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Abstract
Structured real world data can be represented
with graphs whose structure encodes indepen-
dence assumptions within the data. Due to statis-
tical advantages over generative graphical mod-
els, Conditional Random Fields (CRFs) are used
in a wide range of classification tasks on struc-
tured data sets. CRFs can be learned from both,
fully or partially supervised data, and may be
used to infer fully unlabeled or partially labelled
data. However, performing inference in CRFs
with an arbitrary graphical structure on a large
amount of data is computational expensive and
nearly intractable on a reseacher’s workstation.
Hence, we take advantage of recent develop-
ments in computer hardware, namely general-
purpose Graphics Processing Units (GPUs). We
not merely run given algorithms on GPUs, but
present a novel framework of parallel algorithms
at several levels for training general CRFs on
very large data sets. We evaluate their perfor-
mance in terms of runtime and F1-Score.

1 Introduction
Inherently structured real world data has become common
in a large set of machine learning tasks like text segmen-
tation [Lafferty et al., 2001; Settles, 2004], denoising and
classification of images [Vishwanathan et al., 2006], 3-D
depth reconstruction [Saxena et al., 2007], protein side-
chain prediction [Yanover et al., 2007], or labeling web
pages [Craven et al., 1998]. A structured training instance
(y,x) consists of a label vector y ∈ Yn and an observation
vector x ∈ Xm. Both, y and x, may contain dependen-
cies within and between each other. Probabilistic Graphical
Models (PGMs) are a common approach to model the inter-
actions of those variables. If observations should be classi-
fied, i.e. predicting y given x, Conditional Random Fields
(CRFs) [Lafferty et al., 2001] are the method of choice.
They do not model the dependencies within the observed
variables, which reduces the computational complexitiy if
compared with vanilla Markov Random Fields (MRFs).
Nevertheless, exact inference in CRFs is still #P-hard and
approximate inference NP-hard as it is the case for MRFs
[Roth, 1996]. For this reason, the use of general CRFs
with large graphical structures or large amounts of training
data is restricted to large computing clusters. Recent devel-
opments in computer hardware have brought up so called
general-purpose Graphics Processing Units (GPUs). These
are highly parallel co-processing units which are capable

of solving data-parallel tasks in orders of magnitudes faster
than ordinary CPUs. In order to use them, however, data-
parallism (i.e. calculations, where one does not need the
result of another one) has to be detected in machine learn-
ing methods. We analyzed each computation involved in
CRF training and prediction in terms of data-parallelism
and developed a framework which allows the fast and con-
venient application of general CRFs on modern worksta-
tions with GPUs. In our framework, models are repre-
sented by factor graphs and parallel inference is done by
Loopy Belief Propagation (LBP) [Kschischang et al., 2001;
Pearl, 1988]. Since the amount of GPU memory is small as
compared to CPUs main-memory, we use Stochastic Gra-
dient Descent (SGD) online-learning as proposed by Bot-
tou [Bottou, 2010; Bottou and LeCun, 2005] and Vish-
wanathan et al. [Vishwanathan et al., 2006] to train CRFs
on nearly arbitrary large data sets. The full modular de-
sign of our framework allows to easily exchange inference
and optimization algorithms. In this paper, we present al-
gorithms for a massively parallel training of CRFs with ar-
bitrary factor graphs. In contrast to other approaches, our
algorithms perform parallelization on several levels:

• Instance-level: All training instances in a given set
are processed in parallel.

• Node-level: Messages which are sent from factor and
variable nodes to their neighbors are computed in par-
allel.

• Micro-level: The calculations, which are necessary to
compute the messages, are parallelized by techniques
like parallel reduction.

Theoretical estimates of computational complexity as well
as a empirical comparison on a well known data set are
given for our framework.

