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Abstract

We present a novel approach in machine learning
by combining naive Bayes classifiers with tree
kernels. Tree kernel methods produce promising
results in machine learning tasks containing tree-
structured attribute values. These kernel methods
are used to compare two tree-structured attribute
values recursively. Up to now tree kernels are
only used in kernel machines like Support Vector
Machines or Perceptrons.

In this paper, we show that tree kernels can be
utilized in a naive Bayes classifier enabling the
classifier to handle tree-structured values. We
evaluate our approach on three datasets contain-
ing tree-structured values. We show that our
approach using tree-structures delivers signifi-
cantly better results in contrast to approaches us-
ing non-structured (flat) features extracted from
the tree. Additionally, we show that our approach
is significantly faster than comparable kernel ma-
chines in several settings which makes it more
useful in resource-aware settings like mobile de-
vices.

Naive Bayes Classifier; Tree Kernel; Lazy Learning;
Tree-structured Values

1 Introduction

Naive Bayes classifiers are well-known machine learn-
ing techniques. Based on the Bayes theorem the naive
Bayes classifiers deliver very good results for many ma-
chine learning tasks in practical use.

Many machine learning techniques like Support Vector Ma-
chines (SVMs) or Decision Trees, for instance, are suf-
fering from a complex training phase. Naive Bayes clas-
sifiers do not have this disadvantage because the train-
ing phase just consists of storing the training data ef-
ficiently. In this way a naive Bayes classifier memo-
rizes the training data by calculating probabilities using
the observed values of the training data. Machine learn-
ing techniques which memorize the training data instead
of creating an optimized decision model are called lazy
learners. In contrast to lazy learners like k-NN, for in-
stance, naive Bayes classifiers do not memorize the com-
plete training data. Nevertheless, naive Bayes classifiers
create a condensed set of the training data which is not
optimized. Although, naive Bayes classifiers are not op-
timized, they deliver good results. Their ability to de-
liver good results while not needing exhaustive training

makes naive Bayes classifiers to be preferred in resource-
aware settings like mobile devices [Fricke er al., 2010;
Morik et al., 2010].

Unfortunately, memorizing specially shaped attribute
values is not as trivial as it is for numerical or nominal at-
tribute values. Tree-structured values for instance are fre-
quently occurring in natural language processing or doc-
ument classification tasks. Figure 1 shows a constituent
parse tree of a sentence. This structured attribute might be
helpful to detect and classify relations in this sentence. But
it is not useful to store all trees seen in the training set. On
the one hand the storage needs are too high, and on the
other hand it is very unlikely that an exactly equal tree oc-
curs in training and test phase.
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Figure 1: A constituent parse tree

Tree kernels (see Section 3) allow a more flexible cal-
culation of similarities for trees. Current machine learning
approaches which respect tree-structured attribute types by
using tree kernels are based on kernel machines. Suffering
from relatively complex training, these techniques are not
useful in resource-aware settings like mobile devices, for
instance. Our contribution in this paper is threefold: we
show how to embed tree kernels into naive Bayes classi-
fiers. We present many options to handle the tree kernel
values in a naive Bayes classifier, and we evaluate our tree
kernel naive Bayes approach on three real-world datasets.

We will present already existing related work in this field
of research in Section 2. Section 3 describes the handling
of tree-structured values by using special kernels in kernel
methods. In Section 4 we will show how a naive Bayes
classifier is working. And in Section 5 we will show how
to efficiently embed tree kernels in a naive Bayes classifier.
In Section 6 we will demonstrate the experiments we made
on three datasets containing tree-structured attribute values.
Section 7 sums up our paper.



2 Related Work

To the best of our knowledge tree kernels never have been
embedded in naive Bayes classifiers before. In the follow-
ing we will show in which domains tree kernels have been
used in SVMs to solve many diverse problems.

