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Abstract

This paper presents a Hayashi-Yoshida type estimator for the covariation matrix of continuous Itô semimartingales

observed with noise. The coordinates of the multivariate process are assumed to be observed at highly frequent non-

synchronous points. The estimator of the covariation matrix is designed via a certain combination of the local averages

and the Hayashi-Yoshida estimator. Our method does not require any synchronization of the observation scheme (as

e.g. previous tick method or refreshing time method) and it is robust to some dependence structure of the noise process.

We show the associated central limit theorem for the proposed estimator and provide a feasible asymptotic result. Our

proofs are based on a blocking technique and a stable convergence theorem for semimartingales. Finally, we show

simulation results for the proposed estimator to illustrate its finite sample properties.

Keywords: central limit theorem, Hayashi-Yoshida estimator, high frequency observations, Itô semimartingale,

pre-averaging, stable convergence.
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1 Introduction

In the past years there has been a considerable development of statistical methods for stochastic processes observed at

high frequency. This was mainly motivated by financial applications, where the data, such as stock prices or currencies,
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are observed very frequently. It is well known that under theno-arbitrage assumption price processes must follow a

semimartingale (see e.g. [9]). However, at ultra high frequencies the financial data is contaminated bymicrostructure

noisesuch as rounding errors, bid-ask bounds and misprints. Thisfact prevents us from using classical power variation

based methods (see e.g. [2] or [14] among many others) to infer the characteristics of a semimartingale.

A standard model for a continuous Itô semimartingale observed with errors is given by

Yt = Xt + εt, t ≥ 0, (1.1)

where(Xt)t≥0 is ad-dimensional process (true price) of the form

Xt = X0 +

∫ t

0
asds+

∫ t

0
σsdWs, t ≥ 0, (1.2)

with (as)s≥0 being anRd-valued càglàd process,(σs)s≥0 being anRd×d′-valued càglàd volatility andW representing a

d′-dimensional Brownian motion, and thed-dimensional error processε (microstructure noise) is iid with

E[εt] = 0, E[εtε
⋆
t ] = Ψ ∈ R

d×d,

independent ofX. Throughout this work an asterisk denotes the transpose of amatrix.

The aim of this paper is to estimate the covariation matrix ofX over some interval, say[0, 1], i.e.

[X] =

∫ 1

0
Σsds ∈ R

d×d, Σs = σsσ
⋆
s ,

based on non-synchronous noisy observations (Y = (Y 1, . . . , Y d))

Y k
tki
, k = 1, . . . , d, i = 0, . . . , nk,

where0 = tk0 < · · · < tknk
= 1 are partitions of the interval[0, 1] with max1≤i≤nk

|tki − tki−1| → 0 asnk → ∞ for

all 1 ≤ k ≤ d. The univariate counterpart of this problem has been studied intensively in the literature. Let us mention

the two-scale approachof [24] (see [23] for its more efficient multi-scale version), therealised kernel methodproposed

in [3] and thepre-averaging conceptoriginally introduced in [21] (and further studied in [15],[16], [20] in various

settings) among others. These methods can be extended to themultivariate case in a rather straightforward manner if the

observations are synchronous.

When the underlying data is non-synchronous, things are less obvious, as we are faced with two challenges at the

same time: We have to de-noise the data as before, but we also need to apply a certain synchronization technique to create

a new set of observations from which appropriate estimatorsfor [X] can be computed. For the multivariate realised kernel
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method, [4] proposed to cope with non-synchronous data by applying therefreshing time methodfirst, which synchronizes

the observations via a previous tick method. In a second step, a noise robust estimator is constructed from this new data

set. Similar in spirit is the extension of the multi-scale estimator due to [6], where synchronous observations are obtained

using thepseudo-aggregation algorithmof [19] first. The resulting covariance estimator then becomes a multi-scale

version of the Hayashi-Yoshida estimator from [12], which originally has been introduced to deal with non-synchronicity

in semimartingale models without noise.

Both approaches have their drawbacks, however: (a) Using the previous tick approach (which generates pseudo data

points) may lead to inconsistent estimators for certain observation schemes; this phenomenon has been noticed in [12]

in the setting of a pure diffusion; (b) After any of the synchronization techniques there remain at mostmin1≤k≤d(nk)

data points, which amounts in throwing away a lot of data. In the no-noise case, this is usually no problem, as for the

Hayashi-Yoshida estimator exactly those observations aredropped that bear no additional information on the covariance,

but for noisy data they still can be used to wipe out the noise.

To avoid these afore-mentioned drawbacks, we propose to combine a synchronization technique and a concept for

de-noising as well, but in reverse order: We apply the pre-averaging approach, which is designed to locally diminish the

influence of the noise, first, and use the Hayashi-Yoshida method afterwards. Our estimator, denoted byHY n, has the

following important properties:

(i) In general, we use all observationsY k
tki

;

(ii) The estimator has the optimal convergence raten−1/4;

(iii) The estimation method is robust to certain dependencestructures of the noise process. This property is impor-

tant for practical applications as the economic theory typically does not provide any insight on modeling the noise.

The main idea of the construction ofHY n comes from [7], where we indicated its consistency, but did not provide

the complete asymptotic theory. In this paper we prove a stable central limit theorem forHY n − [X] under very mild

assumptions on the observation schemetki . Furthermore, we explain how to estimate the (random) asymptotic covariance

matrix that appears in the central limit theorem to obtain afeasibleresult (which may be used in practice to construct

confidence regions). We would like to emphasize again that the construction of our estimator is not completely obvious

(as there are several ways of combining the Hayashi-Yoshidamethod and the pre-averaging approach, which may result



On covariation estimation for multivariate continuous Itˆo semimartingales with noise 4

in different properties) and that the proof of the main result, which is based on a certain blocking technique, martingale

inequalities and a stable central limit theorem for semimartingales, is more advanced than in the univariate setting.

This paper is organized as follows: in Section 2 we introducethe set up and explain the construction ofHY n. The

main results of the paper including the consistency ofHY n and the associated stable central limit theorems are presented

in Section 3. Section 4 deals with estimation techniques forthe conditional variance, while in Section 5 we show some

numerical results to illustrate the finite sample properties of our estimator. Section 6 is devoted to proofs, and some

tedious parts are relegated to an Appendix in Section 7.

2 The set up

We start by introducing an appropriate filtered probabilityspace on which our noisy processY is defined. Let

(Ω(0),F (0), (F (0)
t )t∈[0,1],P

(0)) be an arbitrary space on which the true price processX lives, such that all involved process

a, σ andW are adapted. Now we consider a second filtered probability space(Ω(1),F (1), (F (1)
t )t∈[0,1],P

(1)), where

Ω(1) is the set of functions from[0, 1] to R
d andF (1) is the Borel-σ-field onΩ(1). We define on it the noise process

ε = (εt)t∈[0,1] as follows: letQ be a probability law onRd (the marginal law ofε) and setP(1) asP(1) = ⊗t∈[0,1]Pt

with Pt = Q for all t ∈ [0, 1]. Now, (εt)t∈[0,1] is defined as the canonical process on(Ω(1),F (1), (F (1)
t )t∈[0,1],P

(1)) with

(F (1)
t )t∈[0,1] being the canonical filtration. The processY in (1.1) lives on the product space(Ω,F , (Ft)t∈[0,1],P) given

by:

Ω = Ω(0) × Ω(1), F = F (0) ×F (1), Ft = F (0)
t ⊗ F (1)

t , P = P
(0) ⊗ P

(1).

We remark that the probability space on which the processε lives is rather minimal; this is required for the stable conver-

gence results. The processY is defined in continuous time just for convenience, althoughthe mapping(ω, t) → Yt(ω) is

notF ⊗ B([0, 1])-measurable.

Now we introduce the assumptions on the sampling scheme.

Assumption (T):The observation timestki , i = 0, . . . , nk, k = 1, . . . , d satisfy the following conditions:

(T1) (Time transformation) tki ’s are transformations of an equidistant grid, i.e. there exist strictly monotonic (determin-

istic) functionsfk : [0, 1] → [0, 1] in C1([0, 1]) with non-zero right and left derivative in 0 and 1, respectively, and
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with fk(0) = 0, fk(1) = 1 such that

tki = f−1
k (i/nk), i = 0, . . . , nk, k = 1, . . . , d. (2.1)

(T2) (Boundedness off ′k) There exists a natural numberM > 0 such that

M−1 < sup
x∈[0,1]

|f ′k(x)| < M, k = 1, . . . , d.

(T3) (Comparable number of observations) Setn =
∑d

k=1 nk. It holds that

nk
n

→ mk ∈ (0, 1], k = 1, . . . , d. (2.2)

(T4) (Joint grid points) The grids(tki ), (t
l
j) (1 ≤ k, l ≤ d) havenkl common points which are denoted by(tklp )1≤p≤nkl

.

They have the representationtklp = f−1
kl (p/nkl) andnkl/n→ mkl ∈ [0, 1], where the functionsfkl satisfy the same

assumptions asfk in (T1) and (T2).

Let us shortly comment the above assumptions. Condition (T1) makes the explicit computation of the asymptotic covari-

ance matrix in the forthcoming central limit theorem possible. Condition (T3) implies that the observation numbersnk

have the same order. Condition (T2) means that the points of the lth grid do not lie dense between any two successive

points of thekth grid, i.e. the number of pointstlj that lie in the interval[tki−1, t
k
i ] is uniformly bounded by a constant

for all 1 ≤ k, l ≤ d (cf. Lemma 6.1 for a closely related result). When these lasttwo conditions (similar number of

observations and uniform boundedness of the number of points tlj that belong to[tki−1, t
k
i ]) are fulfilled we say that the

sampling schemes arecomparable. Finally, condition (T4) means that the number of common points can be negligible

compared ton (if mkl = 0) or it can be of ordern (if mkl > 0).

We want to emphasize that the full force of Assumption (T) is only required for the proof of the central limit theo-

rem! For the consistency result and the rate of convergence it suffices to assume that the grids(tki ), k = 1, . . . , d, are

comparable. In particular, the representation (2.1) and the condition (T4) are not required.

Now we explain the construction of our estimatorHY n. First, we choose a window sizekn as

kn = θ
√
n+ o(n1/4) (2.3)

for some constantθ > 0. In the next step we choose a positive weight functiong : [0, 1] → R with g(0) = g(1) = 0,

which is piecewiseC1 with piecewise Lipschitz derivativeg′ and
∫ 1
0 g

2(x)dx > 0. For anyd-dimensional stochastic

processV = (V 1, . . . , V d) we define the quantity

V
k
tki

=
kn−1∑

j=1

g
( j
kn

)
∆tki+j

V k, ∆tki+j
V k = V k

tki+j

− V k
tki+j−1

, (2.4)
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which we callpre-averaging in tick time. The name refers to the fact that we use the same amount of datato construct

V
k
tki

for all 1 ≤ k ≤ d; alternatively one could perform thepre-averaging in calendar timeby using the same time interval

for all coordinatesV k, but with different number of observations in each time window. The latter approach would result

in different properties of the estimator.

As discussed in [15], [16] or [21] the local averages technique performed in (2.4) diminishes the influence of the noise

processε to some extent (but not completely) and helps us to get information aboutΣ. In the last step, as proposed in [7],

we define a Hayashi-Yoshida type estimator based on pre-averaged observations by

HY n
kl =

1

(ψkn)
2

nk−kn+1∑

i=0

nl−kn+1∑

j=0

Y
k
tki
Y

l
tlj
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅}

with ψ =
∫ 1
0 g(x)dx, and setHY n = (HY n

kl)1≤k,l≤d. In [7] we have already indicated the consistency ofHY n. The

aim of this paper is to provide the complete asymptotic theory to be able to construct confidence regions for the quadratic

covariation[X].

3 The asymptotic theory

We start with the consistency of the estimatorHY n which has been shown in [7].

Theorem 3.1 Assume that Assumption (T) holds and that the marginal lawQ of ε has finite fourth moments. Then we

have

HY n P−→ [X] =

∫ 1

0
Σsds.

As we remarked above the full force of Assumption (T) is not required for the proof of Theorem 3.1; it is just the

comparability of sampling times which matters (see [7] for more details). Two remarks are in order.

