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Abstract

In this paper we are concerned with non-parametric inference on the volatility of
volatility process τ2 in stochastic volatility models. We construct an estimator for its
integrated version

∫ t

0
τ2s ds in a high frequency setting which is based on increments of

spot volatility estimators, and we are able to prove both feasible and infeasible central
limit theorems at the optimal rate n−1/4. Such CLTs can be widely used in practice,
as they are the key to essentially all tools in model validation for stochastic volatility
models. As an illustration we apply our results to goodness-of-fit testing, providing
the first consistent test for a certain parametric form of the volatility of volatility.
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1 Introduction

Nowadays, stochastic volatility models are standard tools in the continuous-time modelling
of financial time series. Typically, the underlying (log) price process is assumed to follow
a diffusion process of the form

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs, (1.1)

where µ and σ can be quite general stochastic processes themselves. A classical case is
where the volatility σ2s = σ2(s,Xs) is a function of time and state–a situation referred to
as the one of a local volatility model. It has turned out in empirical finance that such
models do not fit the data very well, as some stylised facts such as the leverage effect or
volatility clustering cannot be explained using local volatility only. Stochastic volatility
models, however, are able to reproduce such features, as they bear an additional source of
randomness. In these models the volatility process is a diffusion process itself, having the
representation

σ2t = σ20 +

∫ t

0
νsds+

∫ t

0
τsdVs, (1.2)

where ν and τ again are suitable stochastic processes and V is another Brownian motion,
correlated with W .

Standard stochastic volatility models are parametric ones, and probably the prime
example among those is the Heston model of [17], given by

Xt = X0 +

∫ t

0

(
β − σ2s

2

)
ds+

∫ t

0
σsdWs, σ2t = σ20 + κ

∫ t

0
(α− σ2s)ds+ ξ

∫ t

0
σsdVs,

for some parameters β, κ, α and ξ, and with Corr(W,V ) = ρ. Here, the volatility process
follows a Cox-Ingersoll-Ross model, that means it is mean-reverting with mean α and speed
κ, and both diffusion coefficients are proportional with parameter ξ. Such a behaviour
appears to be rather typical for stochastic volatility models, and in this sense the Heston
model can be regarded as prototypic. Popular alternatives are for example coming from the
more general (but again parametric) class of CEV models, where the diffusion coefficient τ
becomes a power function of σ, whereas the drift part of the volatility remains in principle
the same. See [25] for a survey.

For this reason, statistical inference for stochastic volatility models has focused on
parametric methods for most times, and usually the authors provide tools for a specific
class of models. However, one is faced with two severe problems: First, it is in most
cases impossible to assess the distribution of X (or its increments), which makes standard
maximum likelihood theory unavailable. Second, the volatility process σ2 is not observable,
and many statistical concepts have in common that they propose to reproduce the unknown
volatility process from observed option prices, typically by using proxies based on implied
volatility. A survey on early estimation methods in this context can be found in [11].
One remarkable exception where stock price data only is used, is the paper of [10] who



Integrated volatility of volatility 3

construct a GMM estimator for the parameters of the Heston model from increments
of realised variance. But also in a general setting with no specific model in mind, the
focus has been on parametric approaches. An early approach on parameter estimation
when σ2 is ergodic is the work of [15], optimal rates are discussed in [18] and [16], and a
maximum likelihood approach based on proxies for the volatility can be found in [4]. Even
non-parametric concepts have been used to identify parameters of a stochastic volatility
model, see for example [9] or [30].

Genuine non-parametric inference for stochastic volatility models has typically focused
on function estimation. Both [29] and [12] discuss techniques for the estimation of f and g,
when the volatility process satisfies dσ2t = f(σ2t )dt+g(σ2t )dVt. In the more general model-
free context of (1.2) only [8] have discussed estimation of functionals of the process τ by
providing a consistent estimator for the integrated volatility of volatility

∫ t
0 τ

2
s ds. Their

approach is inspired by the asymptotic behaviour of realised variance, which states that
the sum of squared increments of σ2 converges in probability to the quantity of interest.
Since σ2 is not observable, the authors use spot volatility estimators instead.

We will pursue their approach and define a slightly different estimator for integrated
volatility of volatility which attains the optimal rate of convergence in this context, also
using observations of X only. Furthermore, a stable central limit theorem is provided, and
by defining appropriate estimators for the asymptotic (conditional) variance we obtain
a feasible version as well. The latter result is of theoretical interest on one hand, but is
extremely important from an applied point of view as well, as it makes model validation for
stochastic volatility models possible. Given the tremendous number of such models with
entirely different qualitative behaviours, there is a lack of techniques that help deciding
whether a certain model fits the data appropriately or not.

As a first result on model validation in this whole framework we give an example on
goodness-of-fit testing, but our method is by no means limited to it. Related procedures
can be used to test e.g. whether a Brownian component or jumps are present in the
volatility process and what in general the structure of the jump part is. Such problems
have been solved for the price process X in recent years (see [22] for an overview), and in
principle the methods are all based on the estimation of plain integrated volatility

∫ t
0 σ

2
sds

and further quantities. Using our main results, they can be translated to the stochastic
volatility case by using integrated volatility of volatility instead. See the conclusions in
Section 5 for some hints on further research.

Finally, the paper is organised as follows: In Section 2 we introduce our estimator and
state the two central limit theorems, whereas Section 3 presents a method for goodness-
of-fit testing in stochastic volatility models. Some Monte Carlo results can be found in
Section 4, and as noted before we give a conclusion in Section 5. Most proofs can be found
in the Appendix, which is Section 6.

2 Main results

Suppose that the process X is given by (1.1), where W is a standard Brownian motion
and the drift process µ is left continuous. We assume further that the volatility process σ2
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is a continuous Itô semimartingale itself, having the representation (1.2), where ν is left
continuous as well and (W,V ) are jointly Brownian with correlation parameter ρ ∈ [−1, 1].
Note that |ρ| = 1 corresponds to W = V almost surely, in which case we are essentially
in the setting of a local volatility model, whereas |ρ| < 1 refers to the genuine stochastic
volatility case. Our aim is to draw inference on the integrated volatility of volatility, which
is
∫ t
0 τ

2
s ds. To this end we impose a regularity condition on τ , namely

τ2s = τ20 +

∫ t

0
ωsds+

∫ t

0
ϑ(1)s dWs +

∫ t

0
ϑ(2)s dVs +

∫ t

0
ϑ(3)s dW s, (2.1)

where W is another Brownian motion, independent of (W,V ), ω is locally bounded and
each ϑ(l) is left continuous, l = 1, 2, 3. Finally, we assume that all processes are defined on
the same probability space (Ω,F , (Ft)t≥0,P) and that all coefficients are specified in such
a way that σ2 and τ2 are almost surely positive. These assumptions are all rather mild
and are covered by a variety of (stochastic) volatility models used.

Any statistical inference in this work will be based on high-frequency observations of
X, and we assume that the data is recorded at equidistant times. Thus, without loss of
generality let the process be defined on the interval [0,1] and observed at the time points
i/n, i = 0, . . . , n. Just as standard integrated volatility is estimated using (squared)
increments of X, a reasonable estimator for integrated volatility of volatility can be built
upon increments of σ2. These are in general not observable, so a proxy for them is needed.
Since we are in a model-free world, a natural estimator for spot volatility σ2i/n is given by

σ̂2i
n

=
n

kn

kn∑
j=1

(∆n
i X)2, i = 0, . . . , n− kn,

for some auxiliary (integer-valued) sequence kn and where we have set ∆n
i Z = Zi/n−Zi−1/n

for any process Z. See [5] or [30] for details on the asymptotic behaviour of this estimator.
Equation (2.9), which is a simple consequence of Itô formula and Lemma 6.1, shows later
on that

σ̂2i
n

− σ2i
n

= Op(
√
kn/n+

√
1/kn)

holds, which explains the choice kn = cn1/2 + o(n1/4) for some c > 0 we will use in the
following.

An estimator for integrated volatility of volatility will now be defined as a sum over
squared increments of σ̂2(i+ln)/n − σ̂

2
i/n. What is a reasonable choice for ln? (2.2) suggests

that one should not take ln of smaller order than kn, as otherwise the estimation error
σ̂2i/n−σ

2
i/n (which is of order

√
kn/n) is dominating the quantity of interest σ2(i+ln)/n−σ

2
i/n

(which has order
√
ln/n). We will see that we can indeed take ln equal to kn which

guarantees convergence at the optimal rate, but in this case a bias correction becomes
necessary. For this reason we define local estimators for the process τ2 as follows: With a
slight abuse of notation we set

τ̂2i
n

=
3n

2kn
(σ̂2i+kn

n

− σ̂2i
n

)2 − 6
n

k2n
σ̂4i

n

, σ̂4i
n

=
n2

3kn

kn∑
j=1

|∆n
i+jX|4, (2.2)
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where the latter is in general different from (σ̂2i/n)2. A global estimator for integrated
volatility of volatility then becomes

V̂t =
1

n

bntc−2kn∑
i=0

τ̂2i
n

. (2.3)

Its asymptotic behaviour is discussed in the following theorem.

Theorem 2.1 Under the above assumptions we have the central limit theorem√
n

kn

(
V̂t −

∫ t

0
τ2s ds

) L−(s)−→ Ut (2.4)

for all t > 0, where the limiting variable has the representation

Ut =

∫ t

0
αsdW

′
s, α2

s =
48

c4
σ8s +

12

c2
σ4sτ

2
s +

151

70
τ4s ,

W ′ is a Brownian motion defined on an extension of the original probability space and
independent of F and the convergence in (2.4) is F-stable in law. For details on this
mode of convergence see for example [23].