Tree kernels are very popular in relation extraction
[Zhang et al., 2006; Zhou et al., 2007; Nguyen et al., 2009].
Pairs of named entities are representing relation candidates
which have to be classified by machine learning techniques.
Tree kernels are used in this task to evaluate the parse tree
structure spanning the context of both entities in the corre-
sponding sentence. [Bloehdorn and Moschitti, 2007] have
used tree kernels for text classification. They tested their
approach on question classification and clinical free text
analysis. Both are tasks which have formerly mostly been
processed by using the bag of word (BOW) representation.
BOW is a representation which destroys the structure of the
text, and machine learning methods cannot benefit from the
structure anymore.

In addition, tree kernels have been used addressing an-
other interesting and currently popular topic: sentiment
analysis [Jiang er al., 2010]. Like for relation extraction
two entities were used for this approach. The first entity is
an opinion and the second entity is a product. The parse
tree spanning the context of both entities is used to clas-
sify the corresponding pair. [Moschitti and Basili, 2006]
used tree kernels for question answering. [Bockermann et
al., 2009] used tree kernels to classify SQL-requests. The
SQL-requests were parsed to get an SQL-tree which can be
used for classifying those requests.

But SVMs are not the only machine learning technique
tree kernels were used in. [Aiolli ef al., 2007] showed that
tree kernels can be efficiently embedded into perceptrons
which can be used for online-learning.

3 Tree Kernels

Tree kernels are creating a mapping of examples into a tree
kernel space providing a kernel function to compute the in-
ner product of two tree elements. Tree kernels offer some
sort of distance measure for trees delivering a real valued
output given two trees. The usage of tree kernel meth-
ods delivers best results in classification tasks offering tree-
structured values like relational learning [Zhou et al., 2007,
Zhang et al., 2006].

The work of [Zhou et al., 2007; Zhang et al., 2006] is
based on the convolution kernel presented by [Haussler,
1999] for discrete structures. To make the structural in-
formation of a parse tree applicable by a machine learning
technique a kernel for the comparison of two parse trees is
used. This kernel compares two parse trees and delivers a
real-valued number which can be used by machine learn-
ing techniques. [Collins and Duffy, 2001] define a treek-
ernel as written in eq. (1), where 7} and 7% are trees. Ny
and N5 are the amounts of nodes of 17 and 75. Each node
n of a tree is the root of a (smaller) subtree of the origi-
nal tree. Igypiree, () is an indicator-function that returns 1
if the root of subtree ¢ is at node n. F is the amount of all
subtrees which are apparent in the trees of the training data.
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Creating the amount F is very complex. The question
arises, if the computation of the eq. 1 could be done more
efficiently. Instead of summing over the complete amount
of subtrees F C(n1,n2) is used in eq. 2. C(nq,ng) repre-
sents the number of common subtrees at node n; and ns.
The number of common subtrees finally represents a syn-
tactic similarity measure and can be calculated recursively
starting at the leaf nodes in O(|N1||N2|). Summing over
both trees ends up in a runtime of O((| Ny || Nz|)?).

During this recursive calculation three cases are being
respected:

1. If the productions at n; and no are different,
C (nl, ’I”LQ) =0

2. If the productions at n; and ns are the same and if n;
and ns are preterminals, C'(ny,ng) = 1

3. Else if the productions at n; and ns are the same and if
ny and ns are not preterminals, C'(ny, ng) = Hj(U +
C(ny,,ng,)), where ny is the j-th children of n; (in
a uniform manner for ny) and o € {1, 0}.

The o-value is used to switch between the subset tree
kernel (SST) [Collins and Duffy, 2001; ?] and the subtree
kernel (ST) [Vishwanathan and Smola, 2002; ?]. By using
o = 1 the SST is calculated, whereas for 0 = 0 the ST is
calculated. Trees containing few nodes by definition only
result in small kernel-outputs. In contrast, larger trees can
achieve larger kernel-outputs. To avoid this bias, [Collins
and Duffy, 2001] established a scaling factor 0 < A <
1 which is used in two of the three cases for the kernel
calculation:

2. If the productions at nq and no are the same and if nq
and nq are preterminals, C'(nq,ng) = A

3. Else if the productions at n; and no are the same
and if ny and no are not preterminals, C'(ny,ng) =

A (Hj(a+0(n1j,n2j))).