Remark 3.2 (Univariate case)Even though no synchronization is necessary in the one-dimensional case, our estimator

HY n is for d = d′ = 1 not identical to the univariate pre-averaged estimator proposed in [15]! Recall that the latter is

defined as

Cn =
1

kn

n−kn+1∑

i=1

|Y ti |2
P−→ [X]

∫ 1

0
g2(x)dx+ θ−2Ψ

∫ 1

0
(g′(x))2dx,
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where we setti = t1i . This should be compared to the univariate version ofHY n, which is

HY n =
1

(ψkn)
2

n−2kn+1∑

i=kn

Y ti

( kn−1∑

j=−kn+1

Y ti+j

)

plus some border terms of small order. We see immediately that the first estimatorCn is biased (even after rescaling),

where the bias is coming fromΨ = E[ε2t ], while our estimatorHY n is unbiased. The reason for this is the additional

averaging performed byHY n (which is taken care by the second sum in the above formula). Indeed, the factor in front

of ε2ti for kn
n ≤ i ≤ 1− kn

n is equal to




kn−1∑

j=0

g
(j + 1

kn

)
− g
( j
kn

)



2

= (g(1) − g(0))2 = 0,

which explains whyΨ does not appear in the limit ofHY n. The unbiasedness ofHY n is an important feature as the

estimation of the covariance matrixΨ of the noise can be problematic in practice, because we strongly rely on the iid

assumption on the noise process to successfully perform theestimation ofΨ. Let us remark that pre-averaging in calendar

time would also lead to a bias.

Remark 3.3 (m-dependent noise)Let us study the case of anm-dependent noise process. More precisely, we consider

the multivariate discrete modelY k
tki

= Xk
tki
+εk

tki
, k = 1, . . . , d, i = 0, . . . , nk, where all previous assumptions are satisfied

except the noise process is nowm-dependent in tick time, which means that fortki ≤ tlj the random variablesεk
tki

andεl
tlj

are independent, if‖tki − tlj‖ > m with

‖tki − tlj‖ = min(j −max{z| tlz ≤ tki },min{z| tkz ≥ tlj} − i),

and similarly for tlj < tki . These types of models are important from the practical point of view. Our previous iid

assumption on the noise process implies thatεk
tki

andεl
tlj

are possibly correlated whentki = tlj ; on the other hand they are

independent even when the grid pointstki andtlj lie arbitrarily close, say less than a second apart. Such an assumption

might be not very plausible from the finance point of view.

In the case ofm-dependent noise the estimatorHY n still remains consistent, i.e.HY n is robust tom-dependence in

tick time. As in the previous remark only the productsεk
tki
εl
tlj

with ‖tki − tlj‖ ≤ m play a role when computing the bias.

But these terms have asymptotically the same weight as for instance(εk
tk
i

)2, which is0 (see Remark 3.2). Thus,HY n is

unbiased.

In order to describe the weak limit associated withHY n − [X] we need to introduce various notations.
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Notation. Let us first extend the weight functiong to the whole real line by settingg(x) = 0 for x 6∈ [0, 1]. We set

for x ∈ [0, 1]

hkl(x) =
mkf

′
k(x)

mlf
′
l (x)

, 1 ≤ k, l ≤ d, (3.1)

wherefk resp.mk are given in (2.1) resp. (2.2). Now we define two sets of functions, namely

ψ(s, x) =
∫ 1
0

∫ 1+x(s+u)
(u−1+s)x g(u)g(v)dvdu,

ψ(s, x) =
∫ 1
0

∫ 1+x(s+u)
(u−1+s)x g(u)g

′(v)dvdu,

ψ̃(s, x) =
∫ 1
0

∫ 1+x(s+u)
(u−1+s)x g

′(u)g′(v)dvdu,





(3.2)

and

γkl,k′l′(u) =
1

mlf
′
l
(u)

∫ 1+hlk(u)
−(1+hlk(u))

ψ(s, hkl(u))ψ(hl′l(u)s, hk′l′(u))ds,

γkl,k′l′(u) =
mkk′f

′
kk′

(u)

mlf
′
l
(u)

∫ 1+hlk(u)
−(1+hlk(u))

ψ(s, hkl(u))ψ(hl′l(u)s, hk′l′(u))ds,

γ̃kl,k′l′(u) =
mkk′f

′
kk′

(u)mll′f
′
ll′

(u)

mlf
′
l
(u)

∫ 1+hlk(u)
−(1+hlk(u))

ψ̃(s, hkl(u))ψ̃(hl′l(u)s, hk′l′(u))ds,





(3.3)

for s ∈ R, 1 ≤ k, k′, l, l′ ≤ d andu ∈ [0, 1]. Notice that when for example the number of joint points between the

kth andk′th grid is negligible compared ton (which can only hold fork 6= k′) thenmkk′ = 0. In this case we have

γkl,k′l′ ≡ γ̃kl,k′l′ ≡ 0.

Before we present the stable central limit theorem let us recall the notion of stable convergence. A sequence of ran-

dom variablesZn on (Ω,F ,P) converges stably in law towardsZ, written Zn
dst−→ Z, with Z being defined on an

extension(Ω′,F ′,P′) of the original probability space(Ω,F ,P), iff for any bounded, continuous real-valued functiong

and any boundedF-measurable random variableV it holds thatE[g(Zn)V ] → E
′[g(Z)V ] asn → ∞. We refer to [1],

[22] or [17] for more details on stable convergence. The nexttheorem is the main result of our paper, and its proof is

postponed to Section 6.

Theorem 3.4 Assume that Assumption (T) holds and that the marginal lawQ of ε has finite eighth moments. Then

the sequenceLn = n1/4(HY n − [X]) converges stably in law towards a random variableL, defined on an extension

(Ω′,F ′,P′) of the original probability space(Ω,F ,P), andL has a centered mixed normal distribution, i.e. conditionally

onF , L = (Lkl)1≤k,l≤d has a centered normal distribution with

E
′[LklLk′l′ |F ] = Vkl,k′l′ , 1 ≤ k, k′, l, l′ ≤ d,



On covariation estimation for multivariate continuous Itˆo semimartingales with noise 9

where the random variableVkl,k′l′ is defined via

Vkl,k′l′ =
1

ψ4

∫ 1

0

{
θ
(
γkl,k′l′(u)Σ

kk′

u Σll′

u + γkl,l′k′(u)Σ
kl′

u Σlk′

u

)

+θ−1
(
Ψll′γlk,l′k′(u)Σ

kk′
u +Ψlk′γlk,k′l′(u)Σ

kl′
u +Ψkl′γkl,l′k′(u)Σ

lk′
u +Ψkk′γkl,k′l′(u)Σ

ll′
u

)

+θ−3
(
Ψkk′Ψll′ γ̃kl,k′l′(u) + Ψkl′Ψlk′ γ̃kl,l′k′(u)

)}
du, (3.4)

and the functionsγkl,k′l′ , γkl,k′l′ , γ̃kl,k′l′ are given by (3.3) andθ is defined in (2.3). We also writeL ∼ MN(0, V ) to

denote the centered mixed normal distribution with randomF-measurable covariance matrixV = (Vkl,k′l′)1≤k,k′,l,l′≤d

above.

The rate of convergencen−1/4 is known to be optimal for the parametric analogue of our estimation problem (i.e.

when the processΣ is constant); see e.g. [6] or [11]. We remark that the covariance matrixΨ of the noise processε

always appears in the representation ofV asγkk,kk(u), γ̃kk,kk(u) > 0 for all 1 ≤ k ≤ d.

Remark 3.5 (Univariate case)In the one-dimensional case (d = d′ = 1) we deduce that

n1/4
(
HY n −

∫ 1

0
σ2sds

)
dst−→MN(0, V ),

where the expression forV simplifies to

V =
2

ψ4

(
θκ

∫ 1

0

σ4u
f ′(u)

du+ 2θ−1Ψκ

∫ 1

0
σ2udu+ θ−3Ψ2κ̃

)
(3.5)

with

κ =

∫ 2

−2
ψ2(s, 1)ds, κ =

∫ 2

−2
ψ
2
(s, 1)ds, κ̃ =

∫ 2

−2
ψ̃2(s, 1)ds. (3.6)

Note that we havef11 = f1 =: f , h11 = 1 andm11 = m1 = 1, as well as
∫ 1
0 f

′(u)du = 1. If we further deal with

equidistant data it follows thatf(u) = u.

To measure the quality ofHY n compared to alternative estimators in the one-dimensionalsetting, it is common to

computeV in the parametric model of zero drift and a constant volatility σ. In case of equidistant observations we know

from [11] that the lower bound for the variance is then given by 8σ3
√
Ψ. If we choose the (probably) simplest weight

function given byg(x) = min(x, 1− x), some lengthy calculations give

κ =
7585

1161216
, κ =

151

20160
, κ̃ =

1

24
, ψ =

1

4
,
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and the optimal choice ofθ corresponds toθ⋆ ≈ 2.381
√
Ψ/σ. Overall we obtain a minimal variance of12.765σ3

√
Ψ.

This is quite close to the efficiency bound and also to the minimal variance of (the bias corrected version of)Cn, the

original pre-averaged statistic for equidistant data from[15], which is about8.545σ3
√
Ψ. This mild loss in efficiency is

the price we have to pay for the additional robustness property discussed in Remark 3.3.

4 Estimation of variance

To transform the probabilistic result of Theorem 3.4 into a feasible statistical one, we need to find a consistent estimator

of the conditional covariance matrixV defined by (3.4). We will introduce three different approaches to solve this task –

a general one, which works in arbitrary dimensions and does not require information of the time transforming functions;

a second estimator, which uses local estimates of the volatility Σ; a third one tuned for the one-dimensional case, where

the variance becomes particularly simple as seen in Remark 3.5. All proofs are given in Section 6.

Let us begin with the first estimator, for which we benefit fromrelated work in [18], where an estimator for the

variance of the usual Hayashi-Yoshida estimator in the no-noise case was constructed. We introduce a second auxiliary

sequenceβn = ̟nη + o(nη),̟ > 0, η ∈ (0, 1), and compute for eachα ∈ {0, . . . [n/βn]− 1} the statistic

HY n
kl(α) =

1

(ψkn)
2

∑

tk
i
∈Bn(α)

nl−kn+1∑

j=0

Y
k
tki
Y

l
tlj
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅}, (4.1)

which is essentially the same quantity asHY n
kl, but we only sum over time pointstki from the smaller intervalBn(α) =

[αβn

n , (α+1)βn

n ). We set

V n,1
kl,k′l′ =

√
n

2

[ n
βn

]−1∑

α=1

(
2HY n

kl(α)HY
n
k′l′(α)−HY n

kl(α)HY
n
k′l′(α− 1)−HY n

kl(α− 1)HY n
k′l′(α)

)
. (4.2)

This estimator is based on a local estimation of the covariance ofHY n
kl andHY n

k′l′ . In order to obtain reasonable estimates

for this covariance on the intervalBn(α), we useHY n
kl(α)HY

n
k′l′(α) to mimic the covariance of interest plus the product

of the expectations of both factors. The latter bias is corrected by quantities likeHY n
kl(α)HY

n
k′l′(α−1), where we use the

usual “conditional independence” of increments ofY over disjoint intervals.V n,1
kl,k′l′ is now constructed as a symmetrized

version of these local estimates, and we sum up over alla afterwards to obtain a global one.

A drawback of this construction is that we need an additionalcondition on the processσ. In order forHY n
kl(α)

andHY n
kl(α − 1) to estimate the same quantity up to an error small enough, oneusually postulates thatσ is an Itô

semimartingale itself. Under a furher assumption onη we have the following theorem.
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Theorem 4.1 Assume that Assumption (T) holds and that the marginal lawQ of ε has finite eighth moments. Furthermore,

suppose thatσ is a d × d′-semimartingale of the form (1.2) as well and let1/2 < η < 2/3. Then we haveV n,1
kl,k′l′

P−→
Vkl,k′l′ .

As mentioned above, the second estimator uses local estimates of the volatilityΣ and the covariance matrixΨ of the

noise, and we assume knowledge of the time-transforming functionsfk andfkl, which in practice have to be approximated

via the observed time points.

We start with the construction of the estimator ofΣs. We defineHY n([0, t]) = (HY n
kl([0, t]))1≤k,l≤d for t ∈ [0, 1] by

HY n
kl([0, t]) =

1

(ψkn)
2

∑

i: tk
i+kn

≤t

∑

j: tl
j+kn

≤t

Y
k
tki
Y

l
tlj
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅}

which is consistent for the integrated covariation matrix up to time t. As the volatility process(Σs)s∈[0,1] is left-

continuous, it is a natural idea to estimateΣs via

Σs,n =
HY n([0, s]) −HY n([0, s − ln])

ln

for some sequenceln with ln → 0,
√
nln → ∞ ands ∈ [ln, 1] (for s ∈ [0, ln] we setΣs,n = Σln,n). The condition

√
nln → ∞ is required to guarantee a sufficient amount of asymptotically uncorrelated summands in the definition of

Σs,n.

