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INTRINSIC TOPOLOGIES ON H-CONTRACTION
GROUPS WITH APPLICATIONS TO SEMISTABILITY

WILFRIED HAZOD

Abstract. Semistable continuous convolution semigroups on Lie
groups with non-trivial idempotent are characterized by semistable
continuous convolution semigroups with trivial idempotent on a
contractible, hence homogeneous Lie group. (Cf., e.g. [9], [10],
III, theorem 3.5.4.) In fact, this homogeneous group is obtained
by a re-topologization of the contractible subgroup on which the
original semistable laws are concentrated. In [26] E. Siebert inves-
tigated such intrinsic topologies for contractible subgroups of Pol-
ish groups, generalizing partially the before mentioned situation of
Lie groups. Here we use these ideas to obtain intrinsic topologies
for H-contractible subgroups of Polish groups, where H denotes
a compact subgroup. This allows, under additional assumptions
(which are satisfied in the Lie group case) to obtain similar char-
acterization of semistable laws with non-trivial idempotents.

Introduction

If G is a Lie group and {µt}t≥0 a (τ, α)-semistable continuous convo-
lution semigroup with idempotent ωH , ωH denoting the Haar measure
on a compact subgroup H ⊆ G, τ ∈ Aut(G) and 0 < α < 1, then
it is well known that {µt} is concentrated on the H-contraction group
CH(τ) := {x ∈ G : τn(x)→ e mod H}. Furthermore, Lie groups have
the decomposition property CH(τ) = C(τ)·H, where C(τ) = C{e}(τ) =
{x : τn(x)→ e}. There exists an intrinsic or natural topology on C(τ)
(defined by the Lie algebra) turning C(τ) into a contractible Lie group

C̃(τ) (hence in particular simply connected and nilpotent). Moreover,
{µt} is uniquely determined by a continuous convolution semigroup{
ν†t

}
on a quotient of C̃(τ) with trivial idempotent. (Cf., e.g., [9],

[10], III, theorem 3.5.4). In [26] E. Siebert generalized the concept of
intrinsic topologies of contractible subgroups to the class of Polish (not
necessary locally compact) groups.

In the following we investigate intrinsic topologies of H-contractible
subgroups which are of the form C(τ) ·H ⊆ CH(τ) and generalize (par-
tially) the above mentioned characterizations of semistable laws with
non-trivial idempotents from the Lie group case to more general classes
of groups. The results are far from being as complete and satisfactory
as in the Lie group case, as additional conditions are needed, which
are automatically fulfilled for Lie groups (and, in general, the intrinsic

topology on C̃(τ) need no longer be locally compact.)
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1. Intrinsic topology for C(τ)

Let G,G,Λ,Γ . . . denote topological Hausdorff groups, mostly sec-
ond countable. In interesting examples G is assumed to be a locally
compact and second countable group or a completely metrizable topo-
logical vector space, hence in particular, a Polish group. H,K,L,D, . . .
denote τ -invariant compact subgroups, τ denoting an automorphism.
Recall that for τ ∈ Aut(G) the τ -contractible subgroup is defined as
C(τ) := {x : τn(x)→ e}, and for a τ -invariant compact subgroup H,
CH(τ) = {x : τn(x)→ e mod H}. W.l.o.g. we assume CH(τ)− = G.
Note that CH(τ) will in general not be closed.

Let UG denote the neighbourhood filter of e, UbG,U
o
G,U

c
G . . . the bases

consisting of Borel, resp. open resp. closed sets. We repeat shortly the
construction of the intrinsic topology for C(τ): Let Γ := C(τ)−. For
U ∈ UoΓ put for n ∈ Z, U(n) :=

⋂
−∞<k≤n

τ k(U) and Un := U(n) ∩ C(τ).

Then the filter basis ŨoC(τ) := {Un : n ∈ Z, U ∈ UoΓ} generates a Haus-

dorff topology on C(τ) (inherited by the topology of uniform conver-

gence of
{
τ k(x)

}
k∈N ∈ GN, cf. [26], lemma 4.) Denote by C̃(τ) the

group C(τ) endowed with this topology, called intrinsic topology. C̃(τ)

is a topological Hausdorff group, the identity ϕ : C̃(τ) → C(τ) ⊆ Γ
is a continuous bijective homomorphism, called canonical homomor-
phism. (C(τ) will always denote the group endowed with the subspace
topology inherited by Γ resp. G). τ̃ , defined by the the restriction of

τ to C(τ), is a automorphism of C̃(τ), such that ϕ ◦ τ̃ = τ ◦ ϕ. τ̃ is

contracting, in particular, C̃(τ) = C(τ̃).

Remark 1.1. As well known, if G is locally compact or Polish and
τ ∈ Aut(G), and H a compact τ -invariant subgroup, such that G =
CH(τ), then τ is compactly contracting, i.e., for all open U ⊇ H and
all compact subsets F ⊆ G we have: There exists a N ∈ N such that
τn(F ) ⊆ U for all n ≥ N .

[[
Cf. e.g., [26], lemma 1, [10], lemma

3.1.3 resp. lemma 3.1.3* in § 3.3.IV for H = {e}. The proof for
H 6= {e} is analogous.

]]
G is supposed to be Polish or locally compact

in order to apply Baire’s category theorem. In the above situation, if G
is Polish, so is C̃(τ) (cf., Remark 1.5 below). Hence τ̃ is also compactly
contracting.

Note that the filter basis UoΓ may be replaced by any filter basis without
changing the intrinsic topology.

Recall that a topological G group is called Polish (in analogy to
vector spaces) if G is metrizable and complete w.r.t. a (left) invariant
metric generating the topology of G. Obviously we have:

Lemma 1.2. Let F ⊆ Aut(Γ) be a subgroup such that τF = Fτ . Let
U ∈ UoΓ be F -invariant. Then U(n) and Un are F -invariant.[[

Note that in that case, σ(C(τ)) = C(τ) for all σ ∈ F .
]]

For a compact τ -invariant subgroup H ⊆ G let β : H → Aut(Γ) :
H 3 κ 7→ β(κ) be defined as restriction of the inner automorphisms
β(κ)(x) = iκ(x) := κxκ−1 for x ∈ Γ, resp. its restriction to C(τ).

[[
In

fact, we always have C(τ)/CH(τ)), hence H normalizes C(τ) and thus
Γ.
]]

In particular, it follows that C(τ) ·H is a subgroup of CH(τ).
Applying Lemma 1.2 for F := β(H) we obtain:
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Corollary 1.3. Let G be a topological group, let, as before, τ ∈ Aut(G)
and Γ := C(τ)−, and let H be a compact τ -invariant subgroup of G.
Then there exists a basis UHΓ of the neighbourhood filter consisting of
β(H)-invariant subsets. Thus, by Lemma 1.2,

{
U(n) : U ∈ UHΓ

}
and{

Un : U ∈ UHΓ
}

are β(H)-invariant for all n ∈ Z.

Consequently, C̃(τ) possesses a a filter basis of β̃(H)-invariant sub-

sets, β̃ denoting the homomorphism H → Aut(C̃(τ)) corresponding to

β, ϕ(β̃(κ)(x)) = β(κ)(ϕ(x)), x ∈ C̃(τ), κ ∈ H. (Cf. Proposition 1.4
below.)

Proof. If U is β(H)-invariant then U(n) and hence Un share this prop-
erty (Lemma 1.2). Moreover, τ ◦ β(κ) = β(τ(κ)) ◦ τ shows that
τβ(H) = β(H)τ . (Recall that τ(H) = H.)

There exists a β(H)-invariant filter basis UHΓ of UΓ. This follows e.g.
by [11], theorem 4.9, saying that ∀U ∈ UΓ,

⋂
κ∈H β(κ)(U) ∈ UΓ. Hence

there exists a β̃(H)-invariant filter basis of C̃(τ). �

Proposition 1.4. The mappings (x, κ) 7→ β(κ)(x): C(τ)×H → C(τ)

and (x, κ) 7→ β̃(κ)(x): C̃(τ)×H → C̃(τ) are (simultaneously) contin-
uous.

Proof. (1) As mentioned above, there exist β(H)-invariant filter-bases
UHΓ of UΓ and UH

C̃(τ)
of UC̃(τ).

(2) (x, κ) 7→ β(κ)(x): C(τ) × H → C(τ) is continuous.
[[
In fact,

(x, κ) 7→ β(κ)(x): G×H → G is continuous.
]]

(3) For all κ ∈ H, x 7→ β̃(κ)(x) is continuous, C̃τ)→ C̃(τ).[[
Let {xn, x} ⊆ C̃(τ) such that xn

C̃(τ)→ x. I.e., for all U ∈ UHΓ , for all
N ∈ Z there exist M ∈ Z+ satisfying: xn ∈ UN ·x for all n ≥M . Hence
β(κ)(xn) ∈ β(κ)(UN) · β(κ)(x) = UN · β(κ)(x) for n ≥M . Whence the
assertion follows.

]]
(4) For all x ∈ C̃(τ), H 3 κ 7→ β̃(κ)(x) ∈ C̃(τ) is continuous.[[
Let κn

H→ κ and x ∈ C̃(τ) (fixed). Then β(κn)(x)
Γ→ β(κ)(x) and,

for all k ∈ Z, we have τ k(β(κn)(x))
Γ→ τ k(β(κ)(x)). We see that

this is equivalent to β(τ k(κn))(τ k(x))
Γ→ β(τ k(κ))(τ k(x)), using that

τ k ◦ β(χ) = β(τ k(χ)) ◦ τ k, for all χ ∈ H.
Let W,U ∈ UHΓ , symmetric, with W 2 ⊆ U . Fix N ∈ Z.
For all k ∈ Z there exist Nk ∈ Z+ such that for all n ≥ Nk we have:

τ k(β(κn)(x)) ∈ U · τ k(β(κ)(x)).
τ acts contracting on x, hence there exists K ∈ Z+, w.l.o.g. K > N ,

such that τ k(x) ∈ W for all k ≥ K. Let N∗ := maxN≤k≤K Nk.
• For N ≤ k ≤ K and n ≥ N∗: τ k(β(κn)(x)) ∈ U · τ k(β(κ)(x)).
• For k > K and all n ∈ Z+: τ k(β(κn)(x)) = β(τ k(κn))(τ k(x)) ∈
β(τ k(κ))(W ) = W and τ k(β(κ)(x)) = β(τ k(κ))(τ k(x)) ∈ β(τ k(κ))(W )
= W , hence τ k(β(κn)(x)) ∈ W 2 · β(τ k(κ))(τ k(x)) ⊆ U · τ k(β(κ)(x)).

Hence, according to the definition of UN it follows: For all U ∈ UHΓ ,
for all N ∈ Z, there exists N∗ ∈ Z+ such that for all n ≥ N∗ we have:
β(κn)(x) ∈ UN · β(κ)(x).

