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Abstract

The adequate representation of input models is an important step in building valid sim-
ulation models. Modeling independent and identically distributed data is well estab-
lished in simulation, but for some application areas like computer and communication
networks it is known, that the assumption of independent and identically distributed
data is violated in practice and that for example interarrival times or packet sizes ex-
hibit autocorrelation over a large number of lags. Moreover, it is known that negligence
of these correlations can result in a serious loss of validity of the simulation model.

Although different stochastic processes, which can model these autocorrelations,
like e.g. Autoregressive-To-Anything (ARTA) processes and Markovian Arrival Pro-
cesses (MAPs), have been proposed in the past and more recently fitting algorithms to
set the parameters of these processes such that they resemble the behavior of observa-
tions from a real system have been developed, the integration of correlated processes
into simulation models is still a challenge.

In this work ARTA processes are extended in several ways to account for the require-
ments when simulating models of computer and communication systems. In a first step
ARTA processes are extended to use an Autoregressive Moving Average (ARMA) pro-
cess instead of a pure Autoregressive (AR) base process to be able to capture a large
number of autocorrelation lags, while keeping the model size small. In a second step
they are enabled to use the flexible class of acyclic Phase-type distributions as marginal
distribution.

To support the usage of these novel processes in simulation models a fitting algo-
rithm is presented, software for fitting and simulating these processes is developed and
the tools are integrated into the toolkit ProFiDo, which provides a complete framework
for fitting and analyzing different stochastic processes.

By means of synthetically generated and real network traces it is shown that the pre-
sented stochastic processes are able to provide a good approximation of the marginal
distribution as well as the correlation structure of the different traces and result in a
compact process description.
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Chapter 1
Introduction

The performance analysis of computer and communication systems has a long history.
Whenever a new system is designed or an existing system is altered one is interested in
forecasting the behavior of the system in a quantitative way. Because of the increasing
complexity of these systems it is not possible or feasible to run experiments with the
real system to obtain performance measures, which makes use of stochastic models
necessary. Depending on the performance measures of interest and on the level of
detail of the model different types of stochastic models and analysis techniques are
applicable. In the past these systems have for example been modeled using queue-
ing networks or stochastic Petri nets [71]. If the model respects certain requirements,
i.e. the used probability distributions are (combinations of the) exponential distribu-
tion, numerical techniques can be applied for analysis [143]. However, because of the
aforementioned complexity of the systems the models can only be analyzed by simu-
lation [104] in many cases, which does not assume any restrictions for the model. In
any case these models have to represent the relevant behavior that is observed from
the real system and thus, an important step in constructing the models is the defini-
tion of accurate input models for interarrival times, failure or repair times, packet sizes
and other specific properties of the modeled system. Often measurements from the
real system are available in form of traces and one is looking for an input model that
captures characteristics of these traces.

Usually these input models are described by general distributions, implying inde-
pendent and identically distributed (iid) interarrival times or packet sizes. The theory
of fitting distributions to observations from a real system is well understood [104, 158]
and several (commercial) tools like ExpertFit [105] or the Arena Input Analyzer
[134] are available for this task. However, in some application areas like computer
and communication systems it is known that the assumption of independent and iden-
tically distributed interarrival times is violated in practice. It has been shown that
network traffic [54, 114, 130], file or disk access patterns [138, 160] and failures in
software [69] or hardware systems exhibit correlation that can be observed over large
periods of time. Moreover, it is known that negligence of these correlations can result
in a serious loss of validity of the simulation model [109].

In the past several stochastic processes have been proposed that are able to capture
these autocorrelations. Known for a long time are Autoregressive Moving Average
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(ARMA) Processes [35] and Markovian Arrival Processes (MAPs) [120].
MAPs are described by a Continuous Time Markov Chain (CTMC) where some

transitions indicate an arrival event and are a flexible class of stochastic processes that
can be applied to capture a wide range of different stochastic behaviors. Because of
their interpretation as a CTMC MAPs can be used for queueing networks that should
be analyzed numerically [143] or with matrix analytical methods [120]. But, of course,
models using MAPs as input models can also be analyzed by simulation [104], which
has for example been done in [146].

ARMA processes specify stationary time-dependent input processes and are mod-
eled as the weighted sum of previous observations and a random term, called inno-
vation. A generalization of ARMA processes, called Autoregressive Integrated Mov-
ing Average (ARIMA) Process, can also be used to describe non-stationary behavior.
AR(I)MA models are usually used as discrete-time processes [107]. For example in
[165] the number of arrivals in a given interval is modeled by an ARIMA process.
However, ARIMA models can also be used to model interarrival time processes, which
has for example been done in [154]. A major drawback of ARIMA models is that they
result in marginal normal distributions, which might not be adequate for many appli-
cations.

More recent approaches try to overcome this limitation of ARIMA processes by
transforming the process such that it can express other marginal distributions, most
notably the Autoregressive-To-Anything (ARTA) process [47], which combines an AR
base process with an arbitrary marginal distribution and relies on the inversion of the
cumulative distribution function of the marginal distribution. Models using ARIMA
or ARTA processes can only be analyzed by simulation.

Since these stochastic processes should capture the behavior of observations that
have been measured in a real system, fitting algorithms have to be developed that
set the parameters of the processes such that they exhibit the desired behavior. For
ARIMA processes such algorithms have been incorporated into software for statistical
computing like R [149]. For ARTA processes and MAPs first prototype implementa-
tions have been developed only recently. Numerical methods to construct the AR base
process of an ARTA model with a given marginal distribution have been proposed in
[48]. A more recent approach that can fit both, AR base process and a marginal dis-
tribution from the Johnson system, is presented in [25]. Parameter fitting for MAPs
is a nonlinear optimization problem, which becomes even more complex because the
matrices describing the MAP are known to contain redundant information [147] and a
canonical representation is only available for MAPs of order two [31]. Nevertheless,
several approaches have been proposed to fit the parameters of a MAP according to
a trace, which can basically be divided into two classes. Expectation Maximization
(EM) algorithms like the one from [40] use the complete information of the trace to
maximize the likelihood. EM algorithms have a slow convergence and are not really
feasible for fitting MAPs with a high order to large traces. The second class of ap-
proaches uses some derived properties from the trace like empirical moments, joint
moments or lag-k autocorrelation coefficients. These algorithms are much faster than
EM algorithms, but do not use the complete information from the trace for fitting.
Examples for such approaches are given in [42, 84].

Although several stochastic processes exist and fitting methods are at least avail-
able as prototype implementations, the incorporation of these processes into simula-
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CHAPTER 1. INTRODUCTION

tion models is still a challenge [22]. Common simulation tools like Arena [94, 134],
Extend [98, 99] or AutoMod [7, 139] only offer distributions as input models. But
even in simulation frameworks that are dedicated to network modeling [161] there
is only little support for stochastic processes. The network simulation framework
OMNeT++ [78] has only built-in support for random number generation from different
distributions. More elaborate traffic generators have been proposed recently, e.g. [33]
generates Voice over IP traffic from real sound files and the HTTP extensions presented
in [91] allow for the specification of activity periods for traffic generation, but there is
no native support for stochastic processes. For other network simulators like ns-2 and
its successor ns-3 [75] the picture is similar.

In summary, the situation with stochastic processes as input models for simulation is
not really satisfactory. Although the modeling of correlation is considered as one of the
most important issues in simulation [23], the tool support for actually using stochastic
processes in simulation models is insufficient. Even though several different fitting
tools exist, they all require a different handling and use different input and output for-
mats, which makes it cumbersome to fit stochastic processes of different types and to
integrate them into simulation models. These issues have partially been addressed with
the development of ProFiDo [12], which is a flexible toolkit for fitting distributions and
stochastic processes, that makes the different fitting tools accessible in a coherent way
by establishing an XML format for process descriptions. Yet missing is the possibility
for easy integration of these processes into simulation models.

These observations clearly motivate the work done in this thesis. In an empirical
study the existing stochastic processes will be assessed regarding their suitability as
input models in simulation. After some of the weaknesses and disadvantages have
been pointed out, several extensions and improvements for the ARTA approach are
proposed. These theoretical ideas result in a fitting tool for the newly proposed types of
stochastic processes, which is integrated into the ProFiDo framework. To support the
easy integration of stochastic processes into simulation models a module for OMNeT++
is developed, which is integrated into ProFiDo as well. In particular, the following
issues will be addressed in this work.

1.1. Outline and Contribution

In the remainder of this chapter some basic concepts of probability theory are summa-
rized that will be helpful to understand the following chapters. Chapter 2 introduces
different stochastic processes that have been proposed in the past for traffic modeling,
summarizes their properties and presents some of the available fitting methods. The
main focus of this chapter is on ARMA Processes, ARTA Processes and MAPs, which
are the most commonly used types of processes and which are relevant to the con-
cepts developed in this thesis. In Chapter 3 the three mentioned classes of stochastic
processes are assessed in an empirical study. This study points out some drawbacks
of these processes to motivate the work in the following chapters. In Chapters 4, 5
and 6 ARTA processes are extended in several directions. In Chapter 4 ARTA pro-
cesses are enabled to use an ARMA base process instead of an AR process. For the
interesting class of Phase-type distributions [119] the ARTA approach is not feasible,
since in general the inverse cumulative distribution function cannot be computed ef-

3



1.2. NOTATIONS

ficiently for this type of distributions. In Chapter 5 a new approach for combining
Hyper-Erlang distributions with an ARMA base process is proposed, which does not
rely on the computation of the inverse cumulative distribution function as the original
ARTA approach does. In Chapter 6 these ideas are generalized for acyclic Phase-type
distributions. Chapter 7 incorporates the ideas from Chapters 4, 5 and 6 into one al-
gorithmic framework. In Chapter 8 another empirical study is presented that evaluates
the fitting quality of the newly developed processes and compares them with existing
approaches. As already mentioned before there is only little support in existing sim-
ulation tools for stochastic processes. Chapter 9 presents several tools for fitting and
simulation of the proposed processes, which are integrated into the toolkit ProFiDo
and provide a complete framework for fitting and analyzing of stochastic processes.
This thesis ends with the conclusions in Chapter 10.

The main theoretical contributions of this thesis can be found in Chapters 5 and 6
where a novel approach is presented to combine acyclic Phase-type distributions with
an ARMA base process to model correlated data with Phase-type distribution. Chap-
ter 5 outlines the ideas for a special class of Phase-type distributions, namely Hyper-
Erlang distributions, and Chapter 6 generalizes these ideas for acyclic Phase-type dis-
tributions. Additionally, Chapter 6 presents transformations for the PH distributions
that can be applied to increase the range of autocorrelation that can be modeled by the
newly developed stochastic processes. A minor contribution can be found in Chapter 4
where the ARTA approach is extended to use an ARMA base process instead of an AR
process. The practical contributions of this work are presented in Chapter 9. In this
chapter a fitting tool for the stochastic processes from Chapters 4-6 is presented. Addi-
tionally, a module for the simulation framework OMNeT++ is introduced, which allows
for an easy integration of stochastic processes into simulation models. Both tools are
integrated into the framework ProFiDo. Chapter 7 links the theoretical results to the
practical implementation and outlines an algorithm using the ideas from Chapters 4-6
to fit the proposed stochastic processes. The work is accompanied by two empirical
studies in Chapters 3 and 8 to assess the quality of existing and the newly developed
stochastic processes.

Some parts of this work have already been published before. Most of the empirical
work from Chapter 3 appeared in [11]. Parts of the results from Chapter 8 are taken
from [100]. An earlier version of the software described in Section 9.3 was sketched
in [101].

1.2. Notations

Throughout this work the following notations will be used. Matrices and vectors will
both be typeset in bold face. Matrices will usually be denoted with capital letters (e.g.
M), while lower-case letters are used for vectors (e.g. u). uT denotes the transposed
vector u. We will use 1 to describe a column vector of 1’s, i.e. (1, 1, . . . , 1)T , and I to
denote the identity matrix. Random variables are printed in capital letters, e.g. U for
an uniformly distributed random variable. For discrete-time stochastic processes and
sequences of random variables the time index is denoted as t, e.g. {Ut}, t = 1, 2, . . . de-
scribes a sequence of random variables with uniform distribution. A continuous-time
stochastic process is denoted as {X(t)}. A list with symbols that are used frequently
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CHAPTER 1. INTRODUCTION

throughout this thesis can be found in Appendix A for reference.

1.3. Basic Definitions

In the following a brief reminder on basic concepts of probability theory is given to
introduce some ideas and definitions that are helpful to understand the approaches
presented in this thesis. A more elaborate overview can be found in any textbook
about probability theory and statistics like for example [155].

1.3.1. Random Variables

A random variable is a function X : S → R assigning a real number to each point of
the sample space S. The sample space is a set of all possible outcomes of a stochastic
experiment. The outcomes themselves are called sample points. An event is a subset of
the sample space, i.e. a collection of sample points. Equivalently conditions defining
this subset are called an event.
The (cumulative) distribution function of the random variable X is defined as

F(x) = P(X ≤ x) for −∞ < x < ∞

and has the following properties:

• 0 ≤ F(x) ≤ 1 ∀x,

• F(x) is nondecreasing,

• lim
x→∞

F(x) = 1, lim
x→−∞

F(x) = 0.

A random variable X can be either discrete or continuous. In the discrete case X can
take on at most a countable number of values x1, x2, . . .. The probability mass function
given by p(xi) = P(X = xi) denotes the probability that a discrete random variable X
has the value xi. Of course,

∑∞
i=1 p(xi) = 1 has to hold. The distribution function for a

discrete random variable can be calculated using the probability mass function:

F(x) =
∑
xi≤x

p(xi) for all −∞ < x < ∞.

In the continuous case a random variable can take on an uncountably infinite number
of values. Probabilities of continuous random variables are defined in terms of the
probability density function f (x) and for B ⊆ S we have that P(X ∈ B) =

∫
B

f (x)dx
and

∫ ∞
−∞

f (x)dx = 1. For the distribution function we have that

F(x) = P(X ∈ [−∞, x]) =

∫ x

−∞

f (y)dy for all −∞ < x < ∞.

The conditional probability of A ⊆ S given B ⊆ S is P(A|B) =
P(A∩B)

P(B) . If the
probability of event A does not change regardless of whether B has occurred or not,
A andB are independent and we have that P(A|B) = P(A) and P(A∩B) = P(A)P(B).
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1.3. BASIC DEFINITIONS

1.3.2. Joint Distributions of Random Variables

Considering more than one random variable simultaneously one can define the joint
probability mass function in the discrete case and the joint probability density function
in the continuous case, respectively.
The joint probability mass function for two discrete random variables X and Y is de-
fined by p(x, y) = P(X = x,Y = y) for all x, y. If one is concerned with more than one
random variable, the probability mass function of a single variable is called marginal
probability mass function. X and Y are independent if p(x, y) = p(x)p(y) for all x, y
where the marginal probability mass functions of X and Y are defined as p(x) =∑
y p(x, y) and p(y) =

∑
x p(x, y), respectively. For continuous random variables we

have

P(X ∈ A,Y ∈ B) =

∫
B

∫
A

f (x, y)dxdy.

Here X and Y are independent if f (x, y) = f (x) f (y) for all x, y and the marginal prob-
ability density functions of X and Y are defined as f (x) =

∫ ∞
−∞

f (x, y)dy and f (y) =∫ ∞
−∞

f (x, y)dx. Of course, the above definitions can be generalized for more than two
random variables.

1.3.3. Properties of Random Variables

Of particular interest are some characteristic properties of a random variable, the so-
called moments. The first moment is the mean or expected value, denoted by µ, which
is defined as

µ = µ1 = E[X] =


∑∞

i=1 xi p(xi) if X is discrete with values x1, x2, . . .∫ ∞
−∞

x f (x)dx if X is continuous.

The mean is a measure of central tendency of a random variable. An alternative mea-
sure for this is the median x0.5, which is defined as the smallest value of x such that
F(x) ≥ 0.5.
Consider a random variable X and a second random variable Y that can be expressed
as a function of X, i.e. Y = ζ(X). To compute E[Y] one may use

E[Y] = E[ζ(X)] =


∑∞

i=1 ζ(xi)p(xi) if X is discrete with values x1, x2, . . .∫ ∞
−∞

ζ(x) f (x)dx if X is continuous.

Of special interest is ζ(X) = Xk and for k = 1, 2, 3, . . ., µk = E[Xk] is known as the k-th
moment of the random variable X.
The mode of a random variable is the number x for that p(x) (in the discrete case) or
f (x) (in the continuous case) reaches its maximum.
The variance of a random variable X is a measure of the dispersion of X about its
mean. It is defined by σ2 = Var[X] = E[(X − µ)2] = E[X2] − µ2 where σ is called the
standard deviation.
Further measures often used in performance analysis are the coefficient of variation
defined by

CX =
σ

E[X]

6



CHAPTER 1. INTRODUCTION

and the squared coefficient of variation defined by

C2
X =

Var[X]
E[X]2 =

E[X2]
E[X]2 − 1,

which are expressions for the variance of a random variable X relative to its average
value. The range of variability of the squared coefficient of variation is a common
measure to characterize the flexibility in approximating a given general distribution.
All the properties given above are properties of a single random variable. Next mea-
sures of dependence between two random variables are considered. The covariance
Ci j is a measure of linear dependence between the random variables Xi and X j with
mean µi and µ j, respectively:

Ci j = Cov[Xi, X j] = E[(Xi − µi)(X j − µ j)] = E[XiX j] − µiµ j.

If Ci j = 0 the random variables Xi and X j are uncorrelated. If Ci j > 0 then Xi and X j

are positively correlated, which means that Xi > µi and X j > µ j as well as Xi < µi and
X j < µ j tend to occur together. If Xi and X j are negatively correlated (Ci j < 0) Xi < µi

and X j > µ j as well as Xi > µi and X j < µ j tend to occur together.
Since the covariance Ci j is not dimensionless a better measure of dependence between
Xi and X j is the correlation

ρi j = Corr[Xi, X j] =
Ci j√
σ2

i σ
2
j

for which −1 ≤ ρi j ≤ 1 holds.

1.3.4. Stochastic Processes

In the previous sections on random variables and probability distributions we referred
to a random variable X taking on some value x1 but disregarded the time the variable
took on this value. Including the notion of time leads to stochastic processes, which are
families of random variables {X(t)} defined over the same probability space. Stochas-
tic processes can be classified depending on the state space and the time parameter of
random variables X(t) for different values of t.
If the number of values in the state space of X(t) is finite or countable, we have a
discrete-state process (also called chain), otherwise a continuous-state process. If the
times at which we observe values of X(t) are finite or countable, we have a discrete-
time process. In this case the process is called a stochastic sequence and we may write
Xt instead of X(t).
Similar as we defined the covariance and the correlation as a measure of dependence
between two random variables, we may define the autocovariance and the autocorrela-
tion as a measure of dependence among the random variables of a (discrete or continu-
ous time) stochastic process. For two time points t1, t2 and the random variables X(t1)
and X(t2) from the stochastic process {X(t)} with mean µ the autocovariance is defined
as

γ(t1, t2) = Cov[X(t1), X(t2)] = E[(X(t1) − µ)(X(t2) − µ)].

7
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In case of an stationary process only the difference (or lag) k between t1 and t2 is
important, thus the autocovariance can be written as

γ(k) = γk = E[(X(t) − µ)(X(t + k) − µ)].

The autocorrelation function of lag k is then defined as

ρk =
γk

γ0
=

E[(X(t) − µ)(X(t + k) − µ)]
σ2 .

1.3.5. Markov Processes

Markov processes are stochastic processes {X(t)} with the so-called Markov property
stating that

P(X(t) = x | X(tn) = xn, X(tn−1) = xn−1, . . . , X(t0) = x0)

= P(X(t) = x | X(tn) = xn), t > tn > tn−1 > · · · > t0. (1.1)

This means that the next state of the Markov process is only determined by the present
state X(tn) but not by the previous states. Markov processes are the basis for the def-
inition of Phase-type distributions and Markovian Arrival Processes, which are intro-
duced in Section 2.3.
As already mentioned we can classify Markov processes depending on state space and
time parameter: If the state space is discrete the process is called Markov chain. We
can distinguish between discrete-time Markov chains (DTMC) and continuous-time
Markov chains (CTMC). In the following we will only consider Markov chains, i.e.
Markov processes with a discrete state space.
To satisfy the Markov property the sojourn time (i.e. the time spent in a state of a
Markov chain) must exhibit the memoryless property, i.e. for the sojourn time Y we
require that P(Y > t + s | Y > t) = P(Y > s) for all t, s ≥ 0 has to hold. Since the
exponential and the geometric distribution are the only distributions possessing this
property, the sojourn times are exponentially distributed in the continuous case and
geometrically distributed in the discrete case.
A Markov process is called nonhomogeneous if the transitions out of state X(t) depend
on the time t. If they are independent of time, the process is called homogeneous [143].

Discrete-time Markov Chains

For DTMCs the Markov property from Equation 1.1 can be written as

P(Xn+1 = xn+1 | Xn = xn, . . . , X0 = x0) = P(Xn+1 = xn+1 | Xn = xn).

The conditional probabilities pi j(n) = P(Xn+1 = j | Xn = i), for all n = 0, 1, . . . are
called (single-step) transition probabilities between states i and j of the DTMC. In
case of a homogeneous Markov chain the time parameter n may be dropped resulting
in pi j = P(Xn+1 = j | Xn = i), for all n = 0, 1, . . ., which we will assume in the follow-
ing. The matrix P consisting of the pi j in row i and column j for all i and j is called
the transition probability matrix. We have that 0 ≤ pi j ≤ 1 and for all i,

∑
j pi j = 1.

The single-step transition probabilities may be generalized to n-step transition proba-
bilities p(n)

i j = P(Xm+n = j | Xm = i). The n-step transition probabilities can be obtained

8
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from the single-step transition probabilities using the so called Chapman-Kolmogorov
equations [143], which yield Pn as matrix for n-step transition probabilities.
To study the long-run behavior the states of a Markov-Chain can be classified depend-
ing on whether they are visited infinitely often or a finite number of times [155]. A
state i is transient (or nonrecurrent) if and only if there is a positive probability that the
process will not return to this state. State i is recurrent if and only if starting from i the
process eventually returns to i with probability 1. If pii = 1 the state i is absorbing.
Let f (n)

i j be the conditional probability that the first visit to state j from state i occurs in
exactly n steps. We have that [155]

p(n)
i j =

n∑
k=1

f (k)
i j p(n−k)

j j , n ≥ 1.

Let fi j denote the probability, that, starting from i, we will ever visit state j, i.e. fi j =∑∞
n=1 f (n)

i j . Thus we have, that state i is recurrent if fii = 1 and transient if fii < 1.
The mean recurrence time of a state i with fii = 1 is defined as

υi =

∞∑
n=1

n f (n)
ii .

If υi is finite the state i is recurrent nonnull (or positive recurrent) and if υi is infinite i
is recurrent null.
Consider a recurrent state i and the set {n | p(n)

ii > 0} of positive integers. The greatest
common divisor of that set is called the period of state i and is denoted by di. A
recurrent state i is aperiodic if di = 1 and periodic if di > 1.
A finite Markov chain is irreducible if every state can be reached from all other states
in a finite number of steps, i.e. ∀ i, j ∃ n ≥ 1 : p(n)

i j > 0. It is known, that in
an irreducible Markov chain all states are of the same type [65], e.g. if one state is
recurrent or transient, then so are all states and we call the Markov chain recurrent or
transient, respectively.
Consider an irreducible, aperiodic and finite Markov chain. As n → ∞ the n-step
transition probabilities p(n)

i j become independent of i and n, i.e.

π j = lim
n→∞

p(n)
j = lim

n→∞
P(Xn = j) = lim

n→∞
p(n)

i j .

The vector π containing π j at position j is called the steady-state or stationary proba-
bility vector and we have that π = πP and π j ≥ 0,

∑
j π j = 1.

Continuous-time Markov Chains

We can define CTMCs along the lines of DTMCs. A CTMC is a stochastic process
{X(t), t ≥ 0} that fulfills

P(X(tn+1) = xn+1 | X(tn) = xn, . . . , X(t0) = x0) = P(X(tn+1) = xn+1 | X(tn) = xn)

for all t0 < · · · < tn < tn+1. The transition probabilities of a CTMC are given by
pi j(s, t) = P(X(t) = j | X(s) = i), t ≥ s in the nonhomogeneous case1. The state proba-
bilities at time t are denoted by p j(t) = P(X(t) = j), j = 0, 1, 2, . . . with

∑
j p j(t) = 1.

1For a homogeneous CTMC the transition probabilities only depend on the difference ς = t− s between
t and s resulting in pi j(ς) = P(X(s + ς) = j | X(s) = i), t ≥ s.

9
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The state probabilities can be expressed in terms of the transition probabilities

p j(t) = P(X(t) = j) =
∑

i

P(X(t) = j | X(v) = i)P(X(v) = i) =
∑

i

pi j(v, t)pi(v).

The vector p(0) = (p1(0), p2(0), . . .) denotes the initial probability vector of the CTMC.
A DTMC can be represented by a matrix of transition probabilities. For a CTMC one
can state a matrix of transition rates in a similar way: For CTMCs the probability of a
transition from a state depends on the state and on the length of the interval of obser-
vation ∆t. pi j(t, t + ∆t) is the probability that we observe a transition in [t, t + ∆t] from
state i to j. For small intervals the probability that a transition occurs will also be very
small (pi j(t, t + ∆t) → 0 for i , j,∆t → 0), implying that pii(t, t + ∆t) → 1,∆t → 0.
For larger ∆t the probability that one or more transitions occur will increase. We
would like to ensure, that ∆t is so small that the probability of more than one transition
within this period is negligible. More formally, the probability should be o(∆t) where
lim

∆t→0

o(∆t)
∆t = 0.

The transition rate qi j(t) denotes the number of transitions from state i to state j at
time t per unit time and does not depend on the length of the observation interval ∆t.
However, the transition rate and the transition probability are related:

qi j(t) = lim
∆t→0

{
pi j(t, t + ∆t)

∆t

}
, i , j.

This implies that pi j(t, t + ∆t) = qi j(t)∆t + o(∆t), i , j. Additionally we have pii(t, t +

∆t) = 1 + qii(t)∆t + o(∆t). This follows from (cf. [143])

1 − pii(t, t + ∆t) =
∑
j,i

pi j(t, t + ∆t) =
∑
j,i

qi j(t)∆t + o(∆t)

implying that

qii(t) ≡ lim
∆t→0

{
pii(t, t + ∆t) − 1

∆t

}
= lim

∆t→0

{
−

∑
j,i qi j(t)∆t + o(∆t)

∆t

}
and finally

qii(t) = −
∑
j,i

qi j(t).

Out of the elements qi j(t) we can construct the infinitesimal generator matrix for the
CTMC:

Q(t) = lim
∆t→0

{
P(t, t + ∆t) − I

∆t

}
where P(t, t + ∆t) is the transition probability matrix consisting of the pi j(t, t + ∆t)
and I the identity matrix. As mentioned before, the sojourn times of the CTMC are
exponentially distributed. The rate of this distribution is given by −qii(t) for state i.
For a homogeneous CTMC the transition rates qi j are independent of time and we may
simply write the matrix as Q.
The classification of states in a CTMC works similar to the classification in a DTMC.
A state i is absorbing if qi j = 0 for all i , j. A state j is reachable from state i if for
some s, t we have pi j(s, t) > 0. A CTMC is irreducible if every state can be reached

10
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from every other state.
For an irreducible, homogeneous CTMC with all states being recurrent nonnull the
limits

π′j = lim
t→∞

pi j(t) = lim
t→∞

p j(t)

exist and are independent of the initial state i [96]. The steady-state probability vector
π′ = (π′1, π

′
2, . . .) is then determined by

π′Q = 0 and
∑

j

π′j = 1.

Irreducible CTMCs with positive limiting probabilities π′j are called recurrent nonnull
or positive recurrent.

1.3.6. Traffic Processes

Simple traffic consisting of single arrivals of e.g. packets can be equivalently described
by three different types of processes [87]: A point process consists of a sequence of
times t̂1, t̂2, . . . , t̂n, where each t̂i denotes an arrival. A counting process {N(t)}∞t=0 is
a continuous-time stochastic process with N(t) = max{n : t̂n ≤ t},N(t) ≥ 0 being
the number of arrivals in (0, t]. An interarrival time process {ti}∞i=1 is a real-valued
sequence, where ti = t̂i − t̂i−1 is the length of the time interval between two successive
arrivals t̂i−1 and t̂i.
Several models for traffic processes will be given in Chapter 2. The main focus of this
thesis is on modeling interarrival time processes for that a sequence of observations
has been obtained from a real system in form of a trace (cf. Section 1.3.8).

1.3.7. Long-Range Dependence and Self-Similarity

A property that packet traffic might exhibit is self-similarity [18, 108], which describes
the phenomenon that traffic looks statistically the same over a wide range of time
scales and is related to long-range dependence. More formally a stochastic process
X = {X(t)}∞t=0 is long-range dependent if it has an autocorrelation function of the form

ρk ≈ k−ηL1(k), as k → ∞ (1.2)

where 0 < η < 1 and L1 is a function slowly varying at infinity, i.e. lim
t→∞

L1(tx)/L1(t) =

1 for all x > 0. The autocorrelation function of long-range dependent processes decays
hyperbolically in the lag. Equation 1.2 implies that

∑∞
k=1 ρk = ∞, i.e. even though

the autocorrelations of high lags are individually small, their cumulative effect is of
importance. This distinguishes those processes from short-range dependent processes,
which have an autocorrelation function that decays geometrically, i.e. ρk ≈ rk, as k →
∞, 0 < r < 1 and 0 <

∑∞
k=1 ρk < ∞.

The degree of self-similarity is defined in terms of the Hurst parameter H. Let
X(l) = {X(l)

k }
∞
k=1 for each l ≥ 1 denote a covariance stationary time series with variance(

σ(l)
)2

, autocorrelation function ρ(l) and

X(l)
k =

1
l

l∑
i=1

Xkl−l+i.

11
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This aggregated process is obtained by averaging the original time-series X over non-
overlapping blocks of size l. The relation of statistical properties of X and X(l) allows
for propositions about the process X [87]: X is (exactly) self-similar with parameter
H = 1 − η/2 if X and

{
l1−HX(l)

k

}∞
k=1

have the same finite-dimensional distribution for
all l ≥ 1. X is (exactly) second-order self-similar with parameter H = 1 − η/2 if X and{
l1−HX(l)

k

}∞
k=1

have the same variance and autocorrelation functions for all l ≥ 1. X is
called asymptotically (second-order) self-similar with parameter H = 1− η/2 if for all
k ≥ 0

ρ(l)
k →

1
2
δ2(k2−η), as l→ ∞

where δ2( f (k)) = f (k + 1) − 2 f (k) + f (k − 1) for the sequence { f (k)}.
Let {Xk}

n
k=1 be a sequence of observations with sample mean X̄(n) and sample vari-

ance S 2(n). Then the rescaled adjusted range statistic or short R/S statistic is given
by

R(n)
S (n)

=
max{0,W1, . . . ,Wn} −min{0,W1, . . . ,Wn}

S (n)

where Wk =
∑k

i=1 Xi − kX̄(n). According to [86] many naturally occurring time series
can be modeled by

E
[
R(n)
S (n)

]
≈ cnH , as n→ ∞

with the positive constant c and the Hurst parameter H that has typical values around
0.7. If one assumes a process with short-range dependence the relation is given by
[112]

E
[
R(n)
S (n)

]
≈ dn0.5, as n→ ∞

where d is a positive constant. The discrepancy between the two relations is called the
Hurst effect.

1.3.8. Traces and their Characteristics

When trying to find appropriate input models one usually has a set of data points
(called trace in the following) that has been observed from a real system and wants
to find a model or process description that resembles the characteristics of the trace.
A trace T is defined as a sequence of l chronologically ordered points in time t j > 0
( j = 1, . . . , l). Usually t j describes the inter-arrival time of the j-th event, but a trace
could as well contain service times, packet sizes or other data. Various characteristics
can be estimated from the trace. The estimator for the i-th moment is given by

µ̂i =
1
l

l∑
j=1

(t j)i (1.3)

and the estimator for the variance by

σ̂2 =
1

l − 1

l∑
j=1

(t j − µ̂1)2.

12
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If the trace exhibits dependencies between consecutive arrivals, the autocorrelation or
the joint moments are of interest. The autocorrelation of arrivals that are lag k apart is
estimated by

ρ̂k =
1

(l − k − 1)σ̂2

l−k∑
j=1

(t j − µ̂1)(t j+k − µ̂1). (1.4)

The estimator for the joint moments E[Xi
kX j

k+1] of consecutive arrivals is given by

ν̂i j =
1

l − 1

l−1∑
k=1

(tk)i(tk+1) j.

Finally, the empirical distribution function of a trace is given by a step function with l
steps:

FT (x) =

∑l
j=1 δ(t j ≤ x)

l
where

δ(b) =

1 if b = true,
0 if b = f alse.
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Chapter 2
Traffic Models

This chapter gives a brief overview of important model classes that are used for traf-
fic modeling, their properties and available fitting approaches. The main focus of this
chapter is on Phase-type (PH) distributions and the related Markovian Arrival Pro-
cesses (MAPs), Autoregressive Moving Average Processes and Autoregressive-To-
Anything Processes, which are all heavily related to this work. A more elaborate
overview can for example be found in [87].

In Section 2.1 Autoregressive Moving Average Processes and related models are in-
troduced. These models can be used for modeling traffic data and moreover, can serve
as a base process for several other approaches. An example for this are Autoregressive-
To-Anything Processes, which are presented in Section 2.2. Section 2.3 summarizes
results for PH distributions and MAPs and finally, Section 2.4 mentions further exist-
ing approaches for traffic modeling.

2.1. Autoregressive-Type Traffic Models

The class of Autoregressive Moving Average Processes is known since the work of
Box and Jenkins [35]. These processes describe a time series with dependent suc-
cessive values, which can be interpreted as a series of independent shocks εt that are
distributed according to a normal distribution with zero mean and variance σ2

ε , called
white noise or innovations, which is transformed to the process Zt by a linear filter
[166] as shown in Figure 2.1. The linear filter takes a weighted sum of previous obser-
vations such that [35]

Zt = µ + εt + ζ1εt−1 + ζ2εt−2 + . . . = µ + ζ(B)εt

where ζ(B) = 1 + ζ1B + ζ2B2 + . . . is the transfer function of the filter and B is the
backward shift operator, i.e. Bpεt = εt−p. In case of a stable filter, i.e. the sequence is
finite or infinite and convergent, µ is the mean of the process. Linear filter models are
the basis for several stochastic processes belonging to the class of ARIMA processes.

An important special case of the linear filter model is the Autoregressive process of
order p, denoted AR(p), which is defined as [35]

Zt = α1Zt−1 + α2Zt−2 + . . . + αpZt−p + εt (2.1)

14



CHAPTER 2. TRAFFIC MODELS

Linear Filter

ζ(B)White Noise

εt Zt

Figure 2.1.: Representation of a time series as the output from a linear filter (from [35])

where Zt = Z̃t − µ are deviations from the mean µ. Hence, it is assumed that the Zt

from the AR(p) process describe a sequence with zero mean and the real time series
Z̃t is obtained by adding µ to every Zt. Defining α(B) = 1 − α1B − α2B2 − . . . − αpBp

the description can be abbreviated as α(B)Zt = εt or equivalently as Zt = α−1(B)εt.
Observe, that an AR(p) process has p + 2 unknown parameters, i.e. µ, α1, . . . , αp, σ

2
ε .

Another important class is the Moving Average process of order q, abbreviated as
MA(q). While for an AR(p) model Zt is expressed as weighted sum of the p previous
observations Zt−i, i = 1, . . . , p, for a MA(q) model Zt is constructed from q previous
innovations εt−i, i = 1, . . . , q. Thus, the Moving Average process is defined as [35]

Zt = εt + β1εt−1 + β2εt−2 + . . . + βqεt−q. (2.2)

Defining β(B) = 1 + β1B + β2B2 + . . .+ βqBq we may write the Moving Average model
as Zt = β(B)εt with the q + 2 unknown parameters µ, β1, . . . , βq, σ

2
ε .

A combination of Autoregressive and Moving Average processes results in Autore-
gressive Moving Average models, denoted ARMA(p, q) and defined as

Zt = α1Zt−1 + . . . + αpZt−p + εt + β1εt−1 + . . . + βqεt−q. (2.3)

The equation can be abbreviated as α(B)Zt = β(B)εt and has the unknown parameters
µ, α1, . . . , αp, β1, . . . , βq, σ

2
ε .

If a time series exhibits nonstationary behavior, it may be expressed by an Autore-
gressive Integrated Moving Average ARIMA(p, d, q) model. ARIMA models add a
third parameter d to an ARMA(p, q) process to describe the difference between the ob-
served values. They are especially helpful when the series does not vary about a fixed
mean, but the behavior of the series is similar, if differences in the level are allowed
[35]. An ARIMA(p, d, q) model is defined by

Wt = α1Wt−1 + . . . + αpWt−p + εt + β1εt−1 + . . . + βqεt−q (2.4)

with Wt = ∆dZ̃t. The inverse of this equation is Z̃t = S dWt where S is the summation
operator, i.e. S Wt =

∑∞
j=0 Wt− j = Wt +Wt−1 +Wt−2 + . . .. Observe, that the ARMA(p, q)

process in Equation 2.3 and the ARIMA(p, d, q) process in Equation 2.4 are defined in
a similar way, except that the Zt and the Wt have a different interpretation. In Equa-
tion 2.3 all Zt fluctuate around the mean zero of the time series, while in Equation 2.4
the Wt describe the d-th difference of the series. Hence, for an ARIMA(p, d, q) process
it is assumed that the d-th difference of the series can be modeled by an ARMA(p, q)
process [35]. In particular, an ARIMA(p, d, q) becomes an ARMA(p, q) model as de-
fined in Equation 2.3 for d = 0 and by replacing the Wt with Zt = Z̃t − µ.
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Moving Aver-
age Filter

β(B)
Stationary
Autoregres-
sive Filter

α−1(B)

Nonstationary
Summation
Filter

S d

White Noise

εt ε̂t Wt

Time Series

Zt

Figure 2.2.: Block diagram for ARIMA(p, d, q) models (from [35])

An ARIMA model can be thought of as three consecutive filters as shown in Fig-
ure 2.2.

If non-integer values are allowed for d, we finally obtain the fractional Autoregres-
sive Integrated Moving Average (f-ARIMA) processes [85], which are known to ex-
hibit self-similarity.

2.1.1. Fitting of ARIMA Processes

For estimating the parameters of AR, MA, ARMA and also ARIMA processes sev-
eral approaches are available. Maximum likelihood estimation [93] and least squares
regression approaches [70, 111] are available for all types of processes. For AR
processes the parameters can also be determined by solving Yule-Walker equations
[159, 166] or by a spectral estimation procedure [46]. Moreover, the order p can be
automatically determined by the so-called Akaike Information Criterion [1] for AR(p)
models.

Since all these fitting approaches are known for long time, they found their way into
standard software, like e.g. the statistical software package R [51, 149], which supports
all the fitting techniques mentioned above.

The main application area for ARIMA processes is modeling of discrete-time pro-
cesses [107] and hence the data from a trace is usually interpreted as a count process
for ARIMA models. For example in [165] the number of arrivals in given intervals
are counted and f-ARIMA processes are used to model this process. Nevertheless,
ARIMA processes have also been used to capture interarrival times in the past, e.g.
[154] uses ARIMA processes for online prediction of the interarrival times of I/O re-
quests. Further application examples for Autoregressive Processes can be found in
[76] where AR(2) processes are used to model VBR coded video and [133] where
two AR(1) processes were combined with other processes to achieve better results in
capturing the empirical autocorrelation function of video traffic.

2.2. Autoregressive-To-Anything Processes

Autoregressive-To-Anything (ARTA) Processes have been introduced in [47] and com-
bine an AR(p) base process with an arbitrary marginal distribution FY and thus can
model correlated input processes with a wide variety of shapes for the distribution.
They are defined as a sequence

Yt = F−1
Y [Φ(Zt)], t = 1, 2, . . . (2.5)
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where FY is the marginal distribution, Φ is the standard normal cumulative distribution
function and {Zt; t = 1, 2, . . .} is a stationary Gaussian AR(p) process as described in
Section 2.1. The AR(p) base process has to be constructed in a way such that the dis-
tribution of the {Zt} is N(0, 1) (cf. [47]), i.e. the variance of the innovations {εt}, which
are independent N(0, σ2

ε ) random variables, is set to σ2
ε = 1 − α1Corr[Zt,Zt+1] −

α2Corr[Zt,Zt+2]− · · ·−αpCorr[Zt,Zt+p]. Then the probability-integral transformation
Ut = Φ(Zt) ensures that Ut is uniformly distributed on (0, 1) (cf. [59]) and the appli-
cation of Yt = F−1

Y [Ut] yields a time series {Yt, t = 1, 2, . . .} with the desired marginal
distribution FY . Note, that the last step, i.e. the transformation from Ut to Yt is basi-
cally the inverse transform method used for random number generation (cf. e.g. [104])
with the exception that the Ut are correlated inducing a correlation in the sequence
Yt. Figure 2.3 shows the transformation steps that are necessary to construct an ARTA
model from the AR(p) base process. This approach works for any distribution FY

AR: Zt = α1Zt−1 + . . . + αpZt−p + εt

Ut = Φ(Zt)

Zt ∼ N(0, 1)

ARTA: Yt = F−1
Y [Ut], t = 1, 2, . . .

Ut ∼ U(0, 1)

Figure 2.3.: ARTA process

for which F−1
Y can be computed, either by a closed-form expression or by numerical

methods.
In [47, 48] a relation between the autocorrelation structures of the ARTA process

and the base process is established, which are related by

Corr[Yt,Yt+h] = Corr
[
F−1

Y (Φ(Zt)), F−1
Y (Φ(Zt+h))

]
. (2.6)

Since

Corr[Yt,Yt+h] =
E[YtYt+h] − (E[Y])2

Var[Y]

and E[Y] and Var[Y] are given by FY , only E[YtYt+h] has to be adjusted [47]. Fur-
thermore (Zt,Zt+h) has a standard bivariate normal distribution with correlation ρh and
thus, one obtains

E[YtYt+h] = E[F−1
Y (Φ(Zt))F−1

Y (Φ(Zt+h))]

=

∫ ∞

−∞

∫ ∞

−∞

F−1
Y (Φ(zt))F−1

Y (Φ(zt+h))ϕρh(zt, zt+h)dztdzt+h, (2.7)

where ϕρh is the standard bivariate normal density function with correlation ρh. From
Equation 2.7 it is apparent that the lag-h autocorrelations ρ̂h of the ARTA process
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{Yt} only depend on the lag-h autocorrelations ρh of the underlying Gaussian AR(p)
base process {Z(t)}, which appear in ϕρh , i.e. they describe a function ω(ρh) = ρ̂h =

Corr[Yt,Yt+h]. Observe, that it is furthermore only possible to compute the ARTA
autocorrelation ρ̂h for a given base process autocorrelation ρh, but not the other way
round. [47, 48] established properties of the relationship between the ρ̂h and the ρh,
i.e. they proved that ω(ρh) is continuous and nondecreasing in ρh and gave an efficient
numerical procedure to find ρh such that the ARTA process has the desired autocorre-
lations ρ̂h. These ideas are picked up in a more detailed way in Chapter 4 where ARTA
models are enabled to use an ARMA(p, q) base process.