The estimation of the covariance matrixΨ is somewhat easier. Recall that(tklp )1≤p≤nkl
denotes the set of common

points of thekth and thelth grid, and definei(p, k, l) = i with tki = tklp for arbitraryk, l = 1, . . . , d. The estimator ofΨkl

is now given as

Ψkl
n = − 1

nkl

nkl∑

p=1

∆tk
i(p,k,l)

Y k∆tl
i(p,l,k)+1

Y l. (4.3)

The intuition behind this estimator is rather simple. Firstof all, since the increments ofX at highest frequency converge

to 0 almost surely, the processY can be replaced byε without any changes in the limit. For this reason the estimator

Ψkl
n converges toΨkl almost surely by the strong law of large numbers (applied to the iid processε) if nkl → ∞. When

the sequencenkl does not diverge to∞ then the convergence does not hold, but we havenkl/n → mkl = 0. Thus the

corresponding functionsγ andγ̃ vanish as well, and this will be sufficient for the estimationof V .

After all we obtain the following result.



On covariation estimation for multivariate continuous Itˆo semimartingales with noise 12

Theorem 4.2 Assume that Assumption (T) holds and that the marginal lawQ of ε has finite eighth moments. Then we

have

V n,2
kl,k′l′ :=

1

ψ4

∫ 1

0

{
θ
(
γkl,k′l′(u)Σ

kk′

u,nΣ
ll′

u,n + γkl,l′k′(u)Σ
kl′

u,nΣ
lk′

u,n

)

+θ−1
(
Ψll′

n γlk,l′k′(u)Σ
kk′
u,n +Ψlk′

n γlk,k′l′(u)Σ
kl′
u,n +Ψkl′

n γkl,l′k′(u)Σ
lk′
u,n +Ψkk′

n γkl,k′l′(u)Σ
ll′
u,n

)

+θ−3
(
Ψkk′

n Ψll′

n γ̃kl,k′l′(u) + Ψkl′

n Ψlk′

n γ̃kl,l′k′(u)
)}
du

P−→ Vkl,k′l′ .

Let us finally focus on the one-dimensional case and recall the asymptotic variance in (3.5). As noted before, we

do not have to care about any of theκ’s from (3.6), as they can directly be computed from our choice of g. Using the

univariate version of the estimator in(4.3) for Ψ (which is consistent now) and the Hayashi-Yoshida type estimatorHY n

for
∫ 1
0 σ

2
udu, all we need to find is a feasible estimator for the rescaled integrated quarticity

∫ 1
0

σ4
u

f ′(u)du. Among several

possibilities (including yet another Hayashi-Yoshida type one) we have decided to go with a pre-averaged version of

realized quarticity. Thus we set

µ =

∫ 1

0
g2(u)du, µ̃ =

∫ 1

0
(g′)2(u)du, (4.4)

and define

V n,3 =
2

ψ4

(
κ

3θµ2

n−kn+1∑

i=1

|Y ti |4 +
2

θ
ΨnHY

n
(
κ− κµ̃

µ

)
+

1

θ3
Ψ2

n

(
κ̃− κµ̃2

µ2

))
. (4.5)

The result precisely reads as follows.

Theorem 4.3 Let d = 1 and assume that Assumption (T) holds and that the marginal law Q of ε has finite eighth

moments. Then we haveV n,3 P−→ V.

In order to present a feasible central limit theorem associated with Theorem 3.4 we vectorize the quantitiesHY n and

[X], i.e.

ĤY
n
= vec(HY n), [̂X]

n
= vec([X]),

where vec is the vectorization operator that stacks columnsof a matrix below one another, and set

V̂kl = Vk−d[(k−1)/d],[(k−1)/d]+1,l−d[(l−1)/d],[(l−1)/d]+1,

V̂ n,b
kl = V n,b

k−d[(k−1)/d],[(k−1)/d]+1,l−d[(l−1)/d],[(l−1)/d]+1

with 1 ≤ k, l ≤ d2 andb = 1, 2, 3. Now, the properties of stable convergence imply the following result, which can be

directly applied for the construction of confidence regions.
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Corollary 4.4 Under the assumptions of Theorem 3.4 we obtain the stable convergence

n1/4(ĤY
n − [̂X])

dst−→MN(0, V̂ ).

Also, for anyb = 1, 2, 3 and as long as the conditions for the corresponding theorem above are satisfied, we have the

standard central limit theorem

n1/4(V̂ n,b)−1/2(ĤY
n − [̂X])

d−→ Nd2(0, Id2), (4.6)

whereNd2(0, Id2) denotes thed2-dimensional normal distribution with covariance matrix equal to identity, andV̂ =

(V̂kl)1≤k,l≤d2 , V̂ n,b = (V̂ n,b
kl )1≤k,l≤d2.

Remark 4.5 (m-dependent noise)We have indicated in Remark 3.3 that the consistency result for the Hayashi-Yoshida

type estimatorHY n from Theorem 3.1 remains valid, if the assumption of independent noise variables is weakened to

m-dependence. This does obviously not hold for the central limit theorem, as the particular form of the noise part of

the asymptotic variance relies heavily on the independenceassumption. Nevertheless, even in this framework a central

limit theorem can be shown, but for the sake of brevity we dispense with the specification of its precise form. It is worth

noticing, however, thatV n,1
kl,k′l′ by construction remains a consistent estimator for the asymptotic variance in this rather

general setting, as it is designed to mimic the covariance ofof HY n
kl andHY n

k′l′ without using any prior knowledge on

ε apart from dependence on only a finite number of neighbours. Therefore Theorem 4.1 and thus in turn (4.6) forb = 1

hold true form-dependent noise as well.

5 Numerical study

Here, we supplement the above asymptotic results based onn → ∞ with a finite sample analysis by using Monte Carlo

experiments. We simulate a bivariate stochastic volatility model with noise, as was also conducted in previous work of

[4] and [7].

More specifically, to simulate efficient log-prices we consider

dX(i)
t = a(i)dt+ ρ(i)σ

(i)
t dB(i)

t +
√

1− [ρ(i)]2σ
(i)
t dWt, (5.1)

whereB(i) ⊥⊥ W . Throughout, we work withi = 1, 2. Note thatρ(i)σ(i)t dB(i)
t represents an idiosyncratic shock, while

√
1− [ρ(i)]2σ

(i)
t dWt is a common factor.

The model for the diffusive volatility is specified as:σ(i)t = exp(β
(i)
0 + β

(i)
1 ̺

(i)
t ), where each of the̺(i)

t processes

conform with Ornstein-Uhlenbeck dynamics: d̺(i)t = α(i)̺
(i)
t dt + dB(i)

t . This assumption means that the innovations
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Figure 1: Illustration of sampling schemes.

1)

2)

3)

Note. The figure illustrates how we design asynchronicity in the simulation study. A vertical dash (“|”) represents an observation of the

noisy processY (1), while a cross (“×”) is Y (2) . A star (“∗”) defines a common sampling point.

of ρ(i)σ(i)t dB(i)
t and dσ(i)t are perfectly correlated, while the covariation between dX

(i)
t and d̺ (i)

t is equal toρ(i)σ(i)t dt.

Finally, note that the model allows the two underlying priceprocessesX(1)
t andX(2)

t to be correlated in the magnitude of
√

1− [ρ(1)]2
√

1− [ρ(2)]2.

We carry out our numerical experiments by using the following parametrization, assumed to be identical across the

two volatility factors:(a(i), β(i)0 , β
(i)
1 , α(i), ρ(i)) = (0.03,−5/16, 1/8,−1/40,−0.3), so thatβ(i)0 = [β

(i)
1 ]2/[2α(i)]. This

choice of parameters implies that integrated volatility has been normalized, in the sense thatE

(∫ 1
0 [σ

(i)
s ]2ds

)
= 1.

We simulate 10,000 paths of this model over the interval[0, 1], which we partition intoN = 23, 400 subintervals of

equal length1/N . In constructing noisy pricesY (i), we first generate a complete high-frequency record ofN equidistant

observations of the efficient priceX(i) using a standard Euler scheme.1 The initial values for the̺ (i)
t processes at each

simulation run are drawn randomly from their stationary distribution, which is̺(i)t ∼ N(0, [−2α(i)]−1).

Next, we add simulated microstructure noiseY (i) = X(i) + ε(i) by taking

ε(i) | {σ,X} i.i.d∼ N(0, ω2) with ω2 = γ2


 1

N

N∑

j=1

σ
(i)2
j/N


 , (5.2)

whereγ is the so-called noise ratio parameter. This choice means that the variance of the noise process increases with the

level of volatility ofX(i), as documented by [5].γ takes the value 0.50, which is a typical level of noise (e.g.,[8]).

1Note that the Ornstein-Uhlenbeck process permits an exact discretization (see, e.g., [10]). We use that fact here to avoid committing errors in

working out the discrete time distribution of d̺(i) over time steps of size1/N .
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Finally, in order to extract non-synchronous data from the complete synchronous high-frequency record, we proceed

as follows (for reference, please see Figure 1). We considerthree settings. In scenario 1), the sampling times ofY (2) form

a subset of the observation grid ofY (1), butY (1) is observed more frequently. Here, we usen1 = 3, 900 andn2 = 390.

In scenario 2), we taken1 = n2 = 3, 900, but shift the observation times ofY (2) to lie midway between those ofY (1).

Finally, in scenario 3), we generate random observation times using two independent Poisson processes with intensityλ1

andλ2. Hereλi denotes the average waiting time for new data from processY (i), so that a typical simulation will have

N/λi observations ofY (i), i = 1, 2. We setλ1 = 6 andλ2 = 60, which implies that the first asset is trading ten times

faster than the second. Note that because we are simulating in discrete time, it is possible to see common points in the last

setting, as depicted in the chart.

The choice of the remaining tuning parameters are the following: We useθ = 0.15 and setkn = ⌈θ√n⌉, where⌈x⌉
is the ceil function. Moreover, to estimate the variance appearing in the CLT ofHY n

kl, we useV n,1
kl,kl defined in (4.2) with

̟ = 2 andη = 7/12.

Our initial numerical experimentations show that the raw estimator from Eq. (2.5) is slightly downward biased in

finite samples. This is familiar from related estimators, such as [7], where an additional factor is applied to correct for

the loss of summands induced by pre-averaging. Here, the problem is slightly more delicate, but nonetheless a relatively

simple device can be used to adjust the estimator. In particular, we generate a bivariate Brownian motion(B(1), B(2))

with a known correlationρ (throughout, we useρ = 1), where the coordinates of these two processes are identical to

(Y (1), Y (2)). We then estimateRn
kl = E[HY n

kl] across 10,000 repetitions using the data fromB(1) andB(2) and divide

the original statisticHY n
kl (based on data fromY (1) andY (2)) byRn

kl/ρ. A similar procedure can be used to bias correct

the estimator of variance.

5.1 Simulation results

In Table 1, we present the relative bias and root mean squarederror of our pre-averaged Hayashi-Yoshida estimator. As

a comparison, we also computed the modulated realised covariance (MRC) of [7] based on refresh time sampling. As

the table reveals, both estimators are unbiased (after biascorrection) in all three scenarios.HY n
22 does retain a slight bias

in those scenarios, wheren2 is very small, but the bias is less than a percent. The rmse ofHY n is larger than what we

observe for the MRC, when the estimation target is a variancecomponent; this observation is in line with the theoretical

comparison of Remark 3.5. This is particularly true for the slow-trading assetY (2) in scenarios one and three. However,

the rmse ofHY n
12 is smaller than the rmse of the modulated realised covariance in all scenarios. As expected the estimator

HY n
12 performs much better than MRC when the observation numbersn1 andn2 have a different order of magnitude (i.e.
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in scenarios one and three). It is explained by the fact that refresh time sampling essentially uses the slowest frequency.

This highlights the advantages of our new estimatorHY n.

Table 1: Relative bias and root mean squared error.