4 Naive Bayes Classifier

The naive Bayes classifier (NBC) [Hastie et al., 2003] as-
signs labels y € Y to examples x € X. Each exam-
ple is a vector of m attributes written here as x;, where
i € {1,...,m}. The probability of a label given an ex-
ample according to the Bayes Theorem is shown in eq.
(4). Domingos and Pazzani [Domingos and Pazzani, 1996]
rewrite eq. (4) by assuming that the attributes are indepen-
dent given the category (Bayes assumption). They define
the Simple Bayes Classifier (SBC) shown in eq. (5). The
classifier delivers the most probable class y € Y for a given
example X = z1, ..., Z,,, formally described in eq. (5).
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The term p (21, ..., Z,,) can be neglected in eq. (5) be-
cause it is a constant for every class y € Y. The de-
cision for the most probable class y for a given example
x just depends on p(y) and p (x;|y) for i € {1,...,m}.
One is using the expected values for the probabilities cal-
culated on the training data. The values can be calculated
after one run on the training data. The training runtime
is O(n), where n is the number of examples in the train-
ing set. The number of probabilities to be stored during



training are |Y'| + (Z;nzl | X J||Y|) for nominal attributes,

where |Y'| is the number of classes and |X| is the num-
ber of different values of the jth attribute. If the attributes
are numerical, just a value for mean and standard deviation
have to be stored resulting in O (m|Y]) probabilities.

Most implementations of naive Bayes classifiers deliver
the class y which results in the greatest outcome for eq.
(5) for a given example x. It is not stringently required
to use values between 0 and 1. This becomes important
in Section 5.3. It has often been shown that SBC or NBC
perform quite well for many data mining tasks [Domingos
and Pazzani, 1996; Huang et al., 2003].

5 Tree Kernel Naive Bayes Classifier

In Section 4 it became clear that the important parameters
for the naive Bayes classifier are p(y) and p (x;|y). p(y) is
not affected by attribute-values and therefore is not affected
by tree-structured attributes, too. p (z;|y) is the crucial pa-
rameter which should be regarded in the following. We
distinguish three types of attribute value types: nominal,
numerical and tree-structured value types.

For nominal attribute value types z;, p (z;|y) is calcu-
lated by simply counting the occurrences of the particular
values of x; for each class y € Y. For numerical attribute
value types x;, the mean (u;) and the standard-deviation
(0;) of the attribute are used to calculate the probability
density function for every class y € Y as seen in eq. (6). A
Gaussian normal distribution is expected, here.

(@ily) = e 2 (5)° ©®
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The calculation of the probability for tree-structured at-
tribute values is not that trivial. A simple approach would
be just to store each unique tree-structured value and count
its occurrences like for nominal attributes. But this ap-
proach is not promising as it is too coarse. It is not very
probable that many examples are containing exactly the
same tree-structured value. We are presenting a more flex-
ible approach which uses tree kernels for the calculation
of the conditional probabilities p (z;|y) for tree-structured
attribute values:

If an attribute z; is tree-structured the tree kernel-value
vy, for class y is calculated by applying a tree kernel on x;
and on every tree-structure x; been seen in the training-set
S together with class y as shown in eq. (7).

vy = fy(@i) = Z

zyex!|(x',y)ES,y =y

K(zs,z;) (1)

This value could be used like every numerical value (see
Section 5.2). To calculate this sum of kernel calculations
all the tree-structures which have been seen in the train-
ing set have to be taken into account. But storing every
tree-structure ever seen in the training-phase on its own
in a list for instance has two major drawbacks: The stor-
age needs and the numbers of kernel calculations are very
high. To lower the storage needs and the number of kernel-
calculations we use the approach presented by [Aiolli er
al., 2007] to store all tree-structured values in a compressed
manner.

5.1 Efficient tree access

A minimal directed acyclic graph (DAG) containing a
minimal number of vertices is used to store all the tree-
structures, having seen in the training set for a particular

attribute and class, together. This leads to an amount of
|Y'| DAGs, where |Y'| is the number of classes. The DAG
G = (V,E) contains a set of vertices V' consisting of a
label on the one hand and a frequency value on the other
hand. And the DAG contains a set of directed edges F
connecting some of the vertices.