]]
(5) (x, κ) 7→ β̃(κ)(x) is simultaneously continuous C̃(τ)×H → C̃(τ).[[
Choose as before, in (4), W,U ∈ UHΓ symmetric such that W 2 ⊆ U ,

hence W 2
N ⊆ UN for all N , and fix N ∈ Z. Assume κm

H→ κ and

xn
C̃(τ)→ x.
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There exists N∗ = N∗(W,N) ∈ Z+ such that xn ∈ WN ·x for n ≥ N∗,
hence (according to (3)) β(κm)(xn) ∈ WN · β(κm)(x) for all m ∈ Z+.

There exist M∗ = M∗(N,W ) such that (according to (4)) we have:
β(κm)(x) ∈ WN · β(κ)(x) for all m ≥M∗.
Hence β(κm)(xn) ∈ W 2

N ·β(κ)(x) ⊆ UN ·β(κ)(x)∀n ≥ N∗,m ≥M∗.
]]
�

We list properties of the intrinsic topology:

Remarks 1.5. Let G be a topological Hausdorff group with τ ∈ Aut(G).

a) If G is metrizable then C̃(τ) is metrizable too.

b) If G is Polish then C̃(τ) is Polish too.

c) C(τ) and CH(τ) are Borel measurable and ϕ−1 : C(τ) → C̃(τ)
is a Borel isomorphism.

d) If G is Polish, then the intrinsic topology of C̃(τ) is charac-
terized in the following way: Let C be a topological Hausdorff group
with the properties (i) there exists a continuous bijective homomor-
phism ξ : C → C(τ), (ii) C is Polish and (iii) τ ′ = ξ ◦ τ ◦ ξ−1 acts
contracting on C. Then there exists a continuous bijective homomor-

phism C̃(τ) → C. (I.e., the intrinsic topology is the weakest topology
with the properties (i),(ii), (iii).)

e) If G is Polish and C(τ) is closed, i.e., C(τ) = Γ, then for all

U ∈ UΓ and all n we have: U(n) = Un ∈ UΓ. Hence C̃(τ) = C(τ)(= Γ).

f) If G is a Lie group then C(τ) and hence Γ are nilpotent, C̃(τ) is
a simply connected contractible (hence nilpotent Lie) group. Therefore,
in particular, if C is a simply connected Lie group with a continuous

bijective homomorphism ξ : C → C(τ) then C ∼= C̃(τ).

g) If G, hence C(τ), is totally disconnected then C̃(τ) is totally

disconnected too and if C̃(τ) is connected then C(τ) and hence Γ are
connected.

h) C(τ) is arc-wise connected iff C̃(τ) shares this property. (In
fact, it is only needed that ϕ−1 is measurable.)[[

Cf. [26], or [10], § 3.3.IV; there the assertions a)–f) are proved, g)
being obvious. Assertion h), concerning arc-wise connectedness, fol-
lows by Corollary 3.3. For measurability of ϕ−1 cf. Lemma 2.2 and
Proposition 2.4.

]]
However we have: if G is locally compact, C̃(τ) will in general not

be locally compact. And conversely, if C̃(τ) is locally compact, G need
not share this property. (Cf., [26], containing criteria for local com-
pactness of the intrinsic topology.) Furthermore, there exist examples
of compact, connected groups G and τ ∈ Aut(G), with G = C(τ)− =
C(τ−1)−, furthermore, with dense arc-wise connected subgroup Ga,

such that C̃(τ) is locally compact and totally disconnected. In con-

trast, C(τ−1) = Ga, i.e. arc-wise connected, and C̃(τ−1) ∼= R. And in
addition, C(τ) ∩ C(τ−1) = {e}.

[[
[26], section 3, theorem.

]]
Definition 1.6. Let, as before, G be a topological Hausdorff group, τ ∈
Aut(G) with G = CH(τ)−. Let again Γ := C(τ)−. Then Λ := C(τ) ·H
is a subgroup of G, Λ ⊆ CH(τ).

The triple (G, τ,H) has the decomposition property if CH(τ) = Λ =
C(τ) · H. And (G, τ,H) has the strong decomposition property if in
addition, C(τ) ∩H = {e}.
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The pair (G, τ) has the (strong) decomposition property if for all com-
pact τ -invariant subgroups H, (G, τ,H) has the (strong) decomposition
property.

Remarks 1.7. a) If G is a Lie group, then for all automorphisms
τ ∈ Aut(G), (G, τ) has the decomposition property.

[[
Cf. e.g., [9], [10],

III, theorem 3.2.13.
]]

b) If G is a locally compact totally disconnected group then again
for all τ , (G, τ) has the decomposition property.

[[
Cf. [6], [16], Theorem

1, and the literature mentioned there.
]]

c) [17], section 10, contains a characterization of all compact groups
G and τ ∈ Aut(G) such that (G, τ) has the decomposition property.
Moreover, in [20] the authors generalize this result and obtain suffi-
cient conditions for (G, τ) to have the (strong) decomposition property.
See in particular proposition 4.5, theorem 4.4 and corollary 4.11.

d) If G is locally compact or Polish, if (G, τ,H) has the decom-
position property and C(τ) is closed, then (G, τ,H) has the strong de-
composition property.

[[
In fact, then C(τ) is locally compact or Polish,

hence τ |C(τ) is compactly contracting and C(τ)∩H is compact. Whence

C(τ) ∩H = {e} follows.
]]

e) Thus, if G is locally compact and totally disconnected and if
τ is a tidy automorphism (cf. e.g., [29]), then (G, τ) has the strong
decomposition property.

[[
If G is a p-adic Lie group then C(τ) is

closed, ([28]); for the general case see [6], lemma 1, [16].
]]

f) In [17], example 4.1, it is shown that e.g., for G =
⊗

Z T, T
denoting the one-dimensional torus, and τ denoting the shift, there
exists a closed subgroup H ∼= T, such that (G, τ,H) fails to have the
decomposition property.

We have in mind this example in the sequel and describe it – and
some related examples – in details in Section 5.

2. Intrinsic topologies for Λ = C(τ) ·H

In the following we generalize the concept of intrinsic topologies to
groups of the form Λ := C(τ)·H (= CH(τ) if (G, τ,H) has the decompo-
sition property). We use the notations introduced in Section 1. Let G
be a Polish topological group. We assume now w.l.o.g. G = (C(τ)·H)−

and put again Γ := C(τ)−. C(τ) and Λ are always endowed with

the subspace topology of G, and, as before, C̃(τ) denotes C(τ) en-

dowed with the intrinsic topology. Furthermore, ϕ : C̃(τ)→ C(τ) and
τ̃ = ϕ−1τϕ are defined as before. Our aim is to construct a Polish group
˜C(τ) ·H containing monomorphic images C̃ and H̃ of C̃(τ) and H, and

a canonical homomorphism Ψ : ˜C(τ) ·H = C̃ ·H̃ → C(τ) ·H = Λ, such
that the restriction Ψ|H̃ is an isomorphism and ϕ factorizes, ϕ = Ψ|H̃◦g,

g denoting a continuous bijective homomorphism C̃(τ)→ C̃.
[[
Indeed,

it turns out that in general, g can not be an isomorphism.
]]

Further-

more, there exists an automorphism ρ2 ∈ Aut( ˜C(τ) ·H) such that

Ψ ◦ ρ2 = τ ◦Ψ and C̃ = C(ρ2). A := C(τ) oβ H and B := C̃(τ) oβ̃ H

are well-defined topological groups (β resp. β̃ denoting the homomor-

phisms H → Aut(C(τ)) and H → Aut(C̃(τ)) respectively.
[[
Indeed,

from Proposition 1.4 it follows that the semi-direct products define
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topological groups, cf. [11], (6.20). Note that, as immediately veri-
fied, A and B are semi-topological groups, i.e., the group operation is
separately continuous. In the locally compact case then simultaneous
continuity follows by Ellis’ theorem on transformation groups [5]. For
the general case, I could not find a reference, hence we had to prove
Proposition 1.4.

]]
By definition of ϕ, β, β̃ we have: ϕ(β̃(κ)(x)) = β(κ)(ϕ(x)). The

canonical homomorphism ϕ defines a continuous bijective homomor-
phism φ = ϕ⊗ idH : B → A, (x, κ) 7→ (ϕ(x), κ). We define furthermore
automorphisms of A resp. B, ρ := τ |C(τ) ⊗ τ |H ∈ Aut(A): (x, κ) 7→
(τ(x), τ(κ)) and ρ̃ ∈ Aut(B), ρ̃ := τ̃⊗τ |H : (x, κ) 7→ (τ̃(x), τ(κ)).

[[
Note

that by definition of β(·) we have: τ(β(κ)(y)) = β(τ(κ))(τ(y)).
]]
H as

well as C(τ) resp. C̃(τ) are considered as a compact resp. invariant
subgroups of Λ, A and B respectively, i.e., if no confusion is possible,
we identify tacitly H with {e} ⊗ H and C(τ) with C(τ) ⊗ {e} resp.

C̃(τ) with C̃(τ)⊗{e}. The product function f : A → Λ, (x, κ) 7→ x · κ
is a continuous homomorphism. f is bijective iff C(τ) ∩H = {e}.

Obviously, we have:

Proposition 2.1. ρ is contractive mod H on A and ρ̃ is contractive
mod H on B. Furthermore we have: ρ ◦ φ = φ ◦ ρ̃.

Polish groups have the following nice properties:

Lemma 2.2. Let A, B be second countable topological groups, let A be
Polish and let g : A→ B be a continuous injective homomorphism.

a) Then C := g(A) is a measurable subgroup and g−1 : C → A is a
bijective Borel-measurable homomorphism.

b) In addition, for any compact subgroup K ⊆ C the image K̃ :=

g−1(K) is a compact subgroup of A, and g|K̃ : K̃ → K is continu-
ous, hence a topological (and algebraic) isomorphism.

[[
Indeed for this

result it is sufficient to suppose that A,B are metrizable and g−1 is
measurable.

]]
c) If D ⊆ A is closed then D is Polish, and if D/A, g : A→ A/D,

then B := A/D is Polish.

Proof. a) The first assertions, already mentioned, follow by Kuratows-
ki’s theorem, cf. e.g., [19], I, theorem 3.9, corollary 3.3.

b) Let ωK be the Haar measure on the a compact group K, hence
an idempotent probability. Therefore, λ := g−1(ωK) is an idempotent
probability in M1(A). Thus (cf. [19], III, theorem 3.1), λ = ωK̃ for a

compact subgroup K̃ ⊆ A. Obviously, K̃ = g−1(K). The last assertion

follows since K̃ is compact and g : K̃ → K is continuous and bijective.
c) Obviously, a closed subset D is complete, hence Polish. Complete-

ness of the quotient group is surely well-known. It relies on metrizabil-
ity. (Note that e.g., quotients of complete non-metrizable vector spaces
need not be complete.) We adapt the standard proof for vector spaces,
cf. e.g., [21], I, § 6, 6.3:

Let d denote a left invariant metric on A such that (A, d) is complete,
and define the metric on the quotient group by d0(x, y) := inf{d(x, y) :
x ∈ x, y ∈ y}. Let {xn} be a Cauchy sequence in A/D. Then there
exists a subsequence (nk) with d0(xnk , xnk+1

) < 1/2k+1, equivalently,
d0(x−1

nk
xnk+1

, e) < 1/2k+1. Choose yk ∈ x−1
nk
xnk+1

with d(yk+1, e) < 1/2k.
Fix x1 ∈ xn1 and put zK := x1 · y1 · · · yK (K ≥ 2), hence zK ∈ xnK+1

.
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Hence {zk} is a Cauchy sequence in A, thus lim zk =: z∞ ∈ A exists,
and by continuity, limxnk ∈ B exists. Since {xnk} is Cauchy, lim xn
exists. �

If E = C(τ) ∩ H = {e} then B,A, ϕ, φ, f and Φ are sufficient to
characterize semistable laws with idempotent ωH (Theorem 4.1).