Some machine learning algorithms were already adapted
for GPUs, for instance, SVM [Athanasopoulos et al., 2011;
Catanzaro et al., 2008], frequent sets [Fang et al., 2009], k-
Means [Xiao, 2010]. In case of CRFs, there is one known
distributed parallel approach (called PCRFs) by Phan et al.
[Phan et al., 2007] which is restricted to linear-chain struc-
tures. The parallelization is done on the training instance-
level. That is, the training set is partitioned into sub-
sets which are distributed to the cluster nodes. Gonzalez
et al. developed the ResidualSplash (RS) message
propagation algorithm [Gonzalez et al., 2009a] for general
PGMs, which is known to be optimal in terms of the num-
ber of message computations. The parallelization is done
on Splash-level, i.e. each processor computes all the mes-
sages within one Splash. Here, a Splash of size h at node
v is a spanning-tree of depth h, rooted at v. It uses a glob-



ally synchronized priority queue to schedule the compu-
tation of the messages. Unfortunately, the RS algorithm
is not well suited for GPUs, because global synchroniza-
tion is very expensive on GPUs. Nevertheless, we plan to
add the RS scheduling to our framework by using full syn-
chronized atomic instructions for maintaining the queue.
The RS as well as the distributed DBRSplash algorithm
[Gonzalez et al., 2009b] are available in a general environ-
ment for programming on graphs, GraphLab [Low et al.,
2010]. Another approach for parallel inference in CRFs is
presented by Wick et al. [Wick et al., 2010]. It uses the well
known Metropolis-Hastings algorithm to perform inference
by MCMC-sampling. Such sampling-runs are naturally ex-
ecuted in parallel for several instances, but it is unknown if
this scales well on GPUs, since large instances may not fit
into GPUs small shared-memory. The algorithm is avail-
able in the FACTORIE package [McCallum et al., 2009].

Furthermore, special purpose variants of (L)BP, e.g., for
stereo vision tasks are presented by several groups [Chao-
Chung et al., 2010; Grauer-Gray and Kambhamettu, 2009;
Grauer-Gray et al., 2008; Lai et al., 2010; Sun et al., 2003].
There, the graphical structure is always hardcoded into the
algorithm which is tailored to measure for task-specific
data. We illustrate the trade-off between the performance of
highly specialized approaches and the general usability of
PGM/CRF frameworks by a specialized parallel forward-
backward message-passing for linear-chain CRFs which is
based on our framework and performs significantly faster
than message-propagation algorithms for general graphical
structures.

To the best of our knowledge, we present the first gen-
eral CRF framework which is accelerated by GPUs and is
capable of performing online-learning. Additionally, we
present a handy method to define arbitrary graphical mod-
els without writing a single line of code.

The paper is organized as follows: In Section 2, GPUs
and CRFs are introduced. In Section 3, parallel algorithms
for CRFs, namely for the computation of local functions,
marginal distribution, model expectation, gradient-based
optimization, and parameter update are presented. In Sec-
tion 4, our framework is evaluated with respect to runtime
and F1-Score. Section 5 concludes this work and gives a
short outlook to future work.

2 Methods
We present our algorithms in work-time (WT) notation
[JáJá, 1992] using the forall statement to indicate a
data-parallel code segment. In contrast to P -processor
PRAMs, whose complexity depends on P , this notation ab-
stracts from the particular number of available processing
units. This notation allows the formulation of parallel al-
gorithms which are not aware of the particular number of
processing units. We consider the work-time complexity as
a measure to indicate the resource consumption of the new,
parallel algorithms. Let W (n) be the work-complexity, i.e.
the total number of executed instructions, and S(n) the
step-complexity, i.e. the number of steps each processor
has to perform. Note, that WT-complexity may be con-
verted to PRAM complexity by applying Brent’s theorem.