Figure 2 shows three trees which might occur during
training for a specific class. A DAG containing all infor-
mation being existent in these trees is shown in Figure 3.
The algorithm to create a minimal DAG out of multiple
trees is given in Algorithm ??. This algorithm converts ev-

Algorithm 1 Creating a minimal DAG out of a forest of
trees by [Aiolli et al., 2007]

1: procedure CREATE MINIMAL DAG( A TREE FOREST
F = Lijqy ooy Ly )

2 Initialize an empty DAG D

3 for int j=1;5 <=n;j++ do

4: vertex_list <— invTopOrder(z;,)

5: for all v evertex_list do

6: if Ju € D|dag(u) = dag(v) then

7 Fu)+ = f(v)

8 else

9 add node w to D with I(w) = I(v) and
Fw) = f(v

10 for all ch;[v] do

11: add arc (w,¢;) to D where ¢; €
Nodes(D)

12: and dag(c;) = dag(ch;[v])

13: end for

14: end if

15: end for

16: end for

17: Return D
18: end procedure

ery tree into its inverse topological ordered list of vertices.
The first elements of the list are vertices with zero outde-
gree. After that vertices containing at most children with
zero outdegree are contained in the list, and so on. The ver-
tices are formally sorted in ascending order by the length
of the longest path from each vertex to a leaf. The tree
shown in Figure 2 a) becomes list {D, E, F, B,C, A}, the
tree shown in Figure 2 b) becomes {D, E, B, F, A}, and
finally, the tree shown in Figure 2 c) becomes { B, F, A}.

After that, the lists are processed and for every vertex it
will be checked if it is already existent in the DAG or if
it is not. The formalism dag(u) = dag(v) checks wether
the DAG rooted at vertex w is equivalent to the DAG rooted
at vertex v. If a particular (sub-) DAG already is avail-
able in the DAG the frequency of the corresponding root
node in the DAG is raised by the frequency of the ver-
tex to be inserted. Otherwise, a node containing label and
frequency of the vertex is created in the DAG. After that
all the corresponding children of the new node are con-
nected by edges. The fact, that the vertices of the trees
are sorted is very important because it is guaranteed that
the children of a newly created node are already present
in a DAG (if the created node has any). Using this DAG
to store all tree-structured values avoids the calculation of
a sum of kernel-calculations. One kernel value v, now is
calculated for each class resulting in just |Y| kernel calcu-
lations: vy = fy(z;) = K(x;, Dy)

A DAG is handled like a tree in the tree kernel calcula-
tion (see Section 3). There is just one difference: instead of
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Figure 2: Three tree-structures
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Figure 3: A DAG containing the information given by the
tree-structures shown in Fig. 2

calculating C'(nq, ny) we calculate C’(ny, ny), where no is
a vertex of a DAG.

1. If the productions at n; and no are different,
C’(nl, 712) =0

2. If the productions at n; and ns are the same and if n;
and ny are preterminals, C’(ny,n2) = A

3. Else if the productions at n; and no are the same
and if ny and ny are not preterminals, C'(ny,ng) =

M (I1 (o + freq,,, (C(m,,m2,)) ).

C (nlj , TLQ].) in the last item of the enumeration, again, is
the recursive calculation of C'(ny,, ng;) as already used in
Section 3. Our approach is different from the one presented
by [Aiolli et al., 2007] because they used the DAG repre-
sentation inside of a perceptron. The perceptron is a binary
machine learning method and therefore cannot be used for
multi-class problems, easily. Our approach is directly us-
able for multi-class problems. [Aiolli et al., 2007] are using
just one DAG in a binary setting. The trees of the nega-
tive class are put into the DAG using a negative frequency,
and trees of the positive class are put into the DAG using
a positive frequency. This makes the DAG decide wether
an example is of the negative class or of the positive class.
Our approach would use two DAGs in a binary setting.