2.2.1. Fitting of ARTA Processes

For fitting ARTA processes two approaches are available.
The first approach is implemented in a tool called ARTAFACTS (ARTA Fitting Algo-

rithm for Constructing Time Series) [47, 48] and assumes that the marginal distribution
FY is given and constructs the AR(p) base process such that the resulting ARTA model
has the desired autocorrelation structure that has been estimated from a trace. Since it
is only possible to compute the ARTA autocorrelation from a given base process auto-
correlation using Equation 2.6 and not vice versa, the autocorrelation structure of the
base process has to be determined by a numerical search procedure that tries several
values for the base process correlation until Corr[Yt,Yt+h] has the desired value save
some given relative error [48]. Once the base process autocorrelation structure has
been computed, the AR(p) process can be fitted by solving Yule-Walker Equations.
ARTAFACTS supports various marginal distributions like normal, Student’s t, uniform,
exponential, gamma, Weibull, lognormal, Johnson unbounded, discrete with finite sup-
port and empirical [48] (see Appendix B for a brief overview of the properties of these
distributions), though no methods are provided for selecting an appropriate distribution
and its parameters depending on the time series and thus additional tools are required
for the estimation of the distribution, e.g. the tool FITTR1 [56] could be used for the es-
timation of the parameters of a Johnson distribution or in general tools like Expertfit
[105] can be used to choose a marginal distribution and its parameters.

The more recently developed second approach ARTAFIT [25, 26] is an advancement
to ARTAFACTS that fits both the autocorrelation structure and the marginal distribution.
The marginal distribution is assumed to be from the Johnson system, which is com-
pletely determined by four parameters that can be chosen such that the distribution can
match any finite first four moments [56]. In an extensive empirical study [26] it was
shown that even with the restriction to Johnson distributions ARTA models are still
able to model a wide variety of processes.

2.3. Phase-Type Distributions and Markovian Arrival
Processes

Markov processes introduced in Section 1.3.5 can be used to describe probability dis-
tributions derived from the exponential distribution. These distributions, called Phase-
type or short PH distributions, can be seen as the time until absorption in a Markov
process and are based on the method of stages, which has been introduced by A.K.
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Erlang [61] and generalized by M.F. Neuts [120]. The basic idea of this technique is
to model a random time interval as a number of exponentially distributed phases. In
the following results for PH distributions and their generalization, Markovian Arrival
Processes, are presented. Aside from statistical properties the relation between several
related distributions belonging to the class of PH distributions is outlined and fitting
methods for PH distributions and MAPs are summarized.

2.3.1. Phase-Type Distributions

Consider a Markov process with states {0, 1, . . . , n}, initial probability vector (π0,π)
and infinitesimal generator matrix

Q =

[
0 0
t D0

]
(2.8)

where π is a row vector and t a column vector both of size n and D0 is n × n matrix.
Keeping in mind that Q is the generator of a Markov process, we have that D0(i, i) <
0, t(i) ≥ 0, D0(i, j) ≥ 0 for 1 ≤ i , j ≤ n and additionally D01+ t = 0 and π0 +π1 = 1.
State 0 of the Markov process is an absorbing state, while all other states are transient.
Thus, the nonsingular matrix D0 contains the transition rates from transient state i to
j and the vector t describes the rates from a transient state into absorbing state 0. D0
is called a subgenerator of order n and t is called the killing-rate vector. The vector
π = (π1, π2, . . . , πn) describes the initial probabilities for the transient states and π0 the
initial probability for the absorbing state 0, called point mass at zero. In most cases it
is assumed that π0 = 0, so that at least one transient state is visited before absorption.
If for a state i we have that π(i) = πi > 0 the state is an entry state, if the row sum of
the i-th row of D0 is negative, i.e. t(i) > 0, it is an exit state. An example for a Phase-
type distribution with 3 transient and 1 absorbing state, marked in gray, is shown in
Figure 2.4.

π(1) π(2) π(3)
D0(1, 2)

D0(1, 3)

D0(2, 3) t(3)

Figure 2.4.: Example for a PH distribution with 3 transient and 1 absorbing state

Definition 2.1. The distribution of the time X until absorption in state 0 of a CTMC
with generator matrix Q is called the continuous Phase-type distribution (CPH) of
order n [120] with representation (π, D0), denoted as PH(π, D0), and we say X is
PH(π, D0).

Remark. Since t and π0 are implicitly given by D0 and π, they are omitted in the
representation.
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The distribution function of a Phase-type distributed variable X with representation
(π, D0) is given by [103]

F(x) = 1 − π exp(D0x)1 for x ≥ 0 (2.9)

and its density function is given by

f (x) = π exp(D0x)t for x > 0 (2.10)

where the matrix exponential is defined as [19]

exp(A) = eA =
∑
n≥0

1
n!

An.

The moments of a PH distribution are derived from the moment matrix M = −D−1
0 :

µi = E[Xi] = i!πMi1. (2.11)

PH distributions are a very flexible class of distributions that can represent every
distribution with a strictly positive density in (0,∞) [124]. Depending on the structure
of matrix D0 and the vector π one can distinguish several subclasses of Phase-type
distributions. For most of these subclasses simpler expressions for the cumulative dis-
tribution function exist that do not require the computation of the matrix exponential.

Exponential Distribution

Since the phases of a PH distribution are exponentially distributed, the simplest Phase-
type distribution, of course, is the exponential distribution itself consisting only of
a single phase as shown in Figure 2.5. The exponential distribution is completely
characterized by its rate parameter λ. It has density function

f (x) =

λe−λx if x ≥ 0
0 otherwise

and distribution function

F(x) =

1 − e−λx if x ≥ 0
0 otherwise.

The mean is given by E[X] = 1/λ and the variance by Var[X] = 1/λ2.
The exponential distribution is the only continuous distribution with the so-called
memoryless property, which states that P(X > t + s | X > t) = P(X > s) for all t, s ≥ 0.

Erlang Distribution

The Erlang distribution with parameters λ and n consists of n sequential phases that
have identical exponential distribution with rate λ as shown in Figure 2.6. Its density
function is given by

f (x) =
λn

(n − 1)!
xn−1e−λx, x > 0, λ > 0.
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1 λ

Figure 2.5.: Exponential distribution

The distribution function is given by

F(x) = 1 −
n−1∑
i=0

(λx)i

i!
e−λx, x ≥ 0, λ > 0.

The i-th moment of an Erlang distributed random variable is given by

E[Xi] =
(n + i − 1)!

(n − 1)!
1
λi . (2.12)

Therefore, the mean of an Erlang distributed random variable X is E[X] = n/λ and its
variance Var[X] = n/(λ2). The Erlang distribution can be described by matrix

D0 =



−λ λ . . . 0 0
0 −λ . . . 0 0
...

...
. . .

...
...

0 0 . . . −λ λ

0 0 . . . 0 −λ


and initial probability vector π = (1, 0, . . . , 0).

· · ·
1 λ λ λ λ

Figure 2.6.: Erlang distribution

Hypo-Exponential Distribution

The Hypo-Exponential distribution is a generalized Erlang distribution where the rates
are not necessarily identical in each phase. Hence, it is characterized by the number of
phases n and the rates Λ = (λ1, λ2, . . . , λn). Its density function is given by

f (x) =

n∑
i=1

aiλie−λi x, where ai =

n∏
j=1, j,i

λ j

λ j − λi
, λi , λ j for i , j.

A hypo-exponentially distributed random variable X has mean E[X] =
∑n

i=1 1/λi and
variance Var[X] =

∑n
i=1 1/(λ2

i ). An example is shown in Figure 2.7. For the Hypo-

21
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Exponential distribution matrix D0 has the form

D0 =



−λ1 λ1 . . . 0 0
0 −λ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . −λn−1 λn−1
0 0 . . . 0 −λn


and the initial probability vector is given by π = (1, 0, . . . , 0).

· · ·
1 λ1 λ2 λn−1 λn

Figure 2.7.: Hypo-Exponential distribution

Hyper-Exponential Distribution

The Hyper-Exponential distribution is a convex mixture of n exponential distributions
as shown in Figure 2.8. The density function of a n-phase Hyper-Exponential distribu-
tion is given by

f (x) =

n∑
i=1

τiλie−λi x

where x, τi, λi > 0 for all i and
∑n

i=1 τi = 1. The distribution function is given by

F(x) =

n∑
i=1

τi
(
1 − e−λi x

)
where x ≥ 0. The mean of a hyper-exponentially distributed random variable X is
given by E[X] =

∑n
i=1 τi/λi and its variance by

Var[X] = 2
n∑

i=1

τi

λ2
i

−

 n∑
i=1

τi

λi

2

.

A Hyper-Exponential distribution can be defined in terms of matrix

D0 =



−λ1 0 0 . . . 0
0 −λ2 0 . . . 0
0 0 −λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . −λn


and the initial probability vector π = (τ1, τ2, . . . , τn).

22



CHAPTER 2. TRAFFIC MODELS

...

τ1

τ2

τn

λ1

λ2

λn

Figure 2.8.: Hyper-Exponential distribution

Hyper-Erlang Distribution

A Hyper-Erlang distribution (or short HErD) [63] is a mixture of m mutually indepen-
dent Erlang distributions weighted with the probabilities τ1, . . . , τm with τi ≥ 0 and∑m

i=1 τi = 1 as shown in Figure 2.9. Let S i denote the number of phases and λi be the
rate parameter of the i-th Erlang distribution.
The probability density function of a Hyper-Erlang random variable X is given by

f (x) =

m∑
i=1

τi
(λix)S i−1

(S i − 1)!
λie−λi x

and its cumulative distribution function by

F(x) = 1 −
m∑

i=1

τi

S i−1∑
j=0

(λix) j

j!
e−λi x. (2.13)

The i-th moment is given by

E[Xi] =

m∑
j=1

τ j
(S j + i − 1)!

(S j − 1)!
1
λi

j

. (2.14)

The overall number of states of a HErD is given by n =
∑m

i=1 S i. For m = 1 the HErD
becomes an Erlang distribution and for S i = 1 for all i = 1, . . . ,m a Hyper-Exponential
distribution. The matrix representation of the Hyper-Erlang distribution is given by

D0 =


G1 0 . . . 0
0 G2 . . . 0
...

...
. . . 0

0 0 . . . Gm
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and initial probability vector π = (τ1, 0, . . . , 0, τ2, 0, . . . , τm, 0, . . . , 0), where each of
the Gi, 1 ≤ i ≤ m defines the transition rates between the transient states of one of the
Erlang branches, i.e. they have the form

Gi =



−λi λi . . . 0 0
0 −λi . . . 0 0
...

...
. . .

...
...

0 0 . . . −λi λi

0 0 . . . 0 −λi


.

· · ·

...
...

· · ·

τ1

τm

λ1 λ1

λm λm

λ1

λm

Figure 2.9.: Hyper-Erlang distribution

Cox Distribution

A Cox distribution is similar to the Hypo-Exponential distribution except that a proba-
bilistic decision is made after every exponential phase deciding whether a next phase is
taken or not. Thus, it consists of n exponential phases with rates λi, i = 1, . . . , n. After
phase i the next phase i + 1 is taken with probability gi and with probability ḡi = 1− gi

a transition to the absorbing state occurs. Cox distributions can approximate any other
distribution with rational Laplace transform. An example for the Cox distribution is
shown in Figure 2.10. For a Cox distribution matrix D0 is given by

D0 =



−λ1 g1λ1 0 . . . 0 0
0 −λ2 g2λ2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −λn−1 gn−1λn−1
0 0 0 . . . 0 −λn


and the initial probability vector is given by π = (1, 0, . . . , 0).

Acyclic Phase-Type Distribution

If D0 can be transformed into an upper (or lower) triangular matrix by symmetric
permutations of rows and columns the PH distribution is acyclic (an APH distribution).
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· · ·
1 g1λ1

ḡ1λ1

g2λ2

ḡ2λ2

gn−1λn−1

ḡn−1λn−1

λn

Figure 2.10.: Cox distribution

This structure of the matrix implies that a state i can only be connected with a state j
if j > i and that each state can be only visited at most once before absorption. The
Markov Chain corresponding to an acyclic PH distribution is shown in Figure 2.11.
In an APH all states may be entry or exit states. APHs are the largest subclass of PH
distributions for which canonical representations exist (cf. Section 2.3.4).

· · ·

π(1) π(2) π(n)

t(1)

t(2)

t(n)D0(1, 2)

D0(1, n)

D0(2, n)

Figure 2.11.: Acyclic PH distribution

Matrix-Exponential Distribution

Phase-type distributions belong to the class of Matrix-Exponential (ME) distributions
[2, 6, 62], which are defined in a similar way as PH distributions, but lack the descrip-
tive interpretation as time until absorption of a Markov chain. Hence, they cannot be
easily integrated into simulation models because random number generation is much
more difficult than for PH distributions. In [38] an approach is presented to draw ran-
dom numbers from a ME distribution, which basically relies on the inversion of the
distribution function and therefore is very inefficient. Thus, we will only give a brief
introduction on ME distributions to complete the description of PH distributions.

25



2.3. PH DISTRIBUTIONS AND MAPS

A nonnegative random variable X is distributed according to a ME distribution if it has
a distribution function of the form

F(x) =

π0, x = 0
1 − π exp(D0x)1, x > 0

(2.15)

where π is a 1× n vector and D0 is a n× n matrix, both with possibly complex entries.
If D0 and π respect the requirements mentioned at the beginning of Section 2.3.1
(i.e. D0 has non-negative off-diagonal elements, negative diagonal elements and non-
positive row-sums and π is a probability vector) the ME distribution is a Phase-type
distribution.
In general (and in contrast to a PH distribution) there are no restrictions on the elements
of D0 and π except that Equation 2.15 must describe a valid distribution and π1 =

1. Thus, for example matrix D0 may contain negative off-diagonal elements or non-
negative elements in the diagonal and does in general not yield a generator matrix of a
Markov chain. Furthermore, the vector π may contain negative entries and will not be
a probability vector in general.

Phase-Type Renewal Processes

In Phase-type Renewal Processes the interarrival times have PH distribution. Thus, the
interarrival times can be modeled by a continuous-time Markov process J = {J(t)}∞t=0
with state space {0, 1, . . . , n}, where state 0 is an absorbing state and states 1, . . . , n
are transient, initial distribution π and infinitesimal generator matrix Q as defined in
Equation 2.8, which is associated with the PH distribution F(·). The interarrival time
Ai is the time until absorption of J started with initial distribution π. To determine Ai+1
the process J is restarted with initial distribution π again. This leads to a sequence
of times {0 = t0 < t1 < t2 < . . .} at which the process is (re)started with its initial
distribution and that have an interrenewal distribution PH(π, D0). If the state at t0 is
chosen with a different distribution π̂, we have a delayed PH renewal process.

A well known example for a PH Renewal process is the Poisson process [52] with
rate λ that has exponentially distributed interarrival times Ai. A Poisson process has
independent increments, i.e. the number of arrivals in disjoint intervals is independent,
implying that a Poisson process is memoryless.

Poisson processes are often used for the modeling of traffic on main communication
arteries, where a large number of independent traffic streams are multiplexed. Under
certain conditions these multiplexed streams approach a Poisson process (the theoreti-
cal background for this observation is known as Palm’s Theorem [102]).

Extensions of the standard Poisson process are the non-homogeneous (or time de-
pendent) Poisson process, where the rate λ depends on time, and the Compound Pois-
son process, where a second distribution (independent of the Ai) specifies the batch size
Bi. The superposition of independent Poisson processes with arrival rates λ1, λ2, . . . is
itself a Poisson process with rate λ1 + λ2 + . . .. The state diagram of a Poisson process
is shown in Figure 2.12 where each state represents the number of arrivals.
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0 1 2 · · · i − 1 i i + 1 · · ·
λ λ λ λ λ λ λ

Figure 2.12.: State diagram of a Poisson process

2.3.2. Markovian Arrival Processes

Markovian Arrival Processes (MAPs) are a generalization of PH distributions that can
model dependencies between consecutive arrivals. MAPs have been introduced in
[119, 120] and have originally been developed as input processes for queuing systems
that can be solved analytically [110], but may as well be used in simulation models.

Consider a Markov process {N(t), J(t)} on the state space {(i, j), i ≥ 0, 1 ≤ j ≤ n}.
N(t) is a counting process for the number of arrivals in (0, t] and J(t) is the state of the
underlying Markov chain. Then the Markov process {N(t), J(t)} has an infinitesimal
generator matrix Q∗ with the form

Q∗ =



D0 D1 D2 D3 . . .

0 D0 D1 D2 . . .

0 0 D0 D1 . . .

0 0 0 D0 . . .
...

...
...

...
. . .


where the Dk, k ≥ 0 are n × n-matrices [103]. The Dk, k ≥ 1 are nonnegative matrices
and D0 is defined in a similar way as for PH distributions. It has nonnegative off-
diagonal elements and negative diagonal elements that are given by

D0(i, i) = −

∑
j, j,i

D0(i, j) +
∑
k,k≥1

∑
j

Dk(i, j)


 .

D0 contains the transition rates that do not correspond to an arrival (silent transitions).
The matrices Dk, k ≥ 1 contain transition rates that are accompanied by an arrival,
where the index k equals the batch size of the arrival.

The behavior of a MAP can be described as follows: The MAP stays in state i for
an exponentially distributed time with rate −D0(i, i). Afterwards one of the transitions
from the matrices Di, i = 0, . . . , k occurs. As already mentioned, transitions from D0
are not associated with an arrival and only change the state of the underlying Markov
chain, i.e. with probability D0(i, j)/ (−D0(i, i)) the MAP changes to state j. Transitions
from the matrices Dk, k ≥ 1 are accompanied by an arrival, i.e. an entry Dk(i, j)
specifies the rate of a transition from state i to state j that is associated with an arrival
of batch size k. Consequently, with probability Dk(i, j)/ (−D0(i, i)) the MAP changes
to state j and generates an arrival with batch size k.

If the number of arrivals N(t) is omitted in the process description one obtains the
Markov chain {J(t)} with infinitesimal generator matrix [143]

Q = D0 +
∑
k≥1

Dk.
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The above definitions describe a very general form of the Markovian Arrival Process.
It allows for the modeling of batch arrivals resulting in a Batch Markovian Arrival
Process (BMAP) [97]. In the more common form the matrices Dk, k ≥ 2 are zero
resulting in a MAP defined by the matrix pair (D0, D1), which will be assumed for the
following observations. A simple example for a MAP(2), i.e. a MAP with 2 states,

D1(1, 1) D1(2, 2)
D0(1, 2)

D0(2, 1)

D1(1, 2)

D1(2, 1)

Figure 2.13.: Example MAP with 2 states

is shown in Figure 2.13 in which solid lines denote transitions not associated with an
arrival and dashed lines transitions that are accompanied by an arrival.

As already mentioned, we have that D0(i, i) < 0, D0(i, j) ≥ 0 for i , j and D1(i, j) ≥
0 for all i, j. A further constraint on the row sums for a MAP is D01 = −D11. More-
over, the matrix D0 is nonsingular. Recall, that matrix Q = D0 + D1 is an irreducible
infinitesimal generator matrix of the underlying Markov chain. Thus, the vector π′

that is the solution of π′Q = 0 and π′1 = 1 describes the stationary distribution of the
underlying CTMC of a MAP. The arrival instances generated by a MAP form a DTMC
with transition probability matrix P = (−D0)−1 D1 [147]. Since the irreducible matrix
P describes the transition probabilities of a DTMC, a steady state vector π exists for
this embedded process that is the solution of π = πP and π1 = 1 and describes the
distribution just after an arrival. The steady state distribution of the underlying CTMC
of a MAP and the steady state distribution of the DTMC embedded into the arrival
instances are related as [84]

π′ =
π(−D0)−1

π(−D0)−11
or equivalently in [40] π =

π′D1

π′D11
.

In steady-state the interarrival times of a MAP are Phase-type distributed with initial
probability vector π and generator matrix D0. Then, the probability density function
and the distribution function of the interarrival times of a MAP are given by

f (x) = πeD0 x D11 and F(x) = 1 − πeD0 x1.

Since the interarrival times of a MAP are distributed according to a PH distribution, the
i-th moment µi of the interarrival times is computed according to Equation 2.11. Since
the arrivals generated by a MAP are not independent one can state the joint density of
the interarrival times X0, X1, . . . , Xk that is given by

f (x0, x1, . . . , xk) = πeD0 x0 D1eD0 x1 D1 . . . eD0 xk D11
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and the joint moments of the j0 = 0 < j1 < j2 < . . . < jk-th interarrival times are

E[Xi0
0 Xi1

j1
. . . Xik

jk
] = πi0!(−D0)−i0 P j1− j0 i1!(−D0)−i1 . . . P jk− jk−1 ik!(−D0)−ik 1.

Aside from the joint moments the autocorrelation can be used to express the depen-
dence between arrivals that are lag-k apart. For MAPs the autocorrelation is computed
by [121]

ρk =
µ−2

1 π(−D0)−1 Pk(−D0)−11 − 1

2µ−2
1 π(−D0)−1(−D0)−11 − 1

.

Although MAPs do not allow one to describe long range dependencies, they can be
applied to approximate long range dependent processes on every finite time scale ar-
bitrarily close [80].

MAPs are a very versatile class of processes containing several well-known stochas-
tic processes as subclasses. Every Phase-type distribution (D′0,π) can be described by
a MAP (D0, D1) by setting D0 = D′0 and D1 = (−D′01)π. Then, π is the steady-state
vector of matrix P = −D−1

0 D1. Another special case of MAPs are Markov-Modulated
Poisson-Processes (MMPP) [66], which combine a Poisson process and an auxiliary
Markov process {M(t)}∞t=0 with states 1, 2, . . . , n and generator matrix QMMPP. When
the Markov process is in state i arrivals occur according to the Poisson process at rate
λi. When the state of the auxiliary process changes to state j arrivals occur at rate λ j.
Setting D0 = QMMPP −∆(λ) and D1 = ∆(λ), where ∆(λ) is the diagonal matrix with λi

values in the diagonal, the MMPP can be represented by a MAP [103]. The interrupted
Poisson process (IPP) is a special case of the MMPP with two phases and λ2 = 0, i.e.
in the second state no arrivals occur. However, the interrupted Poisson process can be
seen as a PH renewal process with hyper-exponential renewal times as well.
On the other hand MAPs can be generalized in several ways. BMAPs have already
been mentioned above. Directly related to BMAPs are MMAPs (Multiclass MAPs)
with marked arrivals [4, 41, 72, 73]. For MMAPs the classes do not necessarily cor-
respond to a batch size but can have an arbitrary meaning like e.g. different customer
classes. Another different generalization are RAPs (Rational Arrival Processes) [3],
also denoted as MEPs (Matrix Exponential Processes) [31, 32], for which the interar-
rival time is matrix exponential. MEPs share the drawbacks of these distributions and
thus, lack the descriptive interpretation of an underlying Markov chain.

2.3.3. PH and MAP Hierarchy

In the previous sections some of the relations between different subclasses of PH dis-
tributions and MAPs have already been mentioned. In the following these relations
will be established in a systematic way resulting in a hierarchy of the different classes
as shown in Figure 2.14. On the left several distributions belonging to the class of
Phase-type distributions and their relations are shown. The right part of Figure 2.14
shows the relationship of several processes belonging to the class of Markovian Arrival
Processes.

As already mentioned before the exponential distribution (ED) is the simplest dis-
tribution belonging to the class of Phase-type distributions. It is generalized by the
Hyper-Exponential distribution (HED), which consists of n alternate phases each be-
ing exponentially distributed, and the Erlang distribution (ErD), which consists of n

29



2.3. PH DISTRIBUTIONS AND MAPS

ED

HED ErD

HErD HoED

Cox

APH

PH

∗

Poisson Process

NHPP CPP

IPP

PH Renewal Process

Batch PH Renewal Process

MMPP

MAP

BMAP

MMAP

ED: Exponential distribution HED: Hyper-Exponential distribution
ErD: Erlang distribution HErD: Hyper-Erlang distribution
HoED: Hypo-Exponential distribution Cox: Cox distribution
APH: Acyclic Phase-type distribution PH: Phase-type distribution
NHPP: Non-homogenous Poisson Process CPP: Compound Poisson Process
IPP: Interrupted Poisson Process MMPP: Markov Modulated Poisson Process
BMAP: Batch MAPs MMAP: Multiclass MAPs

Figure 2.14.: PH and MAP hierarchy
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sequential phases. Thus, for n = 1 both the Hyper-Exponential and the Erlang become
an exponential distribution.

Both, Hyper-Exponential and Erlang distribution, are generalized by the Hyper-
Erlang distribution (HErD), which consists of m alternate branches each having S i, 1 ≤
i ≤ m sequential phases. Hence, a HErD is an Erlang distribution for m = 1 and an
Hyper-Exponential distribution for S i = 1, i = 1, . . .m. Another generalization of the
Erlang distribution is the Hypo-Exponential distribution (HoED). A HoED consists of
n sequential phases like the ErD, but for a HoED each of the exponentially distributed
phases may have a different parameter λi, 1 ≤ i ≤ n. Thus, if all the λi are equal
the HoED becomes an ErD. The Cox distribution is similar to the HoED consisting
of a sequence of exponentially distributed phases. The difference is, that for a Cox
distribution not all the phases have to be taken, i.e. the absorbing state can be reached
from every state. The most general Phase-type distributions are the acyclic Phase-type-
distribution and the Phase-type distribution itself.

The relation between the Cox distribution and the APH distribution needs some
further explanation: It is known, that the class of Cox distributions and the class of
acyclic PH distributions are identical [55, 123]. More precisely the Cox distribution
is equivalent to one of the canonical forms of APH distributions, which will be pre-
sented in Section 2.3.4. Nevertheless they are treated as two classes in Figure 2.14
with the Coxian distributions being a subclass of APH distributions to reflect the fact,
that any representation of a Cox distribution is an APH representation by definition,
while a representation of an APH distribution is not a valid Coxian representation by
default, although applying a transformation into the canonical form one can construct
an equivalent representation that is a Coxian representation.

The distributions on the left of Figure 2.14 serve as interarrival time distributions
for the processes on the right. For example the Poisson process has exponentially
distributed interarrival times. Generalizations of the Poisson process include the Com-
pound Poisson process with batch arrivals (requiring a second distribution for the batch
sizes) and the non-homogeneous Poisson process (NHPP) where the rate can change
depending on the time.

Since the exponential distribution is a special case of the Phase-type distribution, the
PH renewal process with Phase-type distributed interarrival times is a generalization
of the Poisson process. The same holds for the Compound Poisson process and the
batch Phase-type renewal process. Additionally, the batch Phase-type renewal process
is of course a generalization of the Phase-type process with single arrivals.

The interrupted Poisson process (IPP) consists of two states: In the on-state it be-
haves like a normal Poisson process while in the off-state no arrivals occur. The IPP can
be seen as a special case of a Phase-type renewal process with Hyper-Exponential in-
terarrival times. However, the IPP is a special case of the Markov-Modulated Poisson-
Process (MMPP) as well, which combines several Poisson processes and the active
Poisson process is chosen by the state of an associated Markov chain. Then the IPP is
a MMPP with two states and the rate λ2 = 0.

Finally the Markovian Arrival Process (MAP) generalizes the Phase-type renewal
process and the MMPP. The most general types of process forms are the Batch Marko-
vian Arrival Process (BMAP) allowing for batch arrivals, which extends the MAP and
the Batch PH renewal process, and the Multiclass MAP where the arrivals belong to
an arbitrary class, which does not necessarily correspond to a batch size.
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2.3.4. Canonical Representations for Phase-Type Distributions and
Markovian Arrival Processes

Before a brief overview of the existing fitting approaches for PH distributions and
MAPs is presented in the following two sections, canonical representations of those
distributions and processes will be introduced.

It is well known that the matrix representations of PH distributions and MAPs are
not unique, i.e. there are different matrices (or matrices and vectors in the case of PH
distributions) that describe the same distribution or the same MAP, respectively [123].
Moreover, it is known, that a PH distribution of order n is determined by at most 2n
independent parameters2 [124, 125] and a MAP of order n by at most n2 independent
parameters [147]. Since (π, D0) contains n2 + n free parameters for PH distributions3

and (D0, D1) contains 2n2 − n free parameters for a MAP, these representations are
highly redundant, which makes fitting those parameters cumbersome, because the fit-
ting algorithm has to deal with more parameters than necessary and might switch be-
tween different representations of the same distribution. This motivates the search for
canonical representations for PH distributions and MAPs that only consist of the mini-
mal number of free parameters. Unfortunately canonical representations only exist for
subclasses or lower order models of PH distributions or MAPs.

The oldest results in this area are due to Cumani [55] and cover canonical forms
for acyclic PH distributions. [55] presents three types of equivalent canonical forms
with 2n−1 free parameters and an algorithm to transform any APH representation into
canonical form. The different canonical forms are shown in Figure 2.15. In all three
cases it is assumed that λ1 ≤ λ2 ≤ · · · ≤ λn. The series canonical form from Fig-
ure 2.15(a) has only one exit state, but all states may be entry states. Canonical form
A from Figure 2.15(b) has only one entry state, but two exit states. The equivalence
of the series canonical form and canonical form A becomes immediately apparent if
one sets gi = π(i). In canonical form B every state may be an exit state, but there is
only one entry state. Observe, that the canonical form B from Figure 2.15(c) is a Cox
distribution as shown in Figure 2.10. The crucial ideas for the transformation of an
APH representation into canonical form stem from equivalent representations of the
exponential distribution as shown in Figure 2.16 and the representation of an APH by
a set of elementary series as shown in Figure 6.14. Each elementary series has a prob-
ability proportional to the product of the transition rates along the corresponding path
and to the initial probability of the first state of the path [55]. Using equivalent repre-
sentations of the exponential distribution an elementary series containing a state with
rate λ can be substituted by a mixture of two series, where one contains a state with
rate µ > λ and one contains states with the rates λ and µ. Repeated application of this
substitution results in a mixture of so-called basic series BS i = (λn, λn−1, . . . , λi) that
together with appropriate initial probabilities finally yield the canonical representation
shown in Figure 2.15(a).

2If one does not allow a non-zero probability for the absorbing state, i.e. if π1 = 1, the number of
parameters reduces to 2n − 1.

3Again, if one does not allow a non-zero probability for the absorbing state this number reduces to
n2 + n − 1.

4Elementary series will become important for the construction of the stochastic process in Chapter 6
where the interested reader will also find the referenced figure and an example for the construction of
the elementary series for a given APH.
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Figure 2.15.: Canonical forms of acyclic PH distributions

For the general case of (cyclic) PH distributions canonical forms are only known up
to order 3. PH distributions of order 2 can be transformed into an equivalent acyclic PH
distribution [53], which makes the results from [55] applicable. For PH distributions
of order 3 a canonical representation has been developed in [82, 83] that distinguishes
three different cases.

Yet fewer results are available for MAPs. In fact, canonical forms are only known
for the class of MAP(2). In [31] it was shown that the classes MAP(2) and MEP(2) are
equivalent and a canonical form was introduced that splits into two cases depending
on the correlation parameter of the MAP.

While canonical forms based on the matrix representation are only available for
some subclasses, it is possible to define all PH distributions and MAPs in terms of their
moments and joint moments. Using some results from [157] it was shown in [32, 147]
that a PH distribution is uniquely defined by the first 2n moments and a MAP by the
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λ
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Figure 2.16.: Equivalent representations of the exponential distribution

first n2 moments and joint moments. Higher moments can be computed from these
moments [32]. Although the moments characterization is unique and minimal, it is
not really suitable for application in models, which require the matrix representation
to generate random numbers or to numerically analyze the model. [147] contains a
optimization algorithm to obtain a matrix representation of a MAP or PH distribution
from a given set of (joint) moments, but since the bounds for a feasible set of moments
are not known in general for MAPs, one cannot tell if a failure of the algorithm really
implies that the moments do not describe a MAP. Moreover, the algorithm is nonlinear
such that it need not converge to a valid MAP representation even if one exists.

2.3.5. Fitting Methods for Phase-Type Distributions

For fitting Phase-type distributions basically two types of approaches exist. The first
class are Expectation Maximization (EM) algorithms [28, 113], which try to maximize
the likelihood and work on the complete trace. For the second class some characteris-
tics like moments are derived from the trace and the PH distribution is fitted to these
characteristics. Most of these approaches are tailored to a specific subclass of PH dis-
tributions to benefit from an available canonical representation or certain properties of
that subclass.

The EM algorithm [57, 92, 135] is a general method for finding the maximum-
likelihood estimate of parameters of an underlying distribution from a given dataset.
For a given density function f (x|Θ) with a set of parameters Θ and a given trace
T = {t1, t2, . . . , tl} of size l where the ti are assumed to be independent and identically
distributed with density f the function

L(Θ|T ) = f (T |Θ) =

l∏
i=1

f (ti|Θ) (2.16)

is called the likelihood function. In many cases the log-likelihood log(L(Θ|T )) is
used instead of Equation 2.16, because the sum resulting from applying the logarithm
to Equation 2.16 is analytically easier to compute than the product. The EM algorithm
can be used to solve a maximum likelihood problem for which one aims at finding the
Θ∗ that maximizes L, i.e. one is interested in

Θ∗ = arg max
Θ
L(Θ|T ).

The EM algorithm works in two steps, an expectation (E) step and a maximization (M)
step, which are iteratively repeated, and increases the likelihood in each iteration.
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In the past EM algorithms have been applied for fitting several subclasses of PH
distributions. For the general class of PH distributions Equation 2.16 becomes

L((D0,π)|T ) =

l∏
i=1

(
πeti D0(−D01

)
.

In [5] an EM algorithm was used to fit a PH distribution to a trace. Since this ap-
proach is rather slow for general PH distributions, several modifications have been
proposed that increase the performance of the algorithm [45] or that only consider
a subclass of PH distributions for fitting. [95] tailored the EM algorithm for fitting
Hyper-Exponential distributions. [137] used Hyper-Exponential distributions as well,
but partitioned the entire range of values and fitted a Hyper-Exponential distribution
to each partition using an EM algorithm. In [151] a variant of the EM algorithm was
used for the fitting of Hyper-Erlang distributions. This approach was further extended
in [129], such that not the complete trace has to be considered for fitting, but only an
aggregated trace with a much smaller number of weighted elements. The key idea of
this approach is to divide the empirical distribution of the trace data in a predefined
number of intervals and represent the elements of an interval by their mean value and
a weight given by the portion of elements in that interval. Hyper-Erlang distributions
will be used as marginal distributions for the stochastic processes introduced in Chap-
ter 5 and hence, the approach from [151] will be discussed in detail in Section 5.3.

Aside from EM approaches other heuristic techniques have been applied to fit the
parameters of an acyclic PH distribution according to an empirical density function
[29, 81].

[64] proposed an recursive heuristic approach to fit the parameters of a Hyper-
Exponential distribution by first fitting the rightmost portion of the tail of the empirical
distribution to a single exponential distribution. After that another exponential distri-
bution is fitted to the rightmost portion of a new empirical distribution that is obtained
by removing the part that was already fitted in the previous step and so on.

Finally, an acyclic PH distribution can be fitted to a set of moments estimated from a
trace [42] by iteratively optimizing according to the initial probabilities π and the rates
λi resulting in an APH in canonical form as shown in Figure 2.15(a). The approach
from [42] will be used to fit the APH marginal distribution for the stochastic processes
presented in Chapter 6 and is presented in a detailed manner in Section 6.2.

2.3.6. Fitting Methods for Markovian Arrival Processes

Similar to PH distributions fitting algorithms for MAPs can be distinguished according
to the amount of data they use, i.e. the complete trace or only some characteristics
computed from the trace, and according to the type of process they fit, i.e. a MAP or
some subclass.

If the complete trace data is used for fitting, usually an EM algorithm is applied. For
MAPs the likelihood is given as

L((D0, D1)|T ) = π

 l∏
i=1

eti D0 D1

 1.
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EM algorithms have been used for fitting Markov Modulated Poisson Processes [142]
and arbitrary MAPs. In the latter case approaches exist that fit the complete MAP in
a single step [40] or that use two steps to fit a PH distribution with one EM algorithm
and expand this distribution into a MAP, i.e. find a matrix D1 while preserving the
given distribution, using a second EM algorithm [44]. EM algorithms have also been
applied for fitting Batch Markovian Arrival Processes [36, 97]. While empirical ob-
servations indicate that EM algorithms yield the best results for MAP fitting currently
available [100], they are also by far more costly than other approaches that only use
some characteristics estimated from the trace and depending on the trace size and the
MAP order they may run for several hours.

The faster algorithms, which do not use the complete information from the trace, are
usually performed in two steps and separate distribution fitting and fitting of the de-
pendence between consecutive arrivals. For distribution fitting any of the approaches
introduced in Section 2.3.5 may be applied. From this first step one obtains a PH
distribution (π, D0) and aims at finding a matrix D1 resulting in a MAP (D0, D1) in
the second step, such that π is the steady-state vector of the embedded Markov Chain
after an arrival and that approximates some estimated measure of dependence between
arrivals. Possible measurements for the dependence are the lag-k autocorrelation coef-
ficients or the joint moments.

If the joint moments are used as a measure of dependence the resulting fitting prob-
lem may be expressed as [42]

min
D1:D1≥0,D11=−D01,π(−D0)−1 D1=π

 ∑
(i, j)∈J

(κi, j
νi j

ν̂i j
− κi, j)2


where J is a set of joint moments, ν̂i j and νi j are the joint moments from the trace and
the MAP, respectively, and κi, j are weights, e.g. to privilege lower order joint moments.
This type of equation can be solved by standard approaches for non-negative least
squares problems [106] and thus, fitting of joint moments is much faster than other ap-
proaches and usually only takes up to a few seconds. This approach can be generalized
to fit MMAPs as well by considering class-specific joint moments instead of general
joint moments [41]. Another approach for MAP fitting according to joint moments
was proposed in [15] where a special class of MAPs, called Structured MAPs [9], is
used to combine several PH distributions and a Markov Chain that specifies which PH
distribution generates the next arrival and is determined using the joint moments into
a MAP.

If instead of joint moments autocorrelation coefficients are considered for fitting,
the optimization is more complicated and cannot be expressed as a non-negative least
squares problem. Several general purpose optimization algorithms have been applied
for fitting according to autocorrelations in the past. In [84] and [100] the Nelder-
Mead [118] algorithm was used for constructing matrix D1. Since the surface of the
goal function contains various local optima, it is necessary to provide several different
starting points for the optimization to obtain a good fitting result. These initial so-
lutions can for example be constructed by a simplex algorithm that finds the maximal
possible value for each element of D1 that still respects the constraints given by the PH
distribution from the first step. For the approach presented in [127, 128] an evolution-
ary algorithm was combined with an EM algorithm to fit a MAP. The EM algorithm
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constructs a PH distribution (π, D0), which is used as input for a multi-objective evo-
lutionary algorithm (MOEA) that fits matrix D1 according to the autocorrelations of a
trace. In contrast to the previous two-step fitting approaches where the vector π is used
to establish constraints for fitting of D1, the MOEA is allowed to modify the vector
π (but preserves matrix D0). Hence, the algorithm has a greater flexibility for finding
D1 than the previous approaches, but has to consider two objective functions, which
assess the quality of autocorrelation fitting and the quality of distribution fitting.

There are a few approaches that try to construct the MAP directly from charac-
teristics computed from a trace. [74] proposes an inverse characterization of acyclic
MAPs of order 2 where the elements of the matrices (D0, D1) are computed directly
from moments and an autocorrelation parameter estimated from the trace. In [147]
and [79] moments and joint moments were used to construct the matrices of a MAP or
MMAP, respectively, of an arbitrary order. A general drawback of this approaches is
that the characteristics from the trace might not be feasible for MAPs, i.e. no MAP (of
the desired order) exists that exhibits the estimated characteristics. In these cases for
example the approach from [147] might yield matrices that describe a Matrix Expo-
nential Process, if a MEP exists that describes the desired characteristics, or it might
even result in matrices that do not describe a stochastic process at all.

For PH distributions several approaches have been presented in Section 2.3.5 that
exploit the simpler structure of a restricted subclass to increase the performance of
the fitting algorithm. Similarly, approaches for MAP fitting have been proposed that
only use a simpler subclass for fitting. An example for this is [116] where Markov-
Modulated Poisson Processes are used to model internet traffic.

Finally, for the approach presented in [49, 50] several smaller MAPs of order 2
for which fitting is easier are combined into one larger MAP by Kronecker Product
Composition. Since for MAPs of order 2 canonical forms exist and the boundaries
for moments and autocorrelation coefficients are known special fitting algorithms have
been proposed that exploit these known properties. In [30] optimization procedures
are introduced that decompose the bounding surface into components that are easier
to handle to improve the efficiency of algorithms that minimize the moments distance.
Additionally, it is possible to approximate larger MAPs by a MAP of order 2 by min-
imizing the distance of the joint distribution functions using efficiently computable
matrix expressions for a MAP(2) [30].

For another overview on PH and MAP fitting the reader is referred to [80].

2.4. Other Approaches

In the past various other approaches have been proposed for input models that can
capture autocorrelations. Most of them are based upon the idea to model the autocor-
relation structure by some type of base process and transform this process to yield a
better approximation of the empirical distribution. In the following a brief overview of
these techniques is given including some arguments why they are apparently inferior
to the processes presented in the previous sections and hence are disregarded for the
empirical work in Chapter 3.

TES (Transform-Expand-Sample) processes [114] use a technique related to the
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ARTA approach described in Section 2.2, though they are a little older. Similar to
ARTA processes a sequence of random numbers with standard uniform distribution is
generated, which is transformed into an arbitrary marginal distribution. TES processes
can have positive or negative lag-1 autocorrelations, thus the TES processes are divided
in two classes, T ES + and T ES −, respectively. TES models consist of two stochastic
processes, a foreground sequence and an auxiliary background sequence. Foreground
sequences have the form

Y+
t = D(U+

t ), Y−t = D(U−t )

where the so-called distortion D is a transformation from [0, 1) to the real numbers.
Using the inverse transform method with D = F−1

Y the foreground sequence can be
distributed according to any marginal distribution where the computation of the inverse
cdf is possible. U+

t ,U
−
t are background sequences defined by

U+
t =

U0, t = 0〈
U+

t−1 + Vt
〉
, t > 0

U−t =

U+
t , t even

1 − U+
t , t odd

where U0 is distributed uniformly on [0, 1), the innovation sequence {Vt}
∞
t=1 is a se-

quence of iid. random variables (independent of U0) and angular brackets denote the
following operation: 〈a〉 = a −max{integer n : n ≤ a}.
The marginal distributions of {U+

t } and {U−t } are both uniform on [0, 1). Since ARTA
and TES processes both rely on the inverse transform method they support the same set
of distributions, but controlling the autocorrelation structure is more straightforward
for ARTA processes, since for TES processes a modification of the autocorrelation is
done indirectly by modifying the innovation sequence and the relation between the
innovation sequence and the resulting autocorrelation is not obvious, while for ARTA
processes the autoregressive coefficients of the base process are directly related to the
autocorrelation.