Proof of Theorem 2.1 We will give a sketch of the proof here and relegate some
tedious details to the Appendix. In general, F-stable convergence of a sequence Zn to some
limiting variable Z defined on an extension (Ω̃, F̃ , P̃) of the original space is equivalent to

E(h(Zn)Y )→ Ẽ(h(Z)Y ) (2.5)

for any bounded Lipschitz function h and any bounded F measurable Y . For details, see
for example [23] and related work. Suppose now that there are additional variables Zn,p
and Zp (the latter defined on the same extension as Z) such that

lim
p→∞

lim sup
n→∞

E|Zn − Zn,p| = 0, (2.6)

Zn,p
L−(s)−→ Zp for all p, (2.7)

lim
p→∞

Ẽ|Zp − Z| = 0, (2.8)

hold. Then the desired stable convergence Zn
L−(s)−→ Z follows. Indeed, let ε > 0. Then

there exists a δ > 0 such that |x− y| < δ implies |h(x)− h(y)| < ε. Thus we have

|E(h(Zn)Y )− E(h(Zn,p)Y )|

≤ C
(
E(|h(Zn)− h(Zn,p)|1{|Zn−Zn,p|≥δ}) + E(|h(Zn)− h(Zn,p)|1{|Zn−Zn,p|<δ})

)
≤ C

(
P (|Zn − Zn,p| ≥ δ) + ε

)
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for a generic C > 0. From Markov inequality, (2.6) and as ε was arbitrary, we have

lim
p→∞

lim sup
n→∞

|E(h(Zn)Y )− E(h(Zn,p)Y )| = 0.

The same argument using (2.8) yields

lim
p→∞

|Ẽ(h(Zp)Y )− Ẽ(h(Z)Y )| = 0,

and (2.7) is by definition equivalent to

lim
n→∞

|E(h(Zn,p)Y )− Ẽ(h(Zp)Y )| = 0.

Putting the latter three claims together [plus the triangle inequality and the fact that all
three limiting conditions on p and n are actually the same] gives (2.5).

Our aim in this proof is to employ a certain blocking technique, which allows us to
make use of a type of conditional independence between the estimators τ̂2i/n. To this end we

apply the above methodology, so we have to define an appropriate double sequence Un,pt ,
which will correspond to the sum of approximated versions of τ̂2i/n over the big blocks.
Some additional notation is necessary. First of all, recall that Itô formula gives

σ̂2i
n

=
n

kn

kn∑
j=1

2

∫ i+j
n

i+j−1
n

(Xs −X i+j−1
n

)dXs +
n

kn

∫ i+kn
n

i
n

σ2sds =: Ani +Bn
i . (2.9)

The main part of Unt is some functional of increments of A and B, and as noted above we
need certain approximations for these in the sequel. Let p ∈ N be arbitrary. We set

a`(p) = (`− 1)(p+ 2)kn, b`(p) = a`(p) + pkn, c(p) = Jn(p)(p+ 2)kn + 1,

the first two for any ` = 1, . . . , Jn(p) with Jn(p) = bbnt− 2knc/(p+ 2)knc. These numbers
depend on n as well, even though it does not show up in the notation. We define further

Hn
i =

∫ i/n
i−1/n(Ws −W(i−1)/n)dWs and

Ã i+kn
n
− Ã i

n
=

n

kn

kn∑
j=1

2σ2a`(p)
n

(Hn
i+j+kn −H

n
i+j)

=
n

kn
σ2a`(p)

n

kn∑
j=1

(
(∆n

i+kn+jW )2 − (∆n
i+jW )2

)
, (2.10)

where the latter identity is a consequence of Itô formula, and

B̃ i+kn
n
− B̃ i

n
=

n

kn

∫ i+kn
n

i
n

τa`(p)

n

(Vs+ kn
n
− Vs)ds.

These quantities are defined over the big blocks, that is for i = a`(p), . . . , b`(p)−1. Up to a

different standardisation, the role of Zn,p in this proof will be played by Un,pt =
∑Jn(p)

`=1 Un,p` ,

Un,p` =

b`(p)−1∑
i=a`(p)

3

2kn
((Ã i+kn

n
− Ã i

n
) + (B̃ i+kn

n
− B̃ i

n
))2 − pkn

n

[6n

k2n
σ4a`(p)

n

+ τ2a`(p)
n

]
, (2.11)
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which again involves quantities from the big blocks only. The Un,p` can be shown to be
martingale differences, and the most involved part in the proof is to obtain

lim
p→∞

lim sup
n→∞

√
n

kn
E
∣∣∣(V̂t − ∫ t

0
τ2s ds

)
− Un,pt

∣∣∣ = 0, (2.12)

which is the analogue of (2.6). Let us focus on the remaining two steps as well. We set

Upt =

∫ t

0
α(p)sdW

′
s, α(p)2s =

p

p+ 2

(48p+ d1
pc4

σ8s +
12p+ d2
pc2

σ4sτ
2
s +

151p+ d3
70p

τ4s

)
for certain unspecified constants dl, l = 1, 2, 3. In order to prove the stable convergence√

n

kn
Un,pt

L−(s)−→ Upt (2.13)

we use a well-known result for triangular arrays of martingale differences, which is due to
Jacod [19]. In particular, the following three conditions have to be checked, where we call
Eni the conditional expectation with respect to F i

n
.

n

kn

Jn(p)∑
`=1

Ena`(p)[(U
n,p
` )2]

P−→
∫ t

0
α(p)2sds, (2.14)

n2

k2n

Jn(p)∑
`=1

Ena`(p)[(U
n,p
` )4]

P−→ 0, (2.15)

√
n

kn

Jn(p)∑
`=1

Ena`(p)[U
n,p
` (Na`+1(p)

n

−Na`(p)

n

)]
P−→ 0, (2.16)

where N is any component of (W,V ) or a bounded martingale orthogonal to both W and
V . The final step limp→∞ Ẽ|Upt − Ut| = 0 is obvious. 2

Remark 2.2 It is quite likely that a functional central limit theorem holds as well, but a
proof of this result appears to be somewhat more involved. In any case, the claim above
is sufficient for most of the statistical applications we have in mind. 2

Remark 2.3 The rate of convergence in Theorem 2.1 is n−1/4, and it is optimal for this
statistical problem. Indeed, a related parametric setting has been discussed in [18] a
decade ago, and it was shown therein that this rate is optimal in the special case, where
W and V are independent and τ is a function of time and state, known up to a parameter
θ. 2

Remark 2.4 As noted in the introduction, an alternative estimator has been defined in
[8]. Apart from an additional truncation in the spot volatility estimators to make these
robust to jumps in the price process, the main difference between both approaches are
different orders of kn and ln. Their choices grant consistency for the integrated volatility
of volatility without a bias correction as above, but as a drawback the optimal rate cannot
be attained. 2
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The limiting distribution in Theorem 2.1 is mixed normal, and in order to obtain a
feasible central limit theorem we have to introduce a consistent estimator for the condi-
tional variance

∫ t
0 α

2
sds. This term is a sum of three quantities, and regarding the parts

involving the process τ , we will rely on the previously introduced local estimators. To be
precise, for the integral over τ4 we will base an estimator on fourth powers of increments of
σ̂2, and again a suitable bias correction is necessary, whereas the estimator for the mixed
part is built directly from τ̂2i/n and σ̂4i/n. For the term involving powers of σ only, there are

several possibilities (involving standard power variations), but for computational reasons
we choose one which is based on σ̂4i/n as well. Altogether we obtain the following result,

and a proof of this claim (just as for all later ones as well) can be found in the Appendix.

Theorem 2.5 Set

G
(1)
t,n =

1

n

bntc−kn∑
i=1

(σ̂4i
n

)2, G
(2)
t,n =

1

n

bntc−2kn∑
i=1

τ̂2i
n

σ̂4i
n

, G
(3)
t,n =

1

n

bntc−2kn∑
i=1

n2

k2n
(σ̂2i+kn

n

− σ̂2i
n

)4.

Then we have the convergence in probability

G
(1)
t,n

P−→
∫ t

0
σ8sds, (2.17)

G
(2)
t,n

P−→
∫ t

0
σ4sτ

2
s ds, (2.18)

G
(3)
t,n

P−→
∫ t

0

(48

c4
σ8s +

16

c2
σ4sτ

2
s +

4

3
τ4s

)
ds, (2.19)

and as a consequence

Ĉnt =
453

280
G

(3)
t,n −

n

k2n

486

35
G

(2)
t,n −

n2

k4n

1038

35
G

(1)
t,n

P−→
∫ t

0
α2
sds.

Remark 2.6 Theorem 2.5 shows that a consistent estimator for
∫ t
0 τ

4
s ds is given by

T̂t =
3

4
G

(3)
t,n − 12

n

k2n
G

(2)
t,n − 36

n2

k4n
G

(1)
t,n, (2.20)

and its proof suggests that a central limit theorem holds with the same rate of convergence
as before. In general, it is quite likely that this methods provides estimates for arbitrary
even powers of integrated volatility of volatility. A concise theory is beyond the scope of
this paper, however. 2

The properties of stable convergence guarantee that dividing by the square root of a
consistent estimator for

∫ t
0 α

2
sds gives a feasible central limit theorem for the estimation

of integrated volatility of volatility. See for example [28] for details. Therefore we end this
section with the following corollary.
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Corollary 2.7 Under the previous assumptions we have weak convergence√
n

kn

(V̂t −
∫ t
0 τ

2
s ds)√

Ĉnt

L−→ N (0, 1)

for all t > 0.

3 Model checks for stochastic volatility models

Suppose that we are given a stochastic volatility model (with continuous paths), that is we
have the representation (1.1) for the log price process X and a volatility process satisfying
(1.2). There is still a lot of freedom in the modelling of σ2, and the various proposals in
the literature typically differ in the representation of its diffusion part τ . As noted in the
introduction, a quite general class of stochastic volatility models is given by the so-called
CEV models, in which τs = θ(σ2s)

γ for some non-negative γ and an unknown parameter
θ, and the most popular among these is the Heston model from [17], corresponding to
γ = 1/2.