5.2 Calculation of probabilities using
kernel-values

Tree kernel values are real-valued. The question arises if
these values can be used like every other numerical at-
tribute value for the calculation of the conditional proba-
bilities in the naive Bayes classifier. Eq. (6) shows the
calculation of the probability for an attribute value x; given
a particular class y € Y by using the mean and the standard
deviation of the attribute in the training dataset. Using this
approach for tree kernel values has a certain shortcoming.
Unfortunately, to calculate the mean and standard deviation
of the tree kernel values during training, it is necessary to
calculate the kernel values for each example in the train-
ing set using the DAG which is used during the prediction

phase, too. This means that our approach has to perform
one run over the training set previously, to create all min-
imal DAGs. After that, another run over the training set
is needed to calculate the kernel values on the training set
which are needed to calculate mean and standard devia-
tion. We will evaluate if it is useful to handle tree kernel
outcomes like numerical attribute values in this context.

Algorithm 2 Tree kernel naive Bayes classifier prediction

1: procedure TREE KERNEL NAIVE BAYES PREDIC-
TION( X )

2 for all z; € xdo

3 for all possible y € Y do

4 if x; is numerical or nominal then
5: calculate probabilities p(x;|y)
6.
7
8

else
if x; is tree-structured then
calculate tree kernel-value v,

' fy(@i) = K2, Dy)

9: calculate the probability p(x;|y) us-
ing v,
10: end if
11: end if
12: end for
13: end for
14: deliver arg max, p(y) H;"Zl p(xjly)

: end procedure

5.3 Pseudo-probabilities using kernel-values

Algorithm 2 shows our approach of a tree kernel naive
Bayes classifier after being trained. Line 9 has to be re-
placed by Eq. (6) in order to calculate the probability by
expecting a Gaussian normal distribution. The calculation
of the mean and standard deviation of the tree kernel-values
is very time consuming because the tree kernel has to be ap-
plied on every example of the training set with each DAG.
This results in n|Y| kernel calculations, where n is the
number of examples in the training set. We try to overcome
this computational complexity by not calculating the mean
and standard deviation of the tree-structured values. We
are using various normalization methods to create pseudo-
probabilities which are used like probabilities in case of
predictions in the classifier, directly. These values are not
between 0 and 1, of necessity. We are replacing the calcu-
lation of the probability in line 9 of Algorithm 2 by vari-
ous normalization methods. In this paper, we present six
normalization methods which are finally evaluated on three
real-world datasets:

none: The calculated tree kernel value v, is used directly
as a probability

p(xily) = vy



normalize by DAG frequency: The calculated tree kernel
value v, is normalized by the sum of all frequencies con-
tained in the DAG D,, for class y

Uy

fregp,

p(zily) =

normalize by tree number: The calculated tree kernel
value v, is normalized by the number of trees contained
in the DAG D,, for class y
v
plaily) = ——
reesp,
normalize by maximum: The calculated tree kernel value
vy is normalized by the maximum value calculated on the
training set by the DAG D, for class y

Yy
maz{vy|j € {1,...,]S|}}
normalize by all: The calculated tree kernel value v, is

normalized by the sum of the values calculated on the train-
ing set by the DAG D,, for class y

p(xily) =

v
p(xily) = Siy

le:‘l vy
normalize by treesize: The calculated tree kernel value v,
is normalized by the fraction of DAG frequency and tree
number for class y

_ Uy

p(zily) = W

treesDy

normalize by example number: The calculated tree ker-
nel value v,, is normalized by the number of examples given
for the particular class

Uy
x,y') € S|y =y}

p(zily) = I

6 Experiments

In the following we evaluated our method on three real-
world datasets containing tree-structured values. We im-
plemented the presented naive Bayes tree kernel approach
for the opensource datamining toolbox RapidMiner [Mier-
swa ef al., 2006]. The state-of-the-art and mostly used im-
plementation of tree kernels in SVMs is the tree kernel im-
plementation of Moschitti' which is using the SV M!#9ht.
implementation of Joachims [Joachims, 1999]. To show
the competitiveness of our approach, we compared the run-
time of our approach with the runtime of the tree kernel
implementation of Moschitti. The runtime presented in Ta-
ble 1 is measured for a ten-fold cross-validation over the
complete dataset. Table 2 contains measured values for a
five-fold cross-validation on a 10% sample of the dataset.
Although, the tree kernel naive Bayes approach is faster the
true gain in case of runtime can not be evaluated because
our approach is implemented in Java and the SV M9t is
implemented in C.