[164] discusses several linear and non-linear transformations and its properties to
transform a time series Zt generated by a f-ARIMA model into another time-series Yt.
Translations (i.e. Yt = Zt + c) and scaling (i.e. Yt = cZt) can be used to shift the time
series or to spread or compress the marginal distribution according to some constant c.
Non-linear transformations of the type

Yt = c
1−c2

c2+c3
Zt

1

for c1 > 1, 0 < c2 < 1 and some small constant c3 allow for more elaborate modifica-
tions of the time series. Of course combinations of these transformations are possible.
The main problem of this approach is, that the transformations have some impact on
the characteristics of the trace and to the best of the author’s knowledge, no automated
approach exists to find parameters c and ci and a series of transformations such that the
f-ARIMA model preserves the characteristics of a set of given observations. Hence,
application of this approach is not straightforward and would require a lot of expert
knowledge.
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Chapter 3
Empirical Comparison of Stochastic Processes

In the following an empirical comparison of the stochastic processes presented in
Chapter 2 is carried out to assess the use of those processes in simulation models.
For that matter some advantages and disadvantages of those processes are pointed out
that motivate the work in the following chapters.

When building input models for simulation one usually has some observations from
a real system and tries to find a stochastic model that resembles the behavior of the
original observations by fitting a process to this data. Hence, we have three basic
requirements for the stochastic processes:

1. The fitting procedure should be performed in an automated manner (or at least
with little user interaction).

2. The processes have to provide a suitable fitting quality regarding the distribution
and the autocorrelation structure.

3. Sampling from the process, i.e. generating random numbers, should be possible
in an easy and efficient way.

For MAPs, ARTA and ARMA processes several fitting approaches have been intro-
duced in Chapter 2 that fulfill the first requirement.

Sampling is possible for all three types of stochastic processes in an efficient way.
For MAPs this can be done by simulating the underlying Markov chain, which requires
storing the two matrices (D0, D1) and the current state and drawing random numbers
from a uniform distribution to determine the next state and from an exponential distri-
bution to determine the transition times. For ARMA processes the vectors with the AR
and MA coefficients have to be stored. Additionally, the previous p elements of the
time series and the previous q innovations have to be saved. ARMA processes require
the possibility to draw random numbers from a normal distribution to determine the
next innovation. For simulation of ARTA processes the inverse cdf of the marginal dis-
tribution has to be computed. The simulation of the ARMA base process has already
been described above. Random number generation from different stochastic processes
will be further addressed in Section 9.3.

The second requirement (assessment of the fitting quality) will be subject of this
chapter. In the following an overview of the experiment setup is given, proceeded by a
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presentation of fitting results for the above-mentioned stochastic processes, which has
already been published partially in [11].

3.1. Experiment Setup

For the empirical study to assess stochastic processes and existing fitting algorithms
several of the approaches that have already been introduced briefly in Chapter 2 are
compared.

For MAP fitting the Expectation Maximization algorithm from [40] and the two-
step approach from [127], which combines an EM algorithm for fitting the distribution
and an evolutionary algorithm to expand the distribution into a MAP, are used. The
former will be denoted MAP EM and the latter MAP MOEA in the following.

ARTA fitting is done by the two tools ARTAFACTS [48] and ARTAFIT [25]. ARTAFIT
is able to fit the complete ARTA process consisting of the marginal distribution and
the base process, but is limited to distributions from the Johnson family. ARTAFACTS
assumes the marginal distribution to be given and only finds a base process. Hence,
whenever possible ARTAFIT is used for ARTA models. In cases where these results
showed to be inapplicable, ARTAFACTS is used with a manually fitted marginal distri-
bution, i.e. a distribution where the maximum likelihood estimators for the parameters
can easily be computed like for the exponential distribution.

ARIMA models have been fitted using the common statistical software R [51, 149],
which provides several fitting methods like solving Yule-Walker equations, Maximum
likelihood estimation or least squares approximation, which have been briefly intro-
duced in Section 2.1.

For the experiments six traces have been selected. Four traces are synthetically gen-
erated (two generated by ARTA processes and two by MAPs). The intention of the
synthetically generated traces is to check whether processes of one class are able to
capture the behavior of processes of another class. The remaining two traces have
been observed in a real system and help to evaluate the suitability of the processes and
corresponding fitting methods for practical use. These traces have been taken from the
Internet Traffic Archive [148] and are common benchmark traces for assessing fitting
methods. The trace BC-pAug89 [108] contains a million packet arrivals observed at
the Bellcore Morristown Research and Engineering facility in August 1989. The trace
LBL-TCP-3 [130] contains two hours of TCP traffic from the Lawrence Berkeley Lab-
oratory and was recorded in January 1994. For the empirical study both traces were
normalized to mean 1.0.

In application areas like computer and communication networks one is usually in-
terested in modeling interarrival times or packet sizes. Consequently, the stochastic
processes should only generate positive values. For MAPs the interarrival times have
a PH distribution and thus, MAPs always fulfill this requirement. For ARTA pro-
cesses it depends on the marginal distribution FY . The Johnson distribution returned
by ARTAFIT can in general be specified, such that it is only defined for x ≥ 0. If
ARTAFIT fails to return such a distribution, one can select a more adequate distribution
(e.g. exponential) and use ARTAFACTS for fitting, which was done in our experiments.
ARIMA models always assume a normal distribution and for our experiments we tried
several easy to implement strategies to avoid the generation of negative values. The
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obvious (and easy to implement) choices are to either ignore those values in a simu-
lation model, i.e. delete them from the generated observations, to replace them with
some non-negative (fixed) value like 0, or to use absolute values only. Another ap-

T = (t1, t2, . . . , tl) T = (t1, t2, . . . , tl)

T ′ = (ln(t1), ln(t2), . . . , ln(tl)) T ′ =
(√

t1,
√

t2, . . . ,
√

tl
)

ARMA(p, q) ARMA(p, q)

T̄ = (t̄1, t̄2, . . . , t̄l) T̄ = (t̄1, t̄2, . . . , t̄l)

T̄ ′ =
(
exp(t̄1), exp(t̄2), . . . , exp(t̄l)

)
T̄ ′ =

(
(t̄1)2, (t̄2)2, . . . , (t̄l)2

)

ARMA fitting ARMA fitting

simulation simulation

Figure 3.1.: Transformation steps for fitting ARMA processes

proach is a transformation of the time series as outlined in Figure 3.1. The original
trace T = (t1, t2, . . . , tl) is transformed into T ′ = (ln(t1), ln(t2), . . . , ln(tl)) computing
the natural logarithm of each trace element ti. Then, an ARMA(p, q) model is fitted
to the transformed trace T ′. When simulating this ARMA model the generated trace
T̄ = (t̄1, t̄2, . . . , t̄l) is again transformed into T̄ ′ =

(
exp(t̄1), exp(t̄2), . . . , exp(t̄l)

)
. Alter-

natively, the square root of each element in T is computed and the elements in T̄ ′ are
obtained by computing the square of the elements in T̄ . Of course this treatment of
negative values has impact on the autocorrelation coefficients and the distribution of
the generated observations, which will be demonstrated by several examples.

3.2. Experimental Results

In the following the results of the empirical comparison of the different stochastic pro-
cesses are summarized. As already mentioned MAPs, ARMA and ARTA processes
have been fitted to six different traces. To assess the fitting quality plots of the distribu-
tion and the autocorrelation structure for the traces and the fitted models are provided.
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3.2.1. Traces generated by an ARTA Process

The first trace considered in the evaluation contains 20, 000 observations from an
ARTA process with AR(5) base process and a Johnson bounded marginal distribu-
tion with shape parameters γ = 0.6 and δ = 1.4, location parameter ξ = 0.0 and scale
parameter λ = 2.5. The parameters of the Johnson distribution are chosen such that
the distribution only yields positive values, which is, as already mentioned above, the
case for most application areas of stochastic processes like packet sizes or interarrival
or service times when simulating computer or communication networks.
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Figure 3.2.: Fitting results for a trace generated by an ARTA model with Johnson dis-
tribution

Since an AR(5) base process was used for trace generation, an autoregressive process
of order 5 was chosen for AR fitting. Because the original model has a marginal dis-
tribution from the Johnson family, ARTAFIT was used for obtaining an ARTA model,
because it also tries to fit a Johnson marginal distribution and thus should provide
good results for this type of trace. MAP fitting was done with MAP MOEA for a MAP
of order 5. The fitting results are shown in Figure 3.2. As one can see ARTAFIT was
able to recreate the original ARTA process and thus provided a good approximation
of the distribution (Figures 3.2(a) and 3.2(b)) and the autocorrelation structure (Fig-
ure 3.2(c)). The AR model provides a good estimation of the autocorrelations too.
Since AR models always assume normal marginal distribution, which is related to the
Johnson distribution that was used for trace generation, the AR model captures the
distribution as well. But in contrast to the Johnson distribution, which can be bounded
such that F(x) = 0 for x < 0, a normal distribution is unbounded. Thus, negative val-
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ues may be obtained if the fitted AR(5) process is used in a simulation model as one
can see from Figure 3.2(b). Figure 3.2(d) contains the curves for the autocorrelation
of the original AR(5) process and two traces generated from the AR model when ig-
noring negative values (Trace AR(5) ign) or replacing them with 0 (Trace AR(5) rep).
Two additional traces have been generated by fitting an AR(5) model to a transformed
trace and by reversing the transformation when simulating the AR(5) model as shown
in Figure 3.1. For the trace AR(5) ln the natural logarithm was used for transformation
and the exponential function to reverse the transformation, for the trace AR(5) sqrt the
square root and the square have been used. For this example the effect on the autocor-
relations is negligible, because only few negative values are generated by the model.
In the following examples this problem will become more noticeable.

For MAP fitting this type of trace is actually a difficult task, because it has an untyp-
ical shape for a PH distribution. Although PH distributions can approximate the shape
of normal-like distributions reasonably well [151], fitting becomes more sophisticated
when autocorrelations have to be considered as well. While for ARTA processes the
autocorrelation is independent of the distribution (as long as the desired autocorrela-
tion is within the possible bounds for that distribution), the marginal distribution of
a MAP has an immediate impact on the possible autocorrelation, i.e. matrix D0 and
vector π determine the possible structure of matrix D1. If the sum of row i of D0 is
equal to zero all elements in the corresponding row of D1 have to be zero as well. If
an element π j = 0 the j-th column of D1 is equal to zero. Although other represen-
tations (π′, D′0) for the marginal distribution that might be better suited for fitting the
autocorrelation can be obtained by a transformation of the distribution [43], it might
be difficult for the fitting algorithm to find this better representation, if the MAP is
fitted in one step. Hence, for the example from Figure 3.2 one has to accept a trade-off

between good distribution fitting and good fitting of the autocorrelation structure.

The second synthetically generated trace contains 20, 000 observations generated
from an ARTA model with AR(5) base process and exponential marginal distribution
with rate parameter λ = 1.0. For AR and MAP fitting an autoregressive process of
order 5 and MAPs of order 5 and 6 have been used, respectively. Since ARTAFIT had
problems providing a good approximation for the exponential distribution in this case,
ARTAFACTS was used, which can work with an exponential marginal distribution for
autocorrelation fitting, and the exponential marginal distribution for the ARTA model
was fitted manually. The fitting results for the distribution and the autocorrelation
structure are shown in Figure 3.3. The curves for the distribution of the AR process
have been omitted in Figures 3.3(a) and 3.3(b), since its marginal normal distribution
is obviously not an adequate approximation of the empirical distribution of the trace.
Instead, the cumulative distribution functions of different traces generated from trans-
formed ARMA processes are shown in Figure 3.3(e). For the MAPs an exponential
distribution is easy to fit and, of course, the ARTA model with manually fitted distri-
bution provides a good approximation for the cumulative distribution and probability
density functions. Regarding the autocorrelations of the trace all models provide good
results as one can see from Figure 3.3(c), although the MAPs underestimate the corre-
lation at lag 2. As already mentioned the AR model does not fit the distribution of the
trace and similar to the previous example the simulation of the AR model yields neg-
ative values. Figure 3.3(d) shows the autocorrelation of traces generated from the AR
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Figure 3.3.: Fitting results for a trace generated by an ARTA model with exponential
distribution

model when ignoring or replacing negative values or when transforming the trace ac-
cording to Figure 3.1. While for the previous example the effect was insignificant, it is
visible that the treatment of negative values has some serious impact on the autocorre-
lation in this case. The approach to fit an ARMA process to a trace that is transformed
by computing the square root of each element preserves the autocorrelations best for
this example.

3.2.2. Traces generated by a MAP

In the previous paragraph it was shown that it can be difficult for MAPs to capture
the characteristics of an ARTA process, especially if the ARTA process has a marginal
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Figure 3.4.: Fitting results for a trace generated by a MAP(2)

distribution that is nontypical for a MAP. With the following two examples the opposite
case is examined.

The first trace contains 200, 000 elements and was generated from a MAP(2) with
matrices

D0 =

[
−1.00 0.03
0.05 −0.16

]
, D1 =

[
0.90 0.07
0.01 0.10

]
and has non-zero autocorrelations for smaller lags only.

The results for the fitted MAPs and ARTA and ARMA models are shown in Fig-
ure 3.4. Since the original MAP does not exhibit a complicated autocorrelation struc-
ture, all fitted models were able to provide a good approximation for the autocorre-
lation (cf. Figure 3.4(d)). Furthermore, the MAPs captured the distribution as well,
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while this was problematic for both ARTA and ARMA processes. The distribution of
the ARMA models is, of course, normal again and the models yield negative values
when used in simulation. The Johnson distribution returned by ARTAFIT has similar
problems, though in general the Johnson distribution can take forms that only yield
positive values. But this would require adding further constraints for the distribution
fitting. Instead ARTAFACTS was used for autocorrelation fitting with a manually fitted
exponential distribution. For the ARMA models it is not possible to fall back to dif-
ferent distributions and thus, one has to deal with the negative values in simulation.
Figure 3.4(e) shows that ignoring negative values has a larger impact on the autocor-
relation while replacing these values has much less effect. Again, fitting an ARMA
model to the trace that is transformed using the square root has the smallest effect
on the autocorrelation, although the trace resulting from the simulation and transfor-
mation of the corresponding ARMA process does not provide a good approximation
of the distribution as one can see from Figure 3.4(b), which contains the cumulative
distribution functions for the transformed traces resulting from the fitted ARMA(3, 1)
process. On the other hand, the alternative transformation of the trace using the natural
logarithm resulted in a negative effect on the autocorrelation, while it provided a good
approximation of the distribution.

The next trace contains 200, 000 elements generated by a MAP(3) with autocorre-
lation up to lag 20 from [40]. The MAP is defined by the two matrices

D0 =

−3.721 0.500 0.020
0.100 −1.206 0.005
0.001 0.002 −0.031

 , D1 =

0.200 3.000 0.001
1.000 0.100 0.001
0.005 0.003 0.020

 .
The fitting results shown in Figure 3.5 are similar to the results of the previous trace
generated from the MAP(2). The MAP fitting methods were able to capture both dis-
tribution and autocorrelation again. ARTA fitting, which was done using ARTAFACTS
with a manually specified distribution, provided a good approximation for the autocor-
relations as well as one can see from Figure 3.5(c). Figures 3.5(d) and 3.5(e) show the
impact of the different strategies to avoid negative values on the autocorrelation and
the distribution function, respectively.

3.2.3. Real Traces

In the last step of this empirical evaluation the ability to approximate the behavior
of traces that have been observed in a real system will be addressed. These traces
are much harder to fit than the synthetically generated ones, since their empirical dis-
tribution function is more complicated and they exhibit autocorrelations over a large
number of lags.

The first results have been obtained for the trace BC-pAug89 and are shown in Fig-
ure 3.6. Figures 3.6(a) and 3.6(b) show the cumulative distribution function and the
probability density function of the trace, of two MAPs fitted with the two different
approaches mentioned before and of an ARTA model with manually chosen exponen-
tial distribution. For the same reasons as before we omitted curves for ARMA models
in the plots. Although the shape of the empirical distribution function of the trace is
difficult to fit, all three models provide a good approximation in terms of the cdf.
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Figure 3.5.: Fitting results for a trace generated by a MAP(3)

Figure 3.6(c) shows the autocorrelation for the MAPs and the ARTA process and
Figure 3.6(d) the autocorrelation for different AR and ARMA models. The two MAPs
fitted with the two different approaches either underestimated (MAP EM) or overesti-
mated (MAP MOEA) the higher lag autocorrelations, but provide a good approximation
for the lower lags. From Figure 3.6(d) one can see that the pure AR models (AR(3)
and AR(9)) only capture the first 3 and 9 lags, respectively. In general, an AR(p) model
can capture p lags exactly but for lags > p the autocorrelation of the model converges
to zero very fast. For fitting traces with a larger number of significant lags of autocor-
relation this would result in large models with a huge amount of AR coefficients. In
contrast, allowing for only few additional moving average terms in the model results in
a vast improvement of the fitting quality for higher lags, while still keeping the model
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Figure 3.6.: Fitting results for the trace BC-pAug89

size small. This becomes visible by the curves for ARMA(3, 2) and the ARMA(9, 5)
model in Figure 3.6(d). ARTAFACTS only supports autocorrelation for up to five lags
and thus, the resulting ARTA model only captures the first five autocorrelations. But
since ARTA models use an AR model as base process it is obvious from the previ-
ous observations on AR models that capturing autocorrelations up to a reasonable lag
would result in a very large base process for the ARTA model.
Again, we have to deal with negative values that the ARMA models might yield
when simulated. The impact of the different strategies (ignoring, replacing and the
two transformations) to avoid negative values on the autocorrelation of the simulated
ARMA(9, 5) model is shown in Figure 3.6(e). Plots for the other ARMA models have
been omitted because they show similar results.
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Figure 3.6(f) shows the autocorrelation of a fitted f-ARIMA model. f-ARIMA pro-
cesses can model self-similar behavior and from the figure it becomes apparent that
even a very small f-ARIMA process can provide a good approximation of the autocor-
relation of the original trace. But as a drawback most characteristics like e.g. autocor-
relation cannot be computed directly for f-ARIMA processes but have to be estimated
from a simulation run of the model. Furthermore, f-ARIMA models do not overcome
the problems with negative values caused by the marginal normal distribution that has
been mentioned before for ARMA processes. Figure 3.6(f) also shows the traces that
result from ignoring or replacing these values and one can see that the curves look
similar to those of the ARMA(9, 5) model in Figure 3.6(e).
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Figure 3.7.: Fitting results for the trace LBL-TCP-3
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Figure 3.7 shows the results for the second trace observed from a real system, LBL-
TCP-3, which confirm the observations made for the trace BC-pAug89. Figures 3.7(a)
and 3.7(b) show the distribution of the original trace and several fitted MAPs and
ARTA models. As one can see ARTAFIT, which tries to find the complete ARTA model
consisting of a Johnson distribution and the base process, was not able to return a
Johnson distribution with F(x) = 0, x < 0. Using this distribution would lead to similar
results as described before for ARMA models. Hence, a second ARTA process with
a manually fitted exponential distribution was obtained using ARTAFACTS for capturing
the autocorrelations only. Regarding the autocorrelations the ARTA models and one
MAP only fitted the lower lags as shown in Figure 3.7(c). Only the MAP resulting
from MAP MOEA was able to capture higher lag autocorrelations. Figure 3.7(d) shows
again, that adding a few moving average terms to an AR process can help to improve
the fitting of autocorrelations significantly. In Figure 3.7(e) the impact of the different
strategies to deal with negative values on the autocorrelations is summarized.

3.3. Summary

From the observations in the previous paragraphs several drawbacks of the existing
approaches for modeling traffic data that exhibits autocorrelations became apparent
that directly motivate the processes that will be developed in Chapters 4, 5 and 6.

First, ARMA processes always result in a marginal normal distribution, which is
not suitable in many cases. Furthermore, since the normal distribution is unbounded
a transformation of the process is necessary to avoid negative values when the simu-
lation requires positive values only. It was shown that the different strategies to deal
with negative values have impact on the distribution and the autocorrelation, but usu-
ally none of the transformations resulted in an appropriate approximation for both
measures. One should note, that when transforming a trace T = (t1, t2, . . . , tl) to
T ′ = (ln(t1), ln(t2), . . . , ln(tl)) or to T ′ =

(√
t1,
√

t2, . . . ,
√

tl
)

and fitting an ARMA
model to the transformed trace, the fitted ARMA model does not completely capture
the characteristics, especially the distribution, of this trace. Thus, when simulating that
model and transforming the generated trace into T̄ ′ =

(
exp(t̄1), exp(t̄2), . . . , exp(t̄l)

)
or

T̄ ′ =
(
(t̄1)2, (t̄2)2, . . . , (t̄l)2

)
, respectively, the approximation error of the ARMA model

is transformed as well. For the transformation using the natural logarithm this resulted
in a good approximation of the cdf in many cases while it usually had negative im-
pact on the autocorrelation. On the other hand, the transformation using the square
root preserved the fitting of the autocorrelation much better, but could not capture the
distribution.

In contrast to the problems with fitting the distribution ARMA models are very flex-
ible in capturing the autocorrelations. While AR(p) processes with a reasonable model
size are only adequate if few lag-k correlation coefficients are considered, adding a few
MA terms resulted in small models that could fit a large number of autocorrelations.

ARTA processes overcome the distribution related issues of ARMA models and
benefit from their abilities in autocorrelation fitting by combining an arbitrary marginal
distribution with an AR(p) base process. But it became also apparent, that the Johnson
distribution, which is used by the fully automated ARTAFIT, is not sufficient in all cases,
and one has to fall back to another distribution that has to be fitted by other tools.
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Moreover, ARTA models can only fit a smaller number of autocorrelation lags with a
reasonable model size, which is a problem inherited from its AR(p) base process. This
issue will be addressed in Chapter 4 where ARTA processes are extended to use an
ARMA(p, q) base process.

ARTA models require that the cdf of the marginal distribution is invertible, which
excludes interesting distributions like Phase-type distributions (except exponential and
Erlang), which could provide a better approximation of the empirical distribution of
a trace than the distributions suitable for ARTA models. MAPs on the other hand are
stochastic processes with Phase-type marginal distribution, but the distribution has a
strong effect on the possible autocorrelation that the MAP could exhibit. From the
examples one could see, that MAPs have problems to capture both distribution and
dependence, if the distribution is untypical for Phase-type (e.g. has a normal-like
shape). In Chapters 5 and 6 alternative stochastic processes are introduced, which
combine a Phase-type distribution with an ARMA(p, q) base process to allow for more
flexible processes with Phase-type marginal distribution. While these processes pick
up the basic idea of ARTA models to combine a distribution with a base process the
combination of distribution and base process requires a different approach, because as
already mentioned the cdf of PH distributions cannot be inverted efficiently in general.
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Chapter 4
Extended ARTA Processes

As already mentioned several new stochastic processes for simulation models are de-
veloped in this and the following chapters that can capture correlated data with Phase-
type marginal distribution. These processes aim at overcoming the drawbacks pre-
sented in Chapter 3 and will cover acyclic Phase-type distributions and all its sub-
classes as marginal distribution. The processes will be introduced stepwise. In this
section ARTA processes from Section 2.2 will be extended such that they can cap-
ture autocorrelation for a higher number of lags while preserving a small model size.
These extended ARTA models can be employed for all marginal distributions for that
the inverse cdf can be computed and hence, cover the cases of exponential and Er-
lang distributions from the class of Phase-type distributions, but of course can be used
with various other non-PH distributions like for example normal, Johnson, lognormal,
Weibull or uniform. The stochastic processes presented in the following Chapters 5
and 6 will finally deal with more elaborate subclasses of PH distributions for which
the inverse cdf cannot be computed efficiently.

Recall from the results of Chapter 3 that an AR(p) model can provide an exact fitting
for the first p lags of autocorrelation but falls short of capturing more than p lags.
ARTA models inherit this property from its AR(p) base process. Figure 4.1 shows
three ARTA models with different base processes for p = 5, 10 and 15 that have been
fitted to the trace LBL-TCP-3. From the curves it is apparent that an ARTA model that
should fit a significant number of lag-k autocorrelations as it is necessary to capture
the trace characteristics, would require a very large base process, i.e. a large number
of AR coefficients. While in general the input model size is not of major importance
in simulation, it is obvious that AR(p) processes with e.g. 100 or more autoregressive
coefficients are both cumbersome to fit and to simulate. On the other hand it was shown
in Chapter 3 that ARMA(p, q) processes can model a large number of autocorrelations
with a much smaller model size. While they do not provide an exact matching as
AR(p) processes the approximation was still very close, which is sufficient, since the
autocorrelations that should be matched are usually obtained from a trace and hence,
they are in fact only estimates within some confidence interval.

These considerations motivate the idea to replace the AR(p) base process of an
ARTA model with an ARMA(p, q) process to make these types of processes more
suitable for the requirements that occur when modeling data from computer networks.
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Figure 4.1.: Autocorrelations for different ARTA models fitted to trace LBL-TCP-3

In the following the concepts are introduced that are necessary to extend the ARTA
approach from Section 2.2 with an Autoregressive Moving Average process and it is
shown that most of the definitions and properties for ARTA processes stated in [47]
and summarized in Section 2.2 still hold for the extended ARTA process.

An extended ARTA model consists of an arbitrary marginal distribution FY and an
ARMA(p, q) base process:

Definition 4.1 (Extended ARTA Process). An extended ARTA process is defined by a
marginal distribution FY for which the inverse cdf F−1

Y can be computed and a station-
ary Autoregressive Moving Average ARMA(p, q) base process

Zt = α1Zt−1 + α2Zt−2 + . . . + αpZt−p + β1εt−1 + β2εt−2 + . . . + βqεt−q + εt

as defined in Section 2.1. The base process is constructed such that the generated time
series {Zt; t = 1, 2, . . .} has standard normal distribution N(0, 1). Then the extended
ARTA process describes a time series

Yt = F−1
Y [Φ(Zt)], t = 1, 2, . . . (4.1)

where Φ is the standard normal cumulative distribution function.

Of course, for q = 0 the model becomes an ARTA model with an AR(p) base process
as described in Section 2.2. If the {Zt; t = 1, 2, . . .} have standard normal distribution
as required in Definition 4.1 the probability-integral transformation Φ(Zt) generates
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a sequence with uniform distribution on (0, 1) (cf. [59]) and the inverse transform
method using F−1

Y generates a time series {Yt, t = 1, 2, . . .} with the desired marginal
distribution FY (cf. Section 2.2 and Figure 2.3).

In the following some properties of the extended ARTA process are established that
relate statistical properties of the base process Zt to properties of the ARTA process
Yt. For these observations we assume that the base process is constructed such that the
{Zt; t = 1, 2, . . .} have standard normal distribution as mentioned above. After that it is
explained how the base process can be constructed to fulfill these requirements.

4.1. Properties of Extended ARTA Processes

To use the extended ARTA processes from Definition 4.1 for fitting traffic data a re-
lation between the autocorrelation structure of the extended ARTA process and the
autocorrelation structure of the base process has to be established. For given autocorre-
lations ρ̂ = (ρ̂1, ρ̂2, . . . , ρ̂r) that have been estimated from a trace and a given marginal
distribution FY one has to construct an ARMA(p, q) base process with autocorrelations
ρ = (ρ1, ρ2, . . . , ρr) such that the extended ARTA process has autocorrelations ρ̂.

[47] introduced such a relation for ARTA processes with an AR(p) base process (cf.
Equation 2.6) and proved that an autocorrelation ρh {<,=, >} 0 for the base process
implies an autocorrelation ρ̂h {<,=, >} 0 for the ARTA process. In the following it is
shown that the same properties hold for extended ARTA models with an ARMA(p, q)
base process as well.

The autocorrelation of an ARTA process and the base process are related by (cf.
Equation 2.6) Corr[Yt,Yt+h] = Corr

[
F−1

Y (Φ(Zt)), F−1
Y (Φ(Zt+h))

]
, regardless of whether

the base process is AR(p) or ARMA(p, q). Since (cf. [47])

Corr[Yt,Yt+h] =
E[YtYt+h] − (E[Y])2

Var[Y]
(4.2)

and E[Y] and Var[Y] are determined by the marginal distribution FY the important
term for establishing the relation between base process and (extended) ARTA process
is the joint moment E[YtYt+h]. Recall the requirement for the {Zt; t = 1, 2, . . .} resulting
from the base process to have standard normal distribution. Then any two elements of
the time series (Zt,Zt+h) have a standard bivariate normal distribution with density
function ϕρh and correlation ρh = Corr[Zt,Zt+h]. Now we have

E[YtYt+h] = E[F−1
Y (Φ(Zt))F−1

Y (Φ(Zt+h))] (4.3)

=

∫ ∞

−∞

∫ ∞

−∞

F−1
Y (Φ(zt))F−1

Y (Φ(zt+h))ϕρh(zt, zt+h)dztdzt+h.

Observe from Equations 4.2 and 4.3 that the ARTA correlation ρ̂h = Corr[Yt,Yt+h]
is a function of the base process autocorrelation ρh that appears in ϕρh(zt, zt+h). This
function is denoted by ω(ρh) = ρ̂h. Note, that it is possible to compute a ρ̂h from
a given base process autocorrelation ρh using Equation 4.3, but for actually fitting
ARTA processes it is necessary to determine the base process autocorrelation ρh for
a given (i.e. estimated from a trace) ρ̂h. This is to be done numerically by a search
algorithm and [47] established several properties of ω(ρh) that allow one to use such
algorithms for ARTA processes with an AR(p) base process. The crucial requirement
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CHAPTER 4. EXTENDED ARTA PROCESSES

for proving the properties of ω(ρh) for ARTA processes is the fact, that the {Zt; t =

1, 2, . . .} generated by the base process have standard normal distribution. Since this
is required for the ARMA(p, q) base process of extended ARTA models as well, the
proofs from [47] still work for extended ARTA processes. In the following the main
results from [47] that are necessary for applying a search algorithm are summarized.

Proposition 4.1. For any extended ARTA process with marginal distribution FY and
ARMA(p, q) base process we have that

• ω(0) = 0,

• ρh ≤ 0⇒ ω(ρh) ≤ 0,

• ρh ≥ 0⇒ ω(ρh) ≥ 0.

Proof. This follows from the proof of [47, Proposition 1].

• ρh = 0 implies that Zt and Zt+h are independent. Then

E[YtYt+h] = E
[
F−1

Y (Φ(Zt))F−1
Y (Φ(Zt+h))

]
= E

[
F−1

Y (Φ(Zt))
]

E
[
F−1

Y (Φ(Zt+h))
]

= E[Yt]E[Yt+h] = E[Y]2

and

Corr[Yt,Yt+h] =
E[YtYt+h] − (E[Y])2

Var[Y]
= 0.

• According to [153] ρh ≤ (≥) 0 implies that Cov[g1(Zt,Zt+h), g2(Zt,Zt+h)] ≤ (≥) 0
for all nondecreasing functions g1 and g2. Since F−1

Y (Φ(·)) is a nondecreasing
function, the result immediately follows by setting g1(Zt,Zt+h) = F−1

Y (Φ(Zt))
and g2(Zt,Zt+h) = F−1

Y (Φ(Zt+h)).

�

Theorem 4.1. For any extended ARTA process with marginal distribution FY and
ARMA(p, q) base process the function ω(ρh) is nondecreasing for −1 ≤ ρh ≤ 1.

Proof. For positive correlations 0 ≤ ρh ≤ 1 this follows from [153, Theorem 5.3.10],
which states that for two normal variables Z1 and Z2 with correlation ρh we have
Corr[g(Z1), g(Z2)] is nondecreasing in ρh for all functions g(·). Setting Yt = g(Zt) =

F−1
Y (Φ(Zt)) and Yt+h = g(Zt+h) = F−1

Y (Φ(Zt+h)) we obtain that ω(ρh) = Corr[Yt,Yt+h]
is nondecreasing for 0 ≤ ρh ≤ 1. A similar result has been obtained for negative
correlations −1 ≤ ρh ≤ 0 in [47, Theorem 1]. �

Theorem 4.2. For any extended ARTA process with marginal distribution FY and
ARMA(p, q) base process the function ω(ρh) is continuous, if there exists ε > 0 such
that E[|YtYt+h|

1+ε] < ∞ for all −1 ≤ ρh ≤ 1.

Proof. In [47] Theorem 4.2 has been proven for ARTA processes with AR(p) base
process. We will summarize the basic ideas and show that the proof also holds for an
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ARMA(p, q) base process.
First observe, that requiring E[|YtYt+h|

1+ε] < ∞ for all −1 ≤ ρ ≤ 1 is equivalent to∫ ∞

−∞

∫ ∞

−∞

sup
ρ∈[−1,1]

{
|F−1

Y [Φ(z1)]F−1
Y [Φ(z2)]|1+ε × ϕρ(z1, z2)

}
dz1dz2 < ∞. (4.4)

Now, let Z1 and Z3 be iid standard normal random variables and assume that ρ ∈ [−1, 1]
is fixed. Furthermore, let {ρn}

∞
n=1 be a sequence with ρn ∈ [−1, 1], n = 1, 2, . . . and

ρn → ρ as n→ ∞. Define

Z1n ≡ Z1, Z2n ≡ ρnZ1 +

(√
1 − ρ2

n

)
Z3, Z2 ≡ ρZ1 +

(√
1 − ρ2

)
Z3.

Observe, that Z1 and Z2 are standard normal random variables with correlation ρ and
Z1n and Z2n are standard normal random variables with correlation ρn [90]. Now, let

Y1n ≡ F−1
Y [Φ(Z1n)] and Y2n ≡ F−1

Y [Φ(Z2n)]

and define

h
(
z1

z2

)
≡ F−1

Y [Φ(z1)]F−1
Y [Φ(z2)].

For fixed z2 the function h is monotone in z1 and vice versa. Therefore h has only a
countable number of discontinuities and from(

Z1n

Z2n

)
⇒

(
Z1

Z2

)
as n→ ∞

we get by application of the mapping theorem (cf. [27, Theorem 29.2]) the following
convergence in distribution

h
(
Z1n

Z2n

)
⇒ h

(
Z1

Z2

)
as n→ ∞.

For Y1 ≡ F−1
Y [Φ(Z1)] and Y2 ≡ F−1

Y [Φ(Z2)] this is equivalent to

Y1nY2n ⇒ Y1Y2 as n→ ∞. (4.5)

It then follows from Equations 4.4 and 4.5 and [27, Theorem 25.12] that E[Y1nY2n]→
E[Y1Y2] as n→ ∞, implying that ω(ρ) is a continuous function since ω(ρn)→ ω(ρ) as
n→ ∞. Setting Z1 = Zt,Z2 = Zt+h,Y1 = Yt,Y2 = Yt+h and ρ = ρh proves Theorem 4.2.
Observe, that the proof holds for any Zi that have standard normal distribution. There-
fore, the presented proof from [47] is valid for an ARTA process with ARMA base
process as well, as long as the observations generated by the ARMA process have
standard normal distribution, which we required in Definition 4.1. �

Since the autocorrelation structure of the extended ARTA process is a nondecreasing
and continuous function according to Theorems 4.1 and 4.2 any search procedure can
be applied to find the base process autocorrelation that results in the desired extended
ARTA autocorrelation. From Proposition 4.1 the initial bounds can be obtained, i.e.
for a positive ARTA autocorrelation only base process autocorrelations 0 ≤ ρh ≤ 1
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have to be considered and for a negative ARTA autocorrelation only −1 ≤ ρh ≤ 0 has
to be treated.

Aside from the properties above, which are all related to the autocorrelation of
an extended ARTA model, several other characteristics are of interest to describe a
stochastic process or to assess its fitting quality. The probability density function, the
cumulative distribution function and moments, variance, etc. are all completely deter-
mined by the marginal distribution of the extended ARTA model and thus, cannot be
given in general. Appendix B contains a brief description of several distributions that
can be used as marginal distribution for an extended ARTA model. Another measure
of a stochastic process that is related to the dependence of consecutive arrivals are joint
moments, which have for example been successfully used for MAP fitting (cf. Sec-
tion 2.3.6). For extended ARTA models Equation 4.3 can be generalized to compute
arbitrary joint moments, i.e.

E[Yk
t Y l

t+h] = E
[(

F−1
Y (Φ(Zt))

)k (
F−1

Y (Φ(Zt+h))
)l
]

(4.6)

=

∫ ∞

−∞

∫ ∞

−∞

(
F−1

Y (Φ(zt))
)k (

F−1
Y (Φ(zt+h))

)l
ϕρh(zt, zt+h)dztdzt+h.

Recall from Definition 4.1 that we required the ARMA(p, q) base process to be sta-
tionary, i.e. that Zt are invariant under time shifts. This of course implies, that the
(extended) ARTA process is stationary as well, because the Yt are only a transforma-
tion of the Zt.

The previous observations on the relation of the autocorrelation structure of the
base process and the autocorrelation of the extended ARTA process can be employed
to construct the base process, which will be described in the following section.

4.2. Constructing the ARMA Base Process

For the ARMA(p, q) base process three requirements have been pointed out previously.
First, the generated time series {Zt; t = 1, 2, . . .} must have standard normal distribu-
tion (Zt ∼ N(0, 1)), second, the base process should have an autocorrelation struc-
ture ρ = (ρ1, ρ2, . . . , ρk) such that the extended ARTA process has autocorrelations
ρ̂ = (ρ̂1, ρ̂2, . . . , ρ̂k) and third, the base process must be stationary.

The {Zt; t = 1, 2, . . .} having standard normal distribution implies that the variance
(or autocovariance at lag 0) of the ARMA(p, q) process has to be 1. The autocovariance
function of a stationary ARMA(p, q) satisfies [37]

γ(k) = σ2
ε

∞∑
j=0

ψ jψ j+|k|,

where

ψ(z) =

∞∑
j=0

ψ jz j = β(z)/α(z) for |z| ≤ 1

and
β(z) = 1 + β1z + . . . + βqzq, α(z) = 1 − α1z − . . . − αpzp.
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Since the autocorrelation of a stationary ARMA(p, q) process is given by

ρk = γ(k)/γ(0)

the fraction can be reduced by eliminating σ2
ε . Thus, the ρk are independent of σ2

ε and
one can set σ2

ε such that the {Zt; t = 1, 2, . . .} have a standard normal distribution, i.e.
are N(0, 1), without modifying the autocorrelation structure of the base process.

[37] provides another formula for the autocovariance that is more appropriate for
actually computing the autocovariances:

γ(k)−α1γ(k−1)− . . .−αpγ(k− p) = σ2
ε

∑
k≤ j≤q

β jψ j−k, 0 ≤ k < max(p, q+1) (4.7)

and
γ(k) − α1γ(k − 1) − . . . − αpγ(k − p) = 0, k ≥ max(p, q + 1). (4.8)

Defining β0 = 1, β j = 0, j > q and α j = 0, j > p the ψi can be computed from

ψ j −
∑

0<k≤ j

αkψ j−k = β j, 0 ≤ j < max(p, q + 1)

and
ψ j −

∑
0<k≤p

αkψ j−k = 0, j ≥ max(p, q + 1).

Thus, for a given ARMA(p, q) process with σ̃2
ε being the variance of the white noise

one can solve Equations 4.7 and 4.8 to obtain the autocovariance at lag 0, γ̃(0), and
then set the new variance to

σ2
ε = σ̃2

ε/γ̃(0) (4.9)

resulting in a new N(0, 1) process with the same autocorrelations as the old process.
Finding suitable base process autocorrelations ρ = (ρ1, ρ2, . . . , ρr) such that the

extended ARTA process has autocorrelations ρ̂ = (ρ̂1, ρ̂2, . . . , ρ̂r) requires a numerical
search procedure. Observe from Equation 4.3 that it is only possible to compute ρ̂h

from a given ρh, but not the other way round. Since in our case ρ̂h is given (i.e.
estimated from the trace) and we have to determine the corresponding ρh, this has to
be done numerically by a search algorithm. More precisely, we are searching for ρh

that minimizes
(ρ̂h − ω(ρh))2 (4.10)

where ρ̂h is the desired ARTA correlation and ω(ρh) is the ARTA correlation that re-
sults from a base process correlation ρh. The minimum of Equation 4.10 can be deter-
mined by a golden section search [131]. This search algorithm always maintains three
points x1, x2, x3. x1 and x3 are the lower and upper bound of the interval under con-
sideration and x2 is a point within this interval. The initialization values for x1 and x3
are set according to Proposition 4.1, i.e. x1 and x3 define the interval [−1, 0] if ρ̂h < 0
or [0, 1] if ρ̂h > 0. For ρ̂h = 0 no search is necessary, since this implies ρh = 0. The
optimal value for x2 divides the interval [x1, x3] such that x2 has a fractional distance
of 0.38197 to x1 and 0.61803 to x3 (cf. [131]). The search procedure then iteratively
selects a new point x4 that divides the interval [x2, x3] into the fractions mentioned
above, evaluates Equation 4.10 at x2 and x4 and depending on the outcome continues
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to search in the interval [x1, x4] with mid-point x2 or in the interval [x2, x3] with mid-
point x4 until we have found an interval of a width less than a given ε. The mid-point
of that interval is the base process autocorrelation ρh that results in a correlation for
the extended ARTA model that is close enough to ρ̂h. For autocorrelation coefficients
estimated from real traces it is very likely that coefficients that are only a few lags apart
have a similar value, e.g. the difference between ρ̂h and ρ̂h+1 might be small in many
cases. For these lags the intervals examined by the search algorithm are identical for
the first iterations of the procedure. To improve the performance of the search algo-
rithm already computed pairs (ρh, ω(ρh)) should be saved in a table such that they only
have to be computed once and can be looked up if they are required again.
This way the autocorrelation structure can be determined numerically up to an arbitrary
accuracy. A similar search procedure for ARTA models is given in [48].

Once the base process autocorrelation structure ρ = (ρ1, ρ2, . . . , ρr) has been deter-
mined, an ARMA(p, q) process has to be constructed that exhibits this structure. This
can be done by using a general purpose optimization algorithm that minimizes the dif-
ference between the autocorrelations of the ARMA model that is constructed during
the minimization process and ρ = (ρ1, ρ2, . . . , ρr).
Recall, that we required the ARMA(p, q) to be stationary and thus, we additionally
have to penalize non-stationary solutions.
The stationarity of an ARMA(p, q) model only depends on the AR coefficients αi

of the process, i.e. the process is stationary if the zeroes of the polynomial α(z) =

1−α1z−α2z2− . . .−αpzp lie outside the unit circle [35]. More formal, the ARMA(p, q)
process is stationary if and only if α(z) , 0 for all z ∈ C with |z| ≤ 1.
Hence, we use the following goal function to fit an ARMA(p, q) process to a set of
given autocorrelations:

arg min
α1,...,αp,β1,...,βq

r∑
i=1

(
ρ∗i
ρi
− 1

)2

+ %
∑

ξ,α(ξ)=0

min (0, (ξ − (1 + ε)))2 . (4.11)

The first term is the objective function to minimize the difference of the autocorrelation
coefficients, the second term is the penalty function. The ρi in Equation 4.11 are the
autocorrelation coefficients to be achieved and the ρ∗i are computed from the ARMA
process as described in Equations 4.7 and 4.8. Thus, if the α1, . . . , αp, β1, . . . , βq de-
scribe a stationary ARMA process the ρ∗i are the autocorrelation coefficients of the
ARMA(p, q) model that is constructed during the minimization process. If the ARMA
process is not stationary the values can be computed anyway, but do not have the in-
terpretation as autocorrelation coefficients. In this case the penalty function is used
to obtain a larger value for the goal function to force the optimization algorithm to
leave the non-stationary region. For the penalty function all roots ξ of α(z) are consid-
ered. Let ε > 0 be some small constant, i.e. for an implementation of Equation 4.11
ε should be the smallest value such that 1 + ε , 1. Then the term ξ − (1 + ε) is
non-negative, if the roots are outside the unit circle, i.e. the model is stationary, and
min (0, (ξ − (1 + ε)))2 is zero. For non-stationary models at least one root lies inside
the unit circle and min (0, (ξ − (1 + ε)))2 > 0. The penalty function is multiplied with
some factor %, which is increased in each iteration of the minimization to ensure that
the algorithm leaves the area with non-stationary solutions. For a stationary solution
the goal function only depends on the difference between the autocorrelation coeffi-

59



4.2. CONSTRUCTING THE ARMA BASE PROCESS

cients and the optimal solution that exactly matches the desired autocorrelation will
result in a goal function value of zero.