For the general case, E 6= {e}, we need some more preparations:

Notations 2.3. We are interested in the subgroup Λ = C(τ) · H ⊆
CH(τ). Hence, if E := C(τ)∩H 6= {e}, we put ∆ := {(c, c−1) : c ∈ E}.
It is easily verified that ∆ resp. ∆̃ are closed normal subgroups of

A and of B respectively, and moreover, E resp. Ẽ are closed normal

τ - resp. τ̃ -invariant subgroups of C(τ) and C̃(τ) respectively. (We

write Ẽ if E is considered as subgroup of C̃(τ). Hence Ẽ = ϕ−1(E).

Analogously, we write ∆̃ if the group is considered as subgroup of B,

∆̃ = φ−1(∆)). Let π∆ resp. π∆̃ denote the quotient homomorphisms

A → A := A/∆ resp. B → B := B/∆̃. Since G is Polish, C̃(τ), hence
B and (by Lemma 2.2 c)) B are Polish.

As mentioned afore, C(τ) and Λ = C(τ) ·H are always endowed with
the subspace topology.

1. A := A/∆ ∼= C(τ) · H algebraically and f : A → C(τ) · H:
(x, κ) 7→ x · κ ∈ Λ is a continuous surjective homomorphism with
kernel ∆. Hence there exists a bijective continuous homomorphism
θ : A → Λ, with f = θ ◦ π∆. If f is open then A ∼= Λ.

[[
[11],

theorem 5.27.
]]

But in general, θ need not be an isomorphism, even in
case C(τ) ∩H = {e}: the topology of the semi-direct product may be
different from the subspace topology of Λ. (Cf., e.g., Example 5.8.)

Put C := θ−1(C(τ)) = π∆(C(τ) ⊗ {e}), and H ′ := θ−1(H) =
π∆({e} ⊗H). Obviously, C ·H ′ = A.

2. The afore defined homomorphism φ : B → A and θ : A/∆ →
C(τ) ·H induce continuous bijective homomorphisms Ψ : B → A → Λ,

Ψ = θ ◦ ψ, where ψ ◦ π∆̃ = π∆ ◦ φ, ψ : B 3 (x, κ) := π∆̃(x, κ)
ψ7→

π∆(φ(x, κ)) = φ((x, κ) ∈ A.
f−1(H) =: H1 is a closed subgroup of A, H1 = E ⊗H. Hence H ′ :=

π∆(H1) ⊆ A, H ′ ∼= H. Analogously, H̃1 := φ−1(H1), H̃1 = Ẽ ⊗ H, is

closed in B and H̃ := π∆̃(H̃1) is a compact subgroup of B/∆.
[[
Note

that H̃ = ψ−1(H ′) = Ψ−1(H), hence H̃ ∼= H. Cf. Lemma 2.2 b).
]]

If E = {e}, then obviously φ = ψ and ψ|C̃(τ) : C̃(τ) → C(τ) ⊆ A
coincides with ϕ. (We identify C(τ) ⊗ {e} ⊆ A with C(τ) ⊆ Λ, since

f |C(τ)⊗{e} is a topological isomorphism. And also C̃(τ) is identified

with C̃(τ)⊗ {e} ⊆ B, hence Ψ|C̃(τ) coincides with ϕ.)

If E 6= {e} we have: C̃ := Ψ−1(C(τ)) is a Borel subgroup of B such

that C̃ · H̃ = B and C̃ ∩ H̃ = Ψ−1(E). (C̃ need not be closed in B since

C(τ) need not be closed in Λ.) As easily verified, C̃ = π∆̃(C̃(τ)⊗{e}),
and C = π∆(C(τ) ⊗ {e}) ⊆ A. Furthermore, ψ−1 = π∆̃φ

−1π−1
∆ . ψ

and Ψ are continuous bijective, hence the restriction ψ|C̃ : C̃ → C(τ)

shares this property. And on the other hand, π∆̃|C̃(τ) : C̃(τ) → C̃

is continuous and bijective. Furthermore, ϕ = f ◦ φ|C̃(τ) factorizes,

ϕ = Ψ ◦ π∆̃|C̃(τ), and we have C = ψ(C̃). Thus there exists a chain of

continuous bijective homomorphisms C̃(τ)→ C̃ → C → C(τ) ⊆ Λ.
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3. ∆ resp. ∆̃ are invariant w.r.t. the afore defined automorphisms ρ
and ρ̃, respectively, hence there exist automorphisms ρ1 ∈ Aut(A), ρ2 ∈
Aut(B), such that π∆ρ = ρ1π∆, π∆̃ρ̃ = ρ2π∆̃, and furthermore, fρ1 =
τ |Λf .

If E = {e}, equivalently, ∆ = {e}, we have φ = ψ and ρ2 = ρ̃ =
= φ−1ρ1φ = ψ−1τ |Λψ, and if E 6= {e}, ψ−1ρ1ψ = ρ2, and ρ1 = θ−1τ |Λθ.
ρ1 and ρ2 are contracting mod H ′ and mod H̃ respectively. Further-

more, it is again easily verified that C̃ = C(ρ2) and C = C(ρ1).
Claim: Define g := π∆|C(τ) and h := π∆̃|C̃(τ). Then g : C(τ) →

C and h : C̃(τ) → C̃ are continuous bijective with continuous resp.
measurable inverses g−1 and h−1 respectively. In particular, C(τ) ∼= C.[[

Let U1,W1 ∈ UoG such that U2
1 ⊆ W1. Thus U := U1 ∩ C(τ),W :=

W1 ∩C(τ) ∈ UoC(τ) and V := U1 ∩H ∈ UoH such that U · V ⊆ W , hence

also U · (V ∩E) ⊆ W . Hence B := {U · (V ∩E) : U ∈ UoC(τ), V ∈ UoH}
is a basis for the filter UC(τ).

Since ∆ ∩ (C(τ) ⊗ {e}) = {e}, bijectivity of g follows. Continuity
is obvious. To prove continuity of g−1 it suffices to show that g maps
open sets of C(τ) ⊗ {e} to open sets of C(⊆ A). It suffices to show
that g(U · (V ∩ E) ⊗ {e}) is open in C. Indeed, this follows since

g(U · (V ∩ E) ⊗ {e}) = π∆(U ⊗ V ) ∩ C.
[[
(u, v)∆ = (u, v) = (x, e)

(with x ∈ C(τ), u ∈ U, v ∈ V ) yields u · v = x, hence v ∈ V ∩ E. Thus

(u, v) = (u · v, e) follows. Whence g(U ·(V ∩E)⊗{e}) ⊇ π∆(U⊗V )∩C.

Conversely, if u ∈ U, v ∈ V ∩ E, then (u · v, e) = (u, v)∆ = (u, v),
whence g(U · (V ∩ E)⊗ {e}) ⊆ π∆(U ⊗ V ) ∩ C.

]]
As before, h : C̃(τ) → C̃ is bijective and continuous. But note that

h is in general not an isomorphism. (See e.g., Example 5.7.) Indeed,
we have: h is an isomorphism iff E = {e}, hence iff B = B.

[[
Assume

C̃(τ) ∼= C̃. C̃(τ) is complete (as closed subgroup of B), hence, C̃ is

complete and hence closed (in B). Thus C̃ ∩ H̃ is compact. But ρ2 acts

contracting on the Polish group C̃, hence compactly contracting. Thus

C̃ ∩ H̃ = {e}. Hence E = {e}. The converse is obvious.
]]

The construction of B (and A) is sufficient to define the intrinsic
topology of C(τ) ·H. (Definition 2.5 below). However, for a character-
ization of semistable laws we have to pass to a quotient group. At the
first glance, the following way seems to be natural:

4. F := E− is a compact subgroup of H, hence of C(τ) · H, and

hence D := f−1(F ) and D̃ := ψ−1(D) are compact subgroups of A and

B (according to Lemma 2.2), and D̃ ⊆ H̃ = Ψ−1(H). If E is a normal

subgroup of G, (as in Assumption (2), cf. (4.1)), then F , D and D̃
are compact normal subgroups of C(τ) · H (hence of G), of A and of
B respectively. Let π, πD and πD̃ denote the quotient homomorphisms

G → G/F =: G, A → A/D =: A1 and B → B/D̃ =: B1 respectively.

Put K := πD̃(H̃), H := πD(H ′), H∗ := π(H) ⊆ G and C := πD(C(τ)),

C∗ := πD̃(C̃), C1 := π(C(τ)) (in G). K, H and H∗ are compact

isomorphic subgroups in B, A and G respectively. Furthermore, σ,
ξ and τ denote the automorphisms in Aut(B1), Aut(A1) and Aut(G)
respectively, which are induced by by ρ2 ∈ Aut(B), ρ1 ∈ Aut(A) resp.
τ ∈ Aut(G).

We have B1 = C∗ · K, A1 = C · H and Λ := Λ/F = C1 · H∗.
Furthermore, π(CF (τ)) = C(τ) and CF (τ) = π−1(C(τ))

[[
cf., e.g., [10],
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3.2.3 with K = N = F
]]

, hence, if we assume CF (τ) = C(τ) ·F (as we
shall do in Assumption (3), cf. (4.2)), we obtain C(τ) = π(C(τ)) = C1.
And, applying Ψ resp. θ, C(ξ) = πD(C(ρ1)) and C(σ) = πD̃(C(ρ2))

follow. Thus C∗ = C(σ) = πD̃(C̃) and Ψ|C∗ : C∗ → C1 is bijective and
continuous.