6.1 Syskill and Webert Web Page Ratings

The first dataset Syskill and Webert Web Page Ratings (SW)
is available at the UCI machine learning repository [Frank
and Asuncion, 2011]. The dataset originally was used to

'http://disi.unitn.it/moschitti/
Tree—-Kernel.htm

learn user preferences. It contains websites of four do-
mains, and user ratings on the particular websites are given.
We will just focus on the classification of the four do-
mains. We parsed the websites for the construction of a
tree-structured attribute value for each website by using a
html-parser®. Unfortunately, the leafs of the resulting html-
tree contain huge text fragments in some extent. We con-
verted every leaf which contains text into a leaf containing
just the word ’leaf” have only structured information. Un-
fortunately, the trees still were too huge to be processed
by the tree kernel implementation of Moschitti which is re-
stricted to smaller trees in the origin implementation. An
analysis of the trees showed that many equally shaped sub-
trees are contained many times in the trees. We pruned the
trees by a very trivial heuristic which just deletes equally
shaped subtrees in the trees. A tree which is processed in
this way just contains unique subtrees. Using this heuris-
tic shortens the trees making them applicable by the tree
kernel implementation of Moschitti.

To compare our approach to traditional naive Bayes clas-
sifiers we converted the string representation® of the trees
into its BOW representation containing the corresponding
TF-IDF values. We split the string representation by us-
ing spaces and brackets for splitting. In addition, we used
the two-grams of this splitted representation as features.
This preprocessing finally resulted in 445 attributes includ-
ing the tree containing attribute. The dataset contains 341
examples of four classes. 136 examples belong to class
BioMedical, 61 to class Bands, 64 to class Goats and fi-
nally, 70 examples belong to class Sheep.

We made a grid-parameter-optimization just by using
the tree containing attribute to analyze the best parameter-
setting for the tree kernel naive Bayes approach. We used
all seven possible normalization methods. We used o-
values of 0 and 1. We used 21 different \-values between
0.1 and 107, and in half of the settings we handled the ker-
nel values like numerical values expecting a Gaussian nor-
mal distribution. On the other half of the settings we ex-
pected no gaussian normal distribution and used the (nor-
malized) values directly. This setup results in 588 individ-
ual experiment-settings. Each of this setting is evaluated
by a ten-fold cross validation. Figure 4 shows the visual-
ization of four of the seven normalization methods. The
plots of the missing normalizations are comparable to the
plots of Figure 4 a) and c) and they are missing because of
space limitations.

The original tree kernel is restricted to A-values of 0 <
A < 1. But for the tree kernel naive Bayes approach A-
values greater than 1 are delivering the best results. An-
other interesting fact is that using the kernel values directly
as probabilities — without expecting a normal Gaussian dis-
tribution and without normalization — nearly delivers the
best results. This is remarkable because expecting a nor-
mal Gaussian distribution means to calculate the mean and
standard deviation after the construction of the DAGs. Not
calculating the mean and standard deviation for the train-
ing set results in a more ordinary calculation and finally a
better runtime (see Table ??).

It is remarkable that using tree kernel values like numer-
ical attributes by expecting a Gaussian normal distribution

http://htmlparser.sourceforge.net

3The string representation of the tree shown in Figure 1 is:
(ROOT (S (NP (NNP John)) (VP (VBD went) (PP (TO to) (NP
(NNP New) (NNP York))) (S (VP (TO to) (VP (VB visit) (NP (NP
(DT the) (NN statue)) (PP (IN of) (NP (NN liberty)))))))) (. .)))
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Figure 4: Optimization experiments for SW

achieves the worst performance. A reason for this could be
outliers contained in the training data. If a tree-structured
value contained in the training data delivers a huge tree ker-
nel output the mean and standard deviation might not be
correct for later use. Unfortunately, finding outliers in tree-
structured attributes is not trivial as first of all, the DAGs
have to be constructed. After that all kernel-values have to
be calculated. If there are any outliers found, they have to
be removed from the DAGs, or the DAGs have to be recon-
structed. This is a topic for future work. Another argument
for outliers to be contained in the training data is visible
in Figure 4 b) and d). It delivers bad results to normalize
the tree kernel outcome using the maximum and the sum of
the kernel outcomes of the training phase. Outliers could
create huge kernel-outcomes which cannot be used for nor-