Hence, finding an appropriate ARMA(p, q) base process for a given marginal dis-
tribution FY and given autocorrelations ρ̂ = (ρ̂1, ρ̂2, . . . , ρ̂r) for the extended ARTA
process consists of three steps:

1. For each ρ̂h find a ρh such that Corr[Yt,Yt+h] = ρ̂h using Equation 4.2.

2. Fit an ARMA(p, q) model to the autocorrelations ρ = (ρ1, ρ2, . . . , ρr) determined
in the first step.

3. Adjust the variance of the innovations of the ARMA(p, q) base process resulting
from the second step according to Equation 4.9.

Extended ARTA models can have any marginal distribution for which the inverse
cdf can be computed. This includes uniform, triangular, normal and lognormal dis-
tributions. Moreover, of course distributions from the Johnson system, which have
been used for the original ARTA process from Section 2.2, can be applied. From the
class of Phase-type distributions exponential and Erlang distributions could serve as
marginal distribution. Furthermore, gamma and χ2 distributions, which are related to
the Erlang distribution but are not Phase-type, can be used. See e.g. [104] for a defi-
nition and closed-form expressions for most of the mentioned distributions. For some
distributions no closed-form expression for the inverse cdf exists. In these cases fast
numerical algorithms are available. The inverse cdf of normal, lognormal, and John-
son distribution can be computed using [163], for Erlang, gamma and χ2 distributions
the algorithm from [20] can be used. A brief overview of the mentioned distributions
and their properties can be found in Appendix B.

For the above considerations the marginal distribution FY is assumed to be given.
Furthermore, the determination of the order p, q of the base process has been left open.
These issues will be addressed in Chapter 7 where the ideas for extended ARTA models
and further process types developed in the following chapters are integrated into an
algorithmic framework.
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Chapter 5
Correlated Hyper-Erlang Processes

In the following the basic ideas of ARTA processes are extended for the specification
of processes that have a Hyper-Erlang marginal distribution (cf. Section 2.3.1). Since
these considerations are more straightforward and easier to compute for HErDs than
for the more general class of acyclic Phase-type distributions, the concept is first de-
veloped for HErDs in this chapter. The general case for APHs is treated in Chapter 6.

ARTA processes rely on the inversion of the cumulative distribution function and
thus, they are suitable for distributions for which a closed-form expression for the
inverse cdf exists. For these types of distributions random numbers are usually gener-
ated using the inverse transform method and thus, the additional effort for the ARTA
approach in comparison to the generation of iid random numbers results from the sim-
ulation of the base process. Once an uniformly distributed random number has been
obtained (either from the transformed base process for ARTA processes or from a
random number generator for iid random numbers) the final step for generating the
random number with the desired distribution is the same in both cases.

If F−1
Y can be approximated numerically, the ARTA approach is also applicable, al-

though both fitting of the process and sampling from the process can be cumbersome in
this case. For example in [68] the ARTA approach is combined with Matrix Exponen-
tial marginal distributions, which results in a very computation-intensive procedure to
determine the base process autocorrelation and to sample from the distribution, since
the inverse cdf has to be computed numerically various times. In general the ARTA
approach is not feasible for the interesting classes of ME and Phase-type distributions,
since the cdf contains a matrix exponential (cf. Equation 2.9) and the inverse cdf
cannot be computed efficiently. Exceptions are the exponential and the Erlang dis-
tributions, for which a closed-form expression or a numerical procedure [20] exist,
respectively. For these reasons random numbers from a PH distribution are usually not
generated using the inverse transform method, but by simulating the transitions of the
underlying CTMC and by adding the transition times until absorption [136]. Hence,
the ARTA approach does not conform to the usual way of random number generation
for PH distributions.

Fortunately, APH distributions can be characterized by a mixture of finite sequences
of exponential distributions, which allows for a different combination of the ARMA
base process and the distribution that does not rely on the inversion of the cumulative
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distribution function and respects the above considerations on random number gener-
ation for PH distributions resulting in a more efficient approach to describe correlated
random numbers with PH distribution.

To clarify the benefits of using PH distributions several Hyper-Erlang distributions
with increasing number of states and several other distributions for which the ARTA
approach is applicable are fitted to three different traces. The two traces BC-pAug89
[108] and LBL-TCP-3 [130] have already been used in Chapter 3. The third trace
TUDo [100] contains the interarrival times of one million packets that have been mea-
sured from the Squid proxy server at the Computer Science Department of TU Dort-
mund in 2006. For the experiments all traces have been scaled to have a mean value
of 1. The distributions considered for fitting are exponential, lognormal, Johnson,
Weibull and Hyper-Erlang. As fitting approach usually a likelihood-based technique
was applied. For exponential and lognormal distributions maximum likelihood esti-
mators are available in standard literature [104]. For the Weibull distribution a general
purpose optimization algorithm for the maximization of the likelihood function was
used and Hyper-Erlang distributions have been fitted using the EM approach from
[151]. Since for distributions from the Johnson system maximum likelihood fitting is
difficult and might result in unfeasible values [156] the quantile estimation from [162]
was used for fitting Johnson distributions. Table 5.1 shows the log-likelihood values
and the first three moments of the fitted distributions for the three traces. In addition to
the moments the relative errors (|µi− µ̂i|/µ̂i) ·100 in percent with µi and µ̂i being the i-th
moment of the distribution and the trace, respectively, are listed. As one can see from
Table 5.1 fitting with Hyper-Erlang distributions resulted in the best log-likelihood val-
ues for all traces. For the trace BC-pAug89 even a HErD with 2 states yielded a better
likelihood value than the other distributions, which is further increased when using
HErDs of higher order. Regarding the moments the lognormal distributions and the
HErDs yielded results close to the moments of the trace.

For the trace LBL-TCP-3 the results are similar. Again, for Hyper-Erlang distribu-
tions the largest log-likelihood values have been obtained. Only the likelihood value
of the lognormal distribution is at least close to the one of a HErD(2), but except for
the HErDs all other distributions provided poor results for the moments. Note, that the
trace contains values for which the fitted Johnson distribution is not defined and thus,
the log-likelihood is −∞ for this distribution.

The trace TUDo was most difficult to fit. While the largest log-likelihood value
can still be achieved with HErDs it requires a larger number of states in this case. If
the moments are considered as well, only Hyper-Erlang distributions provided a good
approximation of the first moment, but for higher moments none of the distributions
was able to provide a good approximation.

In summary the results clearly indicate that PH distributions usually yield better ap-
proximations in terms of both likelihood and moments than the other considered distri-
butions, especially the likelihood increases significantly when increasing the number
of states.

Because the cumulative distribution function of the Hyper-Erlang distribution (cf.
Equation 2.13) cannot be inverted efficiently, a different approach for the combination
of the ARMA(p, q) base process and the distribution has to be applied. The basic idea
is to use the correlated random numbers obtained from the base process for the selec-
tion of a branch from the Hyper-Erlang distribution. Of course, this requires the HErD
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Distribution Log-Likelihood Moment 1 Moment 2 Moment 3
pAug89 Exponential −999999 1.0 (0.0%) 2.0 (52.7%) 6.0 (90.7%)

Johnson SU −959863 0.89 (11.0%) 1.8 (57.4%) 8.1 (87.5%)
Weibull −990007 0.95 (5.0%) 2.1 (50.3%) 7.3 (88.7%)
Lognormal −953799 1.05 (5.0%) 4.1 (2.9%) 56.9 (12.1%)
HErD(2) −911558 1.0 (0.0%) 4.5 (5.9%) 66.3 (2.4%)
HErD(3) −911135 1.0 (0.0%) 3.5 (16.9%) 34.4 (46.9%)
HErD(4) −874270 1.0 (0.0%) 4.1 (2.9%) 51.2 (20.9%)
HErD(5) −847551 1.0 (0.0%) 4.1 (2.9%) 50.8 (21.5%)
HErD(10) −838863 1.0 (0.0%) 3.9 (7.8%) 44.6 (31.1%)
HErD(15) −816679 1.0 (0.0%) 3.8 (9.0%) 42.6 (34.3%)

LBL3 Exponential −1.790e + 06 1.0 (0.0%) 2.0 (32.0%) 6.0 (64.4%)
Johnson SB −∞ 0.96 (4.0%) 2.3 (21.8%) 8.6 (48.9%)
Weibull −1.724e + 06 0.95 (5.0%) 2.4 (18.4%) 9.8 (41.8%)
Lognormal −1.698e + 06 1.14 (14.0%) 8.1 (175.3%) 345.6 (1952%)
HErD(2) −1.698e + 06 1.0 (0.0%) 2.8 (4.8%) 14.4 (14.5%)
HErD(3) −1.697e + 06 1.0 (0.0%) 2.9 (1.4%) 16.1 (4.4%)
HErD(4) −1.695e + 06 1.0 (0.0%) 2.9 (1.4%) 15.5 (8.0%)
HErD(5) −1.672e + 06 1.0 (0.0%) 2.9 (1.4%) 14.9 (11.5%)
HErD(10) −1.66527e + 06 1.0 (0.0%) 2.9 (1.4%) 15.9 (5.04%)
HErD(15) −1.64763e + 06 1.0 (0.0%) 2.9 (1.4%) 15.1 (10.4%)

TUDo Exponential −∞ 1.0 (0.0%) 2.0 (96.9%) 6.0 (100%)
Johnson SL 398952 0.64 (36.0%) 49.0 (24.2%) 426400.6 (3206%)
Weibull 455191 0.48 (52.0%) 2.0 (96.9%) 24.6 (99.8%)
Lognormal 603905 0.55 (45.0%) 21.9 (66.1%) 64009.4 (396%)
HErD(2) 384320 1.0 (0.0%) 12.0 (81.4%) 236.8 (98.1%)
HErD(3) 571616 1.0 (0.0%) 24.0 (62.9%) 1022.5 (92.1%)
HErD(4) 595607 1.0 (0.0%) 31.1 (51.9%) 1818.7 (85.9%)
HErD(5) 609339 1.0 (0.0%) 48.0 (25.8%) 4938.6 (61.7%)
HErD(10) 626463 1.0 (0.0%) 40.0 (38.1%) 3034.1 (76.5%)
HErD(15) 643982 1.0 (0.0%) 42.0 (35.0%) 3595.0 (72.1%)

Table 5.1.: Likelihood and moments for the fitted distributions

to have at least two different branches, which will be assumed for the remainder of this
chapter. Actually this is not a real restriction on the class of Hyper-Erlang distribu-
tions, since a HErD with one branch only is an Erlang distribution, which is covered
by the ARTA processes presented in Chapter 4. Additionally it is assumed, that each
branch describes a different Erlang distribution. If two branches have the same Erlang
distribution, one of the branches is redundant and the two branches could be merged
together by adjusting the initial probability of the first branch and by deleting the sec-
ond branch. Finally, we will assume that the Erlang branches are ordered according to
the mean values of the Erlang distributions corresponding to the branches, i.e. let Xi

and X j be two random variables that have a Erlang distribution corresponding to the
i-th and j-th branch of the Hyper-Erlang distribution. Then i ≤ j ⇒ E[Xi] ≤ E[X j].
This is not a restriction, because reordering the branches has no effect on the overall
distribution.

As preliminary consideration some type of process description has to be found to
describe a series of arrivals generated by a Hyper-Erlang distribution. Then, this de-
scription can be used to incorporate an ARMA(p, q) base process to introduce auto-
correlations into the process. Consider the HErD from Figure 5.1, which has three
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Figure 5.1.: Example for a Hyper-Erlang distribution with 3 branches

different Erlang branches with 3, 2 and 1 phase, respectively. When simulating such
a HErD this is usually done by repeatedly drawing a random number U with uniform
distribution on [0, 1] to determine the Erlang branch i and by drawing S i random num-
bers with exponential distribution, each with rate λi (or one random number from an
Erlang distribution with S i phases and rate λi), to determine the time until absorption.
Define

b1 = 0

b̄i = bi + τi i = 1, . . . ,m

bi = b̄i−1 i = 2, . . . ,m

as lower and upper limits for the probability to choose branch i, i.e. if U ∈ [bi, b̄i)
branch i is chosen. Let

δ(U, i) =

1, U ∈ [bi, b̄i)
0, otherwise.

(5.1)

Moreover, let {Ut} be a sequence of random numbers with uniform distribution on
(0, 1) and let {X(S i,λi)

t }, i = 1, . . . ,m be m sequences of random numbers with Erlang
distribution with S i phases and rate λi. If the {Ut} are independent

Yt =

m∑
i=1

δ(Ut, i)X
(S i,λi)
t (5.2)

describes a sequence of iid random variables with Hyper-Erlang distribution. Note,
that for given Ut the function δ(Ut, i) is equal to 1 for one i only and 0 elsewhere.
Hence, one would not use Equation 5.2 for actually simulating a Hyper-Erlang dis-
tribution, since it would require drawing m − 1 unused Erlang random numbers, but
instead only draw one Erlang random number according to that branch i for which
δ(Ut, i) = 1. Anyway, for the following considerations this description will serve best.

Equation 5.2 can be easily modified to incorporate correlation between consecutive
elements of the process. Let {Zt; t = 1, 2, . . .} be a time series with standard normal dis-
tribution generated by an ARMA(p, q) process as described in Section 2.1. Using the
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same probability-integral transformation as for (extended) ARTA models (cf. Chap-
ter 4) we get Ut = Φ(Zt). Now, since the Zt (and hence the Ut) are correlated, using
Ut = Φ(Zt) in Equation 5.2 results in a series Yt of correlated random variables with
Hyper-Erlang distribution and motivates the following definition:

Definition 5.1 (Correlated Hyper-Erlang Process). A Correlated Hyper-Erlang Pro-
cess of order n, p, q, denoted CHEP(n, p, q), is defined by a Hyper-Erlang distribution

F(y) = 1 −
m∑

i=1

τi

S i−1∑
j=0

(λiy) j

j!
e−λiy

with n phases divided into m Erlang branches with the number of phases S i, i =

1, . . . ,m and rates λi, i = 1, . . . ,m and a stationary Autoregressive Moving Average
ARMA(p, q) base process

Zt = α1Zt−1 + α2Zt−2 + . . . + αpZt−p + β1εt−1 + β2εt−2 + . . . + βqεt−q + εt.

The base process is constructed such that the generated time series {Zt; t = 1, 2, . . .}
has a standard normal distribution N(0, 1). The branches of the HErD are ordered
such that i ≤ j⇒ (S i/λi) ≤ (S j/λ j) holds. Then the Correlated Hyper-Erlang Process
describes a time series

Yt =

m∑
i=1

δ(Φ(Zt), i)X
(S i,λi)
t , t = 1, 2, . . . (5.3)

where Φ is the standard normal cumulative distribution function, δ(U, i) is a function
as defined in Equation 5.1 and {X(S i,λi)

t }, i = 1, . . . ,m are sequences of independent
and identically distributed random numbers with Erlang distribution with S i phases
and rate λi.

To make use of this approach several properties for the relation between the base
process and the CHEP correlation have to be established like it was done in Chapter 4
for extended ARTA models.

5.1. Properties of Correlated Hyper-Erlang Processes

To use the process from Definition 5.1 a relation between the correlation of the CHEP,
i.e. Corr[Yt,Yt+h], and the base process correlation Corr[Zt,Zt+h] has to be established,
i.e. a process {Zt} with autocorrelations Corr[Zt,Zt+h] has to be found such that {Yt}

has the desired autocorrelations Corr[Yt,Yt+h].
Recall, that the autocorrelations of {Yt} can be expressed as

Corr[Yt,Yt+h] =
E[YtYt+h] − E[Y]2

Var[Y]
. (5.4)
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Again, E[Y] and Var[Y] are known, i.e. they can be computed using Equation 2.14.
Hence, we can restrict ourselves to E[YtYt+h].

E[YtYt+h] = E


 m∑

i=1

δ(Ut, i)X
(S i,λi)
t


 m∑

j=1

δ(Ut+h, j)X(S j,λ j)
t+h


 (5.5)

= E

∑
i, j

δ(Ut, i)X
(S i,λi)
t δ(Ut+h, j)X(S j,λ j)

t+h

 , i, j = 1, . . . ,m

=
∑
i, j

E
[
δ(Ut, i)X

(S i,λi)
t δ(Ut+h, j)X(S j,λ j)

t+h

]
=

∑
i, j

(
E

[
δ(Ut, i)δ(Ut+h, j)

]
E[X(S i,λi)

t ]E[X(S j,λ j)
t+h ]

)
=

∑
i, j

(
S i

λi

S j

λ j
E

[
δ(Ut, i)δ(Ut+h, j)

])

=
∑
i, j

(
S i

λi

S j

λ j
E

[
δ(Φ(Zt), i)δ(Φ(Zt+h), j)

])

=
∑
i, j

(
S i

λi

S j

λ j

∫ ∞

−∞

∫ ∞

−∞

δ(Φ(zt), i)δ(Φ(zt+h), j)ϕρh(zt, zt+h)dztdzt+h

)
where ϕρh(zt, zt+h) is the standard bivariate normal probability density function with
correlation ρh = Corr[Zt,Zt+h].
Using the knowledge of the function δ(·) Equation 5.5 can be simplified. Note from
Equation 5.1 that δ(U, i) is 1 for U ∈ [bi, b̄i) and 0 otherwise. Hence, this information
can be used to determine the integration bounds in Equation 5.5 and omit δ(·) in the
double integral:

E[YtYt+h] =
∑
i, j

S i

λi

S j

λ j

∫ Φ−1(b̄ j)

Φ−1(b j)

∫ Φ−1(b̄i)

Φ−1(bi)
ϕρh(zt, zt+h)dztdzt+h

 . (5.6)

Thus, for the computation of E[YtYt+h] for each combination of two branches of the
HErD the product of the mean of the first branch, the mean of the second branch
and the double integral of the bivariate standard normal density where the integration
bounds are determined by the probabilities of the branches is computed. The only
difficult part in this expression is the bivariate normal integral for whose computation
fast numerical procedures exist [60].

Remark. Recall from the beginning of this chapter, that we required the Hyper-Erlang
distribution to have at least two different branches, such that the uniformly dis-
tributed random number generated from the ARMA base process can be used to
select between the branches. If the two branches describe different Erlang distri-
butions, but have the same mean value, e.g. the first branch consists of one phase
with rate 2 and the second branch consists of two phases each with rate 4, we
have that E[YtYt+h] = E[Y]2 according to Equation 5.6 and the correlation from
Equation 5.4 is always zero. In fact, we require the Hyper-Erlang distribution to
have at least two branches with different expected durations to be able to model
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autocorrelations with the resulting CHEP. However, all the considerations in this
chapter also hold for the special case of a HerD that does not have two branches
with different expected durations. Moreover, in Section 6.4 transformations are
presented that can modify the representation of such a HErD, so that it can be
used for modeling non-zero autocorrelations anyway.

Remark. Note, that ϕρ(a, b) = ϕρ(b, a) holds for the standard bivariate normal distri-
bution (see also Equation B.2 in Appendix B). Thus, in Equation 5.6 the expres-
sions for the branches i = k, j = l and i = l, j = k, k , l are equal and the term is
computed twice. We may split Equation 5.6 in two terms, one for i = j and one
for i < j, to save some numerical approximations of the double integral:

E[YtYt+h] =
∑

i

S i

λi

S i

λi

∫ Φ−1(b̄i)

Φ−1(bi)

∫ Φ−1(b̄i)

Φ−1(bi)
ϕρh(zt, zt+h)dztdzt+h

 (5.7)

+ 2
∑

i, j,i< j

S i

λi

S j

λ j

∫ Φ−1(b̄ j)

Φ−1(b j)

∫ Φ−1(b̄i)

Φ−1(bi)
ϕρh(zt, zt+h)dztdzt+h

 .
For the theoretical considerations in this work we will use the shorter expression
from Equation 5.6, but for implementations Equation 5.7 is recommended.

Using Equation 5.6 it is possible to compute the CHEP correlation for a given base
process correlation. For fitting CHEPs one is usually interested in a relation that de-
scribes the opposite direction, i.e. given the desired CHEP correlation one wants to
compute the corresponding base process correlation. Unfortunately, it is not possible
to compute the latter analytically and thus, one has to use a search algorithm that starts
with an arbitrary base process correlation and tries to find a base process correlation
that yields the desired CHEP correlation as it was done for ARTA processes as well.
For this search algorithm to work it is necessary to establish a few properties about
the relation of the correlation functions of the base process and the CHEP, e.g. if the
base process correlation increases, does the CHEP correlation increase as well? Does
a base process correlation less than zero imply a CHEP correlation less than zero?
These questions will be answered by the following propositions and theorems.

Observe from Equation 5.6 that the lag-h autocorrelation of the Yt is a function of
the lag-h correlation of the Zt, which appears in ϕρh . Let the function ω(ρh) denote the
autocorrelation of the Yt for a given autocorrelation ρh of the Zt at lag h.

Proposition 5.1. For any Hyper-Erlang distribution FY (with at least two ordered
branches), we have that ρh = 0⇒ ω(ρh) = 0.

Proof. If ρh = 0 then Zt and Zt+h are independent. Consequently, one obtains for
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Equation 5.5

E[YtYt+h] =
∑
i, j

(
S i

λi

S j

λ j
E

[
δ(Φ(Zt), i)δ(Φ(Zt+h), j)

])

=
∑
i, j

(
S i

λi

S j

λ j
E [δ(Φ(Zt), i)] E

[
δ(Φ(Zt+h), j)

])

=
∑
i, j

(
S i

λi

S j

λ j
(b̄i − bi)(b̄ j − b j)

)

=
∑
i, j

(
S i

λi
τi

S j

λ j
τ j

)

=
∑

i

(
S i

λi
τi

)∑
j

(
S j

λ j
τ j

)
= E[Y]E[Y] = E[Y]2

The last equation holds because
∑

i(τiS i/λi) is the first moment of a Hyper-Erlang
distribution (cf. Equation 2.14). Using this result for Equation 5.4 one gets

Corr[Yt,Yt+h] =
E[YtYt+h] − E[Y]2

Var[Y]
=

E[Y]E[Y] − E[Y]2

Var[Y]
= 0.

�

Proposition 5.1 states that an uncorrelated base process results in an uncorrelated
CHEP.

The most important requirement that allows for applying a search algorithm is the
monotonicity of ω(ρh), which is established by the following Theorem:

Theorem 5.1. For any Hyper-Erlang distribution FY (with at least two ordered branches)
ω(ρ) is a nondecreasing function for −1 ≤ ρ ≤ 1. I.e. for two base process autocorre-
lations with ρh1 ≥ ρh2 , we have that ω(ρh1) ≥ ω(ρh2).

Proof. The proof is similar to the one for Theorem 4.1. The theorem will be proved
separately for the cases −1 ≤ ρ ≤ 0 and 0 ≤ ρ ≤ 1.

• 0 ≤ ρ ≤ 1: This case follows from [153, Theorem 5.3.10], which states that for
two normal variables Z1 and Z2 with correlation ρ we have Corr[g(Z1), g(Z2)] is
nondecreasing in ρ for all functions g(·). For

Yt = g(Zt) =

m∑
i=1

δ(Φ(Zt), i)X
(S i,λi)
t

and

Yt+h = g(Zt+h) =

m∑
i=1

δ(Φ(Zt+h), i)X(S i,λi)
t+h

we obtain that ω(ρh) = Corr[Yt,Yt+h] is nondecreasing for 0 ≤ ρh ≤ 1.
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• −1 ≤ ρ ≤ 0: This case can be shown by a slightly modified version of the proof
for Theorem 1 in [47], which uses ideas from the proof for Theorem 5.3.10 in
[153]. Let (X1, X2) and (Z1,Z2) have standard bivariate normal distribution with
common mean µ = 0, common variance σ2 = 1 and correlations ρX and ρZ with
0 ≤ ρZ < ρX < 1, respectively. Define

g(X) =

m∑
i=1

δ(Φ(X), i)X(S i,λi)
t

as in the previous case. It will be shown that this implies

Corr[g(X1), g(−X2)] ≤ Corr[g(Z1), g(−Z2)]

or (since we have a standard bivariate normal distribution) equivalently

E[g(X1)g(−X2)] ≤ E[g(Z1)g(−Z2)]. (5.8)

From these results it will immediately follow that ω(ρ) is nondecreasing for
−1 ≤ ρ ≤ 0.

The key idea of the proof is to represent the (X1,−X2), (Z1,−Z2) with stan-
dard bivariate normal distribution by different combinations of standard normal
random variables, such that these combinations have the same distribution as
(X1,−X2) and (Z1,−Z2), respectively. Using these combinations one can derive
expressions for E[g(X1)g(−X2)] and E[g(Z1)g(−Z2)] that prove Equation 5.8.
Note, that for the standard bivariate normal variable (Y1,Y2) with correlation ρY

we may write [90]

Yi =
(√
ρY

)
N0 +

( √
1 − ρY

)
Ni, i = 1, 2 (5.9)

where N0,N1,N2 are independent standard normal random variables. Moreover,
for two standard normal variables Na,Nb we have that aNa +bNb has normal dis-
tribution with zero mean and variance a2+b2. Hence, we may write Equation 5.9
as

Yi =
( √

ρY − b
)

Na +
√

bNb +
( √

1 − ρY
)

Ni, i = 1, 2 (5.10)

if we replace N0 in Equation 5.9 by a combination of Na and Nb. If the Ni are
replaced by a combination of the standard normal random variables Nai and Nbi ,
we may write

Yi =
(√
ρY

)
N0 +

(√
1 − a

)
Nai +

(√
a − ρY

)
Nbi , i = 1, 2. (5.11)

Now, let T1,T2,V1,V2,W be random variables with standard normal distribu-
tion. Then (X1,−X2) and(( √

1 − ρX
)

T1 +
(√
ρX − ρZ

)
V1 +

√
ρZW,

−
( √

1 − ρX
)

T2 −
(√
ρX − ρZ

)
V1 −

√
ρZW

)
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are identically distributed according to Equation 5.10. The same holds for (Z1,−Z2)
and (( √

1 − ρX
)

T1 +
(√
ρX − ρZ

)
V1 +

√
ρZW,

−
( √

1 − ρX
)

T2 −
(√
ρX − ρZ

)
V2 −

√
ρZW

)
,

because of Equation 5.11. Note, that the Zi depend on Vi while the Xi depend on
the common V1. Then, according to [47] we may write

E[g(X1)g(−X2)]

= E
[
E

{
E

[
g
(( √

1 − ρX
)

T1 +
(√
ρX − ρZ

)
V1 +

√
ρZW

)
g
(
−

( √
1 − ρX

)
T2 −

(√
ρX − ρZ

)
V1 −

√
ρZW

)
|(V1,W) = (v1, w)

]
W = w

}]
= E [E {ΨW(V1)Ψ−W(−V1)|W = w}]

where the conditional expectation ΨW(V1) is given by

Ψw(v1) = E
[
g
(( √

1 − ρX
)

T +
(√
ρX − ρZ

)
V1 +

√
ρZW

)
|(V1,W) = (v1, w)

]
.

Because T1 and T2 are independent N(0, 1) random variables and T1 and −T2
have the same distribution, Ψw(v1) is an independent N(0, 1) random variable
with respect to T (cf. [47]).
Note, that we required the Erlang branches to be sorted according to their mean
values and hence for a fixed W the function Ψw(v1) = E[g(·)] is nondecreasing
in v1. Similarly, −Ψ−w(·) is nonincreasing. Then (cf. [47]), for a random variable
U ∼ U(0, 1) and V1 = Φ−1(U) and −V1 = Φ−1(1 − U) the variance

Var[ΨW(V1) − (−Ψ−W(−V1))]

= Var[ΨW(V1)] + Var[−Ψ−W(−V1)] − 2Cov[ΨW(V1),−Ψ−W(−V1)]

is minimized and thus, the covariance Cov[ΨW(V1),−Ψ−W(−V1)] is maximized
[140]. This implies that the covariance Cov[ΨW(V1),Ψ−W(−V1)] is minimized.
Then,

E {ΨW(V1)Ψ−W(−V1)|W = w} ≤ E {ΨW(V1)|W = w} E {Ψ−W(−V1)|W = w}

= E {ΨW(V1)|W = w} E {Ψ−W(−V2)|W = w} .

The inequality holds because the minimum expected value is smaller than the
expected value under independence and the last equation holds because V1 and
V2 have the same distribution.
Since the above inequality holds for any w, this implies that

E[g(X1)g(−X2)] = E [E {ΨW(V1)Ψ−W(−V1)|W}]

≤ E [E {ΨW(V1)|W}] E [E {Ψ−W(−V2)|W}] .

Since V1 and V2 are independent one obtains for E[g(Z1)g(−Z2)]

E[g(Z1)g(−Z2)] = E [E {ΨW(V1)Ψ−W(−V2)|W}]

= E [E {ΨW(V1)|W}] E [E {Ψ−W(−V2)|W}] .
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Thus, E[g(X1)g(−X2)] ≤ E[g(Z1), g(−Z2)].

Now, let (X′1, X
′
2) and (Z′1,Z

′
2) be standard bivariate normal distributed random

variables with correlation −1 < ρX′ < ρZ′ ≤ 0. Then, (X′1,−X′2) and (Z′1,−Z′2)
have correlation 0 ≤ ρZ′ < ρX′ < 1 and using the above considerations it imme-
diately follows, that

E[g(X′1)g(X′2)] ≤ E[g(Z′1), g(Z′2)].

�

Remark. Recall, that we required the Erlang branches to be sorted according to their
mean values in Definition 5.1. This requirement was used in Theorem 5.1 to
prove that ω(ρ) is nondecreasing for −1 ≤ ρ ≤ 0. It should be noted, that this
requirement is not just a technical requirement necessary for proving the the-
orem. Instead, ignoring the required order of the Erlang branches could lead
to serious issues with the autocorrelation structure of a CHEP. Figure 5.2 vi-
sualizes the impact of the order of the Erlang branches on the autocorrelation
structure of a CHEP. Figure 5.2(a) shows an example Hyper-Erlang distribution
with 3 branches that are not ordered according to the mean values as required.
If we assume that the upper branch is the first and the lower branch the last
one, one sees that the mean value for the second branch is 30 and for the third
branch 5. Thus, these two branches have to be switched to fulfill the require-
ment for CHEPs. The valid Hyper-Erlang distribution with ordered branches
is shown in Figure 5.2(b). Figure 5.2(c) visualizes the impact of the sort order
on the autocorrelation of a CHEP. The CHEP with invalid/unsorted HErD uses
the distribution from Figure 5.2(a) and the CHEP with valid/sorted HErD the
distribution from Figure 5.2(b), respectively. The plot shows the correlation of
the CHEP ω(ρ) for different base process autocorrelations −1 ≤ ρ ≤ 1. As one
can see, ω(ρ) is nondecreasing for 0 ≤ ρ ≤ 1 in both cases (recall from the
prove of Theorem 5.1 that ordering the branches was not necessary for the case
0 ≤ ρ ≤ 1), but for −1 ≤ ρ ≤ 0 only the CHEP with sorted HErD has the desired
property.

This example clearly shows that ordering the branches according to the mean
values is not only necessary to avoid potential problems with the CHEP autocor-
relation structure, but leads to a unique definition of the autocorrelation structure
as well, since the order of branches has some impact on almost all ω(ρ) values.

The results from Proposition 5.1 and Theorem 5.1 imply the following statement:

Proposition 5.2. For any Hyper-Erlang distribution FY (with at least two ordered
branches), we have that

1. ρh ≤ 0⇒ ω(ρh) ≤ 0 and

2. ρh ≥ 0⇒ ω(ρh) ≥ 0.
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Figure 5.2.: Impact of the order of Erlang branches on CHEP autocorrelation

Proof. The proposition follows immediately from Proposition 5.1 and Theorem 5.1.
Since ω(ρ) is nondecreasing and ω(0) = 0, we have that ω(ρ) ≤ 0 for ρ ≤ 0 and
ω(ρ) ≥ 0 for ρ ≥ 0, respectively. �

For a CHEP the minimal and maximal possible autocorrelation can be computed
using the following proposition.

Proposition 5.3. The maximal and minimal possible autocorrelations ρ̂max and ρ̂min

for a CHEP with Hyper-Erlang marginal distribution FY are given by ρ̂max = ω(1)
and ρ̂min = ω(−1), respectively.

Proof. The proposition immediately follows from Theorem 5.1. �

If the minimal and maximal possible autocorrelations are known it is desirable to
know, whether all values between ρ̂min and ρ̂max can be obtained:
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Theorem 5.2. For a Hyper-Erlang distribution FY (with at least two ordered branches)
ω(ρ) is a continuous function.

Proof. Since the mean E[Y] and the variance Var[Y] from Equation 5.4 are indepen-
dent of the base process autocorrelation ρ we only have to show that the joint moment
E[YtYt+h] from Equation 5.6 is a continuous function regarding ρ. Note, that the sum
and the product of continuous functions result in a continuous function and moreover,
that the mean value of branch i, i.e. S i/λi is of course independent of ρ. Thus, we only
have to show that the standard bivariate normal distribution

∫ Φ−1(b̄ j)

Φ−1(b j)

∫ Φ−1(b̄i)

Φ−1(bi)
ϕρ(z1, z2)dz1dz2

is a continuous function for arbitrary but fixed bi, b̄i, b j, b̄ j, which follows from [152,
Lemma 1.1]. �

Equation 5.5 given above can be used to compute the first joint moment, which
is necessary for the autocorrelation. The equation can be generalized for computing
arbitrary joint moments:

E[Yk
t Y l

t+h] = E


 m∑

i=1

δ(Ut, i)X
(S i,λi)
t

k
 m∑

j=1

δ(Ut+h, j)X(S j,λ j)
t+h


l . (5.12)

Equation 5.12 can be simplified by exploiting the properties of δ(U, i). By application
of the multinomial theorem one gets

 m∑
i=1

δ(U, i)X(S i,λi)

k

=
(
δ(U, 1)X(S 1,λ1) + δ(U, 2)X(S 2,λ2) + . . . + δ(U,m)X(S m,λm)

)k

=
∑

k1,k2,...,km

(
k!

k1!k2! . . . km!
(δ(U, 1)X(S 1,λ1))k1(δ(U, 2)X(S 2,λ2))k2 . . . (5.13)

(δ(U,m)X(S m,λm))km
)

for k1 + k2 + . . . + km = k. Observe, that δ(U, i) = 1 for exactly one i and δ(U, j) = 0
for all j , i and a given U. Hence, all terms in Equation 5.13 that contain δ(U, i) and
δ(U, j) for i , j in the product are zero. Consequently, only those terms for which
ki = k and k j = 0, j , i have to be considered. Furthermore, since δ(U, i) is either zero
or one, we have δ(U, i)k = δ(U, i). Thus,

 m∑
i=1

δ(U, i)X(S i,λi)

k

=

m∑
i=1

(
δ(U, i)X(S i,λi)

)k
=

m∑
i=1

(
δ(U, i)X(S i,λi)k

)
. (5.14)
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Substituting Equation 5.14 in Equation 5.12 one obtains

E[Yk
t Y l

t+h] = E

 m∑
i=1

(
δ(Ut, i)X

(S i,λi)
t

k
) m∑

j=1

(
δ(Ut+h, j)X(S j,λ j)

t+h

l)
=

∑
i, j

E
[
δ(Ut, i)X

(S i,λi)
t

k
δ(Ut+h, j)X(S j,λ j)

t+h

l]
=

∑
i, j

(
E

[
δ(Ut, i)δ(Ut+h, j)

]
E

[
X(S i,λi)

t
k
]

E
[
X(S j,λ j)

t+h

l])
=

∑
i, j

(
E

[
δ(Φ(Zt), i)δ(Φ(Zt+h), j)

]
µ(erl)

k (S i, λi)µ
(erl)
l (S j, λ j)

)
=

∑
i, j

(
µ(erl)

k (S i, λi)µ
(erl)
l (S j, λ j)∫ ∞

−∞

∫ ∞

−∞

δ(Φ(zt), i)δ(Φ(zt+h), j)ϕρh(zt, zt+h)dztdzt+h

)
(5.15)

where µ(erl)
k (S i, λi) is the k-th moment of an Erlang distribution with S i phases and rate

λi as given in Equation 2.12. Again, the known properties of δ(U, i) can be used to
determine the integration bounds in Equation 5.15 resulting in

E[Yk
t Y l

t+h] =
∑
i, j

(
µ(erl)

k (S i, λi)µ
(erl)
l (S j, λ j) (5.16)

∫ Φ−1(b̄ j)

Φ−1(b j)

∫ Φ−1(b̄i)

Φ−1(bi)
ϕρh(zt, zt+h)dztdzt+h

 .
5.2. An Alternative Definition of Correlated Hyper-Erlang

Processes

Observe from Equation 5.3 that there are basically two possibilities to incorporate
the transformed base process Φ(Zt) into the process Yt. The first one, which is the
δ(·) function for selecting the branches of the HErD, was used in Definition 5.1. The
second possibility is somewhat hidden in the process description, but of course another
uniformly distributed random variable can be used to describe the X(S i,λi)

t . Let Fi be
the Erlang distribution described by the i-th branch of the HErD. Then we may write
X(S i,λi)

t = F−1
i (Φ(Zt)) resulting in the process description

Yt =

m∑
i=1

δ(Ut, i)F−1
i (Φ(Zt)), t = 1, 2, . . . .

Now the Ut in δ(Ut, i) are assumed to be a sequence of independent and identically
distributed random numbers from an uniform distribution and the correlated ARMA
base process is used to describe the random variables for the Erlang branches using the
inverse transform method. This results in the following process:
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Definition 5.2 (Correlated Hyper-Erlang Process of Type 2). A Correlated Hyper-
Erlang Process of Type 2 with order n, p, q, denoted CHEP2(n, p, q), is defined by a
Hyper-Erlang distribution

F(y) = 1 −
m∑

i=1

τi

S i−1∑
j=0

(λiy) j

j!
e−λiy

with n phases divided into m Erlang branches with the number of phases S i, i =

1, . . . ,m, rates λi, i = 1, . . . ,m and distribution Fi(y) and a stationary Autoregressive
Moving Average ARMA(p, q) base process

Zt = α1Zt−1 + α2Zt−2 + . . . + αpZt−p + β1εt−1 + β2εt−2 + . . . + βqεt−q + εt.

The base process is constructed such that the generated time series {Zt; t = 1, 2, . . .}
has standard normal distribution N(0, 1). Then the Correlated Hyper-Erlang Process
of Type 2 describes a time series

Yt =

m∑
i=1

δ(Ut, i)F−1
i (Φ(Zt)), t = 1, 2, . . . (5.17)

where Φ is the standard normal cumulative distribution function, δ(U, i) is a function
as defined in Equation 5.1 and Ut, t = 1, 2, . . . is a sequence of independent and iden-
tically distributed random numbers with uniform distribution.

Then, for E[YtYt+h] one obtains

E[YtYt+h] = E


 m∑

i=1

δ(Ut, i)F−1
i (Φ(Zt))


 m∑

j=1

δ(Ut+h, j)F−1
j (Φ(Zt+h))


 (5.18)

= E

∑
i, j

δ(Ut, i)F−1
i (Φ(Zt))δ(Ut+h, j)F−1

j (Φ(Zt+h))

 , i, j = 1, . . . ,m

=
∑
i, j

E
[
δ(Ut, i)F−1

i (Φ(Zt))δ(Ut+h, j)F−1
j (Φ(Zt+h))

]
=

∑
i, j

(
E [δ(Ut, i)] E

[
δ(Ut+h, j)

]
E[F−1

i (Φ(Zt))F−1
j (Φ(Zt+h))]

)
=

∑
i, j

(
(τiτ j)E[F−1

i (Φ(Zt))F−1
j (Φ(Zt+h))]

)
=

∑
i, j

(
(τiτ j)

∫ ∞

−∞

∫ ∞

−∞

F−1
i (Φ(zt))F−1

j (Φ(zt+h))ϕρh(zt, zt+h)dztdzt+h

)
.

Observe from Equation 5.18 that the double integral is almost identical to the double
integral in the expression for ARTA processes in Equation 4.3. The only difference is in
the distributions, which is the marginal distribution FY for ARTA models in both cases
and the Erlang distributions of the branches Fi, F j for CHEP2 models. Equation 5.18
is much more complicated to compute than the similar expression from Equation 5.5,
because the double integral contains arbitrary Erlang distributions (and not only the
bivariate normal density) and F−1

i has to be computed numerically for Erlang distri-
butions, and hence, only the CHEPs from Definition 5.1 will be considered in the
following.
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5.3. Fitting of the Hyper-Erlang Marginal Distribution

For the CHEP approach the marginal distribution is assumed to be Hyper-Erlang and
to have at least two branches. From the existing fitting algorithms presented in Sec-
tion 2.3.5 the approaches that fit a Hyper-Exponential or a Hyper-Erlang distribution
could be used.

In [150, 151] a fast Expectation Maximization algorithm was presented for fitting
Hyper-Erlang distributions to a trace, which is implemented in the software GFIT and
which is the first choice for fitting the marginal distribution for a CHEP in this work.
The fitting time of this algorithm is independent of the number of states of the Hyper-
Erlang distribution, it only depends on the number of Erlang branches. Furthermore,
the authors show in [150] that any probability density function of a nonnegative ran-
dom variable can be approximated arbitrarily close by a HErD. In the following the
basic ideas of the algorithm from [150, 151] will be outlined.

Let f (x; m,S, τ, λ) be the density function of a HErD consisting of m Erlang branches
(cf. Section 2.3.1). S = (S 1, S 2, . . . , S m) ∈ Nm is a vector containing the number of
phases of each branch, τ = (τ1, τ2, . . . , τm) ∈ Rm gives the initial probabilities and
λ = (λ1, λ2, . . . , λm) ∈ RM the rates of each branch. Keeping in mind that

∑m
i=1 τi = 1

a HErD with m Erlang branches has 2m − 1 continuous (given by the τi and λi) and
m discrete (given by the S i) parameters. The approach from [151] assumes that the
S i and m are given and fits the τi and λi for one setting. To obtain values for the dis-
crete parameters the proposed approach tries all possible combinations of m and S i for
a given overall number of states n and selects the best configuration. Since the EM
algorithm for a single configuration is very efficient this is possible as long as n is not
too large (i.e. n ≤ 10).