Furthermore, C∗ is closed in B1, hence also Polish. (Note, if E 6= {e},
C̃ is not closed in B, but C∗ = πD̃(C̃) is closed). We have C∗ =

πD̃π∆̃(C̃(τ) ⊗ {e}) = πD̃π∆̃(C̃(τ) ⊗ {e} · S) with S := π−1

∆̃
(D̃). We

observe S = Ẽ ⊗ F .
[[
Indeed, S = {(x, κ) ∈ B : Φ(x, κ) ∈ F}, hence,

putting (x′, κ′) := φ(x, κ), we obtain (x, κ) ∈ S iff x′ · κ′ ∈ F . Since
x′ ∈ C(τ) and κ′ ∈ H, it follows x′ ∈ E and thus κ′ ∈ F . I.e.,

(x, κ) ∈ Ẽ ⊗ F . Thus S ⊆ Ẽ ⊗ F . Conversely, if (x, κ) ∈ Ẽ ⊗ F , we

have (x′, κ′) ∈ E ⊗ F and hence x′ · κ′ ∈ F . Hence Ẽ ⊗ F ⊆ S.
]]

(C̃(τ) ⊗ {e}) · S is closed in B, therefore, according to Lemma 2.2

c), C∗ is complete, hence closed in B1.
[[
Indeed, (C̃(τ) ⊗ {e}) · S =

(C̃(τ)⊗ {e}) · (Ẽ ⊗ F ) = C̃(τ)⊗ F is closed since F is closed in H.
]]

According to Remark 1.5 d), there exists a continuous bijective

homomorphism δ : C̃(τ) → C∗, hence also such a homomorphism
α = δ ⊗ idH∗ : B2 → B1. But we cannot prove that topology of C∗ is

the intrinsic one, i.e. that C∗ ∼= C̃(τ).
5. Therefore we have to replace step 4. by a repetition of the first

step:
Let A2 := C(τ) oγ H

∗, γ : H∗ → Aut(C(τ)) defined in obvious way

(note that F is τ -invariant), and B2 := C̃(τ) oγ̃ H
∗ = ˜C(τ) ·H∗ (γ̃

defined according to Proposition 1.4). Denote furthermore by ϕ∗, φ∗

the corresponding canonical homomorphisms, and Φ∗ := f ∗◦φ∗ : B2 →
Λ, f ∗ : A2 → Λ : (x, κ) 7→ x · κ, φ∗ : B2 → A2. Note that C̃(τ) = C(τ̃).

Finally we have C(τ) ∩ H∗ = {e}.
[[
Indeed, assume x = π(x) ∈

C1∩H∗ = πF (C(τ)∩H). Then there exist x ∈ E with π(x) = x = x·F .
But E ⊆ F , hence x = e.

]]
Moreover, G is Polish (Lemma 2.2).

The properties of B2 will enable us to reduce the investigation of
semistable laws on Λ – even in the case E 6= {e}– to the case of semi-
direct products (cf. Theorem 4.2).

Note that the role of the groups A,A, A1 and A2 is not essential;
these groups were introduced to construct B,B, B1 and B2, and to link
these groups via projections and canonical homomorphisms to Λ and
Λ/F = Λ.

In the following diagrams we collect the above introduced notation:

Φ : B = C̃(τ) oβ̃ H
φ−→ A = C(τ) oβ H

f−→ Λ = C(τ) ·H
↓ π∆̃ ↓ π∆ ||

Ψ : B = C̃ · H̃ ψ−→ A = C ·H ′ θ−→ Λ

↓ πD̃ ↓ πD ↓ π

Ψ : B1 = C∗ ·K ψ−→ A1 = C ·H θ−→ Λ = C(τ) ·H∗

↑ α ||

Ψ∗ : B2 = C̃(τ) oγ̃ H
∗ φ∗−→ A2 = C(τ) oγ H

∗ f∗−→ Λ
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C̃(τ)⊗ {e} = C(ρ̃)
ϕ−→ C(τ)⊗ {e} = C(ρ)

f |C(τ)←→ C(τ) ⊆ Λ

↓ h l g ||

C̃ = C(ρ2)
ψ|
C̃←→ C = C(ρ1)

θ|C−→ C(τ)

↓ πD̃ ↓ πD ↓ π

C∗ = C(σ)
ψ|C∗−→ C = C(ξ)

θ|C−→ C1 = C(τ)

↑ δ ||

C̃(τ)
ϕ∗−→ C(τ)

f∗|C(τ)←→ C(τ) ⊆ Λ

The existence of measurable inverses of the canonical homomorphisms
follows by Kuratowski’s theorem (Lemma 2.2 a)). It seems remarkable
that the special construction of the intrinsic topology implies measur-
ability without completeness assumption:

Proposition 2.4. Let G be a second countable topological Hausdorff
group (hence metrizable but not necessarily complete), let τ ∈ Aut(G)
and let H be a compact τ -invariant subgroup. With the afore introduced
notations we obtain:

a) C(τ), CH(τ),Λ are Borel subsets of G.
b) The bijective continuous homomorphisms in the above diagrams

have measurable inverses. In particular, this is true for for:

b1) ϕ : C̃(τ)→ C(τ), ϕ∗ : C̃(τ)→ C(τ),
b2) φ : B → A, φ∗ : B2 → A2,
b3) θ : A → Λ, θ : A1 → Λ, f ∗ = θ∗ : A2 → Λ,
b4) ψ : B → A, Ψ : B → Λ, Ψ : B1 → Λ, Ψ∗ : B2 → Λ

Proof. a) is already used. It follows by the representation C(τ) =⋂
n≥1

⋃
m≥1

⋂
k≥m τ

−k(Vn), where {Vn} denotes a (countable) basis of
UΓ, and by analogous representations for CH(τ).

b1) ϕ−1 is measurable: We show: For all U ∈ UoΓ hence all Un ∈ Uo
C̃(τ)

,

ϕ(Un) is a Gδ-set. Indeed, Un = ϕ(U)n =
⋂
k≥n τ

−k(U ∩ C(τ)), with

τ−k((U ∩ C(τ)) ∈ UoC(τ). The proof for ϕ∗ is analogous.

b2) follows immediately by φ = ϕ⊗ idH etc.
b3) θ−1 is measurable: We have θ = f ◦ π−1

∆ (with ker f = ∆). We

show that for U ∈
{
U = π∆(V1 × V2) : V1 ∈ UbC(τ), V2 ∈ UbH

}
, θ(U) is

a Borel set: Indeed, let V1 be open, V2 closed (hence compact in G),
then there exist open Wn in G, such that V2 =

⋂
nWn. Therefore,

θ(U) = f(V1× V2) = V1 · V2 =
⋂
n V1 ·Wn, is a Gδ set, since V1 ·Wn are

open in G. Measurability of θ
−1

and f ∗−1 is proved analogously.
b4) ψ−1 is measurable: Let OA, OB etc. denote the open sets of

A,B etc. and let O∆
A etc. denote the ∆-invariant open sets (i.e., open

sets W with W · x = W for all x ∈ ∆). Then π∆(O∆
A) = OA and

π−1
∆ (OA) = O∆

A . Hence π∆ defines also a bijection between the σ-
algebras generated by these sets, i.e., between the ∆-invariant Borel
sets in A and Borel sets in A respectively. An analogous assertion

holds true for O∆̃
B and OB.

We have ψ = π∆ ◦ φ ◦ π−1

∆̃
(with φ(∆̃) = ∆). Let U ∈ OB, hence

ψ(U) = π∆φπ
−1

∆̃
(U) = π∆(φ(U ′)), U ′ ∈ O∆̃

B . φ−1 is measurable and U ′
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is ∆̃-invariant, hence φ(U ′) is a ∆-invariant Borel set in A, and thus
π∆(φ(U ′)) is a Borel set in A.

Since compositions of measurable mappings are measurable, measur-
ability of the resting homomorphisms follows immediately. �

Definition 2.5. a) If E = C(τ) ∩ H = {e} we call the topology of
B the intrinsic topology of C(τ) ·H. (Recall that in this case, f : A =
C(τ) oβ H → C(τ) ·H is bijective and continuous).

b) If ∆ 6= {e}, equivalently, E 6= {e}, then we call the quotient

topology of B = B/∆̃ intrinsic topology of C(τ) ·H = Λ.

c) In either case, we use the notation ˜C(τ) ·H =: B (in case a))

resp. =: B/∆̃ = B (in case b)). The continuous bijective mapping
˜C(τ) ·H → C(τ) · H, defined by Φ = f ◦ φ : (x, κ) 7→ x · κ (in case

a)) resp. Ψ = θ ◦ ψ : π∆̃(x, κ) 7→ x · κ (in case b)) is called canonical
homomorphism.

(In case a), we have B = B, hence then we may identify Φ with Ψ.)

Putting things together we obtain

Theorem 2.6. Let G be a Polish group, τ ∈ Aut(G) and let H be a
τ -invariant compact subgroup. Then C(τ) and hence Λ are Borel sets.

a) The afore defined group ˜C(τ) ·H is a Polish group, the canonical

homomorphism Ψ : ˜C(τ) ·H → C(τ) · H = Λ ⊆ G is continuous and
bijective, with measurable inverse, where the subgroup C(τ)·H is always
endowed with the subspace topology inherited by G.

b) H̃ := Ψ−1(H) is a compact subgroup of ˜C(τ) ·H, H̃ ∼= H, and

C̃ := Ψ−1(C(τ)) is a Borel subgroup, such that ˜C(τ) ·H = C̃ · H̃.
Furthermore, Ψ−1|H is a topological (and algebraic) isomorphism, and

Ψ|C̃ : C̃ → C(τ) is bijective, continuous and there exists a bijective

continuous homomorphism C̃(τ)→ C̃.

c) ρ2 := ΨτΨ−1 ∈ Aut( ˜C(τ) ·H) is contracting mod H̃. (Com-

pactly contracting since ˜C(τ) ·H is Polish, cf. d1) below.)

d) The intrinsic topology ˜C(τ) ·H has the following properties:

d1) G is Polish, so are B and B, hence ˜C(τ) ·H.

d2) If C(τ) is closed in G then A = B = B = ˜C(τ) ·H ∼= Λ.

d3) If G, hence C(τ), is totally disconnected, so is ˜C(τ) ·H.

d4) If ˜C(τ) ·H is connected, so is C(τ) ·H and hence (C(τ) ·H)−.

d5) C(τ) ·H is arc-wise connected iff ˜C(τ) ·H is.

d6) B is locally compact iff C̃(τ) is locally compact. (Cf. the cri-

teria for locally compactness of the intrinsic topology of C̃(τ) in [26].)
In that case, B and B1 are locally compact too.

e) It is not surprising that we also obtain a characterization of the

intrinsic topology ˜C(τ) ·H analogous to Remark 1.5 d):
Let G be a Polish group, representable as G = A·B, with ζ ∈ Aut(G),

such that A = C(ζ), ζ(B) = B, a compact subgroup, and a continuous
bijective homomorphism F : G → Λ = C(τ) · H, with F (B) = H and
F ◦ ζ = τ ◦F . Then there exists a continuous bijective homomorphism

Ξ : ˜C(τ) ·H → G.
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Proof. a) follows by definition of ˜C(τ) ·H and Ψ (Notations 2.3) and
by Proposition 2.4.

b) Cf. Notations 2.3, 2. Compactness of H̃ follows by Lemma 2.2.
c) is easily verified and
d) follows by Remark 1.5 (see also [25], or [10], lemma 3.3.17), and

the product representation B = C̃(τ)oH resp. B = π∆̃(B). Note that
B is Polish resp. (arc-wise) connected resp. totally disconnected iff

C̃(τ) and H are Polish resp. (arc-wise)connected resp. totally discon-
nected.

e) We identify B with H via F |B and consider the intrinsic topology

and canonical homomorphisms C̃(ζ) = C(ζ̃)
ϕ̂→ C(ζ) = A, φ̂ : B̂ :→ Â,

φ̂ = ϕ̂ ⊗ idH , B̂ := C̃(ζ) o H, f̂ : Â → G. Let Ê := A ∩ B, ∆̂ :=

{(c, c−1) : c ∈ Ê}, ˜̂∆ := Φ̂−1(∆̂).