HY n MRC

Target Σ11 Σ12 Σ22 Σ11 Σ12 Σ22

Scenario 1 1.00 1.00 0.99 1.00 1.00 1.00
(0.19) (0.04) (0.27) (0.16) (0.06) (0.14)

Scenario 2 1.00 1.00 1.00 1.00 1.00 1.00
(0.14) (0.03) (0.13) (0.07) (0.04) (0.08)

Scenario 3 1.00 1.00 0.99 1.00 1.00 1.00
(0.21) (0.04) (0.31) (0.17) (0.07) (0.15)

Note. We report the relative bias and rmse of the estimators included in the simulation study. The bias measure is equal to 1 foran

unbiased estimator. The number reported in parenthesis is 1000× rmse.

Next, we turn to the accuracy of the asymptotic approximation, where we focus on estimation of integrated covariance,

Σ12. In Figure 2, we plot the simulated finite sample distribution of the standardizedHY n
12 for the three setups considered

here, where the variance of the estimator is accessed byV n,1
12,12 as described above. Although the approximation is not

perfect, the goodness of the fit is surprisingly good taking the relatively small sample into account. Also, the orderingis

as expected with the second scenario offering the best approximation to the standard normal (wheren1 = n2 = 3, 900).

Moreover, while the average number of observations is identical in scenario one and three, the randomness of the spacings

in the latter setting slightly deteriorates the tracking ofthe standard normal.

6 Proofs

Let C > 0 denote a generic constant which may change from line to line;we also writeCp > 0 if a constant depends

on an external parameterp. For the sake of simplicity we will sometimes keep the dependence of some quantities on

certain parameters unreflected if things are clear from the context. Also some notations might have a different meaning in

different subsections, e.g. the quantityRn(p) stands for a generic asymptotically negligible random variable in Sections

6.1.5–6.1.7.
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Figure 2: Accuracy of asymptotic approximation, estimation of Σ12.
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1) n1 = 3, 900, n2 = 390
2) n1 = 3, 900, n2 = 3, 900
3) n̄1 = 3, 900, n̄2 = 390
N(0,1)

We remark that all our theoretical results (Theorems 3.1, 3.4, 4.1, 4.2, 4.3) arestable under localization, i.e. if they

are valid for bounded coefficients then they remain valid forlocally bounded coefficients. This means, since the processes

a andσ are càglàd, thus locally bounded, we can assume without loss of generality:

• The processesa andσ are bounded in(ω, t).

See e.g. Section 3 in [2] for more details.

The second important step in all proofs is the approximation

Y
k
tki

≈ (σtk
i
W )k

tki
+ εk

tki
, 1 ≤ k ≤ d, (6.1)

which means that we may pretend thata = 0 identically and that the volatilityσ is constant over the small intervals

[tki , t
k
i+kn

]. Indeed, we will show that such an approximation does not affect any of our theoretical results.

Before we start proving our main results let us state some simple lemmas which concern the observation timestki and

the pre-averaging quantitiesY
k
tki

. In what follows we use the decomposition

Xt = X0 +Dt +Nt, Dt =

∫ t

0
asds, Nt =

∫ t

0
σsdWs. (6.2)
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We also decompose the statisticHY n as

HY n
kl = HY n

kl[X] +HY n
kl[X, ε] +HY n

kl[ε] (6.3)

with

HY n
kl[X] =

1

(ψkn)
2

nk−kn+1∑

i=0

nl−kn+1∑

j=0

X
k
tki
X

l
tlj
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅},

HY n
kl[X, ε] =

1

(ψkn)
2

nk−kn+1∑

i=0

nl−kn+1∑

j=0

(
X

k
tki
εl
tlj
+ εk

tki
X

l
tlj

)
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅},

HY n
kl[ε] =

1

(ψkn)
2

nk−kn+1∑

i=0

nl−kn+1∑

j=0

εk
tki
εl
tlj
1{(tk

i
,tk
i+kn

]∩(tl
j
,tl
j+kn

] 6=∅}.

Lemma 6.1 Under the Assumptions (T1)–(T3) we have for any0 ≤ a < b ≤ 1

♯{i| tki ∈ [a, b]} ≤ C(b− a)n+ 1 ∀1 ≤ k ≤ d.

Proof: To compute the cardinality of the above set we need to calculate nk(fk(b) − fk(a)), which is an upper bound for

the number of points falling into[a, b], up to adding one. The mean value theorem and conditions (T2), (T3) imply that

n(fk(b)− fk(a)) = nk(fk)
′(ξ)(b− a) ≤ Cn(b− a),

whereξ is some point betweena andb. 2

The above lemma basically states that the amount of time points tki contained in[a, b] is of the same order as in the

equidistant case for allk.

Lemma 6.2 Under the Assumptions (T) and ifE[ε8] <∞ we obtain forq = 2, 4, 8

E[|Y k
tki
|q] ≤ Cn−q/4, E[|Dk

tki
|q] ≤ Cn−q/2, ∀1 ≤ k ≤ d, 1 ≤ i ≤ nk.

Proof: These estimates are shown separately forN
k
tki

,D
k
tki

andεk
tki

. They are a simple consequence of the boundedness of

the processesa andσ, the Burkholder inequality and Lemma 6.1. See e.g. Section 5.4 from [15] for a detailed computation

in the equidistant case. 2
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6.1 Proof of Theorem 3.4

Because the summands in the definition of the estimatorHY n are highly correlated, the main idea of the proof is to apply

a similar method as for the proof of the central limit theoremfor m-dependent data. Roughly speaking, we will collect

all summands ofHY n in big and small blocks. The function of the small blocks is toensure the (conditional) asymptotic

independence of the big blocks, and their contribution willbecome negligible in the limit.

Let us start with the formal definition of big and small blocks. For somep > 0, we set

Bz(p) =
[z(p + b)kn

n
,
z(p+ b)kn + pkn

n

)
(big blocks)

Sz(p) =
[z(p + b)kn + pkn

n
,
(z + 1)(p + b)kn

n

)
(small blocks) (6.4)

whereb is larger thanM max1≤k≤d(m
−1
k ) andz = 0, . . . , [ n

(p+b)kn
] − 1. The constantb is chosen in this way to ensure

that the quantitiesY
k
tki

, Y
l
tlj

with tki ∈ Bz(p), tlj ∈ Bz′(p) andz 6= z′ do not use the same data, at least forn large enough

(see the proof of Lemma 6.1). This fact leads to the asymptotic conditional independence of the big blocks. The notion

of big blocks comes from the fact that the length ofBz(p) is alwayspkn/n, where we later letp → ∞, which is large

compared to the lengthbkn/n of small blocksSz(p).

We will perform the proof in several steps. In a certain sensewe will prove the statement in a reverse order. The road

map of the proof is as follows:

(i) In Section 6.1.1 we will show a stable central limit theorem for the approximative quantities of the type (6.1), which

are collected in big blocksBz(p). The corresponding stable limit isL defined in Theorem 3.4.

(ii) In Section 6.1.2 we will prove the asymptotic negligibility of the approximative quantities of the type (6.1) which

are collected in small blocksSz(p).

(iii) Sections 6.1.3-6.1.7 are devoted to the justificationof the approximation in (6.1): Sections 6.1.3-6.1.5 deal with the

diffusion part (the most involved part), Section 6.1.6 treats the mixed part and Section 6.1.7 is devoted to the noise

part.

(iv) Section 6.1.4 provides a useful decomposition for the diffusion part, which shows that our statisticHY n is asymp-

totically unbiased.
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6.1.1 The central limit theorem for the big blocks

Whenevertki ∈ Az(p), tlj ∈ Az′(p) for A = B orA = S (see (6.4)), we set

αkl
ij (p) =

1

(ψkn)
2

[
(σminAz(p)W )k

tki
+ εk

tki

][
(σminAz′(p)

W )l
tlj
+ εl

tlj

]
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅} (6.5)

Here we follow the same approximation as in (6.1), except thevolatility process is now frozen in the beginning of the

blockAz(p) resp.Az′(p). We defineMkl
n (p) =

∑
z ζ

kl
zn(p) with

ζklzn(p) = n1/4
∑

tki ,t
l
j∈Bz(p)

(
αkl
ij (p)− E[αkl

ij (p)|FminBz(p)]
)
.

AsMkl
n (p) is a quadratic form ofY = X + ε, we have a straightforward decomposition

Mkl
n (p) =Mkl

n (X, p) +Mkl
n (X, ε, p) +Mkl

n (ε, p), (6.6)

whereMkl
n (X, p) denotes the diffusion part ofMkl

n (p),Mkl
n (ε, p) stands for the noise part ofMkl

n (p) andMkl
n (X, ε, p) is

the mixed part ofMkl
n (p), which will be used in the following sections. In these we will show that the quantitiesMn(p)

andLn = n1/4(HY n − [X]) are asymptotically equivalent, i.e.

lim
p→∞

lim sup
n→∞

P(|Mn(p)− Ln| > δ) = 0 (6.7)

for all δ > 0. Thus, it is sufficient to prove the following result which completes this section.

Theorem 6.3 Assume that the conditions of Theorem 3.4 hold. Then we obtain that

Mn(p)
dst−→M(p) =MN(0, Vp) as n→ ∞

for a certain conditional covariance matrixVp. Furthermore, whenp→ ∞ we deduce thatVp
P−→ V , thus

M(p)
P−→ L =MN(0, V ),

where the random variablesV andL are defined in Theorem 3.4.

Proof: By Theorem IX.7.28 from [17] it is sufficient to show that (1 ≤ k, l, k′, l′ ≤ d)

(i)
∑

z E[ζ
kl
zn(p)ζ

k′l′
zn (p)|FminBz(p)]

P−→ V kl,k′l′
p ,
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(ii)
∑

z E[ζ
kl
zn(p)(W

k′

maxBz(p)
−W k′

minBz(p)
)|FminBz(p)]

P−→ 0,

(iii)
∑

z E[|ζklzn(p)|4] → 0,

(iv)
∑

z E[ζ
kl
zn(p)(NmaxBz(p) −NminBz(p))|FminBz(p)]

P−→ 0 for all bounded martingalesN with 〈N,W 〉 = 0,

to conclude the stable convergenceMn(p)
dst−→ M(p) asn → ∞. The statement (i) is proved in the Appendix. To show

(ii) we remark that the increments ofW involved inζklzn are independent ofFminBz(p). On the other hand, the quantity

ζklzn(p)(W
k′

maxBz(p)
− W k′

minBz(p)
) is an odd function ofW and (W, ε)

d
= (−W, ε) sinceW, ε are independent, which

implies that

E[ζklzn(p)(W
k′

maxBz(p)
−W k′

minBz(p)
)|FminBz(p)] = 0.

Next, to show (iii) we observe that for fixedp the number of summands involved in the definition ofζklzn(p) isO(k2n). Due

to Lemma 6.2 and sincez = 0, . . . , [ n
(p+b)kn

]− 1 we immediately deduce that

∑

z

E[|ζklzn(p)|4] ≤ Cp
n

(p + b)kn
nk8n(kn)

−8n−2 ≤ Cp

kn
→ 0.