malization during prediction. We extracted the best param-
eter setting for the tree kernel naive Bayes approach using
the tree and the BOW features together, too. After that we
used the best settings to evaluate the performance of our ap-
proach. Table 1 shows the performances (and the standard
deviation) concerning accuracy, recall and precision. Those
values have been evaluated using a loop of 100 ten-fold
cross-validations for the naive Bayes and tree kernel naive
Bayes approaches. The tree kernel SVM just were evalu-
ated on a ten-fold cross-validation. The results presented
for the tree kernel SVM are not statistically significant be-
cause we just made one ten-fold cross-validation. But the
results show that our naive Bayes tree kernel approach de-
livers comparable performance in combination with much
shorter runtime, at least.

Using an analysis of variance (ANOVA) test it becomes
apparent that using the tree kernel naive Bayes approach
on tree-structured values delivers significantly better results
in cases of accuracy and precision than a naive Bayes ap-
proach using no tree-structured values. Using the tree ker-
nel naive Bayes approach on tree-structured and BOW fea-
tures delivers slightly better results in cases of accuracy,
again.

6.2 SQL

[Bockermann et al., 2009] presented a dataset for intrusion
detection. The dataset contains SQL-requests which are
parsed to get tree-structured values. The requests are clas-
sified as normal request and attack. The relevant class in
this binary dataset is relatively rare. The dataset is con-
taining just 15 attacks on 1000 requests. Again, we used
the tree-structured attribute and the one- and two-grams of
the string representation of the trees resulting in 1695 at-
tributes. [Bockermann et al., 2009] used an SVM with a
tree kernel to detect the attacks. To optimize the parameters
for our tree kernel naive Bayes approach, we used the same
setting as already described for the SW dataset. The best
performance is achieved by using no normalization and
some other normalizations achieving 99.2% accuracy. A
default learner which just predicts the majority class would
achieve 98.5% accuracy. Like for the Syskill and Webert
Web Page Ratings dataset the normalization methods using
the sum or the maximum of the outcome been seen during
training are not flexible enough, to achieve good results.
They never perform better than the default learner. The re-
maining normalization methods do not perform better than
no normalization. Additionally, the results and the runtime
are bad if we are expecting a Gaussian normal distribution
on the values calculated on the training set and using this
for calculation of the probabilities during prediction.

Table 1 shows the results using the best parameter set-
ting. Using the tree kernel naive Bayes approach com-
pared to a naive Bayes approach using no tree-structured
values delivers significantly better results in cases of preci-
sion and accuracy. All experiments using naive Bayes ap-
proaches were evaluated using a loop of 100 ten-fold cross-
validations and calculating the average. The results of the
tree kernel SVM are of one ten-fold cross-validation. An
interesting fact is that using a tree kernel SVM on the tree-
structured values and BOW ends up in shorter runtime than
using a tree kernel SVM alone. We suggest that the com-
bination of tree and BOW features results in faster conver-
gence, internally. Using our approach on this dataset deliv-
ers better results for all performance measures compared to
using a SVM. Especially, the shorter runtime is remarkable.



Method Accuracy Recall Precision Time
(in's)

Baseline (majority vote) 39.9% 25.0% 10.0%

Naive Bayes on BOW 60.9+1.5% | 63.3+1.0% 64.2 +£0.9% 0.2

Tree Kernel Naive Bayes 66.5+0.8% | 63.0+0.8% | 70.8+1.3% 1.81

(+ Gaussian)

2.73

Tree Kernel Naive Bayes & BOW [ 66.7+0.8% [ 642+£0.8% [ 67.2+1.4% 1.98

Tree Kernel SVM 604+58% [ 55.7+55% |59.1+£11.7% | 34

Tree Kernel SVM & BOW 715+ 73% | 66.7+83% | 72.2+14.0% | 51
SQL

Baseline (majority vote) 98.5% 50.0% 49.3%

Naive Bayes on BOW 96.6 +0.2% | 81.0+2.2% | 62.3+1.0% 3.12

Tree Kernel Naive Bayes 99.3+0.1% | 796+ 12% | 943+1.9% | 72.2

(+ Gaussian)