C̃(ζ) is Polish and Z := F ◦ ϕ̂ : C̃(ζ) = C(ζ̃)→ C(τ) is continuous,

bijective and Z ◦ ζ̃ = τ ◦ Z. Hence (Remark 1.5 d)) there exists a

continuous bijective homomorphism δ̂ : C̃(τ)→ C̃(ζ), hence also α̂ :=

δ̂⊗ idH : B → B̂. Φ̂ := f̂ ◦ φ̂ : B̂ → G is continuous with kernel
˜̂
∆, hence

T := Φ̂ ◦ α̂ : B → G is continuous with kernel ker(T ) = ∆̃(= α̂−1(
˜̂
∆)).

Therefore, there exists a factorization T = Ξ ◦ π∆̃ with continuous

bijective Ξ : B → G. �

3. Liftings, retracts and disintegrations of continuous
convolution semigroups

Definition 3.1. a) Let G be a topological Hausdorff group, let H,K
be compact subgroups. Let {µt} and {νt} be continuous convolution
semigroups with idempotents µ0 = ωH and ν0 = ωK. Then {νt} is
a retract of {µt} (equivalently, {µt} is a projection of {νt} ) if µt =
ωH ? νt = νt ? ωH for t ≥ 0. (Hence K ⊆ H.)

b) Let G and Γ be topological Hausdorff groups, Λ ⊆ G a measurable
subgroup and φ : Γ→ Λ ⊆ G a continuous bijective homomorphism with
measurable inverse φ−1. Let {µt} and {νt} be continuous convolution
semigroups in M1(G) and M1(Γ) respectively, such that µt(Λ) = 1 for
all t ≥ 0. (For short: {µt} is concentrated on Λ.) {νt} is a φ-lifting of
{µt} if φ(νt) = µt for all t.

c) Let G,Γ,Λ, φ as in b). Let H be a compact subgroup of G, nor-
malizing Λ and put Λ1 = Λ ·H. Let {µt} be a continuous convolution
semigroup concentrated on Λ1 with idempotent µ0 = ωH . A continu-
ous convolution semigroup {νt} ⊆ M1(Γ) such that µt = φ(νt) ? ωH =
ωH ? φ(νt) is called a φ-disintegration of {µt}.

d) If in a), for τ ∈ Aut(G), with τ(H) = H, {µt} and {νt}
are (τ, α)-semistable, then {νt} is called semistable retract, and analo-
gously, if, in b), c) τ ∈ Aut(G) and τ ′ ∈ Aut(Γ) such that φτ ′ = τφ,
and {µt} and {νt} are (τ, α)- and (τ ′, α)-semistable, we call {νt} a
semistable lifting resp. disintegration.

Proposition 3.2. Let A,B be Polish groups and φ : B → C ⊆ A
a continuous bijective homomorphism. Then C is measurable. And
in that case, any continuous convolution semigroup {µt} in M1(A)
concentrated on C has a φ-lifting {νt} inM1(B). The lifting is (τ ′, α)-
semistable, if {µt} is (τ, α)-semistable (where τ ∈ Aut(A) and τ ′ ∈
Aut(B) and we assume again τφ = φτ ′).
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Indeed, if we suppose that C is measurable and φ−1 is measurable
then it is sufficient to assume A and B to be second countable (hence
metrizable), not necessarily complete.

This result is trivial in the case of Lie groups for B := C̃(τ) and

φ := ϕ, the canonical homomorphism C̃(τ) → C = C(τ) ⊆ Γ, since

in that case C̃(τ) is a simply connected nilpotent Lie group, hence
ϕ−1(µ1) is continuously embeddable. For the general result cf. [26],
appendix 1, [10], proposition 3.4.11. However, in the first reference the
proof of continuity is missing, in the second that proof is not complete.
Therefore we give a new proof.

Proof. Let C be a Borel set and let φ−1 be measurable (e.g., A,B
Polish, in view of Lemma 2.2.) Then {νt := φ−1(µt)} is a convolution
semigroup in M1(B). We have to prove continuity. It is sufficient to
prove continuity (at 0) of t 7→ 〈νt, f〉 for f ∈ U b(B), U b(B) denoting the
space of bounded right uniformly continuous functions (cf. e.g., [19],
theorem 6.1). Furthermore, it suffices to prove this for f belonging to
a || · ||∞-dense subset of U b(B).

For this purpose we use a method invented in [2], [3]; see also
[27]: Let ρ :=

∫∞
0

e−tµtdt ∈ M1(A) be the resolvent measure. Ob-
viously, ρ(C) = 1. The convolution operators Tµt : f 7→

∫
C
f(x·)dµt(x)

form a continuous operator semigroup on the Banach space L1(C, ρ)
with ||Tµt || ≤ et. Let ρ := φ−1(ρ) ∈ M1(B). Since L1(B, ρ) =
{f ◦ φ : f ∈ L1(C, ρ)}, the convolution operators Tνt form a continu-
ous operator semigroup on L1(B, ρ), again with ||Tνt|| ≤ et. In partic-
ular, this semigroup is weakly continuous, hence for f ∈ L1(B, ρ), in
particular, f ∈ U b, g ∈ L∞(B, ρ) we observe:

t 7→ 〈Tνtf, g〉 =

∫
B

∫
B

f(xy)dνt(x)g(y)dρ(y) (3.1)

=

∫
B

(∫
B

f(xy)g(y)dρ(y)

)
dνt(x) =:

∫
B

hf,g(x)dνt(x)

is continuous. We choose for g an approximative unit: Let, for δ > 0,
gδ = g := c·1Bδ , where Bδ denotes the ball {x : d(x, e) < δ}, d denoting
a left invariant metric, and c := 1/ρ(Bδ). If ε > 0 and δ > 0 such that
|f(xy) − f(x)| < ε for all x and all y ∈ Bδ, then ||f − hf,g||∞ < ε.
Hence {hf,g} is || · ||-dense in U b(B).

Above, in (3.1), we have proved continuity of t 7→ 〈νt, hf,g〉 for all
hf,g, therefore {νt} is a continuous convolution semigroup as asserted.

The last assertion, concerning semistability, is obvious since νt =
φ−1(µt) and τφ = φτ ′. �

Corollary 3.3. a) Let A,B be Polish groups, φ : A→ B a continu-
ous injective homomorphism. Or assume that A and B are metrizable,
that φ(A) is a Borel set and φ−1 is measurable.

Then for all continuous one-parameter groups (x(t))t∈R ⊆ φ(A),
(y(t) := φ−1(x(t)))t∈R is a continuous one-parameter group in A.

b) Applied to the situation in Sections 1 and 2, in particular The-
orem 2.6, we observe: C(τ) resp. C(τ) · H is arc-wise connected iff

C̃(τ) resp. ˜C(τ) ·H shares this property.[[
Apply the above Proposition 3.2 to

{
µt = εx(±t)

}
and ϕ resp. ψ.

]]
For later use we note:
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Proposition 3.4. Let A be a locally compact or Polish group. Let
H,K be compact subgroups, K ⊆ H,K / A. Let {µt} be a continuous
convolution semigroup in M1(A) with idempotent µ0 = ωH . Put νt :=
πK(µt), πK denoting the quotient homomorphism A → A/K. Then
{µt} is uniquely determined by {νt}, and (trivially) vice versa.[[
πK defines a bijection between {λ ∈M1(A) : λ = λ ? ωK = ωK ? λ}

and M1(A/K). Since K ⊆ H and µt ? ωH = ωH ? µt = µt it follows
π−1
K {πK(µt)} = {µt}. (See [12], theorem 1.12.15 for locally compact

groups. A proof for Polish groups is analogous.)
]]

3.1. Application to semistable laws with non-trivial idempo-
tents. Let throughout G be Polish, τ ∈ Aut(G) and 0 < α < 1. Recall
that (τ, α)-semistable continuous convolution semigroups with trivial
idempotents are concentrated on C(τ). And for semistable continuous
convolution semigroups with non-trivial idempotent ωH we have: H
is τ -invariant and the measures are concentrated on CH(τ).

[[
See e.g.,

[10], proposition 3.4.4 for locally compact groups. The proof for non
locally compact groups is analogous. It relies on the existence of Lévy
measures, which is guaranteed e.g., by [24], section 2, remark.

]]
In the following we assume throughout for {µt}

Assumption (1) µt(Λ) = µt(C(τ) ·H) = 1 ∀ t ≥ 0. (3.2)

For (τ, α)-semistable {µt}, and also for non-dissipating random walks
or continuous convolution semigroups, and for semi-self decomposable
continuous convolution semigroups with idempotent ωH , this condition
is satisfied if (G, τ,H) has the decomposition property; in particular
for Lie groups and for totally disconnected locally compact groups.

Thus we obtain the following corollary to Proposition 3.2.

Corollary 3.5. Let G, τ,H be as in Theorem 2.6. Let {µt} be (τ, α)-
semistable inM1(G) with idempotent µ0 = ωH . By Assumption (1) (cf.
(3.2) ) we have: µt(C(τ) · H) = 1 for all t ≥ 0. Then there exists
a Ψ-lifting to a (ρ2, α)-semistable continuous convolution semigroup

{νt = Ψ−1(µt)} in M1( ˜C(τ) ·H).
And analogously, for semi-self decomposable or non-dissipating con-

tinuous convolution semigroups there exist Ψ-liftings toM1( ˜C(τ) ·H).

The following observations will illustrate Assumption (1), (3.2):

Proposition 3.6. Let G be Polish. Let {µt} be a continuous convo-
lution semigroup in M1(G) with µ0 = ωH , let {νt} be a a retract, i.e.
µt = νt ? ωH = ωH ? νt.

a) νt(C(τ)) = 1 for all t ≥ 0 =⇒ µt(C(τ) ·H) = 1 for all t ≥ 0.
b) Assume ν0 = εe. Let η̃ denote the Lévy measure of {νt}. Then

we have: νt(C(τ)) = 1 for all t ≥ 0 iff η̃({C(τ)) = 0.
c) Assume H / G. Put {µt := πH(µt)} (πH denoting the quotient

homomorphism G → G/H). Let η denote the Lévy measure of {µt}.
Then we have: µt(C(τ) ·H) = 1 for all t ≥ 0 iff µt(πH(C(τ))) = 1.
This is the case iff η({(C(τ) ·H)) = 0.

d) Let {µt} be (τ, α)-semistable (hence concentrated on CH(τ)). If
the retract {νt} is (τ, α)-semistable with idempotent ν0 = εe then {µt}
is concentrated on C(τ) ·H.

Proof. a) is obvious since µt = ωH ? νt = νt ? ωH .
b) follows by [27], corollary 4.5.

[[
C(τ) is a measurable subgroup.