Part (iv) is shown in [15] for an analogous situation (see Lemma 5.7 therein). This completes the proof of the first

statement of Theorem 6.3. The second statement is again proved in the Appendix. 2
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6.1.2 Negligibility of the small blocks

In this section we still consider the approximative quantities αkl
ij (p) from (6.5) and show that the term̃Mkl

n (p) =
∑

z ζ̃
kl
zn(p) with ζ̃klzn(p) =

∑5
i=1 ζ̃

kl
zn(i, p) given as

ζ̃klzn(1, p) = n1/4
∑

tki ,t
l
j∈Sz(p)

(
αkl
ij (p)− E[αkl

ij (p)|FminSz(p)]
)

ζ̃klzn(2, p) = n1/4
∑

tki ∈Bz−1(p),tlj∈Sz(p)

(
αkl
ij (p)− E[αkl

ij (p)|FminBz−1(p)]
)

ζ̃klzn(3, p) = n1/4
∑

tki ∈Bz+1(p),tlj∈Sz(p)

(
αkl
ij (p)− E[αkl

ij (p)|FminSz(p)]
)

ζ̃klzn(4, p) = n1/4
∑

tlj∈Bz−1(p),tki ∈Sz(p)

(
αkl
ij (p)− E[αkl

ij (p)|FminBz−1(p)]
)

ζ̃klzn(5, p) = n1/4
∑

tlj∈Bz+1(p),tki ∈Sz(p)

(
αkl
ij (p)− E[αkl

ij (p)|FminSz(p)]
)
,

is negligible in the sense of (6.7). This representation holds forp > b (see (6.4) for the definition of the constantb), which

we assume without loss of generality. As in (6.6), we have thedecomposition

M̃kl
n (p) = M̃kl

n (X, p) + M̃kl
n (X, ε, p) + M̃kl

n (ε, p), (6.8)

into theX-part, the mixed part and theε-part, which will be used in the following sections. Let us consider the term
∑

z ζ̃
kl
zn(1, p). First of all, we remark that the summandsζ̃klzn(1, p) are uncorrelated (asz runs) and the number of sum-

mands is of ordern/(pkn). Furthermore, there areO(k2n) summands in the definition of̃ζklzn(1, p). Thus, we conclude

from Lemma 6.2 that

E

(∣∣∣
∑

z

ζ̃klzn(1, p)
∣∣∣
2)

=
∑

z

E[|ζ̃klzn(1, p)|2] ≤
C

p
. (6.9)

Hence, we obtain

lim
p→∞

lim sup
n→∞

P

(∣∣∣
∑

z

ζ̃klzn(1, p)
∣∣∣ > δ

)
= 0

for all δ > 0. The same assertion holds for̃Mkl
n (p), as counting the number of non-zeroαkl

ij (p) for tki andtlj from disjoint

blocks shows that the upper bound in (6.9) is valid forζ̃klzn(q, p) as well,q = 2, . . . , 5. 2
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6.1.3 The approximation of the diffusion part I

We start with the decomposition of the diffusion part of the estimatorHY n. SetHY n
kl[X] = HY n

kl[D] +HY n
kl[D,N ] +

HY n
kl[N ] with

HY n
kl[D] =

1

(ψkn)
2

nk−kn+1∑

i=0

nl−kn+1∑

j=0

D
k
tki
D

l
tlj
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅},

HY n
kl[D,N ] =

1

(ψkn)
2

nk−kn+1∑

i=0

nl−kn+1∑

j=0

(
D

k
tki
N

l
tlj
+N

k
tki
D

l
tlj

)
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅},

HY n
kl[N ] =

1

(ψkn)
2

nk−kn+1∑

i=0

nl−kn+1∑

j=0

N
k
tk
i
N

l
tl
j
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅},

where the processesD andN are given in (6.2). In this section we will show that drift part D of X does not influence the

central limit theorem, i.e.

HY n
kl[D] = oP(n

−1/4), HY n
kl[D,N ] = oP(n

−1/4).

We start with the termHY n
kl[D]. Note thatHY n

kl[D] containsO(nkn) non-zero summands (due to Lemma 6.1). Lemma

6.2 and the Cauchy-Schwarz inequality imply that each summand satisfiesE[|Dk
tki
D

l
tlj
|] ≤ Cn−1. Thus,E[|HY n

kl[D]|] ≤
Cn−1/2, which impliesHY n

kl[D] = oP(n
−1/4).

The treatment ofHY n
kl[D,N ] is a bit more delicate. We set

ξnij = D
k
tki
N

l
tlj
+N

k
tki
D

l
tlj

(6.10)

and define

ξ̃nij = atki ∧tlj

(
id

k
tki
N

l
tlj
+N

k
tki

id
l
tlj

)
, (6.11)

where id denotes the identity function onR. The latter approximatesξnij by freezing the processa in a small time interval.

Let us set

H̃Y
n

kl[D,N ] =
1

(ψkn)
2

nk−kn+1∑

i=0

nl−kn+1∑

j=0

ξ̃nij1{(tki ,tki+kn
]∩(tlj ,t

l
j+kn

] 6=∅}. (6.12)

We first show that̃HY
n

kl[D,N ] = oP(n
−1/4). Observe that

E[|H̃Y n

kl[D,N ]|2] = 1

(ψkn)
4

nk−kn+1∑

i,i′=0

nl−kn+1∑

j,j′=0

Eξ̃nij ξ̃
n
i′j′1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅,(tk
i′
,tk
i′+kn

]∩(tl
j′
,tl
j′+kn

] 6=∅}.

Due to Lemma 6.1 the above sum containsO(nk3n) non-zero summands, because theξ̃nij ’s are martingale differences.

Moreover, we haveE[|ξ̃nij|2] ≤ Cn−3/2 due to Lemma 6.2. Thus, we concludeE[|H̃Y n

kl[D,N ]|2] ≤ Cn−1, which
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implies thatH̃Y
n

kl[D,N ] = oP(n
−1/4). In a second step we show thatHY n

kl[D,N ] − H̃Y
n

kl[D,N ] = oP(n
−1/4). For

this purpose, for any càglàd bounded multivariate process f , we denote byNf
δ (t) the number of jumps off bigger than

δ > 0 before timet. Furthermore, we define

mη,δ(f) = sup{‖fs − ft‖ : t ≤ s ≤ (t+ η) ∧ 1, Nf
δ (s)−Nf

δ (t) = 0}.

Roughly speaking,mη,δ(f) is a modulus of continuity off on intervals of at most lengthη, which do not contain jumps

bigger thanδ. Forf as above, we obviously havelimδ→0 lim supη→0mη,δ(f) = 0,P− a.s. Observe that

HY n
kl[D,N ]− H̃Y

n

kl[D,N ] =
1

(ψkn)
2

nk−kn+1∑

i=0

nl−kn+1∑

j=0

(ξnij − ξ̃nij)1{(tki ,tki+kn
]∩(tlj ,t

l
j+kn

] 6=∅}.

As we mentioned the above sum containsO(nkn) summands. We have

∣∣∣Dk
tki
− atki ∧tlj

id
k
tki

∣∣∣ ≤
kn−1∑

h=1

∣∣∣g
( h
kn

)∣∣∣
∫ tk

i+h

tk
i+h−1

‖as − atki ∧tlj
‖ds.

The right-hand side of the above inequality is bounded sincethe processa is bounded byCn−1/2. Consequently, distin-

guishing between the two situations, wherea has or does not have jumps bigger thanδ in the interval[tki+h−1, t
k
i+h], we

obtain the inequality

kn−1∑

h=1

∣∣∣g
( h
kn

)∣∣∣
∫ tk

i+h

tk
i+h−1

‖as − atki ∧tlj
‖ds ≤ Cn−1/2

(
mCkn/n,δ(a) + ({Na

δ (t
k
i+kn)−Na

δ (t
k
i ∧ tlj)} ∧ 1)

)
.

Using Lemma 6.2 and Cauchy-Schwarz inequality we deduce that

n1/4E[|HY n
kl[D,N ]− H̃Y

n

kl[D,N ]|] ≤ CE

[
m2

Ckn/n,δ
(a) +

(Na
δ (1)

n
∧ 1
)2]1/2

.

Due to the dominated convergence theorem we conclude that

lim
δ→0

lim sup
n→∞

E

[
m2

Ckn/n,δ
(a) +

(Na
δ (1)

n
∧ 1
)2]

= 0.

ThusHY n
kl[D,N ]− H̃Y

n

kl[D,N ] = oP(n
−1/4). Summarizing all results of this section we get

n1/4(HY n
kl [X]−HY n

kl[N ]) = oP(1)

meaning that the martingale partN is the dominating term in the decomposition ofHY n
kl[X]. 2
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6.1.4 A decomposition for the martingale part

Having proved in the previous section thatHY n[X] can be replaced byHY n[N ] without affecting the limit, we proceed

with a further decomposition ofHY n[N ]. In this section we will show thatHY n[N ] is essentially an unbiased estimator

of
∫ 1
0 Σsds. Recall that

HY n
kl[N ] =

1

(ψkn)
2

nk−kn+1∑

i=0

nl−kn+1∑

j=0

N
k
tki
N

l
tlj
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅}

By definition we have

N
k
tki
N

l
tlj
=

kn−1∑

h,h′=1

g
( h
kn

)
g
( h′
kn

)
∆tk

i+h
Nk∆tl

j+h′
N l
(
1Ehh′

ij
+ 1(Ehh′

ij
)c

)

with

Ehh′

ij = {(tki+h−1, t
k
i+h] ∩ (tlj+h′−1, t

l
j+h] 6= ∅}.

Now, we will write the above quantity as a sum of martingale differences plus bias. For this purpose we need some

additional notations. We decomposeEhh′

ij = ∪4
r=1E

hh′

ij (r) with

Ehh′

ij (1) = {(i, j), (h, h′)| tlj+h′−1 ≥ tki+h−1, tlj+h′ ≥ tki+h} ∩ Ehh′

ij

Ehh′

ij (2) = {(i, j), (h, h′)| tlj+h′−1 ≥ tki+h−1, tlj+h′ < tki+h} ∩ Ehh′

ij

Ehh′

ij (3) = {(i, j), (h, h′)| tlj+h′−1 < tki+h−1, tlj+h′ < tki+h} ∩ Ehh′

ij

Ehh′

ij (4) = {(i, j), (h, h′)| tlj+h′−1 < tki+h−1, tlj+h′ ≥ tki+h} ∩ Ehh′

ij

OnEhh′

ij (1) we deduce by Itô formula:

∆tk
i+h
Nk∆tl

j+h′
N l = (Nk

tl
j+h′−1

−Nk
tk
i+h−1

)∆tl
j+h′

N l + (Nk
tk
i+h

−Nk
tl
j+h′−1

)(N l
tl
j+h′

−N l
tk
i+h

)

+

∫ tk
i+h

tl
j+h′−1

(Nk
s −Nk

tl
j+h′−1

)dN l
s +

∫ tk
i+h

tl
j+h′−1

(N l
s −N l

tl
j+h′−1

)dNk
s +

∫ tk
i+h

tl
j+h′−1

Σkl
s ds

=

5∑

r=1

µhh
′

ij (1, r), (6.13)

and similar decompositions are obtained onEhh′

ij (q), q = 2, 3, 4, and we denote them by
∑5

r=1 µ
hh′

ij (q, r). Notice that all

termsµhh
′

ij (q, r) are martingale differences for1 ≤ q, r ≤ 4, whileµhh
′

ij (q, 5) gives the bias for all1 ≤ q ≤ 4. We define

µij(q, r) =

kn−1∑

h,h′=1

g
( h
kn

)
g
( h′
kn

)
µhh

′

ij (q, r)1Ehh′

ij (q) (6.14)
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for 1 ≤ q ≤ 4, 1 ≤ r ≤ 5. Now, a simple reordering shows that

1

(ψkn)
2

∑

i,j




4∑

q=1

µij(q, 5)


 1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅} =

∑kn−1
h,h′=1 g

(
h
kn

)
g
(

h′

kn

)

(ψkn)
2

∫ 1

0
Σkl
s ds + oP(n

−1/4)

=

∫ 1

0
Σkl
s ds+ oP(n

−1/4),

where the error in the first identity is due to border effects,and the second identity usesψ =
∫ 1
0 g(x)dx.

Thus, we conclude that

n1/4
(
HY n

kl[N ]−
∫ 1

0
Σkl
s ds

)
=

n1/4

(ψkn)
2

nk−kn+1∑

i=0

nl−kn+1∑

j=0

ηklij 1{(tki ,tki+kn
]∩(tlj ,t

l
j+kn

] 6=∅} + oP(1), (6.15)

where

ηklij = µij +
4∑

q,r=1

µij(q, r), (6.16)

µij =

kn−1∑

h,h′=1

g
( h
kn

)
g
( h′
kn

)
∆tk

i+h
Nk∆tl

j+h′
N l1(Ehh′

ij )c . (6.17)

We remark again all termsηklij are now sums of martingale differences. 2

6.1.5 The approximation of the diffusion part II

In this section we will justify the approximation

n1/4
(
HY n

kl[N ]−
∫ 1

0
Σkl
s ds

)
=Mkl

n (X, p) + M̃kl
n (X, p) +Rkl

n (p),

whereMn(X, p) andM̃n(X, p) are defined by (6.6) and (6.8) respectively, for someRkl
n (p) with

lim
p→∞

lim sup
n→∞

P

(
|Rkl

n (p)| > δ
)
= 0 (6.18)

for all δ > 0. This means that the diffusion partn1/4
(
HY n

kl[N ]−
∫ 1
0 Σkl

s ds
)

of our statistic is asymptotically equivalent

to the sum of the diffusion parts of big and small blocks. Recalling the estimate (6.15) from the previous section, it is easy

to show

Rkl
n (p) = n1/4

(
HY n

kl[N ]−
∫ 1

0
Σkl
s ds

)
−Mkl

n (X, p)− M̃kl
n (X, p)

=
n1/4

(ψkn)
2

∑

i,j

(ηklij − η̃klij )1{(tki ,tki+kn
]∩(tlj ,t

l
j+kn

] 6=∅} + oP(1),



On covariation estimation for multivariate continuous Itˆo semimartingales with noise 27

whereη̃klij is defined in the same way asηklij (see (6.16)) except the processNk (resp.N l) is replaced by(σminAz(p)W )k

(resp.(σminAz′(p)
W )l) whentki ∈ Az(p) for somez (resp.tkj ∈ Az′(p) for somez′) andA = B orA = S. Note that the

only difference compared to proving (6.15) lies in the fact thatMkl
n (X, p) + M̃kl

n (X, p) is unbiased by construction.