For a single HErD with given m and S i the EM algorithm has to solve a mixture den-
sity parameter estimation problem [28] with parameters Θ = (τ1, . . . , τm, λ1, . . . , λm)
and the given observations T = (t1, t2, . . . , tl). Mixture density parameter estimation
problems are one of the most common applications for the EM algorithm. The general
setup assumes that m component densities are mixed together with coefficients τi, i.e.

p(t j|Θ) =

m∑
i=1

τi pi(t j|λi).

For HErDs the components have Erlang distribution

pi(t j|λi) =
(λit j)S i−1

(S i − 1)!
λie−λit j .

The log-likelihood function for the data and the density expression can be determined
as

log(L(Θ|T )) = log
l∏

j=1

p(t j|Θ) =

l∑
j=1

log

 m∑
i=1

τi pi(t j|λi)

 . (5.19)

To avoid the optimization of an expression that contains the logarithm of a sum Equa-
tion 5.19 can be simplified by considering T as incomplete data, i.e. the existence of
unobserved data Y = (y1, . . . , yl) is assumed. The y j denote which component density
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generated an observation of T , i.e. y j = i if t j was generated by the i-th Erlang density.
Then Equation 5.19 can be simplified to

log(L(Θ|T ,Y)) =

l∑
j=1

log(τy j py j(t j|λy j)). (5.20)

Let Θ̂ = (τ̂1, τ̂2, . . . , τ̂m, λ̂1, λ̂2, . . . , λ̂m) be an initial guess for the parameters. Then
the pi(t j|λ̂i) can be easily computed. Applying Bayes’ Rule the probability mass func-
tion of the unobserved data Y given the observed data T and the estimates Θ̂ can be
computed [151]

q(y j|t j, Θ̂) =
τ̂y j py j(t j|λ̂y j)∑m

i=1 τ̂i pi(t j|λ̂i)

and

q(y|T , Θ̂) =

l∏
j=1

q(y j|t j, Θ̂), (5.21)

where y = (y1, . . . , yl) is an instance of the unobserved data independently drawn from
Y. Then the E-step of the EM algorithm is given by [28, 151]

Q(Θ, Θ̂) = E
[
log(L(Θ|T ,Y))|T , Θ̂

]
=

∑
y∈Y

log(L(Θ|T , y))q(y|T , Θ̂). (5.22)

By inserting Equations 5.20 and 5.21 into Equation 5.22 an rearranging one obtains
[28, 151]

Q(Θ, Θ̂) =

m∑
i=1

l∑
j=1

log(τi)q(i|t j, Θ̂)︸                       ︷︷                       ︸
Q1

+

m∑
i=1

l∑
j=1

log(pi(t j|λi))q(i|t j, Θ̂)︸                               ︷︷                               ︸
Q2

, (5.23)

which is maximized in the M-step of the algorithm. Note, that the terms Q1 and Q2 in
Equation 5.23 are not related and can be maximized separately.

An expression for τi can be found applying a Lagrange multiplier resulting in [28]

τi =
1
l

l∑
j=1

q(i|t j, Θ̂). (5.24)

The λi can be maximized according to [151]

λi =
S i

∑l
j=1 q(i|t j, Θ̂)∑l

j=1 q(i|t j, Θ̂)t j
. (5.25)

The complete EM algorithm for parameter estimation of a HErD presented in [151]
starts with an initial parameter estimate Θ̂ = (τ̂1, . . . , τ̂m, λ̂1, . . . , λ̂m) and performs the
E-step from Equation 5.22 and the M-step from Equations 5.24 and 5.25 iteratively
until convergence is reached.
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5.4. Constructing the ARMA Process

Since the ARMA(p, q) base process has to fulfill the same requirements for CHEPs
as for extended ARTA processes, i.e. it has to exhibit an autocorrelation structure
ρ = (ρ1, ρ2, . . . , ρr) such that the CHEP has autocorrelations ρ̂ = (ρ̂1, ρ̂2, . . . , ρ̂r), it
has to ensure that Zt ∼ N(0, 1) and it has to be stationary, the approach described in
Section 4.2 can be applied for CHEPs as well with only slight modifications.

The adjustment of the variance of the white noise that results in a standard normal
distribution for the Zt can be performed as presented in Section 4.2, i.e. by applying
Equation 4.9.

The search algorithm that finds ρ for a given ρ̂ of course has to use Equation 5.6
now to compute the CHEP autocorrelation that corresponds to a base process autocor-
relation.

For fitting an ARMA(p, q) model to ρ again Equation 4.11 can be minimized.
Note, that the construction of the base process is independent of the number of

states of the Hyper-Erlang distribution. However, Equation 5.6 (and thus the search
algorithm for determining the base process autocorrelation) depends on the number
of branches of the HErD. Once the base process autocorrelation has been computed,
the fitting procedure for the ARMA(p, q) model is completely independent of the dis-
tribution and only depends on the base process model order (p, q) and the number of
autocorrelations to consider.
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Chapter 6
Correlated Acyclic Phase-Type Processes

In the following the ideas and concepts presented in Chapter 5 for Hyper-Erlang distri-
butions will be generalized for the case where the marginal distribution is an arbitrary
acyclic Phase-type distribution.

For CHEPs the Hyper-Erlang distribution and the ARMA base process have been
fitted separately in two steps and are combined when selecting the Erlang branch, i.e.
the sequence Ut of uniformly distributed random numbers resulting from a transformed
ARMA process is used to choose the Erlang branch for each realization of Yt obtained
from the CHEP. Since acyclic PH distributions cannot be split into branches, another
way to incorporate the base process has to be found, which will result in a different
representation of the acyclic PH distribution than the usual matrix notation.

An acyclic Phase-type distribution can be represented as a set of elementary series
[55]. Each series is one path from an initial state to the absorbing state of the APH
distribution and has a probability proportional to the product of the transition rates
along the path and to the initial probability of the first state of the path. An example
of an APH and its elementary series is shown in Figure 6.1. The APH consists of one
absorbing and 3 transient states. All three transient states are entry and exit states.
The transition rate matrix, the killing-rate vector and the initial probabilities of the PH
distribution are given by

D0 =

−3.0 1.0 0.5
0.0 −2.0 0.0
0.0 0.0 −1.0

 , t =

1.52.0
1.0

 and π =

[
1
2
,

1
3
,

1
6

]
,

respectively. Starting from an entry state there are 5 possibilities (or paths) to reach the
absorbing state. Consequently, the PH distribution can be represented by 5 elementary
series as shown in Figure 6.1. The rate between two states of an elementary series is
equal to the exit rate of the first of the two states (i.e. it is equal to the corresponding
entry in the diagonal of |D0|). The probability of the elementary series is computed
from the initial probability of the first state of the series and the transition rates along
the path. Let i1, i2, . . . , ik be k states that form the j-th elementary series of a PH
distribution. Then, the initial probability of the elementary series τ j is given by

τ j = π(i1)
D0(i1, i2)
−D0(i1, i1)

D0(i2, i3)
−D0(i2, i2)

· · ·
D0(ik−1, ik)
−D0(ik−1, ik−1)

t(ik)
−D0(ik, ik)

. (6.1)
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Figure 6.1.: An acyclic PH distribution and its elementary series

For the first elementary series from Figure 6.1 consisting of the states 1 and 2 this
would result in

τ1 =
1
2

1
3

2
2

=
1
6
.

The probabilities of the remaining elementary series are computed similarly. Note, that
each elementary series describes a Hypo-Exponential distribution (cf. Section 2.3.1)
consisting of a number of exponentially distributed phases with potentially different
rates.

Representing an acyclic PH distribution by means of its elementary series one can
establish similar definitions for an APH with ARMA base process as it was done for
Hyper-Erlang distributions in the previous chapter. Observe, that the elementary series
of an Hyper-Erlang distribution are equivalent to its Erlang branches. In this way
the following considerations are the natural generalization of the ideas presented in
Chapter 5.

Now, let m denote the number of elementary series of an acyclic PH distribution and
τi be the probability of the i-th elementary series (i = 1, . . . ,m). Furthermore, let S i

(i = 1, . . . ,m) be the number of phases in elementary series i and let Λi be a vector
of length S i that contains the transition rates of the i-th series. Again, we assume that
the elementary series are ordered according to their mean values, i.e. for two random
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variables Xi and X j that have a Hypo-Exponential distribution corresponding to the i-th
and j-th elementary series of the APH distribution we require i ≤ j⇒ E[Xi] ≤ E[X j].

Define

b1 = 0

b̄i = bi + τi i = 1, . . . ,m (6.2)

bi = b̄i−1 i = 2, . . . ,m

(6.3)

to be the bounds of the probabilities to chose the different elementary series of an APH
distribution and define for a random number U with uniform distribution

δ(U, i) =

1, U ∈ [bi, b̄i)
0, otherwise

(6.4)

to be a function that selects one elementary series according to U. Assume that
{X(Λi)

t }, i = 1, . . . ,m are sequences of iid random numbers from Hypo-Exponential dis-
tributions, each with a vector of rates Λi. Let {Ut} be a sequence of random numbers
with uniform distribution on (0, 1). If the {Ut} are independent the process

Yt =

m∑
i=1

δ(Ut, i)X
(Λi)
t (6.5)

uses the elementary series to describe a sequence of iid random variables with the
same acyclic Phase-type distribution that the elementary series have been computed
from. To introduce autocorrelation into the sequence from Equation 6.5 the Ut can be
constructed in the same way as for CHEPs in Chapter 5, i.e. they are set to Ut = Φ(Zt)
where Φ is standard normal cdf and the {Zt} result from an ARMA(p, q) process with
σ2
ε set in a way such that the {Zt} have standard normal distribution. This leads to the

following definition:

Definition 6.1 (Correlated Acyclic Phase-Type Process). A Correlated Acyclic Phase-
Type Process of order n, p, q, denoted CAPP(n, p, q), is defined by an acyclic Phase-
type distribution (D0,π) of order n that has m elementary series with S i phases, prob-
abilities τi, and rates Λi = (Λi(1), . . . ,Λi(S i)), (i = 1, . . . ,m), and a stationary Autore-
gressive Moving Average ARMA(p, q) base process

Zt = α1Zt−1 + α2Zt−2 + . . . + αpZt−p + β1εt−1 + β2εt−2 + . . . + βqεt−q + εt.

The base process is constructed such that the generated time series {Zt; t = 1, 2, . . .}
has standard normal distribution N(0, 1) and the elementary series are ordered such
that i ≤ j ⇒ (

∑S i
k=1 1/Λi(k)) ≤ (

∑S j

l=1 1/Λ j(l)) holds. Then the Correlated Acyclic
Phase-Type Process describes a time series

Yt =

m∑
i=1

δ(Φ(Zt), i)X
(Λi)
t , t = 1, 2, . . . (6.6)

where Φ is the standard normal cumulative distribution function, δ(U, i) is a function
as defined in Equation 6.4 and {X(Λi)

t }, i = 1, . . . ,m are sequences of independent and
identically distributed random variables with Hypo-Exponential distribution with S i

phases and rates Λi.
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Zt = α1Zt−1 + α2Zt−2 + . . . + αpZt−p + β1εt−1 + β2εt−2 + . . . + βqεt−q + εt

Ut = Φ(Zt)

Zt ∼ N(0, 1)

Yt =
∑m

i=1 δ(Ut, i)X
(Λi)
t

Ut ∼ U(0, 1)

Figure 6.2.: Correlated Acyclic Phase-Type Process

The construction of the Correlated Acyclic Phase-Type Process using an ARMA
base process is visualized in Figure 6.2.

Since we introduce the autocorrelation between the elementary series, we require the
PH distribution to have at least two elementary series, implying that the distribution
has at least two states and that the number of non-zero entries in the initial probability
vector π and the killing rate vector t together is greater than or equal to 3 (i.e. the
distribution has at least either two entry states and one exit state or one entry state and
two exit states). This restriction excludes exponential, Erlang and Hypo-Exponential
distributions. The former two are covered by extended ARTA processes from Chap-
ter 4. However, applying the transformations that will be introduced in Section 6.4
these three distributions can be modified such that they can be used for a CAPP.

6.1. Properties of Correlated Acyclic Phase-Type
Processes

We can define several properties of CAPPs along the lines of CHEPs (cf. Section 5.1).
First, we need to relate the autocorrelation of the CAPP Corr[Yt,Yt+h] and its base
process Corr[Zt,Zt+h]. Recall from Section 5.1, that the autocorrelations of {Yt} can
be expressed as

Corr[Yt,Yt+h] =
E[YtYt+h] − E[Y]2

Var[Y]
. (6.7)

Again, E[Y] and Var[Y] are known and can be computed using Equation 2.11. For
E[YtYt+h], which remains the only term of interest in Equation 6.7, we get a similar
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expression as Equation 5.5:

E[YtYt+h] = E


 m∑

i=1

δ(Ut, i)X
(Λi)
t


 m∑

j=1

δ(Ut+h, j)X(Λ j)
t+h




= E

∑
i, j

δ(Ut, i)X
(Λi)
t δ(Ut+h, j)X(Λ j)

t+h

 , i, j = 1, . . . ,m

=
∑
i, j

E
[
δ(Ut, i)X

(Λi)
t δ(Ut+h, j)X(Λ j)

t+h

]
=

∑
i, j

(
E

[
δ(Ut, i)δ(Ut+h, j)

]
E[X(Λi)

t ]E[X(Λ j)
t+h ]

)

=
∑
i, j


 S i∑

s=1

1
Λi(s)


 S j∑

s=1

1
Λ j(s)

 E
[
δ(Ut, i)δ(Ut+h, j)

]
=

∑
i, j


 S i∑

s=1

1
Λi(s)


 S j∑

s=1

1
Λ j(s)

 E
[
δ(Φ(Zt), i)δ(Φ(Zt+h), j)

]
=

∑
i, j


 S i∑

s=1

1
Λi(s)


 S j∑

s=1

1
Λ j(s)

∫ ∞

−∞

∫ ∞

−∞

δ(Φ(zt), i)δ(Φ(zt+h), j)ϕρh(zt, zt+h)dztdzt+h

)
(6.8)

where ϕρh(zt, zt+h) is the bivariate standard normal probability density function with
correlation ρh = Corr[Zt,Zt+h].

Since δ(u, i) from Equation 6.4 is 1 for u ∈ [bi, b̄i) and 0 otherwise, the integration
bounds in Equation 6.8 can be simplified and δ(·) can be omitted in the double integral:

E[YtYt+h] =
∑
i, j


 S i∑

s=1

1
Λi(s)


 S j∑

s=1

1
Λ j(s)

∫ Φ−1(b̄ j)

Φ−1(b j)

∫ Φ−1(b̄i)

Φ−1(bi)
ϕρh(zt, zt+h)dztdzt+h

 . (6.9)

In summary E[YtYt+h] can be computed using the mean values of the elementary se-
ries (which are Hypo-Exponential distributions) and the double integral of the bivariate
standard normal density where the integration bounds are determined by the probabil-
ities of the elementary series. Comparing Equation 5.6 with Equation 6.9 confirms
the observation that CAPPs are the natural generalization of the CHEPs. The mean
values of Erlang distributions in Equation 5.6 have been replaced by mean values of
Hypo-Exponential distributions and instead of branches we compute the sum over all
combinations of elementary series. For the computation of the double integral of the
bivariate standard normal density again [60] can be used.

Remark. Analog to the case of CHEPs with Hyper-Erlang distributions Equation 6.9
will result in E[YtYt+h] = E[Y]2 if the APH distribution has only two elementary
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series that have the same expected durations. Again, all the following consider-
ations also hold for this special case and the distribution can be transformed (cf.
Section 6.4) to be able to model non-zero autocorrelations.

Remark. Again, we may exploit the fact that ϕρ(a, b) = ϕρ(b, a) holds for the standard
bivariate normal distribution to save some approximations of the double integral,
i.e. we can split the double sum in Equation 6.9 such that

E[YtYt+h] =
∑

i


 S i∑

s=1

1
Λi(s)


 S i∑

s=1

1
Λi(s)

∫ Φ−1(b̄i)

Φ−1(bi)

∫ Φ−1(b̄i)

Φ−1(bi)
ϕρh(zt, zt+h)dztdzt+h

 (6.10)

+ 2
∑

i, j,i< j


 S i∑

s=1

1
Λi(s)


 S j∑

s=1

1
Λ j(s)

∫ Φ−1(b̄ j)

Φ−1(b j)

∫ Φ−1(b̄i)

Φ−1(bi)
ϕρh(zt, zt+h)dztdzt+h

 .
In Section 5.1 several properties on the relation of the autocorrelation of a CHEP

and its base process have been established. The same properties hold for the auto-
correlation of CAPPs. Again, let the function ω(ρh) denote the autocorrelation of the
Yt for a given base process autocorrelation ρh of the Zt at lag h. Then the following
propositions and theorems, which will be stated without proofs, since the proofs are
analog to the ones presented in Section 5.1, can be established for the autocorrelation
function. The first proposition states, that an uncorrelated base process implies zero
correlation for the CAPP.

Proposition 6.1. For any acyclic Phase-type distribution FY (with at least two ordered
elementary series), we have that ρh = 0⇒ ω(ρh) = 0.

For applying a search procedure to find a base process correlation for a desired
CAPP autocorrelation ω(ρh) is required to be nondecreasing.

Theorem 6.1. For any acyclic Phase-type distribution FY (with at least two ordered
elementary series) ω(ρ) is a nondecreasing function for −1 ≤ ρ ≤ 1. I.e. for two base
process autocorrelations with ρ1 ≥ ρ2, we have that ω(ρ1) ≥ ω(ρ2).

Proposition 6.1 and Theorem 6.1 allow for statements on the relation of a negative
(or positive) base process autocorrelation and the corresponding CAPP autocorrelation
and on the maximal and minimal possible autocorrelation of a CAPP.

Proposition 6.2. For any acyclic Phase-type distribution FY (with at least two ordered
elementary series), we have that

1. ρh ≤ 0⇒ ω(ρh) ≤ 0 and

2. ρh ≥ 0⇒ ω(ρh) ≥ 0.
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Proposition 6.3. The maximal and minimal possible autocorrelations ρ̂max and ρ̂min

for a CAPP with APH marginal distribution FY are given by ρ̂max = ω(1) and ρ̂min =

ω(−1), respectively.

Theorem 6.2. For an acyclic Phase-type distribution FY (with at least two ordered
elementary series) ω(ρ) is a continuous function.

Finally, Equation 6.9 can be generalized to compute arbitrary joint moments, i.e.

E[Yk
t Y l

t+h] =
∑
i, j

(
µ

(hexp)
k (S i,Λi)µ

(hexp)
l (S j,Λ j)

∫ Φ−1(b̄ j)

Φ−1(b j)

∫ Φ−1(b̄i)

Φ−1(bi)
ϕρh(zt, zt+h)dztdzt+h

 (6.11)

where µ(hexp)
k (S i,Λi) is the k-th moment of a Hypo-Exponential distribution with S i

phases and rate vector Λi that can be computed using Equation 2.11.

6.2. Fitting the APH Marginal Distribution

For fitting the APH marginal distribution for CAPPs the moment matching approach
from [42] is used. Of course, any of the fitting approaches from Section 2.3.5 that
yields an acyclic PH distribution could be applied, but moment fitting is much faster
than the other presented PH fitting techniques that are in most cases EM algorithms.
Additionally, an EM algorithm was already used for fitting the marginal distribution
of CHEPs in Chapter 5 and hence, that approach could be used if the fitting quality of
the moment matching is not good enough.

The approach from [42] was originally developed as part of a two-step MAP fitting
approach and consists of a PH fitting step that results in a APH distribution in series
canonical form and a subsequent transformation step to increase the flexibility for the
final MAP fitting step. Here only the PH fitting step is summarized. Transformations
are treated in the following Section 6.4. Note, that an APH with n states in canonical
form has up to n entry states and 1 exit state. For MAP fitting it is desirable and usually
necessary to have more exit states to increase the number of non-zero entries in Matrix
D1. For CAPP fitting the series canonical form fulfills the requirement of having at
least two elementary series if there are two entry states and a transformation is only
required under the conditions described in Section 6.4.

Let µ̂i, i = 1, . . . ,K be a set of moments that are computed from a given trace ac-
cording to Equation 1.3. The fitting algorithm from [42] tries to solve

min
(π,D0)

 ∑
i=1,...,K

(
κi
µi

µ̂i
− κi

)2


where µi are the moments of the APH distribution (π, D0) and κi are weights to privi-
lege lower order moments. This general optimization problem is solved approximately
by the repeated optimization of simpler problems. In canonical form the APH of order
n has parameters π = (π1, . . . , πn) and λ = (λ1, . . . , λn). The first optimization step
assumes that the λi are known and optimizes according to π. In the second step π is
assumed to be given and the algorithm optimizes according to λi.
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In canonical form the matrix D0 has bidiagonal form resulting in the moment matrix

M = −D−1
0 =


1
λ1

1
λ2
· · · · · · 1

λn

0 1
λ2
· · · · · · 1

λn
...

. . .
. . .

...

0 · · · · · · 0 1
λn

 .

Then µ̄i = Mi1 is the vector of the i-th conditional moment and the moments are
computed from µi = πµ̄i. If the λi are assumed to be given, M and µ̄i are known and
the minimization problem according to π becomes [42]

min
π:π1=1,π≥0

 ∑
i∈1,...,K

(
κi
πµ̄i

µ̂i
− κi

)2
 , (6.12)

which is a non negative least squares (NNLS) problem with a single linear constraint
that can be solved with standard approaches for NNLS problems [106].

Optimization according to λ is more difficult. Assume that π and all λi, i , r are
given. Then the approach from [42] aims at optimizing the single rate λr. If λr is
modified such that 1/λr becomes 1/λr+∆, the new moments matrix is M∆,r = M+∆Mr

where Mr is a n × n matrix with 1 in the positions (1, r), . . . , (r, r) and 0 elsewhere.
Then the i-th conditional moment is µi(∆, r) = π (M + ∆Mr)i 1 and the minimization
problem according to λr becomes

min
∆

 ∑
i=1,...,K

(
κi
µi(∆, r)
µ̂i

− κi

)2
 . (6.13)

Equation 6.13 is not a least squares problem and has to be minimized using standard
optimization techniques.

Starting from an initial guess for π and λ the fitting approach from [42] iteratively
optimizes Equation 6.12 for π and Equation 6.13 for all λi until convergence is reached.
This approach is very fast and usually only takes a few seconds for fitting an APH
distribution.

6.3. Constructing the ARMA Process

Since CAPPs are a generalization of CHEPs, only a little modification is necessary for
the construction of the ARMA(p, q) base process as described in Section 4.2.

Because the base process has still to result in a sequence Zt with Zt ∼ N(0, 1) the
variance of the white noise can be adjusted according to Equation 4.9.

The search algorithm used to determine the base process autocorrelations ρ for given
CAPP autocorrelations ρ̂ has to compute the correlations according to Equation 6.9,
but no further changes are necessary. Then, minimizing Equation 4.11 will again result
in an ARMA(p, q) model that approximates the autocorrelations ρ.
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6.4. Transformation of the APH distribution

As already mentioned before in Section 2.3.1 the matrix representation of a PH dis-
tribution (D0,π) is not unique. There are several different matrices and vectors that
describe the same distribution. Depending on the purpose that the distribution is used
for different representations might be preferable and equivalence transformations can
be applied to transform one representation into another (see [43] for an overview of
different transformations). For PH fitting one is interested in a distribution with the
minimal number of parameters in (D0,π). Section 2.3.1 already introduced canoni-
cal forms for this task and outlined a transformation for any acyclic PH distribution
into canonical form [55]. On the other hand, PH distributions in canonical form are
not really suitable for two-step MAP fitting algorithms that try to expand a given PH
distribution into a MAP (cf. Section 2.3.6 for examples). These algorithms require
a large number of entry and exit states to have more flexibility for finding a matrix
D1. [42] and [84] present equivalence transformations to obtain such PH distributions.
Finally, equivalence transformations can be applied to reduce the number of states of
a PH distribution by removing unnecessary states [132].

For the processes presented in this work there are two cases that make necessary
a transformation of the distribution. As already mentioned Hypo-Exponential distri-
butions are the only subclass of acyclic PH distributions that are not covered by any
of the presented process types. For these distributions the number of exit or entry
states has to be increased such that they can be used as marginal distribution of a
CAPP. Additionally a transformation might be necessary, if the maximal possible au-
tocorrelation of the stochastic process is too small, i.e. the trace that should be fitted
exhibits a higher autocorrelation than the maximal autocorrelation that can be modeled
by an ARTA process, a CHEP or a CAPP for the given distribution. For (extended)
ARTA processes this is not very likely, because the inverse transform approach results
in a minimal and maximal possible autocorrelation that is close to the minimal and
maximal theoretical values for a particular distribution. For CHEPs and CAPPs the
correlated base process is only used to determine the elementary series, but the time
until absorption from this series is drawn independently. The possible range for the
autocorrelation can be computed using Equation 5.6 or Equation 6.9, respectively, and
by setting the base process autocorrelations to −1 and 1. Hence, a CHEP or CAPP can
in general not capture the full range of autocorrelations in the interval [−1, 1]. The ex-
perimental results in Chapter 8 suggest that the possible range for the autocorrelation
is usually sufficient to model real traces, but in the rare cases where it is not sufficient
a transformation of the PH distribution will help to increase the possible range for the
autocorrelation.

The transformations proposed in the following will modify the transition rates be-
tween states and the initial probabilities of states but will preserve the distribution,
i.e. only the representation of the distribution is modified. For Hyper-Erlang distri-
butions a change in the transition rates will imply that the resulting representation is
not Hyper-Erlang any longer, but an equivalent acyclic PH distribution. Thus, after
the transformation the fitted process will always be a CAPP, no matter what the initial
marginal distribution was.
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6.4.1. The Boundary Cases for the Base Process Autocorrelation

Before several APH transformations are introduced that will allow us to increase the
possible range of autocorrelation for a CAPP, some preceding considerations will help
to prove that these transformations really perform as proposed. First of all note, that
since the CAPP autocorrelation ω(ρ) is nondecreasing and continuous in the base pro-
cess autocorrelation ρ (cf. Theorems 6.1 and 6.2), it is sufficient that the transformation
increases the possible CAPP autocorrelation for the smallest and largest possible base
process autocorrelation, i.e. for ρ = ±1. For these extreme cases we can derive an
analytic expression for Equation 6.9 by exploiting known facts on the standard bivari-
ate normal distribution and the integration bounds that occur for a CAPP. Figure 6.3
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(d) ρ = −0.99

Figure 6.3.: Density function of the standard bivariate normal distribution with differ-
ent correlations ρ

shows plots of the standard bivariate normal density function and the contours of equal
density for different correlations ρ. It is obvious that all the (x, y) for which the density
ϕρ(x, y) has the same value lie on ellipses (cf. e.g. [90]). The largest value for the
density can of course be observed at the origin, while for increasing x and y values the
density decreases. For ρ = 0 these ellipses become a circle (cf. Figure 6.3(a)) while
for ρ → 1 the ellipses almost reduce to a line (cf. Figure 6.3(c)), i.e. the density is
zero except for x ≈ y. For ρ = 1 the distribution becomes singular and the probability
density function (c.f. Equation B.2) is no longer defined (though the distribution still
is). In Figure 6.4 the bivariate normal distribution is split into four parts, i.e.
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b

a

x

y

P2

P3

P1

P4

Figure 6.4.: The bivariate normal distribution for a correlation ρ = 1

P1 = P(x < a, y < b) = B(a, b, ρ)

P2 = P(x ≥ a, y < b)

P3 = P(x < a, y ≥ b)

P4 = P(x ≥ a, y ≥ b) = L(a, b, ρ).

Of course, we have P1 + P2 + P3 + P4 = 1. Additionally Figure 6.4 shows the area for
which a = b as a red line. For ρ = 1 the terms B(a, b, ρ) and L(a, b, ρ) can be expressed
using the standard normal distribution [141], i.e.

B(a, b, 1) = Φ(a) + Φ(b) − Φ(max(a, b)) (6.14)

L(a, b, 1) = Φ(−max(a, b)).

For a = b, obviously P2 = P3 = 0, since P1 + P4 = B(a, a, 1) + L(a, a, 1) = Φ(a) +

Φ(a) − Φ(a) + Φ(−a) = Φ(a) + Φ(a) − Φ(a) + 1 − Φ(a) = 1. For the computation of
the CAPP autocorrelation in Equation 6.9 this implies, that for ρ = 1 only those terms
have to be considered for which i = j, i.e. those terms for which the two elementary
series are identical. The probability for all other combinations with i , j falls into the
regions P2 and P3 and is zero. Hence, we obtain for Equation 6.9:

E[YtYt+h] =
∑

i


 S i∑

s=1

1
Λi(s)


 S i∑

s=1

1
Λi(s)

 ∫ Φ−1(b̄i)

Φ−1(bi)

∫ Φ−1(b̄i)

Φ−1(bi)
ϕ1(zt, zt+h)dztdzt+h


=

∑
i


 S i∑

s=1

1
Λi(s)


 S i∑

s=1

1
Λi(s)


B

(
Φ−1(b̄i),Φ−1(b̄i), 1

)
− B

(
Φ−1(bi),Φ

−1(bi), 1
))
.
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Substitution with Equation 6.14 yields

E[YtYt+h] =
∑

i


 S i∑

s=1

1
Λi(s)


 S i∑

s=1

1
Λi(s)

(
Φ(Φ−1(b̄i)) + Φ(Φ−1(b̄i)) − Φ(Φ−1(b̄i))

)
−

(
Φ(Φ−1(bi)) + Φ(Φ−1(bi)) − Φ(Φ−1(bi))

))
=

∑
i


 S i∑

s=1

1
Λi(s)


 S i∑

s=1

1
Λi(s)

 (b̄i + b̄i − b̄i
)
−

(
bi + bi − bi

)
=

∑
i


 S i∑

s=1

1
Λi(s)


2

τi

 (6.15)

where τi = b̄i − bi is the probability of the i-th elementary series as defined in Equa-
tion 6.2. Hence, for a base process autocorrelation ρ = 1 the CAPP autocorrelation
can be computed using Equation 6.15 without any numerical approximation.

For ρ = −1 the ellipses also reduce to a line (cf. Figure 6.3(d)), but this time the
density is zero except for x = −y. The expression for B(a, b,−1) is more complicated
this time, because two cases have to be distinguished. According to [141] we have

B(a, b,−1) =

Φ(a) + Φ(b) − 1, a + b ≥ 0
0, a + b < 0.

(6.16)

For the term corresponding to the elementary series i and j in Equation 6.9 we are
interested in computing the standard bivariate normal double integral for the bounds
[bi, b̄i], [b j, b̄ j] and correlation ρ = −1, i.e.

P
[
Φ−1(bi) < Z1 < Φ−1(b̄i),Φ−1(b j) < Z2 < Φ−1(b̄ j)

]
(6.17)

= B
(
Φ−1(b̄i),Φ−1(b̄ j),−1

)
−B

(
Φ−1(b̄i),Φ−1(b j),−1

)
−B

(
Φ−1(bi),Φ

−1(b̄ j),−1
)

+B
(
Φ−1(bi),Φ

−1(b j),−1
)
.

Since in our case the parameters of B(a, b,−1) result from the inverse standard normal
cdf we may rewrite Equation 6.16 as

B(Φ−1(bi),Φ−1(b j),−1) =

bi + b j − 1, bi + b j ≥ 1
0, bi + b j < 1.

(6.18)

Depending on the values of bi, b̄i, b j and b̄ j we can derive the following simplified
expressions for Equation 6.17 by substituting with Equation 6.18:

b̄i + b̄ j < 1 :

P
[
Φ−1(bi) < Z1 < Φ−1(b̄i),Φ−1(b j) < Z2 < Φ−1(b̄ j)

]
= 0
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bi + b j ≥ 1 :

P
[
Φ−1(bi) < Z1 < Φ−1(b̄i),Φ−1(b j) < Z2 < Φ−1(b̄ j)

]
=

(
b̄i + b̄ j − 1

)
−

(
b̄i + b j − 1

)
−

(
bi + b̄ j − 1

)
+

(
bi + b j − 1

)
= 0

bi + b j < 1, b̄i + b̄ j ≥ 1, bi + b̄ j < 1, b̄i + b j < 1 :

P
[
Φ−1(bi) < Z1 < Φ−1(b̄i),Φ−1(b j) < Z2 < Φ−1(b̄ j)

]
= b̄i + b̄ j − 1

bi + b j < 1, b̄i + b̄ j ≥ 1, bi + b̄ j ≥ 1, b̄i + b j < 1 :

P
[
Φ−1(bi) < Z1 < Φ−1(b̄i),Φ−1(b j) < Z2 < Φ−1(b̄ j)

]
=

(
b̄i + b̄ j − 1

)
−

(
bi + b̄ j − 1

)
= b̄i − bi = τi

bi + b j < 1, b̄i + b̄ j ≥ 1, bi + b̄ j < 1, b̄i + b j ≥ 1 :

P
[
Φ−1(bi) < Z1 < Φ−1(b̄i),Φ−1(b j) < Z2 < Φ−1(b̄ j)

]
=

(
b̄i + b̄ j − 1

)
−

(
b̄i + b j − 1

)
= b̄ j − b j = τ j

bi + b j < 1, b̄i + b̄ j ≥ 1, bi + b̄ j ≥ 1, b̄i + b j ≥ 1 :

P
[
Φ−1(bi) < Z1 < Φ−1(b̄i),Φ−1(b j) < Z2 < Φ−1(b̄ j)

]
=

(
b̄i + b̄ j − 1

)
−

(
bi + b̄ j − 1

)
−

(
b̄i + b j − 1

)
= 1 − bi − b j.

Hence, for a base process autocorrelation of ρ = −1 Equation 6.9 becomes

E[YtYt+h] =
∑
i, j


 S i∑

s=1

1
Λi(s)


 S j∑

s=1

1
Λ j(s)

 Pϕ(i, j)

 where (6.19)

Pϕ(i, j) =



0, b̄i + b̄ j < 1
0, bi + b j ≥ 1

b̄i + b̄ j − 1, bi + b j < 1, b̄i + b̄ j ≥ 1, bi + b̄ j < 1, b̄i + b j < 1

τi, bi + b j < 1, b̄i + b̄ j ≥ 1, bi + b̄ j ≥ 1, b̄i + b j < 1

τ j, bi + b j < 1, b̄i + b̄ j ≥ 1, bi + b̄ j < 1, b̄i + b j ≥ 1

1 − bi − b j, bi + b j < 1, b̄i + b̄ j ≥ 1, bi + b̄ j ≥ 1, b̄i + b j ≥ 1.

Figure 6.5 shows the standard bivariate normal distribution with correlation ρ = −1
and examples for the different cases listed in Equation 6.19, i.e.

a) b̄i + b̄ j < 1
⇔ Φ−1(b̄i) + Φ−1(b̄ j) < 0

b) bi + b j ≥ 1
⇔ Φ−1(bi) + Φ−1(b j) ≥ 0

c) bi + b j < 1, b̄i + b̄ j ≥ 1, bi + b̄ j < 1, b̄i + b j < 1
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0

0

x

y

a

b

c
d

e

f

Figure 6.5.: The bivariate normal distribution for a correlation ρ = −1

⇔ Φ−1(bi) + Φ−1(b j) < 0, Φ−1(b̄i) + Φ−1(b̄ j) ≥ 0,
Φ−1(bi) + Φ−1(b̄ j) < 0, Φ−1(b̄i) + Φ−1(b j) < 0

d) bi + b j < 1, b̄i + b̄ j ≥ 1, bi + b̄ j ≥ 1, b̄i + b j < 1
⇔ Φ−1(bi) + Φ−1(b j) < 0, Φ−1(b̄i) + Φ−1(b̄ j) ≥ 0,

Φ−1(bi) + Φ−1(b̄ j) ≥ 0, Φ−1(b̄i) + Φ−1(b j) < 0
e) bi + b j < 1, b̄i + b̄ j ≥ 1, bi + b̄ j < 1, b̄i + b j ≥ 1

⇔ Φ−1(bi) + Φ−1(b j) < 0, Φ−1(b̄i) + Φ−1(b̄ j) ≥ 0,
Φ−1(bi) + Φ−1(b̄ j) < 0, Φ−1(b̄i) + Φ−1(b j) ≥ 0

f) bi + b j < 1, b̄i + b̄ j ≥ 1, bi + b̄ j ≥ 1, b̄i + b j ≥ 1
⇔ Φ−1(bi) + Φ−1(b j) < 0, Φ−1(b̄i) + Φ−1(b̄ j) ≥ 0,

Φ−1(bi) + Φ−1(b̄ j) ≥ 0, Φ−1(b̄i) + Φ−1(b j) ≥ 0.

6.4.2. Transformation of APH Distributions that are not in Canonical
Form

In the following two transformations for the APH marginal distribution of a CAPP
are introduced. The first transformation can be applied to distributions that are not in
canonical form and preserves the number of states. The second transformation adds an
additional state to the APH distribution and requires the distribution to be in canonical
form. The basic idea behind both transformations are the equivalent representations
of the exponential distribution as shown in Figure 2.16, which allows one to split an
elementary series with rate λ into two series, one with rate µ ≥ λ and one with rates
µ and λ. The following Lemma will be useful to prove that these transformations
actually increase the possible range of autocorrelation.

Lemma 6.1. Let λ jm ≥ λ jm−1 ≥ · · · ≥ λ j1 be the rates of an elementary series of an

92



CHAPTER 6. CORRELATED ACYCLIC PHASE-TYPE PROCESSES

APH distribution with probability τ j > 0. Furthermore, let λx ≥ (>)λ jm−k . Then, for
the two elementary series

λ jm ≥ · · · ≥ λ jm−k+1 ≥ λx ≥ λ jm−k ≥ · · · ≥ λ j1

with probability τ j(1 − λ jm−k/λx) and

λ jm ≥ · · · ≥ λ jm−k+1 ≥ λx ≥ λ jm−k−1 ≥ · · · ≥ λ j1

with probability τ jλ jm−k/λx the following condition holds:(
1
λ jm

+ · · ·
1

λ jm−k+1

+
1
λx

+
1

λ jm−k

+ · · · +
1
λ j1

)2

τ j

(
1 −

λ jm−k

λx

)
+

( 1
λ jm

+ · · ·
1

λ jm−k+1

+
1
λx

+
1

λ jm−k−1

+ · · · +
1
λ j1

)2

τ j
λ jm−k

λx


≥ (>)

( 1
λ jm

+ · · ·
1

λ jm−k+1

+
1

λ jm−k

+ · · · +
1
λ j1

)2

τ j

 . (6.20)

Proof. The inequality can be shown by applying the multinomial theorem to all three
terms and by further splitting the resulting expressions, which requires some lengthy
computations that are omitted here but can be found in Appendix C.1. Finally, one
obtains ( 1

λ jm
+ · · ·

1
λ jm−k+1

+
1

λ jm−k

+ · · · +
1
λ j1

)2

τ j

 +
τ j

λx

(
1

λ jm−k

−
1
λx

)
(6.21)

for the left-hand side of Equation 6.20. Observe, that the first term is equal to the
right-hand side of Equation 6.20. The second term is zero for λx = λ jm−k and greater
than zero for λx > λ jm−k . �

Now, let Faph be an acyclic PH distributions whose representation is not in canonical
form (cf. Figure 2.15). [55] showed that every APH distribution can be transformed
into series CF by exploiting the equivalent representations of the exponential distri-
bution (cf. Figure 2.16). This transformation has already been briefly introduced in
Section 2.3.4. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the rates of the n states of Faph. [55] defined

λn, λn−1, . . . λ2, λ1
λn, λn−1, . . . λ2
...

λn, λn−1
λn

to be the basic series of the APH distribution. Note, that the basic series are actually
the elementary series of an APH distribution in series canonical form. Hence, the goal
of the transformation is to modify each elementary series of Faph such that it resembles
one of the basic series. Let λ jm , λ jm−1 , . . . , λ j1 be the j-th elementary series of Faph and
assume that λ jk ≤ λ jk+1 . Starting with λ jm the elementary series is compared with the
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basic series. Let λ jm−k be the first rate that is different, i.e. λ jm−k , λn−k. Then the
elementary series is replaced by two new series, one of the form

λ jm , . . . , λ jm−k+1 , λn−k, λ jm−k , . . . λ j1

and one of the form
λ jm , . . . , λ jm−k+1 , λn−k, λ jm−k−1 , . . . λ j1

exploiting the herein before mentioned equivalent representations of the exponential
distribution. Additionally the probabilities of the two new elementary series are ad-
justed as shown in Figure 2.16. Repeated application of this step transforms all ele-
mentary series in basic series [55]. Finally, the APH in series CF can be constructed
from the transformed elementary series. The distribution consists of the n states as
shown in Figure 2.15(a). The initial probabilities π(i) can be computed from the trans-
formed elementary series, i.e. π(i) is the sum of the probabilities of all transformed
elementary series of the form λn, . . . , λi.

Transformation 1. Let Faph be an acyclic PH distribution that is not in canonical
form. Then, the transformation converts Faph into series canonical form as described
above and proposed in [55]. The transformed distribution is denoted by F′aph.

Proposition 6.4. Transformation 1 preserves the distribution of Faph, i.e. Faph and
F′aph describe the same distribution.

Proof. The proof is given in [55]. �

Proposition 6.5. Transformation 1 increases the possible range of positive autocor-
relation for a CAPP with APH marginal distribution Faph under the mild assumption
that Faph has at least one elementary series that does not resemble a basic series.

Proof. Because Transformation 1 consists of a sequence of steps where each step splits
one elementary series into two equivalent series, we will show that at least one of
the single steps increases the possible range of autocorrelation for the CAPP. It is
sufficient to prove that this range is increased for the maximal value of the base process
autocorrelation ρ = 1, which implies that only the terms with i = j contribute to
E[YtYt+h] and Equation 6.15 can be used for the computation. Assume, that for the
current step elementary series j with rates λ jm ≥ λ jm−1 ≥ · · · ≥ λ j1 and probability τ j is
considered that does not resemble a basic series. Recall, that we assumed the existence
of at least one such elementary series. Furthermore assume, that λ jm−k is the rate of the
exponential distribution that is replaced by its equivalent representation. As described
above, this series is then replaced by two elementary series

λ jm ≥ · · · ≥ λ jm−k+1 ≥ λx ≥ λ jm−k ≥ · · · ≥ λ j1

with probability τ j(1 − λ jm−k/λx) and

λ jm ≥ · · · ≥ λ jm−k+1 ≥ λx ≥ λ jm−k−1 ≥ · · · ≥ λ j1

with probability τ jλ jm−k/λx and λx ≥ λ jm−k . Since in this step all other elementary
series remain unchanged, it is sufficient to show that the two new elementary series
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contribute more to E[YtYt+h] than the old untransformed series did, i.e.( 1
λ jm

+ · · ·
1

λ jm−k+1

+
1
λx

+
1

λ jm−k

+ · · · +
1
λ j1

)2

τ j

(
1 −

λ jm−k

λx

)
+

( 1
λ jm

+ · · ·
1

λ jm−k+1

+
1
λx

+
1

λ jm−k−1

+ · · · +
1
λ j1

)2

τ j
λ jm−k

λx


>

( 1
λ jm

+ · · ·
1

λ jm−k+1

+
1

λ jm−k

+ · · · +
1
λ j1

)2

τ j

 .
But this follows from Lemma 6.1, because the elementary series j was not a basic
series before the transformation step and therefore two rates λi1 < λi2 exist, where λi1
is part of series j and λi2 is the rate that is missing at position i1 for j to become a
basic series. Then, in one transformation step these two rates are treated and we have
λi2 = λx > λ jm−k = λi1 . �

Remark. For Proposition 6.5 it was required that at least one elementary series does
not resemble a basic series, such that at least one transformation step has to be
performed. Recall from Figure 2.15 that there are three equivalent canonical
forms for an APH distribution. Observe, that all three canonical forms exhibit
the same elementary series, i.e. the series have the form λn, λn−1, . . . , λi in all
cases. Thus, if an APH distribution Faph is available in canonical form A or B
it can be transformed into series canonical form without applying a transforma-
tion step, i.e. by just computing the initial probabilities of the series canonical
form from the probabilities of the elementary series of Faph. Then the possible
range of autocorrelation is of course not modified by Transformation 1. In these
cases, Transformation 1 can be applied safely anyway to prepare Faph for the
transformation in the following section, which expects an APH distribution in
series canonical form.