2.1 GPU Architecture
A GPU is composed of several so-called Multiprocessors
(MPs). Each of those MPs consists of a fixed number of
cores which perform the actual arithmetic or logic compu-
tations. All cores of an MP are working purely simultane-
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Figure 1: Linear-Chain factor graph with four hidden nodes
Y = {a, b, c, d} (white) and four observed nodes X =
{1, 2, 3, 4} (gray). Each factor (black square) represents a
clique from the underlying dependency graph of the ran-
dom variables in V = Y ∪X .

ous. As an effect, every branch in conditional code is auto-
matically serialized. To abstract from the specific numbers
of MPs and cores, GPU code uses the concept of thread-
blocks and threads [NVIDIA Corporation, 2011]. Without
prior knowledge about the hardware, GPU code may in-
stantiate up to 65535 thread-blocks, each with up to 1024
threads. The thread-blocks are automatically assigned to
the GPUs MPs and the threads to the cores. The GPU has
the ability to handle much more threads than real cores are
available, since their computations are used to hide mem-
ory latency. To achieve the maximum throughput, there
always have to exist some threads which perform computa-
tions on the cores while other threads are waiting for their
memory requests.

Exploiting such fine-granular data-parallelism is nor-
mally non-trivial. Design-patterns for parallel algorithms
help to get the most out of a GPU. The main pattern is par-
allel reduction, which is a generic parallelization of func-
tions satisfying the associative property. We used the re-
duction code by Harris [Harris, 2008], which is known to
achieve the maximum throughput, whenever possible, e.g.
in any data-parallel summation and maximization.

2.2 Conditional Random Fields
Conditional Random Fields (CRF) is a probabilistic
method for labeling and segmenting data [Lafferty et al.,
2001]. Unlike generative models, which model the joint
density p (y,x) over inputs x and labels y, discriminative
models, as are CRFs, directly model p (y |x) for a given
input sample x. Furthermore, the dependency among the
observations is not explicitly represented, which allows the
use of rich, overlapping features. For the ease of notation,
the probability p(yU ) is a short-cut for p(u = yu, v =
yv, w = yw), where U = {u, v, w} is a set of random
variables and yU ∈ Y |U | is a joint realization of them.

We consider factor graphs to represent the graphical
structure of the CRF. They encode any exponential family
probability distribution [Wick et al., 2010]. A factor graph
G = (V, F,E) is bipartite regarding V andF where V con-
tains the variable nodes and F the factor nodes. The nodes
in V represent random variables which decompose into the
set of observed nodes X and the set of hidden nodes Y
(Fig. 1). Although the domains of these variables may be
arbitrarily chosen, we consider the domain Y for hidden
nodes and X for the observed ones. Let ∆(f) be the set of
hidden neighbors of factor node f and ∆̃(f) its observed
neighbors. Each factor node f ∈ F represents a local func-
tion f : Yn×Xm → R+ (Eq. 1) which measures the score
of the hidden neighbors being in state y∆(f) given the real-
ization x∆̃(f) of the observed neighbors. For instance, the
neighborhoods of the factor nodes f, g from Figure 1 are



∆(f) = {a, b}, ∆(g) = {b} and ∆̃(f) = ∆̃(g) = {2}.
The scores are typically computed as a log-linear combina-
tion of a feature vector φ and its corresponding real-valued
parameter vector θ. For notational convenience, let the set
of hidden nodes be Y = {1, . . . , n}. The features are user-
defined binary indicator functions which evaluate to 1 only
for a single combination of class label(s) and observed re-
alization.

f
(
y∆(f) | x∆̃(f)

)
= exp

(〈
φ
(
y∆(f),x∆̃(f)

)
, θ
〉)

.

(1)
As an implication of the fundamental theorem of random
fields [Hammersley and Clifford, 1971], the conditional
probability mass function (Eq. 2) is given by the normal-
ized product of all local functions.

p (y | x) = Z(x)−1
∏
f∈F

f
(
y∆(f) | x∆̃(f)

)
. (2)

Z (x) =
∑
y∈Yn

∏
f∈F

f
(
y∆(f) | x∆̃(f)

)
. (3)

The normalization Z(x) is computed as sum of scores for
all possible assignments to the hidden nodes. We call a
joint hidden node realization y∆(f) familiar to xv , v ∈
∆̃(f) if there is an instance in the training data where the
nodes from ∆(f) have the realization y∆(f) and the ob-
served node v has the realization xv . A realization y∆(f)

or xv is called familiar, if it ever occurs in the training data.
To avoid overfitting, weights for unfamiliar realizations are
not created during training. In order to train a CRF, the
Maximum-Likelihood (ML) method is used. Given a train-
ing set T = {(y, x)(i)}1≤i≤N the ML method yields the
Log-Likelihood (Eq. 4) as the objective function for CRF
training.