Recall that the quantityηklij (resp. η̃klij ) consists of 17 summands. Hence, we have the decompositionRkl
n (p) =

∑17
r=1R

kl
n (p, r). As an example we will only consider the treatment of the first summand, i.e.

Rkl
n (p, 1) =

n1/4

(ψkn)
2

∑

i,j

(µij − µ̃ij)1{(tki ,tki+kn
]∩(tlj ,t

l
j+kn

] 6=∅},

whereµij is defined by (6.17). We conclude that

E[|µij − µ̃ij|2] = E

[ ∑

h,h′,q,q′

g
( h
kn

)
g
( h′
kn

)
g
( q
kn

)
g
( q′
kn

)
∆tk

i+h
(N − σminAz(p)W )k

×∆tl
j+h′

(N − σminAz′(p)
W )l∆tki+q

(N − σminAz(p)W )k

×∆tl
j+q′

(N − σminAz′(p)
W )l1(Ehh′

ij )c1(Eqq′

ij )c

]
,

where1 ≤ h, h′, q, q′ ≤ kn and eitherh = q, h′ = q′ or

(tki+h−1, t
k
i+h] ∩ (tlj+q′−1, t

l
j+q′ ] 6= ∅, (tki+q−1, t

k
i+q] ∩ (tlj+h′−1, t

l
j+h′ ] 6= ∅,

as otherwise the expectation vanishes. We remark that the above sum containsO(k2n) terms. Now we follow the same

strategy as in Section 6.1.3. First, we note that

E[|Rkl
n (p, 1)|2] = n1/2

(ψkn)
4

∑

i,j,i′,j′

E(µij − µ̃ij)(µi′j′ − µ̃i′j′)1{(tki ,tki+kn
]∩(tlj ,t

l
j+kn

] 6=∅,(tk
i′
,tk
i′+kn

]∩(tl
j′
,tl
j′+kn

] 6=∅},

where the number of non-zero summands isO(nk3n). Using the Cauchy-Schwarz inequality and the same approximations

as at the end of Section 6.1.3, we deduce that

E[|Rkl
n (p, 1)|2] ≤ CE

[
m2

pkn/n,δ
(σ) +

(Nσ
δ (1)

n
∧ 1
)2]

for anyδ > 0. Thus, for any fixedp, we have (by choosingn large and thenδ small)limn→∞ E[|Rkl
n (p, 1)|2] = 0. Hence,

(6.18) for anyδ > 0, and we are done. 2

6.1.6 The approximation of the mixed part

In this section we will prove that

n1/4HY n
kl[X, ε] =Mkl

n (X, ε, p) + M̃kl
n (X, ε, p) +Rkl

n (p),
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whereMn(X, ε, p) andM̃n(X, ε, p) are defined by (6.6) and (6.8) respectively,HY n
kl[X, ε] is given by (6.3) and some

Rkl
n (p) with (6.18) for allδ > 0. This proof is easier than the proofs in previous sections, because the processesX andε

are independent. We first show that

n1/4HY n
kl[D, ε] =

n1/4

(ψkn)
2

nk−kn+1∑

i=0

nl−kn+1∑

j=0

(
D

k
tki
εl
tlj
+ εk

tki
D

l
tlj

)
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅}

is a negligible sequence. Using Lemma 6.2 and proceeding as in the treatment of the term̃HY
n

kl[D,N ] from (6.12) we

deduce thatE[|HY n
kl[D, ε]|2] ≤ Cn−1. Hence,n1/4HY n

kl[D, ε]
P−→ 0. Next, we obtain that

Rkl
n (p) = n1/4HY n

kl[N, ε] −Mkl
n (X, ε, p) − M̃kl

n (X, ε, p) + oP(1)

=
n1/4

(ψkn)
2

∑

i,j

(
(N − σminAz(p)W )

k

tki
εl
tlj
+ εk

tki
(N − σminAz′(p)

W )
l

tlj

)
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅} + oP(1)

Using again Lemma 6.2, the independence betweenε and the components ofX, and similar methods as forRkl
n (p, 1) in

the previous section, we conclude that

E[|Rkl
n (p)|2] ≤ CE

[
m2

pkn/n,δ
(σ) +

(Nσ
δ (1)

n
∧ 1
)2]

for anyδ > 0. Thus, for any fixedp, we havelimn→∞ E[|Rkl
n (p, 1)|2] = 0, and hence (6.18) for anyδ > 0, and we are

done. 2

6.1.7 The noise part and the final identity

Finally, we will show that

n1/4HY n
kl[ε] =Mkl

n (ε, p) + M̃kl
n (ε, p) +Rkl

n (p),

whereMn(ε, p) andM̃n(ε, p) are defined by (6.6) and (6.8) respectively, for someRkl
n (p) with (6.18) for allδ > 0. This

is a relatively easy exercise, because by definition we just need to prove thatn1/4E[HY n
kl[ε]] = o(1). By reordering the

statisticHY n
kl we obtain that

n1/4E[HY n
kl[ε]] =

n1/4

(ψkn)
2E

[ ∑

i,j: tki =tlj

aklij (n)ε
k
tki
εl
tlj

]

for some constantsaklij (n) with |aklij (n)| ≤ C. A simple calculation shows that

aklij (n) =




kn−1∑

j=0

g
(j + 1

kn

)
− g
( j
kn

)



2

= (g(1) − g(0))2 = 0
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except for thosetki andtlj that are among the first and lastO(n1/2) summands. Hence,n1/4E[HY n
kl[ε]] = o(1) and we

deduce that

lim
p→∞

lim sup
n→∞

P

(
|n1/4HY n

kl[ε] −Mkl
n (ε, p)− M̃kl

n (ε, p)| > δ
)
= 0

for all δ > 0.

Finally, let us put things together. In Sections 6.1.3–6.1.7 we have proved the identity

Ln = n1/4(HY n − [X]) =Mn(p) + M̃n(p) +Rn(p)

for someRn(p) and we have shown (see Section 6.1.2) that

lim
p→∞

lim sup
n→∞

P

(
|M̃n(p)|+ |Rn(p)| > δ

)
= 0

for all δ > 0. On the other hand, we have proved in Section 6.1.1 that

Mn(p)
dst−→M(p) =MN(0, Vp) as n→ ∞

and, forp→ ∞:

Vp
P−→ V, M(p)

P−→ L =MN(0, V ).

This completes the proof of Theorem 3.4. 2

6.2 Consistency of the variance estimators

6.2.1 Proof of Theorem 4.1

It is obviously enough to prove the result for the unsymmetrized estimator

Ṽ n,1
kl,k′l′ =

√
n

[ n
βn

]−1∑

α=1

(
HY n

kl(α)HY
n
k′l′(α) −HY n

kl(α)HY
n
k′l′(α− 1)

)

only, and we introduce two approximating versions ofHY n
kl(α) first, namely

H̃Y
n

kl(α) =
1

(ψkn)
2

∑

tki ∈Bn(α)

nl−kn+1∑

j=0

Z(α)k
tki
Z(α)l

tlj
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅},

HY
n
kl(α) =

1

(ψkn)
2

∑

tki ∈Bn(α)

nl−kn+1∑

j=0

Z(α− 1)k
tki
Z(α− 1)l

tlj
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅},
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where we have set

Z(α)
k

tki
= εk

tki
+

d∑

ν=1

σkναβn
n

W vk
tki

as in (6.1), and theW ν denote the independent components of thed′-dimensional Brownian motionW . Sinceσ is

assumed to be an Itô semimartingale itself, the error due toreplacingY
k
tki

byZ(α)
k

tki
is small: Lettki ∈ Bn(α). Then

E|Y k
tki
− Z(α)

k

tki
| = E

∣∣∣
kn−1∑

j=1

g(j/kn)
(
∆tki+j

Dk +
d∑

ν=1

∫ i+j

n

i+j−1
n

(σkνs − σkναβn
n

)dW ν
s

)∣∣∣

≤ C
(kn
n

+
( kn−1∑

j=1

g2(j/kn)

d∑

ν=1

E

∣∣∣
∫ i+j

n

i+j−1
n

(σkνs − σkναβn
n

)dW ν
s

∣∣∣
2)1/2)

≤ C
(kn
n

+
(
kn

1

n

βn
n

)1/2)
≤ C

√
knβn
n

.

Lemma 6.1 and Lemma 6.2 giveE|HY n
kl(α)| ≤ Cβn/n, thus it is simple to deduceE|HY n

kl(α) − H̃Y
n

kl(α)| ≤
C(βn/n)

3/2, and analogously forHY
n
kl(α), so usingη < 2/3 we obtainṼ n,1

kl,k′l′ − V
n,1
kl,k′l′ = oP(1) with

V
n,1
kl,k′l′ =

√
n

[ n
βn

]∑

α=1

(
HY

n
kl(α)HY

n
k′l′(α)−HY

n
kl(α)H̃Y

n

k′l′(α− 1)
)
.

The remainder of the proof is simple now. Without loss of generality let βn > 4bkn hold, so onlyHY
n
k′l′(α) and

HY
n
k′l′(α+ 1) might share increments ofY . Then we obtain

√
n
∣∣∣
[ n
βn

]∑

α=1

E

(
HY

n
kl(α)HY

n
k′l′(α)− E[HY

n
kl(α)HY

n
k′l′(α)|F (α−1)βn

n

]
)∣∣∣ ≤ C

β
3/2
n

n
,

√
n
∣∣∣
[ n
βn

]∑

α=1

E

(
HY

n
kl(α)H̃Y

n

k′l′(α− 1)− E[HY
n
kl(α)H̃Y

n

k′l′(α − 1)|F (α−1)βn
n

]
)∣∣∣ ≤ C

β
3/2
n

n
,

by conditional independence, and we are left with

V
n,1
kl,k′l′ =

√
n

[ n
βn

]∑

α=1

E[HY
n
kl(α)HY

n
k′l′(α)−HY

n
kl(α)H̃Y

n

k′l′(α− 1)|F (α−1)βn
n

] + oP(1).

Write Vkl,k′l′ =
∫ 1
0 rudu, where the processr is given by the right hand side of (3.4). From the same arguments as in

Lemma 7.3 and Lemma 7.5 in the Appendix plus usingη > 1/2 we obtain

√
nE[HY

n
kl(α)HY

n
k′l′(α)−HY

n
kl(α)H̃Y

n

k′l′(α− 1)|F (α−1)βn
n

] =

∫ (α+1)βn
n

αβn
n

r(u)du+ o(
βn
n
),

uniformly inα, and the proof is complete. 2
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6.2.2 Proof of Theorem 4.2

From the proof of Theorem 3.1 we have

HY n([0, s]) −HY n([0, s − ln])−
∫ s

s−ln

Σudu = oP(ln),

uniformly in s. Therefore the discussion onΨkl
n shows that we are left to prove

∫ 1

ln

(∫ s
s−ln

Σudu

ln
− Σs

)
ds = oP(1),

which by left-continuity is obvious as well. 2

6.2.3 Proof of Theorem 4.3

All we need to prove is

κ

3θµ2

n−kn+1∑

i=1

|Y ti |4
P−→ κθ

∫ 1

0

σ4u
f ′(u)

du+
2κµ̃

θµ
Ψ

∫ 1

0
σ2udu+

κµ̃2

θ3µ2
Ψ2.