612

Tree Kernel Naive Bayes & BOW [ 96.6 £0.2% [ 64.9+4.4% [25.1£1.9% 74.7

Tree Kernel SVM

98.5 £ 0.5%

50.0 £0.0% | 49.3 £0.3% 138

Tree Kernel SVM & BOW

98.8 £ 0.8%

62.5 +20.2% | 64.4+23.2% | 110

Table 1: Results of various machine learning approaches on SW and SQL

Combining the tree-structured values with the BOW fea-
tures using our tree kernel naive Bayes approach delivers
results which are worse than using the BOW or the tree-
structured features exclusively. Developing a smoother
combination of both probability distributions inside of the
naive Bayes classifier might overcome this problem.

6.3 ACE 2004

The shared task of the Automatic Content Extraction con-
ference 2004 offered one of the first tasks for relational
learning [Lin, 2004]. The dataset contains seven types of
relations and one irrelevant (negative) class. The dataset
consists of more than 50000 examples of which less than
10% belong to one of the seven relation types. Because of
the long runtime seen in Table 2 we extracted a sample of
10% of the dataset to evaluate the best parameter setting.
We evaluated the best experiment setting and the perfor-
mance of the tested methods on that sample like we did for
the SW and SQL datasets. To calculate the values for preci-
sion and recall, we calculated the average values of the cer-
tain values for each of the seven (positive) classes. These
seven classes are the relevant ones. The values for precision
and recall for the negative examples are good just because
of the amount of negative examples. The performance val-
ues of the naive Bayes approaches are evaluated using a
loop of 100 five-fold cross-validations. [Zhou et al., 2005]
presented many features which can be extracted out of tree-
structured values for relational learning. These features are
nominal or numerical ones and can be used by machine
learning methods which cannot handle tree-structured val-
ues. We used the features presented by [Zhou et al., 2005]
in several settings shown in Table 2. Again, the tree kernel
SVM is a little bit faster if it is applied on a tree-structured
attribute together with non-tree-structured attributes. Nev-
ertheless, the tree kernel SVM is much slower than our tree
kernel naive Bayes approach. Although, the results for the
tree kernel SVM are not significant the results achieved by
the tree kernel naive Bayes approach are comparable. Us-
ing the tree-structured attributes in contrast to just using the
features presented by [Zhou er al., 2005] (Zhou-features)
results in significantly better results in cases of precision
and accuracy. In contrast to the other two datasets we eval-
uated the f-score, too. The f-score is the harmonic mean of

precision and recall and the best result is achieved by the
tree kernel naive Bayes approach together with the Zhou-
features.

7 Conclusion and future work

We presented the novel tree kernel naive Bayes approach
which is a naive Bayes classifier being able to process tree-
structured attribute-values. We present the possibilities in
handling these attribute values which are absolutely dif-
ferent from traditional attribute value types (nominal and
numerical) handled by naive Bayes classifiers. To memo-
rize the training data we are using directed acyclic graphs
which efficiently store the trees apparent in the training set
for each class. Different types of handling the tree kernel
values are analyzed. Exhaustive experiments on three real-
world datasets show that our tree kernel naive Bayes ap-
proach delivers good results, although it is a lazy learning
method which is not optimized. We have shown that our
tree kernel approach can be an efficient and fast alterna-
tive to tree kernels embedded in kernel machines. Possible
future work is the detection of outliers in tree-structured at-
tribute values. In addition, the creation of the DAGs could
be done more efficiently. Furthermore, the DAGs are still
very complex for special datasets. The question arises if it
is possible to just use the relevant pieces of a tree for the
creation of the DAGs. For the SQL dataset the combina-
tion of tree-structured values and the BOW features deliver
worse results. Another topic for future work could be to
combine the probability values delivered by tree-structured
and flat features even smoother.
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