L (θ; T ) =

N∑
i=1

log p
(
y(i) | x(i)

)
. (4)

Common optimization techniques for CRFs like quasi-
Newton or stochastic gradient [Bottou, 2010] methods rely
on the gradient of this objective function to update the
model parameters. Equation 5 shows a short-cut writing
of the partial derivatives from which the gradient could be
computed. The left term is known as the empirical expecta-
tion: the number of occurrences of realization y∆(f) given
xv with respect to the training set. Let v be an observed
neighbor of factor node f .

∂L (θ; T )

∂θf,y∆(f),xv

= Ẽ
[
f,y∆(f),xv

]
−Ê

[
f,y∆(f),xv

]
. (5)

The right term represents CRF’s expectation about this
number. It is computed by summing the marginal proba-
bilities of the realization y∆(f) in all training instances that
contain the observation xv at observed node v (Eq. 6).

Ê
[
f,y∆(f),xv

]
=

N∑
i=1

1{xv=x
(i)
v }

p
(
y∆(f),x

(i)

∆̃(f)

)
.

(6)
In this generic notation, every factor node has its own set

of parameters. In case of tied parameters, one has to keep
in mind that partial derivatives slightly change.

3 Algorithms
In the following code snippets, the scope of data-parallel
code, sequential loops and function definitions is indicated
by indentation. Using the formal definitions from the pre-
vious Section, each gradient-based CRF training consists
of the following steps.

One iteration of CRF training
1: iterate()
2: computeLocalFunctions()
3: computeMarginalDistribution()
4: computeModelExpectation()
5: computeGradient()
6: updateModelParameters()

We use stochastic optimization algorithms which pro-
cess batches of training instances. Each batch B consists
of b instances and the training iterations are performed on
any of these batches. We decompose the computation of
the local functions (Eq. 1) into independent, parallel sum-
mations for each instance in the current batch, each factor
as well as each hidden node realization which is familiar
to the observations contained in the training instances. The
resulting parallel pseudocode is shown in the following list-
ing.

Parallel computation of local functions
1: computeLocalFunctions()
2: forall example i in batch
3: forall factor f in F
4: for observed neighbors v
5: forall x[v]-familiar y
6: s[i,f,y] += theta[f,y,x]

Notice that the loop in line 4 was not parallelized in or-
der to omit write conflicts in line 6. Since this is the only
loop, the step-complexity amounts to Slf (n) = O(∆̃max).
Here, ∆̃max is the size of the biggest observed neighbor-
hood and ∆max is the size of the biggest hidden neighbor-
hood. As the total number of familiar hidden node real-
izations is a function of the training set and therefore un-
known, we bound it from above with O(|Y|∆max). The to-
tal number of statements, that all threads perform together,
is Wlf (n) = O(b|F |∆̃max|Y|∆max). The data-parallel
code indicated by lines 2 and 3 is distributed over a fixed
number τB of thread-blocks. Those blocks execute lines
4 to 6 concurrently with τT threads. The optimal values
for τB and τT are basically hardware dependent. We used
τB = 1024 and τT = 32 in our experiments, but the to-
tal runtime differs only slightly for τB ∈ {128, . . . , 2048}.
One may examine [NVIDIA Corporation, 2011] for tech-
nical details on how to derive an optimal value for different
hardware. The distribution of computations over thread-
blocks for training instances as well as factor nodes results
in a very scaleable parallelization at instance- and node-
level. This means that for a fixed ∆max, b training in-
stances on a graph with n factor nodes will result in the
same number of parallel computations as 1 instance with
bn factor nodes. The following algorithms also rely on
this principle. In case of local functions, micro-level par-
allelism is achieved by simply distributing the additions to
the threads within the blocks. To compute the marginal
probabilities which are needed to obtain the model expec-
tation, LBP is used. The algorithm consits in alternately
sending messages from factor to variable nodes and vice
versa. Those messages are described below. The paral-
lel computation of messages is distributed to thread-blocks