Sinceσ is càglàd, we know from the proof of Theorem 1 in [20] that wemay replace|Y ti |4 by |σtiW ti + εti |4 without

affecting the limit. We have

2κ

3θµ2

n−kn+1∑

i=1

σ4tiE[|W ti |4] =
2κ

θ

k2n
n2

n−kn+1∑

i=1

σ4ti + oP(1) = 2κθ
1

n

n−kn+1∑

i=1

σ4ti + oP(1),

and similar identities hold for6|W ti |2|εti |2 and|εti |4 as well. The result follows easily now from a Riemann approxima-

tion. 2

7 Appendix

In this final paragraph we discuss the computation of the asymptotic (conditional) varianceVp from Theorem 6.3, which

amounts to showing step (i) of its proof, and to prove convergence ofVp to the final varianceV afterwards. We start with

a decomposition ofζklzn(p) into a pure diffusion part, two mixed parts and a noise one, aswe write

ζklzn(p) =
3∑

s=1

ζklzn(s, p), ζklzn(s, p) = n1/4
∑

tki ,t
l
j∈Bz(p)

(
αkl
ij (s, p)− E[αkl

ij (s, p)|FminBz(p)]
)
,
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with

αkl
ij (1, p) =

1

(ψkn)
2 (σminBz(p)W )k

tki
(σminBz(p)W )l

tlj
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅},

αkl
ij (2, p) =

1

(ψkn)
2 [(σminBz(p)W )k

tki
εl
tlj
+ εk

tki
(σminBz(p)W )l

tlj
]1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅},

αkl
ij (3, p) =

1

(ψkn)
2 ε

k
tki
εl
tlj
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅}.

By independence ofW andε it suffices to discuss

V kl,k′l′

p (s) =
∑

z

E[ζklzn(s, p)ζ
k′l′

zn (s, p)|FminBz(p)]

with s = 1, 2, 3 only, and the final varianceV kl,k′l′
p is the sum of the three limits in probability. Throughout each of the

next subsections we also write

βklk
′l′

ijqr (s, p) =
(
αkl
ij (s, p)− E[αkl

ij (s, p)|FminBz(p)]
)(
αk′l′
qr (s, p)− E[αk′l′

qr (s, p)|FminBz(p)]
)
,

and we introduce the auxiliary interval

B̃z(p) =
[z(p + b)kn + 2bkn

n
,
z(p + b)kn + (p− 2b)kn

n

)
,

which is slightly smaller thanBz(p), but their sizes become close asp grows eventually. Without loss of generality letp

be large enough for̃Bz(p) to be non-empty.

7.1 The contribution of the diffusion to the variance

We begin with the pure diffusion part of the variance. By definition, we have

αkl
ij (1, p) =

1

(ψkn)
2

d′∑

ν1,ν2=1

σkν1
minBz(p)

σlν2
minBz(p)

W ν1
tki
W ν2

tlj
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅}. (7.1)

In the following we will simply writeσ instead ofσminBz(p), whenever the particular time is obvious. Recall (2.4). Setting

Fz,p(k, l) = {(i, j) : ∃u, v ∈ {1, . . . , kn} with tki−u ∈ Bz(p), t
k
j−v ∈ Bz(p)},

F̃z,p(k, l) = {(i, j) ∈ Fz,p(k, l) : t
k
i ∈ B̃z(p)},

we write

∑

tki ,t
l
j∈Bz(p)

W ν1
tki
W ν2

tlj
1{(tki ,tki+kn

]∩(tlj ,t
l
j+kn

] 6=∅} =
∑

(i,j)∈Fz,p(k,l)

cnij(k, l)∆tki
W ν1∆tlj

W ν2 (7.2)
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for certain numberscnij(k, l) depending on the functiong. These constants count how often and with which weight a

particular product∆tki
W ν1∆tlj

W ν2 appears inαkl
ij (1, p). Let us start with a simple lemma.

Lemma 7.1 We have

E[ζklzn(1, p)ζ
k′l′
zn (1, p)|FminBz(p)] =

n1/2

(ψkn)4

∑

(i,j)∈Fz,p(k,l)

∑

(q,r)∈Fz,p(k′,l′)

cnij(k, l)c
n
qr(k

′, l′)

d∑

v1,v2=1

(
σkv1σlv2σk

′v1σl
′v2E[∆nk

i W v1∆
nk′

q W v1 ]E[∆nl

j W
v2∆

nl′

r W v2 ] (7.3)

+σkv1σlv2σk
′v2σl

′v1E[∆nk

i W v1∆
nl′
r W v1 ]E[∆nl

j W
v2∆

nk′
q W v2 ]

)
.

Proof: We have to compute

n1/2
∑

tki ,t
l
j∈Bz(p)

∑

tk′q ,tl′r ∈Bz(p)

E[βklk
′l′

ijqr (1, p)|FminBz(p)],

and we begin with the conditional expectation ofαkl
ij (1, p)α

k′l′
qr (1, p). Using the representations in (7.1) and (7.2)

plus measurability ofσ all we have to compute isE[∆tki
W ν1∆tlj

W ν2∆tk′q
W ν3∆tl′r

W ν4 ]. Apply the well-known prop-

erty E[N1N2N3N4] = E[N1N2]E[N3N4] + E[N1N3]E[N2N4] + E[N1N4]E[N2N3] for a (centred) normal variable

(N1, N2, N3, N4). As W ν1 andW ν2 are independent forν1 6= ν2, the conditional expectation ofαkl
ij (1, p)α

k′l′
qr (1, p)

becomes the right hand side of (7.3) plus a third term, which is easily identified as the product ofE[αkl
ij (1, p)|FminBz(p)]

andE[αk′l′
qr (1, p)|FminBz(p)]. This gives the result. 2

Using the previous lemma, the main part of the remainder consists in a computation of the constantscnij(k, l). Let us

keepi with tki ∈ Bz(p) fixed for the moment and define various auxiliary quantities,namely

j̃ = [nlfl(t
k
i−kn)], j′ = [nlfl(t

k
i )], j̄ = [nlfl(t

k
i+kn)].

These quantities obviously depend oni andn, even though it does not appear in the notation, and their useis to relate

observation times in thelth grid to those in thekth one. For example,j′ is the largest indexj such thattlj is left of tki , and

j̃ andj̄ play similar roles. There are two observations to be made: First, in order forcnij(k, l) to be non-zero, the condition

j̃ − kn + 1 ≤ j ≤ j̄ + kn − 1 (7.4)

has to hold. This is an easy consequence of the fact thattki−kn
< tlj+kn−1 andtki+kn−1 > tlj−kn

need to be satisfied in

order for the product of the corresponding increments ofY k andY l to appear inHY n. Second, it is not obvious that
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j̃ − kn + 1 andj̄ + kn − 1 correspond to time points ofBz(p) as well. However, by definition ofb we know that they do

if tki belongs toB̃z(p), as for exampletki−kn
lies within [tki − bkn

n , tki ) and thustl
j̃−kn−1

∈ [tki − 2bkn
n , tki ). Let us focus on

this case for a moment, as these terms are responsible for themain contribution toVp.

Lemma 7.2 Assume that we havetki ∈ B̃z(p) and recall the definition of the functionshkl andψ in (3.1) and (3.2). Then

we have, uniformly for all(i, j) that satisfy (7.4),

cnij(k, l) = k2nψ
(nlfl(tki )− j

kn
, hkl(t

k
i )
)
+ o(k2n). (7.5)

Proof: One singles out four cases forj and computescnij = cnij(k, l) for each of these separately. For example,

j̃ − kn + 1 ≤ j ≤ j̃ gives cnij =

j−1−(j̃−kn)∑

l1=1

kn∑

l2=max(i+1−[nkfk(t
l
j+kn−l1

)],1)

g(l1/kn)g(l2/kn),

all identities up to a possible error of (uniform) orderkn. This can be seen as follows: First, the choice ofl1 is limited, as

g(l1/kn) comes fromW tl
j−l1

which involves∆nl

tlj
W as itsl1th summand. Ifl1 is small, then at least some pre-averaged

statistics in thekth grid starting left oftk
[nkfk(t

l
j+kn−l1

)]
intersect withW tl

j−l1

and include∆nk

tki
W , and those ones are

responsible forg(l2/kn). On the other hand, ifl1 is j − (j̃ − kn) or larger, then the correspondingW tl
j−l1

has only

empty intersections with any pre-averaged statistic in thekth grid involving∆nk

i W . Similar arguments hold in the other

situations, as

j̃ < j ≤ j′ gives cnij =
kn∑

l1=1

kn∑

l2=max(i+1−[nkfk(t
l
j+kn−l1

)],1)

g(l1/kn)g(l2/kn),

j′ < j < j̄ gives cnij =

kn∑

l1=1

min(kn+i−1−[nkfk(t
l
j−l1

)],kn)∑

l2=1

g(l1/kn)g(l2/kn),

j̄ ≤ j ≤ j̄ + kn − 1 gives cnij =

kn∑

l1=j−j̄+1

min(kn+i−1−[nkfk(t
l
j−l1

)],kn)∑

l2=1

g(l1/kn)g(l2/kn).

One can forget about minimum and maximum in the second sums, becauseg vanishes outside of[0, 1] anyway. Have a

look at the first expression now. Forl1 ≥ j − (j̃ − kn) we obtain by monotonicity

i+ 1− [nkfk(t
l
j+kn−l1)] ≥ i+ 1− [nkfk(t

l
j+kn−(j−(j̃−kn))

)] = i+ 1− [nkfk(t
l
j̃
)]

≥ i+ 1− (i− kn) = kn + 1.
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By assumption ong again we see that the sum overl1 in the first expression forcnij may thus be allowed to run tokn as

well, and a similar argument for the fourth term yields:

j̃ − kn + 1 < j ≤ j′ gives cnij =

kn∑

l1=1

kn∑

l2=i+1−[nkfk(t
l
j+kn−l1

)]

g(l1/kn)g(l2/kn),

j′ < j ≤ j̄ + kn − 1 gives cnij =

kn∑

l1=1

kn+i−1−[nkfk(t
l
j−l1

)]∑

l2=1

g(l1/kn)g(l2/kn).

Also,

j̃ − kn + 1 < j ≤ j′ ⇒ kn + i− 1− [nkfk(t
l
j−l1)] ≥ kn + i− 1− [nkfk(t

l
j′−1)] ≥ kn,

and with the same reasoning for the second case we obtain the global formula

cnij =

kn∑

l1=1

kn+i−1−[nkfk(t
l
j−l1

)]∑

l2=i+1−[nkfk(t
l
j+kn−l1

)]

g(l1/kn)g(l2/kn).

In order to simplify this expression further, we use the uniform approximation

nkfk(t
l
j+kn−l1) = nkfk(t

l
j′) + nkf

′
k(t

l
j′)(t

l
j+kn−l1 − tlj′) + o(kn)

= nkfk(t
k
i ) + nkf

′
k(t

k
i )(f

−1
l ((j + kn − l1)/nl)− f−1

l (j′/nl)) + o(kn)

= i+ hkl(t
k
i )(j + kn − l1 − j′) + o(kn). (7.6)

From Lemma 6.1,|j+kn− l1−j′| ≤ Ckn holds, thus continuity offk and its first derivative justifies each approximation.

In the same way,nkfk(tlj−l1
) = i+ hkl(t

k
i )(j − l1 − j′) + o(kn), and we get

cnij =

kn∑

l1=1

kn+hkl(t
k
i )(j

′−j+l1)∑

l2=hkl(t
k
i
)(j′−j−kn+l1)

g(l1/kn)g(l2/kn) + o(k2n) = k2n

∫ 1

0

∫ 1+hkl(t
k
i )(

j′−j
kn

+u)

hkl(t
k
i )(

j′−j

kn
−1+u)

g(u)g(v)dvdu + o(k2n).

The claim can now be concluded easily. 2

With the aid of the preceding lemma it is easy to compute the main part of the variance due to Brownian motion. Recall

(3.3) and the definition of̃Fz,p(k, l). Set also

k(z, p) = [nkfk(
z(p + 3b)kn

n
)] + 1, k̃(z, p) = [nkfk(

z(p + b)kn + (p− 2b)kn
n

)]

for anyk, sotkk(z,p) (or tk
k̃(z,p)

) is usually the smallest (or the largest) point in thekth grid which lies withinB̃z(p). Then

we obtain the following result.
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Lemma 7.3 For any fixedp we have

∑

(i,j)∈F̃z,p(k,l),(q,r)∈Fz,p(k′,l′)

cnij(k, l)c
n
qr(k

′, l′)E[∆nk

i W v1∆
nk′
q W v1 ]E[∆nl

j W
v2∆

nl′
r W v2 ]

= (p− 4b)
k6n
n2
γk,l,k′,l′(t

k
k(z,p)) + o(k2n), (7.7)

uniformly inz.