]]



INTRINSIC TOPOLOGIES ON CH(τ) 15

c) The investigations in [27] are concerned with continuous convolu-
tion semigroups with trivial idempotents only. Hence in order to apply
these results we have to assume H / G and pass to the quotient group
G/H. G/H is Polish.) Note that η({πH(C(τ) ·H)) = η({πH(C(τ))) =
η({C(τ) · H), η denoting the Lévy measure of {µt}. (By Assumption
(1), CH(τ) = C(τ) ·H, hence πH(CH(τ)) = πH(C(τ)).

d) {νt} is concentrated on C(τ), hence {µt = νt ? ωH} is concentrated
on C(τ) ·H. �

Proposition 3.7. Let C, H, be Polish groups, H compact. Let β :
H → Aut(C) be a homomorphism such that C×H 3 (x, κ) 7→ β(κ)(x) ∈
C is continuous. Define G := C oβ H. Let {µt} ⊆ M1(G) be a contin-
uous convolution semigroup with idempotent ωH .

a) If there exist measures
{
µ†t

}
⊆ M1(C) such that µt = µ†t ⊗ ωH

for all t ≥ 0, then
{
µ†t

}
is a β(H)-invariant continuous convolution

semigroup.

Conversely, if
{
µ†t

}
⊆ M1(C) is a β(H)-invariant continuous con-

volution semigroup, then
{
µt = µ†t ⊗ ωH

}
is a continuous convolution

semigroup in M1(G) with idempotent µ0 = ωH .

In that case,
{
µ†t

}
is uniquely determined by {µt}. In fact, µ†t =

q(µt), where q denotes the projection (x, κ) 7→ x. And furthermore, we

have µ†0 = εe.
b) If ρ ∈ Aut(G) such that H and C are ρ-invariant, then {µt} is

(ρ, α)-semistable iff
{
µ†t

}
is (ρ|C , α)-semistable.

If in a) or b), C and H are considered as subgroups of G, then the

β(H)-invariant continuous convolution semigroup
{
µ†t

}
⊆ M1(G) is

concentrated on C and µ†t ⊗ ωH is identified with µt = µ†t ? ωH .

Proof. a) As immediately verified (and well known), in case of semidi-
rect products we have: Let λ ∈ M1(G). Then λ = λ† ⊗ ωH with
β(H)-invariant λ† ∈ M1(C) iff λ = λ ? ωH = ωH ? λ. (Cf. e.g., [10]

Lemma 3.5.1.) And for such λi = λ†i ⊗ ωH , i = 1, 2, we have:

λ1 ? λ2 = (λ†1 ∗ λ
†
2)⊗ ωH (3.3)

(? and ∗ denoting convolution on G and C respectively.) Whence the
first assertion follows.

Let q : (x, κ) 7→ x denote the projection onto the homogeneous space

C oβ H/H (topologically isomorphic to C), put q(µt) =: µ†t . µt is H-
bi-invariant, i.e., ε(e,κ) ? µt = µt = µt ? ε(e,κ) for all κ ∈ H, whence

β(κ)(µ†t) = µ†t follows, and vice versa. As easily seen, t 7→ µt is weakly

continuous iff t 7→ µ†t is. Furthermore, by (3.3) it follows that
{
µ†t

}
is

a continuous convolution semigroup in M1(C).
b) Let ρ1 := ρ|C and ρ2 = ρ|H . For all κ ∈ H we have

β(ρ2(κ)) ◦ ρ1 = ρ1 ◦ β(κ) (3.4)

and conversely, for any ρ1 ∈ Aut(C), ρ2 ∈ Aut(H) satisfying (3.4) it
follows ρ := ρ1 ⊗ ρ2 ∈ Aut(C oβ H).

Furthermore, ρ2(H) = H yields: µ†αt ⊗ ωH = µαt = ρ(µt) = ρ1(µ†t)⊗
ρ2(ωH) = ρ1(µ†t)⊗ ωH iff ρ1(µ†t) = µ†αt.
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If µt = µ†t ⊗ ωH for all t, in particular, µ0 = ωH = µ†0 ⊗ ωH , then it

follows easily that µ†0 = εe. (Note that, if C and H are considered as
subgroups of G, we have H ∩ C = {e}. ) �

4. Main results

4.1. The case of semidirect products, E = C(τ) ∩ H = {e}. In
that case we obtain in analogy to the Lie group case ([10], proposi-
tion 3.5.2) that (τ, α)-semistable laws on G with (non-trivial) idempo-
tent ωH are uniquely determined by (τ̃ , α)-semistable laws (with trivial

idempotent) on the Polish contractible group C̃(τ). Precisely, we have:

Theorem 4.1. Let, as before, G be a Polish topological group, τ ∈
Aut(G), H a compact τ -invariant subgroup. Assume E := C(τ) ∩
H = {e}. Hence ˜C(τ) ·H = C̃(τ) oβ̃ H =: B is Polish. Let Ψ =

Φ = f ◦ φ : C̃(τ) · H = C̃(τ) oβ̃ H → C(τ) · H and ϕ : C̃(τ) →
C(τ) denote the canonical homomorphisms of the Polish groups B resp.

C̃(τ) onto the measurable subgroups Λ = C(τ) · H ⊆ G resp. onto

C(τ). Let q : B = C̃(τ) oβ̃ H → C̃(τ) denote the projection onto

the homogeneous space: (x, κ) 7→ x. (According to Assumption (1) we
restrict the considerations to Λ−, hence we may assume w.l.o.g. that
Λ = C(τ) ·H is dense in G.)
a) (i) Let {µt} be a continuous convolution semigroup in M1(G)
with idempotent µ0 = ωH , which is concentrated on C(τ) ·H. And let
{νt := Ψ−1(µt)} denote the continuous convolution semigroup on the

Polish group B. Then
{
ν†t := q(νt)

}
is a β̃(H)-invariant continuous

convolution semigroup in M1(C̃(τ)) with trivial idempotent ν0 = εe.

And µt = Ψ
(
ν†t ⊗ ωH

)
= ϕ(ν†t )⊗ ωH , t ≥ 0.

(ii) Conversely, let
{
ν†t

}
be a β̃(H)-invariant continuous convolu-

tion semigroup in M1(C̃(τ)) with idempotent µ†0 = εe. Then {µt :=

Ψ(ν†t ⊗ ωH) = ϕ(ν†t )⊗ ωH
}

is a continuous convolution semigroup in

M1(G) concentrated on C(τ) ·H with idempotent ν0 = ωH .

In either case,
{
ν†t

}
is uniquely determined by {µt} and vice versa.

b) Moreover, {µt} is (τ, α)-semistable on G (and concentrated on

C(τ) ·H, Assumption (1)), iff
{
ν†t

}
is (τ̃ , α)-semistable on C̃(τ) ⊆ B.

Proof. Recall (Proposition 3.7): If νt = ν†t ⊗ ωH for all t, in particular,

ν0 = ωH = ν†0 ⊗ ωH , since H ∩ C̃(τ) = {e}, it follows ν†0 = εe.

(ii) According to Proposition 3.7,
{
ν†t ⊗ ωH = νt

}
is a continuous

convolution semigroup inM1( ˜C(τ) ·H) and Ψ is a continuous bijective
homomorphism onto C(τ) ·H. Whence the assertion follows.

(i) Let {µt} be a continuous convolution semigroup concentrated
on the measurable subgroup C(τ) · H with idempotent ωH . Then
(Proposition 3.2) {νt = Ψ−1(µt)} is a continuous convolution semigroup

in M1( ˜C(τ) ·H) with idempotent ωH . By assumption, ˜C(τ) ·H =

C̃(τ)oβ̃H. Let ν†t denote the projection of νt onto C̃(τ). According to

Proposition 3.7 a), ν†t is uniquely determined, β̃(H)-invariant and we

have νt = ν†t ⊗ ωH , for t ≥ 0.
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As already mentioned, continuity of {νt}, hence, according to Propo-

sition 3.2, continuity of {µt}, is equivalent with continuity of
{
ν†t

}
.

The last assertion b) follows by Proposition 3.7 b). �

Recall that the assumption E = {e} holds if (G, τ,H) has the strong
decomposition property (cf. Remark 1.7). However, in contrast to the
following Theorem 4.2, in the proof of Theorem 4.1 the decomposition
property is not needed.

4.2. The case E = C(τ) ∩H 6= {e}. As already shown in the case of
Lie groups, the situation is less simple if E := C(τ)∩H 6= {e} (cf. e.g.,
[10], theorem 3.5.4). In addition, our results in the general case are
less complete as two further additional conditions are necessary (which
are also satisfied in the Lie group case). These additional assumptions
allow to reduce the problem without loss of information to a quotient
group, for which Theorem 4.1 applies: Again, semistable laws with
nontrivial idempotents are characterized by semistable laws with trivial
idempotents on a Polish contractible group.

To formulate our main results, we need some preparations. Recall
that in 2.3 we introduced notations which will be used in the sequel:
We assume for the rest of this section Assumption (1), (3.2), in addition
E 6= {e}, equivalently, ∆ 6= {e}, moreover

Assumption (2) E /G, (4.1)

thus F,D and D̃ are compact normal subgroups of C(τ) ·H (hence of
G), of A and of B respectively, and furthermore,

Assumption (3) CF (τ) = C(τ) · F. (4.2)

I.e., Assumption (3) is satisfied iff (G, τ, F ) has the decomposition prop-
erty. This is equivalent with CD(ρ1) = C(ρ1) · D, resp. CD̃(ρ2) =

C(ρ2) · D̃ = C̃ · D̃.
[[
In fact, x ∈ CD̃(ρ2) iff LIM{ρ2

k(x)} ⊆ D̃, equiva-
lently, iff Ψ(x) ∈ CF (τ). (LIM denoting the set of accumulation points.)
According to Assumption (3), then we have Ψ(x) ∈ C(τ) · F , whence

x ∈ C̃ · D̃.
]]

We have C(σ) = πD̃(CD̃(ρ2)) ⊇ πD̃(C̃ · D̃) = πD̃(C̃) = C∗.
1. Hence, by Assumption (3) (cf. (4.2)), we have C(σ) = C∗ and

analogously, C = π(CF (τ)) = C(τ), as mentioned in Notations 2.3 4.
2. Under the above assumptions we have: C(τ) ∩ H∗ = {e} (cf.

Notations 2.3, 5.). This allows to reduce the investigations to Theorem
4.1. We obtain, again in analogy to the case of Lie groups (cf. [10],
theorem 3.5.3):

Theorem 4.2. Let G be a Polish topological group, with τ ∈ Aut(G),
and compact, τ -invariant subgroup H. Assume E = C(τ) ∩H 6= {e}.
With the above introduced notations and Assumptions (1), (2), (3) –
again w.l.o.g. G = Λ− – we have:

a) Let {µt} be a continuous convolution semigroup in M1(G) with
idempotent µ0 = ωH concentrated on C(τ) ·H (Assumption (1)). Then
{µt} is uniquely determined by {µt := π(µt)}, thus by

{
λt = Ψ∗−1(µt)

}
⊆ M1(B2). We have C(τ) ∩ H∗ = {e}, hence B2 = C̃(τ) oγ H

∗

= C(τ̃) ·H∗, and therefore Theorem 4.1 applies: Thus {µt} is uniquely

determined by the projection
{
q(λt) := λ

†
t

}
onto C̃(τ), and

{
λ
†
t

}
is a
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γ̃(H∗)-invariant continuous convolution semigroup in M1(C̃(τ)) with
trivial idempotent.

b) And conversely, a γ̃(H∗)-invariant continuous convolution semi-

group
{
λ
†
t

}
in M1(C̃(τ)) with trivial idempotent defines a continuous

convolution semigroup {µt} in M1(G) with idempotent ωH which is
concentrated on C(τ) ·H.

c) In case a) or b) we have:
{
λ
†
t

}
is (τ̃ , α)-semistable iff {µt} is

(τ, α)-semistable.