Given the number of different stochastic volatility models, there is a lack of techniques
in goodness-of-fit testing. We will partly fill this gap and employ a technique which was
already used in [13] or [31] when dealing with local volatility models. Let us explain
the methodology by taking the example of a Heston model, for which νs = κ(α − σ2s)
and τ2s = ξ2σ2s . Since it is in general impossible to obtain information on the drift part
of a semimartingale from high-frequency observations only, we will solely focus on the
diffusion process. Thus our aim is to test whether the specific functional relationship of
proportionality between τ2s and σ2s is true or not. Let us have a look at the stochastic
process

Nt =

∫ t

0
(τ2s − θminσ2s)ds, θmin = argminθ

∫ 1

0
(τ2s − θσ2s)2ds.

Under the null hypothesis of a Heston-like diffusion process σ2, the process Nt is obviously
equal to zero for all t. Therefore a promising approach is to define an estimate N̂t, which
will be based on the heuristics from the previous section, and to prove weak convergence
of the statistic

√
n/kn(N̂t−Nt) to a certain limiting process At, for which we use Theorem

2.1 and related results. Test statistics can then be constructed via functionals of
√
n/knN̂t

which converge weakly as well and to the same functionals of At, if the underlying process
is indeed coming from a Heston model.

This approach is of course not limited to the Heston model, which is why we re-
turn to general case. Suppose that (1.2) holds. We are interested in testing for τ2s =
τ2(s,Xs, σ

2
s , θ), where τ2 is a given function and θ is some unknown (in general multi-

dimensional) parameter. For simplicity, we will focus on the one-dimensional linear case
only, that is

H0 : τ2s = θτ2(s,Xs, σ
2
s) for all s ∈ [0, 1] (a.s.)
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Extensions to the general case follow along the lines of Section 5 in [31].

A test for the null hypothesis will be based on the observation that H0 is equivalent
to Nt = 0 for all t ∈ [0, 1] (a.s.), where the process Nt is given by

Nt =

∫ t

0

(
τ2s − θminτ2(s,Xs, σ

2
s)
)
ds, θmin = argminθ

∫ 1

0

(
τ2s − θτ2(s,Xs, σ

2
s)
)2
ds.

Assume that the function τ2 is bounded away from zero. Then a standard argument from
Hilbert space theory shows that θmin = D−1C (and therefore Nt = Vt −BtD−1C), where
we have set Vt =

∫ t
0 τ

2
s ds and

Bt =

∫ t

0
τ2(s,Xs, σ

2
s)ds, D =

∫ 1

0
τ4(s,Xs, σ

2
s)ds, C =

∫ 1

0
τ2s τ

2(s,Xs, σ
2
s)ds.

To define reasonable estimators for the various quantities above let kn as before and recall
(2.2). We set N̂t = V̂t − B̂tD̂−1Ĉ with V̂t from the previous section, whereas we denote

B̂t =
1

n

bntc−kn∑
i=0

τ2(
i

n
,X i

n
, σ̂2i

n

), D̂ =
1

n

n−kn∑
i=0

τ4(
i

n
,X i

n
, σ̂2i

n

), Ĉ =
1

n

n−2kn∑
i=0

τ̂2i
n

τ2(
i

n
,X i

n
, σ̂2i

n

).

In the sequel we will prove weak convergence of N̂t −Nt, up to a suitable normalisation.
Theorem 2.1 suggests that

√
n/kn is a reasonable choice, and the following claim proves

that two of the estimators converge at a faster speed, at least if we impose an additional
smoothness condition on the function τ2.

Lemma 3.1 Suppose that the function τ2 has continuous partial derivatives of second
order. Then we have

B̂t −Bt = op(n
−1/4), D̂ −D = op(n

−1/4),

the first result holding uniformly in t ∈ [0, 1].

The above claim indicates that we have to focus on the terms involving τ̂2i/n only, which
is familiar ground due to the results of Section 2. We start with a proposition on the joint
asymptotic behaviour of V̂t and Ĉ.

Lemma 3.2 Let d be an integer and t1, . . . , td be arbitrary in [0, 1]. Set

Σt1,...,td(s,Xs, σ
2
s) = α2

sht1,...,td(s,Xs, σ
2
s)ht1,...,td(s,Xs, σ

2
s)
T

with ht1,...,td(s,Xs, σ
2
s) = (1[0,t1], . . . , 1[0,td], τ

2(s,Xs, σ
2
s))

T and α2
s as in Theorem 2.1. Un-

der the previous assumptions we have the stable convergence√
n

kn

(
V̂t1 − Vt1 , . . . , V̂td − Vtd , Ĉ − C

)T L−(s)−→
∫ 1

0
Σ
1/2
t1,...,td

(s,Xs, σ
2
s)dW

′
s,

where W ′ is a (d+ 1)-dimensional standard Brownian motion defined on an extension of
the original space and independent of F .
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We are intested in the asymptotics of the process An(t) =
√
n/kn(N̂t −Nt), and the

preceding lemma basically leads to its finite dimensional convergence. The entire result
on weak convergence of An reads as follows.

Theorem 3.3 Assume that the previous assumptions hold. Then the process (An(t))t∈[0,1]
converges weakly to a mean zero process (A(t))t∈[0,1], which is Gaussian conditionally on
F and whose conditional covariance equals the one of the process{

αU

(
1{U≤t} −BtD−1τ2(U,XU , σ

2
U )
)}

t∈[0,1]

where U ∼ U [0, 1], independent of F .

As indicated before, convergence of the finite dimensional distributions is a direct
consequence of Lemma 3.2, using the Delta method for stable convergence (see e.g. [14]).
Tightness follows from Theorem VI. 4.5 in [23] with a minimal amount of work.

Recall that Nt = 0 for all t under the null hypothesis. Therefore Theorem 3.3 shows
that a consistent test is obtained by rejecting the null hypothesis for large values of a
suitable functional of the process {

√
n/knN̂t}t∈[0,1]. If we choose the Kolmogorov-Smirnov

functional Kn = supt∈[0,1]
√
n/kn|N̂t| for example, we have weak convergence under the

null to supt∈[0,1] |At| as a consequence of Theorem 3.3. The distribution of the latter

statistic is extremely difficult to assess, as it typically depends on the entire process (X,σ2).
We will thus propose to pursue a different path and to obtain critical values via a bootstrap
procedure, which we will discuss in the next section in detail.

Remark 3.4 In practice, one should test beforehand, whether modelling via stochastic
volatility is actually appropriate or not. At least two recent procedures should be men-
tioned here: [27] propose a test which discriminates between local volatility and stochastic
volatility models and which is based on the sign of increments of X and of increments of
spot volatility, which tend to be equal if both X and its volatility process are driven by
the same Brownian motion. [30] discusses more generally semi-parametric techniques for
the estimation of the correlation parameter ρ between W and V . 2

Remark 3.5 An alternative approach on model validation could be based on an appro-
priate L2 distance, instead of working with empirical processes. To be precise, set

M2 =

∫ 1

0

(
τ2s − θminτ2(s,Xs, σ

2
s)
)2
ds

with θmin as above. Then the null hypothesis is equivalent to M2 = 0 almost surely,
and a natural estimator for M2 can be defined in the same way as for Nt. Nevertheless,
the asymptotic theory for M̂2 is a bit more involved, since a central limit theorem for an
estimator of

∫ 1
0 τ

4
s ds is necessary and a discussion of such a theory is beyond the scope of

this paper. See [14] for the asymptotic theory of the analogue of M2 in the local volatility
setting. 2
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To end this section we define appropriate estimator for the conditional variance of
A(t), which is given by

s2t =

∫ t

0
α2
sds− 2BtD

−1
∫ t

0
α2
sτ

2(s,Xs, σ
2
s)ds+B2

tD
−2
∫ t

0
α2
sτ

4(s,Xs, σ
2
s)ds,

due to Theorem 3.3. Empirical counterparts for Bt and D are obviously defined by the
statistics B̂t and D̂, whereas Theorem 2.5 suggests that a local estimator for α2

i/n is given
by

α̂2
i
n

=
n2

k2n

(453

280
(σ̂2i+kn

n

− σ̂2i
n

)4 − 486

35
τ̂2i
n

σ̂4i
n

)
− n6

k5n

346

1225

kn∑
j=1

|∆n
i+jX|8.

We obtain the following result, which can be proven in the same way as Theorem 2.5.

Theorem 3.6 Let t be arbitrary and set

ŝ2t =
1

n

bntc−2kn∑
i=1

α̂2
i
n

− 2B̂tD̂
−1 1

n

bntc−2kn∑
i=1

α̂2
i
n

τ2(
i

n
,X i

n
, σ̂2i

n

)

+B̂2
t D̂
−2 1

n

bntc−2kn∑
i=1

α̂2
i
n

τ2(
i

n
,X i

n
, σ̂2i

n

).

Then ŝ2t is consistent for s2t .

As a consequence, each statistic
√
n/knN̂t/ŝt converges weakly to a normal distribu-

tion. This result will be used to construct a feasible bootstrap statistic in the following.

4 Simulation study

Let us start with a simulation study concerning the performance of V̂t as an estimator for
integrated volatility of volatility. Throughout this section we will work with the Heston
model only, and the parameters are chosen as follows: β = 0.3, κ = 5, α = 0.2 and
ξ = 0.5. Furthermore, we set X = 0 and σ20 = α. Note that the Feller condition 2κα ≥ ξ2
is satisfied, which ensures that the process σ2 is almost surely positive as requested. So
does τ2, and it is obvious that (2.1) holds as well. Therefore all conditions from Section 2
are satisfied.