According to Proposition 6.5 Transformation 1 increases the maximal positive auto-
correlation that can be achieved for a given APH distribution by changing its repre-
sentation. For the negative autocorrelation a similar statement is much more difficult
to prove. In contrast to the expression for the computation of the positive autocorre-
lation from Equation 6.15 the computation of the negative autocorrelation requires to
distinguish between several cases depending on the interval bounds of the branches
(cf. Equation 6.19). However, for APH distributions with a special structure it can be
shown, that the transformations from this chapter increase the possible range of nega-
tive autocorrelation. The proof and some considerations for the general case are given
in Section C.2. Note, that real network traces usually only exhibit positive autocorre-
lation (cf. Chapter 8) and thus, the more important case is completely covered by the
proofs in this section.

6.4.3. Transformation of APH Distributions in Series Canonical Form

Since the transformation into series canonical form increases (or at least preserves)
the possible range of positive autocorrelation for all APH distributions, this is the best
representation we can achieve for a given number of states of the APH distribution.
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If this representation is still not sufficient to model some estimated autocorrelation
coefficient from a trace, it is necessary to increase the model size, i.e. to introduce an
additional state.

Transformation 2. Let Faph be an acyclic PH distribution in series canonical form
with n states, initial probabilities π(1), . . . ,π(n) and bidiagonal matrix D0 with rates
λ1 ≤ λ2 ≤ . . . ≤ λn. Then, the transformation constructs the distribution F′aph by
adding a new state n + 1 with rate µ > λn. The initial probabilities of F′aph are set to
π′(i) = π(i), i = 1, . . . n − 1,π′(n) = π(n)(1 − λn/µ) and π′(n + 1) = π(n)λn/µ. Matrix
D′0 is set to

D′0 =



−λ1 λ1 0 · · · 0 0 0
0 −λ2 λ2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −λn−1 λn−1(1 − λn/µ) λn−1λn/µ

0 0 0 · · · 0 −λn λn

0 0 0 · · · 0 0 −µ


.

· · ·

π(1) π(n − 1) π(n)

λ1 λn−1 λn

⇓

· · ·

π(1) π(n − 1) π(n)
(
1 − λn

µ

)
π(n)λn

µ

λ1
λn−1 −

λn−1λn
µ

λn−1
λn
µ

λn µ

Figure 6.6.: Transformation 2

Figure 6.6 visualizes Transformation 2. The transformation splits the initial proba-
bility of state n and the transition from state n−1 to n to introduce an initial probability
for the new state n + 1 and a transition from n − 1 to this new state.

A special case arises for the exponential distribution, which only has a single state
with initial probability 1. In this case only the initial probability has to be split for
introducing the new state as shown in Figure 6.7.

Proposition 6.6. Transformation 2 preserves the distribution of Faph, i.e. Faph and
F′aph describe the same distribution.

Proof. To prove the proposition it will be shown that F′aph results from Faph if λn

is replaced by its equivalent representation with rates λn and µ > λn according to
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1

λ
⇒

1 − λ/µ

λ

λ/µ

µ

Figure 6.7.: Transformation 2 for the exponential distribution

Figure 2.16. Faph has n elementary series

n : λn with probability π(n)
n − 1 : λn, λn−1 with probability π(n − 1)

...

i : λn, λn−1, . . . , λi with probability π(i)
...

1 : λn, λn−1, . . . , λi, . . . , λ1 with probability π(1)

Introducing µ > λn series i is split into two series i1, i2 and we obtain

n1 : µ, λn with probability π(n)(1 − λn/µ)
n2 : µ with probability π(n)λn/µ

(n − 1)1 : µ, λn, λn−1 with probability π(n − 1)(1 − λn/µ)
(n − 1)2 : µ, λn−1 with probability π(n − 1)λn/µ

...

i1 : µ, λn, λn−1, . . . , λi with probability π(i)(1 − λn/µ)
i2 : µ, λn−1, . . . , λi with probability π(i)λn/µ

...

Observe, that these series are identical with the elementary series of F′aph, because for
each state i there is one path taking all the phases from λi to µ and one path where λn

is omitted, i.e. the transition from λn−1 to µ is taken. Using Equation 6.1 it is easy to
verify that the initial probabilities of the series are identical as well. �

Proposition 6.7. Transformation 2 increases the possible range of positive autocorre-
lation for a CAPP with APH marginal distribution Faph in series canonical form.

Proof. The proof works similar to the one of Proposition 6.5. In the proof for Propo-
sition 6.6 it was shown that Transformation 2 splits each elementary series into two
equivalent series. In the following it is shown that the two new elementary series con-
tribute more to E[YtYt+h] (and thus, to the autocorrelation) than the old untransformed
series did. Again, it is sufficient to consider the maximal value of the base process
autocorrelation ρ = 1 only and use Equation 6.15 for the computation of E[YtYt+h].
Transformation 2 replaces each elementary series λn, λn−1, . . . , λi with probability π(i)
by the two series µ, λn, λn−1, . . . , λi with probability π(i)(1 − λn/µ) and µ, λn−1, . . . , λi
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with probability π(i)λn/µ and µ > λn. It follows immediately from Lemma 6.1 that(1
µ

+
1
λn

+
1

λn−1
+ · · · +

1
λi

)2

π(i)
(
1 −

λn

µ

)
+

(1
µ

+
1

λn−1
+ · · · +

1
λi

)2

π(i)
λn

µ


>

( 1
λn

+
1

λn−1
+ · · · +

1
λi

)2

π(i)

 ,
which proves the proposition. �

Remark. Note, that after applying Transformation 2 the distribution is in general no
longer in series canonical form. Transformation 1 could be used afterwards to
obtain a distribution in series canonical form (and further increase the possible
range of autocorrelation).

Transformation 2 increases the possible range of positive autocorrelation for every µ >
λn. However, recall from Equation 6.21 that the difference between an untransformed
elementary series j and the two equivalent series that result from the transformation is
given by

τ j

µ

(
1
λn
−

1
µ

)
.

It is easy to verify, that this expression is maximized for µ = 2λn, which is the best
choice for µ.

Remark. For Transformation 2 the new state with rate µ was added as last state of
the APH distribution, i.e. we required µ > λn. Note, that of course the new
state could be added at any other position for some λi < µ < λi+1. However, at
position i it might not always be possible to set µ = 2λi, because µ < λi+1 might
be violated in this case.

Again, for the treatment of negative autocorrelations the reader is referred to Sec-
tion C.2.

The two presented transformations cover all subclasses of acyclic PH distributions.
For exponential, Erlang and Hypo-Exponential distributions, which only have a single
elementary series, Transformation 2 can be applied to make them usable for a CAPP.
In general, one could iterate between the two transformations to increase the possible
range of autocorrelation (of course at the cost of an increased model size), i.e. apply
Transformation 1 to bring the distribution into canonical form (if necessary), intro-
duce a new state with Transformation 2, bring the distribution into canonical form
again with Transformation 1 and so on. Appendix D shows the effect of the presented
transformations on several different APH distributions.

98



Chapter 7
An Algorithmic Approach

In the previous chapters several stochastic processes have been presented that can com-
bine various types of marginal distributions with an ARMA(p, q) base process to model
correlated traffic data. In the following the concepts of Chapters 4, 5 and 6 will be in-
tegrated into an algorithmic framework. For all types of processes distribution and
correlation fitting can be performed separately in two steps. Thus, for the first part
of this chapter several fitting approaches for the supported distributions are presented.
The second part outlines algorithms for the construction of the base process.

7.1. Fitting the Marginal Distribution

Since distribution and autocorrelation fitting are separated for the stochastic processes
from Chapters 4, 5 and 6, the marginal distribution may be fitted with any of the
available tools that can provide a distribution that is suitable for the corresponding
process.

For (extended) ARTA models every distribution for which the inverse cdf can be
computed is applicable. Hence, tools like Expertfit [105], which can fit various
different distributions to given data, can be used for determining FY , though those tools
may require user interaction for the selection of the distribution. If a fully automated
approach is preferred one could decide on one flexible type of distribution that can take
a wide set of different shapes and for which fitting algorithms exist like the Johnson
distribution [88] that was also used for the ARTAFIT approach in [25, 26]. For example
the software FITTR1 [56] provides fitting algorithms for the Johnson distribution. For
other distributions like exponential, normal or lognormal simple maximum likelihood
estimators exist [104] and these distributions can be fitted to a trace easily.

CHEPs have been tailored to Hyper-Erlang distributions and hence the tool GFIT,
which implements the algorithm from [151] (cf. Section 5.3), is recommended for
fitting the marginal distribution. Alternatively, the approaches from [64], [95] or [137]
(cf. Section 2.3.5), which all fit an Hyper-Exponential distribution (which is a special
case of the HErD with only one phase per branch), could be applied, but the Hyper-
Exponential distribution is of course not as flexible as the HErD.

For CAPPs any of the fitting approaches from Section 2.3.5 that yields an acyclic
PH distribution could be used. Since EM algorithms are much slower for general APH
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distributions than for special subclasses like HErDs, the much faster moment matching
algorithm from [42] is recommended.

7.2. Fitting the Base Process

Since the construction of the ARMA base process is similar for the three stochastic
processes from Chapters 4, 5 and 6 only a single routine for fitting the base process
is presented in the following, which will be divided into alternative parts whenever
necessary.

Algorithm 7.1: Main routine
input : marginal distribution FY

Trace T = (t1, t2, . . . , tl)
r: number of autocorrelation lags to match
p: number of AR coefficients
q: number of MA coefficients

output: ARTA, CHEP or CAPP (depending on FY )

1 compute desired autocorrelations ρ̂ = (ρ̂1, ρ̂2, . . . , ρ̂r) from T according to
Equation 1.4
//depending on FY call one of the subroutines

2 if F−1
Y can be computed then

3 call Algorithm 7.2 for (extended) ARTA processes

4 if FY is an APH then
5 call Algorithm 7.3 for CHEPs and CAPPs

6 return fitted process

The main routine from Algorithm 7.1 expects a marginal distribution FY and a trace
T as input. Furthermore, the order (p, q) of the base process and the number of au-
tocorrelation lags r to consider for fitting have to be specified. The main routine first
computes the first r lags from T . After that depending on the type of FY a subrou-
tine is called. If F−1

Y can be computed, an (extended) ARTA model is fitted using
Algorithm 7.2, for acyclic PH distributions (including Hyper-Erlang distributions) a
CHEP or CAPP is fitted using Algorithm 7.3. Note, that for exponential and Erlang
distributions actually a call to both subroutines is possible. However, for exponential
distributions it is recommended to fit an (extended) ARTA model, since a closed-form
expression for the inverse cdf exists. Erlang distributions can be used for CAPP fitting
after a transformation step of the distribution, which is recommended here to avoid the
numerical computation of the inverse cdf, which is necessary for those distributions
when used as a marginal distribution for ARTA processes.

Algorithm 7.2 describes the subroutine for fitting (extended) ARTA models that im-
plements the ideas from Chapter 4. Inputs are the marginal distribution FY (for which
F−1

Y has to be computable), a vector ρ̂ with the autocorrelation coefficients estimated
from the trace and that the resulting ARTA process should have, and the order of the
base process. In the first step the subroutine from Algorithm 7.4 is called to determine
the base process autocorrelations ρ that yield the desired ARTA autocorrelations ρ̂. In
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Algorithm 7.2: Routine for fitting extended ARTA processes
input : marginal distribution FY

ρ̂ = (ρ̂1, ρ̂2, . . . , ρ̂r): desired autocorrelation for ARTA process
p: number of AR coefficients
q: number of MA coefficients

output: ARTA process

1 compute ARMA(p, q) autocorrelations ρ = (ρ1, ρ2, . . . , ρr) by calling
Algorithm 7.4

2 minimize Equation 4.11 to find an ARMA(p, q) model which approximates ρ
3 set variance of ARMA(p, q) according to Equation 4.9
4 return ART A model with base ARMA(p, q) process and distribution FY

a second step Equation 4.11 is minimized to find a stationary ARMA(p, q) model that
approximates ρ. This is done applying the general purpose optimization algorithm of
Nelder and Mead [118] using an implementation from [117]. Finally, the variance of
the ARMA(p, q) base process is modified according to Equation 4.9, such that the Zt

generated by the base process have standard normal distribution, and the resulting (ex-
tended) ARTA process consisting of the marginal distribution FY and the ARMA(p, q)
base process is returned. Note, that for q = 0 the algorithm fits an ARTA model with
AR(p) base process, while an extended ARTA model is fitted otherwise.

Algorithm 7.3 describes the routine that is used for fitting CHEPs and CAPPs.
Inputs are the marginal distribution, which is an arbitrary acyclic PH distribution (for

CAPP fitting) or a Hyper-Erlang distribution (for CHEP fitting), the vector ρ̂ with the
desired autocorrelation and the base process order. The routine then first determines
the m elementary series of the distribution. For a general APH distribution they are pa-
rameterized by S i that describes the number of phases of series i, the probability τi and
a vector Λi that contains the rates for the phases of series i. For a HErD the series are
directly given by the branches of the distribution and instead of a vector there is only a
single rate λi for each series. As mentioned in Chapters 5 and 6 the elementary series
have to be sorted according to their mean values. In the second step the algorithm
checks whether the desired autocorrelation can be reached with the given marginal
distribution, i.e. whether ρ̂min ≤ min(ρ̂) and ρ̂max ≥ max(ρ̂) where min(·) and max(·)
return the smallest and largest value from the vector of desired autocorrelations. ρmin

and ρmax are the minimal and maximal possible autocorrelation for the base process,
respectively. In theory ρmin = −1 and ρmax = 1 are possible, but it might be difficult
for the base process fitting algorithm to find such an ARMA(p, q) process, in particular
if other autocorrelation lags have to be matched as well. Hence, it is more reasonable
to use values close to those theoretical values, i.e. to set ρmin = −0.9 and ρmax = 0.9.
If the desired autocorrelation cannot be achieved with the given distribution the algo-
rithm calls Algorithm 7.5 to perform a transformation of the distribution to increase
the possible autocorrelation range. Since this changes the representation of the dis-
tribution (but of course not the distribution itself) a recomputation of the elementary
series is necessary after that. The remaining steps are similar to Algorithm 7.2. The
routine calls the search Algorithm 7.4 to determine the base process autocorrelation
that yields the desired CHEP or CAPP autocorrelation, fits an ARMA(p, q) to this au-
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Algorithm 7.3: Routine for fitting CHEPs and CAPPs
input : acyclic Phase-type marginal distribution APH(n) (or HErD(n)) with

distribution function FY

ρ̂ = (ρ̂1, ρ̂2, . . . , ρ̂r): desired autocorrelation for CAPP
p: number of AR coefficients
q: number of MA coefficients

output: CAPP(n, p, q) (or CHEP(n, p, q))

1 determine elementary series i = 1, . . . ,m of PH distribution with S i phases,
probabilities τi, and rates vector Λi (or rates λi)

2 sort elementary series according to their mean values
3 determine possible range for autocorrelation [ρ̂min, ρ̂max] by computing

Equation 6.9 (or Equation 5.6) for base process correlation ρmin and ρmax

4 while ((ρ̂min > min(ρ̂)) || (ρ̂max < max(ρ̂))) do
5 perform PH transformation by calling Algorithm 7.5
6 recompute the elementary series
7 recompute the possible range for autocorrelation [ρ̂min, ρ̂max]

8 compute ARMA(p, q) autocorrelations ρ = (ρ1, ρ2, . . . , ρr) by calling
Algorithm 7.4

9 minimize Equation 4.11 to find an ARMA(p, q) model which approximates ρ
10 set variance of ARMA(p, q) according to Equation 4.9
11 return CAPP(n, p, q) model with base ARMA(p, q) process and distribution

APH(n) (or CHEP(n, p, q) model with base ARMA(p, q) process and distribution
HErD(n))

tocorrelation and adjusts the variance of the base process. Depending on the type of
the input marginal distribution the algorithm returns either a CHEP or a CAPP.

Algorithm 7.4 is a simple search algorithm that is used for finding the base process
autocorrelation for a given main process (i.e. (extended) ARTA, CHEP or CAPP) au-
tocorrelation. Inputs are the marginal distribution FY and the desired autocorrelation
ρ̂ for the main process. The procedure returns the base process autocorrelation ρ. The
algorithm makes use of the properties that have been stated for the relation between
the base process autocorrelation and the main process autocorrelation in Chapters 4,
5 and 6. In the simplest case the main process autocorrelation is zero and the base
process autocorrelation is set to zero as well (cf. line 3) according to Propositions 4.1,
5.1 and 6.1. For a non-zero main process autocorrelation the procedure searches either
in the interval [lx, rx] = [−1.0, 0.0] for a negative main process autocorrelation or in
[lx, rx] = [0.0, 1.0] for a positive main process autocorrelation (lines 5 to 10). Ad-
ditionally a midpoint mx in this interval is computed that divides the interval [lx, rx]
as described in Section 4.2 into two fractions with a width of about 38% and 62%,
respectively. A second midpoint mx2 is computed that divides the interval [mx, rx] in
a similar way. With this initial points a golden section search is started to find the min-
imum of Equation 4.10. The algorithm evaluates Equation 4.10 for the two midpoints
mx and mx2 and depending on the value for these two points continues to search in the
interval [lx,mx2] or [mx, rx], respectively, with adjusted midpoints that divide the new
interval as described above. If finally the width of the interval is smaller than some
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Algorithm 7.4: Search algorithm
input : marginal distribution FY

ρ̂ = (ρ̂1, ρ̂2, . . . , ρ̂r): desired autocorrelation for CAPP
output: ρ = (ρ1, ρ2, . . . , ρr)

1 for (i = 1 to r) do
2 if (ρ̂i == 0.0) then
3 ρi = 0.0
4 else
5 if (ρ̂i < 0) then
6 lx = −1.0
7 rx = 0.0
8 else
9 lx = 0.0

10 rx = 1.0

11 mx = lx + 0.381966 (rx − lx)
12 mx2 = mx + 0.381966 (rx − mx)
13 f 1 = result of Equation 4.10 for ρ̂i and mx
14 f 2 = result of Equation 4.10 for ρ̂i and mx2
15 while (|rx − lx| > ε) do
16 if ( f 2 < f 1) then

//continue in interval [mx, rx]
17 lx = mx
18 mx = mx2
19 mx2 = (1.0 − 0.381966) mx + 0.381966 rx
20 f 1 = f 2
21 f 2 = result of Equation 4.10 for ρ̂i and mx2

22 else
//continue in interval [lx, mx2]

23 rx = mx2
24 mx2 = mx
25 mx = (1.0 − 0.381966) mx2 + 0.381966 lx
26 f 2 = f 1
27 f 1 = result of Equation 4.10 for ρ̂i and mx

28 if ( f 1 < f 2) then
29 ρi = mx
30 else
31 ρi = mx2

32 return ρ = (ρ1, ρ2, . . . , ρr)

predefined ε, the desired base process autocorrelation ρi that yields the main process
autocorrelation ρ̂i has been found. For computing Equation 4.10 the main process
autocorrelation ω(xi) needs to be evaluated and this is actually the only part of the pro-
cedure that depends on the marginal distribution and thus, on the type of the stochastic
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process. For extended ARTA models ω(xi) is computed according to Equation 4.3, for
CHEPs Equation 5.6 is used and for CAPPs Equation 6.9 is applied. As mentioned in
Section 4.2 a table should be used to store pairs (xi, ω(xi)) to avoid the recomputation
of ω(xi) for values that have already been computed before.

Algorithm 7.5: Routine for APH transformation
input : APH(n)
output: APH′(n)

1 if (APH(n) is not in series canonical form) then
2 apply Transformation 1

// APH′(n) now has series canonical form
3 else
4 apply Transformation 2

// APH′(n) now has an additional state

5 return transformed APH distribution APH′(n)

For the APH transformation outlined in Algorithm 7.5 two cases have to be distin-
guished. If the distribution is not in series canonical form, Transformation 1 can be
applied to obtain a distribution in series canonical form, otherwise Transformation 2 is
used to add an additional state.

7.2.1. Selecting the Model Order

The selection of the model order of the base process is important for the quality of the
fitted model. If p and q are too small for the number of autocorrelation lags to match,
the model will provide a poor approximation of the autocorrelation. Since a run of
Algorithm 7.1 only takes a few seconds we decided to fit an ARMA(p, q) model for all
combinations of p ∈ [pmin, pmax] and q ∈ [qmin, qmax] for given pmin, pmax, qmin, qmax

and select the model with the best result according to Equation 4.11.
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Chapter 8
Experimental Results

In this chapter the ability of the stochastic processes introduced in Chapters 5 and 6 to
capture the characteristics of different traces will be assessed. In the first part of this
empirical study in Section 8.1 the processes are fitted to synthetically generated traces
to evaluate the quality of the proposed approach in approximating characteristics from
another stochastic process. We will neglect ARTA processes in this study and only fit
CHEPs and CAPPs to the synthetically generated traces. Obviously, since all these
processes use the same type of ARMA base process, no surprising results regarding
the autocorrelation are to be expected from fitting ARTA processes. Moreover, the
overall fitting quality of an ARTA process will heavily depend on the type of marginal
distribution and no automated approach exists to select the best type of distribution
from all possible distributions. Additionally it was already shown in Chapter 5 that PH
distributions are flexible enough to capture a wide range of distributions. On the other
hand, we can easily generate traces from ARTA models that exhibit nontypical shapes
for the distribution, which are difficult to fit for PH fitting tools. Hence, we will only
use ARTA processes to obtain some synthetically generated traces.

For the second part of the study in Section 8.2 the novel stochastic processes are
fitted to real traces. Several characteristics of these models are compared with Marko-
vian Arrival Processes that have been fitted to the same traces. In particular, we will
compare the moments and the distribution and density functions to assess the fitting
of the distribution and the joint moments and autocorrelation coefficients to assess
the fitting of the dependence structure of the trace and the stochastic processes. For
small and moderate sample sizes statistical tests could be applied to decide whether a
trace might be drawn from a specific distribution or process. For example in [26] the
two-dimensional KS test was used to evaluate the fitting quality of ARTA processes.
However, for network traces with a million or more entries these tests tend to reject
the hypothesis that the sample is drawn from the distribution or process even if it has
been drawn from exactly this distribution [58]. Other measures like the joint density
or the likelihood function of the correlated trace are hard to compute for the stochas-
tic processes used in this work. Therefore, we used the queueing performance of the
stochastic processes when used as input process to a simple queueing model instead as
an additional measure for comparison.

For fitting the marginal distribution of a CHEP we use the tool GFIT (cf. [151] and
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Section 5.3) and for fitting general acyclic PH distributions for CAPPs we use a tool
called Momfit (cf. [42] and Section 6.2). Using these distributions a CHEP or CAPP
is constructed as described in Chapter 7. Most of the MAPs presented in this study are
taken from [100] where different MAP fitting algorithms have been compared.

8.1. Synthetically generated Traces

To assess whether CHEPs and CAPPs can capture the characteristics of other stochas-
tic processes, several different processes have been simulated to obtain synthetically
generated traces.

The first trace has been generated by a CHEP(4, 5, 4) consisting of a Hyper-Erlang
distribution with three branches, phases S = (1, 1, 2), rates λ = (0.12, 0.46, 2.97) and
initial probabilities τ = (0.08, 0.55, 0.37) and an ARMA(5, 4) base process with AR
coefficients

α = (0.50, 1.09,−0.42,−0.25, 0.078)

and MA coefficients
β = (1.24,−0.69,−1.39, 0.03).

Figure 8.1 shows the results of a CHEP(4, 8, 2) and a CAPP(4, 3, 5) fitted to the
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Figure 8.1.: Fitting results for a trace generated by a CHEP

trace. As one can see from Figures 8.1(a) and 8.1(b) GFIT was able to recreate the
marginal distribution while Momfit resulted in an acyclic PH distribution with a similar
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cdf but a different density function. In both cases the autocorrelation was captured
almost exactly (cf. Figure 8.1(c)). Observe, that the fitted models have a different base
process order than the original CHEP, which is caused by some slight variations in the
autocorrelation structure between the original CHEP and the generated trace.
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Figure 8.2.: Fitting results for a trace generated by a MAP(3)

As a second example a trace from the MAP(3) that was already used in Section 3.2.2
was generated. The results are shown in Figure 8.2 and give a similar picture as for the
first trace. Again, GFIT was able to deliver a slightly better fitting of the distribution
than Momfit, but in both cases the autocorrelation was fitted almost exactly by the
CHEP(3, 5, 2) and the CAPP(3, 4, 3), respectively.

To generate traces with a distribution that is nontypical for a PH distribution and
therefore more difficult to fit than the two previous examples, ARTA processes with
different marginal distributions have been used for trace generation. The first process
has a Johnson bounded marginal distribution and an ARMA(9, 5) base process.
As one can see from Figure 8.3 both, GFIT and Momfit were able to provide a sufficient
approximation of the distribution. Note, that the Hyper-Erlang distribution returned
by GFIT was not adequate for capturing the autocorrelation structure and thus, a trans-
formation was necessary to bring the distribution into series canonical form and add
an additional state. Therefore, both processes in Figure 8.3 are CAPPs, although the
CAPP(6, 9, 3) resulted from a transformed Hyper-Erlang distribution with 5 states. For
the general acyclic PH distribution returned by Momfit that was used for the second
CAPP(5, 8, 7) no transformation was necessary.
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Figure 8.3.: Fitting results for a trace generated by an ARTA process with Johnson
marginal distribution

The last synthetically generated trace was most difficult to fit. It was generated from
an ARTA process with Weibull marginal distribution and a base process that exhibits
positive and negative autocorrelation. The fitting results are shown in Figure 8.4. For
both distributions, the Hyper-Erlang distribution returned by GFIT and the APH distri-
bution fitted according to the moments by Momfit, several transformation steps were
necessary to obtain a marginal distribution that could capture the negative correla-
tion of the trace. Figures 8.4(a) and 8.4(b) show that the CAPP(11, 7, 2) using the
transformed Hyper-Erlang distribution provides a slightly better approximation of the
distribution than the CAPP(8, 5, 3) using an APH distribution fitted according to the
moments. As one can see from Figure 8.4(c) both processes were able to provide a
good fitting of the autocorrelation structure of the trace.

From the previous examples we have seen that CHEPs and CAPPs are able to model
a variety of different distribution shapes with different autocorrelation structures. How-
ever, the choice of the basic parameters used for the fitting steps is not really done in a
systematic way. Usually an exhaustive search is performed over a subset of the param-
eter region to find the best model for the available data. For example GFIT tries several
combinations for the number of branches and number of phases for each branch and
selects the best model from these combinations (cf. [151] and Sect. 5.3). A similar
approach is proposed in Sect. 7.2 for selecting the order of the ARMA(p, q) base pro-
cess. This can be done if the parameter region is not too large, which is often the case,
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Figure 8.4.: Fitting results for a trace generated by an ARTA process with Weibull
marginal distribution

but reaches its limits for cases where a large number of phases or AR and MA coeffi-
cients are required to model the distribution or autocorrelation structure, respectively.
Additionally it is unclear which measures are most important for the fitting quality.
For the analysis of technical systems and also in simulation models where several pa-
rameters have an unknown impact on the results often ideas from statistical design of
experiments [34] are used to evaluate the influence of parameters in a systematic way
in order to identify the parameters which have the main influence on the result mea-
sures. It seems promising to consider similar ideas for the parametrization of CHEPs
and CAPPs. To the best of the author’s knowledge, design of experiments has not
been used before for assessing fitting approaches for stochastic processes. However,
although the design of experiments has the potential to give new insights into the effect
of different parameters on the fitting quality and may allow one to find good parameter
settings with less effort, the identification of important factors and the experimental
setup require some careful planning and preliminary considerations to yield mean-
ingful results. Since the different measures and parameters are highly dependent, a
straightforward application of factorial designs of experiments [115] does not result
in a useful approach. Consequently, the application of more systematic approaches
from experimental design for setting parameters of CHEPs and CAPPs is identified as
a promising area which should be considered in future research.
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For MAP fitting one often uses common benchmark traces that have been mea-
sured from a real system and the queueing performance as a result measure. Since
both MAPs and CHEPs/CAPPs have a PH marginal distribution we will use these real
benchmark traces to compare these different process types in the following.

8.2. Real Traces

The real traces considered in this empirical study have already been introduced in
the previous chapters. In particular, the common benchmark traces LBL-TCP-3 [130]
and BC-pAug89 [108] from the Internet Traffic Archive [148] (cf. Chapter 3) and the
trace TUDo [100] (cf. Chapter 5) are taken into account. Several different stochastic
processes are fitted to these traces and different quantities like the distribution func-
tion, (joint) moments and the autocorrelation coefficients are compared. Additionally,
queueing results are generated from a simple server with an exponential distribution
as service process and a queue capacity of 10. To obtain some reference values for the
model the system was simulated for each of the traces and different utilization levels
in a trace driven simulation. After that the model is simulated for the same amount
of time with the different fitted stochastic processes as arrival process. The focus of
this study is a comparison between MAPs and CHEPs/CAPPs. ARMA and ARTA
processes are omitted for the reasons mentioned above and in Chapter 3. Most of the
MAPs are taken from [100] where MAPs of different order (from n = 2 to n = 6) are
fitted to the three traces to compare different MAP fitting algorithms. In particular, the
MAPs are fitted with an EM algorithm [40] and two approaches that fit the MAPs in
two steps by expanding a PH distribution into a MAP, either by considering the empir-
ical joint moments of the trace [42] or the empirical autocorrelation coefficients [100]
(see also Section 2.3.6). The PH distribution for the first step is fitted using Momfit or
GFIT.

8.2.1. Results for the Trace BC-pAug89

We start with the comparison of the fitted stochastic processes for the trace BC-pAug89.
Figure 8.5 shows the results for the fitted processes of order 4 concerning the distribu-
tion. In Figure 8.6 the results regarding the correlation are shown. The curves result-
ing from MAP fitting using autocorrelation coefficients are labeled with AC. Curves
for MAPs from joint moment fitting and expectation maximization are labeled with JM
and EM, respectively. Usually Momfit [42] was used to obtain the distribution for joint
moment and autocorrelation MAP fitting and for CAPP fitting. GFIT [151] was used to
fit the marginal distribution for CHEPs. In some cases GFIT was used as well to obtain
the distribution for the two-step MAP fitting algorithms, which is denoted in the plots.
In addition to the pure EM algorithm that starts with a random MAP to improve the
likelihood we used the MAPs resulting from AC and JM fitting as initial solutions for
the EM algorithm to reduce the number of iterations until convergence was reached.
These MAPs are labeled with JM + EM and AC + EM. Figures 8.5 and 8.6 contain two
plots for each quantity under consideration. The first one contains the different MAPs,
for the second one the best MAP was plotted together with a CHEP(4, 8, 4) and a
CAPP(4, 6, 3).
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Figure 8.5.: Distribution related fitting results for the trace BC-pAug89 and MAPs/PH
distributions of order 4
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Figure 8.6.: Dependence related fitting results for the trace BC-pAug89 and MAPs/PH
distributions of order 4

From Figures 8.5(a) and 8.5(b) it becomes visible that all the stochastic processes
provide an adequate fitting of the distribution of the trace, but the best results are
obtained from fitting approaches that use an EM algorithm, i.e. MAP(4) EM, MAP(4)
JMom+GFIT and the CHEP(4, 8, 4). On the other hand, one can see from Figures 8.5(e)
and 8.5(f), that show the first moments of the processes relative to the empirical mo-
ments of the trace, that the EM algorithms underestimate the higher moments, while
the fitting algorithms that explicitly fit according to the moments provide a much better
approximation.

The MAPs resulting from joint moment fitting failed to capture the autocorrelations
as one can see from Figure 8.6, while both autocorrelation MAP fitting and the MAP
EM algorithm resulted in a much better approximation of the lag-k autocorrelations,
although the latter tends to underestimate the autocorrelation. The best results regard-
ing the autocorrelation are obtained from CHEP and CAPP fitting, which provide a
very close approximation of the first 100 lags. In contrast only the MAPs resulting
from joint moment fitting capture the joint moments of the trace, while the other MAP
fitting algorithms and the CHEP/CAPP fitting approaches, which do not fit according
to the joint moments, either under- or overestimate the joint moments of the trace.

Similar observations can be made for MAPs of order 6 and CHEPs/CAPPs with a
PH distribution of order 6, respectively. The results for a MAP(6), a CHEP(6, 8, 5)
and a CAPP(6, 7, 3) are shown in Figures 8.7 and 8.8.
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Figure 8.7.: Distribution related fitting results for the trace BC-pAug89 and MAPs/PH
distributions of order 6
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Figure 8.8.: Dependence related fitting results for the trace BC-pAug89 and MAPs/PH
distributions of order 6
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Figures 8.9 and 8.10 show the queue length distributions for the original trace and
all the fitted stochastic processes of order 4 and 6, respectively. Additionally the mean
queue length values are listed in Table 8.1. The figures and the table contain the re-
sults for different utilization levels of the server between % = 0.33 and % = 1. The
utilization of % = 1 results in a overload situation for the server while for all other
utilization levels the server is not overloaded. As one can see from the two figures the
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Figure 8.9.: Queueing results for different utilization levels % using the trace BC-
pAug89 and MAPs/PH distributions of order 4

queue length distributions from the MAPs resulting from either the pure EM or the EM
algorithm combined with one of the other approaches provide the best approximation
of the queue length distribution from the trace. For smaller utilization levels all models
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underestimate the larger values of the queue length, albeit the values are very small for
the original trace. The queue length distributions for CHEPs and CAPPs are slightly
worse than the distribution for the MAP EM, although for order 6 they are comparable.
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Figure 8.10.: Queueing results for different utilization levels % using the trace BC-
pAug89 and MAPs/PH distributions of order 6

Finally, Figure 8.11 shows the results for some CHEPs and MAPs with a higher
order for the PH interarrival time distribution. As mentioned before, EM algorithms
for MAP fitting have a slow convergence and fitting MAPs with 10 or more states to
a trace with a million (or even more) observations is not really feasible using an EM
algorithm. Therefore, we only used the autocorrelation fitting approach from [100] for
MAP fitting and compared the results to fitted CHEPs/CAPPs. Both fitting algorithms
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Model % = 0.33 % = 0.83 % = 1
paug89 0.312013 3.28225 4.33278
MAP(4) AC 0.170661 3.5404 4.95518
MAP(4) JMom 0.174841 3.626 4.90884
MAP(4) JMom+GFIT 0.208016 3.62717 5.02734
MAP(4) EM 0.33521 3.32061 4.35165
MAP(4) JMom+EM 0.317381 3.42371 4.52055
CHEP(4,8,4) 0.224763 3.63461 4.77194
CAPP(4,6,3) 0.371003 2.83832 4.16759
MAP(6) AC 0.14119 3.53162 4.94128
MAP(6) JMom 0.145738 3.6089 4.89891
MAP(6) EM 0.339633 3.39146 4.45859
MAP(6) AC+EM 0.203032 3.79714 4.86803
CHEP(6,8,5) 0.263359 3.50285 4.66143
CAPP(6,7,3) 0.47862 2.75662 3.81987

Table 8.1.: Mean queue length values for the trace BC-pAug89 and MAPs/PH distri-
butions of order 4 and 6

implement a similar approach, i.e. they take an APH distribution as input (for the
examples from Figure 8.11 GFIT was used) and try to introduce autocorrelation by
constructing a matrix D1 for MAPs or an ARMA base process for CHEPs/CAPPs.
As one can see from Figure 8.11(a) the two Hyper-Erlang distributions with 10 and 20
states, respectively, both provided a good approximation of the cumulative distribution
function. Note, that the MAP(20) and the CHEP(20, 10, 7) use the same interarrival
time distribution. For the autocorrelation MAP fitting algorithm it as difficult to fit a
larger number of autocorrelations from the trace, while for the CHEP(10, 13, 3) and
the CHEP(20, 10, 7) it was possible to consider the first 100 lags for fitting as one
can see from Figure 8.11(b). This is also reflected by the queueing results shown in
Figures 8.11(c) and 8.11(d). As one can see the MAP underestimates the tail of the
queue length for the lower utilization of 0.5, while the CHEPs provided a very good
approximation for the queue length distribution of the trace for both utilization levels.

8.2.2. Results for the Trace LBL-TCP-3

The results for the trace LBL-TCP-3 confirm the observations from the trace BC-
pAug89, though the trace was easier to fit and in general the results from all processes
provide a better approximation than for BC-pAug89. Figures 8.12 and 8.13 summarize
the fitting results for MAPs and CHEPs/CAPPs of order 3 and 4, respectively. Re-
garding the MAPs, again JM fitting and to a lesser degree EM fitting underestimate
the autocorrelations, while AC fitting over- and EM fitting underestimate the joint
moments. The CHEPs (i.e. a CHEP(3, 6, 7) and a CHEP(4, 6, 4)) and CAPPs (i.e. a
CAPP(3, 7, 7) and a CAPP(4, 12, 6)) are able to capture the autocorrelation coefficients
almost exactly, but cannot capture the joint moments, which were not used for the fit-
ting. Concerning the distribution function all models provide a good approximation.
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Figure 8.11.: Results for the trace BC-pAug89 and MAPs/PH distributions of order
10 − 20

The queueing results for the trace and the fitted models of order 3 and 4 are shown
in Figures 8.14 and 8.15 and Table 8.2. Again the MAPs fitted with the EM algorithm
resulted in the closest approximation and the results for CHEPs and CAPPs are only
slightly worse.

Results for larger models, in particular a CHEP(10, 9, 3) and a CHEP(20, 9, 3),
are shown in Figure 8.16. For comparison we used the autocorrelation MAP fitting
approach from [100] again, which starts with the same Hyper-Erlang distribution used
for fitting the CHEP(10, 9, 3) to construct a MAP(10). Again, we can see that Hyper-
Erlang distribution with 10 or 20 states can capture the cumulative distribution function
of the trace almost exactly (cf. Figure 8.16(a)). Regarding the autocorrelations the
MAP fitting algorithm had problems to capture a larger number of lags for MAPs of a
larger order, while the fitting algorithm for CHEPs had no problems to return models
that capture the first 100 lags (cf. Figure 8.16(b)). Consequently, the two CHEPs
provide a good approximation for the queueing behavior of the trace as one can see
from Figures 8.16(c) and 8.16(d), while the MAP underestimates the tail of the queue
length distribution for smaller utilization levels.

8.2.3. Results for the Trace TUDo

The last trace we used for our comparison was observed at a proxy server at TU Dort-
mund. It contains various bursts with very small interarrival times followed by a larger
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Figure 8.12.: Fitting results for the trace LBL-TCP-3 and MAPs/PH distributions of
order 3

119



8.2. REAL TRACES

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 5  10  15  20  25  30

a
u

to
c
o

rr
e
la

ti
o

n

lag

Autocorrelations for lags 1-30

lbl3
MAP(4) AC

MAP(4) JMom
MAP(4) EM

MAP(4) JMom+EM

(a) autocorrelations (1)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 10  20  30  40  50  60  70  80  90  100

a
u

to
c
o

rr
e
la

ti
o

n

lag

Autocorrelations for lags 1-100

lbl3
MAP(4) AC

CHEP(4,6,4)
CAPP(4,12,6)

(b) autocorrelations (2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  1  2  3  4  5  6

d
is

tr
ib

u
ti

o
n

t

cumulative distribution function

lbl3
MAP(4) AC

MAP(4) JMom
MAP(4) EM

MAP(4) JMom+EM

(c) cumulative distribution function (1)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  1  2  3  4  5  6

d
is

tr
ib

u
ti

o
n

t

cumulative distribution function

lbl3
MAP(4) EM
CHEP(4,6,4)

CAPP(4,12,6)

(d) cumulative distribution function (2)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1  1.5  2  2.5  3  3.5  4  4.5  5

moment

Moments 1-5

MAP(4) AC
MAP(4) JMom

MAP(4) EM
MAP(4) JMom+EM

(e) moments (1)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1  1.5  2  2.5  3  3.5  4  4.5  5

moment

Moments 1-5

MAP(4) JMom
CHEP(4,6,4)

CAPP(4,12,6)

(f) moments (2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1  1.5  2  2.5  3  3.5  4  4.5  5

joint moment

Joint Moments 1-5

MAP(4) AC
MAP(4) JMom

MAP(4) EM
MAP(4) JMom+EM

(g) joint moments (1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1  1.5  2  2.5  3  3.5  4  4.5  5

joint moment

Joint Moments 1-5

MAP(4) JMom
CHEP(4,6,4)

CAPP(4,12,6)

(h) joint moments (2)

Figure 8.13.: Fitting results for the trace LBL-TCP-3 and MAPs/PH distributions of
order 4
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Figure 8.14.: Queueing results for different utilization levels % using the trace LBL-
TCP-3 and MAPs/PH distributions of order 3
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Figure 8.15.: Queueing results for different utilization levels % using the trace LBL-
TCP-3 and MAPs/PH distributions of order 4
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Model % = 0.5 % = 0.625 % = 0.83 % = 1
lbl3 1.02379 1.68916 2.96906 4.00852
MAP(3) AC 0.904172 1.66165 3.31171 4.58981
MAP(3) JMom 0.996469 1.72472 3.16331 4.32507
MAP(3) EM 1.03094 1.72014 3.0191 4.11686
MAP(3) JMom+EM 1.03718 1.71215 3.02021 4.12081
CHEP(3,6,7) 1.01296 1.74445 3.16402 4.27034
CAPP(3,7,7) 0.918539 1.58335 3.03115 4.19297
MAP(4) AC 0.873541 1.63978 3.31329 4.59248
MAP(4) JMom 0.921584 1.67595 3.21201 4.43175
MAP(4) EM 1.03573 1.68273 2.93923 4.02889
MAP(4) JMom+EM 1.03718 1.71215 3.02021 4.12081
CHEP(4,6,4) 1.06995 1.69242 2.85101 3.81794
CAPP(4,12,6) 0.941934 1.67115 3.12165 4.22018

Table 8.2.: Mean queue length values for the trace LBL-TCP-3 and MAPs/PH distri-
butions of order 3 and 4

break until the next burst and therefore has high autocorrelations. As one can see
from Figures 8.17 and 8.18 the trace was difficult to fit for all algorithms. The au-
tocorrelations were underestimated by all MAP fitting algorithms except for AC fit-
ting that uses an PH distribution fitted by GFIT. For MAPs of order 4 joint moment
fitting overestimated the autocorrelations. The CHEPs and CAPPs were able to cap-
ture the autocorrelation structure, though for the Hyper-Erlang distribution of order
2 a transformation was necessary to bring the distribution into series canonical form
resulting in a CAPP(2, 4, 5). Additionally, a CHEP(4, 3, 4), a CAPP(2, 6, 3) and a
CAPP(4, 8, 3) were fitted. Regarding the distribution the best results are provided by
the fitting algorithms that maximize the likelihood. Most algorithms underestimated
the joint moments of the trace, only the MAPs resulting from joint moment fitting and
the MAP(4) fitted according to the autocorrelation provided an adequate fitting of the
joint moments.
The difficulties in fitting the trace become also visible from the queueing results shown
in Figures 8.19 and 8.20 and Table 8.3. For the higher utilization levels the CHEP and
the MAPs fitted using an EM algorithm provided an adequate approximation of the
queueing behavior.