Proof. The proof runs along the following steps:
1. As mentioned in Proposition 3.4, π : G→ G/F = G induces an iso-
morphism between {λ ∈M1(G) : ωF ? λ = λ ? ωF = λ} and M1(G).
2. As above mentioned, π(C(τ)) = π(CF (τ)) = C(τ), and therefore
π(C(τ) ·H) = π(C(τ)) · π(H) = π(CF (τ)) · π(H) = C(τ) ·H∗.
3. Again mentioned above, C(τ) ∩H∗ = {e}.

Therefore we have the means to finish the proof: According to step
1., {µt} is uniquely determined by {µt := π(µt)}, a continuous convolu-
tion semigroup inM1(G), and step 2. yields that that this continuous
convolution semigroup is concentrated on C(τ) ·H∗, thus uniquely de-

termined by
{
λt = Ψ∗−1(µt)

}
⊆M1(C̃(τ) oγ̃ H

∗).

Applying Theorem 4.1, we obtain that λt = λ
†
t ⊗ ωH∗ , where

{
λ
†
t

}
is a uniquely determined γ̃(H∗)-invariant continuous convolution semi-

group in M1(C̃(τ)).
The proof of the assertions b) and c) runs along the same lines in

view of Proposition 3.7. �

Remarks 4.3. a) In view of Propositions 2.4, 3.2 and Corollary
3.3 there also exist θ- and Ψ- liftings of {µt} to M1(A) and M1(B)
and their projections resp. θ- and Ψ- liftings of {µt} to M1(A1) and
M1(B1) respectively. And again, B1 = C(σ) · K with C(σ) ∩ K =

{e}. But it could not be shown that C(σ) ∼= C̃(τ), hence we had
to use the representation as lifting in M1(B2). But C(σ), C(τ) and

C̃(τ) are Borel isomorphic, and thus the existence of a disintegra-

tion
{
λt = λ

†
t ⊗ ωH∗

}
in M1(B2) implies an analogous disintegration{

ν†t ⊗ ωK
}

inM1(B1). (Since C(σ) = C∗ is complete, according to Re-

mark 1.5, there exists a continuous bijective homomorphism δ : C̃(τ)→
C(σ), hence ν†t = δ(λ

†
t).)

b) Assumptions (1)–(3), (cf. (3.2), (4.1) and (4.2)), are satisfied
for Lie groups G. Indeed, (3.2) and (4.2) follow since then (G, τ) has
the decomposition property for all τ ∈ Aut(G). And (4.1) is proved e.g.,
in [10], 3.2.20. Analogously, for totally disconnected locally compact
groups G, Assumptions (1) and (3) hold true. (Cf. Remark 1.7.)

c) If G is a Lie group the situation is considerably simple ([10],
§ 3.2 II, 3.2 III, § 3.5.): As mentioned (Remark 1.5), C(τ), Γ and

C̃(τ) are nilpotent, connected. (It is easy to reduce the situation to

the case of connected groups, [10], 3.2.8). D, E and Ẽ are connected,

E ⊆ D ⊆ Cent(Γ0) ([10], 3.2.20) and thus Ẽ is a connected subgroup

of the centre of C̃(τ), hence isomorphic to a vector space.
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d) As mentioned in Remark 1.5 g), in the Lie group case, the exis-
tence of a continuous bijective homomorphism yields that the Lie al-
gebras and the simply connected covering groups coincide. Since C∗ is

closed in B1 (cf. Notations 2.3, 4.), δ : C̃(τ) → C∗ is a bijective Lie

group homomorphism and C̃(τ) is simply connected. Thus C̃(τ) ∼= C∗.
Furthermore we note: Let p denote the continuous homomorphism

Λ ⊇ C(τ) → C(τ) ⊆ Λ defined by the restriction p := π|C(τ). Then p
defines a homomorphism of the underlying Lie algebras and hence of

the covering groups, p̃ : C̃(τ)→ C̃(τ). We have ker p = E, ker p̃ = Ẽ.
e) More generally, if we assume F /G (Assumption (2)) and if G

is locally compact and connected, then F ⊆ Cent(G).
[[
[11], (26.10).

]]
Note that, if F ⊆ Cent(G), then β(κ)|F is trivial for all κ ∈ H. This

is in particular the case for connected Lie groups.

The following results enable us to enlarge slightly the class of exam-
ples satisfying our assumptions. Throughout let G be a locally compact
second countable group, τ ∈ Aut(G) and let H,Li, i ≥ 1, be compact
τ -invariant subgroups, such that Li / G and Li ↓ {e}. Assume that
CH(τ) is dense in G, and denote by πi : G→ Gi := G/Li the quotient
homomorphisms and by τi ∈ Aut(Gi) the induced automorphisms. Fi-
nally put Hi := πi(H).

Proposition 4.4. a) CH(τ) =
⋂
i π
−1
i (CHi(τi)), in particular, C(τ) =⋂

i π
−1
i (C(τi)).

b) CH(τ) = C(τ) ·H iff for all i, CHi(τi) = C(τi) ·Hi.
c) E = C(τ) ∩H /G iff for all i, Ei = C(τi) ∩Hi /Gi.[[
a) The proof is analogous to [10], 3.1.22, 3.1.22*.
b) resp. c) follow immediately by a) and the (obvious) representation

H =
⋂
i π
−1
i (Hi).

]]
Corollary 4.5. Let G, τ,H, Li be as above. Assume moreover that
G/Li are Lie groups, i ∈ N. Then Assumption (2) is satisfied and, as
(G, τ) has the decomposition property, also assumption (3). (A partic-
ular case of [20], corollary 4.11.)

Finally we note an induction principle for groups with decomposition
property:

Proposition 4.6. Let G be a locally compact group, τ ∈ Aut(G), and
let H,N be compact τ -invariant subgroups with N ⊆ H and N /G. Let
π : G→ G/N resp. τ ∈ Aut(G/N) denote the quotient homomorphism
resp. the induced automorphism. Then we have:

If (G, τ, N) and (G/N, τ ,H/N) have the decomposition property then
(G, τ,H) shares this property.[[

According to [10], 3.2.3 and by the second assumption we have
CH(τ) = π−1(CH/N(τ)) = π−1(C(τ) ·H/N). Since π−1(C(τ)) = CN(τ),
this equals CN(τ) ·H. By the first assumption, CN(τ) ·H = C(τ) ·N ·
H = C(τ) ·H.

]]
5. Examples

The following examples will illustrate our results:

Example 5.1. An example (G, τ,H) without decomposition property.
(Cf. [17], example 4.1.)
Let T denote the one-dimensional torus, let G =

⊗
Z T endowed with
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the product topology, hence a compact Abelian group. ~x ∈ G is repre-
sented as function Z 3 k 7→ x(k) = e2πiξ(k), −1/2 ≤ ξ(k) < 1/2 (mod 1)
with unit ~e : k 7→ 1. Obviously we have C(τ) = {~x : limn→∞ x(n) = 1}.
H := {~x : x(n) ≡ x(0)} ∼= T is a compact, τ -invariant subgroup, and
we have CH(τ) = {~x : LIM {τn(~x)} ⊆ H} (LIM denotes the set of ac-
cumulation points), and CH(τ) = {~x : ∃~yn ∈ H : τn(~x)~y−1

n → ~e}. Fur-
thermore, C(τ)·H = {~x : limx(n) =: x(∞) exists}. Hence ~x ∈ C(τ)·H
is canonically decomposable as ~x = ~y · ~h with ~y ∈ C(τ), y(n) =

x(n) · x(∞)−1 with y(n)→ 1 and ~h : n 7→ x(∞) (∈ H).
In [17] it is shown that, e.g., for f : n 7→

∑n
1 1/j, the element

~x : n 7→ x(n) := e2πif(n) for n ≥ 1 and x(n) = 1 for n ≤ 0, belongs
to CH(τ)\C(τ) ·H. (As easily seen, we may replace the function f by
n 7→ log n, n ≥ 1.)

Example 5.2. The (intrinsic) topology of C̃(τ). We continue Example
5.1:

Let e.g., ε > 0, U = U ε := {~x : |ξ(0)| < ε}. Then we have:
U(n) =

⋂
k≤n

τ k(U) = {~x : |ξ(−k)| < ε, k ≤ n} = {~x : |ξ(k)| < ε, k ≥ −n},

and Un = U ε
n = {~x : ξ(k)→ 0 and |ξ(k)| < ε, k ≥ −n}.

The finite intersections of {U ε
n} form a neighbourhood basis of the

unit in C̃(τ). With other words, ~xn → ~x in C̃(τ) iff (i) for all n,

ξn(k)
k→∞→ 0 and (ii) ξ(k)

k→∞→ 0, (i.e., ~x, ~xn ∈ C(τ)) and more-

over, (iii) for all N ∈ Z, supk≥N |xn(k) − x(k)| n→∞→ 0, equivalently,

supk≥N |ξn(k)− ξ(k)| n→∞→ 0.

Example 5.3. The (intrinsic) topology of ˜C(τ) ·H.
Note first that in example 5.1, C(τ)∩H = {e}, hence A = C(τ)oβ H

= C(τ) ⊗ H and also B = ˜C(τ) ·H = C̃(τ) ⊗ H (since β and β̃ are
trivial.)

Thus the topology of A is characterized by: ~xm → ~x iff (i) for all

m, xm(k)
k→∞→ xm(∞), (ii) x(k)

k→∞→ x(∞), (iii) for all k, xm(k)
m→∞→

x(k) and (iv) xm(∞)
m→∞→ x(∞).

[[
In fact, with the representations

~xn = ~yn·~hn, ~x = ~y·~h, with ~yn, ~y ∈ C(τ) and ~hn,~h ∈ H we have: ~xn → ~x

iff ~yn → ~y in C(τ) and ~hm → ~h in H, equivalently, xm(∞)→ x(∞).
]]

And analogously, ~xm → ~x in ˜C(τ) ·H iff ~ym → ~y in C̃(τ) (cf. Ex-

ample 5.2) and ~hm → ~h (in H), i.e., xm(∞)→ x(∞).