We begin the finite sample properties of the central limit theorem from Theorem 2.1
in its infeasible version, which is√

n

kn

(V̂t −
∫ t
0 τ

2
s ds)√∫ t

0 α
2
sds

L−→ N (0, 1). (4.1)

That means we use the unobservable (conditional) variance
∫ t
0 α

2
sds to standardise cor-

rectly instead of using an estimator for it. We discuss the performance of this result for
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different choices the correlation parameter ρ and the number of observations n, and in all
cases we take n to be a square number and kn equals n1/2, so we have c = 1. Finally we
set t = 1.

[INSERT TABLE 1 ABOUT HERE]

Table 1 shows the finite sample behavior of (4.1) for ρ = 0, always based on 10,000
simulations. We see that mean and variance are rather close to the limiting values in most
cases. In the remaining columns we show some empirical quantiles in the tails, that is we
state both α and the relative number of times where the statistic in (4.1) was below the
corresponding α quantile of the standard normal distribution. These values appear to be
reproduced in a satisfying way as well.

[INSERT TABLE 2 ABOUT HERE]

The same situation has been analysed for ρ = −0.2, which corresponds to a moderate
leverage effect of negative correlation between increments in price and volatility, and the
results are in general comparable to the previous ones. Note that (4.1) does not depend
at all on the choice of ρ, but some smaller order terms do as can be seen from the proof.
These might affect the quality of approximation for finite samples, but apparently they
do not.

[INSERT TABLE 3 ABOUT HERE]

For the feasible statistic from Corollary 2.7 the situation is somewhat different, as it
takes more time for the asymptotics to kick in. Apparent is a slight overestimation of the
lower tails of the distribution, which seem to originate from the relation of the estimators

V̂1 and G
(3)
1,n. By construction, in cases where V̂1 is underestimating the true quantity, it is

typically the case that increments of σ̂2 are relatively small. As these increments occur in

G
(3)
1,n as well, most likely the asymptotic variance is underestimated as well, which explains

a too large negative standardised statistic. The same effect is visible for the upper quantiles
as well (but resulting in an overestimation), and this simple explanation is supported by
a detailed look at simulation results not reported here which reveal that the estimation
of the asymptotic variance is extremely accurate for moderate sizes of V̂1 −

∫ 1
0 τ

2
s , but

becomes worse when the deviation is rather large.

[INSERT TABLE 4 ABOUT HERE]

As an example for an application in goodness-of-fit testing, we have constructed a test
for a Heston-like volatility structure via a bootstrap procedure as follows: Based on the
observation that for each t,

√
n/knN̂t/ŝt converges weakly to a standard normal distribu-

tion if the null is satisfied, it seems reasonable to reject the hypothesis for large values of
the standardised Kolmogorov-Smirnov statistic Yn = supi≤n−2kn |

√
n/knN̂i/n/ŝi/n|. Since

its (asymptotic) distribution is in general hard to assess, we used bootstrap quantiles in-

stead, and precisely we have generated bootstrap data X
∗(b)
i/n , b = 1, . . . , B, following the
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equation

X∗t =

∫ t

0
σ∗sdW

∗
s , (σ∗t )

2 = α̂+

∫ t

0
κ̂(α̂− (σ∗s)

2)ds+ ξ̂

∫ t

0
σ∗sdV

∗
s .

Here, W ∗ and V ∗ are independent Brownian motions, and we have identified α̂ with the
realised volatility of the original data (which is a measure for the average volatility over
[0,1]) and defined ξ̂ = θ̂1/2, since both quantities coincide under the null. Finally, we have
simply set κ̂ = 5θ̂/α̂ such that Feller’s condition is satisfied. Setting B = 200, we have
run 500 simulations each.

[INSERT TABLE 5 ABOUT HERE]

Table 5 shows that the simulated levels are rather close to the expected ones, irrespec-
tively of n. We have tested two alternatives from the class of CEV models, namely

σ2t = σ20 + κ

∫ t

0
(α− σ2s)ds+ Vt and σ2t = σ20 + κ

∫ t

0
(α− σ2s)ds+

√
κ

∫ t

0
σ2sdVs,

corresponding to γ = 0 and γ = 1, respectively, and using the parameters from above.
We see from the simulation results that the rejection probabilities are much larger for the
second alternative than for the first, which can partially explained from two observations:
First, the Vasicek model does not satisfy the assumptions from the previous sections since
the volatility may become negative (in which case it is set to zero); second, our choice of κ̂
is responsible for a large speed of mean reversion in the bootstrap algorithm which makes
it difficult to distinguish between a Heston-like volatility of volatility and a constant one.
It is expected that the power improves for an entirely data-driven choice of κ̂.

[INSERT TABLE 6 ABOUT HERE]

5 Conclusion

In this paper we have discussed a non-parametric method on estimation of the integrated
volatility of volatility process

∫ t
0 τ

2
s ds in stochastic volatility models. Our estimator is

based on spot volatility estimators, and just as for standard realised volatility we use
sums of squares of these to obtain a global estimator V̂t for

∫ t
0 τ

2
s ds, up to a further bias

correction. It is shown that V̂t converges at the optimal rate n−1/4, and we provide both
an infeasible and a feasible central limit theorem for it.

Given the variety of stochastic volatility models (in continuous time) which are used
to describe financial data, there is a severe lack in tools on model validation. Our results
somehow fill this gap, as we provide a promising method for goodness-of-fit testing in such
models which investigates whether a specific parametric model for volatility of volatility
is appropriate given the data or not. But several further applications are possible as well,
particularly if we turn to the even more general context of models including jumps in price
and volatility. Non-parametric inference in this context is rare as well, but to mention is
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recent work by Jacod and collaborators on the existence and the form of joint jumps in
both processes (see [24] and [21]).

Following our results, much more questions regarding jumps in the volatility process
can be tackled now, and to explain possible extensions of our approach let us have a look
at the case of jumps in the price process. Several statistical tools have been developed
over the past years that help answering e.g. whether there are jumps or not in the process,
whether there are finitely or infinitely many, or what in general their degree of activity is
(see foremost [1]–[3], but also [7] or [26]). Most of these procedures are based on realised
volatility and related quantities, such as truncated versions or bipower variation. Theorem
2.1 indicates that similar methods are likely to work for the volatility process as well, but
usually with the slower rate of convergence n−1/4. A detailed analysis is beyond the scope
of this paper, however.

A different issue to take microstructure issues into account which are likely to be
present when data is observed at high frequency. Again it is promising to combine filtering
methods for noisy diffusions with the method proposed in this paper to obtain an estimator
for integrated volatility of volatility in such models as well, but the rate of convergence is
expected to drop further. Again, precise statements on the asymptotics are left for further
research.

6 Appendix

Note first that every left-continuous process is locally bounded, thus all processes appearing
are. Second, standard localisation procedures as in [6] or [20] allow us to assume that any
locally bounded process is actually bounded, and that almost surely positive processes can
be regarded as bounded away from zero. Universal constants are denoted by C or Cr, the
latter if we want to emphasise depedence on some additional parameter r.

6.1 Proof of (2.12)

We have a couple of somewhat lengthy steps to show. Start with the following observation:
If we set

Unt =

bntc−2kn∑
i=0

3

2kn
(σ̂2i+kn

n

− σ̂2i
n

)2 − 6

c2

∫ t

0
σ4sds−

∫ t

0
τ2s ds,

then a simple computation proves that

V̂t =

bntc−2kn∑
i=0

3

2kn
(σ̂2i+kn

n

− σ̂2i
n

)2 − 2
n2

k2n

bntc∑
i=1

|∆n
i X|4 +Op(n

−1/2),

where the error term is due to boundary effects. Theorem 2.1 in [6] and the definition of
kn give √

n

kn
E
∣∣∣(V̂t − ∫ t

0
τ2s ds

)
− Unt

∣∣∣ = o(1),
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uniformly in t. Therefore we are left to show

lim
p→∞

lim sup
n→∞

√
n

kn
E
∣∣∣Unt − Un,pt

∣∣∣ = 0. (6.1)

To this end, we need an auxiliary result on the increments of A and B and their approxi-
mations, and we introduce similar terms over the small blocks. Set

C̃ i+kn
n
− C̃ i

n
=

n

kn
σ2b`(p)

n

kn∑
j=1

(
(∆n

i+kn+jW )2 − (∆n
i+jW )2

)
,

D̃ i+kn
n
− D̃ i

n
=

n

kn

∫ i+kn
n

i
n

τ b`(p)

n

(Vs+ kn
n
− Vs)ds, both for i = b`(p), . . . , a`+1(p)− 1.

Then the following claim holds.

Lemma 6.1 We have

E|A i+kn
n
−A i

n
− (Ã i+kn

n
− Ã i

n
)|r ≤ Cr(pn−1)r/2,

E|B i+kn
n
−B i

n
− (B̃ i+kn

n
− B̃ i

n
)|r ≤ Cr(pn−1)r/2,

as well as

E|A i+kn
n
−A i

n
|r ≤ Crn−r/4 and E|B i+kn

n
−B i

n
|r ≤ Crn−r/4 (6.2)

for every r > 0. The latter bounds hold also for the approximated versions, and the same
results are true for C and D and their approximations as well.