Better results for the trace TUDo could be obtained for larger processes that use PH
distributions of order 5 and 10, respectively. The results are shown in Figure 8.21.
It contains the plots of the cumulative distribution function, the autocorrelation co-
efficients and the queue length distribution for the original trace, a CHEP(5, 6, 6),
a CAPP(5, 6, 7), a CHEP(10, 15, 6) and two MAPs of order 5 and 10, respectively.
The PH distribution for the CAPP(5, 6, 7) was fitted using the moment matching ap-
proach from [42]. All other PH distribution are Hyper-Erlang distribution fitted with
GFIT. The MAPs have been fitted with the autocorrelation fitting approach from [100].
As one can see from Figure 8.21(a) the Hyper-Erlang distribution provided a better
approximation of the empirical distribution than the APH fitted according to the mo-
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Figure 8.16.: Results for the trace LBL-TCP-3 and MAPs/PH distributions of order
10 − 20

ments, but in all cases a good approximation of the autocorrelation was possible, even
though the trace exhibits much larger autocorrelations than the previous traces (cf.
Figure 8.21(b)). Regarding the queue length distribution shown in Figure 8.21(c) the
largest CHEP(10, 15, 6) was able to capture the behavior of the trace best.

To summarize, the comparison of the different fitting methods and stochastic pro-
cesses gives a mixed picture. Obviously, using a method that fits a process according
to one quantity, like the joint moments or the autocorrelation, gives good results ac-
cording to this quantity but usually results in a bad fitting according to other quantities
that are not used for fitting. Thus, no approach is superior to all others according to all
quantities. Considering the queueing model the results indicate that for smaller MAPs
up to order 5 or 6 usually the EM algorithms give the best results followed by CHEP
fitting, where the EM approach is only used for fitting the distribution. However,
MAP fitting using an EM algorithm is by far the most time consuming method and
can take up to several hours depending on the length of the trace and the order of the
MAP. Furthermore, it should be mentioned that the fitting quality and the effort of the
EM algorithm depends on the initial MAP and might be poor for badly chosen initial
MAPs. The other MAP fitting approaches are much faster and independent of the trace
length, i.e. joint moment fitting only takes a few seconds and autocorrelation fitting
few minutes. Concerning time consumption CHEP and CAPP fitting is comparable to
autocorrelation fitting for MAPs and usually takes a few minutes only depending on
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Figure 8.17.: Fitting results for the trace TUDo and MAPs/PH distributions of order 2
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Figure 8.18.: Fitting results for the trace TUDo and MAPs/PH distributions of order 4
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Figure 8.19.: Queueing results for different utilization levels % using the trace TUDo
and MAPs/PH distributions of order 2
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Figure 8.20.: Queueing results for different utilization levels % using the trace TUDo
and MAPs/PH distributions of order 4
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Model % = 0.5 % = 0.83 % = 1
TUDo 1.32218 1.81573 1.99915
MAP(2) AC 2.60212 3.84889 3.99674
MAP(2) AC+GFIT 0.944084 1.03785 1.08804
MAP(2) JMom 2.63983 3.94447 4.11604
MAP(2) EM 2.1826 3.93407 4.24511
MAP(2) AC+EM 1.44638 2.09979 2.41668
CAPP(2,4,5) 0.946543 1.07986 1.14774
CAPP(2,6,3) 2.24211 4.64881 4.96712
MAP(4) AC 2.10636 3.18556 3.54694
MAP(4) AC+GFIT 1.73081 1.94851 1.99942
MAP(4) JMom 1.8686 2.84723 3.16111
MAP(4) EM 2.39955 3.45668 3.68806
MAP(4) AC+EM 2.11448 2.73165 2.95057
CHEP(4,3,4) 0.940312 1.5315 1.70222
CAPP(4,8,3) 2.48226 3.44748 3.61095

Table 8.3.: Mean queue length values for the trace TUDo and MAPs/PH distributions
of order 2 and 4
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Figure 8.21.: Results for the trace TUDo and MAPs/PH distributions of order 5 − 10
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the number of autocorrelation coefficients and the number of ARMA base processes
considered.

From the examples it becomes also visible, that the CHEPs and CAPPs offer a larger
flexibility for capturing the autocorrelations than MAP fitting algorithms. Note, that
in contrast to MAP fitting the approach for constructing the base process of a CAPP
is independent of the number of states of the APH distribution. Equation 6.9 only de-
pends on the number of elementary series and once the base process autocorrelation
has been determined the minimization of Equation 4.11 is completely independent of
the APH order, but depends on the order of the base process and the number of auto-
correlation lags to match. Moreover, for fitting MAPs according to the autocorrelation
the given APH distribution has a large influence on the possible entries in matrix D1
and therefore on the autocorrelation structure the MAP can exhibit. For a CAPP the
distribution only determines the lower and upper bound for the autocorrelation that is
possible but due to the flexibility of the ARMA base process it has little influence on
the possible structure of the autocorrelation. Hence, CHEP and CAPP fitting is still
possible for larger PH marginal distributions of orders greater than 10 for which MAP
fitting is problematic (either because of the runtime for EM algorithms or because of
the increased complexity of the optimization for autocorrelation fitting). The examples
demonstrated that especially for these larger CHEPs a very good approximation of the
characteristics of real network traces is possible in terms of the cumulative distribution
function, the autocorrelation structure and the queueing behavior.
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Chapter 9
Software Support

As mentioned in Chapter 1 there is only little support for stochastic processes in com-
mon simulation software. While there exist various fitting tools for distributions only
prototype implementations for fitting the different types of stochastic processes (cf.
Chapter 2) are available. Moreover, there is hardly any support for actually using those
processes in a simulation model. One reason for this surely is that all of the available
fitting tools use their own format for process description, which makes it difficult to
integrate the processes into existing simulation models.

These issues have been partially addressed with the development of ProFiDo [14], a
toolkit that provides a graphical user interface for commandline-based fitting tools and
a common XML-based interchange format for stochastic processes. Yet missing is an
easy way to integrate those fitted processes into simulation models.

The contribution presented in this chapter is twofold. First, ProFiDo is extended to
support the processes presented in Chapters 4 - 6. Second, a module for the open-
source simulation environment OMNeT++ [78] is presented that allows for an easy inte-
gration of stochastic processes into OMNeT++ simulation models.

In Section 9.1 a simple commandline-based tool, called CAPP-Fit, is introduced
that implements the algorithm from Chapter 7 for fitting of extended ARTA, CHEP
and CAPP models. Section 9.2 gives a short overview of the fitting toolkit ProFiDo
and describes the integration of CAPP-Fit. While these two sections deal with soft-
ware support for the fitting of stochastic processes Section 9.3 treats the use of those
processes in simulation models by introducing a module for stochastic processes for
OMNeT++. Finally, in Section 9.4 the complete ProFiDo framework for fitting and sim-
ulating stochastic processes is summarized.

9.1. CAPP-Fit

CAPP-Fit is a simple commandline-based tool that implements the fitting algorithms
outlined in Chapter 7. It expects a marginal distribution FY , a trace T , the number r of
autocorrelation lags to consider for fitting and the base process order (p, q) as input. It
is also possible to define an interval for the base process order, such that base processes
for all combinations of p ∈ [pmin, pmax] and q ∈ [qmin, qmax] are fitted and the best base
process is selected.
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CAPP-Fit can load the marginal distribution from ProFiDo’s XML format (see Sec-
tion 9.2) or import from the tools GFIT or Momfit, which implement the fitting algo-
rithms described in Section 5.3 and Section 6.2, respectively. Depending on the type
of marginal distribution CAPP-Fit automatically decides which type of process to fit.
For uniform, exponential, Weibull, triangular, normal, lognormal, Johnson, gamma,
Erlang and χ2 distributions an (extended) ARTA model is fitted by an implementation
of the Algorithm 7.2. For Hyper-Erlang distributions a CHEP is fitted. For general
acyclic PH distributions and for Hyper-Erlang distributions that cannot achieve the
desired autocorrelation a CAPP is fitted as described in Algorithm 7.3.

The implementation of CAPP-Fit requires several numerical procedures, which are
available from the literature.
For fitting CHEPs and CAPPs the bivariate normal integral has to be computed to
obtain the main process autocorrelation for a given base process autocorrelation (cf.
Equations 5.6 and 6.9) which is done using the algorithm from [60]. For determining
the bounds of the bivariate double integral the inverse of the normal cumulative distri-
bution function is computed using the algorithm from [163]. Fitting (extended) ARTA
models requires several procedures that are mostly related to computing the inverse
cumulative distribution function of the supported distributions. For normal, lognormal
and Johnson distributions this can be done using the algorithm from [163]. For the
related distributions gamma, Erlang and χ2 an algorithm from [20] is available. Addi-
tionally, it is necessary to transform the zt in Equation 4.3 using the normal cumulative
distribution function for which a procedure is available in [77]. To compute the dou-
ble integral in Equation 4.3 a general integration procedure is required, e.g. Romberg
integration [8] can be used.
For fitting the ARMA base process to a set of given autocorrelation coefficients as
described in Section 4.2 the Nelder-Mead algorithm [117] is used.

9.2. ProFiDo

ProFiDo (Processes Fitting Toolkit Dortmund) [12, 14] is a toolkit written in Java to
allow for a consistent use of commandline-based fitting tools for various stochastic
processes and distributions presented in Chapter 2. See [12] for an overview of the
fitting approaches that are currently supported. ProFiDo provides the framework for
graphically modeling workflows that consist of nodes each associated with a fitting tool
and that are connected by arcs to specify model and result propagation. Workflows
can be specified stepwise by placing input nodes (e.g. traces), job nodes (tools for
fitting or result visualization) and output nodes (e.g. the fitted models or plots of their
characteristics) on a canvas and by connecting them to determine the flow of results
and fitted models from one tool to the other. Since most fitting tools use different
input and output formats, an XML-based interchange format has been developed for
ProFiDo to enable a consistent data flow between job nodes and converter scripts are
responsible for transforming the XML format into the tool’s format and vice versa.
Workflows can be exported into a shell script to be executed.

This makes ProFiDo a suitable candidate for integration of the commandline-based
tool CAPP-Fit introduced in Section 9.1. For this integration ProFiDo has to be mod-
ified in two ways. First, ProFiDo’s XML interchange format [16] has to be extended
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Listing 9.1: XML specification of extended ARTA models
1 <?xml version="1.0"?>
2 <profido>
3 <arta>
4 <dist>
5 ...
6 </dist>
7 <arima>
8 <arcount> ... </arcount>
9 <ar> ... </ar>

10 <macount> ... </macount>
11 <ma> ... </ma>
12 <d> 0.0 </d>
13 <variance > ... </variance >
14 <mean> 0.0 </mean>
15 </arima>
16 </arta>
17 </profido>

to be capable to express extended ARTA models, CHEPs and CAPPs. Second, the
actual tool has to be integrated into the framework by providing the necessary XML
configuration [17] that ProFiDo uses to determine the attributes of the tool and the
commandline call.

In the reminder of this section the extensions to the XML interchange format are
introduced first. Afterwards the integration of CAPP-Fit is explained and an example
workflow is given.

9.2.1. XML Interchange Format

The general outline of the XML specification for extended ARTA models can be seen
in Listing 9.1. It contains a description of the distribution within the tags <dist> and
</dist> and a description of the base process within the tags <arima> and </arima>
that contains the AR and MA coefficients and the variance of the innovations. The
mean of the base process and the degree of differencing are 0.0 by definition of the
base process. The specification of the extended ARTA process is similar to the ARTA
description presented in [16] except that MA coefficients are allowed. [16] also con-
tains the XML descriptions of various distributions that can be used.

Listing 9.2 shows the complete XML specification of an example extended ARTA
model with exponential marginal distribution with rate 1.0 and ARMA(6, 3) base pro-
cess with AR coefficients

α = (0.840036, 0.824413,−0.712854, 0.00607279, 0.063807,−0.0324686)

and MA coefficients

β = (−1.78786,−0.626879, 1.48718).

ProFiDo’s XML interchange format already allows for the specification of Hyper-
Erlang distributions and ARMA processes [16]. Both descriptions can be combined
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Listing 9.2: Example XML specification of extended ARTA model
1 <?xml version="1.0"?>
2 <profido>
3 <arta>
4 <dist>
5 <expodist >
6 <mean> 1.0 </mean>
7 </expodist >
8 </dist>
9 <arima>

10 <arcount> 6 </arcount>
11 <ar> 0.840036 0.824413 -0.712854 0.00607279 0.063807

-0.0324686 </ar>
12 <macount> 3 </macount>
13 <ma> -1.78786 -0.626879 1.48718 </ma>
14 <d> 0.0 </d>
15 <variance > 0.303949 </variance >
16 <mean> 0.0 </mean>
17 </arima>
18 </arta>
19 </profido>

easily to define a CHEP in XML format as shown in Listing 9.3.
A CHEP description is started by the tag <chep> and ended by </chep>. It contains

the definition of a Hyper-Erlang distribution consisting of a vector of initial probabil-
ities, a vector for the number of phases and a vector for the rates of each branch. The
values in each vector are separated by blanks. The description of the ARMA base pro-
cess is identical to the description of the base process of extended ARTA models. An
example for the full XML specification of a CHEP(3, 5, 3) is given in Listing 9.4.

The XML specification consists of the definition of a Hyper-Erlang distribution
with 3 states distributed among 2 branches with 1 and 2 states, respectively, and an
ARMA(5, 3) base process.

The description of CAPPs is similar to the description of CHEPs. Its is contained
within the tags <capp> and </capp>. Instead of a Hyper-Erlang distribution an acyclic
PH distribution is used. ProFiDo’s XML specification [16] already accounts for the
description of PH distributions consisting of the number of states, the initial probability
vector π and the transition rate matrix D0. The ARMA base process is defined in
the same way as for CHEPs. The general outline of a CAPP definition is shown in
Listing 9.5.

Listing 9.6 shows the full XML description of a CAPP(5, 5, 7) as example.
The model consists of an acyclic PH distribution (π, D0) with 5 states and

D0 =


−0.327 0.002 0.029 0.011 0.014

0 −0.348 0.030 0.012 0.016
0 0 −0.691 0.153 0.004
0 0 0 −1.084 0.640
0 0 0 0 −1.961


and
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Listing 9.3: XML specification of CHEPs
1 <?xml version="1.0"?>
2 <profido>
3 <chep>
4 <dist>
5 <hypererlangdist >
6 <prob> ... </prob>
7 <phases> ... </phases>
8 <rates> ... </rates>
9 </hypererlangdist >

10 </dist>
11 <arima>
12 <arcount> ... </arcount>
13 <ar> ... </ar>
14 <macount> ... </macount>
15 <ma> ... </ma>
16 <d> 0.0 </d>
17 <variance > ... </variance >
18 <mean> 0.0 </mean>
19 </arima>
20 </chep>
21 </profido>

Listing 9.4: Example XML specification of a CHEP(3, 5, 3)
1 <?xml version="1.0"?>
2 <profido>
3 <chep>
4 <dist>
5 <hypererlangdist >
6 <prob> 0.091 0.909 </prob>
7 <phases> 1 2 </phases>
8 <rates> 0.254050 2.838471 </rates>
9 </hypererlangdist >

10 </dist>
11 <arima>
12 <arcount> 5 </arcount>
13 <ar> 0.891436 0.552937 -0.424392 0.0488508 -0.0780046

</ar>
14 <macount> 3 </macount>
15 <ma> -0.258672 -0.36477 -0.209127 </ma>
16 <d> 0.0 </d>
17 <variance > 0.218322 </variance >
18 <mean> 0.0 </mean>
19 </arima>
20 </chep>
21 </profido>
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Listing 9.5: XML specification of CAPPs
1 <?xml version="1.0"?>
2 <profido>
3 <capp>
4 <ph>
5 <states> ... </states>
6 <pi> ... </pi>
7 <d0> ... </d0>
8 </ph>
9 <arima>

10 <arcount> ... </arcount>
11 <ar> ... </ar>
12 <macount> ... </macount>
13 <ma> ... </ma>
14 <d> 0.0 </d>
15 <variance > ... </variance >
16 <mean> 0.0 </mean>
17 </arima>
18 </capp>
19 </profido>

Listing 9.6: Example XML specification of a CAPP(5, 5, 7)
1 <?xml version="1.0"?>
2 <profido>
3 <capp>
4 <ph>
5 <states> 5 </states>
6 <pi> 0.00976 0.04418 0.27993 0.01426 0.65197 </pi>
7 <d0> -0.327 0.002 0.029 0.011 0.014
8 0 -0.348 0.030 0.012 0.016
9 0 0 -0.691 0.153 0.004

10 0 0 0 -1.084 0.640
11 0 0 0 0 -1.961
12 </d0>
13 </ph>
14 <arima>
15 <arcount> 5 </arcount>
16 <ar> 0.39233 0.464275 0.33436 -0.061696 -0.13593 </ar>
17 <macount> 7 </macount>
18 <ma> 1.37963 -5.17508 -1.56516 0.179254 2.19242 1.49209

1.10682 </ma>
19 <d> 0.0 </d>
20 <variance > 0.0191485 </variance >
21 <mean> 0.0 </mean>
22 </arima>
23 </capp>
24 </profido>
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Listing 9.7: XML configuration for CAPP-Fit
1 <program>
2 <general>
3 <name>CAPP-Fit</name>
4 [...]
5 </general>
6 [...]
7 <parameterlist >
8 <parametergroup visible="true" type="text">
9 <name>Autocorrelations </name>

10 <description >Number of autocorrelation lags to match.
11 </description >
12 <key>-ac=</key>
13 <default >30</default>
14 <parameter type="static">
15 <name>ac</name>
16 <description >Number of autocorrelation lags.
17 </description >
18 <successor ></successor >
19 </parameter >
20 <successor >min. AR order</successor >
21 </parametergroup >
22 [...]
23 </parameterlist >
24 </program>

π = (0.00976, 0.04418, 0.27993, 0.01426, 0.65197)

and an ARMA(5, 7) base process with AR coefficients

α = (0.39233, 0.464275, 0.33436,−0.061696,−0.13593)

and MA coefficients

β = (1.37963,−5.17508,−1.56516, 0.179254, 2.19242, 1.49209, 1.10682).

9.2.2. Integration of CAPP-Fit

The integration of CAPP-Fit as a new fitting tool into ProFiDo is straightforward and
suggests itself. The recommended fitting tools for the marginal distribution, i.e. GFIT
and Momfit, are already supported by ProFiDo. Since CAPP-Fit natively supports
ProFiDo’s XML format no converter scripts are necessary to integrate CAPP-Fit into
the framework. Thus, for incorporating CAPP-Fit only the XML description of the
tool parameters has to be added into ProFiDo’s XML configuration file.

Listing 9.7 shows an excerpt from this XML specification with the description for
the parameter that defines the number of lag-k autocorrelation coefficients to consider.
The specification consists of the name of the parameter, a description that explains
the meaning of the parameter, a key that is used when calling the commandline tool
CAPP-Fit and a default value. Further parameters like the base process order (p, q),
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which are not shown in Listing 9.7, are defined in a similar way. The attribute window
that ProFiDo generates from the XML description to enter the tool specific properties
is shown in Figure 9.1. Figure 9.2 shows an example workflow in ProFiDo that uses

Figure 9.1.: Attribute window of the CAPP-Fit job node in ProFiDo

the new CAPP-Fit job node. The workflow consists of an input node, which loads
a trace file, five job nodes, which fit different stochastic processes, and three output
nodes to save the fitted models. The job nodes have been renamed for the workflow
to clarify which type of process is fitted. The first job node, called MAP_EM fits a MAP
to the trace using an EM algorithm. The two job nodes CHEP-Fit and ARTA-Fit both
realize calls to the newly integrated tool CAPP-Fit. In the first case G-FIT is used to
fit an Hyper-Erlang distribution, which is taken by CAPP-Fit as input to fit a CHEP.
In a similar way an exponential distribution is fitted in the second case and CAPP-Fit
returns an ARTA model with exponential marginal distribution.

9.3. OMNeT++ Arrival Process Module

OMNeT++ [78] is an open source simulation framework that has been developed and ex-
tensively used for the modeling of communication protocols and networks. Since data
that has been observed from real systems in this area is known to exhibit autocorrela-
tions [130], OMNeT++ is a well suited candidate for an extension to support stochastic
processes. Aside from the simulation of lower-level communication networks OMNeT++
has been used in other areas as well, that could benefit from the possibility to model
correlated data. E.g. in [13] OMNeT++ models have been combined with process chains
[10] to model Service-Oriented Architectures.

In the following a short overview of the general OMNeT++ model structure is given.
Afterwards the concept and implementation of the OMNeT++ Arrival Process Module
is presented. A description of an earlier version of the Arrival Process Module for
OMNeT++ can be found in [101].
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Figure 9.2.: Example workflow using the new CAPP-Fit job node

OMNeT++ models consist of so called modules that can be arranged in a hierarchi-
cal way. Modules communicate via gates with message passing. One can distinguish
between simple modules, which are the basic building blocks of a model, and com-
pound modules. Simple modules are written in C++ accompanied by a so called
NED-description that defines the interface of the module consisting of gates and pa-
rameters, which pass configuration data to the simple module. Compound modules
are a grouping of simple modules and other compound modules. Compound modules
have no behavior of their own, i.e. they are fully described by a NED-description of
the submodules and their connections. The general structure of an OMNeT++ model is
shown in Figure 9.3. OMNeT++ provides a graphical editor for arranging modules into

compound module

network
simple modules

Figure 9.3.: OMNeT++ model structure (from [78])

one model and the capability for a visualization of the simulation.
The OMNeT++ Arrival Process Module developed in this work is a simple mod-
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ule that can generate random numbers from Markovian Arrival Processes, (extended)
ARTA processes, ARMA processes and CHEP and CAPP models. The model de-
scription is parsed from a file in the ProFiDo XML interchange format as described
in Section 9.2. In this way, the process description derived by ProFiDo with some
fitting algorithm can be used in an OMNeT++ simulation model without any additional
programming effort.

A simplified class diagram of the Arrival Process Module is shown in Figure 9.4.

ArrivalProcess: cSimpleModule

Process

MAP

ARMA

ARTA CHEP

CAPP

Dist

Uniform Exponential Triangular Normal

Lognormal Johnson

Erlang Gamma

ChiSquare Weibull

Matrix

HyperErlang

2

2

Figure 9.4.: Class hierarchy of the ArrivalProcess OMNeT++ module

The class ArrivalProcess contains the C++ implementation of the module. It in-
herits from cSimpleModule as all simple modules in OMNeT++ do. The corresponding
NED-description is shown in Listing 9.8. The module only has one XML type pa-
rameter that is used to pass the model description, one string parameter that can be
used to specify a function that can be used for a transformation of the time series (cf.
Section 9.3.6) and one display parameter that configures the icon of the module shown
in the editor and the simulation visualization. The only gate of the module is an output
gate. Whenever an arrival according to the stochastic process has occurred a message
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Listing 9.8: NED description of the Arrival Process module
1 simple ArrivalProcess
2 {
3 parameters:
4 xml model;
5 string transform = default("");
6 @display("i=block/source");
7 gates:
8 output out;
9 }

is passed through this gate to another module that should be connected to this gate with
one of its input gates and processes the incoming arrival.

The implementation of the class is actually quite simple, since all the code necessary
for generating random numbers from the processes is contained in the classes Process
and its subclasses shown in Figure 9.4. The class ArrivalProcess provides meth-
ods for loading the process description from an XML file and initializes a Process.
Additionally it has to provide a method handleMessage() for dealing with message
events. Process is an abstract class that all the actual stochastic processes like MAPs
or ARTA processes inherit from. All inheriting classes have to implement a method
called getNextRandomVariate() for generating the next random number from that
process. Hence, handleMessage() from the class ArrivalProcess schedules the next
arrival according to getNextRandomVariate(). When the arrival is due, a message is
sent to the outgoing gate and the next arrival is scheduled according to the result of
getNextRandomVariate() by initiating a self-message that arrives at the generation
time of the next message. In the following a brief summary of the classes inheriting
from Process, which perform the random number generation is given.

9.3.1. Class MAP

The class MAP is used for simulating Markovian Arrival Processes. Of course it can
be used for the simulation of PH distributions as well, if the PH distribution is trans-
formed into a MAP. It uses the class Matrix as an utility class to store the two ma-
trices D0 and D1. Additionally, a variable to store the current state is required. A
MAP is initialized by drawing the initial state from the distribution defined by π that
contains the stationary distribution just after an arrival has occurred. Then the class
simulates the underlying Markov Chain by drawing an exponentially distributed ran-
dom number with the rate −D0(i, i) corresponding to the current state i to determine
the next transition time and an uniformly distributed random number to compute the
next state according to the probability distribution defined by D0(i, j)/(−D0(i, i)) and
D1(i, j)/(−D0(i, i)). This is repeated until a transition from D1 occurs. In this case the
sum of the transition times is returned and the current state is stored as starting point
for the generation of the next random sample. For the simulation it is necessary to
draw random numbers from exponential and uniform distribution, which is done using
the random number generators of OMNeT++.
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9.3.2. Class ARMA

The simulation of ARMA(p, q) processes is realized by the class ARMA. This class
mainly serves as implementation of the base process for ARTA, CHEP and CAPP
models and because of the problems and issues mentioned in Chapter 3 that arise
when simulating ARMA models it is not recommended to use this process type as input
model for a simulation model, although it is possible of course. If using an ARMA(p, q)
process as input model for interarrival times this should be done in combination with
the specification of a function for transformation of the time series (cf. Listing 9.8 and
Section 9.3.6).

The class manages four lists for the p AR coefficients, the q MA coefficients, the
last p observations and the last q innovations. The former two lists are fixed after
initialization while the latter two have to be updated after each generation of an element
of the time series.

For initialization the p previous observations and the q previous innovations have to
be determined. For the innovations this is straightforward, because they are iid random
numbers, and consequently the εt−1, . . . , εt−q can be drawn from a normal distribution
with zero mean and variance σ2

ε . The p previous observations are correlated and have
to be initialized by drawing from a multivariate normal distribution. A procedure for
this task is for example given in [104]. Let

Σ =


γ0 γ1 · · · γp−1
γ1 γ0 · · · γp−2
...

...
. . .

...

γp−1 γp−2 · · · γ0


be the covariance matrix with the autocovariance values (γ0, γ1, . . . , γp−1) computed
from the ARMA(p, q) process and let µ̂ = 0 be the mean value for the multivariate nor-
mal distribution5. We draw p independent random numbers X = (X0, X1, . . . , Xp−1)T

from a standard normal distribution and compute the lower triangular matrix C with
Σ = CCT . Then, we can generate the multivariate normal random numbers that are
used to initialize the Zt−i, i = 1, . . . , p by setting Z = µ̂+ CX. See [37] and Section 4.2
for a method to compute the autocovariance values of an ARMA process and [67] for
a simple method to perform the Cholesky decomposition to obtain matrix C.

For simulation the class draws a normally distributed random number as new inno-
vation and computes the weighted sum according to Equation 2.3 to obtain Zt. Finally,
the oldest observation and the oldest innovation are replaced by the newly computed
observation and the new innovation, respectively, and Zt + µ is returned as next inter-
arrival time.

9.3.3. Class ARTA

The class ARTA provides methods for simulating ARTA and extended ARTA models.
The implementation is the same for both types of processes, since they only differ in
the type of the base process, which is handled by the class ARMA.

5Recall from Section 2.1 that we defined the Zt of an ARMA(p, q) process to have zero mean, i.e. the
Zt = Z̃t − µ are deviations from the mean µ of the real process.

142



CHAPTER 9. SOFTWARE SUPPORT

The ARTA class has two objects, one of type ARMA and one of type Dist that are re-
quired to perform the simulation of the ARTA process. Recall the transformation steps
for an ARTA process from Figure 2.3 from which the implementation for simulating
the model can directly be deduced. The ARMA class (which either is an AR(p) or an
ARMA(p, q) process) is used to generate a normally distributed random number. This
random number is transformed twice to have uniform distribution and using the inverse
cdf to yield the final ARTA random number. The class Dist is an abstract superclass
with the virtual method inverse_cdf(double x) that all the distributions from Fig-
ure 9.4 have to implement to compute the inverse cdf for the last transformation step.
For simulation of ARTA processes only the ARMA base process has to be initialized
as described above, no further initialization step is necessary.

The implementation of the ARTA class requires several numerical methods for
which fast approaches exist in the literature (cf. Section 9.1). For the transformation
from normally to uniformly distributed random numbers in Figure 2.3 the computa-
tion of the normal cdf is necessary, which is done by using the approach from [77].
All other required numerical methods are related to the computation of the inverse cu-
mulative distribution function: The inverse cdf of the normal distribution is computed
using the algorithm from [163]. The same holds for the inverse cdf of the lognormal
and Johnson distributions, which are both derived from the normal distribution. The
algorithm from [20] is used to compute the inverse cdf of gamma, Erlang and χ2 dis-
tributions, which are all related. For the uniform, exponential, Weibull and triangular
distributions closed-form expressions exist for the inverse cdf [104].

9.3.4. Class CHEP

The class CHEP implements the simulation of Correlated Hyper-Erlang Processes. It
contains two objects, the marginal distribution is realized by an object from the class
HyperErlang, which is responsible for sorting the branches according to their mean
values, and the base process by an object from the class ARMA. The base process is
used to generate a normally distributed random number Zt. This random number is
transformed to have uniform distribution, i.e. Ut = Φ(Zt). The correlated Ut are used
to select a branch of the Hyper-Erlang distribution according to the distribution τ that
defines the probabilities of the branches. Finally, a random number drawn from the
Erlang distribution of the selected branch is returned. Random number generation from
an Erlang distribution is provided by OMNeT++’s internal random number generator. The
class CHEP does not require an initialization step, only the ARMA base process has to
be initialized as described for the class ARMA.

9.3.5. Class CAPP

The class CAPP provides the functionality for simulating Correlated Acyclic Phase-type
Processes. It uses two objects of the class Matrix to store the vector π and matrix D0
of the APH marginal distribution. The base process is realized by the class ARMA. As
preparation the class CAPP computes the elementary series of the APH distribution and
sorts them according to their mean values resulting in a list of the rates and the proba-
bility for each elementary series. Simulation is similar as for CHEPs. The base process
is used to generate a normally distributed random number, which is transformed into
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a uniform distribution and used for determining an elementary series. Then the class
CAPP has to draw a random number from the corresponding Hypo-Exponential distribu-
tion. Since Hypo-Exponential distributions are not directly supported by OMNeT++, the
class CAPP draws n exponentially distributed random numbers with rates λ1, λ2, . . . , λn

and returns the sum of these values for a Hypo-Exponential distribution defined by the
rates Λ = (λ1, λ2, . . . , λn). Again, only the ARMA base process has to be initialized
for simulation.

9.3.6. Postprocessing the Time Series

In some cases it might be desirable or even necessary to perform a postprocessing
of the time series that has been generated by a stochastic process. This might for
example be the case if the input process has been fitted to a trace that uses a different
time scale than the rest of the model. For these models one could adjust the complete
process to the desired time scale or transform the generated values of the model in a
postprocessing step. Another reason for a transformation of the generated interarrival
times are processes that might output invalid values. This is the case for ARMA(p, q)
processes or might be the case for ARTA processes with marginal distributions for
which FY (x) > 0 for x < 0. For these types of processes a transformation can be
used to treat or avoid invalid values, e.g. the linear and non-linear transformations
mentioned in Section 2.4 or the approaches used in Chapter 3.

The OMNeT++ ArrivalProcess Module accounts for these requirements by provid-
ing the possibility to enter a postprocessing function using OMNeT++’s NED language
expressions. NED language expressions have a C-like syntax and may make use of
various mathematical functions. A list with possible functions can be found in [126].
E.g. using the postprocessing function fabs($ARRIVAL) will always use the absolute
values of the generated interarrival times. Note, that $ARRIVAL is a placeholder and
the ArrivalProcessModule will replace every instance of $ARRIVAL in the expression
with the current value obtained from simulating the stochastic process when the ex-
pression is evaluated. Non-linear transformations from Section 2.4 could be realized
by the postprocessing function pow(c_1, $ARRIVAL * (1-c_2)/(c_2+c_3)) for some
given constants c_1, c_2 and c_3.

9.3.7. Example Models

In the following it will be shown how the ArrivalProcessmodule can be incorporated
into different OMNeT++ models by two application examples. The results obtained from
these simulation models support the observation that the negligence of autocorrelation
may have serious impact on the simulation results.

Figure 9.5 shows a simple queueing model. The model consists of the OMNeT++
ArrivalProcess module feeding a single server queue with a capacity of 10. We used
different configurations of the model by generating interarrival times according to a
MAP of order 4, according to an ARTA model with exponential marginal distribution
and according to a CHEP with Hyper-Erlang marginal distribution with 6 states.
OMNeT++ models can be parameterized by a textual configuration file, usually called

omnetpp.ini. This file includes parameters of the model that are subject to frequent
changes for different simulation runs, i.e. interarrival time distributions, service times
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Figure 9.5.: Simple OMNeT++ model with ArrivalProcess module

Listing 9.9: Example configuration file
1 [General]
2 network = Example1
3 **.server.serviceTime = exponential(0.4s)
4 **.server.buffer = 10
5

6 [Config MAP]
7 description = "MAP Arrivals"
8 **.arrivalProcess.model = xmldoc("map.xml")
9

10 [Config ARTA]
11 description = "ARTA Arrivals"
12 **.arrivalProcess.model = xmldoc("arta.xml")
13

14 [Config CHEP]
15 description = "CHEP Arrivals"
16 **.arrivalProcess.model = xmldoc("chep.xml")

etc. Moreover, OMNeT++ allows for the specification of alternative configurations for
one model from which the desired configuration can be chosen when simulating the
model. For the ArrivalProcess module the configuration file is used to enter a model
file with the process description and optionally to enter a function for postprocessing
the generated time series. The OMNeT++ configuration file can be used to define alter-
native configurations, one for each of the processes, to be used with the same model.
Listing 9.9 shows the configuration file for the model from Figure 9.5.

It contains four sections, one for the default configuration and three alternative con-
figurations for different stochastic processes. The first one, named General, is the
default and its entries are used for all other three configurations. They determine
the network name, the service time and the queue capacity of the server, which is
the same in all cases. The remaining three configurations are used to initialize the
ArrivalProcessModule with three alternative stochastic processes to generate the ar-
rivals in the model. Each of them consists of a description and a file containing the
stochastic process in ProFiDo’s XML interchange format, which have been generated
by executing the workflow from Figure 9.2. Note, that the stochastic process used
by the ArrivalProcess module can easily be exchanged by specifying another XML
description using the parameter **.arrivalProcess.model. Using the configuration
from Listing 9.9 the model from Figure 9.5 is executed three times to compare the
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simulation results of the different processes.
The model is analyzed with several utilization levels for the server between % = 0.4

and % = 0.8 and the queue length distribution is taken as result measure. The three
mentioned stochastic processes have been obtained by fitting MAPs, ARTA and CHEP
models to the trace LBL-TCP-3 [130] from the Internet Traffic Archive [148]. For
comparison we simulated the same setup with a slightly modified model that reads
the interarrival times of the jobs directly from the trace to obtain reference values for
the queue length according to a trace driven simulation. Finally, in another series of
experiments we used an exponential distribution (i.e. the same distribution that the
ARTA model uses as marginal distribution) fitted to the trace as a traffic generator
with independent interarrival times resulting in a Poisson input process. Figure 9.6

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10

p
ro

b
ab

il
it

y

queue length

Trace
Dist

MAP
ARTA
CHEP

(a) Utilization % = 0.4

 0.01

 0.1

 1

 0  2  4  6  8  10

p
ro

b
ab

il
it

y

queue length

Trace
Dist

MAP
ARTA
CHEP

(b) Utilization % = 0.8

Figure 9.6.: Queue length distribution for the model from Figure 9.5

shows the queue length distribution for the two different utilization values % = 0.4
and % = 0.8. From Figure 9.6(a) it is clearly visible that for % = 0.4 the probabilities
of queue length up to 2 are similar for the trace, the three stochastic processes and
the distribution. For larger values towards the tail of the queue length distribution the
model with uncorrelated inputs significantly underestimates the probabilities. E.g., for
queue length 10 the difference between the values of the trace driven simulation and the
model with the Poisson input process is between 2 and 3 orders of magnitude. Among
the stochastic processes, the MAP and the CHEP provide much better results than the
ARTA process, although it should be noted, that both MAP and CHEP use a larger
PH distribution with several states and the ARTA process only has an exponential
marginal distribution. For a utilization of % = 0.8 the stochastic processes perform
better for almost all values of the queue length distribution as shown in Figure 9.6(b).
Again, MAP and CHEP give better results than the ARTA process.

As a second example we modified the NClients model that is part of the INET
Framework to use the ArrivalProcess module. Figure 9.7 gives an overview of the
network that consists of four client hosts connected to a server via different routers.
Figure 9.8 shows the inner view of one of those hosts. The host consists of a mod-
ule for the TCP protocol implementation, a module for the network layer and sev-
eral interfaces, which are taken from the implementation of the StandardHost of
the INET framework. TCP packets are generated according to the events created
by the ArrivalProcess module. Since the ArrivalProcess module only generates
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Figure 9.7.: Example model with simple network

Figure 9.8.: Host from Figure 9.7

correlated events, but is not tailored to a specific protocol implementation, this mod-
ule is connected to the module tcpGen, which serves as an interface between the
ArrivalProcess module and the modules from the INET framework. tcpGen gen-
erates a TCP connection and sends packets to the server whenever it is notified by the
ArrivalProcess module. The server replies with a larger chunk of data to the request
of tcpGen, i.e. the modules model typical web browsing behavior with a small request
to the server and a larger reply by the server. The four ArrivalProcess modules are
initialized with CHEPs, MAPs and ARTA models with different exponential marginal
distributions that all have been fitted to different parts of the trace BC-pAug89 [130].
For comparison we run the same setup with a slightly altered model where uncorre-
lated TCP packets are generated according to the exponential distributions that have
also been used for the ARTA models. To obtain reference values a trace driven sim-
ulation with the original traces was run again. Figure 9.9(a) shows the queue length
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Figure 9.9.: Queue length distributions for the model from Figure 9.7

distribution of the server’s network interface. Again, it is visible that correlated events
increase the probability of a larger queue length and that the stochastic processes pro-
vide a better approximation of the tail of the queue length distribution than uncorre-
lated arrivals.

For the first router the load is distributed between several different interfaces con-
nected to the different clients and thus, the effect of the correlated packets is not as
significant as for the server. Nevertheless, one can see from Figure 9.9(b) that the
maximal queue length increases also for the interfaces of the router.

The two example models demonstrate how stochastic processes can easily be inte-
grated into simulation models using the ArrivalProcess module. The second exam-
ple from Figure 9.7 shows that the module can be incorporated into existing network
models with only slight modifications of the model and thus, it can act jointly with the
existing frameworks for network modeling.

Moreover, the results from the example models clearly demonstrate the importance
of incorporating autocorrelation into input models. In particular, the results of the
ARTA processes with exponential marginal distribution compared to the same inde-
pendent exponential distribution show that adding a few lags of autocorrelation might
help to improve the quality of simulation models significantly.

9.4. A Framework for Fitting and Analyzing Stochastic
Processes

In the previous sections several additions to the existing toolkit ProFiDo [12, 14] have
been presented that allow for an easier integration of stochastic processes into simu-
lation models. Figure 9.10 shows the complete framework including the newly added
software. ProFiDo takes a trace as input and can fit one or several stochastic processes
or distributions to the trace. Supported are PH distributions, MAPs, ARMA processes,
ARTA processes and the newly added CHEPs and CAPPs. ProFiDo includes tools for
the visualization of statistical properties like density or distribution functions, lag-k
autocorrelation coefficients or (joint) moments. Moreover, ProFiDo supports the two
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Trace

ProFiDo

PH Fitting

MAP Fitting

ARMA Fitting

ARTA Fitting

CHEP Fitting CAPP Fitting

Result Visualization Statistical Tests

Analysis

Simulation (OMNeT++)

Numerical Solution Techniques (NSOLVE)

Figure 9.10.: ProFiDo framework for fitting and analyzing stochastic processes

sample Kolmogorov-Smirnov and Pearson’s Chi-Squared tests to examine, if two sam-
ples (e.g. a trace and another trace generated by a distribution fitted to the first trace)
originated from the same distribution. Once the processes with the desired properties
have been fitted, they can be used in simulation models by importing them with the
OMNeT++ module for Arrival Processes presented above. Additionally, MAPs can be
exported to be used with the tool NSOLVE [39, 122] that contains numerical solution
techniques for large Markov chains. Thus, ProFiDo provides a complete framework
for fitting stochastic processes, for assessing the quality of the fitted models and for
easily integrating them into simulation models.
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Chapter 10
Conclusions

In this work several existing approaches to model correlated traffic data have been as-
sessed for their suitability as simulation input models. To overcome some of the iden-
tified weaknesses and disadvantages of these approaches, the ARTA approach, which
uses an autoregressive base process and relies on the inversion of the cumulative dis-
tribution function, has been extended in several ways. To be able to capture a larger
number of empirical autocorrelation coefficients ARTA processes were enabled to use
an ARMA base process instead of an AR process. For arbitrary acyclic PH distribution
and the subclass of Hyper-Erlang distributions, for which the inverse cumulative distri-
bution function cannot be computed efficiently in general, a novel approach to combine
an ARMA base process with PH distributions has been developed, which uses the base
process to choose an elementary series of the APH distribution. To increase the possi-
ble range of autocorrelation that these novel processes denoted as CHEPs and CAPPs
can capture, several transformations of the APH distribution have been proposed. The
theoretical work resulted in a fitting tool for CHEPs and CAPPs and a module for the
simulation framework OMNeT++ to easily include stochastic processes into simulation
models. Both tools have been integrated into the toolkit ProFiDo, which provides a
complete framework for fitting, analyzing and simulating stochastic processes. In an
extensive empirical study the suitability of CHEPs and CAPPs for capturing the behav-
ior of synthetically generated and real traces has been assessed and the two novel pro-
cesses have been compared with other existing approaches. It was shown that CHEPs
and CAPPs are able to adequately capture both distribution and autocorrelation of a
trace. The ability of capturing the behavior of the traces was confirmed by results from
several queueing models.