as it was the case for the local functions. In fact, each
consecutive pair of forall statements in the following
pseudocode is mapped to a fixed number of thread-blocks
which yields parallelism at instance- and node-level. The
messages are propagated through the graph until the done
predicate is satisfied. Our framework allows message spe-
cific convergence criteria and simple upper bounds for the
number of iterations. We choose

√
n, since if the graph

contains long paths over factors with weak potentials, dis-
tant vertices are approximately independent [Ihler et al.,
2005]. This is clearly an approximation, but it delivers
nearly the same results as if the true treewidth is used. The
pseudocodes of the methods in lines 10, 12, 13 and 14 are
not shown, since they resemble the computations of factor
messages and hidden messages, respectively.

Parallel computation of marginal probabilities with LBP
1: computeMarginalDistributionBP(){
2: while not done
3: forall example i
4: forall factor f in F
5: factorMessages(i,f)
6: forall example i
7: forall hidden node v in V
8: hiddenMessages(i,v)
9: forall example i in batch

10: computeNormalization(i)
11: forall factor f
12: computeFactorBeliefs(i,f)
13: computeMarginals(i,f)
14: forall hidden node v
15: computeHiddenBelief(i,v)

The belief of a factor node f about the joint realiza-
tion y∆(f) is computed by multiplying the local function
f(y∆(f) | x) with all incoming messages about yv from
all hidden neighbors v ∈ ∆(f). For hidden nodes v, the
belief about label y is simply the product of all incoming
messages of all adjacent factors f ∈ ∆̂(v). The normal-
ization Z(x) is obtained by summing all beliefs at an ar-
bitrary node. The factor marginals, which are needed to
update the model parameters, are computed in line 12 by
dividing the beliefs by the normalization. Equitations 7
and 8 are showing the formal definitions of the messages.
mf→v(yv | x) =∑
y∈Y|∆(f)−v|

f(y∆(f)−v,yv|x)
∏

w∈∆(f)−v

mw→f (yw|x) .

(7)
By using parallel reduction, the summation in Eq. 7 is

divided into partial sums. This yields O(|Y||∆max|) par-
tial factor messages for each core, which are reduced in
lines 9 to obtain the final messages. Notice, that unfamiliar
realizations do not appear in the training data and hence not
have a weight.

Parallel computation of factor messages
1: factorMessages(example i, factor f)
2: forall y of neighbors from f
3: forall neighbor v from f
4: m := 1
5: for neighbor u not equal v
6: m *= hMSG[u,f,y[u],i]
7: if(familiar(y)) m *= s[i,f,y]
8: fMSG[i,f,v,y[v]] += m
9: reduceMSGs(i,f)

Thus, only the scores of the familiar realizations
have to be multiplied in line 7. The step-complexity
is Sfm(n) = O(∆max) and the work-complexity is
Wfm(n) = O(|Y|∆max∆2

max).
A variable message (Eq. 8) from hidden node v to factor

node f about the label y is computed as the product of all
incoming factor messages except for the one from f .

mv→f (y | x) =
∏

g∈∆(v)−f

mg→v(y | x) . (8)

The computation of the hidden messages mv→f (y | x)
is parallelized by assigning each node from each training
instance to a thread-block. by using reduction. This results
in a step-complexity of Svm(n) = O(∆̂2

max) and an upper
bound of Wvm(n) = O(|Y|∆̂2

max) for the total number of
executed statements, where ∆̂max is the biggest neighbor-
hood of all hidden nodes.