Proof. Note first that

B i+kn
n
−B i

n
− (B̃ i+kn

n
− B̃ i

n
) =

n

kn

∫ i+kn
n

i
n

[ ∫ s+ kn
n

s
νrdr +

∫ s+ kn
n

s
(τr − τa`(p)

n

)dVr

]
ds, (6.3)

and due to the boundedness of ν the r-th moment of the first summand is bounded by
Crn

−r/2. Thus we focus on the latter summand only. Since σ2 and τ2 are continuous
Itô semimartingales and both processes are bounded below by some positive constant,
an application of Itô formula shows that σ and τ are continuous Itô semimartingales
themselves and with similar representations. Therefore several applications of Hölder and
Burkholder inequality yield

E
∣∣∣ n
kn

∫ i+kn
n

i
n

∫ s+ kn
n

s
(τr − τa`(p)

n

)dVrds
∣∣∣r ≤ Cr n

kn

∫ i+kn
n

i
n

E
∣∣∣ ∫ s+ kn

n

s
(τr − τa`(p)

n

)dVr

∣∣∣rds
≤ Cr

n

kn

∫ i+kn
n

i
n

E
[( ∫ s+ kn

n

s
(τr − τa`(p)

n

)2dr
)r/2]

ds ≤ Cr(pn−1)r/2.
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To see that (A(i+kn)/n −Ai/n)− (Ã(i+kn)/n − Ãi/n) has the same property, note that this
term can be written as the sum of two quantities, for which the first one is

n

kn

kn∑
j=1

∫ i+j
n

i+j−1
n

(Xs −X i+j−1
n

)µsds

+
n

kn

kn∑
j=1

∫ i+j
n

i+j−1
n

((Xs −X i+j−1
n

)σs − (Ws −W i+j−1
n

)σ2a`(p)
n

)dWs. (6.4)

The other quantity has a similar representation, but involves integrals within the interval
[(i+ kn)/n, (i+ 2kn)/n]. The r-th moment of the first term in (6.4) is of order n−r/2 as
before, whereas Burkholder inequality, the martingale property of W plus the semimartin-
gale representation of σ give the desired bound for the approximation error concerning A.
The bounds in (6.2) follow in a similar way. 2

A simple consequence of Lemma 6.1 is that the remainder terms in Unt are negligible,
that is

lim
p→∞

lim sup
n→∞

√
n

kn
E
∣∣∣ bntc−2kn∑

i=c(p)

3

2kn
(σ̂2i+kn

n

− σ̂2i
n

)2 − 6

c2

∫ t

c(p)
n

σ4sds−
∫ t

c(p)
n

τ2s ds
∣∣∣ = 0,

using also boundedness of the processes on the right hand side and the definition of c(p).
A similar claim holds for the approximation of the integrands, and we restrict ourselves
to the big blocks and prove

lim
p→∞

lim sup
n→∞

√
n

kn
E
∣∣∣ Jn(p)∑
`=1

∫ b`(p)

n

a`(p)

n

(τ2s − τ2a`(p)
n

)ds
∣∣∣ = 0. (6.5)

Recall (2.1). The result above follows from

E
∣∣∣ Jn(p)∑
`=1

∫ b`(p)

n

a`(p)

n

∫ s

a`(p)

n

ωrdrds
∣∣∣ ≤ C n

pkn
(
pkn
n

)2 ≤ Cpn−1/2

and

E
( Jn(p)∑

`=1

∫ b`(p)

n

a`(p)

n

∫ s

a`(p)

n

ϑ(1)r dWrds
)2

=

Jn(p)∑
`=1

E
(∫ b`(p)

n

a`(p)

n

∫ s

a`(p)

n

ϑ(1)r dWrds
)2
≤ Cp2n−1,

since the terms involving ϑ(2) and ϑ(3) can be treated in the same way. Note that the
analogue of (6.5) involving σ4 instead of τ2 holds for the same reasons. We have further

lim
p→∞

lim sup
n→∞

√
n

kn
E
∣∣∣ Jn(p)∑
`=1

pkn
n

( n
k2n
− 1

c2

)
σ4a`(p)

n

∣∣∣ = 0, (6.6)

which by boundedness of σ amounts to prove n−3/4(k2n − nc2) = o(1), and the latter is
satisfied by definition of kn. Again, (6.6) holds over the small blocks as well.
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The most involved part is of course on the error due to the approximation of increments
of A and B. Our aim is to prove

lim
p→∞

lim sup
n→∞

√
n

kn
E
∣∣∣ Jn(p)∑
`=1

b`(p)−1∑
i=a`(p)

1

kn

(
((A i+kn

n
−A i

n
) + (B i+kn

n
−B i

n
))2

− ((Ã i+kn
n
− Ã i

n
) + (B̃ i+kn

n
− B̃ i

n
))2
)∣∣∣ = 0, (6.7)

and from the proof it will become obvious that similar methods give the analogous result
for the approximation via C̃(i+kn)/n − C̃i/n and D̃(i+kn)/n − D̃i/n within the small blocks.

First, the binomial theorem tells us that we can discuss the approximation for B, the
one for A and the mixed part separately. Using further x2 − y2 = 2y(x − y) + (x − y)2

and xx′ − yy′ = (x− y)y′ + y(x′ − y′) + (x− y)(x′ − y′), we see from Lemma 6.1 and the

growth conditions that (6.7) follows from limp→∞ lim supn→∞
∑4

r=1 E|L
(j)
n,p| = 0 with

L(1)
n,p =

√
n

kn

Jn(p)∑
`=1

b`(p)−1∑
i=a`(p)

1

kn

(
(B i+kn

n
−B i

n
)− (B̃ i+kn

n
− B̃ i

n
)
)

(B̃ i+kn
n
− B̃ i

n
), (6.8)

L(2)
n,p =

√
n

kn

Jn(p)∑
`=1

b`(p)−1∑
i=a`(p)

1

kn

(
(B i+kn

n
−B i

n
)− (B̃ i+kn

n
− B̃ i

n
)
)

(Ã i+kn
n
− Ã i

n
), (6.9)

L(3)
n,p =

√
n

kn

Jn(p)∑
`=1

b`(p)−1∑
i=a`(p)

1

kn

(
(A i+kn

n
−A i

n
)− (Ã i+kn

n
− Ã i

n
)
)

(Ã i+kn
n
− Ã i

n
), (6.10)

L(4)
n,p =

√
n

kn

Jn(p)∑
`=1

b`(p)−1∑
i=a`(p)

1

kn

(
(A i+kn

n
−A i

n
)− (Ã i+kn

n
− Ã i

n
)
)

(B̃ i+kn
n
− B̃ i

n
). (6.11)

Let us start with the claim for (6.8) and we discuss the part within (6.3) involving ν
first. We have νr = (νr − νa`(p)/n) + νa`(p)/n. The latter term is treated using Lemma 6.1,
as we have

n

kn
E
( Jn(p)∑

`=1

b`(p)−1∑
i=a`(p)

n

k2n

(∫ i+kn
n

i
n

∫ s+ kn
n

s
νa`(p)

n

drds
)

(B̃ i+kn
n
− B̃ i

n
)
)2

(6.12)

=
n3

k5n

Jn(p)∑
`=1

E
( b`(p)−1∑
i=a`(p)

(∫ i+kn
n

i
n

∫ s+ kn
n

s
νa`(p)

n

drds
)

(B̃ i+kn
n
− B̃ i

n
)
)2
≤ Cpn−1/2,

which converges to zero for any fixed p. For the other one we use left continuity of ν.
From Fubini theorem and two applications of Cauchy-Schwarz inequality we have

E
(∫ i+kn

n

i
n

∫ s+ kn
n

s
(νr − νa`(p)

n

)drds
)2
≤ k3n
n3

∫ i+2kn
n

i
n

E|νr − νa`(p)

n

|2dr,
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therefore Lemma 6.1 shows√
n

kn
E
∣∣∣ Jn(p)∑
`=1

b`(p)−1∑
i=a`(p)

n

k2n

(∫ i+kn
n

i
n

∫ s+ kn
n

s
(νr − νa`(p)

n

)drds
)

(B̃ i+kn
n
− B̃ i

n
)
∣∣∣

≤ Cn−3/4
Jn(p)∑
`=1

b`(p)−1∑
i=a`(p)

(∫ i+2kn
n

i
n

E|νr − νa`(p)

n

|2dr
)1/2

(6.13)

≤ C
√
pn−1/4

Jn(p)∑
`=1

(∫ a`+1(p)

n

a`(p)

n

E|νr − νa`(p)

n

|2dr
)1/2

≤ C
(∫ 1

0
E|νr − ν[p,n](r)|2dr

)1/2
,

where [p, n](r) denotes the largest a`(p) smaller than r. We call γ(n, p) the right hand side
above. For fixed r and p, [p, n](r) converges to r from the left, so |νr − νp,n(r)|2 converges
to zero pointwise as well, since ν is left continuous. By boundedness of ν and Lebesgue
theorem, γ(n, p) is a zero sequence for all p, and we are done with this part as well. Finally,√

n
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i=a`(p)

n

k2n

(∫ i+kn
n

i
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(τr − τa`(p)

n

)dVrds
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(B̃ i+kn
n
− B̃ i

n
) (6.14)

is treated as follows: Call τ ′t the sum of the last three terms in (2.1). Then τr − τa`(p)/n =∫ r
a`(p)/n

ωudu+ (τ ′r − τ ′a`(p)/n), and using Lemma 6.1 we have√
n
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E
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n
)
∣∣∣ ≤ Cpk1/2n

n1/2
,

which converges to zero for every p > 0. Have a look at the first Brownian term in
τ ′r − τ ′a`(p)/n, for which the decomposition∫ r

a`(p)

n

ϑ(1)u dWu =

∫ r

a`(p)
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ϑ
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dWu +
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a`(p)
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(ϑ(1)u − ϑ
(1)
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n

)dWu

holds. We use the fact that (W,V ) is jointly Brownian. Conditioning on Fa`(p)/n, proper-
ties of the normal distribution show that

n
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E
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)
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(6.15)

=
n
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Jn(p)∑
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E
( b`(p)−1∑
i=a`(p)
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i
n

∫ s+ kn
n

s

∫ r

a`(p)

n

ϑ
(1)
a`(p)

n

dWudVrds
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n
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n
)
)2
,

which is of order p2n−1/2. On the other hand, Cauchy-Schwarz and Burkholder inequality
give

E
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∣∣∣2
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n

E(ϑ(1)u − ϑ
(1)
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n

)2dudrds,
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thus from Lemma 6.1 and Cauchy-Schwarz inequality again

√
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)1/2

.