The work presented in this thesis can be extended in several directions.
The first two ideas aim at improving or modifying the proposed fitting algorithms

for CHEPs and CAPPs.
Recall, from Chapter 7 that the order of the ARMA base process was not automati-

cally determined, but instead the best base process from a given set of base processes
with different orders was selected. A heuristic that automatically determines the best
base process order would avoid fitting base processes with different orders that are
disregarded later anyway.

For fitting the base process the empirical autocorrelations of the trace have been
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used. Since the equations for computing arbitrary joint moments for CHEPs and
CAPPs have been given in this work as well, it would be possible to fit a CHEP or
CAPP according to joint moments instead of autocorrelation coefficients. On the other
hand, the results obtained in Chapter 8 suggest, that this would result in processes that
can capture the joint moments almost exactly but fall short of capturing other charac-
teristics not used for fitting.

Additionally, the proposed approaches can be generalized in several ways. In [24]
the ARTA approach was generalized to model multivariate random processes with a
vector autoregressive base process, called VARTA. The base process is then defined as

Z t = α1Z t−1 + α2Z t−2 + . . . + αpZ t−p + εt

where in the k-variate case each Z t is a random vector with k components, i.e. Z t =

(Z1,t,Z2,t, . . . ,Zk,t) and the i-th variate of the VARTA time series with marginal distribu-
tion FYi is generated by Yi,t = F−1

Yi
(Φ(Zi,t). The same approach can of course be applied

for CHEPs and CAPPs resulting in correlated multivariate Phase-type processes.
It is known that the autocorrelation is in some cases not sufficient to describe the

dependencies such that additional measures have to be considered. In [21] the VARTA
approach is extended to account for these cases and copula-based multivariate input
models are proposed. Similar extensions should be possible for CAPP processes as
well.

Recall, that for computing the autocorrelation of a CHEP or CAPP only the mean
values of the elementary series have to be known. Hence the ARMA base process
could be used to generate correlated random numbers from a mixture of arbitrary dis-
tributions instead of Erlang branches or Hypo-Exponentially distributed elementary
series, as long as all mean values from the distributions are known. Of course, fitting
these mixture of (potentially different) distributions to a trace is much more difficult
than fitting a single distribution only and split it into series like it was done in this work
for Hyper-Erlang distributions and acyclic Phase-type distributions.
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Notations

A.1. List of Mathematical Symbols

B backward shift operator (cf. Section 2.1)
Bi batch size for stochastic processes with batch arrivals
bi, b̄i lower and upper bounds for probability of the i-th elementary series

of an APH distribution (cf. Chapters 5 and 6)
CX ,C2

X (squared) coefficient of variation (cf. Section 1.3)
Ci j covariance (cf. Section 1.3)
Corr[Xi, X j] correlation between the random variables Xi and X j (cf. Section 1.3)
Cov[Xi, X j] covariance between the random variables Xi and X j (cf. Section 1.3)
D0 transition rate matrix of a PH distribution or a MAP (cf. Section 2.3)
E[X] expectation of the random variable X (cf. Section 1.3)
f (x) probability density function
F(x) cumulative distribution function
FY marginal distribution of a stochastic process Yt

I identity matrix
J set of joint moments
L(·) likelihood function
l trace length
M = −D−1

0 moment matrix of a MAP or PH distribution (cf. Section 2.3)
m number of paths (elementary series) of an acyclic Phase-type distribution,

for Hyper-Erlang and Hyper-Exponential distributions this is equivalent
to the number of branches

n order of a Phase-type distribution or a Markovian Arrival Process
N(µ, σ2) normal distribution
Nr(µ,Σ) multivariate normal distribution
p(x) probability mass function
P transition probability matrix of a DTMC (cf. Section 1.3)
p AR order
q MA order
Q infinitesimal generator matrix of a CTMC (cf. Section 1.3)
S vector with phases for the Erlang branches of a Hyper-Erlang distribution
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S i number of phases of the i-th elementary series or
number of phases of the i-th Erlang branch

T trace (cf. Section 1.3)
t killing rate vector of a Phase-type distribution (cf. Section 2.3)
ti trace element
U random variable with uniform distribution
U(a, b) uniform distribution on [a, b]
Ut sequence of random variables with uniform distribution on (0, 1)
Var[X] variance of random variable X (cf. Section 1.3)
X random variable
X(t) continuous-time stochastic process
Xt discrete-time stochastic process, sequence of random variables
Y random variable
Yt ARTA Process, TES Process, CHEP, CAPP
Zt ARMA process

αi AR coefficient (cf. Section 2.1)
βi MA coefficient (cf. Section 2.1)
εt innovation of ARMA process (cf. Section 2.1)
γ(k), γk autocovariance at lag k (cf. Section 1.3)
λ, λi transition rates of a Phase-type distribution
λ vector with transition rates for the branches of a Hyper-Erlang distribution
Λi vector with transition rates for the i-th elementary series
µ mean
µi i-th moment
µ̂i estimated i-th moment from a trace
νi j joint moment
ν̂i j estimated joint moment from a trace
ω(·) relation between base process and main process autocorrelation

for CHEPs/CAPPs and ARTA processes
Φ(·) standard normal cumulative distribution
π initial probabilities of a Phase-type distribution and

steady-state vector of a DTMC
π′ steady-state vector of a CTMC
π(i) = πi initial probability of state i of a Phase-type distribution
ρi j correlation between the random variables Xi and X j (cf. Section 1.3)
ρk autocorrelation at lag k (cf. Section 1.3)
ρ̂k estimated autocorrelation of a trace

which is the desired autocorrelation of the stochastic process
that is fitted to the trace

σ2 variance
σ̂2 estimated variance
σ2
ε variance of white noise of an ARMA(p, q) process (cf. Section 2.1)

Σ covariance matrix of multivariate normal distribution
τ initial probabilities of the branches of a Hyper-Erlang distribution
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τi probability of path i from an initial to the absorbing state of a PH
distribution,
for Hyper-Erlang and Hyper-Exponential distributions this is equivalent
to the initial probability of branch i

ϕρh standard bivariate normal density function with correlation ρh
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Appendix B
Probability Distributions

In the following a brief overview of some common probability distributions used in
stochastic modeling is given. The main part of this work deals with Phase-type distri-
butions and related processes, which have been extensively presented in Section 2.3.
Throughout this thesis several other distributions not related to Phase-type have been
mentioned, either as marginal distribution for stochastic processes or for proving char-
acteristics of stochastic processes. For a better understanding of that part of this work
some properties of the distributions used so far will be summarized for reference. More
elaborate overviews can for example be found in [89] or [104].

B.1. Uniform Distribution

The uniform distribution U(a, b) is used for variables that can take on values in the
range [a, b]. The distribution is defined by the density function

f (x) =

 1
b−a if a ≤ x ≤ b
0 otherwise

and the distribution function

F(x) =


0 if x < a
x−a
b−a if a ≤ x ≤ b
1 if b < x.

The mean is given by E[X] = a+b
2 and the variance by Var[X] =

(b−a)2

12 . The U(0, 1)
distribution is of special interest in random number generation, since it is the basis for
generating random numbers from other distributions, e.g. by inverting the cumulative
distribution function (inversion method) [59].
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B.2. Normal Distribution

The normal distribution (sometimes called Gaussian distribution) with parameters µ
and σ has probability density function

f (x) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )2

,−∞ < x < ∞. (B.1)

The parameters µ and σ are the mean and standard deviation of a random variable X
with normal distribution and we write X ∼ N(µ, σ2).

For the standard normal distribution N(0, 1) Equation B.1 becomes

f (x) =
1
√

2π
e−

x2
2 ,−∞ < x < ∞.

The cumulative distribution function of the normal distribution has no closed form in
general and the probabilities are usually obtained from precomputed tables, containing
the values of a standard normal distribution, i.e. for Z ∼ N(0, 1) it contains the values

FZ(z) =
1
√

2π

∫ z

−∞

e−t2/2dt.

The values of the distribution function for X ∼ N(µ, σ2) can then be obtained from

FX(x) = FZ

( x − µ
σ

)
.

The normal distribution has the reproductive property, stating that the sum of n nor-
mally distributed independent random variables has a normal distribution [155], i.e.
let X1, X2, . . . , Xn be independent normally distributed random variables with mean
µ1, µ2, . . . , µn and standard deviation σ2

1, σ
2
2, . . . , σ

2
n, respectively, and c1, c2, . . . , cn

real constants. Then the random variable X =
∑n

i=1 ciXi has a normal distribution
with mean µ =

∑n
i=1 ciµi and standard deviation σ2 =

∑n
i=1 c2

1σ
2
i .

B.3. Lognormal Distribution

The lognormal distribution with parameters µ and σ is related to the normal distribu-
tion, i.e. X ∼ LN(µ, σ2)⇔ lnX ∼ N(µ, σ2). Its density is given by

f (x) =

 1
x
√

2πσ2
e
−(lnx−µ)2

2σ2 , x > 0

0, otherwise.

The lognormal distribution has mean and variance

E[X] = eµ+σ2/2 and Var[X] = e2µ+σ2
(eσ

2
− 1).
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B.4. Johnson Family of Distributions

The Johnson Translation System [56, 88] describes a family of distributions derived
from the normal distribution. A random variable X with Johnson distribution is defined
by the cumulative distribution function

F(x) = Φ

(
γ + δ f

( x − ξ
λ

))
with shape parameters γ and δ, location parameter ξ and scale parameter λ. Φ(·) is
the standard normal distribution function and thus, any Johnson random variable is a
transformation of a standard normal random variable. The function f can be one of
the following transformations:

f (y) =


log(y) lognormal system of distributions S L

log
(
y +

√
y2 + 1

)
unbounded system of distributions S U

log
(
y

1−y

)
bounded system of distributions S B

y normal system of distributions S N .

Distributions from the Johnson Translation System can match any finite first four mo-
ments, i.e. mean, variance, coefficient of skewness and coefficient of kurtosis. Further-
more, the distributions of a family are completely determined by the four parameters
γ, δ, ξ, λ. A comparison of fitting methods for the Johnson Translation System can be
found in [144]. A robust method for fitting was presented in [145].

B.5. Triangular Distribution

The triangular distribution is often applied as a rough model when no data is available
to select another distribution. It has three parameters, the lower bound a, the upper
bound b and the mode c with a < c < b and can be defined in terms of the probability
density function

f (x) =


2(x−a)

(b−a)(c−a) , a ≤ x ≤ c
2(b−x)

(b−a)(b−c) , c < x ≤ b

0, otherwise

and the cumulative distribution function

F(x) =


0, x < a

(x−a)2

(b−a)(c−a) , a ≤ x ≤ c

1 − b−x)2

(b−a)(b−c) , c < x ≤ b

1, b < x.

Its mean and variance are given by

E[X] =
a + b + c

3
and Var[X] =

a2 + b2 + c2 − ab − ac − bc
18

,

respectively.
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B.6. Weibull Distribution

A Weibull distribution with parameters6 λ and α has density function

f (x) = λαxα−1e−λxα

and distribution function
F(x) = 1 − e−λxα

with x ≥ 0, λ > 0, α > 0. The mean is given by

E[X] =

∫ ∞

0
λxαxα−1e−λxαdx.

B.7. Pareto Distribution

The Pareto distribution has density function

f (x) = αkαx−α−1, x ≥ k, α, k > 0

and distribution function

F(x) =

1 −
(

k
x

)α
if x ≥ k

0 if x < k.

The Pareto distribution has mean

E[X] =

∫ ∞

k
αkαx−αdx =

 kα
α−1 if α > 1
∞ if α ≤ 2.

The Pareto and the Weibull distributions are heavy-tailed distributions, i.e. their com-
plementary cumulative distribution function Fc defined as Fc(c) = 1−F(x) = P(X > x)
decays more slowly than exponentially, or more formally eγxFc(x)→ ∞ as x→ ∞ for
all γ > 0.

B.8. Gamma Distribution

The gamma distribution with parameters α and β is a generalization of the Erlang
distribution. The scale parameter β corresponds to the rate λ of an Erlang distribution
and the shape parameter α corresponds to the number of phases n, though non-integer
values are allowed for α. The density function is defined as

f (x) =

β−αxα−1e−x/β

Γ(α) , x > 0

0, otherwise

where Γ(α) =
∫ ∞

0 tα−1e−tdt is the gamma function. There is no closed form for the
cumulative distribution function, except when the gamma distribution is Erlang. The
mean is given by αβ and the variance by αβ2.

6Sometimes a third parameter, the location parameter is added, resulting in the distribution function
F(x) = 1 − e−λ(x−θ)α , x ≥ θ.
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B.9. χ2 Distribution

Like Erlang the χ2 distribution with k degrees of freedom is another special case of the
gamma distribution, more precisely the χ2 distribution with parameter k is equivalent
to the gamma distribution with parameters α = k/2 and β = 2.

B.10. Multivariate Normal Distribution

The multivariate normal distribution Nr(µ,Σ) is a generalization of the normal dis-
tribution for r-dimensional random variables (X1, . . . , Xr). It is defined by the vector
µ that contains the mean values of the r random variables and the covariance ma-
trix Σ that contains at position (i, j) the covariance between Xi and X j, i.e. Σ(i, j) =

Cov(Xi, X j). Its probability density function is given by

f (x) =
1

(2π)r/2|Σ|1/2
e(−1/2(x−µ)TΣ−1(x−µ))

where |Σ| is the determinant of Σ and (x − µ)T is the transposed of x − µ. For the
cumulative distribution function no closed-form expression exists and the values have
to be approximated numerically.

In this work the two-dimensional case (the standard bivariate normal distribution)
with µ1 = µ2 = 0, σ1 = σ2 = 1 and correlation ρ received some special attention.
For the standard bivariate normal distribution the probability density function can be
simplified to

ϕρ(x1, x2) =
1

2π
√

1 − ρ2
e
− 1

2(1−ρ2)
(x2

1−2ρx1 x2+x2
2)
. (B.2)

For an extensive review of the properties of multivariate normal distributions the inter-
ested reader is referred to [90] and [153].
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Appendix C
Proofs for APH Transformations

This appendix contains additions to some of the proofs and ideas that have only been
briefly sketched in Section 6.4.

C.1. Addendum to the Proof of Lemma 6.1

For the proof of Lemma 6.1 it has to be shown that for an elementary series of an APH
distribution λ jm ≥ λ jm−1 ≥ · · · ≥ λ j1 and the two new series

λ jm ≥ · · · ≥ λ jm−k+1 ≥ λx ≥ λ jm−k ≥ · · · ≥ λ j1

with probability τ j(1 − λ jm−k/λx) and

λ jm ≥ · · · ≥ λ jm−k+1 ≥ λx ≥ λ jm−k−1 ≥ · · · ≥ λ j1

with probability τ jλ jm−k/λx and λx ≥ (>)λ jm−k that have been obtained by a transfor-
mation step the following condition holds:(

1
λ jm

+ · · ·
1

λ jm−k+1

+
1
λx

+
1

λ jm−k

+ · · · +
1
λ j1

)2

τ j (C.1)

−

( 1
λ jm

+ · · ·
1

λ jm−k+1

+
1
λx

+
1

λ jm−k

+ · · · +
1
λ j1

)2

τ j
λ jm−k

λx

 (C.2)

+

( 1
λ jm

+ · · ·
1

λ jm−k+1

+
1
λx

+
1

λ jm−k−1

+ · · · +
1
λ j1

)2

τ j
λ jm−k

λx

 (C.3)

≥ (>)

( 1
λ jm

+ · · ·
1

λ jm−k+1

+
1

λ jm−k

+ · · · +
1
λ j1

)2

τ j

 . (C.4)

Proof. Define

fn(m,m − 1, . . . , 1) =
∑

lm+lm−1+···+l1=n

n!
lm!lm−1! . . . l1!

 1

λlm
m

1

λlm−1
m−1

· · ·
1

λl1
1

 .
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Of particular interest in the following are

f2(m,m − 1, . . . , 1) =
∑

lm+lm−1+···+l1=2

2!
lm!lm−1! . . . l1!

 1

λlm
m

1

λlm−1
m−1

· · ·
1

λl1
1


and

f1(m,m − 1, . . . , 1) =
∑

lm+lm−1+···+l1=1

1!
lm!lm−1! . . . l1!

 1

λlm
m

1

λlm−1
m−1

· · ·
1

λl1
1


=

∑
lm+lm−1+···+l1=1

 1

λlm
m

1

λlm−1
m−1

· · ·
1

λl1
1


=

 1

λlm
m

+
1

λlm−1
m−1

+ · · · +
1

λl1
1

 .
Note, that f2(m,m − 1, . . . , 1) can be split into three sums according to one of the li,
i.e. one sum for li = 0, one for li = 1 and one for li = 2:

f2(m,m − 1, . . . , 1) =
∑

lm+lm−1+···+li+1+li+li−1+···+l1=2

2!
lm!lm−1! . . . li+1!li!li−1! . . . l1! 1

λlm
m

1

λlm−1
m−1

· · ·
1

λli+1
i+1

1

λli
i

1

λli−1
i−1

· · ·
1

λl1
1


=

∑
lm+lm−1+···+li+1+li−1+···+l1=2

(
2!

lm!lm−1! . . . li+1!li−1! . . . l1! 1

λlm
m

1

λlm−1
m−1

· · ·
1

λli+1
i+1

1

λli−1
i−1

· · ·
1

λl1
1


+

2
λi

 ∑
lm+lm−1+···+li+1+li−1+···+l1=1

1!
lm!lm−1! . . . li+1!li−1! . . . l1! 1

λlm
m

1

λlm−1
m−1

· · ·
1

λli+1
i+1

1

λli−1
i−1

· · ·
1

λl1
1


+

 1
λ2

i


= f2(m,m − 1, . . . , i + 1, i − 1, . . . , 1)

+
2
λi

f1(m,m − 1, . . . , i + 1, i − 1, . . . , 1) +
1
λ2

i

.

Obviously, f1(m, . . . , i + 1, i, i + 1, . . . , 1) = 1/λi + f1(m, . . . , i + 1, i + 1, . . . , 1) holds.
By application of the multinomial theorem we may write(

1
λm

+
1

λm−1
+ · · · +

1
λ1

)2

=
∑

lm+lm−1+···+l1=2

2!
lm!lm−1! . . . l1!

 1

λlm
m

1

λlm−1
m−1

· · ·
1

λl1
1


= f2(m,m − 1, . . . , 1).

Hence, we can express the terms C.1, C.2, C.3 and C.4 using the function f2(·) and
split the terms applying the above rules for f2(·) and f1(·).
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For C.1 we obtain(
1
λ jm

+ · · ·
1

λ jm−k+1

+
1
λx

+
1

λ jm−k

+ · · · +
1
λ j1

)2

τ j

= τ j f2( jm, . . . , jm−k+1, x, jm−k, . . . , j1)

= τ j f2( jm, . . . , jm−k+1, jm−k, . . . , j1)

+
2τ j

λx
f1( jm, . . . , jm−k+1, jm−k, . . . , j1) +

τ j

λ2
x

= τ j f2( jm, . . . , jm−k+1, jm−k, . . . , j1)

+
2τ j

λx
f1( jm, . . . , jm−k+1, jm−k−1, . . . , j1) +

2τ j

λxλ jm−k

+
τ j

λ2
x
.

C.2 can be split into

−

( 1
λ jm

+ · · ·
1

λ jm−k+1

+
1
λx

+
1

λ jm−k

+ · · · +
1
λ j1

)2

τ j
λ jm−k

λx


= −

τ jλ jm−k

λx
f2( jm, . . . , jm−k+1, x, jm−k, . . . , j1)

= −
τ jλ jm−k

λx
f2( jm, . . . , jm−k+1, jm−k, . . . , j1)

−
2τ jλ jm−k

λ2
x

f1( jm, . . . , jm−k+1, jm−k, . . . , j1) −
τ jλ jm−k

λ3
x

= −
τ jλ jm−k

λx
f2( jm, . . . , jm−k+1, jm−k−1, . . . , j1)

−
2τ j

λx
f1( jm, . . . , jm−k+1, jm−k−1, . . . , j1) −

τ j

λxλ jm−k

−
2τ j

λ2
x
−

2τ jλ jm−k

λ2
x

f1( jm, . . . , jm−k+1, jm−k−1, . . . , j1)

−
τ jλ jm−k

λ3
x

.

Finally, for C.3 we get( 1
λ jm

+ · · ·
1

λ jm−k+1

+
1
λx

+
1

λ jm−k−1

+ · · · +
1
λ j1

)2 τ jλ jm−k

λx


=

τ jλ jm−k

λx
f2( jm, . . . , jm−k+1, x, jm−k−1, . . . , j1)

=
τ jλ jm−k

λx
f2( jm, . . . , jm−k+1, jm−k−1, . . . , j1)

+
2τ jλ jm−k

λ2
x

f1( jm, . . . , jm−k+1, jm−k−1, . . . , j1) +
τ jλ jm−k

λ3
x

.

After eliminating all identical terms that appear with positive and negative sign in the
expressions for C.1, C.2 and C.3 we obtain

τ j f2( jm, . . . , jm−k+1, jm−k, . . . , j1) +
2τ j

λxλ jm−k

−
τ j

λxλ jm−k

+
τ j

λ2
x
−

2τ j

λ2
x
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= τ j f2( jm, . . . , jm−k+1, jm−k, . . . , j1) +
τ j

λxλ jm−k

−
τ j

λ2
x

= τ j f2( jm, . . . , jm−k+1, jm−k, . . . , j1) +
τ j

λx

(
1

λ jm−k

−
1
λx

)
≥ (>) τ j f2( jm, . . . , jm−k+1, jm−k, . . . , j1)

for λx ≥ (>)λ jm−k . Observe, that τ j f2( jm, . . . , jm−k+1, jm−k, . . . , j1) is equal to C.4,
which proves the lemma. �

C.2. Effect of the APH Transformations on the Negative
Autocorrelation

In Section 6.4 two transformations for APH distributions and the proofs that these
transformations increase the maximal positive autocorrelation that can be achieved
with a given distribution have been presented. For positive autocorrelations these
proofs are straightforward because according to Equation 6.15 for a base process au-
tocorrelation of ρ = 1 only combinations of a series with itself contribute to the auto-
correlation of the CHEP or CAPP. For a base process autocorrelation of ρ = −1 the
situation is more difficult, because several cases have to be distinguished for the com-
putation of the CHEP/CAPP autocorrelation as one can see from Equation 6.19. In the
following the proof for negative autocorrelations is given for APH distributions where
the probabilities of the elementary series have a specific structure. Afterwards some
considerations for the general case are presented.

First, note that we may split an elementary series into two or more identical series
by adjusting the probabilities of the series.

Lemma C.1. Let i be an elementary series with mean µi and interval [bi, b̄i]. Then, we
can split the series into n series i1, . . . , in each with mean µi and the disjoint intervals
[bi1 , b̄i1], . . . , [bin , b̄in], bi = bi1 < b̄i1 = bi2 < b̄i2 . . . bin < b̄in = b̄i without changing the
possible autocorrelation of a CAPP as defined by Equation 6.9.

Proof. A series i may contribute to the double sum in Equation 6.9 in two ways, i.e.
with the term for the series (i, i) and with the terms for combinations of (i, j). Assume,
that i is split into two series i1 and i2. Then,

µ2
i

∫ Φ−1(b̄i)

Φ−1(bi)

∫ Φ−1(b̄i)

Φ−1(bi)
ϕρh(zt, zt+h)dztdzt+h

= µ2
i P(Φ−1(bi) < Zt < Φ−1(b̄i),Φ−1(bi) < Zt+h < Φ−1(b̄i))

= µ2
i

(
P(Φ−1(bi1) < Zt < Φ−1(b̄i1),Φ−1(bi1) < Zt+h < Φ−1(b̄i1))

+P(Φ−1(bi1) < Zt < Φ−1(b̄i1),Φ−1(bi2) < Zt+h < Φ−1(b̄i2))

+P(Φ−1(bi2) < Zt < Φ−1(b̄i2),Φ−1(bi1) < Zt+h < Φ−1(b̄i1))

+P(Φ−1(bi2) < Zt < Φ−1(b̄i2),Φ−1(bi2) < Zt+h < Φ−1(b̄i2))
)

= µ2
i

∫ Φ−1(b̄i1 )

Φ−1(bi1
)

∫ Φ−1(b̄i1 )

Φ−1(bi1
)
ϕρh(zt, zt+h)dztdzt+h
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+µ2
i

∫ Φ−1(b̄i1 )

Φ−1(bi1
)

∫ Φ−1(b̄i2 )

Φ−1(bi2
)
ϕρh(zt, zt+h)dztdzt+h

+µ2
i

∫ Φ−1(b̄i2 )

Φ−1(bi2
)

∫ Φ−1(b̄i1 )

Φ−1(bi1
)
ϕρh(zt, zt+h)dztdzt+h

+µ2
i

∫ Φ−1(b̄i2 )

Φ−1(bi2
)

∫ Φ−1(b̄i2 )

Φ−1(bi2
)
ϕρh(zt, zt+h)dztdzt+h

and

µiµ j

∫ Φ−1(b̄i)

Φ−1(bi)

∫ Φ−1(b̄ j)

Φ−1(b j)
ϕρh(zt, zt+h)dztdzt+h

= µiµ jP(Φ−1(bi) < Zt < Φ−1(b̄i),Φ−1(b j) < Zt+h < Φ−1(b̄ j))

= µiµ j
(
P(Φ−1(bi1) < Zt < Φ−1(b̄i1),Φ−1(b j) < Zt+h < Φ−1(b̄ j))

+P(Φ−1(bi2) < Zt < Φ−1(b̄i2),Φ−1(b j) < Zt+h < Φ−1(b̄ j))
)

= µiµ j

∫ Φ−1(b̄i1 )

Φ−1(bi1
)

∫ Φ−1(b̄ j)

Φ−1(b j)
ϕρh(zt, zt+h)dztdzt+h

+µiµ j

∫ Φ−1(b̄i2 )

Φ−1(bi2
)

∫ Φ−1(b̄ j)

Φ−1(b j)
ϕρh(zt, zt+h)dztdzt+h.

Thus, by repeated application a branch may be split into an arbitrary number of
branches without modifying the correlation. �

Now, assume that we have an APH distribution APH(n) in series canonical form
with an even number of elementary series 1, . . . ,m. Let µ1, . . . , µm be the mean values
and τ1, . . . , τm be the probabilities of the elementary series, respectively. Furthermore,
assume that τi = τm−i+1, i = 1, . . . ,m/2, i.e. the elementary series with the smallest
value and the series with the largest value have the same probability, the series with
the second smallest value and the series with the second largest value have the same
probability and so on. This implies for the probabilities, that

m/2∑
i=1

τi =

m∑
j=m/2+1

τ j = 0.5

and for the integration bounds, that

0 = b1 < b̄1 = b2 < b̄2 · · · bm/2 < b̄m/2 = 0.5 = bm/2+1 < b̄m/2+1 · · · bm < b̄m = 1.
(C.5)

Obviously, from Equation C.5 b1 + b̄m = 1 holds. Since τ1 = τm, we have that
b1 + τ1 + b̄m − τm = b̄1 + bm = 1. Then, b2 + b̄m−1 = 1, because b2 = b̄1 and b̄m−1 = bm,
and b̄2 + bm−1 = 1, because τ2 = τm−1. In general, we have that bi + b̄m−i+1 = 1 and
b̄i+bm−i+1 = 1 for i = 1, . . . ,m/2. This implies, that bi+bm−i+1 < 1 and b̄i+b̄m−i+1 > 1.
Observe, that bi + b̄m−i+1 = 1 and b̄i + bm−i+1 = 1 describe the limiting cases for the
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different non-zero values for Pϕ(i, j) in Equation 6.19. Moreover, we have that

bi + b̄m−i+1 = 1

⇔ bi + τi + b̄m−i+1 = 1 + τi

⇔ b̄i + b̄m−i+1 = 1 + τi

⇔ b̄i + b̄m−i+1 − 1 = τi

and

bi + b̄m−i+1 = 1

⇔ bi + b̄m−i+1 − τm−i+1 = 1 − τm−i+1

⇔ bi + bm−i+1 = 1 − τm−i+1

⇔ 1 − bi − bm−i+1 = τm−i+1.

τi = τm−i+1 holds by definition of our special case. Hence, for each pair of two series
(i,m − i + 1), i = 1, . . . ,m/2 we have that

b̄i + b̄m−i+1 − 1 = 1 − bi − bm−1+1 = τi = τm−i+1,

i.e. all the cases for which Pϕ(i, j) in Equation 6.19 is non-zero take on the same value.
Since the intervals [bi, b̄i] are ordered and disjoint, bi + b̄m−i+1 = 1 and b̄i + bm−i+1 = 1
imply that

• bi+ j + bm−i+1 ≥ 1, j > 0,

• b̄i + b̄m−i+1− j ≤ 1, j > 0,

• b̄i− j + b̄m−i+1 ≤ 1, j > 0 and

• bi + bm−i+1+ j ≥ 1, j > 0 for i = 1, . . . ,m/2.

In all these cases Pϕ(·, ·) is zero according to Equation 6.19, because either the sum of
lower bounds is greater than one, the sum of upper bounds is less than zero or or the
sum is exactly one. In this case we have b̄i1 +b̄i2−1 = 1−1 = 0 or 1−bi1−bi2 = 1−1 = 0.

Thus, for a base process autocorrelation of ρ = −1 only the pairs of series with the
smallest and the largest mean value, the second smallest and the second largest mean
value and so on (or more formally: the pairs (i,m− i + 1), i = 1, . . . ,m/2) contribute to
the autocorrelation according to Equation 6.19 and the expression can be simplified to

E[YtYt+h] = 2
∑

i

(
µiµm−i+1Pϕ(i,m − i + 1)

)
where (C.6)

Pϕ(i, j) =


0, b̄i + b̄ j < 1
0, bi + b j ≥ 1

τi, otherwise.

To simplify the following proof, we will combine Transformation 1 and Transfor-
mation 2 from Section 6.4 into a single transformation that adds a new state to an APH
distribution in series canonical form and modifies the representation such that it is in
canonical form again.
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Transformation 3. Let Faph be an acyclic PH distribution in series canonical form
with n states, initial probabilities π(1), . . . ,π(n) and bidiagonal matrix D0 with rates
λ1 ≤ λ2 ≤ . . . ≤ λn. Then, the transformation constructs the distribution F′aph by
adding a new state n + 1 with rate µ > λn as specified by Transformation 2 and by
application of Transformation 1 to bring the representation into series canonical form.

Obviously, Transformation 3 does not change the distribution, but only the repre-
sentation of the distribution, since it only applies the two transformations from Sec-
tion 6.4. For an elementary series with rates λn ≥ λn−1 ≥ . . . ≥ λi and probability π(i)
Transformation 3 performs the following steps:
0) λn ≥ λn−1 ≥ . . . ≥ λi π(i) Trans f ormation 2
1) µ > λn ≥ λn−1 ≥ . . . ≥ λi π(i)(1 − λn/µ)

µ > λn−1 ≥ . . . ≥ λi π(i)λn/µ Trans f ormation 1
2) µ > λn ≥ λn−1 ≥ . . . ≥ λi (π(i)λn/µ)(1 − λn−1/λn)

µ > λn ≥ λn−2 ≥ . . . ≥ λi π(i)λn−1/µ Trans f ormation 1
...

µ > λn ≥ λn−1 ≥ . . . ≥ λi (π(i)λn/µ)(1 − λi/λi+1)
µ > λn ≥ λn−1 ≥ . . . ≥ λi+1 π(i)λi/µ

In the first step the series is split into two series by adding a new state with rate
µ > λn. The first generated series consists of the rates µ > λn ≥ λn−1 ≥ . . . ≥ λi

and already resembles a basic series. Thus, is not modified by the subsequent appli-
cation of Transformation 1. In the second series a phase with rate λn is missing to
resemble a basic series and consequently Transformation 1 will treat the rates λn and
λn−1 in the second step. By repeated application of Transformation 1 one finally gets
several series consisting of the rates µ > λn ≥ λn−1 ≥ . . . ≥ λi and one series with
rates µ > λn ≥ λn−1 ≥ . . . ≥ λi+1 and probability π(i)λi/µ. Therefore the sum of the
probabilities for all the series with rates µ > . . . ≥ λi is π(i)(1 − λi/µ).

Note, that Transformation 3 preserves the order of the elementary series. Consider
the two elementary series (i, i + 1) with mean values µi ≤ µi+1. Series i consists of
phases with rates λn ≥ λn−1 ≥ . . . ≥ λ j+1 ≥ λ j and series i+1 of phases with rates λn ≥

λn−1 ≥ . . . ≥ λk+1 ≥ λk. Since the APH distribution is assumed to be in series canonical
form series i + 1 contains at least one phase (i.e. the initial phase) with rate λk that is
not contained in series i. Therefore µi + (1/λk) ≤ µi+1 must hold. Transformation 3
splits each of the two series into two new series. Let µ−i denote the smaller of the
series originating from i, i.e. the one that contains rates µ > λn ≥ . . . ≥ λ j+1, and µ+

i
the larger of the series, i.e. the one that contains rates µ > λn ≥ . . . ≥ λ j+1 ≥ λ j. Then,
after the transformation µ−i < µ+

i ≤ µ−i+1 < µ+
i+1 holds, because µ+

i = µi + (1/µ) ≤
µi+1 + (1/µ) − (1/λk) = µ−i+1.

The above considerations on Transformation 3 will help to prove the following
Lemma.

Lemma C.2. For an APH transformation APH(n) with an even number of elemen-
tary series 1, . . . ,m with probabilities τi = τm−i+1, i = 1, . . . ,m/2 Transformation 3
increases the possible range of negative autocorrelation.

Proof. It will be shown, that for each pair of series (i,m − i + 1) the joint moment
E[YtYt+h] is decreased and thus, the possible range of negative autocorrelation in-
creased. Since we required τi = τm−i+1, i = 1, . . . ,m/2 and because of Theorems 6.1
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and 6.2 it is sufficient to prove the Lemma for a base process autocorrelation of ρ = −1,
i.e. we use Equation C.6 for the computation of E[YtYt+h]. Before the transformation
the summand in Equation C.6 corresponding to (i,m − i + 1) is

µiµm−i+1τi. (C.7)

Let λ j and λk be the rates of the first phase of the series i and m − i + 1, respectively.
By application of Transformation 3 a new phase with rate µ is introduced and series i
is transformed into two series, one with mean µ−i = µi + (1/µ)− (1/λ j) and probability
τiλ j/µ and one with mean µ+

i = µi + (1/µ) and probability τi(1 − λ j/µ). Similarly, for
the series m− i+1 we get two series with mean values µ−m−i+1 = µm−i+1 + (1/µ)− (1/λk)
and µ+

m−i+1 = µm−i+1 + (1/µ), respectively, and probabilities τm−i+1λk/µ and τm−i+1(1−
λk/µ). Recall, that for a base process autocorrelation of ρ = −1 and for probabilities
τi = τm−i+1, i = 1, . . . ,m/2 we only have to consider pairs of series (i,m − i + 1)
with one smaller and one larger mean value that have the same probability. After the
transformation we cannot guarantee, that the probabilities of the generated series are
still equal. Hence, depending on the values of the probabilities of the generated series
we have to distinguish three cases:

1. τi
λ j
µ < τm−i+1

(
1 − λk

µ

)
: Since τi = τm−i+1, this implies τi

(
1 − λ j

µ

)
> τm−i+1

λk
µ ,

i.e. the generated series with the smallest mean µ−i has a smaller probability
than the generated series with the largest mean µ+

m−i+1 and consequently, the
probability corresponding to µ−m−i+1 is smaller than the one corresponding to µ+

i .
By splitting the series with the larger probabilities according to Lemma C.1 we
can ensure that we have three pairs of series with matching probabilities and are
still able to use Equation C.6 for the computation of E[YtYt+h]. In particular, we
split the series with mean µ+

m−i+1 according to Lemma C.1 into two series with
probabilities τi

λ j
µ and τm−i+1

(
1 − λk

µ

)
− τi

λ j
µ . Similarly, we split the series with

mean µ+
i into two series with probabilities τm−i+1

λk
µ and τi

(
1 − λ j

µ

)
− τm−i+1

λk
µ

resulting in three pairs of elementary series with matching probabilities. The
contribution of these three pairs to Equation C.6 is

µ−i µ
+
m−i+1τi

λ j

µ

+µ+
i µ

+
m−i+1

(
τm−i+1

(
1 −

λk

µ

)
− τi

λ j

µ

)
+µ+

i µ
−
m−i+1τm−i+1

λk

µ

=

(
µi +

1
µ
−

1
λ j

) (
µm−i+1 +

1
µ

)
τi
λ j

µ

+

(
µi +

1
µ

) (
µm−i+1 +

1
µ

) (
τi − τi

λk

µ
− τi

λ j

µ

)
+

(
µi +

1
µ

) (
µm−i+1 +

1
µ
−

1
λk

)
τi
λk

µ

=

(
µiµm−i+1 +

µi

µ
+
µm−i+1

µ
+

1
µµ
−
µm−i+1

λ j
−

1
λ jµ

)
τi
λ j

µ
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+

(
µiµm−i+1 +

µi

µ
+
µm−i+1

µ
+

1
µµ

) (
τi − τi

λk

µ
− τi

λ j

µ

)
+

(
µiµm−i+1 +

µi

µ
−
µi

λk
+
µm−i+1

µ
+

1
µµ
−

1
λkµ

)
τi
λk

µ

= µiµm−i+1τi −
1
µµ
τi.

Note, that the first part is equal to Equation C.7 and the second part is less than
zero. Therefore E[YtYt+h] is reduced for each pair of branches (i,m − i + 1).

2. τi
λ j
µ = τm−i+1

(
1 − λk

µ

)
: This implies τi

(
1 − λ j

µ

)
= τm−i+1

λk
µ . For this case no

splitting of elementary series is necessary, because the series generated by the
transformation already have matching probabilities. Since τi = τm−i+1, we have
that τi

λ j
µ = τi

(
1 − λk

µ

)
implying that λ j + λk = µ, i.e. this case is only possible if

µ is chosen such that it equals the sum of λ j and λk. By using λ j + λk = µ the
contribution of the two pairs to Equation C.6 can be computed to

µ−i µ
+
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µ

+µ+
i µ
−
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(
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3. τi
λ j
µ > τm−i+1

(
1 − λk

µ

)
: This case is the symmetric counterpart to the first case.

Since τi = τm−i+1, we have τi
(
1 − λ j

µ

)
< τm−i+1

λk
µ , i.e. the generated series with

smallest mean µ−i has a larger probability than the generated series with largest
mean µ+

m−i+1 and consequently, the probability corresponding to µ−m−i+1 is greater
than the one corresponding to µ+

i . Again, we can split the series to obtain pairs
with matching probabilities, i.e. we split the series with mean µ−i into two se-
ries with probabilities τm−i+1

(
1 − λk

µ

)
and τi

λ j
µ − τm−i+1

(
1 − λk

µ

)
. Similarly, the

series with mean µ−m−i+1 is split into two series with probabilities τi
(
1 − λ j

µ

)
and

τm−i+1
λk
µ − τi

(
1 − λ j

µ

)
. Then for the contribution of these three pairs to Equa-

tion C.6 we get

µ−i µ
+
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µ

)
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Because τi
(
1 − λ j

µ

)
< τi

λk
µ holds for this case, we have that,

τi

(
1 −

λ j

µ
−
λk

µ

)
< τi

(
1 −

λ j

µ
−

(
1 −

λ j

µ

))
= 0,

i.e. the term is always less than µiµm−i+1τi.

In summary, if τi = τm−i+1, i = 1, . . . ,m/2 holds for the probabilities of the elementary
series of an APH distribution the possible range of negative autocorrelation is increased
for all cases that could occur when applying Transformation 3. �

As one could see from the proof of Lemma C.2 already the simple case with match-
ing probabilities of the elementary series before the transformation required the treat-
ment of several different cases. In general, if we allow arbitrary probabilities for the
elementary series, the situation gets even more complicated. If the probabilities of the
series do not match, one series has to be paired with two or more other series. If for
example the probability of the series with the largest mean is larger than the probabil-
ity of the series with the smallest mean, the remaining probability is consumed by a
pairing with the series with the second smallest mean and so on. In general we have to
consider all the different cases from Equation 6.19. Moreover, after applying a trans-
formation to the APH distribution, another case from Equation 6.19 might apply for
the newly generated series depending on the probabilities and the newly introduced
rate µ. When using Lemma C.1 instead to split the series of the APH distribution
such that the series have matching probabilities, one encounters similar problems: For
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Transformation 3 it was shown that the transformation preserves the order of the el-
ementary series if the original distribution is in series canonical form, which implies
that all series have different mean values. If we split one such series, we get two series
with the same mean values. The transformation of a series always results in one series
with a larger mean value and one series with a smaller mean value than the original
series. Hence, if we transform the split series, the resulting series have to be ordered
again according to their mean values to fulfill the requirements for CAPPs. This results
in various different cases that have to be treated.
Hence, using either Equation 6.19 or Lemma C.1 results in the consideration of dif-
ferent cases, which makes the proof difficult for negative autocorrelations and APH
distributions with arbitrary initial probabilities.
However, the examples shown in Appendix D suggest that the transformations increase
the range of negative autocorrelation in the general case as well.
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Appendix D
Examples for the APH Transformations

In Section 6.4 two transformations were proposed that can be used to modify the rep-
resentation of an acyclic PH distribution in cases were the original representation is

1

1

(a) Exponential
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Figure D.1.: Effect on the range of autocorrelation for different APH distributions (1)
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Figure D.2.: Effect on the range of autocorrelation for different APH distributions (2)

not sufficient to model the desired autocorrelation for a CHEP or CAPP. Figures D.1,
D.2 and D.3 show the effect of these transformations on different PH distributions.

Figure D.1 shows the effect on the range of autocorrelation for three PH distri-
butions, whose original representation cannot express non-zero autocorrelation when
used for a CAPP, because the representation only contains a single elementary series.
In particular exponential, Erlang and Hypo-Exponential distributions are presented.
Figure D.1 shows the original representation on the left and the effect after up to five
transformation steps when iterating between Transformation 1 and Transformation 2.

Figure D.2 shows the same results for different Hyper-Erlang distributions and fi-
nally, in Figure D.3 the effect for APH distributions in series canonical form is pre-
sented.

As one can see from the figures the possible range of autocorrelation is increased in
every transformation step, although it should be noted, that usually the first steps have
the largest impact on the range of autocorrelation, while the effect reduces for subse-
quent transformation steps, especially if the original representation of the distribution
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Figure D.3.: Effect on the range of autocorrelation for different APH distributions (3)

was already able to express a relatively high autocorrelation. For positive correlation
the increase in the range of autocorrelation was already proven in Section 6.4, for neg-
ative correlation this was only shown for a special case in Section C.2. However, the
examples presented here suggest, that the transformation also increases the possible
range of negative autocorrelation.
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