Proof. The reason for restricting(i, j) to the setF̃z,p(k, l) is that it allows us to use Lemma 7.2 to obtain approximate rep-

resentations for allcnij(k, l) andcnqr(k
′, l′) that correspond to non-zero terms in the left hand side of thestatement. In fact,

sincetki is within B̃z(p), we know from Lemma 6.1 that (essentially) anytk
′

q with a non-vanishingE[∆nk

i W v1∆
nk′
q W v1 ]

lies within B̃z(p) as well, and thus the conditions for an application of Lemma 7.2 are satisfied. We obtain

∑

(i,j)∈F̃z,p(k,l),(q,r)∈Fz,p(k′,l′)

cnij(k, l)c
n
qr(k

′, l′)E[∆nk

i W v1∆
nk′
q W v1 ]E[∆nl

j W
v2∆

nl′
r W v2 ]

=

k̃(z,p)∑

i=k(z,p)

[nlfl(t
k
i+kn

)]+kn−1∑

j=[nlfl(t
k
i−kn

)]−kn+1

cnij(k, l)

[nk′fk′(t
k
i )]+1∑

q=[nk′fk′(t
k
i−1)]+1

(tki ∧ tk
′

q − tki−1 ∨ tk
′

q−1)

[nl′fl′ (t
l
j)]+1∑

r=[nl′fl′ (t
l
j−1)]+1

cnqr(k
′, l′)(tlj ∧ tl

′

r − tlj−1 ∨ tl
′

r−1) + o(k2n),

since both expectations vanish for other choices ofq andr. Using (7.5) plus continuity ofψ andnl′fl′(tlj) = nl′fl′(t
k
i ) +

hl′l(t
k
i )(j − nlfl(t

k
i )) + o(kn), which can be shown in the same way as (7.6), we get

cnqr(k
′, l′) = cn

[nk′fk′ (t
k
i )][nl′fl′(t

l
j)]
(k′, l′) + o(k2n) = k2nψ

(
hl′l(t

k
i )
nlfl(t

k
i )− j

kn
, hk′l′(t

k
i )
)
+ o(k2n).

Using this approximation, we lose dependence ofcnqr(k
′, l′) on q andr. We conclude

∑

(i,j)∈F̃z,p(k,l),(q,r)∈Fz,p(k′,l′)

cnij(k, l)c
n
rs(k

′, l′)E[∆nk

i W v1∆
nk′
q W v1 ]E[∆nl

j W
v2∆

nl′
r W v2 ]

= k4n

k̃(z,p)∑

i=k(z,p)

(tki − tki−1)

[nlfl(t
k
i+kn

)]+kn−1∑

j=[nlfl(t
k
i−kn

)]−kn+1

(tlj − tlj−1)

ψ
(nlfl(tki )− j

kn
, hk,l(t

k
i )
)
ψ
(
hl′l(t

k
i )
nlfl(t

k
i )− j

kn
, hk′l′(t

k
i )
)
+ o(k2n).

Again a Taylor expansion gives

tlj − tlj−1 =
1

nlf
′
l (t

k
i )

+ o(n−1) (7.8)
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and similarly fortki −tki−1, and using (7.6) once more we obtainnlfl(tki+kn
) = nlfl(t

k
i )+hlk(t

k
i )kn+o(kn) plus a similar

result fortki−kn
. Thus a Riemann approximation and continuity of all functions involved give

∑

(i,j)∈F̃z,p(k,l),(q,r)∈Fz,p(k′,l′)

cnij(k, l)c
n
rs(k

′, l′)E[∆nk

i W v1∆
nk′
q W v1 ]E[∆nl

j W
v2∆

nl′
r W v2 ]

=
k5n
n2

k̃(z,p)∑

i=k(z,p)

1

mkf
′
k(t

k
i )
γk,l,k′,l′(t

k
i ) + o(k2n) =

k5n
n2
k̃(z, p)− k(z, p)

mkf
′
k(t

k
k(z,p))

γk,l,k′,l′(t
k
k(z,p)) + o(k2n).

The claim follows now from yet another Taylor expansion. 2

Lemma 7.3 only gives information about the variance part coming from thosetki which belong toB̃z(p). For a fixed

p the other terms are not negligible, and in order to prove Theorem 6.3 it is necessary to show convergence of their con-

tribution toE[βklk
′l′

ijqr (1, p)|FminBz(p)] as well. This is why we need two additional results on their asymptotic behavior,

which of course are similar in spirit to the preceding ones. Set

k̄(z, p) = [nkfk(
z(p + b)kn

n
)] + 1, k̂(z, p) = [nkfk(

z(p + b)kn + pkn
n

)]

and letF̃ c
z,p(k, l) be the complement of̃Fz,p(k, l) in Fz,p(k, l). As an analogue of the functionψ we define

ϑ(s, x, y1, y2, y3, y4) =

∫ y2

y1

∫ min{1+x(s+u),y4}

max{(u−1+s)x,y3}
g(u)g(v)dvdu

also.

Lemma 7.4 Assume(i, j) ∈ F̃ c
z,p(k, l). Then for any non-zerocnij(k, l) we have the uniform approximation

cnij(k, l) = k2nϑ
(nlfl(tki )− j

kn
, hkl(t

k
i ),

j − l̂(z, p)

kn
,
j − l̄(z, p)

kn
,
i− k̂(z, p)

kn
,
i− k̄(z, p)

kn

)
+ o(k2n). (7.9)

Lemma 7.4 can obviously be proven in the same way as Lemma 7.2 (but with some more cases to distinguish between),

and the only differences between both representations are the extra conditions on the bounds of the integrals, which arise

naturally sincecnij(k, l) is computed at the boundary ofBz(p).

Finally, we need some additional notation. We set

ρk,l,k′,l′(w, x) =
1

nlf
′
l (w)

∫ hlk(w)x

−(1+hlk(w))
ϑ
(
s, hkl(w), 0, hlk(w)x− s, 0, x

)

ϑ(hl′l(w)
(
s,
hk′l′(w)

hl′l(w)
, 0, hlk(w)x− s, 0, x

)
)ds
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and

λk,l,k′,l′(w, x) =
1

nlf
′
l (w)

∫ (1+hlk(w))

hlk(w)x−1
ϑ
(
s, hkl(w), hlk(w)x− s, 1, x, 1

)

ϑ(hl′l(w)
(
s,
hk′l′(w)

hl′l(w)
, hlk(w)x − s, 1, x, 1

)
)ds.

Lemma 7.5 We have

∑

(i,j)∈F̃ c
z,p(k,l),(q,r)∈Fz,p(k′,l′)

cnij(k, l)c
n
qr(k

′, l′)E[∆nk

i W v1∆
nk′
q W v1 ]E[∆nl

j W
v2∆

nl′
r W v2 ]

=
k6n
n2

( 1

mkf
′
k(t

k
k̄(z,p)

)

∫ 2bmkf
′
k
(tk

k̄(z,p)
)

0
ρk,l,k′,l′(t

k
k̄(z,p), x)dx (7.10)

+
1

mkf
′
k(t

k
k̃(z,p)

)

∫ 1

−2bmkf
′
k
(tk

k̃(z,p)
)
λk,l,k′,l′(t

k
k̃(z,p)

, x)dx
)
+ o(k2n), (7.11)

uniformly inz.

Proof. Without loss of generality we prove the result fork̄(z, p) ≤ i < k(z, p) only. Note by assumption onb andg that

(7.9) reduces to

cnij(k, l) = k2nϑ
(nlfl(tki )− j

kn
, hkl(t

k
i ), 0,

j − l̄(z, p)

kn
, 0,

i− k̄(z, p)

kn

)
+ o(k2n)

in this case. Mimicking the proof of Lemma 7.3 the variance part due to these terms becomes

Uk,l,k′,l′
z,p =

k(z,p)∑

i=k̄(z,p)

(tki − tki−1)

[nlfl(t
k
i+kn

)]+kn−1∑

j=l̄(z,p)

(tlj − tlj−1)c
n
ij(k, l)c

n
[nk′fk′(t

k
i )][nl′fl′(t

l
j )]
(k′, l′),

up to an error of ordero(k2n). A similar Taylor expansion as (7.6) gives

cn
[nk′fk′ (t

k
i )][nl′fl′(t

l
j )]
(k′, l′)

= k2nϑ(hl′l(t
k
i )
(nlfl(tki )− j

kn
,
hk′l′(t

k
i )

hl′l(t
k
i )
, 0,

j − l̄(z, p)

kn
, 0,

i− k̄(z, p)

kn

)
) + o(k2n).

Using (7.8) and a Riemann sum argument we obtain

Uk,l,k′,l′
z,p = k5n

k(z,p)∑

i=k̄(z,p)

(tki − tki−1)
1

nlf
′
l (t

k
i )

∫ nlfl(t
k
i )−l̄(z,p)

kn

−(1+hlk(t
k
i ))

ϑ
(
s, hkl(t

k
i ), 0,

nlfl(t
k
i )− l̄(z, p)

kn
− s, 0,

i− k̄(z, p)

kn

)

ϑ(hl′l(t
k
i )
(
s,
hk′l′(t

k
i )

hl′l(t
k
i )
, 0,

nlfl(t
k
i )− l̄(z, p)

kn
− s, 0,

i− k̄(z, p)

kn

)
)ds+ o(k2n).
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The final step differs from the previous proof, as the dependence oni is more involved now. We use continuity to obtain

nlfl(t
k
i )− l̄(z, p)

kn
=
nlfl(t

k
i )− nlfl(t

k
k̄(z,p)

)

kn
+ o(1) = hlk(t

k
k̄(z,p))

i− k̄(z, p)

kn
+ o(1),

and applying (7.8) on(tki − tki−1) plus replacing eachtki by tk
k̄(z,p)

due to continuity again, we derive

Uk,l,k′,l′
z,p =

k6n
n2

1

mkf
′
k(t

k
k̄(z,p)

)

∫ k(z,p)−k̄(z,p)
kn

0
ρk,l,k′,l′(t

k
k̄(z,p), x)dx + o(k2n).

The claim can now be obtained easily. 2

It is obviously possible to replacẽk(z, p) and k̄(z, p) in (7.10) and (7.11) byk(z, p) without affecting the approxima-

tion error. We set

ϕk,l,k′,l′(p,w) = (p − 4b)γk,l,k′,l′(w) +
1

mkf
′
k(w)

∫ 2bmkf
′
k
(w)

0
ρk,l,k′,l′(w, x)dx

+
1

mkf
′
k(w)

∫ 1

−2bmkf
′
k
(w)

λk,l,k′,l′(w, x)dx,

and it is simple now to derive the following theorem which concludes this section.

Theorem 7.6 We have

V kl,k′l′
p (1) =

∑

z

E[ζklzn(1, p)ζ
k′l′
zn (1, p)|FminBz(p)]

=
θ

pψ4

∫ 1

0

(
ϕk,l,k′,l′(p,w)Σ

kk′
w Σll′

w + ϕk,l,l′,k′(p,w)Σ
kl′
w Σlk′

w

)
dw + oP(1).

For p→ ∞, we conclude

V kl,k′l′

p (1)
P−→ θ

ψ4

∫ 1

0

(
γk,l,k′,l′(w)Σ

kk′

w Σll′

w + γk,l,l′,k′(w)Σ
kl′

w Σlk′

w

)
dw,

which equals the pure diffusion part of (3.4).

7.2 The contribution of the remaining parts to the variance

In this final subsection we give some ideas on how to obtain formulas forV kl,k′l′
p (2) andV kl,k′l′

p (3), from which Theorem

6.3 (and thus in turn Theorem 3.1) can be concluded.

The main intuition in both cases it that one obtains representations forαkl
ij (2, p) andαkl

ij (3, p) which are closely

related to (7.2) in the sense that those constantscnij(k, l) and c̃nij(k, l), say, can be treated in the same way as in Lemma
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7.2 and Lemma 7.4. In fact, the only difference is thatg(l1/kn) sometimes has to be replaced by(−1/kn)g
′(l1/kn), since

(g(l1/kn)− g((l1 + 1)/kn))ε
l
tlj

plays the role ofg(l1/kn)∆
nl

j W now, and so the approximating functions in a version of

Lemma 7.2 naturally becomeψ andψ̃ from (3.2).

Also, Lemma 7.3 and Lemma 7.5 have expressions in this context, but the first difference is that one does not sum

over all (i, j) and(p, q) now, but only over those for whichtlj andtl
′

r , say, coincide, as otherwiseE[εl
tlj
εl

′

tl′r
] 6= 0 is not

satisfied. Second,

tlj − tlj−1 =
1

nlf
′
l (t

k
i )

+ o(n−1)

is not included in the sum anymore, as this term came from an increment of Brownian motion. This explains the need for

the additional termsmll′f
′
ll′ in γ andγ̃, as the Riemann approximation otherwise does not hold.
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