Convergence to zero for any fixed p can be deduced in the same way as for (6.13). The
remaining two summands in τ ′r − τ ′a`(p)/n can be treated similarly, thus the claim for (6.8)
is entirely shown.

Note that the first two steps go through for (6.9) as well: To obtain the analogue of
(6.12) we need the unbiasedness of Ã(i+kn)/n − Ãi/n and the bounds of Lemma 6.1 only,
and the latter are used for (6.13) as well. In the proof of (6.14) the only difference regards
(6.15), as

Y n
` =

b`(p)−1∑
i=a`(p)

n
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(Ã i+kn
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)

is not unbiased. Nevertheless, let us have a look at Ena`(p)(Y
n
` ). Since W and V are jointly

Brownian, standard Itô calculus yields

∣∣∣ ∫ i+kn
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i
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E
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)]
ds
∣∣∣ ≤ Ckn

n3

for arbitrary j = 1, . . . , 2kn and regardless of i. Using the representation in (2.10) we obtain
|Ena`(p)(Y

n
` )| ≤ pn−1. Furthermore, the previously used arguments yield E(Y n

` )2 ≤ p3n−3/2.
Therefore
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n
` )||Y n

m|) ≤ C(p2n−1/2 + p1/2n−1/4), (6.16)

which gives the analogue of (6.15), so the claim for (6.9) is entirely shown.

Let us come to the proof of (6.10). Recall (6.4). As for Lemma 6.1 we will only show
the claim for the summands involving integrals over [i/n, (i+ kn)/n], as the entire proof is
obtained in the same way. Let us start with the ds-part. Using the bounds from Lemma
6.1 we have√

n
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E
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and that√
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E
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n
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can be bounded by a certain zero sequence γ(n, p) in the sense following (6.13). We set
further
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Note for j1 < j2 that∫ i+j1
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i+j1−1
n

∫ i+j2
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E
[
µ2a`(p)

n
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σrdWr

∫ t
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σudWu

]
dsdt = 0

by conditioning on F(i+j1−1)/n and using the martingale property of W . Therefore and
from Lemma 6.1 we have the bound

E|Zn` | ≤ Cpkn
n

k2n

√
knn−3n

−1/4 ≤ Cpn−1, thus

√
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E|Zn` | ≤ Cn−1/4. (6.19)

The remainder part of (6.4) is decomposed into three terms, namely
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)dWs (6.20)

+
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audu
)
σsdWs

]
.

We begin with the first term, and to this end recall that σ is a continuous Itô semimartin-
gale (and in particular that its driving Brownian motion is V and we call its volatility
process τ̃ which has a representation similar to (2.1)). It is sufficient to prove that

√
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)
(6.21)

converges to zero in the usual sense, and the same arguments as above show that the
error due to replacing σs − σa`(p)/n by

∫ s
a`(p)/n

τ̃rdVr is bounded by Cpn−1/2. Then we
successively replace σu by the corresponding σa`(p)/n and for τ̃ as well. This error is



Integrated volatility of volatility 22

of order Cp1/2n−1/4 each, and finally we are left with
√
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By successive conditioning we obtain E(S
(1)
i,n )4 ≤ Cn−3, as each summand of the quadruple

sum has a non-zero expectation only if it comes from two pairs of equal indices. Proving

an upper bound for the fourth moment of S
(2)
i,n is a bit more involved, as one has to be

careful with conditioning. We decompose S
(2)
i,n = S

(2,1)
i,n +S

(2,2)
i,n by splitting the dVs integral

into (Vs − V(i+j−1)/n) + (V(i+j−1)/n − Va`(p)/n). For the first term we obtain the bound

E(S
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).

If one index in the corresponding quadruple sum is larger than any other, then condition-
ing gives a zero expectation. Therefore the only non-trivial case with three indices being
different is when the two largest are the same. Nevertheless, a straight-forward computa-

tion shows that the expectation is then zero as well, and we obtain E(S
(2,1)
i,n )4 ≤ Cp2n−4.

Overall, using generalised Hölder inequality,

E(Rn` )2 ≤ Cp2k2n
n4

k6n
n−3/2pn−2 ≤ Cp3n−3/2.

Furthermore, properties of the normal distribution prove E(Rn` ) = 0. Thus
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The same arguments work for the second term in (6.20) as well. Finally,√
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can be bounded by Cn−1/4.

It remains to discuss (6.11). The analogues of (6.17)–(6.19) follow immediately from
Lemma 6.1, and so does the final step above. Thus all we need to prove is negligibility of√
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and as before it is sufficient to discuss
√
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` only, where
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We have E(K
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i,n )4 ≤ Cp2n−4 as before. However, in contrast to

the previous result Gn` is not unbiased. Therefore we compute a conditional expectation
again. We have
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as before, thus |Ena`(p)(G
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` )| ≤ Cpn−1. Since |Ena`(p)(G

n
` )2| ≤ Cp3n−3/2 as well, the result

follows as in (6.16).

The final step in the proof of (6.1) is concerned with the contribution of the small
blocks, so we have to show that
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For this purpose and for later reasons, we compute the conditional expection of the ap-
proximated increments, and we will do this for the Ã and B̃ terms only. We have
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n
− Ã i
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as well as

Ena`(p)(B̃ i+kn
n
− B̃ i

n
)2 = 2

n2

k2n
τ2a`(p)

n

∫ i+kn
n

i
n

∫ s

i
n

E[(Vs+ kn
n
− Vs)(Vr+ kn

n
− Vr)]drds

= 2
n2

k2n
τ2a`(p)

n

∫ i+kn
n

i
n

∫ s

i
n

(
r +

kn
n
− s
)
drds

=
n2

k2n
τ2a`(p)

n

∫ i+kn
n

i
n

(k2n
n2
−
( i+ kn

n
− s
)2)

ds =
2

3

kn
n
τ2a`(p)

n

.

The expectation of the mixed part is zero. Therefore the Un,p` are indeed martingale
differences, and we have

Enb`(p)
( b`(p)−1∑
i=a`(p)

3

2kn
((C̃ i+kn

n
− C̃ i

n
) + (D̃ i+kn

n
− D̃ i

n
))2 − 2kn

n

[6n

k2n
σ4b`(p)

n

+ τ2b`(p)
n

])
= 0



Integrated volatility of volatility 24

as well. (6.23) then follows from the fact that
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is bounded by a constant times p−1, using Lemma 6.1 and p→∞. 2

6.2 Proof of (2.13)

Let us check the conditions for stable convergence in this step, where particularly the
proof of (2.14) is tedious. Write Un,p` =

∑3
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It turns out that only the (Un,p,s` )2 terms are responsible for the conditional variance,
whereas the remaining mixed ones are of small order each. Let us start with the pure σ
part in the conditional variance which is due to
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(Ã i+kn

n
− Ã i
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Due to conditional independence of Ã(i+kn)/n−Ãi/n and Ã(m+kn)/n−Ãm/n for |i−m| > 2kn
and because of (6.24) we have to discuss the remaining cases with |i−m| ≤ 2kn only. Let
us stay away from the boundary first and compute
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)2(Ãm+kn

n
− Ãm
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using Lemma 6.1. Recall the definition of Hn
i . The task is to simplify
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In order for each expectation on the right hand side to not vanish, at least one index
of each paranthesis has to agree with one of another. Note that j1 = j2 and j3 = j4
corresponds exactly to the subtracted mean (apart from the small order case of four equal
indices), which is why we focus on the few cases left. Suppose that i + j1 = m + j3. In
this case either i + j2 = m + j4 or i + j2 = m + kn + j4. The same options exist for
i+ j1 = m+kn + j3. By symmetry, the cases where indices within the first and the fourth
paranthesis agree, can be discussed in the same way, which explains an additional factor 2.
Let m ≤ i−kn. Then the only possible case is i+j1 = m+kn+j3 and i+j2 = m+kn+j4,
whose contribution to the quadruple sum is
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where the first term above is due to i + j1 = m + j3 and i + j2 = m + j4, the second
one belongs to the mixed parts, and the final one comes from i + j1 = m + kn + j3 and
i+ j2 = m+ kn + j4 again. An index transformation gives in total
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A similar argument for the missing boundary terms reveals that their contribution equals
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order terms. Overall,

Ena`(p)(U
n,p,1
` )2 = σ8a`(p)

n

48p+ d1
k2n

+OP (pn−3/2).

Similarly, the main part of Ena`(p)(U
n,p,2
` )2 is due to

b`(p)−2kn∑
i=a`(p)+2kn

i−1∑
m=i−2kn

9

2k2n

(
Ena`(p)

[
(B̃ i+kn

n
− B̃ i

n
)2(B̃m+kn

n
− B̃m

n
)2
]
− 4k2n

9n2
τ4a`(p)

n

)
. (6.25)
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For a centred normal variable (N1, N2, N3, N4) we have

E(N1N2N3N4) = E(N1N2)E(N3N4) + E(N1N3)E(N2N4) + E(N1N4)E(N2N3).

Applied to the increments of V in (B̃(i+kn)/n− B̃i/n)2(B̃(m+kn)/n− B̃m/n)2 we see that the
first of the three terms above corresponds to the mean, thus by symmetry (6.25) equals

b`(p)−2kn∑
i=a`(p)+2kn

i−1∑
m=i−2kn

9n4

k6n
τ4a`(p)

n

(∫ i+kn
n

i
n

∫ m+kn
n

m
n

E[(Vs+ kn
n
− Vs)(Vr+ kn

n
− Vr)]drds

)2
.

