has been demon-
strated to be useful in machine learning 
analysis as observed by its ability to cor-
rectly predict the bacterial species of all iso-
lates. The proposed algorithm and data set 
could easily be adapted and modified to 
build robust tools for accurate and precise 
bacterial identification that are of research, 
professional and educational value. 
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