Parallel computation of hidden messages

1: hiddenMessages(example i, hidden v)
2: forall neighbor f from v
3: for neighbor g not equal f
4: forall realization y
5: hMSG[i,v,f,y]*= fMSG[i,g,v,y]

If the graphical structure is fixed, it could be encoded
into the BP algorithm. In case of linear-chains, the biggest
hidden neighborhood is ∆max = 2 and each hidden node
could be adjacent with at most three factors (∆̂max = 3).
If these constants are hard-coded into BP, one obtains the
forward-backward algorithm. Additionally, factor and vari-
able messages are aggregated [Kschischang et al., 2001] to
obtain the forward (Eq. 9) and backward (Eq. 10) mes-
sages.

αt(y|x) =
∑
y′∈Y

f{t}(y|x) f{t−1,t}(y
′, y|x)αt−1(y′|x) .

(9)

βt(y|x) =
∑
y′∈Y

f{t}(y|x) f{t,t+1}(y, y
′|x)βt+1(y′|x) .

(10)
These are indexed by the affected hidden nodes instead

of the factors. Since there exists only one receiver for each
message, targets are ommited in this notation. The follow-
ing algorithm shows our parallel version of the FB algo-
rithm. First, the forward messages are computed for all
training instances as well as all labels in parallel. By us-
ing these messages, the normalization is computed at the
last leaf of the chain, i.e. Z(x) =

∑
y∈Y αT (y | x). As

soon as a backward message is computed, the marginals
can be obtained by applying equitation 11 to the forward
and backward messages.

p(y∆(f)|x) = Z(x)−1 f(y∆(f)|x)
∏

v∈∆(f)

mv→f (yv|x) .

(11)

Parallel computation of marginal probabilities with the FB
algorithm

1: computeMarginalDistributionFB()
2: forall example i
3: for t := 1 to n



4: forall realization y
5: forwardMessage(i,t,y)
6: computeNormalization(i)
7: for t := n to 1
8: forall realization y
9: backwardMessage(i,t,y)

10: marginals(i,t,y)

The parallelization is done on instance- and micro-
level, since the nodes are processed sequentially.
The methods computeForwardMessage and
computeBackwardMessage are not shown. These are
direct sequential implementations of their formal defini-
tions (Eq. 9, 10). The step-complexity of the parallel FB
algorithm is SFB(n) = O(n|Y|) and the work-complexity
WFB(n) = O(n|B||Y|2).

Once the marginal probabilities are ready, the model ex-
pectation can be computed. All occurrences of familiar ob-
served node realizations xv in the current batch are stored
in lists. Those lists are processed iteratively but for all fa-
miliar observations in parallel. The marginal probabilities
of all joint realizations of hidden nodes which are familiar
to the current observation are added to their corresponding
expectation.

Parallel computation of model expectation

1: computeModelExpectation()
2: forall familiar x
3: for occurence (i,f) of x
4: forall x-familiar realization y
5: exp[pIdx(y,x)] += marg[i,f,y]

Every parameter weights one familiar combination of
hidden and observed node realizations. The method
parameterIdx is based upon a unique mapping from
realizations to natural numbers, which is used to address
the expectation array. When the computation has fin-
ished, the entries of the gradient-vector can be computed by
distributing the computations evenly over all thread in all
thread-blocks. The work-complexity is equal to the length
of the parameter vector.

Parallel computation of the gradient

1: computeGradient()
2: forall parameter p
3: g[p] = -(count[p] - exp[p])

The array count contains the empirical expectation Ẽ,
i.e. the absolute frequencies of the familiar realizations in
the current batch. We store the negative gradient, since we
use minimization techniques to maximize the likelihood.

To complete a training iteration, we use Stochastic Gra-
dient Descent (SGD) to compute the parameter update. It
resembles plain gradient descent for every batch. That is,
the η-scaled gradient is substracted from the current param-
eter vector.

Parallel SGD parameter update

1: updateModelParametersSGD(eta)
2: forall parameter p
3: theta[p] -= eta * g[p]

The complexities are equal to those of the gradient com-
putation.