For m ≤ i− kn we have∫ i+kn
n

i
n

∫ m+kn
n

m
n

E[(Vs+ kn
n
− Vs)(Vr+ kn

n
− Vr)]drds =

∫ m+2kn
n

i
n

∫ m+kn
n

s− kn
n

(r +
kn
n
− s)drds

=
1

2

∫ m+2kn
n

i
n

(
m+ 2kn

n
− s)2ds =

(m+ 2kn − i)3

6n3
, (6.26)

and analogously∫ i+kn
n

i
n

∫ m+kn
n

m
n

E[(Vs+ kn
n
− Vs)(Vr+ kn

n
− Vr)]drds =

∫ m+kn
n

i
n

∫ s

m
n

(r +
kn
n
− s)drds

+

∫ m+kn
n

i
n

∫ m+kn
n

s
(s+

kn
n
− r)drds+

∫ i+kn
n

m+kn
n

∫ m+kn
n

s− kn
n

(r +
kn
n
− s)drds

=
4k3n − 6(i−m)2kn + 3(i−m)3

6n3

for m > i− kn. Therefore (6.25) becomes

b`(p)−2kn∑
i=a`(p)+2kn

9n4

k6n
τ4a`(p)

n

kn∑
m=1

1

36n6

(
m6 + (4k3n − 6m2kn + 3m3)2

)
= p

151

70

k2n
n2
τ4a`(p)

n

+OP (pn−3/2),

so for a certain d2 we obtain

Ena`(p)(U
n,p,2
` )2 = τ4a`(p)

n

(p
151

70
+ d2)

k2n
n2

+OP (pn−3/2).

The term Ena`(p)(U
n,p,3
` )2 is responsible for joint part of the conditional variance. Again,

we discuss only

b`(p)−2kn∑
i=a`(p)+2kn

i−1∑
m=i−2kn

18

k2n
Ena`(p)

[
(Ã i+kn

n
− Ã i

n
)(B̃ i+kn

n
− B̃ i

n
)(Ãm+kn

n
− Ãm

n
)(B̃m+kn

n
− B̃m

n
)
]

in detail. Note that

Ena`(p)
[
(Ã i+kn

n
− Ã i

n
)(B̃ i+kn

n
− B̃ i

n
)(Ãm+kn

n
− Ãm

n
)(B̃m+kn

n
− B̃m

n
)
]

= 4
n4

k4n
σ4a`(p)

n

τ2a`(p)
n

kn∑
j1,j2=1

∫ i+kn
n

i
n

∫ m+kn
n

m
n

(6.27)

E[(Vs+ kn
n
− Vs)(Vr+ kn

n
− Vr)(Hn

i+j1+kn −H
n
i+j1)(Hn

m+j2+kn −H
n
m+j2)]drds
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with the previously introduced notation. Thus we have to compute quantities like

E[(Vs+ kn
n
− Vs)(Vr+ kn

n
− Vr)Hn

i+j1H
n
m+j2 ],

and one obtains that the expectation above is non-zero only for intervals satisfying the
condition [s, s+ kn/n] ∩ [r, r + kn/n] 6= ∅ and indices with i+ j1 = m+ j2. As usual, let
m ≤ i− kn first. Then the double sum in (6.27) becomes

−
2kn−(i−m)∑

j=1

∫ m+2kn
n

i
n

∫ m+kn
n

s− kn
n

E[(Vr+ kn
n
− Vs)2(Hn

i+j)
2]drds, (6.28)

and the expectation factorises for all but a small order amount of choices for s and r. For
(6.28) we thus obtain

− 1

2n2

2kn−(i−m)∑
j=1

∫ m+2kn
n

i
n

∫ m+kn
n

s− kn
n

(r +
kn
n
− s)drds = −(2kn − (i−m))4

12n5

plus a term of small orderO(n−7/2), where we have used (6.26). Analogously, form > i−kn
the double sum equals( kn∑

j=1
1≤j+i−m≤kn

E(Hn
i+j+kn −H

n
i+j)

2 −
kn∑
j=1

1≤j+i−m−kn≤kn

E(Hn
i+j)

2
)

× 4k3n − 6(i−m)2kn + 3(i−m)3

6n3

=
(2kn − 3(i−m))(4k3n − 6(i−m)2kn + 3(i−m)3)

12n5
,

again up to some O(n−7/2). Overall, the main part responsible for the mixed terms is

b`(p)−2kn∑
i=a`(p)+2kn

6

nk6n
σ4a`(p)

n

τ2a`(p)
n

kn∑
m=1

(
(8k4n − 12k3nm− 12k2nm

2 + 24knm
3 − 9m4)−m4

)
= p

12

n
σ4a`(p)

n

τ2a`(p)
n

+Op(pn
−3/2),

so finally

Ena`(p)(U
n,p,3
` )2 = σ4a`(p)

n

τ2a`(p)
n

12p+ d3
n

+OP (pn−3/2).

It remains to prove that the mixed parts of Ena`(p)[(U
n,p
` )2] are Op(pn

−3/2) each, which is
another simple but tedious task. We will drop these computations for the sake of brevity.
Altogether, we have

n

kn

Jn(p)∑
`=1

Ena`(p)[(U
n,p
` )2]

=
pkn
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Jn(p)∑
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(n2
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(48 +
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)σ8a`(p)
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+
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k2n
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d2
p

)σ4a`(p)
n

τ2a`(p)
n

+ (
151

70
+
d3
p

)τ4a`(p)
n

)
+Op(n

−1/2),
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thus (2.14) holds using kn ∼ cn1/2. Simpler to obtain is (2.15), as Lemma 6.1 gives

n2

k2n

Jn(p)∑
`=1

Ena`(p)[(U
n,p
` )4] ≤ C n3

pk3n
p4n−2,

which converges to zero in the usual sense. Finally, one can prove

Ena`(p)
[ b`(p)−1∑
i=a`(p)

3

2kn
((Ã i+kn

n
− Ã i

n
) + (B̃ i+kn

n
− B̃ i

n
))2(Na`+1(p)

n

−Na`(p)

n

)
]

= 0, (6.29)

where N is either W or V or when N is a bounded martingale, orthogonal to (W,V ).
Focus on the first case and decompose ((Ã(i+kn)/n − Ãi/n) + (B̃(i+kn)/n − B̃i/n))2 via the

binomial theorem. For the pure Ã and the pure B̃ term, the claim follows immediately
from properties of the normal distribution upon using that σa`(p)/n or τa`(p)/n are Fa`(p)/n
measurable. For the mixed term, one has to use the special form of Ã(i+kn)/n − Ãi/n as
a difference of two sums, and a symmetry argument proves (6.29) in this case. For an
orthogonal N , we use standard calculus. By Itô formula, both (Ã(i+kn)/n − Ãi/n)2 and

(B̃(i+kn)/n− B̃i/n)2 are a measurable variable times the sum of a constant and a stochastic
integral with respect to W and V , respectively. Thus (6.29) holds. In the mixed case, we
use integration by parts formula to reduce (Ã(i+kn)/n− Ãi/n)(B̃(i+kn)/n− B̃i/n) to the sum
of a constant, a dW and a dV integral. Then the same argument applies. Altogether, this
gives (2.16). 2

6.3 Proof of Theorem 2.5

Let us begin with the proof of (2.18), for which we write

τ2i
n

=
3n

2kn
((A i+kn

n
−A i

n
) + (B i+kn

n
−B i

n
))2 − 6

n

k2n
σ4i

n

, σ4i
n

=
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n

|∆n
i+jW |4, (6.30)

with
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−A i
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=
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σ2i

n

kn∑
j=1

(
|∆n
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i+jW |2
)
,

B i+kn
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−B i
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∫ i+kn
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i
n

τ i
n

(Vs+ kn
n
− Vs)ds.

First of all, we have

G
(2)
t,n =

1

n

bntc−2kn∑
i=1

τ2i
n

σ4i
n

+Op(n
−1/4),
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since σ and τ are Itô semimartingales and thus the techniques from the proof of Lemma
6.1 show that both τ̂2i/n−τ

2
i/n = Op(n

−1/4) and σ̂4i/n−σ
4
i/n = Op(n

−1/4) hold. Note further
by conditional independence that( 1

n

bntc−2kn∑
i=1

(τ2i
n

σ4i
n

− Eni [τ2i
n

σ4i
n

])
)2

= Op(n
−1/2).

A simple computation gives Eni [τ2i/nσ
4
i/n] = τ2i/nσ

4
i/n + Op(n

−1/2), so (2.18) follows again

from the Itô semimartingale property of both processes. The same techniques prove (2.17),
and we also have

G
(3)
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bntc−2kn∑
i=1

((A i+kn
n
−A i

n
) + (B i+kn

n
−B i

n
))4 +Op(n

−1/4),

so all we have to do is to compute the conditional expectation of each summand. For the
first term, this is simple, as we have

Eni [(A i+kn
n
−A i

n
)4] = 3

n4

k4n
σ8i

n

( kn∑
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E
(
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=
48

k2n
σ8i

n

,

up to an error of order n−3/2. It is simple to show

Eni [(A i+kn
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n
)2(B i+kn

n
−B i

n
)2] =

8

3n
σ4i

n

τ2i
n

+Op(n
−3/2),

since we have seen already that the expectation factorises up to a small term error. Finally,
properties of the normal distribution give

Eni [(B i+kn
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n
)4] = 12

n4
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4k2n
3n2

τ4i
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.