Example 5.4. Existence of semistable laws concentrated on C(τ).
For all 0 < α < 1 there exist (τ, α)-semistable continuous convolution
semigroups in M1(G) with trivial idempotent, hence concentrated on

C(τ). (And therefore, there exists a semistable lifting to C̃(τ).)
a) Let ~x0 ∈ C(τ) be defined by x0(n) = e2πiξ0(n) with |ξ0(n)| ≤ βn

for some 0 < β <
√
α, and n 7→ |ξ0(n)| decreasing. Put, for N ∈ N,

ηN :=
N∑

k=−∞
α−kτ k((ε~x0 + ε~x−1

0
)/2) and cN := ||ηN || =

∑N
−∞ α

−k. The

measures ηN converge vaguely to a (unbounded) positive measure η on
G\{~e}, which will turn out to be the Lévy measure of a continuous
convolution semigroup. Indeed, we show that the Fourier-transforms
of λN := ηN − cN · ε~e converge to a function f : Z → R:

[[
Let

~k = (k`) ∈ Ĝ =
⊗∗ Z (i.e., k` ∈ Z\{0} finitely often), and 〈~k, ~x〉 =

e2πi
∑
` k`ξ(`). Then λ̂N(~k) =

∑N
−∞ α

−k (cos(2π
∑

` k`ξ(k + k`))− 1) is
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absolutely convergent since | cos(2π
∑

` k`ξ(k+k`))−1| < C1β
2k for suf-

ficiently large k, where C1 is a constant depending on ~k.
]]

Thus etλ̂N →
etf . And therefore there exists a continuous convolution semigroup {µt}
with trivial idempotent and Lévy measure η such that µ

(N)
t → µt, where

µ
(N)
t := exp tλN .
Furthermore, τ(ηN) = α · ηN+1, for all N , yields τ(µt) = µαt, t ≥ 0.
b) A further example proving existence of semistable laws is con-

structed as follows: Let σ ∈ M1(T) be symmetric. σ is considered as
probability supported by T0 ⊆

⊗
k Tk (with Tk ∼= T for all k). Let,

for 0 < α < 1, η :=
∑∞
−∞ α

−kτ k(σ), and again as in a), λN :=∑N
−∞ α

−j (τ j(σ)− ε~e). For ~k ∈ Ĝ, put τ ∗(~k) : ` 7→ k`+1. Then

λ̂N(~k) =
∑N
−∞ α

−j
(
σ̂(τ ∗j(~k))− 1

)
. Obviously the Fourier-transforms

of λN converge for all ~k ∈ Ĝ (since we have only a finite number of
non-zero summands). Hence the limit generates a continuous convolu-
tion semigroup {µt}. Note that in this example, the measures µt are

infinite convolution products, µt = ?
k∈Z

exp tα−k
(
τ k(σ)− εe

)
with fac-

tors concentrated on Tk.
As above, it follows easily that τ(λN) = α · λN+1, hence {µt} is

semistable.

Example 5.5. Existence of semistable laws with idempotent ωH con-
centrated on C(τ) ·H.

Let {µt} be defined as in Example 5.4 (with trivial idempotent). Then
{νt := µt ? ωH} is a suitable (τ, α)-semistable continuous convolution
semigroup concentrated on C(τ) ·H. (Cf. Proposition 3.6 a)).

The next example shows that the situation E 6= {e}may appear, and
moreover, it shows that the results of Theorem 4.2 can not essentially
be improved: The construction there is rather complicated, at the first
glance one could expect to find a characterization of (τ, α)-semistable
continuous convolution semigroups {µt} with non-trivial idempotents

by semistable laws on C̃(τ) (avoiding the projections πD and πD̃). I.e.,

to find a (τ̃ , α)-semistable continuous convolution semigroup
{ ◦
νt

}
⊆

M1(C̃(τ)) with µt = ϕ(
◦
νt) ? ωH . If so, we had a bijective mapping T :{ ◦

νt

}
7→ {µt} 7→

{
ν†t

}
, to a (τ̃ , α)-semistable continuous convolution

semigroup
{
ν†t

}
in M1(C̃(τ)). The mapping T : (

{ ◦
νt

}
) 7→

{
ν†t

}
, is

induced by a homomorphism p̃ : C̃(τ)→ C̃(τ). By construction, C̃(τ)

and C̃(τ) are the covering groups of C(τ) and C(τ):

Example 5.6. We sketch a counter-example, the details are found
(with slightly different notations) e.g., in [9], [10], example 3.5.6.

Let G = T4 ( a Lie group, hence satisfying Assumptions (1), (2) and
(3)). Define τ : (z1, z2, z3, z4) 7→ (z2z3, z1z2z4, z4, z3z4) and H := T2 ×
{1} × {1} ∼= T2. Then we have: C(τ) = {(eis, eias, eit, eiat) : s, t ∈ R}
with a = (1 −

√
5)/2. Furthermore, CH(τ) = T2 × {(eis, eias) : s ∈ R}

= C(τ) · H. Hence E = H ∩ C(τ) = {(eis, eias) : s ∈ R} × {1} × {1}
and thus F = D = H.

We have C̃(τ) ∼= R2, ϕ(s, t) = (eis, eias, eit, eiat), and it can be shown
that τ̃ is the linear operator (s, t) 7→ (s+ at, at).
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Applying π (= πD = πH in our case) we obtain: G ∼= T2, and

τ : (z1, z2) 7→ (z2, z1z2). Therefore, C̃(τ) ∼= R, τ̃ is the homothetical
transformation t 7→ a · t, and we have ϕ∗ = Ψ∗|C̃(τ) : t 7→ (eit, eiat) ∈ G.

Furthermore, Ẽ = ϕ−1(E) = ϕ−1({(eis, eias, 1, 1) : s ∈ R}) = {(s, 0)},
Ẽ ∼= R. The projection p̃ : C̃(τ) → C̃(τ), is given by (s, t) 7→ (0, t),

hence ker p̃ = Ẽ and ϕ∗p̃ = πϕ. (Cf. Remark 4.3, d).)
(1) It is not surprising that the afore defined mapping T is not in-

jective: If
{ ◦
νt

}
is a continuous convolution semigroup concentrated on

the τ̃ -invariant subspace Ẽ = ker p̃, then we obtain ν†t ≡ εe and thus
ν†t ≡ εe.

(2) T is not surjective (for semistable laws): Let
{
ν†t

}
be Gaussian

on R, hence (τ̃ , α)-semistable. Assume that
{ ◦
νt

}
is (τ̃ , α)-semistable

on R2 and p̃(
◦
νt) = ν†t . Then

◦
νt has a non-trivial Gaussian part. Since

the only τ̃ -invariant subspaces are Ẽ = ker p̃ and R2,
◦
νt must be full

Gaussian. But a full Gaussian law on R2 cannot be (τ̃ , α)-semistable
for the particular operator τ̃ , a contradiction.

The next example shows that in general C̃(τ) 6∼= C̃:

Example 5.7. Let G = T4 and τ as in Example 5.6. We have
A = C(τ) ⊗ H = {(eis, eias, eit, eiat, u, v) : s, t ∈ R, u, v ∈ T}, and

B = C̃(τ) ⊗ H = {(s, t, u, v) : s, t ∈ R, u, v ∈ T} ∼= R2 ⊗ T2.
Furthermore, ∆ = {(eis, eias, 1, 1, e−is, e−ias) : s ∈ R} (closed in A)

and ∆̃ = {(s, 0, e−is, e−ias) : s ∈ R} (closed in B). Hence A =
A/∆ = {(1, 1, eit, eiat, x, y) : t ∈ R, x, y ∈ T} and B = B/∆ =
{(0, t, x, y) : t ∈ R, x, y ∈ T} = R ⊗ T2, a Polish group. Finally,

C̃ = π∆̃(C̃(τ) ⊗ {e}) = {(0, t, eis, eias) : s, t ∈ R} (not closed in

B). (Note that (C̃(τ) ⊗ {e}) · ∆̃ =
{

(s, t, 1, 1)(s′, 0, e−is
′
, e−ias

′
)
}

={
(s+ s′, t, e−is

′
, e−ias

′
) : s, t, s′ ∈ R

}
is not closed in B.)

Hence h : R2 ∼= C̃(τ)→ C̃ is not an isomorphism.

The construction of the intrinsic topologies could be simplified if
the groups Λ and A (in case E = {e}) resp. A (in case E 6= {e})
were identified, and f resp. θ were replaced by id. However, even
for semi-direct products, the product map C oH → C ·H is bijective,
continuous, but in general not open, hence the inverse is not continuous:

Example 5.8. Choose G = T4 and C := {(eit, eiat, eis, eias) : s, t ∈ R}
as in Example 5.6. The subgroup K := {(u, u, v, v) : u, v ∈ T} (∼= T2)
is compact, C ∩K = {e} and C ·K = T4. But the topology of T4 and
that of C ⊗K are not identical since C is not closed in T4.

Conjectures and problems
1.) Do there exist examples of semistable laws on groups, hence con-
centrated on CH(τ), but µt(C(τ) · H) 6= 1?

[[
The methods of Ex-

ample 5.4 a) do not work in that case: Let ξn = log(n)(mod 1),
~x1 : n 7→ e2πiξ(n) and define ηN , λN as before, in Example 5.4 a), re-

placing ~x0 by ~x1 (with ~x1 ∈ CH(τ)\C(τ) ·H). However, then λ̂N(~k) is

not convergent for all ~k ∈ Ĝ/H, i.e., for ~k with
∑
k` = 0.

]]
2.) Is C∗ ∼= C̃(τ) (and hence B2

∼= B1) true also for non-Lie groups?[[
For Lie groups cf. Remarks 4.3. E.g., with the notations of Example
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5.6, 5.7, we obtain: D ∼= H ∼= D̃ = {(0, 0, x, y) : x, y ∈ T}. Hence

C∗ = πD̃(C̃) = {(0, t, e−is, e−ias) : t, s ∈ R}/D̃ ∼= R ∼= C̃(τ).
]]

3.) Do we have E /G also for non-Lie groups?

4.) Do there exist characterizations of the intrinsic topology ˜C(τ) ·H
similar to Theorem 2.6 e) (but less complicated)?
5.) Find examples of locally compact totally disconnected groups G
with CH(τ) = C(τ) · H and C(τ) ∩ H 6= {e} (in particular, C(τ) not
closed).
6.) Find characterizations of (non-compact) locally compact groups
G = CH(τ)− (hence G = CK(τ) for some K ⊇ H) such that (G, τ)
fails to have the decomposition property.

[[
As mentioned in Remark 1.7,

[20], proposition 4.5, theorem 4.4 and corollary 4.11 contain sufficient
conditions for (G, τ) to have the decomposition property. This is the
case e.g., if G is locally compact, and possesses compact τ -invariant
normal subgroups Li with

⋂
Li = {e}, such that Li ⊆ G0 and G0/Li

is a Lie group. But in example 4.10 it is shown that these conditions
are not necessary.

]]
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[3] Byczkovski,T., Żak, T.: Decomposition of convolution semigroups of prob-
ability measures on groups. In: Probability Measures on Groups VII, Pro-
ceedings Oberwolfach (1983). H. Heyer, ed. Lecture Notes Math. 1064, 23–35
(1984)

[4] Ellis, R.: Locally compact transformation groups. Duke Math. J. 24, 119–126
(1957)

[5] Dani, S.G., Shah, R.: Contraction subgroups and semistable measures on
p-adic Lie groups. Math. Proc. Camb. Phil. Soc. 110, 299–306 (1991)
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