4 Evaluation
We use the CoNLL-2000 data set to evaluate our CRF
framework. The training set consists of 8936 sentences,

I II III IV
F1-Score 93.73 93.65 93.11 92.74
Precision 93.89 93.83 93.29 92.26
Recall 93.56 93.47 92.94 93.22
Accuracy 96.03 96.00 95.74 95.43
Runtime 296.66 76.42 279.7 808.2

Table 1: Accuracy and runtime on the CoNLL-2000 data
set after 10 iterations on CRFSGD (I), FB@GPU (II),
LBP@GPU (III) and FACTORIE (IV); runtime in seconds;
precision, recall, and F-score in percent; best results in
bold; FB@GPU and LBP@GPU are our new algorithms.

each word is annotated with part-of-speech (POS) tags.
The task is to label each word with a label indicating
whether the word is outside a chunk, starts a chunk, or con-
tinues a chunk and the determination of the chunk type.
We measure the time for 10 training iterations (including
reading the examples) as well as accuracy, precision, re-
call and F1-score on a test set of 2012 sentences. The
evaluation was run on an AMD 1090T CPU with 8 GiB
memory and a NVIDIA C2050 GPU with 3 GiB mem-
ory. This evaluation compares our CRF for general factor
graphs (LBP@GPU) and our specialized linear-chain CRF
inference (FB@GPU) with the sequential CPU algorithms
of Leon Bottou’s CRFSGD1 and FACTORIE2 by McCal-
lum et al. For our framework and CRFSGD, the structure
of the training data is given by Fig. 1. In fact, our frame-
work uses exactly the same data format (GraphML) which
was used to generate Fig. 1. This way, it is possible to load
arbitrary graphical models without writing a single line of
code. For FACTORIE, their ChainNER3 example was
used. We choose words, POS tags, and words in the neigh-
borhood of a given word as observed node realisations, tak-
ing into account only those features which occur at least
once in the training data. CRFSGD’s learning rate was au-
tomatically determined to be η = 5 · 10−2. We choose
ηGPU = 2 · 10−2 and b = 128 for our framework. Table 1
shows the result of the evaluation. While CRFSGD outper-
forms the other candidates in terms of absolute prediction
quality, our specialized FB@GPU inferer attains nearly the
same result with ≈ 1/10 of FACTORIE’s runtime. It is
worth to say that this kind of inference is deterministic and
yields exactly the same result in every run. The general in-
ference approaches perform slightly worth in terms of qual-
ity when compared to the specialized variants, yet both are
approximations. Nevertheless, our LBP@GPU inference is
faster than CRFSGD and FACTORIE. Notice that FACTO-
RIE used the MCMC-sampling for inference, since belief
propagation is not supported until now. The binaries and
source code of our framework are available for download
at http://sfb876.tu-dortmund.de/crfgpu.

5 Conclusion and Future Work
For general graphical structures we could show, that train-
ing CRFs on GPUs outperforms one of the most sophisti-
cated graphical modelling frameworks as well as a special-
ized linear-chain CRF implementation. Even though it is
known that the here applied flooding message schedule per-
forms unnecessary message computations, our algorithm

1CRFSGD-1.3 is available at
http://leon.bottou.org/projects/sgd

2FACTORIE-0.9.2 is available at
http://code.google.com/p/factorie



delivers a reasonable runtime. It is planned to add more so-
phisticated message schedules like ResidualSplash to
our framework. Also the MCMC-sampling which is used
by FACTORIE is an extension we consider. The graphical
model from our evaluation contains only 78 nodes, hence
we will present results on larger models in future. First ex-
periments on models with several thousand nodes showed,
that our node-level parallelization scales very good, as ex-
pected. Our parallel forward-backward algorithm is clearly
the fastest linear-chain CRF trainer around. This also
shows, that the comparsion of general inference frame-
works with specialized, fixed-graph algorithms will always
yield worse performance for the general variants in terms
of runtime.
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