The two remaining terms have zero expectation. 2

6.4 Proof of Lemma 3.1

We will only prove the first result. Note that

Bt − B̂t =

bntc−2kn∑
i=0

∫ i
n

i−1
n

(
τ2(s,Xs, σ

2
s)− τ2(

i

n
,X i

n
, σ̂2i

n

)
)
ds+Op(n

−1/2),

the error coming from border terms in Bt, for which we have used boundedness of the func-
tion τ2, due to differentiability and the assumption that any process involved is bounded
itself. We have

τ2(s,Xs, σ
2
s)− τ2(

i

n
,X i

n
, σ̂2i

n

) (6.31)

= (τ2(s,Xs, σ
2
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n
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n
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n
, σ2i

n

)− τ2( i
n
,X i

n
, σ̂2i

n

).
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The first three terms can be discussed in the same way. From differentiability we may
conclude

bntc−2kn∑
i=0

∫ i
n

i−1
n

(τ2(s,Xs, σ
2
s)− τ2(

i

n
,Xs, σ

2
s))ds =

bntc−2kn∑
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∫ i
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n

∂

∂s
τ2(ξ,Xs, σ

2
s)(s−

i

n
)ds

for a suitable ξ, and the term is obviously of order n−1. In the same way, we see that
the second and third term in (6.31) are of order n−1/2 each. For the last quantity, we use
twice differentiability and Lemma 6.1 to obtain

τ2(
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n
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uniformly in i. Also, σ̂2i/n − σ
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i/n = Mn

i +Op(n
−1/2), where the
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i
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τudVuds

are martingale differences of order n−1/4. Therefore Lemma 3.1 follows from
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)Mn
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where we have used Lemma 6.1 again plus E[Mn
i M

n
j ] = 0 for |i− j| ≥ kn. 2

6.5 Proof of Lemma 3.2

From (2.1) and by differentiability of the function τ2 we have
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The first claim is
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−1/2). (6.32)

Recall Mn
i from the previous proof and set

M
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Standard methods give Mn
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n
i = Op(n

−1/2). Using the mean value theorem, we
conclude that the left hand side of (6.32) equals
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ϑni is obviously of order n−1/4, so by conditional independence we have

E
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n

n−2kn∑
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(ϑni − Eni [ϑni ])
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=
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n2
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E[(ϑni − Eni [ϑni ])(ϑnj − Enj [ϑnj ])] ≤ Cn−1.

We omit to compute Eni [ϑni ] in details. Standard arguments give |Eni [ϑni ]| ≤ Cn−1/2, from
which (6.32) follows, so we have
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− τ2i
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n
, σ2i

n

) +Op(n
−1/2).

We will use the same blocking technique as in the proof of Theorem 2.1 now. Let In(p)
be defined as Jn(p) before, but with t = 1. We proceed in two steps. The first one is

lim
p→∞

lim sup
n→∞

√
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E
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, σ2a`(p)
n

))
∣∣∣ = 0,

and there is of course a related result concerning the small blocks. This result is in fact
quite simple to show. The assumptions on the function τ2 and growth conditions of
continuous Itô semimartingales reduce the claim to

lim
p→∞

lim sup
n→∞

√
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)
∣∣∣ = 0

and an analogous one involving the partial derivative with respect to σ2 and increments of
σ2, which can be discussed in the same way. Let τ̃2i/n be defined as τ2i/n in (6.30), but with

A and B replaced with Ã and B̃, respectively, and σi/n with σa`(p)/n. Denote with N` an
unspecified Fa`(p)/n-measurable random variable. Then Lemma 6.1 and growth conditions
again show that we might as well prove that√

n
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E
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becomes small, which follows in a similar way as (6.22) by conditional independence. For
the second step recall Un,p` from (2.11). We will show that
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holds. For the increments involving A and B within τ̂2i/n − τ
2
i/n, the proof is identical to

the one of (2.12). Let us show
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for which we use the decomposition

(∆n
i+jX)4 − 3n−2σ4aj(p)

n
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).

Plugging in the first term on the right hand side gives a small order in (6.34) due to the
growth condition on σ. For the second one, note that
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For the third term above we use the standard argument of approximating σ4(i+j−1)/n −
σ4aj(p)/n by an Fa`(p)/n-measurable times an increment of V plus conditional independence.

For the same reason, the error due to τ2i/n− τ
2
a`(p)/n

is small, which gives (6.34). Together

with (2.12) we have thus shown
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In order to prove the analogue of (2.7), we use a multivariate version of the result in
[23]. The analogues of (2.15) and (2.16) are obtained in exactly the same way as for the
one-dimensional result, and it is also quite simple to deduce

lim
p→∞

lim sup
n→∞

n

kn

In(p)∑
`=1

E[(Un,p` )21{bl(p)≤bn(ti∧tj)c−2kn}] =

∫ 1

0
α2
s1[0,ti∧tj ](s)ds,

lim
p→∞

lim sup
n→∞

n

kn

In(p)∑
`=1

E[(Un,p` )2τ2(
a`(p)

n
,Xa`(p)

n

, σ2a`(p)
n

)1{bl(p)≤bntic−2kn}]

=

∫ 1

0
α2
sτ

2(s,Xs, σ
2
s)1[0,ti](s)ds,

lim
p→∞

lim sup
n→∞

n

kn

In(p)∑
`=1

E[(Un,p` )2τ4(
a`(p)

n
,Xa`(p)

n

, σ2a`(p)
n

)] =

∫ 1

0
α2
sτ

4(s,Xs, σ
2
s)ds,

for arbitrary ti, tj . Proving that we have indeed stable convergence for each fixed p is just
another tedious task. 2
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[21] Jacod, J., C. Klüppelberg, G. Müller (2011): Testing for non-correlation or for a
functional relationship between price and volatility jumps. Working paper.

[22] Jacod, J., P. Protter (2012): Discretization of processes. Springer-Verlag, Berlin.

[23] Jacod, J., A. Shiryaev (2003): Limit theorems for stochastic processes. Springer-
Verlag, Berlin.

[24] Jacod, J., V. Todorov (2010): Do price and volatility jump together? Ann. Appl.
Probab. 20, 1425–1469.

[25] Jones, C. (2003): The dynamics of stochastic volatility: evidence from underlying
and options markets. J. Econometrics 116, 181–224.

[26] Mancini, C. (2009): Non-parametric estimation for models with stochastic diffusion
coefficients and jumps. Scand. J. Statist. 36, 270–296.

[27] Podolskij, M., M. Rosenbaum (2011): Testing the local volatility assumption: a
statistical approach. Annals of Finance, to appear.

[28] Podolskij, M., M. Vetter (2010): Understanding limit theorems for semimartingales:
a short survey. Statist. Neerlandica 64, 329-351.
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n mean variance .025 .05 .1 .9 .95 .975

2500 -0.129 0.901 .0098 .0345 .0961 .9215 .9561 .9721
10000 -0.040 1.020 .0152 .0395 .0992 .8974 .9426 .9665
22500 -0.005 0.994 .0180 .0405 .0906 .8993 .9424 .9678
40000 0.024 1.029 .0184 .0428 .0952 .8918 .9446 .9692
52900 0.061 1.033 .0193 .0399 .0911 .8878 .9380 .9672

Table 1: Mean/variance and simulated quantiles of the infeasible test statistic (4.1)
for ρ = 0.

n mean variance .025 .05 .1 .9 .95 .975

2500 -0.132 0.931 .0115 .0358 .0984 .9195 .9527 .9724
10000 -0.048 1.008 .0153 .0400 .0950 .9022 .9457 .9677
22500 -0.126 0.928 .0206 .0463 .1085 .9221 .9579 .9793
40000 0.021 0.995 .0193 .0423 .0945 .8959 .9457 .9717
52900 0.051 1.027 .0187 .0434 .0950 .8907 .9407 .9675

Table 2: Mean/variance and simulated quantiles of the infeasible test statistic (4.1)
for ρ = 0.2.

n mean variance .025 .05 .1 .9 .95 .975

2500 -0.287 0.965 .0526 .0932 .1619 .9572 .9862 .9965
10000 -0.170 1.023 .0449 .0799 .1425 .9325 .9757 .9928
22500 -0.112 1.002 .0404 .0696 .1253 .9271 .9722 .9914
40000 -0.073 1.029 .0401 .0703 .1235 .9203 .9690 .9874
52900 -0.031 1.022 .0368 .0653 .1157 .9154 .9633 .9872

Table 3: Mean/variance and simulated quantiles of the feasible test statistic from
Corollary 2.7 for ρ = 0.

n mean variance .025 .05 .1 .9 .95 .975

2500 -0.295 0.971 .0552 .0963 .1614 .9559 .9864 .9962
10000 -0.176 1.013 .0464 .0808 .1427 .9369 .9770 .9940
22500 -0.226 0.987 .0480 .0840 .1476 .9436 .9776 .9932
40000 -0.075 1.001 .0410 .0673 .1217 .9254 .9713 .9904
52900 -0.040 1.019 .0396 .0677 .1171 .9180 .9663 .9879

Table 4: Mean/variance and simulated quantiles of the feasible test statistic from
Corollary 2.7 for ρ = −0.2.
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n .01 .025 .05 .1 .2

2500 .018 .040 .064 .120 .216
10000 .010 .018 .040 .084 .194
22500 .016 .024 .034 .088 .194
40000 .020 .038 .068 .128 .220
52900 .010 .020 .052 .118 .200

Table 5: Simulated level of the bootstrap test based on the standardised Kolmogorov-
Smirnov statistic Yn.

alt γ = 0 γ = 1

n .01 .025 .05 .1 .2 .01 .025 .05 .1 .2

2500 .028 .052 .082 .134 .262 .044 .090 .156 .248 .372
10000 .032 .048 .086 .138 .260 .036 .084 .176 .284 .396
22500 .024 .042 .068 .138 .302 .032 .086 .162 .284 .432
40000 .028 .046 .094 .196 .426 .028 .064 .120 .310 .482
52900 .026 .040 .082 .174 .422 .024 .058 .144 .320 .488

Table 6: Simulated rejection probabilities of the bootstrap test based on the standard-
ised Kolmogorov-Smirnov functional statistic Yn for various alternatives.



 



 


